Sample records for quantitative analysis shows

  1. Diagnostic performance of semi-quantitative and quantitative stress CMR perfusion analysis: a meta-analysis.

    PubMed

    van Dijk, R; van Assen, M; Vliegenthart, R; de Bock, G H; van der Harst, P; Oudkerk, M

    2017-11-27

    Stress cardiovascular magnetic resonance (CMR) perfusion imaging is a promising modality for the evaluation of coronary artery disease (CAD) due to high spatial resolution and absence of radiation. Semi-quantitative and quantitative analysis of CMR perfusion are based on signal-intensity curves produced during the first-pass of gadolinium contrast. Multiple semi-quantitative and quantitative parameters have been introduced. Diagnostic performance of these parameters varies extensively among studies and standardized protocols are lacking. This study aims to determine the diagnostic accuracy of semi- quantitative and quantitative CMR perfusion parameters, compared to multiple reference standards. Pubmed, WebOfScience, and Embase were systematically searched using predefined criteria (3272 articles). A check for duplicates was performed (1967 articles). Eligibility and relevance of the articles was determined by two reviewers using pre-defined criteria. The primary data extraction was performed independently by two researchers with the use of a predefined template. Differences in extracted data were resolved by discussion between the two researchers. The quality of the included studies was assessed using the 'Quality Assessment of Diagnostic Accuracy Studies Tool' (QUADAS-2). True positives, false positives, true negatives, and false negatives were subtracted/calculated from the articles. The principal summary measures used to assess diagnostic accuracy were sensitivity, specificity, andarea under the receiver operating curve (AUC). Data was pooled according to analysis territory, reference standard and perfusion parameter. Twenty-two articles were eligible based on the predefined study eligibility criteria. The pooled diagnostic accuracy for segment-, territory- and patient-based analyses showed good diagnostic performance with sensitivity of 0.88, 0.82, and 0.83, specificity of 0.72, 0.83, and 0.76 and AUC of 0.90, 0.84, and 0.87, respectively. In per territory

  2. Quantitative analysis of intra-Golgi transport shows intercisternal exchange for all cargo

    PubMed Central

    Dmitrieff, Serge; Rao, Madan; Sens, Pierre

    2013-01-01

    The mechanisms controlling the transport of proteins through the Golgi stack of mammalian and plant cells is the subject of intense debate, with two models, cisternal progression and intercisternal exchange, emerging as major contenders. A variety of transport experiments have claimed support for each of these models. We reevaluate these experiments using a single quantitative coarse-grained framework of intra-Golgi transport that accounts for both transport models and their many variants. Our analysis makes a definitive case for the existence of intercisternal exchange both for small membrane proteins and large protein complexes––this implies that membrane structures larger than the typical protein-coated vesicles must be involved in transport. Notwithstanding, we find that current observations on protein transport cannot rule out cisternal progression as contributing significantly to the transport process. To discriminate between the different models of intra-Golgi transport, we suggest experiments and an analysis based on our extended theoretical framework that compare the dynamics of transiting and resident proteins. PMID:24019488

  3. A quantitative analysis of the F18 flight control system

    NASA Technical Reports Server (NTRS)

    Doyle, Stacy A.; Dugan, Joanne B.; Patterson-Hine, Ann

    1993-01-01

    This paper presents an informal quantitative analysis of the F18 flight control system (FCS). The analysis technique combines a coverage model with a fault tree model. To demonstrate the method's extensive capabilities, we replace the fault tree with a digraph model of the F18 FCS, the only model available to us. The substitution shows that while digraphs have primarily been used for qualitative analysis, they can also be used for quantitative analysis. Based on our assumptions and the particular failure rates assigned to the F18 FCS components, we show that coverage does have a significant effect on the system's reliability and thus it is important to include coverage in the reliability analysis.

  4. Quantitative trait nucleotide analysis using Bayesian model selection.

    PubMed

    Blangero, John; Goring, Harald H H; Kent, Jack W; Williams, Jeff T; Peterson, Charles P; Almasy, Laura; Dyer, Thomas D

    2005-10-01

    Although much attention has been given to statistical genetic methods for the initial localization and fine mapping of quantitative trait loci (QTLs), little methodological work has been done to date on the problem of statistically identifying the most likely functional polymorphisms using sequence data. In this paper we provide a general statistical genetic framework, called Bayesian quantitative trait nucleotide (BQTN) analysis, for assessing the likely functional status of genetic variants. The approach requires the initial enumeration of all genetic variants in a set of resequenced individuals. These polymorphisms are then typed in a large number of individuals (potentially in families), and marker variation is related to quantitative phenotypic variation using Bayesian model selection and averaging. For each sequence variant a posterior probability of effect is obtained and can be used to prioritize additional molecular functional experiments. An example of this quantitative nucleotide analysis is provided using the GAW12 simulated data. The results show that the BQTN method may be useful for choosing the most likely functional variants within a gene (or set of genes). We also include instructions on how to use our computer program, SOLAR, for association analysis and BQTN analysis.

  5. Design and analysis issues in quantitative proteomics studies.

    PubMed

    Karp, Natasha A; Lilley, Kathryn S

    2007-09-01

    Quantitative proteomics is the comparison of distinct proteomes which enables the identification of protein species which exhibit changes in expression or post-translational state in response to a given stimulus. Many different quantitative techniques are being utilized and generate large datasets. Independent of the technique used, these large datasets need robust data analysis to ensure valid conclusions are drawn from such studies. Approaches to address the problems that arise with large datasets are discussed to give insight into the types of statistical analyses of data appropriate for the various experimental strategies that can be employed by quantitative proteomic studies. This review also highlights the importance of employing a robust experimental design and highlights various issues surrounding the design of experiments. The concepts and examples discussed within will show how robust design and analysis will lead to confident results that will ensure quantitative proteomics delivers.

  6. [Quantitative surface analysis of Pt-Co, Cu-Au and Cu-Ag alloy films by XPS and AES].

    PubMed

    Li, Lian-Zhong; Zhuo, Shang-Jun; Shen, Ru-Xiang; Qian, Rong; Gao, Jie

    2013-11-01

    In order to improve the quantitative analysis accuracy of AES, We associated XPS with AES and studied the method to reduce the error of AES quantitative analysis, selected Pt-Co, Cu-Au and Cu-Ag binary alloy thin-films as the samples, used XPS to correct AES quantitative analysis results by changing the auger sensitivity factors to make their quantitative analysis results more similar. Then we verified the accuracy of the quantitative analysis of AES when using the revised sensitivity factors by other samples with different composition ratio, and the results showed that the corrected relative sensitivity factors can reduce the error in quantitative analysis of AES to less than 10%. Peak defining is difficult in the form of the integral spectrum of AES analysis since choosing the starting point and ending point when determining the characteristic auger peak intensity area with great uncertainty, and to make analysis easier, we also processed data in the form of the differential spectrum, made quantitative analysis on the basis of peak to peak height instead of peak area, corrected the relative sensitivity factors, and verified the accuracy of quantitative analysis by the other samples with different composition ratio. The result showed that the analytical error in quantitative analysis of AES reduced to less than 9%. It showed that the accuracy of AES quantitative analysis can be highly improved by the way of associating XPS with AES to correct the auger sensitivity factors since the matrix effects are taken into account. Good consistency was presented, proving the feasibility of this method.

  7. Quantitative Hydrocarbon Surface Analysis

    NASA Technical Reports Server (NTRS)

    Douglas, Vonnie M.

    2000-01-01

    The elimination of ozone depleting substances, such as carbon tetrachloride, has resulted in the use of new analytical techniques for cleanliness verification and contamination sampling. The last remaining application at Rocketdyne which required a replacement technique was the quantitative analysis of hydrocarbons by infrared spectrometry. This application, which previously utilized carbon tetrachloride, was successfully modified using the SOC-400, a compact portable FTIR manufactured by Surface Optics Corporation. This instrument can quantitatively measure and identify hydrocarbons from solvent flush of hardware as well as directly analyze the surface of metallic components without the use of ozone depleting chemicals. Several sampling accessories are utilized to perform analysis for various applications.

  8. Multivariate Quantitative Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Kinchen, David G.; Capezza, Mary

    1995-01-01

    Technique of multivariate quantitative chemical analysis devised for use in determining relative proportions of two components mixed and sprayed together onto object to form thermally insulating foam. Potentially adaptable to other materials, especially in process-monitoring applications in which necessary to know and control critical properties of products via quantitative chemical analyses of products. In addition to chemical composition, also used to determine such physical properties as densities and strengths.

  9. Quantitative analysis of γ-oryzanol content in cold pressed rice bran oil by TLC-image analysis method.

    PubMed

    Sakunpak, Apirak; Suksaeree, Jirapornchai; Monton, Chaowalit; Pathompak, Pathamaporn; Kraisintu, Krisana

    2014-02-01

    To develop and validate an image analysis method for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. TLC-densitometric and TLC-image analysis methods were developed, validated, and used for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. The results obtained by these two different quantification methods were compared by paired t-test. Both assays provided good linearity, accuracy, reproducibility and selectivity for determination of γ-oryzanol. The TLC-densitometric and TLC-image analysis methods provided a similar reproducibility, accuracy and selectivity for the quantitative determination of γ-oryzanol in cold pressed rice bran oil. A statistical comparison of the quantitative determinations of γ-oryzanol in samples did not show any statistically significant difference between TLC-densitometric and TLC-image analysis methods. As both methods were found to be equal, they therefore can be used for the determination of γ-oryzanol in cold pressed rice bran oil.

  10. Quantitative analysis of γ-oryzanol content in cold pressed rice bran oil by TLC-image analysis method

    PubMed Central

    Sakunpak, Apirak; Suksaeree, Jirapornchai; Monton, Chaowalit; Pathompak, Pathamaporn; Kraisintu, Krisana

    2014-01-01

    Objective To develop and validate an image analysis method for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. Methods TLC-densitometric and TLC-image analysis methods were developed, validated, and used for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. The results obtained by these two different quantification methods were compared by paired t-test. Results Both assays provided good linearity, accuracy, reproducibility and selectivity for determination of γ-oryzanol. Conclusions The TLC-densitometric and TLC-image analysis methods provided a similar reproducibility, accuracy and selectivity for the quantitative determination of γ-oryzanol in cold pressed rice bran oil. A statistical comparison of the quantitative determinations of γ-oryzanol in samples did not show any statistically significant difference between TLC-densitometric and TLC-image analysis methods. As both methods were found to be equal, they therefore can be used for the determination of γ-oryzanol in cold pressed rice bran oil. PMID:25182282

  11. Highly Reproducible Label Free Quantitative Proteomic Analysis of RNA Polymerase Complexes*

    PubMed Central

    Mosley, Amber L.; Sardiu, Mihaela E.; Pattenden, Samantha G.; Workman, Jerry L.; Florens, Laurence; Washburn, Michael P.

    2011-01-01

    The use of quantitative proteomics methods to study protein complexes has the potential to provide in-depth information on the abundance of different protein components as well as their modification state in various cellular conditions. To interrogate protein complex quantitation using shotgun proteomic methods, we have focused on the analysis of protein complexes using label-free multidimensional protein identification technology and studied the reproducibility of biological replicates. For these studies, we focused on three highly related and essential multi-protein enzymes, RNA polymerase I, II, and III from Saccharomyces cerevisiae. We found that label-free quantitation using spectral counting is highly reproducible at the protein and peptide level when analyzing RNA polymerase I, II, and III. In addition, we show that peptide sampling does not follow a random sampling model, and we show the need for advanced computational models to predict peptide detection probabilities. In order to address these issues, we used the APEX protocol to model the expected peptide detectability based on whole cell lysate acquired using the same multidimensional protein identification technology analysis used for the protein complexes. Neither method was able to predict the peptide sampling levels that we observed using replicate multidimensional protein identification technology analyses. In addition to the analysis of the RNA polymerase complexes, our analysis provides quantitative information about several RNAP associated proteins including the RNAPII elongation factor complexes DSIF and TFIIF. Our data shows that DSIF and TFIIF are the most highly enriched RNAP accessory factors in Rpb3-TAP purifications and demonstrate our ability to measure low level associated protein abundance across biological replicates. In addition, our quantitative data supports a model in which DSIF and TFIIF interact with RNAPII in a dynamic fashion in agreement with previously published reports. PMID

  12. Energy Dispersive Spectrometry and Quantitative Analysis Short Course. Introduction to X-ray Energy Dispersive Spectrometry and Quantitative Analysis

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.

  13. Using Qualitative Hazard Analysis to Guide Quantitative Safety Analysis

    NASA Technical Reports Server (NTRS)

    Shortle, J. F.; Allocco, M.

    2005-01-01

    Quantitative methods can be beneficial in many types of safety investigations. However, there are many difficulties in using quantitative m ethods. Far example, there may be little relevant data available. This paper proposes a framework for using quantitative hazard analysis to prioritize hazard scenarios most suitable for quantitative mziysis. The framework first categorizes hazard scenarios by severity and likelihood. We then propose another metric "modeling difficulty" that desc ribes the complexity in modeling a given hazard scenario quantitatively. The combined metrics of severity, likelihood, and modeling difficu lty help to prioritize hazard scenarios for which quantitative analys is should be applied. We have applied this methodology to proposed concepts of operations for reduced wake separation for airplane operatio ns at closely spaced parallel runways.

  14. A strategy to apply quantitative epistasis analysis on developmental traits.

    PubMed

    Labocha, Marta K; Yuan, Wang; Aleman-Meza, Boanerges; Zhong, Weiwei

    2017-05-15

    Genetic interactions are keys to understand complex traits and evolution. Epistasis analysis is an effective method to map genetic interactions. Large-scale quantitative epistasis analysis has been well established for single cells. However, there is a substantial lack of such studies in multicellular organisms and their complex phenotypes such as development. Here we present a method to extend quantitative epistasis analysis to developmental traits. In the nematode Caenorhabditis elegans, we applied RNA interference on mutants to inactivate two genes, used an imaging system to quantitatively measure phenotypes, and developed a set of statistical methods to extract genetic interactions from phenotypic measurement. Using two different C. elegans developmental phenotypes, body length and sex ratio, as examples, we showed that this method could accommodate various metazoan phenotypes with performances comparable to those methods in single cell growth studies. Comparing with qualitative observations, this method of quantitative epistasis enabled detection of new interactions involving subtle phenotypes. For example, several sex-ratio genes were found to interact with brc-1 and brd-1, the orthologs of the human breast cancer genes BRCA1 and BARD1, respectively. We confirmed the brc-1 interactions with the following genes in DNA damage response: C34F6.1, him-3 (ortholog of HORMAD1, HORMAD2), sdc-1, and set-2 (ortholog of SETD1A, SETD1B, KMT2C, KMT2D), validating the effectiveness of our method in detecting genetic interactions. We developed a reliable, high-throughput method for quantitative epistasis analysis of developmental phenotypes.

  15. Quantitative Data Analysis--In the Graduate Curriculum

    ERIC Educational Resources Information Center

    Albers, Michael J.

    2017-01-01

    A quantitative research study collects numerical data that must be analyzed to help draw the study's conclusions. Teaching quantitative data analysis is not teaching number crunching, but teaching a way of critical thinking for how to analyze the data. The goal of data analysis is to reveal the underlying patterns, trends, and relationships of a…

  16. Influence analysis in quantitative trait loci detection.

    PubMed

    Dou, Xiaoling; Kuriki, Satoshi; Maeno, Akiteru; Takada, Toyoyuki; Shiroishi, Toshihiko

    2014-07-01

    This paper presents systematic methods for the detection of influential individuals that affect the log odds (LOD) score curve. We derive general formulas of influence functions for profile likelihoods and introduce them into two standard quantitative trait locus detection methods-the interval mapping method and single marker analysis. Besides influence analysis on specific LOD scores, we also develop influence analysis methods on the shape of the LOD score curves. A simulation-based method is proposed to assess the significance of the influence of the individuals. These methods are shown useful in the influence analysis of a real dataset of an experimental population from an F2 mouse cross. By receiver operating characteristic analysis, we confirm that the proposed methods show better performance than existing diagnostics. © 2014 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Evaluation of shear wave elastography for differential diagnosis of breast lesions: A new qualitative analysis versus conventional quantitative analysis.

    PubMed

    Ren, Wei-Wei; Li, Xiao-Long; Wang, Dan; Liu, Bo-Ji; Zhao, Chong-Ke; Xu, Hui-Xiong

    2018-04-13

    To evaluate a special kind of ultrasound (US) shear wave elastography for differential diagnosis of breast lesions, using a new qualitative analysis (i.e. the elasticity score in the travel time map) compared with conventional quantitative analysis. From June 2014 to July 2015, 266 pathologically proven breast lesions were enrolled in this study. The maximum, mean, median, minimum, and standard deviation of shear wave speed (SWS) values (m/s) were assessed. The elasticity score, a new qualitative feature, was evaluated in the travel time map. The area under the receiver operating characteristic (AUROC) curves were plotted to evaluate the diagnostic performance of both qualitative and quantitative analyses for differentiation of breast lesions. Among all quantitative parameters, SWS-max showed the highest AUROC (0.805; 95% CI: 0.752, 0.851) compared with SWS-mean (0.786; 95% CI:0.732, 0.834; P = 0.094), SWS-median (0.775; 95% CI:0.720, 0.824; P = 0.046), SWS-min (0.675; 95% CI:0.615, 0.731; P = 0.000), and SWS-SD (0.768; 95% CI:0.712, 0.817; P = 0.074). The AUROC of qualitative analysis in this study obtained the best diagnostic performance (0.871; 95% CI: 0.825, 0.909, compared with the best parameter of SWS-max in quantitative analysis, P = 0.011). The new qualitative analysis of shear wave travel time showed the superior diagnostic performance in the differentiation of breast lesions in comparison with conventional quantitative analysis.

  18. Computerized image analysis for quantitative neuronal phenotyping in zebrafish.

    PubMed

    Liu, Tianming; Lu, Jianfeng; Wang, Ye; Campbell, William A; Huang, Ling; Zhu, Jinmin; Xia, Weiming; Wong, Stephen T C

    2006-06-15

    An integrated microscope image analysis pipeline is developed for automatic analysis and quantification of phenotypes in zebrafish with altered expression of Alzheimer's disease (AD)-linked genes. We hypothesize that a slight impairment of neuronal integrity in a large number of zebrafish carrying the mutant genotype can be detected through the computerized image analysis method. Key functionalities of our zebrafish image processing pipeline include quantification of neuron loss in zebrafish embryos due to knockdown of AD-linked genes, automatic detection of defective somites, and quantitative measurement of gene expression levels in zebrafish with altered expression of AD-linked genes or treatment with a chemical compound. These quantitative measurements enable the archival of analyzed results and relevant meta-data. The structured database is organized for statistical analysis and data modeling to better understand neuronal integrity and phenotypic changes of zebrafish under different perturbations. Our results show that the computerized analysis is comparable to manual counting with equivalent accuracy and improved efficacy and consistency. Development of such an automated data analysis pipeline represents a significant step forward to achieve accurate and reproducible quantification of neuronal phenotypes in large scale or high-throughput zebrafish imaging studies.

  19. Model-Based Linkage Analysis of a Quantitative Trait.

    PubMed

    Song, Yeunjoo E; Song, Sunah; Schnell, Audrey H

    2017-01-01

    Linkage Analysis is a family-based method of analysis to examine whether any typed genetic markers cosegregate with a given trait, in this case a quantitative trait. If linkage exists, this is taken as evidence in support of a genetic basis for the trait. Historically, linkage analysis was performed using a binary disease trait, but has been extended to include quantitative disease measures. Quantitative traits are desirable as they provide more information than binary traits. Linkage analysis can be performed using single-marker methods (one marker at a time) or multipoint (using multiple markers simultaneously). In model-based linkage analysis the genetic model for the trait of interest is specified. There are many software options for performing linkage analysis. Here, we use the program package Statistical Analysis for Genetic Epidemiology (S.A.G.E.). S.A.G.E. was chosen because it also includes programs to perform data cleaning procedures and to generate and test genetic models for a quantitative trait, in addition to performing linkage analysis. We demonstrate in detail the process of running the program LODLINK to perform single-marker analysis, and MLOD to perform multipoint analysis using output from SEGREG, where SEGREG was used to determine the best fitting statistical model for the trait.

  20. High-throughput quantitative analysis by desorption electrospray ionization mass spectrometry.

    PubMed

    Manicke, Nicholas E; Kistler, Thomas; Ifa, Demian R; Cooks, R Graham; Ouyang, Zheng

    2009-02-01

    A newly developed high-throughput desorption electrospray ionization (DESI) source was characterized in terms of its performance in quantitative analysis. A 96-sample array, containing pharmaceuticals in various matrices, was analyzed in a single run with a total analysis time of 3 min. These solution-phase samples were examined from a hydrophobic PTFE ink printed on glass. The quantitative accuracy, precision, and limit of detection (LOD) were characterized. Chemical background-free samples of propranolol (PRN) with PRN-d(7) as internal standard (IS) and carbamazepine (CBZ) with CBZ-d(10) as IS were examined. So were two other sample sets consisting of PRN/PRN-d(7) at varying concentration in a biological milieu of 10% urine or porcine brain total lipid extract, total lipid concentration 250 ng/microL. The background-free samples, examined in a total analysis time of 1.5 s/sample, showed good quantitative accuracy and precision, with a relative error (RE) and relative standard deviation (RSD) generally less than 3% and 5%, respectively. The samples in urine and the lipid extract required a longer analysis time (2.5 s/sample) and showed RSD values of around 10% for the samples in urine and 4% for the lipid extract samples and RE values of less than 3% for both sets. The LOD for PRN and CBZ when analyzed without chemical background was 10 and 30 fmol, respectively. The LOD of PRN increased to 400 fmol analyzed in 10% urine, and 200 fmol when analyzed in the brain lipid extract.

  1. Quantitative analysis of culture using millions of digitized books

    PubMed Central

    Michel, Jean-Baptiste; Shen, Yuan Kui; Aiden, Aviva P.; Veres, Adrian; Gray, Matthew K.; Pickett, Joseph P.; Hoiberg, Dale; Clancy, Dan; Norvig, Peter; Orwant, Jon; Pinker, Steven; Nowak, Martin A.; Aiden, Erez Lieberman

    2011-01-01

    We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of ‘culturomics’, focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pursuit of fame, censorship, and historical epidemiology. ‘Culturomics’ extends the boundaries of rigorous quantitative inquiry to a wide array of new phenomena spanning the social sciences and the humanities. PMID:21163965

  2. Quantitative analysis of culture using millions of digitized books.

    PubMed

    Michel, Jean-Baptiste; Shen, Yuan Kui; Aiden, Aviva Presser; Veres, Adrian; Gray, Matthew K; Pickett, Joseph P; Hoiberg, Dale; Clancy, Dan; Norvig, Peter; Orwant, Jon; Pinker, Steven; Nowak, Martin A; Aiden, Erez Lieberman

    2011-01-14

    We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of 'culturomics,' focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pursuit of fame, censorship, and historical epidemiology. Culturomics extends the boundaries of rigorous quantitative inquiry to a wide array of new phenomena spanning the social sciences and the humanities.

  3. Digital Holography, a metrological tool for quantitative analysis: Trends and future applications

    NASA Astrophysics Data System (ADS)

    Paturzo, Melania; Pagliarulo, Vito; Bianco, Vittorio; Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Ferraro, Pietro

    2018-05-01

    A review on the last achievements of Digital Holography is reported in this paper, showing that this powerful method can be a key metrological tool for the quantitative analysis and non-invasive inspection of a variety of materials, devices and processes. Nowadays, its range of applications has been greatly extended, including the study of live biological matter and biomedical applications. This paper overviews the main progresses and future perspectives of digital holography, showing new optical configurations and investigating the numerical issues to be tackled for the processing and display of quantitative data.

  4. Quantitative molecular analysis in mantle cell lymphoma.

    PubMed

    Brízová, H; Hilská, I; Mrhalová, M; Kodet, R

    2011-07-01

    A molecular analysis has three major roles in modern oncopathology--as an aid in the differential diagnosis, in molecular monitoring of diseases, and in estimation of the potential prognosis. In this report we review the application of the molecular analysis in a group of patients with mantle cell lymphoma (MCL). We demonstrate that detection of the cyclin D1 mRNA level is a molecular marker in 98% of patients with MCL. Cyclin D1 quantitative monitoring is specific and sensitive for the differential diagnosis and for the molecular monitoring of the disease in the bone marrow. Moreover, the dynamics of cyclin D1 in bone marrow reflects the disease development and it predicts the clinical course. We employed the molecular analysis for a precise quantitative detection of proliferation markers, Ki-67, topoisomerase IIalpha, and TPX2, that are described as effective prognostic factors. Using the molecular approach it is possible to measure the proliferation rate in a reproducible, standard way which is an essential prerequisite for using the proliferation activity as a routine clinical tool. Comparing with immunophenotyping we may conclude that the quantitative PCR-based analysis is a useful, reliable, rapid, reproducible, sensitive and specific method broadening our diagnostic tools in hematopathology. In comparison to interphase FISH in paraffin sections quantitative PCR is less technically demanding and less time-consuming and furthermore it is more sensitive in detecting small changes in the mRNA level. Moreover, quantitative PCR is the only technology which provides precise and reproducible quantitative information about the expression level. Therefore it may be used to demonstrate the decrease or increase of a tumor-specific marker in bone marrow in comparison with a previously aspirated specimen. Thus, it has a powerful potential to monitor the course of the disease in correlation with clinical data.

  5. Quantitative analysis of professionally trained versus untrained voices.

    PubMed

    Siupsinskiene, Nora

    2003-01-01

    The aim of this study was to compare healthy trained and untrained voices as well as healthy and dysphonic trained voices in adults using combined voice range profile and aerodynamic tests, to define the normal range limiting values of quantitative voice parameters and to select the most informative quantitative voice parameters for separation between healthy and dysphonic trained voices. Three groups of persons were evaluated. One hundred eighty six healthy volunteers were divided into two groups according to voice training: non-professional speakers group consisted of 106 untrained voices persons (36 males and 70 females) and professional speakers group--of 80 trained voices persons (21 males and 59 females). Clinical group consisted of 103 dysphonic professional speakers (23 males and 80 females) with various voice disorders. Eighteen quantitative voice parameters from combined voice range profile (VRP) test were analyzed: 8 of voice range profile, 8 of speaking voice, overall vocal dysfunction degree and coefficient of sound, and aerodynamic maximum phonation time. Analysis showed that healthy professional speakers demonstrated expanded vocal abilities in comparison to healthy non-professional speakers. Quantitative voice range profile parameters- pitch range, high frequency limit, area of high frequencies and coefficient of sound differed significantly between healthy professional and non-professional voices, and were more informative than speaking voice or aerodynamic parameters in showing the voice training. Logistic stepwise regression revealed that VRP area in high frequencies was sufficient to discriminate between healthy and dysphonic professional speakers for male subjects (overall discrimination accuracy--81.8%) and combination of three quantitative parameters (VRP high frequency limit, maximum voice intensity and slope of speaking curve) for female subjects (overall model discrimination accuracy--75.4%). We concluded that quantitative voice assessment

  6. Chemical Fingerprint Analysis and Quantitative Analysis of Rosa rugosa by UPLC-DAD.

    PubMed

    Mansur, Sanawar; Abdulla, Rahima; Ayupbec, Amatjan; Aisa, Haji Akbar

    2016-12-21

    A method based on ultra performance liquid chromatography with a diode array detector (UPLC-DAD) was developed for quantitative analysis of five active compounds and chemical fingerprint analysis of Rosa rugosa . Ten batches of R. rugosa collected from different plantations in the Xinjiang region of China were used to establish the fingerprint. The feasibility and advantages of the used UPLC fingerprint were verified for its similarity evaluation by systematically comparing chromatograms with professional analytical software recommended by State Food and Drug Administration (SFDA) of China. In quantitative analysis, the five compounds showed good regression (R² = 0.9995) within the test ranges, and the recovery of the method was in the range of 94.2%-103.8%. The similarities of liquid chromatography fingerprints of 10 batches of R. rugosa were more than 0.981. The developed UPLC fingerprint method is simple, reliable, and validated for the quality control and identification of R. rugosa . Additionally, simultaneous quantification of five major bioactive ingredients in the R. rugosa samples was conducted to interpret the consistency of the quality test. The results indicated that the UPLC fingerprint, as a characteristic distinguishing method combining similarity evaluation and quantification analysis, can be successfully used to assess the quality and to identify the authenticity of R. rugosa .

  7. Some selected quantitative methods of thermal image analysis in Matlab.

    PubMed

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. [Quantitative data analysis for live imaging of bone.

    PubMed

    Seno, Shigeto

    Bone tissue is a hard tissue, it was difficult to observe the interior of the bone tissue alive. With the progress of microscopic technology and fluorescent probe technology in recent years, it becomes possible to observe various activities of various cells forming bone society. On the other hand, the quantitative increase in data and the diversification and complexity of the images makes it difficult to perform quantitative analysis by visual inspection. It has been expected to develop a methodology for processing microscopic images and data analysis. In this article, we introduce the research field of bioimage informatics which is the boundary area of biology and information science, and then outline the basic image processing technology for quantitative analysis of live imaging data of bone.

  9. Quantitative analysis of diffusion tensor orientation: theoretical framework.

    PubMed

    Wu, Yu-Chien; Field, Aaron S; Chung, Moo K; Badie, Benham; Alexander, Andrew L

    2004-11-01

    Diffusion-tensor MRI (DT-MRI) yields information about the magnitude, anisotropy, and orientation of water diffusion of brain tissues. Although white matter tractography and eigenvector color maps provide visually appealing displays of white matter tract organization, they do not easily lend themselves to quantitative and statistical analysis. In this study, a set of visual and quantitative tools for the investigation of tensor orientations in the human brain was developed. Visual tools included rose diagrams, which are spherical coordinate histograms of the major eigenvector directions, and 3D scatterplots of the major eigenvector angles. A scatter matrix of major eigenvector directions was used to describe the distribution of major eigenvectors in a defined anatomic region. A measure of eigenvector dispersion was developed to describe the degree of eigenvector coherence in the selected region. These tools were used to evaluate directional organization and the interhemispheric symmetry of DT-MRI data in five healthy human brains and two patients with infiltrative diseases of the white matter tracts. In normal anatomical white matter tracts, a high degree of directional coherence and interhemispheric symmetry was observed. The infiltrative diseases appeared to alter the eigenvector properties of affected white matter tracts, showing decreased eigenvector coherence and interhemispheric symmetry. This novel approach distills the rich, 3D information available from the diffusion tensor into a form that lends itself to quantitative analysis and statistical hypothesis testing. (c) 2004 Wiley-Liss, Inc.

  10. A Quantitative Approach to Scar Analysis

    PubMed Central

    Khorasani, Hooman; Zheng, Zhong; Nguyen, Calvin; Zara, Janette; Zhang, Xinli; Wang, Joyce; Ting, Kang; Soo, Chia

    2011-01-01

    Analysis of collagen architecture is essential to wound healing research. However, to date no consistent methodologies exist for quantitatively assessing dermal collagen architecture in scars. In this study, we developed a standardized approach for quantitative analysis of scar collagen morphology by confocal microscopy using fractal dimension and lacunarity analysis. Full-thickness wounds were created on adult mice, closed by primary intention, and harvested at 14 days after wounding for morphometrics and standard Fourier transform-based scar analysis as well as fractal dimension and lacunarity analysis. In addition, transmission electron microscopy was used to evaluate collagen ultrastructure. We demonstrated that fractal dimension and lacunarity analysis were superior to Fourier transform analysis in discriminating scar versus unwounded tissue in a wild-type mouse model. To fully test the robustness of this scar analysis approach, a fibromodulin-null mouse model that heals with increased scar was also used. Fractal dimension and lacunarity analysis effectively discriminated unwounded fibromodulin-null versus wild-type skin as well as healing fibromodulin-null versus wild-type wounds, whereas Fourier transform analysis failed to do so. Furthermore, fractal dimension and lacunarity data also correlated well with transmission electron microscopy collagen ultrastructure analysis, adding to their validity. These results demonstrate that fractal dimension and lacunarity are more sensitive than Fourier transform analysis for quantification of scar morphology. PMID:21281794

  11. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells

    PubMed Central

    Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2015-01-01

    Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells. PMID:26039484

  12. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.

    PubMed

    Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2015-01-01

    Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells.

  13. Quantitative analysis of terahertz spectra for illicit drugs using adaptive-range micro-genetic algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Ma, Yong; Lu, Zheng; Peng, Bei; Chen, Qin

    2011-08-01

    In the field of anti-illicit drug applications, many suspicious mixture samples might consist of various drug components—for example, a mixture of methamphetamine, heroin, and amoxicillin—which makes spectral identification very difficult. A terahertz spectroscopic quantitative analysis method using an adaptive range micro-genetic algorithm with a variable internal population (ARVIPɛμGA) has been proposed. Five mixture cases are discussed using ARVIPɛμGA driven quantitative terahertz spectroscopic analysis in this paper. The devised simulation results show agreement with the previous experimental results, which suggested that the proposed technique has potential applications for terahertz spectral identifications of drug mixture components. The results show agreement with the results obtained using other experimental and numerical techniques.

  14. [Correspondence analysis between traditional commercial specifications and quantitative quality indices of Notopterygii Rhizoma et Radix].

    PubMed

    Jiang, Shun-Yuan; Sun, Hong-Bing; Sun, Hui; Ma, Yu-Ying; Chen, Hong-Yu; Zhu, Wen-Tao; Zhou, Yi

    2016-03-01

    This paper aims to explore a comprehensive assessment method combined traditional Chinese medicinal material specifications with quantitative quality indicators. Seventy-six samples of Notopterygii Rhizoma et Radix were collected on market and at producing areas. Traditional commercial specifications were described and assigned, and 10 chemical components and volatile oils were determined for each sample. Cluster analysis, Fisher discriminant analysis and correspondence analysis were used to establish the relationship between the traditional qualitative commercial specifications and quantitative chemical indices for comprehensive evaluating quality of medicinal materials, and quantitative classification of commercial grade and quality grade. A herb quality index (HQI) including traditional commercial specifications and chemical components for quantitative grade classification were established, and corresponding discriminant function were figured out for precise determination of quality grade and sub-grade of Notopterygii Rhizoma et Radix. The result showed that notopterol, isoimperatorin and volatile oil were the major components for determination of chemical quality, and their dividing values were specified for every grade and sub-grade of the commercial materials of Notopterygii Rhizoma et Radix. According to the result, essential relationship between traditional medicinal indicators, qualitative commercial specifications, and quantitative chemical composition indicators can be examined by K-mean cluster, Fisher discriminant analysis and correspondence analysis, which provide a new method for comprehensive quantitative evaluation of traditional Chinese medicine quality integrated traditional commodity specifications and quantitative modern chemical index. Copyright© by the Chinese Pharmaceutical Association.

  15. Quantitative Analysis of the Interdisciplinarity of Applied Mathematics.

    PubMed

    Xie, Zheng; Duan, Xiaojun; Ouyang, Zhenzheng; Zhang, Pengyuan

    2015-01-01

    The increasing use of mathematical techniques in scientific research leads to the interdisciplinarity of applied mathematics. This viewpoint is validated quantitatively here by statistical and network analysis on the corpus PNAS 1999-2013. A network describing the interdisciplinary relationships between disciplines in a panoramic view is built based on the corpus. Specific network indicators show the hub role of applied mathematics in interdisciplinary research. The statistical analysis on the corpus content finds that algorithms, a primary topic of applied mathematics, positively correlates, increasingly co-occurs, and has an equilibrium relationship in the long-run with certain typical research paradigms and methodologies. The finding can be understood as an intrinsic cause of the interdisciplinarity of applied mathematics.

  16. Application of relativistic electrons for the quantitative analysis of trace elements

    NASA Astrophysics Data System (ADS)

    Hoffmann, D. H. H.; Brendel, C.; Genz, H.; Löw, W.; Richter, A.

    1984-04-01

    Particle induced X-ray emission methods (PIXE) have been extended to relativistic electrons to induce X-ray emission (REIXE) for quantitative trace-element analysis. The electron beam (20 ≤ E0≤ 70 MeV) was supplied by the Darmstadt electron linear accelerator DALINAC. Systematic measurements of absolute K-, L- and M-shell ionization cross sections revealed a scaling behaviour of inner-shell ionization cross sections from which X-ray production cross sections can be deduced for any element of interest for a quantitative sample investigation. Using a multielemental mineral monazite sample from Malaysia the sensitivity of REIXE is compared to well established methods of trace-element analysis like proton- and X-ray-induced X-ray fluorescence analysis. The achievable detection limit for very heavy elements amounts to about 100 ppm for the REIXE method. As an example of an application the investigation of a sample prepared from manganese nodules — picked up from the Pacific deep sea — is discussed, which showed the expected high mineral content of Fe, Ni, Cu and Ti, although the search for aliquots of Pt did not show any measurable content within an upper limit of 250 ppm.

  17. An Quantitative Analysis Method Of Trabecular Pattern In A Bone

    NASA Astrophysics Data System (ADS)

    Idesawa, Masanor; Yatagai, Toyohiko

    1982-11-01

    Orientation and density of trabecular pattern observed in a bone is closely related to its mechanical properties and deseases of a bone are appeared as changes of orientation and/or density distrbution of its trabecular patterns. They have been treated from a qualitative point of view so far because quantitative analysis method has not be established. In this paper, the authors proposed and investigated some quantitative analysis methods of density and orientation of trabecular patterns observed in a bone. These methods can give an index for evaluating orientation of trabecular pattern quantitatively and have been applied to analyze trabecular pattern observed in a head of femur and their availabilities are confirmed. Key Words: Index of pattern orientation, Trabecular pattern, Pattern density, Quantitative analysis

  18. [Quantitative Analysis of Heavy Metals in Water with LIBS Based on Signal-to-Background Ratio].

    PubMed

    Hu, Li; Zhao, Nan-jing; Liu, Wen-qing; Fang, Li; Zhang, Da-hai; Wang, Yin; Meng, De Shuo; Yu, Yang; Ma, Ming-jun

    2015-07-01

    There are many influence factors in the precision and accuracy of the quantitative analysis with LIBS technology. According to approximately the same characteristics trend of background spectrum and characteristic spectrum along with the change of temperature through in-depth analysis, signal-to-background ratio (S/B) measurement and regression analysis could compensate the spectral line intensity changes caused by system parameters such as laser power, spectral efficiency of receiving. Because the measurement dates were limited and nonlinear, we used support vector machine (SVM) for regression algorithm. The experimental results showed that the method could improve the stability and the accuracy of quantitative analysis of LIBS, and the relative standard deviation and average relative error of test set respectively were 4.7% and 9.5%. Data fitting method based on signal-to-background ratio(S/B) is Less susceptible to matrix elements and background spectrum etc, and provides data processing reference for real-time online LIBS quantitative analysis technology.

  19. Quantitative analysis of background parenchymal enhancement in whole breast on MRI: Influence of menstrual cycle and comparison with a qualitative analysis.

    PubMed

    Jung, Yongsik; Jeong, Seong Kyun; Kang, Doo Kyoung; Moon, Yeorae; Kim, Tae Hee

    2018-06-01

    We quantitatively analyzed background parenchymal enhancement (BPE) in whole breast according to menstrual cycle and compared it with a qualitative analysis method. A data set of breast magnetic resonance imaging (MRI) from 273 breast cancer patients was used. For quantitative analysis, we used semiautomated in-house software with MATLAB. From each voxel of whole breast, the software calculated BPE using following equation: [(signal intensity [SI] at 1 min 30 s after contrast injection - baseline SI)/baseline SI] × 100%. In total, 53 patients had minimal, 108 mild, 87 moderate, and 25 marked BPE. On quantitative analysis, mean BPE values were 33.1% in the minimal, 42.1% in the mild, 59.1% in the moderate, and 81.9% in the marked BPE group showing significant difference (p = .009 for minimal vs. mild, p < 0.001 for other comparisons). Spearman's correlation test showed that there was strong significant correlation between qualitative and quantitative BPE (r = 0.63, p < 0.001). The mean BPE value was 48.7% for patients in the first week of the menstrual cycle, 43.5% in the second week, 49% in the third week, and 49.4% for those in the fourth week. The difference between the second and fourth weeks was significant (p = .005). Median, 90th percentile, and 10th percentile values were also significantly different between the second and fourth weeks but not different in other comparisons (first vs. second, first vs. third, first vs. fourth, second vs. third, or third vs. fourth). Quantitative analysis of BPE correlated well with the qualitative BPE grade. Quantitative BPE values were lowest in the second week and highest in the fourth week. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Uncertainty of quantitative microbiological methods of pharmaceutical analysis.

    PubMed

    Gunar, O V; Sakhno, N G

    2015-12-30

    The total uncertainty of quantitative microbiological methods, used in pharmaceutical analysis, consists of several components. The analysis of the most important sources of the quantitative microbiological methods variability demonstrated no effect of culture media and plate-count techniques in the estimation of microbial count while the highly significant effect of other factors (type of microorganism, pharmaceutical product and individual reading and interpreting errors) was established. The most appropriate method of statistical analysis of such data was ANOVA which enabled not only the effect of individual factors to be estimated but also their interactions. Considering all the elements of uncertainty and combining them mathematically the combined relative uncertainty of the test results was estimated both for method of quantitative examination of non-sterile pharmaceuticals and microbial count technique without any product. These data did not exceed 35%, appropriated for a traditional plate count methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Linkage Analysis of a Model Quantitative Trait in Humans: Finger Ridge Count Shows Significant Multivariate Linkage to 5q14.1

    PubMed Central

    Medland, Sarah E; Loesch, Danuta Z; Mdzewski, Bogdan; Zhu, Gu; Montgomery, Grant W; Martin, Nicholas G

    2007-01-01

    The finger ridge count (a measure of pattern size) is one of the most heritable complex traits studied in humans and has been considered a model human polygenic trait in quantitative genetic analysis. Here, we report the results of the first genome-wide linkage scan for finger ridge count in a sample of 2,114 offspring from 922 nuclear families. Both univariate linkage to the absolute ridge count (a sum of all the ridge counts on all ten fingers), and multivariate linkage analyses of the counts on individual fingers, were conducted. The multivariate analyses yielded significant linkage to 5q14.1 (Logarithm of odds [LOD] = 3.34, pointwise-empirical p-value = 0.00025) that was predominantly driven by linkage to the ring, index, and middle fingers. The strongest univariate linkage was to 1q42.2 (LOD = 2.04, point-wise p-value = 0.002, genome-wide p-value = 0.29). In summary, the combination of univariate and multivariate results was more informative than simple univariate analyses alone. Patterns of quantitative trait loci factor loadings consistent with developmental fields were observed, and the simple pleiotropic model underlying the absolute ridge count was not sufficient to characterize the interrelationships between the ridge counts of individual fingers. PMID:17907812

  2. Good practices for quantitative bias analysis.

    PubMed

    Lash, Timothy L; Fox, Matthew P; MacLehose, Richard F; Maldonado, George; McCandless, Lawrence C; Greenland, Sander

    2014-12-01

    Quantitative bias analysis serves several objectives in epidemiological research. First, it provides a quantitative estimate of the direction, magnitude and uncertainty arising from systematic errors. Second, the acts of identifying sources of systematic error, writing down models to quantify them, assigning values to the bias parameters and interpreting the results combat the human tendency towards overconfidence in research results, syntheses and critiques and the inferences that rest upon them. Finally, by suggesting aspects that dominate uncertainty in a particular research result or topic area, bias analysis can guide efficient allocation of sparse research resources. The fundamental methods of bias analyses have been known for decades, and there have been calls for more widespread use for nearly as long. There was a time when some believed that bias analyses were rarely undertaken because the methods were not widely known and because automated computing tools were not readily available to implement the methods. These shortcomings have been largely resolved. We must, therefore, contemplate other barriers to implementation. One possibility is that practitioners avoid the analyses because they lack confidence in the practice of bias analysis. The purpose of this paper is therefore to describe what we view as good practices for applying quantitative bias analysis to epidemiological data, directed towards those familiar with the methods. We focus on answering questions often posed to those of us who advocate incorporation of bias analysis methods into teaching and research. These include the following. When is bias analysis practical and productive? How does one select the biases that ought to be addressed? How does one select a method to model biases? How does one assign values to the parameters of a bias model? How does one present and interpret a bias analysis?. We hope that our guide to good practices for conducting and presenting bias analyses will encourage

  3. Quantitative Analysis of a Hybrid Electric HMMWV for Fuel Economy Improvement

    DTIC Science & Technology

    2012-05-01

    HMMWV of equivalent size. Hybrid vehicle powertrains show improved fuel economy gains due to optimized engine operation and regenerative braking . In... regenerative braking . Validated vehicle models as well as data collected on test tracks are used in the quantitative analysis. The regenerative braking ...hybrid electric vehicle, drive cycle, fuel economy, engine efficiency, regenerative braking . 1 Introduction The US Army (Tank Automotive

  4. Identification and quantitation of semi-crystalline microplastics using image analysis and differential scanning calorimetry.

    PubMed

    Rodríguez Chialanza, Mauricio; Sierra, Ignacio; Pérez Parada, Andrés; Fornaro, Laura

    2018-06-01

    There are several techniques used to analyze microplastics. These are often based on a combination of visual and spectroscopic techniques. Here we introduce an alternative workflow for identification and mass quantitation through a combination of optical microscopy with image analysis (IA) and differential scanning calorimetry (DSC). We studied four synthetic polymers with environmental concern: low and high density polyethylene (LDPE and HDPE, respectively), polypropylene (PP), and polyethylene terephthalate (PET). Selected experiments were conducted to investigate (i) particle characterization and counting procedures based on image analysis with open-source software, (ii) chemical identification of microplastics based on DSC signal processing, (iii) dependence of particle size on DSC signal, and (iv) quantitation of microplastics mass based on DSC signal. We describe the potential and limitations of these techniques to increase reliability for microplastic analysis. Particle size demonstrated to have particular incidence in the qualitative and quantitative performance of DSC signals. Both, identification (based on characteristic onset temperature) and mass quantitation (based on heat flow) showed to be affected by particle size. As a result, a proper sample treatment which includes sieving of suspended particles is particularly required for this analytical approach.

  5. Quantitative analysis of eyes and other optical systems in linear optics.

    PubMed

    Harris, William F; Evans, Tanya; van Gool, Radboud D

    2017-05-01

    To show that 14-dimensional spaces of augmented point P and angle Q characteristics, matrices obtained from the ray transference, are suitable for quantitative analysis although only the latter define an inner-product space and only on it can one define distances and angles. The paper examines the nature of the spaces and their relationships to other spaces including symmetric dioptric power space. The paper makes use of linear optics, a three-dimensional generalization of Gaussian optics. Symmetric 2 × 2 dioptric power matrices F define a three-dimensional inner-product space which provides a sound basis for quantitative analysis (calculation of changes, arithmetic means, etc.) of refractive errors and thin systems. For general systems the optical character is defined by the dimensionally-heterogeneous 4 × 4 symplectic matrix S, the transference, or if explicit allowance is made for heterocentricity, the 5 × 5 augmented symplectic matrix T. Ordinary quantitative analysis cannot be performed on them because matrices of neither of these types constitute vector spaces. Suitable transformations have been proposed but because the transforms are dimensionally heterogeneous the spaces are not naturally inner-product spaces. The paper obtains 14-dimensional spaces of augmented point P and angle Q characteristics. The 14-dimensional space defined by the augmented angle characteristics Q is dimensionally homogenous and an inner-product space. A 10-dimensional subspace of the space of augmented point characteristics P is also an inner-product space. The spaces are suitable for quantitative analysis of the optical character of eyes and many other systems. Distances and angles can be defined in the inner-product spaces. The optical systems may have multiple separated astigmatic and decentred refracting elements. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  6. Quantitative analysis of biological tissues using Fourier transform-second-harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Ambekar Ramachandra Rao, Raghu; Mehta, Monal R.; Toussaint, Kimani C., Jr.

    2010-02-01

    We demonstrate the use of Fourier transform-second-harmonic generation (FT-SHG) imaging of collagen fibers as a means of performing quantitative analysis of obtained images of selected spatial regions in porcine trachea, ear, and cornea. Two quantitative markers, preferred orientation and maximum spatial frequency are proposed for differentiating structural information between various spatial regions of interest in the specimens. The ear shows consistent maximum spatial frequency and orientation as also observed in its real-space image. However, there are observable changes in the orientation and minimum feature size of fibers in the trachea indicating a more random organization. Finally, the analysis is applied to a 3D image stack of the cornea. It is shown that the standard deviation of the orientation is sensitive to the randomness in fiber orientation. Regions with variations in the maximum spatial frequency, but with relatively constant orientation, suggest that maximum spatial frequency is useful as an independent quantitative marker. We emphasize that FT-SHG is a simple, yet powerful, tool for extracting information from images that is not obvious in real space. This technique can be used as a quantitative biomarker to assess the structure of collagen fibers that may change due to damage from disease or physical injury.

  7. Quantitative mass spectrometry methods for pharmaceutical analysis

    PubMed Central

    Loos, Glenn; Van Schepdael, Ann

    2016-01-01

    Quantitative pharmaceutical analysis is nowadays frequently executed using mass spectrometry. Electrospray ionization coupled to a (hybrid) triple quadrupole mass spectrometer is generally used in combination with solid-phase extraction and liquid chromatography. Furthermore, isotopically labelled standards are often used to correct for ion suppression. The challenges in producing sensitive but reliable quantitative data depend on the instrumentation, sample preparation and hyphenated techniques. In this contribution, different approaches to enhance the ionization efficiencies using modified source geometries and improved ion guidance are provided. Furthermore, possibilities to minimize, assess and correct for matrix interferences caused by co-eluting substances are described. With the focus on pharmaceuticals in the environment and bioanalysis, different separation techniques, trends in liquid chromatography and sample preparation methods to minimize matrix effects and increase sensitivity are discussed. Although highly sensitive methods are generally aimed for to provide automated multi-residue analysis, (less sensitive) miniaturized set-ups have a great potential due to their ability for in-field usage. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644982

  8. Retinal status analysis method based on feature extraction and quantitative grading in OCT images.

    PubMed

    Fu, Dongmei; Tong, Hejun; Zheng, Shuang; Luo, Ling; Gao, Fulin; Minar, Jiri

    2016-07-22

    Optical coherence tomography (OCT) is widely used in ophthalmology for viewing the morphology of the retina, which is important for disease detection and assessing therapeutic effect. The diagnosis of retinal diseases is based primarily on the subjective analysis of OCT images by trained ophthalmologists. This paper describes an OCT images automatic analysis method for computer-aided disease diagnosis and it is a critical part of the eye fundus diagnosis. This study analyzed 300 OCT images acquired by Optovue Avanti RTVue XR (Optovue Corp., Fremont, CA). Firstly, the normal retinal reference model based on retinal boundaries was presented. Subsequently, two kinds of quantitative methods based on geometric features and morphological features were proposed. This paper put forward a retinal abnormal grading decision-making method which was used in actual analysis and evaluation of multiple OCT images. This paper showed detailed analysis process by four retinal OCT images with different abnormal degrees. The final grading results verified that the analysis method can distinguish abnormal severity and lesion regions. This paper presented the simulation of the 150 test images, where the results of analysis of retinal status showed that the sensitivity was 0.94 and specificity was 0.92.The proposed method can speed up diagnostic process and objectively evaluate the retinal status. This paper aims on studies of retinal status automatic analysis method based on feature extraction and quantitative grading in OCT images. The proposed method can obtain the parameters and the features that are associated with retinal morphology. Quantitative analysis and evaluation of these features are combined with reference model which can realize the target image abnormal judgment and provide a reference for disease diagnosis.

  9. Variable selection based near infrared spectroscopy quantitative and qualitative analysis on wheat wet gluten

    NASA Astrophysics Data System (ADS)

    Lü, Chengxu; Jiang, Xunpeng; Zhou, Xingfan; Zhang, Yinqiao; Zhang, Naiqian; Wei, Chongfeng; Mao, Wenhua

    2017-10-01

    Wet gluten is a useful quality indicator for wheat, and short wave near infrared spectroscopy (NIRS) is a high performance technique with the advantage of economic rapid and nondestructive test. To study the feasibility of short wave NIRS analyzing wet gluten directly from wheat seed, 54 representative wheat seed samples were collected and scanned by spectrometer. 8 spectral pretreatment method and genetic algorithm (GA) variable selection method were used to optimize analysis. Both quantitative and qualitative model of wet gluten were built by partial least squares regression and discriminate analysis. For quantitative analysis, normalization is the optimized pretreatment method, 17 wet gluten sensitive variables are selected by GA, and GA model performs a better result than that of all variable model, with R2V=0.88, and RMSEV=1.47. For qualitative analysis, automatic weighted least squares baseline is the optimized pretreatment method, all variable models perform better results than those of GA models. The correct classification rates of 3 class of <24%, 24-30%, >30% wet gluten content are 95.45, 84.52, and 90.00%, respectively. The short wave NIRS technique shows potential for both quantitative and qualitative analysis of wet gluten for wheat seed.

  10. Power Analysis of Artificial Selection Experiments Using Efficient Whole Genome Simulation of Quantitative Traits

    PubMed Central

    Kessner, Darren; Novembre, John

    2015-01-01

    Evolve and resequence studies combine artificial selection experiments with massively parallel sequencing technology to study the genetic basis for complex traits. In these experiments, individuals are selected for extreme values of a trait, causing alleles at quantitative trait loci (QTL) to increase or decrease in frequency in the experimental population. We present a new analysis of the power of artificial selection experiments to detect and localize quantitative trait loci. This analysis uses a simulation framework that explicitly models whole genomes of individuals, quantitative traits, and selection based on individual trait values. We find that explicitly modeling QTL provides qualitatively different insights than considering independent loci with constant selection coefficients. Specifically, we observe how interference between QTL under selection affects the trajectories and lengthens the fixation times of selected alleles. We also show that a substantial portion of the genetic variance of the trait (50–100%) can be explained by detected QTL in as little as 20 generations of selection, depending on the trait architecture and experimental design. Furthermore, we show that power depends crucially on the opportunity for recombination during the experiment. Finally, we show that an increase in power is obtained by leveraging founder haplotype information to obtain allele frequency estimates. PMID:25672748

  11. Quantitative analysis of single-molecule superresolution images

    PubMed Central

    Coltharp, Carla; Yang, Xinxing; Xiao, Jie

    2014-01-01

    This review highlights the quantitative capabilities of single-molecule localization-based superresolution imaging methods. In addition to revealing fine structural details, the molecule coordinate lists generated by these methods provide the critical ability to quantify the number, clustering, and colocalization of molecules with 10 – 50 nm resolution. Here we describe typical workflows and precautions for quantitative analysis of single-molecule superresolution images. These guidelines include potential pitfalls and essential control experiments, allowing critical assessment and interpretation of superresolution images. PMID:25179006

  12. Quantitative Analysis of Food and Feed Samples with Droplet Digital PCR

    PubMed Central

    Morisset, Dany; Štebih, Dejan; Milavec, Mojca; Gruden, Kristina; Žel, Jana

    2013-01-01

    In this study, the applicability of droplet digital PCR (ddPCR) for routine analysis in food and feed samples was demonstrated with the quantification of genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of GMOs in products. However, its use is limited for detecting and quantifying very small numbers of DNA targets, as in some complex food and feed matrices. Using ddPCR duplex assay, we have measured the absolute numbers of MON810 transgene and hmg maize reference gene copies in DNA samples. Key performance parameters of the assay were determined. The ddPCR system is shown to offer precise absolute and relative quantification of targets, without the need for calibration curves. The sensitivity (five target DNA copies) of the ddPCR assay compares well with those of individual qPCR assays and of the chamber digital PCR (cdPCR) approach. It offers a dynamic range over four orders of magnitude, greater than that of cdPCR. Moreover, when compared to qPCR, the ddPCR assay showed better repeatability at low target concentrations and a greater tolerance to inhibitors. Finally, ddPCR throughput and cost are advantageous relative to those of qPCR for routine GMO quantification. It is thus concluded that ddPCR technology can be applied for routine quantification of GMOs, or any other domain where quantitative analysis of food and feed samples is needed. PMID:23658750

  13. Mini-Column Ion-Exchange Separation and Atomic Absorption Quantitation of Nickel, Cobalt, and Iron: An Undergraduate Quantitative Analysis Experiment.

    ERIC Educational Resources Information Center

    Anderson, James L.; And Others

    1980-01-01

    Presents an undergraduate quantitative analysis experiment, describing an atomic absorption quantitation scheme that is fast, sensitive and comparatively simple relative to other titration experiments. (CS)

  14. Analysis of quantitative data obtained from toxicity studies showing non-normal distribution.

    PubMed

    Kobayashi, Katsumi

    2005-05-01

    The data obtained from toxicity studies are examined for homogeneity of variance, but, usually, they are not examined for normal distribution. In this study I examined the measured items of a carcinogenicity/chronic toxicity study with rats for both homogeneity of variance and normal distribution. It was observed that a lot of hematology and biochemistry items showed non-normal distribution. For testing normal distribution of the data obtained from toxicity studies, the data of the concurrent control group may be examined, and for the data that show a non-normal distribution, non-parametric tests with robustness may be applied.

  15. Excitation wavelength selection for quantitative analysis of carotenoids in tomatoes using Raman spectroscopy.

    PubMed

    Hara, Risa; Ishigaki, Mika; Kitahama, Yasutaka; Ozaki, Yukihiro; Genkawa, Takuma

    2018-08-30

    The difference in Raman spectra for different excitation wavelengths (532 nm, 785 nm, and 1064 nm) was investigated to identify an appropriate wavelength for the quantitative analysis of carotenoids in tomatoes. For the 532 nm-excited Raman spectra, the intensity of the peak assigned to the carotenoid has no correlation with carotenoid concentration, and the peak shift reflects carotenoid composition changing from lycopene to β-carotene and lutein. Thus, 532 nm-excited Raman spectra are useful for the qualitative analysis of carotenoids. For the 785 nm- and 1064 nm-excited Raman spectra, the peak intensity of the carotenoid showed good correlation with carotenoid concentration; thus, regression models for carotenoid concentration were developed using these Raman spectra and partial least squares regression. A regression model designed using the 785 nm-excited Raman spectra showed a better result than the 532 nm- and 1064 nm-excited Raman spectra. Therefore, it can be concluded that 785 nm is the most suitable excitation wavelength for the quantitative analysis of carotenoid concentration in tomatoes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Quantitative analysis of arm movement smoothness

    NASA Astrophysics Data System (ADS)

    Szczesna, Agnieszka; Błaszczyszyn, Monika

    2017-07-01

    The paper deals with the problem of motion data quantitative smoothness analysis. We investigated values of movement unit, fluidity and jerk for healthy and paralyzed arm of patients with hemiparesis after stroke. Patients were performing drinking task. To validate the approach, movement of 24 patients were captured using optical motion capture system.

  17. Quantitative analysis of benzodiazepines in vitreous humor by high-performance liquid chromatography

    PubMed Central

    Bazmi, Elham; Behnoush, Behnam; Akhgari, Maryam; Bahmanabadi, Leila

    2016-01-01

    Objective: Benzodiazepines are frequently screened drugs in emergency toxicology, drugs of abuse testing, and in forensic cases. As the variations of benzodiazepines concentrations in biological samples during bleeding, postmortem changes, and redistribution could be biasing forensic medicine examinations, hence selecting a suitable sample and a validated accurate method is essential for the quantitative analysis of these main drug categories. The aim of this study was to develop a valid method for the determination of four benzodiazepines (flurazepam, lorazepam, alprazolam, and diazepam) in vitreous humor using liquid–liquid extraction and high-performance liquid chromatography. Methods: Sample preparation was carried out using liquid–liquid extraction with n-hexane: ethyl acetate and subsequent detection by high-performance liquid chromatography method coupled to diode array detector. This method was applied to quantify benzodiazepines in 21 authentic vitreous humor samples. Linear curve for each drug was obtained within the range of 30–3000 ng/mL with coefficient of correlation higher than 0.99. Results: The limit of detection and quantitation were 30 and 100 ng/mL respectively for four drugs. The method showed an appropriate intra- and inter-day precision (coefficient of variation < 10%). Benzodiazepines recoveries were estimated to be over 80%. The method showed high selectivity; no additional peak due to interfering substances in samples was observed. Conclusion: The present method was selective, sensitive, accurate, and precise for the quantitative analysis of benzodiazepines in vitreous humor samples in forensic toxicology laboratory. PMID:27635251

  18. Quantitative analysis of peel-off degree for printed electronics

    NASA Astrophysics Data System (ADS)

    Park, Janghoon; Lee, Jongsu; Sung, Ki-Hak; Shin, Kee-Hyun; Kang, Hyunkyoo

    2018-02-01

    We suggest a facile methodology of peel-off degree evaluation by image processing on printed electronics. The quantification of peeled and printed areas was performed using open source programs. To verify the accuracy of methods, we manually removed areas from the printed circuit that was measured, resulting in 96.3% accuracy. The sintered patterns showed a decreasing tendency in accordance with the increase in the energy density of an infrared lamp, and the peel-off degree increased. Thus, the comparison between both results was presented. Finally, the correlation between performance characteristics was determined by quantitative analysis.

  19. Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging.

    PubMed

    Ploemen, Ivo H J; Prudêncio, Miguel; Douradinha, Bruno G; Ramesar, Jai; Fonager, Jannik; van Gemert, Geert-Jan; Luty, Adrian J F; Hermsen, Cornelus C; Sauerwein, Robert W; Baptista, Fernanda G; Mota, Maria M; Waters, Andrew P; Que, Ivo; Lowik, Clemens W G M; Khan, Shahid M; Janse, Chris J; Franke-Fayard, Blandine M D

    2009-11-18

    The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite's life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luc(con), expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1-5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of

  20. Visualisation and Quantitative Analysis of the Rodent Malaria Liver Stage by Real Time Imaging

    PubMed Central

    Douradinha, Bruno G.; Ramesar, Jai; Fonager, Jannik; van Gemert, Geert-Jan; Luty, Adrian J. F.; Hermsen, Cornelus C.; Sauerwein, Robert W.; Baptista, Fernanda G.; Mota, Maria M.; Waters, Andrew P.; Que, Ivo; Lowik, Clemens W. G. M.; Khan, Shahid M.; Janse, Chris J.; Franke-Fayard, Blandine M. D.

    2009-01-01

    The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite's life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luccon, expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1–5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of

  1. Control of separation and quantitative analysis by GC-FTIR

    NASA Astrophysics Data System (ADS)

    Semmoud, A.; Huvenne, Jean P.; Legrand, P.

    1992-03-01

    Software for 3-D representations of the 'Absorbance-Wavenumber-Retention time' is used to control the quality of the GC separation. Spectral information given by the FTIR detection allows the user to be sure that a chromatographic peak is 'pure.' The analysis of peppermint essential oil is presented as an example. This assurance is absolutely required for quantitative applications. In these conditions, we have worked out a quantitative analysis of caffeine. Correlation coefficients between integrated absorbance measurements and concentration of caffeine are discussed at two steps of the data treatment.

  2. Quantitative evaluation of translational medicine based on scientometric analysis and information extraction.

    PubMed

    Zhang, Yin; Diao, Tianxi; Wang, Lei

    2014-12-01

    Designed to advance the two-way translational process between basic research and clinical practice, translational medicine has become one of the most important areas in biomedicine. The quantitative evaluation of translational medicine is valuable for the decision making of global translational medical research and funding. Using the scientometric analysis and information extraction techniques, this study quantitatively analyzed the scientific articles on translational medicine. The results showed that translational medicine had significant scientific output and impact, specific core field and institute, and outstanding academic status and benefit. While it is not considered in this study, the patent data are another important indicators that should be integrated in the relevant research in the future. © 2014 Wiley Periodicals, Inc.

  3. Quantitative Analysis of the Efficiency of OLEDs.

    PubMed

    Sim, Bomi; Moon, Chang-Ki; Kim, Kwon-Hyeon; Kim, Jang-Joo

    2016-12-07

    We present a comprehensive model for the quantitative analysis of factors influencing the efficiency of organic light-emitting diodes (OLEDs) as a function of the current density. The model takes into account the contribution made by the charge carrier imbalance, quenching processes, and optical design loss of the device arising from various optical effects including the cavity structure, location and profile of the excitons, effective radiative quantum efficiency, and out-coupling efficiency. Quantitative analysis of the efficiency can be performed with an optical simulation using material parameters and experimental measurements of the exciton profile in the emission layer and the lifetime of the exciton as a function of the current density. This method was applied to three phosphorescent OLEDs based on a single host, mixed host, and exciplex-forming cohost. The three factors (charge carrier imbalance, quenching processes, and optical design loss) were influential in different ways, depending on the device. The proposed model can potentially be used to optimize OLED configurations on the basis of an analysis of the underlying physical processes.

  4. Visual and Quantitative Analysis Methods of Respiratory Patterns for Respiratory Gated PET/CT.

    PubMed

    Son, Hye Joo; Jeong, Young Jin; Yoon, Hyun Jin; Park, Jong-Hwan; Kang, Do-Young

    2016-01-01

    We integrated visual and quantitative methods for analyzing the stability of respiration using four methods: phase space diagrams, Fourier spectra, Poincaré maps, and Lyapunov exponents. Respiratory patterns of 139 patients were grouped based on the combination of the regularity of amplitude, period, and baseline positions. Visual grading was done by inspecting the shape of diagram and classified into two states: regular and irregular. Quantitation was done by measuring standard deviation of x and v coordinates of Poincaré map (SD x , SD v ) or the height of the fundamental peak ( A 1 ) in Fourier spectrum or calculating the difference between maximal upward and downward drift. Each group showed characteristic pattern on visual analysis. There was difference of quantitative parameters (SD x , SD v , A 1 , and MUD-MDD) among four groups (one way ANOVA, p = 0.0001 for MUD-MDD, SD x , and SD v , p = 0.0002 for A 1 ). In ROC analysis, the cutoff values were 0.11 for SD x (AUC: 0.982, p < 0.0001), 0.062 for SD v (AUC: 0.847, p < 0.0001), 0.117 for A 1 (AUC: 0.876, p < 0.0001), and 0.349 for MUD-MDD (AUC: 0.948, p < 0.0001). This is the first study to analyze multiple aspects of respiration using various mathematical constructs and provides quantitative indices of respiratory stability and determining quantitative cutoff value for differentiating regular and irregular respiration.

  5. Quantitative maps of genetic interactions in yeast - comparative evaluation and integrative analysis.

    PubMed

    Lindén, Rolf O; Eronen, Ville-Pekka; Aittokallio, Tero

    2011-03-24

    High-throughput genetic screening approaches have enabled systematic means to study how interactions among gene mutations contribute to quantitative fitness phenotypes, with the aim of providing insights into the functional wiring diagrams of genetic interaction networks on a global scale. However, it is poorly known how well these quantitative interaction measurements agree across the screening approaches, which hinders their integrated use toward improving the coverage and quality of the genetic interaction maps in yeast and other organisms. Using large-scale data matrices from epistatic miniarray profiling (E-MAP), genetic interaction mapping (GIM), and synthetic genetic array (SGA) approaches, we carried out here a systematic comparative evaluation among these quantitative maps of genetic interactions in yeast. The relatively low association between the original interaction measurements or their customized scores could be improved using a matrix-based modelling framework, which enables the use of single- and double-mutant fitness estimates and measurements, respectively, when scoring genetic interactions. Toward an integrative analysis, we show how the detections from the different screening approaches can be combined to suggest novel positive and negative interactions which are complementary to those obtained using any single screening approach alone. The matrix approximation procedure has been made available to support the design and analysis of the future screening studies. We have shown here that even if the correlation between the currently available quantitative genetic interaction maps in yeast is relatively low, their comparability can be improved by means of our computational matrix approximation procedure, which will enable integrative analysis and detection of a wider spectrum of genetic interactions using data from the complementary screening approaches.

  6. Quantitative analysis of rib movement based on dynamic chest bone images: preliminary results

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Sanada, S.; Oda, M.; Mitsutaka, M.; Suzuki, K.; Sakuta, K.; Kawashima, H.

    2014-03-01

    Rib movement during respiration is one of the diagnostic criteria in pulmonary impairments. In general, the rib movement is assessed in fluoroscopy. However, the shadows of lung vessels and bronchi overlapping ribs prevent accurate quantitative analysis of rib movement. Recently, an image-processing technique for separating bones from soft tissue in static chest radiographs, called "bone suppression technique", has been developed. Our purpose in this study was to evaluate the usefulness of dynamic bone images created by the bone suppression technique in quantitative analysis of rib movement. Dynamic chest radiographs of 10 patients were obtained using a dynamic flat-panel detector (FPD). Bone suppression technique based on a massive-training artificial neural network (MTANN) was applied to the dynamic chest images to create bone images. Velocity vectors were measured in local areas on the dynamic bone images, which formed a map. The velocity maps obtained with bone and original images for scoliosis and normal cases were compared to assess the advantages of bone images. With dynamic bone images, we were able to quantify and distinguish movements of ribs from those of other lung structures accurately. Limited rib movements of scoliosis patients appeared as reduced rib velocity vectors. Vector maps in all normal cases exhibited left-right symmetric distributions, whereas those in abnormal cases showed nonuniform distributions. In conclusion, dynamic bone images were useful for accurate quantitative analysis of rib movements: Limited rib movements were indicated as a reduction of rib movement and left-right asymmetric distribution on vector maps. Thus, dynamic bone images can be a new diagnostic tool for quantitative analysis of rib movements without additional radiation dose.

  7. A Systematic Approach for Quantitative Analysis of Multidisciplinary Design Optimization Framework

    NASA Astrophysics Data System (ADS)

    Kim, Sangho; Park, Jungkeun; Lee, Jeong-Oog; Lee, Jae-Woo

    An efficient Multidisciplinary Design and Optimization (MDO) framework for an aerospace engineering system should use and integrate distributed resources such as various analysis codes, optimization codes, Computer Aided Design (CAD) tools, Data Base Management Systems (DBMS), etc. in a heterogeneous environment, and need to provide user-friendly graphical user interfaces. In this paper, we propose a systematic approach for determining a reference MDO framework and for evaluating MDO frameworks. The proposed approach incorporates two well-known methods, Analytic Hierarchy Process (AHP) and Quality Function Deployment (QFD), in order to provide a quantitative analysis of the qualitative criteria of MDO frameworks. Identification and hierarchy of the framework requirements and the corresponding solutions for the reference MDO frameworks, the general one and the aircraft oriented one were carefully investigated. The reference frameworks were also quantitatively identified using AHP and QFD. An assessment of three in-house frameworks was then performed. The results produced clear and useful guidelines for improvement of the in-house MDO frameworks and showed the feasibility of the proposed approach for evaluating an MDO framework without a human interference.

  8. Applying Qualitative Hazard Analysis to Support Quantitative Safety Analysis for Proposed Reduced Wake Separation Conops

    NASA Technical Reports Server (NTRS)

    Shortle, John F.; Allocco, Michael

    2005-01-01

    This paper describes a scenario-driven hazard analysis process to identify, eliminate, and control safety-related risks. Within this process, we develop selective criteria to determine the applicability of applying engineering modeling to hypothesized hazard scenarios. This provides a basis for evaluating and prioritizing the scenarios as candidates for further quantitative analysis. We have applied this methodology to proposed concepts of operations for reduced wake separation for closely spaced parallel runways. For arrivals, the process identified 43 core hazard scenarios. Of these, we classified 12 as appropriate for further quantitative modeling, 24 that should be mitigated through controls, recommendations, and / or procedures (that is, scenarios not appropriate for quantitative modeling), and 7 that have the lowest priority for further analysis.

  9. An Improved Method for Measuring Quantitative Resistance to the Wheat Pathogen Zymoseptoria tritici Using High-Throughput Automated Image Analysis.

    PubMed

    Stewart, Ethan L; Hagerty, Christina H; Mikaberidze, Alexey; Mundt, Christopher C; Zhong, Ziming; McDonald, Bruce A

    2016-07-01

    Zymoseptoria tritici causes Septoria tritici blotch (STB) on wheat. An improved method of quantifying STB symptoms was developed based on automated analysis of diseased leaf images made using a flatbed scanner. Naturally infected leaves (n = 949) sampled from fungicide-treated field plots comprising 39 wheat cultivars grown in Switzerland and 9 recombinant inbred lines (RIL) grown in Oregon were included in these analyses. Measures of quantitative resistance were percent leaf area covered by lesions, pycnidia size and gray value, and pycnidia density per leaf and lesion. These measures were obtained automatically with a batch-processing macro utilizing the image-processing software ImageJ. All phenotypes in both locations showed a continuous distribution, as expected for a quantitative trait. The trait distributions at both sites were largely overlapping even though the field and host environments were quite different. Cultivars and RILs could be assigned to two or more statistically different groups for each measured phenotype. Traditional visual assessments of field resistance were highly correlated with quantitative resistance measures based on image analysis for the Oregon RILs. These results show that automated image analysis provides a promising tool for assessing quantitative resistance to Z. tritici under field conditions.

  10. Quantiprot - a Python package for quantitative analysis of protein sequences.

    PubMed

    Konopka, Bogumił M; Marciniak, Marta; Dyrka, Witold

    2017-07-17

    The field of protein sequence analysis is dominated by tools rooted in substitution matrices and alignments. A complementary approach is provided by methods of quantitative characterization. A major advantage of the approach is that quantitative properties defines a multidimensional solution space, where sequences can be related to each other and differences can be meaningfully interpreted. Quantiprot is a software package in Python, which provides a simple and consistent interface to multiple methods for quantitative characterization of protein sequences. The package can be used to calculate dozens of characteristics directly from sequences or using physico-chemical properties of amino acids. Besides basic measures, Quantiprot performs quantitative analysis of recurrence and determinism in the sequence, calculates distribution of n-grams and computes the Zipf's law coefficient. We propose three main fields of application of the Quantiprot package. First, quantitative characteristics can be used in alignment-free similarity searches, and in clustering of large and/or divergent sequence sets. Second, a feature space defined by quantitative properties can be used in comparative studies of protein families and organisms. Third, the feature space can be used for evaluating generative models, where large number of sequences generated by the model can be compared to actually observed sequences.

  11. Quantitative EEG analysis in minimally conscious state patients during postural changes.

    PubMed

    Greco, A; Carboncini, M C; Virgillito, A; Lanata, A; Valenza, G; Scilingo, E P

    2013-01-01

    Mobilization and postural changes of patients with cognitive impairment are standard clinical practices useful for both psychic and physical rehabilitation process. During this process, several physiological signals, such as Electroen-cephalogram (EEG), Electrocardiogram (ECG), Photopletysmography (PPG), Respiration activity (RESP), Electrodermal activity (EDA), are monitored and processed. In this paper we investigated how quantitative EEG (qEEG) changes with postural modifications in minimally conscious state patients. This study is quite novel and no similar experimental data can be found in the current literature, therefore, although results are very encouraging, a quantitative analysis of the cortical area activated in such postural changes still needs to be deeply investigated. More specifically, this paper shows EEG power spectra and brain symmetry index modifications during a verticalization procedure, from 0 to 60 degrees, of three patients in Minimally Consciousness State (MCS) with focused region of impairment. Experimental results show a significant increase of the power in β band (12 - 30 Hz), commonly associated to human alertness process, thus suggesting that mobilization and postural changes can have beneficial effects in MCS patients.

  12. What Really Happens in Quantitative Group Research? Results of a Content Analysis of Recent Quantitative Research in "JSGW"

    ERIC Educational Resources Information Center

    Boyle, Lauren H.; Whittaker, Tiffany A.; Eyal, Maytal; McCarthy, Christopher J.

    2017-01-01

    The authors conducted a content analysis on quantitative studies published in "The Journal for Specialists in Group Work" ("JSGW") between 2012 and 2015. This brief report provides a general overview of the current practices of quantitative group research in counseling. The following study characteristics are reported and…

  13. Method and apparatus for chromatographic quantitative analysis

    DOEpatents

    Fritz, James S.; Gjerde, Douglas T.; Schmuckler, Gabriella

    1981-06-09

    An improved apparatus and method for the quantitative analysis of a solution containing a plurality of anion species by ion exchange chromatography which utilizes a single eluent and a single ion exchange bed which does not require periodic regeneration. The solution containing the anions is added to an anion exchange resin bed which is a low capacity macroreticular polystyrene-divinylbenzene resin containing quarternary ammonium functional groups, and is eluted therefrom with a dilute solution of a low electrical conductance organic acid salt. As each anion species is eluted from the bed, it is quantitatively sensed by conventional detection means such as a conductivity cell.

  14. Quantitative analysis of three chiral pesticide enantiomers by high-performance column liquid chromatography.

    PubMed

    Wang, Peng; Liu, Donghui; Gu, Xu; Jiang, Shuren; Zhou, Zhiqiang

    2008-01-01

    Methods for the enantiomeric quantitative determination of 3 chiral pesticides, paclobutrazol, myclobutanil, and uniconazole, and their residues in soil and water are reported. An effective chiral high-performance liquid chromatographic (HPLC)-UV method using an amylose-tris(3,5-dimethylphenylcarbamate; AD) column was developed for resolving the enantiomers and quantitative determination. The enantiomers were identified by a circular dichroism detector. Validation involved complete resolution of each of the 2 enantiomers, plus determination of linearity, precision, and limit of detection (LOD). The pesticide enantiomers were isolated by solvent extraction from soil and C18 solid-phase extraction from water. The 2 enantiomers of the 3 pesticides could be completely separated on the AD column using n-hexane isopropanol mobile phase. The linearity and precision results indicated that the method was reliable for the quantitative analysis of the enantiomers. LODs were 0.025, 0.05, and 0.05 mg/kg for each enantiomer of paclobutrazol, myclobutanil, and uniconazole, respectively. Recovery and precision data showed that the pretreatment procedures were satisfactory for enantiomer extraction and cleanup. This method can be used for optical purity determination of technical material and analysis of environmental residues.

  15. Quantitative Analysis of High-Quality Officer Selection by Commandants Career-Level Education Board

    DTIC Science & Technology

    2017-03-01

    due to Marines being evaluated before the end of their initial service commitment. Our research utilizes quantitative variables to analyze the...not provide detailed information why. B. LIMITATIONS The photograph analysis in this research is strictly limited to a quantitative analysis in...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. QUANTITATIVE

  16. Data from quantitative label free proteomics analysis of rat spleen.

    PubMed

    Dudekula, Khadar; Le Bihan, Thierry

    2016-09-01

    The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides). A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis.

  17. Clinical significance of quantitative analysis of facial nerve enhancement on MRI in Bell's palsy.

    PubMed

    Song, Mee Hyun; Kim, Jinna; Jeon, Ju Hyun; Cho, Chang Il; Yoo, Eun Hye; Lee, Won-Sang; Lee, Ho-Ki

    2008-11-01

    Quantitative analysis of the facial nerve on the lesion side as well as the normal side, which allowed for more accurate measurement of facial nerve enhancement in patients with facial palsy, showed statistically significant correlation with the initial severity of facial nerve inflammation, although little prognostic significance was shown. This study investigated the clinical significance of quantitative measurement of facial nerve enhancement in patients with Bell's palsy by analyzing the enhancement pattern and correlating MRI findings with initial severity of facial palsy and clinical outcome. Facial nerve enhancement was measured quantitatively by using the region of interest on pre- and postcontrast T1-weighted images in 44 patients diagnosed with Bell's palsy. The signal intensity increase on the lesion side was first compared with that of the contralateral side and then correlated with the initial degree of facial palsy and prognosis. The lesion side showed significantly higher signal intensity increase compared with the normal side in all of the segments except for the mastoid segment. Signal intensity increase at the internal auditory canal and labyrinthine segments showed correlation with the initial degree of facial palsy but no significant difference was found between different prognostic groups.

  18. Comprehensive Quantitative Analysis on Privacy Leak Behavior

    PubMed Central

    Fan, Lejun; Wang, Yuanzhuo; Jin, Xiaolong; Li, Jingyuan; Cheng, Xueqi; Jin, Shuyuan

    2013-01-01

    Privacy information is prone to be leaked by illegal software providers with various motivations. Privacy leak behavior has thus become an important research issue of cyber security. However, existing approaches can only qualitatively analyze privacy leak behavior of software applications. No quantitative approach, to the best of our knowledge, has been developed in the open literature. To fill this gap, in this paper we propose for the first time four quantitative metrics, namely, possibility, severity, crypticity, and manipulability, for privacy leak behavior analysis based on Privacy Petri Net (PPN). In order to compare the privacy leak behavior among different software, we further propose a comprehensive metric, namely, overall leak degree, based on these four metrics. Finally, we validate the effectiveness of the proposed approach using real-world software applications. The experimental results demonstrate that our approach can quantitatively analyze the privacy leak behaviors of various software types and reveal their characteristics from different aspects. PMID:24066046

  19. Comprehensive quantitative analysis on privacy leak behavior.

    PubMed

    Fan, Lejun; Wang, Yuanzhuo; Jin, Xiaolong; Li, Jingyuan; Cheng, Xueqi; Jin, Shuyuan

    2013-01-01

    Privacy information is prone to be leaked by illegal software providers with various motivations. Privacy leak behavior has thus become an important research issue of cyber security. However, existing approaches can only qualitatively analyze privacy leak behavior of software applications. No quantitative approach, to the best of our knowledge, has been developed in the open literature. To fill this gap, in this paper we propose for the first time four quantitative metrics, namely, possibility, severity, crypticity, and manipulability, for privacy leak behavior analysis based on Privacy Petri Net (PPN). In order to compare the privacy leak behavior among different software, we further propose a comprehensive metric, namely, overall leak degree, based on these four metrics. Finally, we validate the effectiveness of the proposed approach using real-world software applications. The experimental results demonstrate that our approach can quantitatively analyze the privacy leak behaviors of various software types and reveal their characteristics from different aspects.

  20. Quantitative analysis of major dibenzocyclooctane lignans in Schisandrae fructus by online TLC-DART-MS.

    PubMed

    Kim, Hye Jin; Oh, Myung Sook; Hong, Jongki; Jang, Young Pyo

    2011-01-01

    Direct analysis in real time (DART) ion source is a powerful ionising technique for the quick and easy detection of various organic molecules without any sample preparation steps, but the lack of quantitation capacity limits its extensive use in the field of phytochemical analysis. To improvise a new system which utilize DART-MS as a hyphenated detector for quantitation. A total extract of Schisandra chinensis fruit was analyzed on a TLC plate and three major lignan compounds were quantitated by three different methods of UV densitometry, TLC-DART-MS and HPLC-UV to compare the efficiency of each method. To introduce the TLC plate into the DART ion source at a constant velocity, a syringe pump was employed. The DART-MS total ion current chromatogram was recorded for the entire TLC plate. The concentration of each lignan compound was calculated from the calibration curve established with standard compound. Gomisin A, gomisin N and schisandrin were well separated on a silica-coated TLC plate and the specific ion current chromatograms were successfully acquired from the TLC-DART-MS system. The TLC-DART-MS system for the quantitation of natural products showed better linearity and specificity than TLC densitometry, and consumed less time and solvent than conventional HPLC method. A hyphenated system for the quantitation of phytochemicals from crude herbal drugs was successfully established. This system was shown to have a powerful analytical capacity for the prompt and efficient quantitation of natural products from crude drugs. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Global scaling for semi-quantitative analysis in FP-CIT SPECT.

    PubMed

    Kupitz, D; Apostolova, I; Lange, C; Ulrich, G; Amthauer, H; Brenner, W; Buchert, R

    2014-01-01

    Semi-quantitative characterization of dopamine transporter availability from single photon emission computed tomography (SPECT) with 123I-ioflupane (FP-CIT) is based on uptake ratios relative to a reference region. The aim of this study was to evaluate the whole brain as reference region for semi-quantitative analysis of FP-CIT SPECT. The rationale was that this might reduce statistical noise associated with the estimation of non-displaceable FP-CIT uptake. 150 FP-CIT SPECTs were categorized as neurodegenerative or non-neurodegenerative by an expert. Semi-quantitative analysis of specific binding ratios (SBR) was performed with a custom-made tool based on the Statistical Parametric Mapping software package using predefined regions of interest (ROIs) in the anatomical space of the Montreal Neurological Institute. The following reference regions were compared: predefined ROIs for frontal and occipital lobe and whole brain (without striata, thalamus and brainstem). Tracer uptake in the reference region was characterized by the mean, median or 75th percentile of its voxel intensities. The area (AUC) under the receiver operating characteristic curve was used as performance measure. The highest AUC of 0.973 was achieved by the SBR of the putamen with the 75th percentile in the whole brain as reference. The lowest AUC for the putamen SBR of 0.937 was obtained with the mean in the frontal lobe as reference. We recommend the 75th percentile in the whole brain as reference for semi-quantitative analysis in FP-CIT SPECT. This combination provided the best agreement of the semi-quantitative analysis with visual evaluation of the SPECT images by an expert and, therefore, is appropriate to support less experienced physicians.

  2. [Quality evaluation of rhubarb dispensing granules based on multi-component simultaneous quantitative analysis and bioassay].

    PubMed

    Tan, Peng; Zhang, Hai-Zhu; Zhang, Ding-Kun; Wu, Shan-Na; Niu, Ming; Wang, Jia-Bo; Xiao, Xiao-He

    2017-07-01

    This study attempts to evaluate the quality of Chinese formula granules by combined use of multi-component simultaneous quantitative analysis and bioassay. The rhubarb dispensing granules were used as the model drug for demonstrative study. The ultra-high performance liquid chromatography (UPLC) method was adopted for simultaneously quantitative determination of the 10 anthraquinone derivatives (such as aloe emodin-8-O-β-D-glucoside) in rhubarb dispensing granules; purgative biopotency of different batches of rhubarb dispensing granules was determined based on compound diphenoxylate tablets-induced mouse constipation model; blood activating biopotency of different batches of rhubarb dispensing granules was determined based on in vitro rat antiplatelet aggregation model; SPSS 22.0 statistical software was used for correlation analysis between 10 anthraquinone derivatives and purgative biopotency, blood activating biopotency. The results of multi-components simultaneous quantitative analysisshowed that there was a great difference in chemical characterizationand certain differences inpurgative biopotency and blood activating biopotency among 10 batches of rhubarb dispensing granules. The correlation analysis showed that the intensity of purgative biopotency was significantly correlated with the content of conjugated anthraquinone glycosides (P<0.01), and the intensity of blood activating biopotency was significantly correlated with the content of free anthraquinone (P<0.01). In summary, the combined use of multi-component simultaneous quantitative analysis and bioassay can achieve objective quantification and more comprehensive reflection on overall quality difference among different batches of rhubarb dispensing granules. Copyright© by the Chinese Pharmaceutical Association.

  3. Simultaneous quantitative analysis of main components in linderae reflexae radix with one single marker.

    PubMed

    Wang, Li-Li; Zhang, Yun-Bin; Sun, Xiao-Ya; Chen, Sui-Qing

    2016-05-08

    Establish a quantitative analysis of multi-components by the single marker (QAMS) method for quality evaluation and validate its feasibilities by the simultaneous quantitative assay of four main components in Linderae Reflexae Radix. Four main components of pinostrobin, pinosylvin, pinocembrin, and 3,5-dihydroxy-2-(1- p -mentheneyl)- trans -stilbene were selected as analytes to evaluate the quality by RP-HPLC coupled with a UV-detector. The method was evaluated by a comparison of the quantitative results between the external standard method and QAMS with a different HPLC system. The results showed that no significant differences were found in the quantitative results of the four contents of Linderae Reflexae Radix determined by the external standard method and QAMS (RSD <3%). The contents of four analytes (pinosylvin, pinocembrin, pinostrobin, and Reflexanbene I) in Linderae Reflexae Radix were determined by the single marker of pinosylvin. This fingerprint was the spectra determined by Shimadzu LC-20AT and Waters e2695 HPLC that were equipped with three different columns.

  4. GC-FID coupled with chemometrics for quantitative and chemical fingerprinting analysis of Alpinia oxyphylla oil.

    PubMed

    Miao, Qing; Kong, Weijun; Zhao, Xiangsheng; Yang, Shihai; Yang, Meihua

    2015-01-01

    Analytical methods for quantitative analysis and chemical fingerprinting of volatile oils from Alpinia oxyphylla were established. The volatile oils were prepared by hydrodistillation, and the yields were between 0.82% and 1.33%. The developed gas chromatography-flame ionization detection (GC-FID) method showed good specificity, linearity, reproducibility, stability and recovery, and could be used satisfactorily for quantitative analysis. The results showed that the volatile oils contained 2.31-77.30 μL/mL p-cymene and 12.38-99.34 mg/mL nootkatone. A GC-FID fingerprinting method was established, and the profiles were analyzed using chemometrics. GC-MS was used to identify the principal compounds in the GC-FID profiles. The profiles of almost all the samples were consistent and stable. The harvesting time and source were major factors that affected the profile, while the volatile oil yield and the nootkatone content had minor secondary effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Seniors' Online Communities: A Quantitative Content Analysis

    ERIC Educational Resources Information Center

    Nimrod, Galit

    2010-01-01

    Purpose: To examine the contents and characteristics of seniors' online communities and to explore their potential benefits to older adults. Design and Methods: Quantitative content analysis of a full year's data from 14 leading online communities using a novel computerized system. The overall database included 686,283 messages. Results: There was…

  6. Targeted methods for quantitative analysis of protein glycosylation

    PubMed Central

    Goldman, Radoslav; Sanda, Miloslav

    2018-01-01

    Quantification of proteins by LC-MS/MS-MRM has become a standard method with broad projected clinical applicability. MRM quantification of protein modifications is, however, far less utilized, especially in the case of glycoproteins. This review summarizes current methods for quantitative analysis of protein glycosylation with a focus on MRM methods. We describe advantages of this quantitative approach, analytical parameters that need to be optimized to achieve reliable measurements, and point out the limitations. Differences between major classes of N- and O-glycopeptides are described and class-specific glycopeptide assays are demonstrated. PMID:25522218

  7. [Influence of sample surface roughness on mathematical model of NIR quantitative analysis of wood density].

    PubMed

    Huang, An-Min; Fei, Ben-Hua; Jiang, Ze-Hui; Hse, Chung-Yun

    2007-09-01

    Near infrared spectroscopy is widely used as a quantitative method, and the main multivariate techniques consist of regression methods used to build prediction models, however, the accuracy of analysis results will be affected by many factors. In the present paper, the influence of different sample roughness on the mathematical model of NIR quantitative analysis of wood density was studied. The result of experiments showed that if the roughness of predicted samples was consistent with that of calibrated samples, the result was good, otherwise the error would be much higher. The roughness-mixed model was more flexible and adaptable to different sample roughness. The prediction ability of the roughness-mixed model was much better than that of the single-roughness model.

  8. Quantitative analysis of dinuclear manganese(II) EPR spectra

    NASA Astrophysics Data System (ADS)

    Golombek, Adina P.; Hendrich, Michael P.

    2003-11-01

    A quantitative method for the analysis of EPR spectra from dinuclear Mn(II) complexes is presented. The complex [(Me 3TACN) 2Mn(II) 2(μ-OAc) 3]BPh 4 ( 1) (Me 3TACN= N, N', N''-trimethyl-1,4,7-triazacyclononane; OAc=acetate 1-; BPh 4=tetraphenylborate 1-) was studied with EPR spectroscopy at X- and Q-band frequencies, for both perpendicular and parallel polarizations of the microwave field, and with variable temperature (2-50 K). Complex 1 is an antiferromagnetically coupled dimer which shows signals from all excited spin manifolds, S=1 to 5. The spectra were simulated with diagonalization of the full spin Hamiltonian which includes the Zeeman and zero-field splittings of the individual manganese sites within the dimer, the exchange and dipolar coupling between the two manganese sites of the dimer, and the nuclear hyperfine coupling for each manganese ion. All possible transitions for all spin manifolds were simulated, with the intensities determined from the calculated probability of each transition. In addition, the non-uniform broadening of all resonances was quantitatively predicted using a lineshape model based on D- and r-strain. As the temperature is increased from 2 K, an 11-line hyperfine pattern characteristic of dinuclear Mn(II) is first observed from the S=3 manifold. D- and r-strain are the dominate broadening effects that determine where the hyperfine pattern will be resolved. A single unique parameter set was found to simulate all spectra arising for all temperatures, microwave frequencies, and microwave modes. The simulations are quantitative, allowing for the first time the determination of species concentrations directly from EPR spectra. Thus, this work describes the first method for the quantitative characterization of EPR spectra of dinuclear manganese centers in model complexes and proteins. The exchange coupling parameter J for complex 1 was determined ( J=-1.5±0.3 cm-1; H ex=-2J S1· S2) and found to be in agreement with a previous

  9. Selective Weighted Least Squares Method for Fourier Transform Infrared Quantitative Analysis.

    PubMed

    Wang, Xin; Li, Yan; Wei, Haoyun; Chen, Xia

    2017-06-01

    (RSS) from the three quantitative analyses were compared. In methane gas analysis, SWLS yielded the lowest SEP and RSS among the three methods. In methane/toluene mixture gas analysis, a modification of the SWLS has been presented to tackle the bias error from other components. The SWLS without modification presents the lowest SEP in all cases but not bias and RSS. The modification of SWLS reduced the bias, which showed a lower RSS than CLS, especially for small components.

  10. Software for quantitative analysis of radiotherapy: overview, requirement analysis and design solutions.

    PubMed

    Zhang, Lanlan; Hub, Martina; Mang, Sarah; Thieke, Christian; Nix, Oliver; Karger, Christian P; Floca, Ralf O

    2013-06-01

    Radiotherapy is a fast-developing discipline which plays a major role in cancer care. Quantitative analysis of radiotherapy data can improve the success of the treatment and support the prediction of outcome. In this paper, we first identify functional, conceptional and general requirements on a software system for quantitative analysis of radiotherapy. Further we present an overview of existing radiotherapy analysis software tools and check them against the stated requirements. As none of them could meet all of the demands presented herein, we analyzed possible conceptional problems and present software design solutions and recommendations to meet the stated requirements (e.g. algorithmic decoupling via dose iterator pattern; analysis database design). As a proof of concept we developed a software library "RTToolbox" following the presented design principles. The RTToolbox is available as open source library and has already been tested in a larger-scale software system for different use cases. These examples demonstrate the benefit of the presented design principles. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. EBprot: Statistical analysis of labeling-based quantitative proteomics data.

    PubMed

    Koh, Hiromi W L; Swa, Hannah L F; Fermin, Damian; Ler, Siok Ghee; Gunaratne, Jayantha; Choi, Hyungwon

    2015-08-01

    Labeling-based proteomics is a powerful method for detection of differentially expressed proteins (DEPs). The current data analysis platform typically relies on protein-level ratios, which is obtained by summarizing peptide-level ratios for each protein. In shotgun proteomics, however, some proteins are quantified with more peptides than others, and this reproducibility information is not incorporated into the differential expression (DE) analysis. Here, we propose a novel probabilistic framework EBprot that directly models the peptide-protein hierarchy and rewards the proteins with reproducible evidence of DE over multiple peptides. To evaluate its performance with known DE states, we conducted a simulation study to show that the peptide-level analysis of EBprot provides better receiver-operating characteristic and more accurate estimation of the false discovery rates than the methods based on protein-level ratios. We also demonstrate superior classification performance of peptide-level EBprot analysis in a spike-in dataset. To illustrate the wide applicability of EBprot in different experimental designs, we applied EBprot to a dataset for lung cancer subtype analysis with biological replicates and another dataset for time course phosphoproteome analysis of EGF-stimulated HeLa cells with multiplexed labeling. Through these examples, we show that the peptide-level analysis of EBprot is a robust alternative to the existing statistical methods for the DE analysis of labeling-based quantitative datasets. The software suite is freely available on the Sourceforge website http://ebprot.sourceforge.net/. All MS data have been deposited in the ProteomeXchange with identifier PXD001426 (http://proteomecentral.proteomexchange.org/dataset/PXD001426/). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multicomponent quantitative spectroscopic analysis without reference substances based on ICA modelling.

    PubMed

    Monakhova, Yulia B; Mushtakova, Svetlana P

    2017-05-01

    A fast and reliable spectroscopic method for multicomponent quantitative analysis of targeted compounds with overlapping signals in complex mixtures has been established. The innovative analytical approach is based on the preliminary chemometric extraction of qualitative and quantitative information from UV-vis and IR spectral profiles of a calibration system using independent component analysis (ICA). Using this quantitative model and ICA resolution results of spectral profiling of "unknown" model mixtures, the absolute analyte concentrations in multicomponent mixtures and authentic samples were then calculated without reference solutions. Good recoveries generally between 95% and 105% were obtained. The method can be applied to any spectroscopic data that obey the Beer-Lambert-Bouguer law. The proposed method was tested on analysis of vitamins and caffeine in energy drinks and aromatic hydrocarbons in motor fuel with 10% error. The results demonstrated that the proposed method is a promising tool for rapid simultaneous multicomponent analysis in the case of spectral overlap and the absence/inaccessibility of reference materials.

  13. Assessment of acute myocarditis by cardiac magnetic resonance imaging: Comparison of qualitative and quantitative analysis methods.

    PubMed

    Imbriaco, Massimo; Nappi, Carmela; Puglia, Marta; De Giorgi, Marco; Dell'Aversana, Serena; Cuocolo, Renato; Ponsiglione, Andrea; De Giorgi, Igino; Polito, Maria Vincenza; Klain, Michele; Piscione, Federico; Pace, Leonardo; Cuocolo, Alberto

    2017-10-26

    To compare cardiac magnetic resonance (CMR) qualitative and quantitative analysis methods for the noninvasive assessment of myocardial inflammation in patients with suspected acute myocarditis (AM). A total of 61 patients with suspected AM underwent coronary angiography and CMR. Qualitative analysis was performed applying Lake-Louise Criteria (LLC), followed by quantitative analysis based on the evaluation of edema ratio (ER) and global relative enhancement (RE). Diagnostic performance was assessed for each method by measuring the area under the curves (AUC) of the receiver operating characteristic analyses. The final diagnosis of AM was based on symptoms and signs suggestive of cardiac disease, evidence of myocardial injury as defined by electrocardiogram changes, elevated troponin I, exclusion of coronary artery disease by coronary angiography, and clinical and echocardiographic follow-up at 3 months after admission to the chest pain unit. In all patients, coronary angiography did not show significant coronary artery stenosis. Troponin I levels and creatine kinase were higher in patients with AM compared to those without (both P < .001). There were no significant differences among LLC, T2-weighted short inversion time inversion recovery (STIR) sequences, early (EGE), and late (LGE) gadolinium-enhancement sequences for diagnosis of AM. The AUC for qualitative (T2-weighted STIR 0.92, EGE 0.87 and LGE 0.88) and quantitative (ER 0.89 and global RE 0.80) analyses were also similar. Qualitative and quantitative CMR analysis methods show similar diagnostic accuracy for the diagnosis of AM. These findings suggest that a simplified approach using a shortened CMR protocol including only T2-weighted STIR sequences might be useful to rule out AM in patients with acute coronary syndrome and normal coronary angiography.

  14. Quantitative analysis of wet-heat inactivation in bovine spongiform encephalopathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuura, Yuichi; Ishikawa, Yukiko; Bo, Xiao

    2013-03-01

    Highlights: ► We quantitatively analyzed wet-heat inactivation of the BSE agent. ► Infectivity of the BSE macerate did not survive 155 °C wet-heat treatment. ► Once the sample was dehydrated, infectivity was observed even at 170 °C. ► A quantitative PMCA assay was used to evaluate the degree of BSE inactivation. - Abstract: The bovine spongiform encephalopathy (BSE) agent is resistant to conventional microbial inactivation procedures and thus threatens the safety of cattle products and by-products. To obtain information necessary to assess BSE inactivation, we performed quantitative analysis of wet-heat inactivation of infectivity in BSE-infected cattle spinal cords. Using amore » highly sensitive bioassay, we found that infectivity in BSE cattle macerates fell with increase in temperatures from 133 °C to 150 °C and was not detected in the samples subjected to temperatures above 155 °C. In dry cattle tissues, infectivity was detected even at 170 °C. Thus, BSE infectivity reduces with increase in wet-heat temperatures but is less affected when tissues are dehydrated prior to the wet-heat treatment. The results of the quantitative protein misfolding cyclic amplification assay also demonstrated that the level of the protease-resistant prion protein fell below the bioassay detection limit by wet-heat at 155 °C and higher and could help assess BSE inactivation. Our results show that BSE infectivity is strongly resistant to wet-heat inactivation and that it is necessary to pay attention to BSE decontamination in recycled cattle by-products.« less

  15. ImatraNMR: Novel software for batch integration and analysis of quantitative NMR spectra

    NASA Astrophysics Data System (ADS)

    Mäkelä, A. V.; Heikkilä, O.; Kilpeläinen, I.; Heikkinen, S.

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D 1H and 13C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request.

  16. Quantitative subsurface analysis using frequency modulated thermal wave imaging

    NASA Astrophysics Data System (ADS)

    Subhani, S. K.; Suresh, B.; Ghali, V. S.

    2018-01-01

    Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.

  17. Quantitative analysis of pork and chicken products by droplet digital PCR.

    PubMed

    Cai, Yicun; Li, Xiang; Lv, Rong; Yang, Jielin; Li, Jian; He, Yuping; Pan, Liangwen

    2014-01-01

    In this project, a highly precise quantitative method based on the digital polymerase chain reaction (dPCR) technique was developed to determine the weight of pork and chicken in meat products. Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of species-specific DNAs in meat products. However, it is limited in amplification efficiency and relies on standard curves based Ct values, detecting and quantifying low copy number target DNA, as in some complex mixture meat products. By using the dPCR method, we find the relationships between the raw meat weight and DNA weight and between the DNA weight and DNA copy number were both close to linear. This enabled us to establish formulae to calculate the raw meat weight based on the DNA copy number. The accuracy and applicability of this method were tested and verified using samples of pork and chicken powder mixed in known proportions. Quantitative analysis indicated that dPCR is highly precise in quantifying pork and chicken in meat products and therefore has the potential to be used in routine analysis by government regulators and quality control departments of commercial food and feed enterprises.

  18. ImatraNMR: novel software for batch integration and analysis of quantitative NMR spectra.

    PubMed

    Mäkelä, A V; Heikkilä, O; Kilpeläinen, I; Heikkinen, S

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D (1)H and (13)C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    PubMed

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  20. Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis

    PubMed Central

    Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.

    2015-01-01

    Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505

  1. [Scanning electron microscope observation and image quantitative analysis of Hippocampi].

    PubMed

    Zhang, Z; Pu, Z; Xu, L; Xu, G; Wang, Q; Xu, G; Wu, L; Chen, J

    1998-12-01

    The "scale-like projects" on the derma of 3 species of Hippocampi, H. kuda Bleerer, H. trimaculatus Leach and H. japonicus Kaup were observed by scanning electron microscope (SEM). Results showed that some characteristics such us size, shape and type of arrangement of the "scale-like projects" can be considered as the evidence for microanalysis. Image quantitative analysis of the "scale-like project" was carried out on 45 pieces of photograph using area, long diameter, short diameter and shape factor as parameters. No difference among the different parts of the same species was observed, but significant differences were found among the above 3 species.

  2. Quantitative PCR analysis of CYP1A induction in Atlantic salmon (Salmo salar)

    USGS Publications Warehouse

    Rees, C.B.; McCormick, S.D.; Vanden, Heuvel J.P.; Li, W.

    2003-01-01

    Environmental pollutants are hypothesized to be one of the causes of recent declines in wild populations of Atlantic salmon (Salmo salar) across Eastern Canada and the United States. Some of these pollutants, such as polychlorinated biphenyls and dioxins, are known to induce expression of the CYP1A subfamily of genes. We applied a highly sensitive technique, quantitative reverse transcription-polymerase chain reaction (RT-PCR), for measuring the levels of CYP1A induction in Atlantic salmon. This assay was used to detect patterns of CYP1A mRNA levels, a direct measure of CYP1A expression, in Atlantic salmon exposed to pollutants under both laboratory and field conditions. Two groups of salmon were acclimated to 11 and 17??C, respectively. Each subject then received an intraperitoneal injection (50 mg kg-1) of either ??-naphthoflavone (BNF) in corn oil (10 mg BNF ml-1 corn oil) or corn oil alone. After 48 h, salmon gill, kidney, liver, and brain were collected for RNA isolation and analysis. All tissues showed induction of CYP1A by BNF. The highest base level of CYP1A expression (2.56??1010 molecules/??g RNA) was found in gill tissue. Kidney had the highest mean induction at five orders of magnitude while gill tissue showed the lowest mean induction at two orders of magnitude. The quantitative RT-PCR was also applied to salmon sampled from two streams in Massachusetts, USA. Salmon liver and gill tissue sampled from Millers River (South Royalston, Worcester County), known to contain polychlorinated biphenyls (PCBs), showed on average a two orders of magnitude induction over those collected from a stream with no known contamination (Fourmile Brook, Northfield, Franklin County). Overall, the data show CYP1A exists and is inducible in Atlantic salmon gill, brain, kidney, and liver tissue. In addition, the results obtained demonstrate that quantitative PCR analysis of CYP1A expression is useful in studying ecotoxicity in populations of Atlantic salmon in the wild. ?? 2003

  3. Quantitative local analysis of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Topcu, Ufuk

    This thesis investigates quantitative methods for local robustness and performance analysis of nonlinear dynamical systems with polynomial vector fields. We propose measures to quantify systems' robustness against uncertainties in initial conditions (regions-of-attraction) and external disturbances (local reachability/gain analysis). S-procedure and sum-of-squares relaxations are used to translate Lyapunov-type characterizations to sum-of-squares optimization problems. These problems are typically bilinear/nonconvex (due to local analysis rather than global) and their size grows rapidly with state/uncertainty space dimension. Our approach is based on exploiting system theoretic interpretations of these optimization problems to reduce their complexity. We propose a methodology incorporating simulation data in formal proof construction enabling more reliable and efficient search for robustness and performance certificates compared to the direct use of general purpose solvers. This technique is adapted both to region-of-attraction and reachability analysis. We extend the analysis to uncertain systems by taking an intentionally simplistic and potentially conservative route, namely employing parameter-independent rather than parameter-dependent certificates. The conservatism is simply reduced by a branch-and-hound type refinement procedure. The main thrust of these methods is their suitability for parallel computing achieved by decomposing otherwise challenging problems into relatively tractable smaller ones. We demonstrate proposed methods on several small/medium size examples in each chapter and apply each method to a benchmark example with an uncertain short period pitch axis model of an aircraft. Additional practical issues leading to a more rigorous basis for the proposed methodology as well as promising further research topics are also addressed. We show that stability of linearized dynamics is not only necessary but also sufficient for the feasibility of the

  4. Direct comparison of low- and mid-frequency Raman spectroscopy for quantitative solid-state pharmaceutical analysis.

    PubMed

    Lipiäinen, Tiina; Fraser-Miller, Sara J; Gordon, Keith C; Strachan, Clare J

    2018-02-05

    This study considers the potential of low-frequency (terahertz) Raman spectroscopy in the quantitative analysis of ternary mixtures of solid-state forms. Direct comparison between low-frequency and mid-frequency spectral regions for quantitative analysis of crystal form mixtures, without confounding sampling and instrumental variations, is reported for the first time. Piroxicam was used as a model drug, and the low-frequency spectra of piroxicam forms β, α2 and monohydrate are presented for the first time. These forms show clear spectral differences in both the low- and mid-frequency regions. Both spectral regions provided quantitative models suitable for predicting the mixture compositions using partial least squares regression (PLSR), but the low-frequency data gave better models, based on lower errors of prediction (2.7, 3.1 and 3.2% root-mean-square errors of prediction [RMSEP] values for the β, α2 and monohydrate forms, respectively) than the mid-frequency data (6.3, 5.4 and 4.8%, for the β, α2 and monohydrate forms, respectively). The better performance of low-frequency Raman analysis was attributed to larger spectral differences between the solid-state forms, combined with a higher signal-to-noise ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Improved method and apparatus for chromatographic quantitative analysis

    DOEpatents

    Fritz, J.S.; Gjerde, D.T.; Schmuckler, G.

    An improved apparatus and method are described for the quantitative analysis of a solution containing a plurality of anion species by ion exchange chromatography which utilizes a single element and a single ion exchange bed which does not require periodic regeneration. The solution containing the anions is added to an anion exchange resin bed which is a low capacity macroreticular polystyrene-divinylbenzene resin containing quarternary ammonium functional groups, and is eluted therefrom with a dilute solution of a low electrical conductance organic acid salt. As each anion species is eluted from the bed, it is quantitatively sensed by conventional detection means such as a conductivity cell.

  6. Spotsizer: High-throughput quantitative analysis of microbial growth.

    PubMed

    Bischof, Leanne; Převorovský, Martin; Rallis, Charalampos; Jeffares, Daniel C; Arzhaeva, Yulia; Bähler, Jürg

    2016-10-01

    Microbial colony growth can serve as a useful readout in assays for studying complex genetic interactions or the effects of chemical compounds. Although computational tools for acquiring quantitative measurements of microbial colonies have been developed, their utility can be compromised by inflexible input image requirements, non-trivial installation procedures, or complicated operation. Here, we present the Spotsizer software tool for automated colony size measurements in images of robotically arrayed microbial colonies. Spotsizer features a convenient graphical user interface (GUI), has both single-image and batch-processing capabilities, and works with multiple input image formats and different colony grid types. We demonstrate how Spotsizer can be used for high-throughput quantitative analysis of fission yeast growth. The user-friendly Spotsizer tool provides rapid, accurate, and robust quantitative analyses of microbial growth in a high-throughput format. Spotsizer is freely available at https://data.csiro.au/dap/landingpage?pid=csiro:15330 under a proprietary CSIRO license.

  7. Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow

    NASA Technical Reports Server (NTRS)

    Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.

    1999-01-01

    The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.

  8. Quantitative High-Resolution Genomic Analysis of Single Cancer Cells

    PubMed Central

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A.; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics. PMID:22140428

  9. Quantitative high-resolution genomic analysis of single cancer cells.

    PubMed

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  10. Accuracy of a remote quantitative image analysis in the whole slide images.

    PubMed

    Słodkowska, Janina; Markiewicz, Tomasz; Grala, Bartłomiej; Kozłowski, Wojciech; Papierz, Wielisław; Pleskacz, Katarzyna; Murawski, Piotr

    2011-03-30

    The rationale for choosing a remote quantitative method supporting a diagnostic decision requires some empirical studies and knowledge on scenarios including valid telepathology standards. The tumours of the central nervous system [CNS] are graded on the base of the morphological features and the Ki-67 labelling Index [Ki-67 LI]. Various methods have been applied for Ki-67 LI estimation. Recently we have introduced the Computerized Analysis of Medical Images [CAMI] software for an automated Ki-67 LI counting in the digital images. Aims of our study was to explore the accuracy and reliability of a remote assessment of Ki-67 LI with CAMI software applied to the whole slide images [WSI]. The WSI representing CNS tumours: 18 meningiomas and 10 oligodendrogliomas were stored on the server of the Warsaw University of Technology. The digital copies of entire glass slides were created automatically by the Aperio ScanScope CS with objective 20x or 40x. Aperio's Image Scope software provided functionality for a remote viewing of WSI. The Ki-67 LI assessment was carried on within 2 out of 20 selected fields of view (objective 40x) representing the highest labelling areas in each WSI. The Ki-67 LI counting was performed by 3 various methods: 1) the manual reading in the light microscope - LM, 2) the automated counting with CAMI software on the digital images - DI , and 3) the remote quantitation on the WSIs - as WSI method. The quality of WSIs and technical efficiency of the on-line system were analysed. The comparative statistical analysis was performed for the results obtained by 3 methods of Ki-67 LI counting. The preliminary analysis showed that in 18% of WSI the results of Ki-67 LI differed from those obtained in other 2 methods of counting when the quality of the glass slides was below the standard range. The results of our investigations indicate that the remote automated Ki-67 LI analysis performed with the CAMI algorithm on the whole slide images of meningiomas and

  11. Qualitative and Quantitative Analysis for Facial Complexion in Traditional Chinese Medicine

    PubMed Central

    Zhao, Changbo; Li, Guo-zheng; Li, Fufeng; Wang, Zhi; Liu, Chang

    2014-01-01

    Facial diagnosis is an important and very intuitive diagnostic method in Traditional Chinese Medicine (TCM). However, due to its qualitative and experience-based subjective property, traditional facial diagnosis has a certain limitation in clinical medicine. The computerized inspection method provides classification models to recognize facial complexion (including color and gloss). However, the previous works only study the classification problems of facial complexion, which is considered as qualitative analysis in our perspective. For quantitative analysis expectation, the severity or degree of facial complexion has not been reported yet. This paper aims to make both qualitative and quantitative analysis for facial complexion. We propose a novel feature representation of facial complexion from the whole face of patients. The features are established with four chromaticity bases splitting up by luminance distribution on CIELAB color space. Chromaticity bases are constructed from facial dominant color using two-level clustering; the optimal luminance distribution is simply implemented with experimental comparisons. The features are proved to be more distinctive than the previous facial complexion feature representation. Complexion recognition proceeds by training an SVM classifier with the optimal model parameters. In addition, further improved features are more developed by the weighted fusion of five local regions. Extensive experimental results show that the proposed features achieve highest facial color recognition performance with a total accuracy of 86.89%. And, furthermore, the proposed recognition framework could analyze both color and gloss degrees of facial complexion by learning a ranking function. PMID:24967342

  12. Benefit-risk analysis : a brief review and proposed quantitative approaches.

    PubMed

    Holden, William L

    2003-01-01

    Given the current status of benefit-risk analysis as a largely qualitative method, two techniques for a quantitative synthesis of a drug's benefit and risk are proposed to allow a more objective approach. The recommended methods, relative-value adjusted number-needed-to-treat (RV-NNT) and its extension, minimum clinical efficacy (MCE) analysis, rely upon efficacy or effectiveness data, adverse event data and utility data from patients, describing their preferences for an outcome given potential risks. These methods, using hypothetical data for rheumatoid arthritis drugs, demonstrate that quantitative distinctions can be made between drugs which would better inform clinicians, drug regulators and patients about a drug's benefit-risk profile. If the number of patients needed to treat is less than the relative-value adjusted number-needed-to-harm in an RV-NNT analysis, patients are willing to undergo treatment with the experimental drug to derive a certain benefit knowing that they may be at risk for any of a series of potential adverse events. Similarly, the results of an MCE analysis allow for determining the worth of a new treatment relative to an older one, given not only the potential risks of adverse events and benefits that may be gained, but also by taking into account the risk of disease without any treatment. Quantitative methods of benefit-risk analysis have a place in the evaluative armamentarium of pharmacovigilance, especially those that incorporate patients' perspectives.

  13. Quantitative Analysis of TDLUs using Adaptive Morphological Shape Techniques

    PubMed Central

    Rosebrock, Adrian; Caban, Jesus J.; Figueroa, Jonine; Gierach, Gretchen; Linville, Laura; Hewitt, Stephen; Sherman, Mark

    2014-01-01

    Within the complex branching system of the breast, terminal duct lobular units (TDLUs) are the anatomical location where most cancer originates. With aging, TDLUs undergo physiological involution, reflected in a loss of structural components (acini) and a reduction in total number. Data suggest that women undergoing benign breast biopsies that do not show age appropriate involution are at increased risk of developing breast cancer. To date, TDLU assessments have generally been made by qualitative visual assessment, rather than by objective quantitative analysis. This paper introduces a technique to automatically estimate a set of quantitative measurements and use those variables to more objectively describe and classify TDLUs. To validate the accuracy of our system, we compared the computer-based morphological properties of 51 TDLUs in breast tissues donated for research by volunteers in the Susan G. Komen Tissue Bank and compared results to those of a pathologist, demonstrating 70% agreement. Secondly, in order to show that our method is applicable to a wider range of datasets, we analyzed 52 TDLUs from biopsies performed for clinical indications in the National Cancer Institute’s Breast Radiology Evaluation and Study of Tissues (BREAST) Stamp Project and obtained 82% correlation with visual assessment. Lastly, we demonstrate the ability to uncover novel measures when researching the structural properties of the acini by applying machine learning and clustering techniques. Through our study we found that while the number of acini per TDLU increases exponentially with the TDLU diameter, the average elongation and roundness remain constant. PMID:25722829

  14. Quantitative analysis of multi-component gas mixture based on AOTF-NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hao, Huimin; Zhang, Yong; Liu, Junhua

    2007-12-01

    Near Infrared (NIR) spectroscopy analysis technology has attracted many eyes and has wide application in many domains in recent years because of its remarkable advantages. But the NIR spectrometer can only be used for liquid and solid analysis by now. In this paper, a new quantitative analysis method of gas mixture by using new generation NIR spectrometer is explored. To collect the NIR spectra of gas mixtures, a vacuumable gas cell was designed and assembled to Luminar 5030-731 Acousto-Optic Tunable Filter (AOTF)-NIR spectrometer. Standard gas samples of methane (CH 4), ethane (C IIH 6) and propane (C 3H 8) are diluted with super pure nitrogen via precision volumetric gas flow controllers to obtain gas mixture samples of different concentrations dynamically. The gas mixtures were injected into the gas cell and the spectra of wavelength between 1100nm-2300nm were collected. The feature components extracted from gas mixture spectra by using Partial Least Squares (PLS) were used as the inputs of the Support Vector Regress Machine (SVR) to establish the quantitative analysis model. The effectiveness of the model is tested by the samples of predicting set. The prediction Root Mean Square Error (RMSE) of CH 4, C IIH 6 and C 3H 8 is respectively 1.27%, 0.89%, and 1.20% when the concentrations of component gas are over 0.5%. It shows that the AOTF-NIR spectrometer with gas cell can be used for gas mixture analysis. PLS combining with SVR has a good performance in NIR spectroscopy analysis. This paper provides the bases for extending the application of NIR spectroscopy analysis to gas detection.

  15. Use of local noise power spectrum and wavelet analysis in quantitative image quality assurance for EPIDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Soyoung

    Purpose: To investigate the use of local noise power spectrum (NPS) to characterize image noise and wavelet analysis to isolate defective pixels and inter-subpanel flat-fielding artifacts for quantitative quality assurance (QA) of electronic portal imaging devices (EPIDs). Methods: A total of 93 image sets including custom-made bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Global quantitative metrics such as modulation transform function (MTF), NPS, and detective quantum efficiency (DQE) were computed for each image set. Local NPS was also calculated for individual subpanels by sampling region of interests within each subpanelmore » of the EPID. The 1D NPS, obtained by radially averaging the 2D NPS, was fitted to a power-law function. The r-square value of the linear regression analysis was used as a singular metric to characterize the noise properties of individual subpanels of the EPID. The sensitivity of the local NPS was first compared with the global quantitative metrics using historical image sets. It was then compared with two commonly used commercial QA systems with images collected after applying two different EPID calibration methods (single-level gain and multilevel gain). To detect isolated defective pixels and inter-subpanel flat-fielding artifacts, Haar wavelet transform was applied on the images. Results: Global quantitative metrics including MTF, NPS, and DQE showed little change over the period of data collection. On the contrary, a strong correlation between the local NPS (r-square values) and the variation of the EPID noise condition was observed. The local NPS analysis indicated image quality improvement with the r-square values increased from 0.80 ± 0.03 (before calibration) to 0.85 ± 0.03 (after single-level gain calibration) and to 0.96 ± 0.03 (after multilevel gain calibration), while the commercial QA systems failed to distinguish the image quality improvement between

  16. Quantitative risk analysis of oil storage facilities in seismic areas.

    PubMed

    Fabbrocino, Giovanni; Iervolino, Iunio; Orlando, Francesca; Salzano, Ernesto

    2005-08-31

    Quantitative risk analysis (QRA) of industrial facilities has to take into account multiple hazards threatening critical equipment. Nevertheless, engineering procedures able to evaluate quantitatively the effect of seismic action are not well established. Indeed, relevant industrial accidents may be triggered by loss of containment following ground shaking or other relevant natural hazards, either directly or through cascade effects ('domino effects'). The issue of integrating structural seismic risk into quantitative probabilistic seismic risk analysis (QpsRA) is addressed in this paper by a representative study case regarding an oil storage plant with a number of atmospheric steel tanks containing flammable substances. Empirical seismic fragility curves and probit functions, properly defined both for building-like and non building-like industrial components, have been crossed with outcomes of probabilistic seismic hazard analysis (PSHA) for a test site located in south Italy. Once the seismic failure probabilities have been quantified, consequence analysis has been performed for those events which may be triggered by the loss of containment following seismic action. Results are combined by means of a specific developed code in terms of local risk contour plots, i.e. the contour line for the probability of fatal injures at any point (x, y) in the analysed area. Finally, a comparison with QRA obtained by considering only process-related top events is reported for reference.

  17. Quantitative analysis of crystalline pharmaceuticals in powders and tablets by a pattern-fitting procedure using X-ray powder diffraction data.

    PubMed

    Yamamura, S; Momose, Y

    2001-01-16

    A pattern-fitting procedure for quantitative analysis of crystalline pharmaceuticals in solid dosage forms using X-ray powder diffraction data is described. This method is based on a procedure for pattern-fitting in crystal structure refinement, and observed X-ray scattering intensities were fitted to analytical expressions including some fitting parameters, i.e. scale factor, peak positions, peak widths and degree of preferred orientation of the crystallites. All fitting parameters were optimized by the non-linear least-squares procedure. Then the weight fraction of each component was determined from the optimized scale factors. In the present study, well-crystallized binary systems, zinc oxide-zinc sulfide (ZnO-ZnS) and salicylic acid-benzoic acid (SA-BA), were used as the samples. In analysis of the ZnO-ZnS system, the weight fraction of ZnO or ZnS could be determined quantitatively in the range of 5-95% in the case of both powders and tablets. In analysis of the SA-BA systems, the weight fraction of SA or BA could be determined quantitatively in the range of 20-80% in the case of both powders and tablets. Quantitative analysis applying this pattern-fitting procedure showed better reproducibility than other X-ray methods based on the linear or integral intensities of particular diffraction peaks. Analysis using this pattern-fitting procedure also has the advantage that the preferred orientation of the crystallites in solid dosage forms can be also determined in the course of quantitative analysis.

  18. Comparative study of standard space and real space analysis of quantitative MR brain data.

    PubMed

    Aribisala, Benjamin S; He, Jiabao; Blamire, Andrew M

    2011-06-01

    To compare the robustness of region of interest (ROI) analysis of magnetic resonance imaging (MRI) brain data in real space with analysis in standard space and to test the hypothesis that standard space image analysis introduces more partial volume effect errors compared to analysis of the same dataset in real space. Twenty healthy adults with no history or evidence of neurological diseases were recruited; high-resolution T(1)-weighted, quantitative T(1), and B(0) field-map measurements were collected. Algorithms were implemented to perform analysis in real and standard space and used to apply a simple standard ROI template to quantitative T(1) datasets. Regional relaxation values and histograms for both gray and white matter tissues classes were then extracted and compared. Regional mean T(1) values for both gray and white matter were significantly lower using real space compared to standard space analysis. Additionally, regional T(1) histograms were more compact in real space, with smaller right-sided tails indicating lower partial volume errors compared to standard space analysis. Standard space analysis of quantitative MRI brain data introduces more partial volume effect errors biasing the analysis of quantitative data compared to analysis of the same dataset in real space. Copyright © 2011 Wiley-Liss, Inc.

  19. iTRAQ-Based Quantitative Proteomic Analysis of the Initiation of Head Regeneration in Planarians.

    PubMed

    Geng, Xiaofang; Wang, Gaiping; Qin, Yanli; Zang, Xiayan; Li, Pengfei; Geng, Zhi; Xue, Deming; Dong, Zimei; Ma, Kexue; Chen, Guangwen; Xu, Cunshuan

    2015-01-01

    The planarian Dugesia japonica has amazing ability to regenerate a head from the anterior ends of the amputated stump with maintenance of the original anterior-posterior polarity. Although planarians present an attractive system for molecular investigation of regeneration and research has focused on clarifying the molecular mechanism of regeneration initiation in planarians at transcriptional level, but the initiation mechanism of planarian head regeneration (PHR) remains unclear at the protein level. Here, a global analysis of proteome dynamics during the early stage of PHR was performed using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy, and our data are available via ProteomeXchange with identifier PXD002100. The results showed that 162 proteins were differentially expressed at 2 h and 6 h following amputation. Furthermore, the analysis of expression patterns and functional enrichment of the differentially expressed proteins showed that proteins involved in muscle contraction, oxidation reduction and protein synthesis were up-regulated in the initiation of PHR. Moreover, ingenuity pathway analysis showed that predominant signaling pathways such as ILK, calcium, EIF2 and mTOR signaling which were associated with cell migration, cell proliferation and protein synthesis were likely to be involved in the initiation of PHR. The results for the first time demonstrated that muscle contraction and ILK signaling might played important roles in the initiation of PHR at the global protein level. The findings of this research provide a molecular basis for further unraveling the mechanism of head regeneration initiation in planarians.

  20. Statistical shape analysis using 3D Poisson equation--A quantitatively validated approach.

    PubMed

    Gao, Yi; Bouix, Sylvain

    2016-05-01

    Statistical shape analysis has been an important area of research with applications in biology, anatomy, neuroscience, agriculture, paleontology, etc. Unfortunately, the proposed methods are rarely quantitatively evaluated, and as shown in recent studies, when they are evaluated, significant discrepancies exist in their outputs. In this work, we concentrate on the problem of finding the consistent location of deformation between two population of shapes. We propose a new shape analysis algorithm along with a framework to perform a quantitative evaluation of its performance. Specifically, the algorithm constructs a Signed Poisson Map (SPoM) by solving two Poisson equations on the volumetric shapes of arbitrary topology, and statistical analysis is then carried out on the SPoMs. The method is quantitatively evaluated on synthetic shapes and applied on real shape data sets in brain structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Tau-U: A Quantitative Approach for Analysis of Single-Case Experimental Data in Aphasia.

    PubMed

    Lee, Jaime B; Cherney, Leora R

    2018-03-01

    Tau-U is a quantitative approach for analyzing single-case experimental design (SCED) data. It combines nonoverlap between phases with intervention phase trend and can correct for a baseline trend (Parker, Vannest, & Davis, 2011). We demonstrate the utility of Tau-U by comparing it with the standardized mean difference approach (Busk & Serlin, 1992) that is widely reported within the aphasia SCED literature. Repeated writing measures from 3 participants with chronic aphasia who received computer-based writing treatment are analyzed visually and quantitatively using both Tau-U and the standardized mean difference approach. Visual analysis alone was insufficient for determining an effect between the intervention and writing improvement. The standardized mean difference yielded effect sizes ranging from 4.18 to 26.72 for trained items and 1.25 to 3.20 for untrained items. Tau-U yielded significant (p < .05) effect sizes for 2 of 3 participants for trained probes and 1 of 3 participants for untrained probes. A baseline trend correction was applied to data from 2 of 3 participants. Tau-U has the unique advantage of allowing for the correction of an undesirable baseline trend. Although further study is needed, Tau-U shows promise as a quantitative approach to augment visual analysis of SCED data in aphasia.

  2. Improved quantitative analysis of spectra using a new method of obtaining derivative spectra based on a singular perturbation technique.

    PubMed

    Li, Zhigang; Wang, Qiaoyun; Lv, Jiangtao; Ma, Zhenhe; Yang, Linjuan

    2015-06-01

    Spectroscopy is often applied when a rapid quantitative analysis is required, but one challenge is the translation of raw spectra into a final analysis. Derivative spectra are often used as a preliminary preprocessing step to resolve overlapping signals, enhance signal properties, and suppress unwanted spectral features that arise due to non-ideal instrument and sample properties. In this study, to improve quantitative analysis of near-infrared spectra, derivatives of noisy raw spectral data need to be estimated with high accuracy. A new spectral estimator based on singular perturbation technique, called the singular perturbation spectra estimator (SPSE), is presented, and the stability analysis of the estimator is given. Theoretical analysis and simulation experimental results confirm that the derivatives can be estimated with high accuracy using this estimator. Furthermore, the effectiveness of the estimator for processing noisy infrared spectra is evaluated using the analysis of beer spectra. The derivative spectra of the beer and the marzipan are used to build the calibration model using partial least squares (PLS) modeling. The results show that the PLS based on the new estimator can achieve better performance compared with the Savitzky-Golay algorithm and can serve as an alternative choice for quantitative analytical applications.

  3. Role Of Social Networks In Resilience Of Naval Recruits: A Quantitative Analysis

    DTIC Science & Technology

    2016-06-01

    comprises 1,297 total surveys from a total of eight divisions of recruits at two different time periods. Quantitative analyses using surveys and network... surveys from a total of eight divisions of recruits at two different time periods. Quantitative analyses using surveys and network data examine the effects...NETWORKS IN RESILIENCE OF NAVAL RECRUITS: A QUANTITATIVE ANALYSIS by Andrea M. Watling June 2016 Thesis Advisor: Edward H. Powley Co

  4. Improvements to direct quantitative analysis of multiple microRNAs facilitating faster analysis.

    PubMed

    Ghasemi, Farhad; Wegman, David W; Kanoatov, Mirzo; Yang, Burton B; Liu, Stanley K; Yousef, George M; Krylov, Sergey N

    2013-11-05

    Studies suggest that patterns of deregulation in sets of microRNA (miRNA) can be used as cancer diagnostic and prognostic biomarkers. Establishing a "miRNA fingerprint"-based diagnostic technique requires a suitable miRNA quantitation method. The appropriate method must be direct, sensitive, capable of simultaneous analysis of multiple miRNAs, rapid, and robust. Direct quantitative analysis of multiple microRNAs (DQAMmiR) is a recently introduced capillary electrophoresis-based hybridization assay that satisfies most of these criteria. Previous implementations of the method suffered, however, from slow analysis time and required lengthy and stringent purification of hybridization probes. Here, we introduce a set of critical improvements to DQAMmiR that address these technical limitations. First, we have devised an efficient purification procedure that achieves the required purity of the hybridization probe in a fast and simple fashion. Second, we have optimized the concentrations of the DNA probe to decrease the hybridization time to 10 min. Lastly, we have demonstrated that the increased probe concentrations and decreased incubation time removed the need for masking DNA, further simplifying the method and increasing its robustness. The presented improvements bring DQAMmiR closer to use in a clinical setting.

  5. Using multiple PCR and CE with chemiluminescence detection for simultaneous qualitative and quantitative analysis of genetically modified organism.

    PubMed

    Guo, Longhua; Qiu, Bin; Chi, Yuwu; Chen, Guonan

    2008-09-01

    In this paper, an ultrasensitive CE-CL detection system coupled with a novel double-on-column coaxial flow detection interface was developed for the detection of PCR products. A reliable procedure based on this system had been demonstrated for qualitative and quantitative analysis of genetically modified organism-the detection of Roundup Ready Soy (RRS) samples was presented as an example. The promoter, terminator, function and two reference genes of RRS were amplified with multiplex PCR simultaneously. After that, the multiplex PCR products were labeled with acridinium ester at the 5'-terminal through an amino modification and then analyzed by the proposed CE-CL system. Reproducibility of analysis times and peak heights for the CE-CL analysis were determined to be better than 0.91 and 3.07% (RSD, n=15), respectively, for three consecutive days. It was shown that this method could accurately and qualitatively detect RRS standards and the simulative samples. The evaluation in terms of quantitative analysis of RRS provided by this new method was confirmed by comparing our assay results with those of the standard real-time quantitative PCR (RT-QPCR) using SYBR Green I dyes. The results showed a good coherence between the two methods. This approach demonstrated the possibility for accurate qualitative and quantitative detection of GM plants in a single run.

  6. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis.

    PubMed

    Ishikawa, Akira

    2017-11-27

    Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  7. A simple approach to quantitative analysis using three-dimensional spectra based on selected Zernike moments.

    PubMed

    Zhai, Hong Lin; Zhai, Yue Yuan; Li, Pei Zhen; Tian, Yue Li

    2013-01-21

    A very simple approach to quantitative analysis is proposed based on the technology of digital image processing using three-dimensional (3D) spectra obtained by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). As the region-based shape features of a grayscale image, Zernike moments with inherently invariance property were employed to establish the linear quantitative models. This approach was applied to the quantitative analysis of three compounds in mixed samples using 3D HPLC-DAD spectra, and three linear models were obtained, respectively. The correlation coefficients (R(2)) for training and test sets were more than 0.999, and the statistical parameters and strict validation supported the reliability of established models. The analytical results suggest that the Zernike moment selected by stepwise regression can be used in the quantitative analysis of target compounds. Our study provides a new idea for quantitative analysis using 3D spectra, which can be extended to the analysis of other 3D spectra obtained by different methods or instruments.

  8. A Comparative Assessment of Greek Universities' Efficiency Using Quantitative Analysis

    ERIC Educational Resources Information Center

    Katharaki, Maria; Katharakis, George

    2010-01-01

    In part due to the increased demand for higher education, typical evaluation frameworks for universities often address the key issue of available resource utilisation. This study seeks to estimate the efficiency of 20 public universities in Greece through quantitative analysis (including performance indicators, data envelopment analysis (DEA) and…

  9. An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data.

    PubMed

    Vu, Trung N; Valkenborg, Dirk; Smets, Koen; Verwaest, Kim A; Dommisse, Roger; Lemière, Filip; Verschoren, Alain; Goethals, Bart; Laukens, Kris

    2011-10-20

    Nuclear magnetic resonance spectroscopy (NMR) is a powerful technique to reveal and compare quantitative metabolic profiles of biological tissues. However, chemical and physical sample variations make the analysis of the data challenging, and typically require the application of a number of preprocessing steps prior to data interpretation. For example, noise reduction, normalization, baseline correction, peak picking, spectrum alignment and statistical analysis are indispensable components in any NMR analysis pipeline. We introduce a novel suite of informatics tools for the quantitative analysis of NMR metabolomic profile data. The core of the processing cascade is a novel peak alignment algorithm, called hierarchical Cluster-based Peak Alignment (CluPA). The algorithm aligns a target spectrum to the reference spectrum in a top-down fashion by building a hierarchical cluster tree from peak lists of reference and target spectra and then dividing the spectra into smaller segments based on the most distant clusters of the tree. To reduce the computational time to estimate the spectral misalignment, the method makes use of Fast Fourier Transformation (FFT) cross-correlation. Since the method returns a high-quality alignment, we can propose a simple methodology to study the variability of the NMR spectra. For each aligned NMR data point the ratio of the between-group and within-group sum of squares (BW-ratio) is calculated to quantify the difference in variability between and within predefined groups of NMR spectra. This differential analysis is related to the calculation of the F-statistic or a one-way ANOVA, but without distributional assumptions. Statistical inference based on the BW-ratio is achieved by bootstrapping the null distribution from the experimental data. The workflow performance was evaluated using a previously published dataset. Correlation maps, spectral and grey scale plots show clear improvements in comparison to other methods, and the down

  10. Analysis of genetic effects of nuclear-cytoplasmic interaction on quantitative traits: genetic model for diploid plants.

    PubMed

    Han, Lide; Yang, Jian; Zhu, Jun

    2007-06-01

    A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.

  11. Design and analysis of quantitative differential proteomics investigations using LC-MS technology.

    PubMed

    Bukhman, Yury V; Dharsee, Moyez; Ewing, Rob; Chu, Peter; Topaloglou, Thodoros; Le Bihan, Thierry; Goh, Theo; Duewel, Henry; Stewart, Ian I; Wisniewski, Jacek R; Ng, Nancy F

    2008-02-01

    Liquid chromatography-mass spectrometry (LC-MS)-based proteomics is becoming an increasingly important tool in characterizing the abundance of proteins in biological samples of various types and across conditions. Effects of disease or drug treatments on protein abundance are of particular interest for the characterization of biological processes and the identification of biomarkers. Although state-of-the-art instrumentation is available to make high-quality measurements and commercially available software is available to process the data, the complexity of the technology and data presents challenges for bioinformaticians and statisticians. Here, we describe a pipeline for the analysis of quantitative LC-MS data. Key components of this pipeline include experimental design (sample pooling, blocking, and randomization) as well as deconvolution and alignment of mass chromatograms to generate a matrix of molecular abundance profiles. An important challenge in LC-MS-based quantitation is to be able to accurately identify and assign abundance measurements to members of protein families. To address this issue, we implement a novel statistical method for inferring the relative abundance of related members of protein families from tryptic peptide intensities. This pipeline has been used to analyze quantitative LC-MS data from multiple biomarker discovery projects. We illustrate our pipeline here with examples from two of these studies, and show that the pipeline constitutes a complete workable framework for LC-MS-based differential quantitation. Supplementary material is available at http://iec01.mie.utoronto.ca/~thodoros/Bukhman/.

  12. Esophagram findings in cervical esophageal stenosis: A case-controlled quantitative analysis.

    PubMed

    West, Jacob; Kim, Cherine H; Reichert, Zachary; Krishna, Priya; Crawley, Brianna K; Inman, Jared C

    2018-01-04

    Cervical esophageal stenosis is often diagnosed with a qualitative evaluation of a barium esophagram. Although the esophagram is frequently the initial screening exam for dysphagia, a clear objective standard for stenosis has not been defined. In this study, we measured esophagram diameters in order to establish a quantitative standard for defining cervical esophageal stenosis that requires surgical intervention. Single institution case-control study. Patients with clinically significant cervical esophageal stenosis defined by moderate symptoms of dysphagia (Functional Outcome Swallowing Scale > 2 and Functional Oral Intake Scale < 6) persisting for 6 months and responding to dilation treatment were matched with age, sex, and height controls. Both qualitative and quantitative barium esophagram measurements for the upper, mid-, and lower vertebral bodies of C5 through T1 were analyzed in lateral, oblique, and anterior-posterior views. Stenotic patients versus nonstenotic controls showed no significant differences in age, sex, height, body mass index, or ethnicity. Stenosis was most commonly at the sixth cervical vertebra (C 6) lower border and C7 upper border. The mean intraesophageal minimum/maximum ratios of controls and stenotic groups in the lateral view were 0.63 ± 0.08 and 0.36 ± 0.12, respectively (P < 0.0001). Receiver operating characteristic analysis of the minimum/maximum ratios, with a <0.50 ratio delineating stenosis, demonstrated that lateral view measurements had the best diagnostic ability. The sensitivity of the radiologists' qualitative interpretation was 56%. With application of lateral intraesophageal minimum/maximum ratios, we observed improved sensitivity to 94% of the esophagram, detecting clinically significant stenosis. Applying quantitative determinants in esophagram analysis may improve the sensitivity of detecting cervical esophageal stenosis in dysphagic patients who may benefit from surgical therapy. IIIb

  13. Use of MRI in Differentiation of Papillary Renal Cell Carcinoma Subtypes: Qualitative and Quantitative Analysis.

    PubMed

    Doshi, Ankur M; Ream, Justin M; Kierans, Andrea S; Bilbily, Matthew; Rusinek, Henry; Huang, William C; Chandarana, Hersh

    2016-03-01

    The purpose of this study was to determine whether qualitative and quantitative MRI feature analysis is useful for differentiating type 1 from type 2 papillary renal cell carcinoma (PRCC). This retrospective study included 21 type 1 and 17 type 2 PRCCs evaluated with preoperative MRI. Two radiologists independently evaluated various qualitative features, including signal intensity, heterogeneity, and margin. For the quantitative analysis, a radiology fellow and a medical student independently drew 3D volumes of interest over the entire tumor on T2-weighted HASTE images, apparent diffusion coefficient parametric maps, and nephrographic phase contrast-enhanced MR images to derive first-order texture metrics. Qualitative and quantitative features were compared between the groups. For both readers, qualitative features with greater frequency in type 2 PRCC included heterogeneous enhancement, indistinct margin, and T2 heterogeneity (all, p < 0.035). Indistinct margins and heterogeneous enhancement were independent predictors (AUC, 0.822). Quantitative analysis revealed that apparent diffusion coefficient, HASTE, and contrast-enhanced entropy were greater in type 2 PRCC (p < 0.05; AUC, 0.682-0.716). A combined quantitative and qualitative model had an AUC of 0.859. Qualitative features within the model had interreader concordance of 84-95%, and the quantitative data had intraclass coefficients of 0.873-0.961. Qualitative and quantitative features can help discriminate between type 1 and type 2 PRCC. Quantitative analysis may capture useful information that complements the qualitative appearance while benefiting from high interobserver agreement.

  14. Quantitative Analysis of Repertoire-Scale Immunoglobulin Properties in Vaccine-Induced B-Cell Responses

    DTIC Science & Technology

    2017-05-10

    repertoire-wide properties. Finally, through 75 the use of appropriate statistical analyses, the repertoire profiles can be quantitatively compared and 76...cell response to eVLP and 503 quantitatively compare GC B-cell repertoires from immunization conditions. We partitioned the 504 resulting clonotype... Quantitative analysis of repertoire-scale immunoglobulin properties in vaccine-induced B-cell responses Ilja V. Khavrutskii1, Sidhartha Chaudhury*1

  15. Mapping loci influencing blood pressure in the Framingham pedigrees using model-free LOD score analysis of a quantitative trait.

    PubMed

    Knight, Jo; North, Bernard V; Sham, Pak C; Curtis, David

    2003-12-31

    This paper presents a method of performing model-free LOD-score based linkage analysis on quantitative traits. It is implemented in the QMFLINK program. The method is used to perform a genome screen on the Framingham Heart Study data. A number of markers that show some support for linkage in our study coincide substantially with those implicated in other linkage studies of hypertension. Although the new method needs further testing on additional real and simulated data sets we can already say that it is straightforward to apply and may offer a useful complementary approach to previously available methods for the linkage analysis of quantitative traits.

  16. Mapping loci influencing blood pressure in the Framingham pedigrees using model-free LOD score analysis of a quantitative trait

    PubMed Central

    Knight, Jo; North, Bernard V; Sham, Pak C; Curtis, David

    2003-01-01

    This paper presents a method of performing model-free LOD-score based linkage analysis on quantitative traits. It is implemented in the QMFLINK program. The method is used to perform a genome screen on the Framingham Heart Study data. A number of markers that show some support for linkage in our study coincide substantially with those implicated in other linkage studies of hypertension. Although the new method needs further testing on additional real and simulated data sets we can already say that it is straightforward to apply and may offer a useful complementary approach to previously available methods for the linkage analysis of quantitative traits. PMID:14975142

  17. CUMULATIVE RISK ASSESSMENT: GETTING FROM TOXICOLOGY TO QUANTITATIVE ANALYSIS

    EPA Science Inventory

    INTRODUCTION: GETTING FROM TOXICOLOGY TO QUANTITATIVE ANALYSIS FOR CUMULATIVE RISK

    Hugh A. Barton1 and Carey N. Pope2
    1US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC
    2Department of...

  18. Quantitation of glycerophosphorylcholine by flow injection analysis using immobilized enzymes.

    PubMed

    Mancini, A; Del Rosso, F; Roberti, R; Caligiana, P; Vecchini, A; Binaglia, L

    1996-09-20

    A method for quantitating glycerophosphorylcholine by flow injection analysis is reported in the present paper. Glycerophosphorylcholine phosphodiesterase and choline oxidase, immobilized on controlled porosity glass beads, are packed in a small reactor inserted in a flow injection manifold. When samples containing glycerophosphorylcholine are injected, glycerophosphorylcholine is hydrolyzed into choline and sn-glycerol-3-phosphate. The free choline produced in this reaction is oxidized to betain and hydrogen peroxide. Hydrogen peroxide is detected amperometrically. Quantitation of glycerophosphorylcholine in samples containing choline and phosphorylcholine is obtained inserting ahead of the reactor a small column packed with a mixed bed ion exchange resin. The time needed for each determination does not exceed one minute. The present method, applied to quantitate glycerophosphorylcholine in samples of seminal plasma, gave results comparable with those obtained using the standard enzymatic-spectrophotometric procedure. An alternative procedure, making use of co-immobilized glycerophosphorylcholine phosphodiesterase and glycerol-3-phosphate oxidase for quantitating glycerophosphorylcholine, glycerophosphorylethanolamine and glycerophosphorylserine is also described.

  19. Functional linear models for association analysis of quantitative traits.

    PubMed

    Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao

    2013-11-01

    Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY

  20. Quantitative analysis to guide orphan drug development.

    PubMed

    Lesko, L J

    2012-08-01

    The development of orphan drugs for rare diseases has made impressive strides in the past 10 years. There has been a surge in orphan drug designations, but new drug approvals have not kept up. This article presents a three-pronged hierarchical strategy for quantitative analysis of data at the descriptive, mechanistic, and systems levels of the biological system that could represent a standardized and rational approach to orphan drug development. Examples are provided to illustrate the concept.

  1. A Critical Appraisal of Techniques, Software Packages, and Standards for Quantitative Proteomic Analysis

    PubMed Central

    Lawless, Craig; Hubbard, Simon J.; Fan, Jun; Bessant, Conrad; Hermjakob, Henning; Jones, Andrew R.

    2012-01-01

    Abstract New methods for performing quantitative proteome analyses based on differential labeling protocols or label-free techniques are reported in the literature on an almost monthly basis. In parallel, a correspondingly vast number of software tools for the analysis of quantitative proteomics data has also been described in the literature and produced by private companies. In this article we focus on the review of some of the most popular techniques in the field and present a critical appraisal of several software packages available to process and analyze the data produced. We also describe the importance of community standards to support the wide range of software, which may assist researchers in the analysis of data using different platforms and protocols. It is intended that this review will serve bench scientists both as a useful reference and a guide to the selection and use of different pipelines to perform quantitative proteomics data analysis. We have produced a web-based tool (http://www.proteosuite.org/?q=other_resources) to help researchers find appropriate software for their local instrumentation, available file formats, and quantitative methodology. PMID:22804616

  2. Quantum dots assisted laser desorption/ionization mass spectrometric detection of carbohydrates: qualitative and quantitative analysis.

    PubMed

    Bibi, Aisha; Ju, Huangxian

    2016-04-01

    A quantum dots (QDs) assisted laser desorption/ionization mass spectrometric (QDA-LDI-MS) strategy was proposed for qualitative and quantitative analysis of a series of carbohydrates. The adsorption of carbohydrates on the modified surface of different QDs as the matrices depended mainly on the formation of hydrogen bonding, which led to higher MS intensity than those with conventional organic matrix. The effects of QDs concentration and sample preparation method were explored for improving the selective ionization process and the detection sensitivity. The proposed approach offered a new dimension to the application of QDs as matrices for MALDI-MS research of carbohydrates. It could be used for quantitative measurement of glucose concentration in human serum with good performance. The QDs served as a matrix showed the advantages of low background, higher sensitivity, convenient sample preparation and excellent stability under vacuum. The QDs assisted LDI-MS approach has promising application to the analysis of carbohydrates in complex biological samples. Copyright © 2016 John Wiley & Sons, Ltd.

  3. MCM - 2 and Ki - 67 as proliferation markers in renal cell carcinoma: A quantitative and semi - quantitative analysis

    PubMed Central

    Mehdi, Muhammad Zain; Nagi, Abdul Hanan; Naseem, Nadia

    2016-01-01

    ABSTRACT Introduction/Background: Fuhrman nuclear grade is the most important histological parameter to predict prognosis in a patient of renal cell carcinoma (RCC). However, it suffers from inter-observer and intra-observer variation giving rise to need of a parameter that not only correlates with nuclear grade but is also objective and reproducible. Proliferation is the measure of aggressiveness of a tumour and it is strongly correlated with Fuhrman nuclear grade, clinical survival and recurrence in RCC. Ki-67 is conventionally used to assess proliferation. Mini-chromosome maintenance 2 (MCM-2) is a lesser known marker of proliferation and identifies a greater proliferation faction. This study was designed to assess the prognostic significance of MCM-2 by comparing it with Fuhrman nuclear grade and Ki-67. Material and Methods: n=50 cases of various ages, stages, histological subtypes and grades of RCC were selected for this study. Immunohistochemical staining using Ki-67(MIB-1, Mouse monoclonal antibody, Dako) and MCM-2 (Mouse monoclonal antibody, Thermo) was performed on the paraffin embedded blocks in the department of Morbid anatomy and Histopathology, University of Health Sciences, Lahore. Labeling indices (LI) were determined by two pathologists independently using quantitative and semi-quantitative analysis. Statistical analysis was carried out using SPSS 20.0. Kruskall-Wallis test was used to determine a correlation of proliferation markers with grade, and Pearson's correlate was used to determine correlation between the two proliferation markers. Results: Labeling index of MCM-2 (median=24.29%) was found to be much higher than Ki-67(median=13.05%). Both markers were significantly related with grade (p=0.00; Kruskall-Wallis test). LI of MCM-2 was found to correlate significantly with LI of Ki-67(r=0.0934;p=0.01 with Pearson's correlate). Results of semi-quantitative analysis correlated well with quantitative analysis. Conclusion: Both Ki-67 and MCM-2 are

  4. MCM - 2 and Ki - 67 as proliferation markers in renal cell carcinoma: A quantitative and semi - quantitative analysis.

    PubMed

    Mehdi, Muhammad Zain; Nagi, Abdul Hanan; Naseem, Nadia

    2016-01-01

    Fuhrman nuclear grade is the most important histological parameter to predict prognosis in a patient of renal cell carcinoma (RCC). However, it suffers from inter-observer and intra-observer variation giving rise to need of a parameter that not only correlates with nuclear grade but is also objective and reproducible. Proliferation is the measure of aggressiveness of a tumour and it is strongly correlated with Fuhrman nuclear grade, clinical survival and recurrence in RCC. Ki-67 is conventionally used to assess proliferation. Mini-chromosome maintenance 2 (MCM-2) is a lesser known marker of proliferation and identifies a greater proliferation faction. This study was designed to assess the prognostic significance of MCM-2 by comparing it with Fuhrman nuclear grade and Ki-67. n=50 cases of various ages, stages, histological subtypes and grades of RCC were selected for this study. Immunohistochemical staining using Ki-67(MIB-1, Mouse monoclonal antibody, Dako) and MCM-2 (Mouse monoclonal antibody, Thermo) was performed on the paraffin embedded blocks in the department of Morbid anatomy and Histopathology, University of Health Sciences, Lahore. Labeling indices (LI) were determined by two pathologists independently using quantitative and semi-quantitative analysis. Statistical analysis was carried out using SPSS 20.0. Kruskall-Wallis test was used to determine a correlation of proliferation markers with grade, and Pearson's correlate was used to determine correlation between the two proliferation markers. Labeling index of MCM-2 (median=24.29%) was found to be much higher than Ki-67(median=13.05%). Both markers were significantly related with grade (p=0.00; Kruskall-Wallis test). LI of MCM-2 was found to correlate significantly with LI of Ki-67(r=0.0934;p=0.01 with Pearson's correlate). Results of semi-quantitative analysis correlated well with quantitative analysis. Both Ki-67 and MCM-2 are markers of proliferation which are closely linked to grade. Therefore, they

  5. Quantitative Myocardial Perfusion Imaging Versus Visual Analysis in Diagnosing Myocardial Ischemia: A CE-MARC Substudy.

    PubMed

    Biglands, John D; Ibraheem, Montasir; Magee, Derek R; Radjenovic, Aleksandra; Plein, Sven; Greenwood, John P

    2018-05-01

    This study sought to compare the diagnostic accuracy of visual and quantitative analyses of myocardial perfusion cardiovascular magnetic resonance against a reference standard of quantitative coronary angiography. Visual analysis of perfusion cardiovascular magnetic resonance studies for assessing myocardial perfusion has been shown to have high diagnostic accuracy for coronary artery disease. However, only a few small studies have assessed the diagnostic accuracy of quantitative myocardial perfusion. This retrospective study included 128 patients randomly selected from the CE-MARC (Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease) study population such that the distribution of risk factors and disease status was proportionate to the full population. Visual analysis results of cardiovascular magnetic resonance perfusion images, by consensus of 2 expert readers, were taken from the original study reports. Quantitative myocardial blood flow estimates were obtained using Fermi-constrained deconvolution. The reference standard for myocardial ischemia was a quantitative coronary x-ray angiogram stenosis severity of ≥70% diameter in any coronary artery of >2 mm diameter, or ≥50% in the left main stem. Diagnostic performance was calculated using receiver-operating characteristic curve analysis. The area under the curve for visual analysis was 0.88 (95% confidence interval: 0.81 to 0.95) with a sensitivity of 81.0% (95% confidence interval: 69.1% to 92.8%) and specificity of 86.0% (95% confidence interval: 78.7% to 93.4%). For quantitative stress myocardial blood flow the area under the curve was 0.89 (95% confidence interval: 0.83 to 0.96) with a sensitivity of 87.5% (95% confidence interval: 77.3% to 97.7%) and specificity of 84.5% (95% confidence interval: 76.8% to 92.3%). There was no statistically significant difference between the diagnostic performance of quantitative and visual analyses (p = 0.72). Incorporating rest myocardial

  6. Quantitative Analysis of the Cervical Texture by Ultrasound and Correlation with Gestational Age.

    PubMed

    Baños, Núria; Perez-Moreno, Alvaro; Migliorelli, Federico; Triginer, Laura; Cobo, Teresa; Bonet-Carne, Elisenda; Gratacos, Eduard; Palacio, Montse

    2017-01-01

    Quantitative texture analysis has been proposed to extract robust features from the ultrasound image to detect subtle changes in the textures of the images. The aim of this study was to evaluate the feasibility of quantitative cervical texture analysis to assess cervical tissue changes throughout pregnancy. This was a cross-sectional study including singleton pregnancies between 20.0 and 41.6 weeks of gestation from women who delivered at term. Cervical length was measured, and a selected region of interest in the cervix was delineated. A model to predict gestational age based on features extracted from cervical images was developed following three steps: data splitting, feature transformation, and regression model computation. Seven hundred images, 30 per gestational week, were included for analysis. There was a strong correlation between the gestational age at which the images were obtained and the estimated gestational age by quantitative analysis of the cervical texture (R = 0.88). This study provides evidence that quantitative analysis of cervical texture can extract features from cervical ultrasound images which correlate with gestational age. Further research is needed to evaluate its applicability as a biomarker of the risk of spontaneous preterm birth, as well as its role in cervical assessment in other clinical situations in which cervical evaluation might be relevant. © 2016 S. Karger AG, Basel.

  7. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods.

    PubMed

    Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin

    2015-01-01

    Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

  8. Quantitative Doppler Analysis Using Conventional Color Flow Imaging Acquisitions.

    PubMed

    Karabiyik, Yucel; Ekroll, Ingvild Kinn; Eik-Nes, Sturla H; Lovstakken, Lasse

    2018-05-01

    Interleaved acquisitions used in conventional triplex mode result in a tradeoff between the frame rate and the quality of velocity estimates. On the other hand, workflow becomes inefficient when the user has to switch between different modes, and measurement variability is increased. This paper investigates the use of power spectral Capon estimator in quantitative Doppler analysis using data acquired with conventional color flow imaging (CFI) schemes. To preserve the number of samples used for velocity estimation, only spatial averaging was utilized, and clutter rejection was performed after spectral estimation. The resulting velocity spectra were evaluated in terms of spectral width using a recently proposed spectral envelope estimator. The spectral envelopes were also used for Doppler index calculations using in vivo and string phantom acquisitions. In vivo results demonstrated that the Capon estimator can provide spectral estimates with sufficient quality for quantitative analysis using packet-based CFI acquisitions. The calculated Doppler indices were similar to the values calculated using spectrograms estimated on a commercial ultrasound scanner.

  9. On the Need for Quantitative Bias Analysis in the Peer-Review Process.

    PubMed

    Fox, Matthew P; Lash, Timothy L

    2017-05-15

    Peer review is central to the process through which epidemiologists generate evidence to inform public health and medical interventions. Reviewers thereby act as critical gatekeepers to high-quality research. They are asked to carefully consider the validity of the proposed work or research findings by paying careful attention to the methodology and critiquing the importance of the insight gained. However, although many have noted problems with the peer-review system for both manuscripts and grant submissions, few solutions have been proposed to improve the process. Quantitative bias analysis encompasses all methods used to quantify the impact of systematic error on estimates of effect in epidemiologic research. Reviewers who insist that quantitative bias analysis be incorporated into the design, conduct, presentation, and interpretation of epidemiologic research could substantially strengthen the process. In the present commentary, we demonstrate how quantitative bias analysis can be used by investigators and authors, reviewers, funding agencies, and editors. By utilizing quantitative bias analysis in the peer-review process, editors can potentially avoid unnecessary rejections, identify key areas for improvement, and improve discussion sections by shifting from speculation on the impact of sources of error to quantification of the impact those sources of bias may have had. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Epistasis analysis for quantitative traits by functional regression model.

    PubMed

    Zhang, Futao; Boerwinkle, Eric; Xiong, Momiao

    2014-06-01

    The critical barrier in interaction analysis for rare variants is that most traditional statistical methods for testing interactions were originally designed for testing the interaction between common variants and are difficult to apply to rare variants because of their prohibitive computational time and poor ability. The great challenges for successful detection of interactions with next-generation sequencing (NGS) data are (1) lack of methods for interaction analysis with rare variants, (2) severe multiple testing, and (3) time-consuming computations. To meet these challenges, we shift the paradigm of interaction analysis between two loci to interaction analysis between two sets of loci or genomic regions and collectively test interactions between all possible pairs of SNPs within two genomic regions. In other words, we take a genome region as a basic unit of interaction analysis and use high-dimensional data reduction and functional data analysis techniques to develop a novel functional regression model to collectively test interactions between all possible pairs of single nucleotide polymorphisms (SNPs) within two genome regions. By intensive simulations, we demonstrate that the functional regression models for interaction analysis of the quantitative trait have the correct type 1 error rates and a much better ability to detect interactions than the current pairwise interaction analysis. The proposed method was applied to exome sequence data from the NHLBI's Exome Sequencing Project (ESP) and CHARGE-S study. We discovered 27 pairs of genes showing significant interactions after applying the Bonferroni correction (P-values < 4.58 × 10(-10)) in the ESP, and 11 were replicated in the CHARGE-S study. © 2014 Zhang et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Quantitative Determination of Aluminum in Deodorant Brands: A Guided Inquiry Learning Experience in Quantitative Analysis Laboratory

    ERIC Educational Resources Information Center

    Sedwick, Victoria; Leal, Anne; Turner, Dea; Kanu, A. Bakarr

    2018-01-01

    The monitoring of metals in commercial products is essential for protecting public health against the hazards of metal toxicity. This article presents a guided inquiry (GI) experimental lab approach in a quantitative analysis lab class that enabled students' to determine the levels of aluminum in deodorant brands. The utility of a GI experimental…

  12. Quantitative genetics

    USDA-ARS?s Scientific Manuscript database

    The majority of economically important traits targeted for cotton improvement are quantitatively inherited. In this chapter, the current state of cotton quantitative genetics is described and separated into four components. These components include: 1) traditional quantitative inheritance analysis, ...

  13. Radiogenomic analysis of lower grade glioma: a pilot multi-institutional study shows an association between quantitative image features and tumor genomics

    NASA Astrophysics Data System (ADS)

    Mazurowski, Maciej A.; Clark, Kal; Czarnek, Nicholas M.; Shamsesfandabadi, Parisa; Peters, Katherine B.; Saha, Ashirbani

    2017-03-01

    Recent studies showed that genomic analysis of lower grade gliomas can be very effective for stratification of patients into groups with different prognosis and proposed specific genomic classifications. In this study, we explore the association of one of those genomic classifications with imaging parameters to determine whether imaging could serve a similar role to genomics in cancer patient treatment. Specifically, we analyzed imaging and genomics data for 110 patients from 5 institutions from The Cancer Genome Atlas and The Cancer Imaging Archive datasets. The analyzed imaging data contained preoperative FLAIR sequence for each patient. The images were analyzed using the in-house algorithms which quantify 2D and 3D aspects of the tumor shape. Genomic data consisted of a cluster of clusters classification proposed in a very recent and leading publication in the field of lower grade glioma genomics. Our statistical analysis showed that there is a strong association between the tumor cluster-of-clusters subtype and two imaging features: bounding ellipsoid volume ratio and angular standard deviation. This result shows high promise for the potential use of imaging as a surrogate measure for genomics in the decision process regarding treatment of lower grade glioma patients.

  14. Quantitative analysis on electrooculography (EOG) for neurodegenerative disease

    NASA Astrophysics Data System (ADS)

    Liu, Chang-Chia; Chaovalitwongse, W. Art; Pardalos, Panos M.; Seref, Onur; Xanthopoulos, Petros; Sackellares, J. C.; Skidmore, Frank M.

    2007-11-01

    Many studies have documented abnormal horizontal and vertical eye movements in human neurodegenerative disease as well as during altered states of consciousness (including drowsiness and intoxication) in healthy adults. Eye movement measurement may play an important role measuring the progress of neurodegenerative diseases and state of alertness in healthy individuals. There are several techniques for measuring eye movement, Infrared detection technique (IR). Video-oculography (VOG), Scleral eye coil and EOG. Among those available recording techniques, EOG is a major source for monitoring the abnormal eye movement. In this real-time quantitative analysis study, the methods which can capture the characteristic of the eye movement were proposed to accurately categorize the state of neurodegenerative subjects. The EOG recordings were taken while 5 tested subjects were watching a short (>120 s) animation clip. In response to the animated clip the participants executed a number of eye movements, including vertical smooth pursued (SVP), horizontal smooth pursued (HVP) and random saccades (RS). Detection of abnormalities in ocular movement may improve our diagnosis and understanding a neurodegenerative disease and altered states of consciousness. A standard real-time quantitative analysis will improve detection and provide a better understanding of pathology in these disorders.

  15. Electroencephalography reactivity for prognostication of post-anoxic coma after cardiopulmonary resuscitation: A comparison of quantitative analysis and visual analysis.

    PubMed

    Liu, Gang; Su, Yingying; Jiang, Mengdi; Chen, Weibi; Zhang, Yan; Zhang, Yunzhou; Gao, Daiquan

    2016-07-28

    Electroencephalogram reactivity (EEG-R) is a positive predictive factor for assessing outcomes in comatose patients. Most studies assess the prognostic value of EEG-R utilizing visual analysis; however, this method is prone to subjectivity. We sought to categorize EEG-R with a quantitative approach. We retrospectively studied consecutive comatose patients who had an EEG-R recording performed 1-3 days after cardiopulmonary resuscitation (CPR) or during normothermia after therapeutic hypothermia. EEG-R was assessed via visual analysis and quantitative analysis separately. Clinical outcomes were followed-up at 3-month and dichotomized as recovery of awareness or no recovery of awareness. A total of 96 patients met the inclusion criteria, and 38 (40%) patients recovered awareness at 3-month followed-up. Of 27 patients with EEG-R measured with visual analysis, 22 patients recovered awareness; and of the 69 patients who did not demonstrated EEG-R, 16 patients recovered awareness. The sensitivity and specificity of visually measured EEG-R were 58% and 91%, respectively. The area under the receiver operating characteristic curve for the quantitative analysis was 0.92 (95% confidence interval, 0.87-0.97), with the best cut-off value of 0.10. EEG-R through quantitative analysis might be a good method in predicting the recovery of awareness in patients with post-anoxic coma after CPR. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Development of one novel multiple-target plasmid for duplex quantitative PCR analysis of roundup ready soybean.

    PubMed

    Zhang, Haibo; Yang, Litao; Guo, Jinchao; Li, Xiang; Jiang, Lingxi; Zhang, Dabing

    2008-07-23

    To enforce the labeling regulations of genetically modified organisms (GMOs), the application of reference molecules as calibrators is becoming essential for practical quantification of GMOs. However, the reported reference molecules with tandem marker multiple targets have been proved not suitable for duplex PCR analysis. In this study, we developed one unique plasmid molecule based on one pMD-18T vector with three exogenous target DNA fragments of Roundup Ready soybean GTS 40-3-2 (RRS), that is, CaMV35S, NOS, and RRS event fragments, plus one fragment of soybean endogenous Lectin gene. This Lectin gene fragment was separated from the three exogenous target DNA fragments of RRS by inserting one 2.6 kb DNA fragment with no relatedness to RRS detection targets in this resultant plasmid. Then, we proved that this design allows the quantification of RRS using the three duplex real-time PCR assays targeting CaMV35S, NOS, and RRS events employing this reference molecule as the calibrator. In these duplex PCR assays, the limits of detection (LOD) and quantification (LOQ) were 10 and 50 copies, respectively. For the quantitative analysis of practical RRS samples, the results of accuracy and precision were similar to those of simplex PCR assays, for instance, the quantitative results were at the 1% level, the mean bias of the simplex and duplex PCR were 4.0% and 4.6%, respectively, and the statistic analysis ( t-test) showed that the quantitative data from duplex and simplex PCR had no significant discrepancy for each soybean sample. Obviously, duplex PCR analysis has the advantages of saving the costs of PCR reaction and reducing the experimental errors in simplex PCR testing. The strategy reported in the present study will be helpful for the development of new reference molecules suitable for duplex PCR quantitative assays of GMOs.

  17. Analysis of artifacts suggests DGGE should not be used for quantitative diversity analysis.

    PubMed

    Neilson, Julia W; Jordan, Fiona L; Maier, Raina M

    2013-03-01

    PCR-denaturing gradient gel electrophoresis (PCR-DGGE) is widely used in microbial ecology for the analysis of comparative community structure. However, artifacts generated during PCR-DGGE of mixed template communities impede the application of this technique to quantitative analysis of community diversity. The objective of the current study was to employ an artificial bacterial community to document and analyze artifacts associated with multiband signatures and preferential template amplification and to highlight their impacts on the use of this technique for quantitative diversity analysis. Six bacterial species (three Betaproteobacteria, two Alphaproteobacteria, and one Firmicutes) were amplified individually and in combinations with primers targeting the V7/V8 region of the 16S rRNA gene. Two of the six isolates produced multiband profiles demonstrating that band number does not correlate directly with α-diversity. Analysis of the multiple bands from one of these isolates confirmed that both bands had identical sequences which lead to the hypothesis that the multiband pattern resulted from two distinct structural conformations of the same amplicon. In addition, consistent preferential amplification was demonstrated following pairwise amplifications of the six isolates. DGGE and real time PCR analysis identified primer mismatch and PCR inhibition due to 16S rDNA secondary structure as the most probable causes of preferential amplification patterns. Reproducible DGGE community profiles generated in this study confirm that PCR-DGGE provides an excellent high-throughput tool for comparative community structure analysis, but that method-specific artifacts preclude its use for accurate comparative diversity analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Fei; Gan, Wei; Lu, Rong; Rao, Yi; Wu, Bao-Hua

    Sum frequency generation vibrational spectroscopy (SFG-VS) has been proven to be a uniquely effective spectroscopic technique in the investigation of molecular structure and conformations, as well as the dynamics of molecular interfaces. However, the ability to apply SFG-VS to complex molecular interfaces has been limited by the ability to abstract quantitative information from SFG-VS experiments. In this review, we try to make assessments of the limitations, issues and techniques as well as methodologies in quantitative orientational and spectral analysis with SFG-VS. Based on these assessments, we also try to summarize recent developments in methodologies on quantitative orientational and spectral analysis in SFG-VS, and their applications to detailed analysis of SFG-VS data of various vapour/neat liquid interfaces. A rigorous formulation of the polarization null angle (PNA) method is given for accurate determination of the orientational parameter D = /, and comparison between the PNA method with the commonly used polarization intensity ratio (PIR) method is discussed. The polarization and incident angle dependencies of the SFG-VS intensity are also reviewed, in the light of how experimental arrangements can be optimized to effectively abstract crucial information from the SFG-VS experiments. The values and models of the local field factors in the molecular layers are discussed. In order to examine the validity and limitations of the bond polarizability derivative model, the general expressions for molecular hyperpolarizability tensors and their expression with the bond polarizability derivative model for C3v, C2v and C∞v molecular groups are given in the two appendixes. We show that the bond polarizability derivative model can quantitatively describe many aspects of the intensities observed in the SFG-VS spectrum of the vapour/neat liquid interfaces in different polarizations. Using the polarization analysis in SFG-VS, polarization selection

  19. Quantitative proteomic analysis of intact plastids.

    PubMed

    Shiraya, Takeshi; Kaneko, Kentaro; Mitsui, Toshiaki

    2014-01-01

    Plastids are specialized cell organelles in plant cells that are differentiated into various forms including chloroplasts, chromoplasts, and amyloplasts, and fulfill important functions in maintaining the overall cell metabolism and sensing environmental factors such as sunlight. It is therefore important to grasp the mechanisms of differentiation and functional changes of plastids in order to enhance the understanding of vegetality. In this chapter, details of a method for the extraction of intact plastids that makes analysis possible while maintaining the plastid functions are provided; in addition, a quantitative shotgun method for analyzing the composition and changes in the content of proteins in plastids as a result of environmental impacts is described.

  20. Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.

    PubMed

    Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao

    2016-04-01

    To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.

  1. Renal geology (quantitative renal stone analysis) by 'Fourier transform infrared spectroscopy'.

    PubMed

    Singh, Iqbal

    2008-01-01

    To prospectively determine the precise stone composition (quantitative analysis) by using infrared spectroscopy in patients with urinary stone disease presenting to our clinic. To determine an ideal method for stone analysis suitable for use in a clinical setting. After routine and a detailed metabolic workup of all patients of urolithiasis, stone samples of 50 patients of urolithiasis satisfying the entry criteria were subjected to the Fourier transform infrared spectroscopic analysis after adequate sample homogenization at a single testing center. Calcium oxalate monohydrate and dihydrate stone mixture was most commonly encountered in 35 (71%) followed by calcium phosphate, carbonate apatite, magnesium ammonium hexahydrate and xanthine stones. Fourier transform infrared spectroscopy allows an accurate, reliable quantitative method of stone analysis. It also helps in maintaining a computerized large reference library. Knowledge of precise stone composition may allow the institution of appropriate prophylactic therapy despite the absence of any detectable metabolic abnormalities. This may prevent and or delay stone recurrence.

  2. Quantitative allochem compositional analysis of Lochkovian-Pragian boundary sections in the Prague Basin (Czech Republic)

    NASA Astrophysics Data System (ADS)

    Weinerová, Hedvika; Hron, Karel; Bábek, Ondřej; Šimíček, Daniel; Hladil, Jindřich

    2017-06-01

    Quantitative allochem compositional trends across the Lochkovian-Pragian boundary Event were examined at three sections recording the proximal to more distal carbonate ramp environment of the Prague Basin. Multivariate statistical methods (principal component analysis, correspondence analysis, cluster analysis) of point-counted thin section data were used to reconstruct facies stacking patterns and sea-level history. Both the closed-nature allochem percentages and their centred log-ratio (clr) coordinates were used. Both these approaches allow for distinguishing of lowstand, transgressive and highstand system tracts within the Praha Formation, which show gradual transition from crinoid-dominated facies deposited above the storm wave base to dacryoconarid-dominated facies of deep-water environment below the storm wave base. Quantitative compositional data also indicate progradative-retrogradative trends in the macrolithologically monotonous shallow-water succession and enable its stratigraphic correlation with successions from deeper-water environments. Generally, the stratigraphic trends of the clr data are more sensitive to subtle changes in allochem composition in comparison to the results based on raw data. A heterozoan-dominated allochem association in shallow-water environments of the Praha Formation supports the carbonate ramp environment assumed by previous authors.

  3. A New Green Method for the Quantitative Analysis of Enrofloxacin by Fourier-Transform Infrared Spectroscopy.

    PubMed

    Rebouças, Camila Tavares; Kogawa, Ana Carolina; Salgado, Hérida Regina Nunes

    2018-05-18

    Background: A green analytical chemistry method was developed for quantification of enrofloxacin in tablets. The drug, a second-generation fluoroquinolone, was first introduced in veterinary medicine for the treatment of various bacterial species. Objective: This study proposed to develop, validate, and apply a reliable, low-cost, fast, and simple IR spectroscopy method for quantitative routine determination of enrofloxacin in tablets. Methods: The method was completely validated according to the International Conference on Harmonisation guidelines, showing accuracy, precision, selectivity, robustness, and linearity. Results: It was linear over the concentration range of 1.0-3.0 mg with correlation coefficients >0.9999 and LOD and LOQ of 0.12 and 0.36 mg, respectively. Conclusions: Now that this IR method has met performance qualifications, it can be adopted and applied for the analysis of enrofloxacin tablets for production process control. The validated method can also be utilized to quantify enrofloxacin in tablets and thus is an environmentally friendly alternative for the routine analysis of enrofloxacin in quality control. Highlights: A new green method for the quantitative analysis of enrofloxacin by Fourier-Transform Infrared spectroscopy was validated. It is a fast, clean and low-cost alternative for the evaluation of enrofloxacin tablets.

  4. Patient-specific coronary blood supply territories for quantitative perfusion analysis

    PubMed Central

    Zakkaroff, Constantine; Biglands, John D.; Greenwood, John P.; Plein, Sven; Boyle, Roger D.; Radjenovic, Aleksandra; Magee, Derek R.

    2018-01-01

    Abstract Myocardial perfusion imaging, coupled with quantitative perfusion analysis, provides an important diagnostic tool for the identification of ischaemic heart disease caused by coronary stenoses. The accurate mapping between coronary anatomy and under-perfused areas of the myocardium is important for diagnosis and treatment. However, in the absence of the actual coronary anatomy during the reporting of perfusion images, areas of ischaemia are allocated to a coronary territory based on a population-derived 17-segment (American Heart Association) AHA model of coronary blood supply. This work presents a solution for the fusion of 2D Magnetic Resonance (MR) myocardial perfusion images and 3D MR angiography data with the aim to improve the detection of ischaemic heart disease. The key contribution of this work is a novel method for the mediated spatiotemporal registration of perfusion and angiography data and a novel method for the calculation of patient-specific coronary supply territories. The registration method uses 4D cardiac MR cine series spanning the complete cardiac cycle in order to overcome the under-constrained nature of non-rigid slice-to-volume perfusion-to-angiography registration. This is achieved by separating out the deformable registration problem and solving it through phase-to-phase registration of the cine series. The use of patient-specific blood supply territories in quantitative perfusion analysis (instead of the population-based model of coronary blood supply) has the potential of increasing the accuracy of perfusion analysis. Quantitative perfusion analysis diagnostic accuracy evaluation with patient-specific territories against the AHA model demonstrates the value of the mediated spatiotemporal registration in the context of ischaemic heart disease diagnosis. PMID:29392098

  5. An Inexpensive Electrodeposition Device and Its Use in a Quantitative Analysis Laboratory Exercise

    ERIC Educational Resources Information Center

    Parker, Richard H.

    2011-01-01

    An experimental procedure, using an apparatus that is easy to construct, was developed to incorporate a quantitative electrogravimetric determination of the solution nickel content into an undergraduate or advanced high school quantitative analysis laboratory. This procedure produces results comparable to the procedure used for the gravimetric…

  6. Quantitative analysis of cardiovascular MR images.

    PubMed

    van der Geest, R J; de Roos, A; van der Wall, E E; Reiber, J H

    1997-06-01

    The diagnosis of cardiovascular disease requires the precise assessment of both morphology and function. Nearly all aspects of cardiovascular function and flow can be quantified nowadays with fast magnetic resonance (MR) imaging techniques. Conventional and breath-hold cine MR imaging allow the precise and highly reproducible assessment of global and regional left ventricular function. During the same examination, velocity encoded cine (VEC) MR imaging provides measurements of blood flow in the heart and great vessels. Quantitative image analysis often still relies on manual tracing of contours in the images. Reliable automated or semi-automated image analysis software would be very helpful to overcome the limitations associated with the manual and tedious processing of the images. Recent progress in MR imaging of the coronary arteries and myocardial perfusion imaging with contrast media, along with the further development of faster imaging sequences, suggest that MR imaging could evolve into a single technique ('one stop shop') for the evaluation of many aspects of heart disease. As a result, it is very likely that the need for automated image segmentation and analysis software algorithms will further increase. In this paper the developments directed towards the automated image analysis and semi-automated contour detection for cardiovascular MR imaging are presented.

  7. Quantitative analysis of time-resolved microwave conductivity data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, Obadiah G.; Moore, David T.; Li, Zhen

    Flash-photolysis time-resolved microwave conductivity (fp-TRMC) is a versatile, highly sensitive technique for studying the complex photoconductivity of solution, solid, and gas-phase samples. The purpose of this paper is to provide a standard reference work for experimentalists interested in using microwave conductivity methods to study functional electronic materials, describing how to conduct and calibrate these experiments in order to obtain quantitative results. The main focus of the paper is on calculating the calibration factor, K, which is used to connect the measured change in microwave power absorption to the conductance of the sample. We describe the standard analytical formulae that havemore » been used in the past, and compare them to numerical simulations. This comparison shows that the most widely used analytical analysis of fp-TRMC data systematically under-estimates the transient conductivity by ~60%. We suggest a more accurate semi-empirical way of calibrating these experiments. However, we emphasize that the full numerical calculation is necessary to quantify both transient and steady-state conductance for arbitrary sample properties and geometry.« less

  8. Quantitative analysis of time-resolved microwave conductivity data

    DOE PAGES

    Reid, Obadiah G.; Moore, David T.; Li, Zhen; ...

    2017-11-10

    Flash-photolysis time-resolved microwave conductivity (fp-TRMC) is a versatile, highly sensitive technique for studying the complex photoconductivity of solution, solid, and gas-phase samples. The purpose of this paper is to provide a standard reference work for experimentalists interested in using microwave conductivity methods to study functional electronic materials, describing how to conduct and calibrate these experiments in order to obtain quantitative results. The main focus of the paper is on calculating the calibration factor, K, which is used to connect the measured change in microwave power absorption to the conductance of the sample. We describe the standard analytical formulae that havemore » been used in the past, and compare them to numerical simulations. This comparison shows that the most widely used analytical analysis of fp-TRMC data systematically under-estimates the transient conductivity by ~60%. We suggest a more accurate semi-empirical way of calibrating these experiments. However, we emphasize that the full numerical calculation is necessary to quantify both transient and steady-state conductance for arbitrary sample properties and geometry.« less

  9. QUANTITATIVE MASS SPECTROMETRIC ANALYSIS OF GLYCOPROTEINS COMBINED WITH ENRICHMENT METHODS

    PubMed Central

    Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin

    2015-01-01

    Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc. Rapid Commun. Mass Spec Rev 34:148–165, 2015. PMID:24889823

  10. GProX, a user-friendly platform for bioinformatics analysis and visualization of quantitative proteomics data.

    PubMed

    Rigbolt, Kristoffer T G; Vanselow, Jens T; Blagoev, Blagoy

    2011-08-01

    Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)(1). The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net.

  11. GProX, a User-Friendly Platform for Bioinformatics Analysis and Visualization of Quantitative Proteomics Data*

    PubMed Central

    Rigbolt, Kristoffer T. G.; Vanselow, Jens T.; Blagoev, Blagoy

    2011-01-01

    Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)1. The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net. PMID:21602510

  12. Wavelength Selection Method Based on Differential Evolution for Precise Quantitative Analysis Using Terahertz Time-Domain Spectroscopy.

    PubMed

    Li, Zhi; Chen, Weidong; Lian, Feiyu; Ge, Hongyi; Guan, Aihong

    2017-12-01

    Quantitative analysis of component mixtures is an important application of terahertz time-domain spectroscopy (THz-TDS) and has attracted broad interest in recent research. Although the accuracy of quantitative analysis using THz-TDS is affected by a host of factors, wavelength selection from the sample's THz absorption spectrum is the most crucial component. The raw spectrum consists of signals from the sample and scattering and other random disturbances that can critically influence the quantitative accuracy. For precise quantitative analysis using THz-TDS, the signal from the sample needs to be retained while the scattering and other noise sources are eliminated. In this paper, a novel wavelength selection method based on differential evolution (DE) is investigated. By performing quantitative experiments on a series of binary amino acid mixtures using THz-TDS, we demonstrate the efficacy of the DE-based wavelength selection method, which yields an error rate below 5%.

  13. Quantitative analysis of CMV DNA in children the first year after liver transplantation.

    PubMed

    Kullberg-Lindh, Carola; Ascher, Henry; Krantz, Marie; Lindh, Magnus

    2003-08-01

    CMV infection is a major problem after solid organ transplantation especially in children where primary infection is more common than in adults. Early diagnosis is critical and might be facilitated by quantitative analysis of CMV DNA in blood. In this retrospective study of 18 children who had a liver transplantation 1995-2000, serum samples were analysed by Cobas Amplicor Monitor (Roche). Four patients developed symptomatic CMV infection at a mean time of 4 wk after transplantation. They showed maximum CMV DNA levels in serum of 26 400, 1900, 1300 and 970 copies/mL, respectively. In comparison, CA Monitor was positive, at a low level (415 copies/mL), in one of 11 patients with asymptomatic (4) or latent (7) infection. CMV IgM was detected at significant levels (> or =1/80) in all four patients with symptomatic, and in one with asymptomatic CMV infection. Eight patients were given one or several courses of ganciclovir. Five of these lacked symptoms of CMV disease, and had low (415 copies/mL) or undetectable CMV DNA in serum. The data suggest that quantitative analysis of CMV DNA may be of value in early identification of CMV disease and for avoiding unnecessary antiviral treatment.

  14. Identification of expression quantitative trait loci by the interaction analysis using genetic algorithm.

    PubMed

    Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung

    2007-01-01

    Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene x gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene x gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms.

  15. Joint analysis of binary and quantitative traits with data sharing and outcome-dependent sampling.

    PubMed

    Zheng, Gang; Wu, Colin O; Kwak, Minjung; Jiang, Wenhua; Joo, Jungnam; Lima, Joao A C

    2012-04-01

    We study the analysis of a joint association between a genetic marker with both binary (case-control) and quantitative (continuous) traits, where the quantitative trait values are only available for the cases due to data sharing and outcome-dependent sampling. Data sharing becomes common in genetic association studies, and the outcome-dependent sampling is the consequence of data sharing, under which a phenotype of interest is not measured for some subgroup. The trend test (or Pearson's test) and F-test are often, respectively, used to analyze the binary and quantitative traits. Because of the outcome-dependent sampling, the usual F-test can be applied using the subgroup with the observed quantitative traits. We propose a modified F-test by also incorporating the genotype frequencies of the subgroup whose traits are not observed. Further, a combination of this modified F-test and Pearson's test is proposed by Fisher's combination of their P-values as a joint analysis. Because of the correlation of the two analyses, we propose to use a Gamma (scaled chi-squared) distribution to fit the asymptotic null distribution for the joint analysis. The proposed modified F-test and the joint analysis can also be applied to test single trait association (either binary or quantitative trait). Through simulations, we identify the situations under which the proposed tests are more powerful than the existing ones. Application to a real dataset of rheumatoid arthritis is presented. © 2012 Wiley Periodicals, Inc.

  16. Kinetic Analysis of Amylase Using Quantitative Benedict's and Iodine Starch Reagents

    ERIC Educational Resources Information Center

    Cochran, Beverly; Lunday, Deborah; Miskevich, Frank

    2008-01-01

    Quantitative analysis of carbohydrates is a fundamental analytical tool used in many aspects of biology and chemistry. We have adapted a technique developed by Mathews et al. using an inexpensive scanner and open-source image analysis software to quantify amylase activity using both the breakdown of starch and the appearance of glucose. Breakdown…

  17. Investment appraisal using quantitative risk analysis.

    PubMed

    Johansson, Henrik

    2002-07-01

    Investment appraisal concerned with investments in fire safety systems is discussed. Particular attention is directed at evaluating, in terms of the Bayesian decision theory, the risk reduction that investment in a fire safety system involves. It is shown how the monetary value of the change from a building design without any specific fire protection system to one including such a system can be estimated by use of quantitative risk analysis, the results of which are expressed in terms of a Risk-adjusted net present value. This represents the intrinsic monetary value of investing in the fire safety system. The method suggested is exemplified by a case study performed in an Avesta Sheffield factory.

  18. Flow assignment model for quantitative analysis of diverting bulk freight from road to railway

    PubMed Central

    Liu, Chang; Wang, Jiaxi; Xiao, Jie; Liu, Siqi; Wu, Jianping; Li, Jian

    2017-01-01

    Since railway transport possesses the advantage of high volume and low carbon emissions, diverting some freight from road to railway will help reduce the negative environmental impacts associated with transport. This paper develops a flow assignment model for quantitative analysis of diverting truck freight to railway. First, a general network which considers road transportation, railway transportation, handling and transferring is established according to all the steps in the whole transportation process. Then general functions which embody the factors which the shippers will pay attention to when choosing mode and path are formulated. The general functions contain the congestion cost on road, the capacity constraints of railways and freight stations. Based on the general network and general cost function, a user equilibrium flow assignment model is developed to simulate the flow distribution on the general network under the condition that all shippers choose transportation mode and path independently. Since the model is nonlinear and challenging, we adopt a method that uses tangent lines to constitute envelope curve to linearize it. Finally, a numerical example is presented to test the model and show the method of making quantitative analysis of bulk freight modal shift between road and railway. PMID:28771536

  19. Diagnostic value of (99m)Tc-3PRGD2 scintimammography for differentiation of malignant from benign breast lesions: Comparison of visual and semi-quantitative analysis.

    PubMed

    Chen, Qianqian; Xie, Qian; Zhao, Min; Chen, Bin; Gao, Shi; Zhang, Haishan; Xing, Hua; Ma, Qingjie

    2015-01-01

    .4%, respectively. The area under the curve was 0.891. Results of the present study suggest that the semi-quantitative and visual analysis statistically showed similar results. The semi-quantitative analysis provided incremental value additive to visual analysis of (99m)Tc-3PRGD2 SMG for the detection of breast cancer. It seems from our results that, when the tumor was located in the medial part of the breast, the semi-quantitative analysis gave better diagnostic results.

  20. Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis.

    PubMed

    Attiyeh, Marc A; Chakraborty, Jayasree; Doussot, Alexandre; Langdon-Embry, Liana; Mainarich, Shiana; Gönen, Mithat; Balachandran, Vinod P; D'Angelica, Michael I; DeMatteo, Ronald P; Jarnagin, William R; Kingham, T Peter; Allen, Peter J; Simpson, Amber L; Do, Richard K

    2018-04-01

    Pancreatic cancer is a highly lethal cancer with no established a priori markers of survival. Existing nomograms rely mainly on post-resection data and are of limited utility in directing surgical management. This study investigated the use of quantitative computed tomography (CT) features to preoperatively assess survival for pancreatic ductal adenocarcinoma (PDAC) patients. A prospectively maintained database identified consecutive chemotherapy-naive patients with CT angiography and resected PDAC between 2009 and 2012. Variation in CT enhancement patterns was extracted from the tumor region using texture analysis, a quantitative image analysis tool previously described in the literature. Two continuous survival models were constructed, with 70% of the data (training set) using Cox regression, first based only on preoperative serum cancer antigen (CA) 19-9 levels and image features (model A), and then on CA19-9, image features, and the Brennan score (composite pathology score; model B). The remaining 30% of the data (test set) were reserved for independent validation. A total of 161 patients were included in the analysis. Training and test sets contained 113 and 48 patients, respectively. Quantitative image features combined with CA19-9 achieved a c-index of 0.69 [integrated Brier score (IBS) 0.224] on the test data, while combining CA19-9, imaging, and the Brennan score achieved a c-index of 0.74 (IBS 0.200) on the test data. We present two continuous survival prediction models for resected PDAC patients. Quantitative analysis of CT texture features is associated with overall survival. Further work includes applying the model to an external dataset to increase the sample size for training and to determine its applicability.

  1. [A novel approach to NIR spectral quantitative analysis: semi-supervised least-squares support vector regression machine].

    PubMed

    Li, Lin; Xu, Shuo; An, Xin; Zhang, Lu-Da

    2011-10-01

    In near infrared spectral quantitative analysis, the precision of measured samples' chemical values is the theoretical limit of those of quantitative analysis with mathematical models. However, the number of samples that can obtain accurately their chemical values is few. Many models exclude the amount of samples without chemical values, and consider only these samples with chemical values when modeling sample compositions' contents. To address this problem, a semi-supervised LS-SVR (S2 LS-SVR) model is proposed on the basis of LS-SVR, which can utilize samples without chemical values as well as those with chemical values. Similar to the LS-SVR, to train this model is equivalent to solving a linear system. Finally, the samples of flue-cured tobacco were taken as experimental material, and corresponding quantitative analysis models were constructed for four sample compositions' content(total sugar, reducing sugar, total nitrogen and nicotine) with PLS regression, LS-SVR and S2 LS-SVR. For the S2 LS-SVR model, the average relative errors between actual values and predicted ones for the four sample compositions' contents are 6.62%, 7.56%, 6.11% and 8.20%, respectively, and the correlation coefficients are 0.974 1, 0.973 3, 0.923 0 and 0.948 6, respectively. Experimental results show the S2 LS-SVR model outperforms the other two, which verifies the feasibility and efficiency of the S2 LS-SVR model.

  2. 3D quantitative comparative analysis of long bone diaphysis variations in microanatomy and cross-sectional geometry.

    PubMed

    Houssaye, Alexandra; Taverne, Maxime; Cornette, Raphaël

    2018-05-01

    Long bone inner structure and cross-sectional geometry display a strong functional signal, leading to convergences, and are widely analyzed in comparative anatomy at small and large taxonomic scales. Long bone microanatomical studies have essentially been conducted on transverse sections but also on a few longitudinal ones. Recent studies highlighted the interest in analyzing variations of the inner structure along the diaphysis using a qualitative as well as a quantitative approach. With the development of microtomography, it has become possible to study three-dimensional (3D) bone microanatomy and, in more detail, the form-function relationships of these features. This study focused on the selection of quantitative parameters to describe in detail the cross-sectional shape changes and distribution of the osseous tissue along the diaphysis. Two-dimensional (2D) virtual transverse sections were also performed in the two usual reference planes and results were compared with those obtained based on the whole diaphysis analysis. The sample consisted in 14 humeri and 14 femora of various mammalian taxa that are essentially terrestrial. Comparative quantitative analyses between different datasets made it possible to highlight the parameters that are strongly impacted by size and phylogeny and the redundant ones, and thus to estimate their relevance for use in form-function analyses. The analysis illustrated that results based on 2D transverse sections are similar for both sectional planes; thus if a strong bias exists when mixing sections from the two reference planes in the same analysis, it would not problematic to use either one plane or the other in comparative studies. However, this may no longer hold for taxa showing a much stronger variation in bone microstructure along the diaphysis. Finally, the analysis demonstrated the significant contribution of the parameters describing variations along the diaphysis, and thus the interest in performing 3D analyses; this

  3. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    PubMed

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  4. Slides showing quantitative models for mineral-resource assessment of the Rolla 1 degree x 2 degrees Quadrangle, Missouri

    USGS Publications Warehouse

    Walker, Kim-Marie; Jenson, S.K.; Francica, J.R.; Hastings, D.A.; Trautwein, C.M.; Pratt, W.P.

    1983-01-01

    Th.is report consists of nineteen 35-mm color slides sh.owing digital synthesis and quantitative modeling of five geologic recognition criteria for assessment of Mississippi Valley-type resource potential in the Rolla 1° x 2° quadrangle, Missouri. The digital synthesis and quantitative modeling (Pratt and others, 1982) was done to supplement an earlier manual synthesis and evaluation (Pratt, 1981). The five criteria synthesized in this study, and the sources of data used, are that most known deposits are: In dolomite of the Bonneterre Formation, near the limestone-dolomite interface, which is defined as ls:dol = 1:16 (Thacker and Anderson, 1979; Kisvarsanyi, 1982);Near areas where insoluble residues of "barren" Bonneterre Formation contain anomalously high amounts of base metals (Erickson and others, 1978);Near areas of faults and fractures in the Bonneterre Formation or in underlying rocks (Pratt, 1982);In "brown rock" (finely crystalline brown dolomite) near the interface with "white rock" (coarsely recrystallized, white or very light gray, vuggy, illite-bearing dolomite) (Kisvarsanyi, 1982);Near or within favorably situated digitate reef-complex facies (Kisvarsanyi , 1982).

  5. A gradient method for the quantitative analysis of cell movement and tissue flow and its application to the analysis of multicellular Dictyostelium development.

    PubMed

    Siegert, F; Weijer, C J; Nomura, A; Miike, H

    1994-01-01

    We describe the application of a novel image processing method, which allows quantitative analysis of cell and tissue movement in a series of digitized video images. The result is a vector velocity field showing average direction and velocity of movement for every pixel in the frame. We apply this method to the analysis of cell movement during different stages of the Dictyostelium developmental cycle. We analysed time-lapse video recordings of cell movement in single cells, mounds and slugs. The program can correctly assess the speed and direction of movement of either unlabelled or labelled cells in a time series of video images depending on the illumination conditions. Our analysis of cell movement during multicellular development shows that the entire morphogenesis of Dictyostelium is characterized by rotational cell movement. The analysis of cell and tissue movement by the velocity field method should be applicable to the analysis of morphogenetic processes in other systems such as gastrulation and neurulation in vertebrate embryos.

  6. Quantitative analysis of in vivo mucosal bacterial biofilms.

    PubMed

    Singhal, Deepti; Boase, Sam; Field, John; Jardeleza, Camille; Foreman, Andrew; Wormald, Peter-John

    2012-01-01

    Quantitative assays of mucosal biofilms on ex vivo samples are challenging using the currently applied specialized microscopic techniques to identify them. The COMSTAT2 computer program has been applied to in vitro biofilm models for quantifying biofilm structures seen on confocal scanning laser microscopy (CSLM). The aim of this study was to quantify Staphylococcus aureus (S. aureus) biofilms seen via CSLM on ex situ samples of sinonasal mucosa, using the COMSTAT2 program. S. aureus biofilms were grown in frontal sinuses of 4 merino sheep as per a previously standardized sheep sinusitis model for biofilms. Two sinonasal mucosal samples, 10 mm × 10 mm in size, from each of the 2 sinuses of the 4 sheep were analyzed for biofilm presence with Baclight stain and CSLM. Two random image stacks of mucosa with S. aureus biofilm were recorded from each sample, and analyzed using COMSTAT2 software that translates image stacks into a simplified 3-dimensional matrix of biofilm mass by eliminating surrounding host tissue. Three independent observers analyzed images using COMSTAT2 and 3 repeated rounds of analyses were done to calculate biofilm biomass. The COMSTAT2 application uses an observer-dependent threshold setting to translate CSLM biofilm images into a simplified 3-dimensional output for quantitative analysis. Intraclass correlation coefficient (ICC) between thresholds set by the 3 observers for each image stacks was 0.59 (p = 0.0003). Threshold values set at different points of time by a single observer also showed significant correlation as seen by ICC of 0.80 (p < 0.001). COMSTAT2 can be applied to quantify and study the complex 3-dimensional biofilm structures that are recorded via CSLM on mucosal tissue like the sinonasal mucosa. Copyright © 2011 American Rhinologic Society-American Academy of Otolaryngic Allergy, LLC.

  7. Quantitative 3D analysis of bone in hip osteoarthritis using clinical computed tomography.

    PubMed

    Turmezei, Tom D; Treece, Graham M; Gee, Andrew H; Fotiadou, Anastasia F; Poole, Kenneth E S

    2016-07-01

    To assess the relationship between proximal femoral cortical bone thickness and radiological hip osteoarthritis using quantitative 3D analysis of clinical computed tomography (CT) data. Image analysis was performed on clinical CT imaging data from 203 female volunteers with a technique called cortical bone mapping (CBM). Colour thickness maps were created for each proximal femur. Statistical parametric mapping was performed to identify statistically significant differences in cortical bone thickness that corresponded with the severity of radiological hip osteoarthritis. Kellgren and Lawrence (K&L) grade, minimum joint space width (JSW) and a novel CT-based osteophyte score were also blindly assessed from the CT data. For each increase in K&L grade, cortical thickness increased by up to 25 % in distinct areas of the superolateral femoral head-neck junction and superior subchondral bone plate. For increasing severity of CT osteophytes, the increase in cortical thickness was more circumferential, involving a wider portion of the head-neck junction, with up to a 7 % increase in cortical thickness per increment in score. Results were not significant for minimum JSW. These findings indicate that quantitative 3D analysis of the proximal femur can identify changes in cortical bone thickness relevant to structural hip osteoarthritis. • CT is being increasingly used to assess bony involvement in osteoarthritis • CBM provides accurate and reliable quantitative analysis of cortical bone thickness • Cortical bone is thicker at the superior femoral head-neck with worse osteoarthritis • Regions of increased thickness co-locate with impingement and osteophyte formation • Quantitative 3D bone analysis could enable clinical disease prediction and therapy development.

  8. [Determination of five naphthaquinones in Arnebia euchroma by quantitative analysis multi-components with single-marker].

    PubMed

    Zhao, Wen-Wen; Wu, Zhi-Min; Wu, Xia; Zhao, Hai-Yu; Chen, Xiao-Qing

    2016-10-01

    This study is to determine five naphthaquinones (acetylshikonin, β-acetoxyisovalerylalkannin, isobutylshikonin, β,β'-dimethylacrylalkannin,α-methyl-n-butylshikonin) by quantitative analysis of multi-components with a single marker (QAMS). β,β'-Dimethylacrylalkannin was selected as the internal reference substance, and the relative correlation factors (RCFs) of acetylshikonin, β-acetoxyisovalerylalkannin, isobutylshikonin and α-methyl-n-butylshikonin were calculated. Then the ruggedness of relative correction factors was tested on different instruments and columns. Meanwhile, 16 batches of Arnebia euchroma were analyzed by external standard method (ESM) and QAMS, respectively. The peaks were identifited by LC-MS. The ruggedness of relative correction factors was good. And the analytical results calculated by ESM and QAMS showed no difference. The quantitative method established was feasible and suitable for the quality evaluation of A. euchroma. Copyright© by the Chinese Pharmaceutical Association.

  9. Correlative SEM SERS for quantitative analysis of dimer nanoparticles.

    PubMed

    Timmermans, F J; Lenferink, A T M; van Wolferen, H A G M; Otto, C

    2016-11-14

    A Raman microscope integrated with a scanning electron microscope was used to investigate plasmonic structures by correlative SEM-SERS analysis. The integrated Raman-SEM microscope combines high-resolution electron microscopy information with SERS signal enhancement from selected nanostructures with adsorbed Raman reporter molecules. Correlative analysis is performed for dimers of two gold nanospheres. Dimers were selected on the basis of SEM images from multi aggregate samples. The effect of the orientation of the dimer with respect to the polarization state of the laser light and the effect of the particle gap size on the Raman signal intensity is observed. Additionally, calculations are performed to simulate the electric near field enhancement. These simulations are based on the morphologies observed by electron microscopy. In this way the experiments are compared with the enhancement factor calculated with near field simulations and are subsequently used to quantify the SERS enhancement factor. Large differences between experimentally observed and calculated enhancement factors are regularly detected, a phenomenon caused by nanoscale differences between the real and 'simplified' simulated structures. Quantitative SERS experiments reveal the structure induced enhancement factor, ranging from ∼200 to ∼20 000, averaged over the full nanostructure surface. The results demonstrate correlative Raman-SEM microscopy for the quantitative analysis of plasmonic particles and structures, thus enabling a new analytical method in the field of SERS and plasmonics.

  10. Differentiation of Glioblastoma from Brain Metastasis: Qualitative and Quantitative Analysis Using Arterial Spin Labeling MR Imaging.

    PubMed

    Sunwoo, Leonard; Yun, Tae Jin; You, Sung-Hye; Yoo, Roh-Eul; Kang, Koung Mi; Choi, Seung Hong; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sun-Won; Jung, Cheolkyu; Park, Chul-Kee

    2016-01-01

    To evaluate the diagnostic performance of cerebral blood flow (CBF) by using arterial spin labeling (ASL) perfusion magnetic resonance (MR) imaging to differentiate glioblastoma (GBM) from brain metastasis. The institutional review board of our hospital approved this retrospective study. The study population consisted of 128 consecutive patients who underwent surgical resection and were diagnosed as either GBM (n = 89) or brain metastasis (n = 39). All participants underwent preoperative MR imaging including ASL. For qualitative analysis, the tumors were visually graded into five categories based on ASL-CBF maps by two blinded reviewers. For quantitative analysis, the reviewers drew regions of interest (ROIs) on ASL-CBF maps upon the most hyperperfused portion within the tumor and upon peritumoral T2 hyperintensity area. Signal intensities of intratumoral and peritumoral ROIs for each subject were normalized by dividing the values by those of contralateral normal gray matter (nCBFintratumoral and nCBFperitumoral, respectively). Visual grading scales and quantitative parameters between GBM and brain metastasis were compared. In addition, the area under the receiver-operating characteristic curve was used to evaluate the diagnostic performance of ASL-driven CBF to differentiate GBM from brain metastasis. For qualitative analysis, GBM group showed significantly higher grade compared to metastasis group (p = 0.001). For quantitative analysis, both nCBFintratumoral and nCBFperitumoral in GBM were significantly higher than those in metastasis (both p < 0.001). The areas under the curve were 0.677, 0.714, and 0.835 for visual grading, nCBFintratumoral, and nCBFperitumoral, respectively (all p < 0.001). ASL perfusion MR imaging can aid in the differentiation of GBM from brain metastasis.

  11. Real-time quantitative polymerase chain reaction analysis of patients with refractory chronic periodontitis.

    PubMed

    Marconcini, Simone; Covani, Ugo; Barone, Antonio; Vittorio, Orazio; Curcio, Michele; Barbuti, Serena; Scatena, Fabrizio; Felli, Lamberto; Nicolini, Claudio

    2011-07-01

    Periodontitis is a complex multifactorial disease and is typically polygenic in origin. Genes play a fundamental part in each biologic process forming complex networks of interactions. However, only some genes have a high number of interactions with other genes in the network and may, therefore, be considered to play an important role. In a preliminary bioinformatic analysis, five genes that showed a higher number of interactions were identified and termed leader genes. In the present study, we use real-time quantitative polymerase chain reaction (PCR) technology to evaluate the expression levels of leader genes in the leukocytes of 10 patients with refractory chronic periodontitis and compare the expression levels with those of the same genes in 24 healthy patients. Blood was collected from 24 healthy human subjects and 10 patients with refractory chronic periodontitis and placed into heparinized blood collection tubes by personnel trained in phlebotomy using a sterile technique. Blood leukocyte cells were immediately lysed by using a kit for total RNA purification from human whole blood. Complementary DNA (cDNA) synthesis was obtained from total RNA and then real-time quantitative PCR was performed. PCR efficiencies were calculated with a relative standard curve derived from a five cDNA dilution series in triplicate that gave regression coefficients >0.98 and efficiencies >96%. The standard curves were obtained using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and growth factor receptor binding protein 2 (GRB2), casitas B-lineage lymphoma (CBL), nuclear factor-KB1 (NFKB1), and REL-A (gene for transcription factor p65) gene primers and amplified with 1.6, 8, 40, 200, and 1,000 ng/μL total cDNA. Curves obtained for each sample showed a linear relationship between RNA concentrations and the cycle threshold value of real-time quantitative PCR for all genes. Data were expressed as mean ± SE (SEM). The groups were compared to the analysis of variance. A

  12. The Quantitative Evaluation of the Clinical and Translational Science Awards (CTSA) Program Based on Science Mapping and Scientometric Analysis

    PubMed Central

    Zhang, Yin; Wang, Lei

    2013-01-01

    Abstract The Clinical and Translational Science Awards (CTSA) program is one of the most important initiatives in translational medical funding. The quantitative evaluation of the efficiency and performance of the CTSA program has a significant referential meaning for the decision making of global translational medical funding. Using science mapping and scientometric analytic tools, this study quantitatively analyzed the scientific articles funded by the CTSA program. The results of the study showed that the quantitative productivities of the CTSA program had a stable increase since 2008. In addition, the emerging trends of the research funded by the CTSA program covered clinical and basic medical research fields. The academic benefits from the CTSA program were assisting its members to build a robust academic home for the Clinical and Translational Science and to attract other financial support. This study provided a quantitative evaluation of the CTSA program based on science mapping and scientometric analysis. Further research is required to compare and optimize other quantitative methods and to integrate various research results. PMID:24330689

  13. The quantitative evaluation of the Clinical and Translational Science Awards (CTSA) program based on science mapping and scientometric analysis.

    PubMed

    Zhang, Yin; Wang, Lei; Diao, Tianxi

    2013-12-01

    The Clinical and Translational Science Awards (CTSA) program is one of the most important initiatives in translational medical funding. The quantitative evaluation of the efficiency and performance of the CTSA program has a significant referential meaning for the decision making of global translational medical funding. Using science mapping and scientometric analytic tools, this study quantitatively analyzed the scientific articles funded by the CTSA program. The results of the study showed that the quantitative productivities of the CTSA program had a stable increase since 2008. In addition, the emerging trends of the research funded by the CTSA program covered clinical and basic medical research fields. The academic benefits from the CTSA program were assisting its members to build a robust academic home for the Clinical and Translational Science and to attract other financial support. This study provided a quantitative evaluation of the CTSA program based on science mapping and scientometric analysis. Further research is required to compare and optimize other quantitative methods and to integrate various research results. © 2013 Wiley Periodicals, Inc.

  14. Pleiotropy Analysis of Quantitative Traits at Gene Level by Multivariate Functional Linear Models

    PubMed Central

    Wang, Yifan; Liu, Aiyi; Mills, James L.; Boehnke, Michael; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Xiong, Momiao; Wu, Colin O.; Fan, Ruzong

    2015-01-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks’s Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. PMID:25809955

  15. Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.

    PubMed

    Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong

    2015-05-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.

  16. Quantitative analysis of fracture surface by roughness and fractal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X.W.; Tian, J.F.; Kang, Y.

    1995-09-01

    In recent years there has been extensive research and great development in Quantitative Fractography, which acts as an integral part of fractographic analysis. A prominent technique for studying the fracture surface is based on fracture profile generation and the major means for characterizing the profile quantitatively are roughness and fractal methods. By this way, some quantitative indexes such as the roughness parameters R{sub L} for profile and R{sub S} for surface, fractal dimensions D{sub L} for profile and D{sub S} for surface can be measured. Given the relationships between the indexes and the mechanical properties of materials, it is possiblemore » to achieve the goal of protecting materials from fracture. But, as the case stands, the theory and experimental technology of quantitative fractography are still imperfect and remain to be studied further. Recently, Gokhale and Underwood et al have proposed an assumption-free method for estimating the surface roughness by vertically sectioning the fracture surface with sections at an angle of 120 deg with each other, which could be expressed as follows: R{sub S} = {ovr R{sub L}{center_dot}{Psi}} where {Psi} is the profile structure factor. This method is based on the classical sterological principles and verified with the aid of computer simulations for some ruled surfaces. The results are considered to be applicable to fracture surfaces with any arbitrary complexity and anisotropy. In order to extend the detail applications to this method in quantitative fractography, the authors made a study on roughness and fractal methods dependent on this method by performing quantitative measurements on some typical low-temperature impact fractures.« less

  17. Quantitative diagnosis of bladder cancer by morphometric analysis of HE images

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Nebylitsa, Samantha V.; Mukherjee, Sushmita; Jain, Manu

    2015-02-01

    In clinical practice, histopathological analysis of biopsied tissue is the main method for bladder cancer diagnosis and prognosis. The diagnosis is performed by a pathologist based on the morphological features in the image of a hematoxylin and eosin (HE) stained tissue sample. This manuscript proposes algorithms to perform morphometric analysis on the HE images, quantify the features in the images, and discriminate bladder cancers with different grades, i.e. high grade and low grade. The nuclei are separated from the background and other types of cells such as red blood cells (RBCs) and immune cells using manual outlining, color deconvolution and image segmentation. A mask of nuclei is generated for each image for quantitative morphometric analysis. The features of the nuclei in the mask image including size, shape, orientation, and their spatial distributions are measured. To quantify local clustering and alignment of nuclei, we propose a 1-nearest-neighbor (1-NN) algorithm which measures nearest neighbor distance and nearest neighbor parallelism. The global distributions of the features are measured using statistics of the proposed parameters. A linear support vector machine (SVM) algorithm is used to classify the high grade and low grade bladder cancers. The results show using a particular group of nuclei such as large ones, and combining multiple parameters can achieve better discrimination. This study shows the proposed approach can potentially help expedite pathological diagnosis by triaging potentially suspicious biopsies.

  18. Quantitative analysis of regional myocardial performance in coronary artery disease

    NASA Technical Reports Server (NTRS)

    Stewart, D. K.; Dodge, H. T.; Frimer, M.

    1975-01-01

    Findings from a group of subjects with significant coronary artery stenosis are given. A group of controls determined by use of a quantitative method for the study of regional myocardial performance based on the frame-by-frame analysis of biplane left ventricular angiograms are presented. Particular emphasis was placed upon the analysis of wall motion in terms of normalized segment dimensions, timing and velocity of contraction. The results were compared with the method of subjective assessment used clinically.

  19. Quantitative Microbial Community Analysis of Three Different Sulfidic Mine Tailing Dumps Generating Acid Mine Drainage▿

    PubMed Central

    Kock, Dagmar; Schippers, Axel

    2008-01-01

    The microbial communities of three different sulfidic and acidic mine waste tailing dumps located in Botswana, Germany, and Sweden were quantitatively analyzed using quantitative real-time PCR (Q-PCR), fluorescence in situ hybridization (FISH), catalyzed reporter deposition-FISH (CARD-FISH), Sybr green II direct counting, and the most probable number (MPN) cultivation technique. Depth profiles of cell numbers showed that the compositions of the microbial communities are greatly different at the three sites and also strongly varied between zones of oxidized and unoxidized tailings. Maximum cell numbers of up to 109 cells g−1 dry weight were determined in the pyrite or pyrrhotite oxidation zones, whereas cell numbers in unoxidized tailings were significantly lower. Bacteria dominated over Archaea and Eukarya at all tailing sites. The acidophilic Fe(II)- and/or sulfur-oxidizing Acidithiobacillus spp. dominated over the acidophilic Fe(II)-oxidizing Leptospirillum spp. among the Bacteria at two sites. The two genera were equally abundant at the third site. The acidophilic Fe(II)- and sulfur-oxidizing Sulfobacillus spp. were generally less abundant. The acidophilic Fe(III)-reducing Acidiphilium spp. could be found at only one site. The neutrophilic Fe(III)-reducing Geobacteraceae as well as the dsrA gene of sulfate reducers were quantifiable at all three sites. FISH analysis provided reliable data only for tailing zones with high microbial activity, whereas CARD-FISH, Q-PCR, Sybr green II staining, and MPN were suitable methods for a quantitative microbial community analysis of tailings in general. PMID:18586975

  20. Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage.

    PubMed

    Kock, Dagmar; Schippers, Axel

    2008-08-01

    The microbial communities of three different sulfidic and acidic mine waste tailing dumps located in Botswana, Germany, and Sweden were quantitatively analyzed using quantitative real-time PCR (Q-PCR), fluorescence in situ hybridization (FISH), catalyzed reporter deposition-FISH (CARD-FISH), Sybr green II direct counting, and the most probable number (MPN) cultivation technique. Depth profiles of cell numbers showed that the compositions of the microbial communities are greatly different at the three sites and also strongly varied between zones of oxidized and unoxidized tailings. Maximum cell numbers of up to 10(9) cells g(-1) dry weight were determined in the pyrite or pyrrhotite oxidation zones, whereas cell numbers in unoxidized tailings were significantly lower. Bacteria dominated over Archaea and Eukarya at all tailing sites. The acidophilic Fe(II)- and/or sulfur-oxidizing Acidithiobacillus spp. dominated over the acidophilic Fe(II)-oxidizing Leptospirillum spp. among the Bacteria at two sites. The two genera were equally abundant at the third site. The acidophilic Fe(II)- and sulfur-oxidizing Sulfobacillus spp. were generally less abundant. The acidophilic Fe(III)-reducing Acidiphilium spp. could be found at only one site. The neutrophilic Fe(III)-reducing Geobacteraceae as well as the dsrA gene of sulfate reducers were quantifiable at all three sites. FISH analysis provided reliable data only for tailing zones with high microbial activity, whereas CARD-FISH, Q-PCR, Sybr green II staining, and MPN were suitable methods for a quantitative microbial community analysis of tailings in general.

  1. Quantitative fluorescence loss in photobleaching for analysis of protein transport and aggregation

    PubMed Central

    2012-01-01

    Background Fluorescence loss in photobleaching (FLIP) is a widely used imaging technique, which provides information about protein dynamics in various cellular regions. In FLIP, a small cellular region is repeatedly illuminated by an intense laser pulse, while images are taken with reduced laser power with a time lag between the bleaches. Despite its popularity, tools are lacking for quantitative analysis of FLIP experiments. Typically, the user defines regions of interest (ROIs) for further analysis which is subjective and does not allow for comparing different cells and experimental settings. Results We present two complementary methods to detect and quantify protein transport and aggregation in living cells from FLIP image series. In the first approach, a stretched exponential (StrExp) function is fitted to fluorescence loss (FL) inside and outside the bleached region. We show by reaction–diffusion simulations, that the StrExp function can describe both, binding/barrier–limited and diffusion-limited FL kinetics. By pixel-wise regression of that function to FL kinetics of enhanced green fluorescent protein (eGFP), we determined in a user-unbiased manner from which cellular regions eGFP can be replenished in the bleached area. Spatial variation in the parameters calculated from the StrExp function allow for detecting diffusion barriers for eGFP in the nucleus and cytoplasm of living cells. Polyglutamine (polyQ) disease proteins like mutant huntingtin (mtHtt) can form large aggregates called inclusion bodies (IB’s). The second method combines single particle tracking with multi-compartment modelling of FL kinetics in moving IB’s to determine exchange rates of eGFP-tagged mtHtt protein (eGFP-mtHtt) between aggregates and the cytoplasm. This method is self-calibrating since it relates the FL inside and outside the bleached regions. It makes it therefore possible to compare release kinetics of eGFP-mtHtt between different cells and experiments. Conclusions We

  2. Are quantitative sensitivity analysis methods always reliable?

    NASA Astrophysics Data System (ADS)

    Huang, X.

    2016-12-01

    Physical parameterizations developed to represent subgrid-scale physical processes include various uncertain parameters, leading to large uncertainties in today's Earth System Models (ESMs). Sensitivity Analysis (SA) is an efficient approach to quantitatively determine how the uncertainty of the evaluation metric can be apportioned to each parameter. Also, SA can identify the most influential parameters, as a result to reduce the high dimensional parametric space. In previous studies, some SA-based approaches, such as Sobol' and Fourier amplitude sensitivity testing (FAST), divide the parameters into sensitive and insensitive groups respectively. The first one is reserved but the other is eliminated for certain scientific study. However, these approaches ignore the disappearance of the interactive effects between the reserved parameters and the eliminated ones, which are also part of the total sensitive indices. Therefore, the wrong sensitive parameters might be identified by these traditional SA approaches and tools. In this study, we propose a dynamic global sensitivity analysis method (DGSAM), which iteratively removes the least important parameter until there are only two parameters left. We use the CLM-CASA, a global terrestrial model, as an example to verify our findings with different sample sizes ranging from 7000 to 280000. The result shows DGSAM has abilities to identify more influential parameters, which is confirmed by parameter calibration experiments using four popular optimization methods. For example, optimization using Top3 parameters filtered by DGSAM could achieve substantial improvement against Sobol' by 10%. Furthermore, the current computational cost for calibration has been reduced to 1/6 of the original one. In future, it is necessary to explore alternative SA methods emphasizing parameter interactions.

  3. Quantitative measurement of carbon nanotubes released from their composites by thermal carbon analysis

    NASA Astrophysics Data System (ADS)

    Ogura, I.; Kotake, M.; Ata, S.; Honda, K.

    2017-06-01

    The release of free carbon nanotubes (CNTs) and CNTs partly embedded in matrix debris into the air may occur during mechanical and abrasion processes involving CNT composites. Since the harmful effects of CNT-matrix mixtures have not yet been fully evaluated, it is considered that any exposure to CNTs, including CNT-matrix mixtures, should be measured and controlled. Thermal carbon analysis, such as Method 5040 of the National Institute for Occupational Safety and Health, is one of the most reliable quantitative methods for measuring CNTs in the air. However, when CNTs are released together with polymer matrices, this technique may be inapplicable. In this study, we evaluated the potential for using thermal carbon analysis to determine CNTs in the presence of polymer matrices. Our results showed that thermal carbon analysis was potentially capable of determining CNTs in distinction from polyamide 12, polybutylene terephthalate, polypropylene, and polyoxymethylene. However, it was difficult to determine CNTs in the presence of polyethylene terephthalate, polycarbonate, polyetheretherketone, or polyamide 6.

  4. Identification of expression quantitative trait loci by the interaction analysis using genetic algorithm

    PubMed Central

    Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung

    2007-01-01

    Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene × gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene × gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms. PMID:18466570

  5. Digital pathology and image analysis for robust high-throughput quantitative assessment of Alzheimer disease neuropathologic changes.

    PubMed

    Neltner, Janna Hackett; Abner, Erin Lynn; Schmitt, Frederick A; Denison, Stephanie Kay; Anderson, Sonya; Patel, Ela; Nelson, Peter T

    2012-12-01

    Quantitative neuropathologic methods provide information that is important for both research and clinical applications. The technologic advancement of digital pathology and image analysis offers new solutions to enable valid quantification of pathologic severity that is reproducible between raters regardless of experience. Using an Aperio ScanScope XT and its accompanying image analysis software, we designed algorithms for quantitation of amyloid and tau pathologies on 65 β-amyloid (6F/3D antibody) and 48 phospho-tau (PHF-1)-immunostained sections of human temporal neocortex. Quantitative digital pathologic data were compared with manual pathology counts. There were excellent correlations between manually counted and digitally analyzed neuropathologic parameters (R² = 0.56-0.72). Data were highly reproducible among 3 participants with varying degrees of expertise in neuropathology (intraclass correlation coefficient values, >0.910). Digital quantification also provided additional parameters, including average plaque area, which shows statistically significant differences when samples are stratified according to apolipoprotein E allele status (average plaque area, 380.9 μm² in apolipoprotein E [Latin Small Letter Open E]4 carriers vs 274.4 μm² for noncarriers; p < 0.001). Thus, digital pathology offers a rigorous and reproducible method for quantifying Alzheimer disease neuropathologic changes and may provide additional insights into morphologic characteristics that were previously more challenging to assess because of technical limitations.

  6. LFQuant: a label-free fast quantitative analysis tool for high-resolution LC-MS/MS proteomics data.

    PubMed

    Zhang, Wei; Zhang, Jiyang; Xu, Changming; Li, Ning; Liu, Hui; Ma, Jie; Zhu, Yunping; Xie, Hongwei

    2012-12-01

    Database searching based methods for label-free quantification aim to reconstruct the peptide extracted ion chromatogram based on the identification information, which can limit the search space and thus make the data processing much faster. The random effect of the MS/MS sampling can be remedied by cross-assignment among different runs. Here, we present a new label-free fast quantitative analysis tool, LFQuant, for high-resolution LC-MS/MS proteomics data based on database searching. It is designed to accept raw data in two common formats (mzXML and Thermo RAW), and database search results from mainstream tools (MASCOT, SEQUEST, and X!Tandem), as input data. LFQuant can handle large-scale label-free data with fractionation such as SDS-PAGE and 2D LC. It is easy to use and provides handy user interfaces for data loading, parameter setting, quantitative analysis, and quantitative data visualization. LFQuant was compared with two common quantification software packages, MaxQuant and IDEAL-Q, on the replication data set and the UPS1 standard data set. The results show that LFQuant performs better than them in terms of both precision and accuracy, and consumes significantly less processing time. LFQuant is freely available under the GNU General Public License v3.0 at http://sourceforge.net/projects/lfquant/. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Race and Older Mothers’ Differentiation: A Sequential Quantitative and Qualitative Analysis

    PubMed Central

    Sechrist, Jori; Suitor, J. Jill; Riffin, Catherine; Taylor-Watson, Kadari; Pillemer, Karl

    2011-01-01

    The goal of this paper is to demonstrate a process by which qualitative and quantitative approaches are combined to reveal patterns in the data that are unlikely to be detected and confirmed by either method alone. Specifically, we take a sequential approach to combining qualitative and quantitative data to explore race differences in how mothers differentiate among their adult children. We began with a standard multivariate analysis examining race differences in mothers’ differentiation among their adult children regarding emotional closeness and confiding. Finding no race differences in this analysis, we conducted an in-depth comparison of the Black and White mothers’ narratives to determine whether there were underlying patterns that we had been unable to detect in our first analysis. Using this method, we found that Black mothers were substantially more likely than White mothers to emphasize interpersonal relationships within the family when describing differences among their children. In our final step, we developed a measure of familism based on the qualitative data and conducted a multivariate analysis to confirm the patterns revealed by the in-depth comparison of the mother’s narratives. We conclude that using such a sequential mixed methods approach to data analysis has the potential to shed new light on complex family relations. PMID:21967639

  8. A thioacidolysis method tailored for higher‐throughput quantitative analysis of lignin monomers

    PubMed Central

    Foster, Cliff; Happs, Renee M.; Doeppke, Crissa; Meunier, Kristoffer; Gehan, Jackson; Yue, Fengxia; Lu, Fachuang; Davis, Mark F.

    2016-01-01

    Abstract Thioacidolysis is a method used to measure the relative content of lignin monomers bound by β‐O‐4 linkages. Current thioacidolysis methods are low‐throughput as they require tedious steps for reaction product concentration prior to analysis using standard GC methods. A quantitative thioacidolysis method that is accessible with general laboratory equipment and uses a non‐chlorinated organic solvent and is tailored for higher‐throughput analysis is reported. The method utilizes lignin arylglycerol monomer standards for calibration, requires 1–2 mg of biomass per assay and has been quantified using fast‐GC techniques including a Low Thermal Mass Modular Accelerated Column Heater (LTM MACH). Cumbersome steps, including standard purification, sample concentrating and drying have been eliminated to help aid in consecutive day‐to‐day analyses needed to sustain a high sample throughput for large screening experiments without the loss of quantitation accuracy. The method reported in this manuscript has been quantitatively validated against a commonly used thioacidolysis method and across two different research sites with three common biomass varieties to represent hardwoods, softwoods, and grasses. PMID:27534715

  9. A thioacidolysis method tailored for higher-throughput quantitative analysis of lignin monomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harman-Ware, Anne E.; Foster, Cliff; Happs, Renee M.

    Thioacidolysis is a method used to measure the relative content of lignin monomers bound by β-O-4 linkages. Current thioacidolysis methods are low-throughput as they require tedious steps for reaction product concentration prior to analysis using standard GC methods. A quantitative thioacidolysis method that is accessible with general laboratory equipment and uses a non-chlorinated organic solvent and is tailored for higher-throughput analysis is reported. The method utilizes lignin arylglycerol monomer standards for calibration, requires 1-2 mg of biomass per assay and has been quantified using fast-GC techniques including a Low Thermal Mass Modular Accelerated Column Heater (LTM MACH). Cumbersome steps, includingmore » standard purification, sample concentrating and drying have been eliminated to help aid in consecutive day-to-day analyses needed to sustain a high sample throughput for large screening experiments without the loss of quantitation accuracy. As a result, the method reported in this manuscript has been quantitatively validated against a commonly used thioacidolysis method and across two different research sites with three common biomass varieties to represent hardwoods, softwoods, and grasses.« less

  10. A thioacidolysis method tailored for higher-throughput quantitative analysis of lignin monomers

    DOE PAGES

    Harman-Ware, Anne E.; Foster, Cliff; Happs, Renee M.; ...

    2016-09-14

    Thioacidolysis is a method used to measure the relative content of lignin monomers bound by β-O-4 linkages. Current thioacidolysis methods are low-throughput as they require tedious steps for reaction product concentration prior to analysis using standard GC methods. A quantitative thioacidolysis method that is accessible with general laboratory equipment and uses a non-chlorinated organic solvent and is tailored for higher-throughput analysis is reported. The method utilizes lignin arylglycerol monomer standards for calibration, requires 1-2 mg of biomass per assay and has been quantified using fast-GC techniques including a Low Thermal Mass Modular Accelerated Column Heater (LTM MACH). Cumbersome steps, includingmore » standard purification, sample concentrating and drying have been eliminated to help aid in consecutive day-to-day analyses needed to sustain a high sample throughput for large screening experiments without the loss of quantitation accuracy. As a result, the method reported in this manuscript has been quantitatively validated against a commonly used thioacidolysis method and across two different research sites with three common biomass varieties to represent hardwoods, softwoods, and grasses.« less

  11. QuASAR: quantitative allele-specific analysis of reads.

    PubMed

    Harvey, Chris T; Moyerbrailean, Gregory A; Davis, Gordon O; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2015-04-15

    Expression quantitative trait loci (eQTL) studies have discovered thousands of genetic variants that regulate gene expression, enabling a better understanding of the functional role of non-coding sequences. However, eQTL studies are costly, requiring large sample sizes and genome-wide genotyping of each sample. In contrast, analysis of allele-specific expression (ASE) is becoming a popular approach to detect the effect of genetic variation on gene expression, even within a single individual. This is typically achieved by counting the number of RNA-seq reads matching each allele at heterozygous sites and testing the null hypothesis of a 1:1 allelic ratio. In principle, when genotype information is not readily available, it could be inferred from the RNA-seq reads directly. However, there are currently no existing methods that jointly infer genotypes and conduct ASE inference, while considering uncertainty in the genotype calls. We present QuASAR, quantitative allele-specific analysis of reads, a novel statistical learning method for jointly detecting heterozygous genotypes and inferring ASE. The proposed ASE inference step takes into consideration the uncertainty in the genotype calls, while including parameters that model base-call errors in sequencing and allelic over-dispersion. We validated our method with experimental data for which high-quality genotypes are available. Results for an additional dataset with multiple replicates at different sequencing depths demonstrate that QuASAR is a powerful tool for ASE analysis when genotypes are not available. http://github.com/piquelab/QuASAR. fluca@wayne.edu or rpique@wayne.edu Supplementary Material is available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. QuASAR: quantitative allele-specific analysis of reads

    PubMed Central

    Harvey, Chris T.; Moyerbrailean, Gregory A.; Davis, Gordon O.; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2015-01-01

    Motivation: Expression quantitative trait loci (eQTL) studies have discovered thousands of genetic variants that regulate gene expression, enabling a better understanding of the functional role of non-coding sequences. However, eQTL studies are costly, requiring large sample sizes and genome-wide genotyping of each sample. In contrast, analysis of allele-specific expression (ASE) is becoming a popular approach to detect the effect of genetic variation on gene expression, even within a single individual. This is typically achieved by counting the number of RNA-seq reads matching each allele at heterozygous sites and testing the null hypothesis of a 1:1 allelic ratio. In principle, when genotype information is not readily available, it could be inferred from the RNA-seq reads directly. However, there are currently no existing methods that jointly infer genotypes and conduct ASE inference, while considering uncertainty in the genotype calls. Results: We present QuASAR, quantitative allele-specific analysis of reads, a novel statistical learning method for jointly detecting heterozygous genotypes and inferring ASE. The proposed ASE inference step takes into consideration the uncertainty in the genotype calls, while including parameters that model base-call errors in sequencing and allelic over-dispersion. We validated our method with experimental data for which high-quality genotypes are available. Results for an additional dataset with multiple replicates at different sequencing depths demonstrate that QuASAR is a powerful tool for ASE analysis when genotypes are not available. Availability and implementation: http://github.com/piquelab/QuASAR. Contact: fluca@wayne.edu or rpique@wayne.edu Supplementary information: Supplementary Material is available at Bioinformatics online. PMID:25480375

  13. Quantitative analysis of NMR spectra with chemometrics

    NASA Astrophysics Data System (ADS)

    Winning, H.; Larsen, F. H.; Bro, R.; Engelsen, S. B.

    2008-01-01

    The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quantitative NMR spectroscopy e.g. in the pharmaceutical and food industries. This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, butanol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful method for resolving pure component NMR spectra from mixtures when certain conditions are met.

  14. Quality-by-Design II: Application of Quantitative Risk Analysis to the Formulation of Ciprofloxacin Tablets.

    PubMed

    Claycamp, H Gregg; Kona, Ravikanth; Fahmy, Raafat; Hoag, Stephen W

    2016-04-01

    Qualitative risk assessment methods are often used as the first step to determining design space boundaries; however, quantitative assessments of risk with respect to the design space, i.e., calculating the probability of failure for a given severity, are needed to fully characterize design space boundaries. Quantitative risk assessment methods in design and operational spaces are a significant aid to evaluating proposed design space boundaries. The goal of this paper is to demonstrate a relatively simple strategy for design space definition using a simplified Bayesian Monte Carlo simulation. This paper builds on a previous paper that used failure mode and effects analysis (FMEA) qualitative risk assessment and Plackett-Burman design of experiments to identity the critical quality attributes. The results show that the sequential use of qualitative and quantitative risk assessments can focus the design of experiments on a reduced set of critical material and process parameters that determine a robust design space under conditions of limited laboratory experimentation. This approach provides a strategy by which the degree of risk associated with each known parameter can be calculated and allocates resources in a manner that manages risk to an acceptable level.

  15. Integrated approach for confidence-enhanced quantitative analysis of herbal medicines, Cistanche salsa as a case.

    PubMed

    Liu, Wenjing; Song, Qingqing; Yan, Yu; Liu, Yao; Li, Peng; Wang, Yitao; Tu, Pengfei; Song, Yuelin; Li, Jun

    2018-08-03

    Although far away from perfect, it is practical to assess the quality of a given herbal medicine (HM) through simultaneous determination of a panel of components. However, the confidences of the quantitative outcomes from LC-MS/MS platform risk several technical barriers, such as chemical degradation, polarity range, concentration span, and identity misrecognition. Herein, we made an attempt to circumvent these obstacles by integrating several fit-for-purpose techniques, including online extraction (OLE), serially coupled reversed phase LC-hydrophilic interaction liquid chromatography (RPLC-HILIC), tailored multiple reaction monitoring (MRM), and relative response vs. collision energy curve (RRCEC) matching. Confidence-enhanced quantitative analysis of Cistanche salsa (Csa), a well-known psammophytic species and tonic herbal medicine, was conducted as a proof-of-concept. OLE module was deployed to prohibit chemical degradation, in particular E/Z-configuration transformation for phenylethanoid glycosides. Satisfactory retention took place for each analyte regardless of polarity because of successive passing through RPLC and HILIC columns. Optimum parameters for the minor components, at the meanwhile of inferior ones for the abundant ingredients, ensured the locations of all contents in the linear ranges. The unequivocal assignment of the captured signals was achieved by matching retention times, ion transitions, and more importantly, RRCECs between authentic compounds and suspect peaks. Diverse validation assays demonstrated the newly developed method to be reliable. Particularly, the distribution of mannitol rather than galactitol was disclosed although these isomers showed identical retention time and ion transitions. The contents of 21 compounds-of-interest were definitively determined in Csa as well as two analogous species, and the quantitative patterns exerted great variations among not only different species but different Csa samples. Together, the

  16. Quantitative analysis of tympanic membrane perforation: a simple and reliable method.

    PubMed

    Ibekwe, T S; Adeosun, A A; Nwaorgu, O G

    2009-01-01

    Accurate assessment of the features of tympanic membrane perforation, especially size, site, duration and aetiology, is important, as it enables optimum management. To describe a simple, cheap and effective method of quantitatively analysing tympanic membrane perforations. The system described comprises a video-otoscope (capable of generating still and video images of the tympanic membrane), adapted via a universal serial bus box to a computer screen, with images analysed using the Image J geometrical analysis software package. The reproducibility of results and their correlation with conventional otoscopic methods of estimation were tested statistically with the paired t-test and correlational tests, using the Statistical Package for the Social Sciences version 11 software. The following equation was generated: P/T x 100 per cent = percentage perforation, where P is the area (in pixels2) of the tympanic membrane perforation and T is the total area (in pixels2) for the entire tympanic membrane (including the perforation). Illustrations are shown. Comparison of blinded data on tympanic membrane perforation area obtained independently from assessments by two trained otologists, of comparative years of experience, using the video-otoscopy system described, showed similar findings, with strong correlations devoid of inter-observer error (p = 0.000, r = 1). Comparison with conventional otoscopic assessment also indicated significant correlation, comparing results for two trained otologists, but some inter-observer variation was present (p = 0.000, r = 0.896). Correlation between the two methods for each of the otologists was also highly significant (p = 0.000). A computer-adapted video-otoscope, with images analysed by Image J software, represents a cheap, reliable, technology-driven, clinical method of quantitative analysis of tympanic membrane perforations and injuries.

  17. Quantitative Machine Learning Analysis of Brain MRI Morphology throughout Aging.

    PubMed

    Shamir, Lior; Long, Joe

    2016-01-01

    While cognition is clearly affected by aging, it is unclear whether the process of brain aging is driven solely by accumulation of environmental damage, or involves biological pathways. We applied quantitative image analysis to profile the alteration of brain tissues during aging. A dataset of 463 brain MRI images taken from a cohort of 416 subjects was analyzed using a large set of low-level numerical image content descriptors computed from the entire brain MRI images. The correlation between the numerical image content descriptors and the age was computed, and the alterations of the brain tissues during aging were quantified and profiled using machine learning. The comprehensive set of global image content descriptors provides high Pearson correlation of ~0.9822 with the chronological age, indicating that the machine learning analysis of global features is sensitive to the age of the subjects. Profiling of the predicted age shows several periods of mild changes, separated by shorter periods of more rapid alterations. The periods with the most rapid changes were around the age of 55, and around the age of 65. The results show that the process of brain aging of is not linear, and exhibit short periods of rapid aging separated by periods of milder change. These results are in agreement with patterns observed in cognitive decline, mental health status, and general human aging, suggesting that brain aging might not be driven solely by accumulation of environmental damage. Code and data used in the experiments are publicly available.

  18. [Urban ecological land in Changsha City: its quantitative analysis and optimization].

    PubMed

    Li, Xiao-Li; Zeng, Guang-Ming; Shi, Lin; Liang, Jie; Cai, Qing

    2010-02-01

    In this paper, a hierarchy index system suitable for catastrophe progression method was constructed to comprehensively analyze and evaluate the status of ecological land construction in Changsha City in 2007. Based on the evaluation results, the irrationalities of the distribution pattern of Changsha urban ecological land were discussed. With the support of geographic information system (GIS), the ecological corridors of the urban ecological land were constructed by using the 'least-cost' modeling, and, in combining with conflict analysis, the optimum project of the urban ecological land was put forward, forming an integrated evaluation system. The results indicated that the ecological efficiency of urban ecological land in Changsha in 2007 was at medium level, with an evaluation value being 0.9416, and the quantitative index being relatively high but the coordination index being relatively low. The analysis and verification with software Fragstats showed that the ecological efficiency of the urban ecological land after optimization was higher, with the evaluation value being 0.9618, and the SHDI, CONTAG, and other indices also enhanced.

  19. Baseline correction combined partial least squares algorithm and its application in on-line Fourier transform infrared quantitative analysis.

    PubMed

    Peng, Jiangtao; Peng, Silong; Xie, Qiong; Wei, Jiping

    2011-04-01

    In order to eliminate the lower order polynomial interferences, a new quantitative calibration algorithm "Baseline Correction Combined Partial Least Squares (BCC-PLS)", which combines baseline correction and conventional PLS, is proposed. By embedding baseline correction constraints into PLS weights selection, the proposed calibration algorithm overcomes the uncertainty in baseline correction and can meet the requirement of on-line attenuated total reflectance Fourier transform infrared (ATR-FTIR) quantitative analysis. The effectiveness of the algorithm is evaluated by the analysis of glucose and marzipan ATR-FTIR spectra. BCC-PLS algorithm shows improved prediction performance over PLS. The root mean square error of cross-validation (RMSECV) on marzipan spectra for the prediction of the moisture is found to be 0.53%, w/w (range 7-19%). The sugar content is predicted with a RMSECV of 2.04%, w/w (range 33-68%). Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Quantitative analysis of the plain radiographic appearance of nonossifying fibroma.

    PubMed

    Friedland, J A; Reinus, W R; Fisher, A J; Wilson, A J

    1995-08-01

    To quantitate radiographic features that distinguish the plain radiographic appearance of nonossifying fibroma (NOF) from other solitary lesions of bone. Seven hundred nine cases of focal bone lesions, including 34 NOFs, were analyzed according to demographic, anatomic, and plain radiographic features. Vector analysis of groups of features was performed to determine those that are most sensitive and specific for the appearance of NOF in contrast to other lesions in the data base. The radiographic appearance of NOFs was most consistently a medullary based (97%), lytic lesion (100%) with geographic bone destruction (100%), marginal sclerosis (97%), and well-defined edges (94%). A statistically significant number of lesions were located in the distal aspect of long bones. Unicameral bone cyst shared the most radiographic features with the NOF. Vector analysis showed a large degree of overlap between NOF and other lesions such as aneurysmal bone cyst, chondromyxoid fibroma, and eosinophilic granuloma. The description that optimized sensitivity and prevalence for detection of NOF is a medullary based, ovoid lesion in the distal or proximal portions of a long bone with well-defined edges, a partial or complete rind of sclerosis, and absence of fallen fragment, periosteal reaction, and cortical disruption. The radiographic appearance of NOF is relatively nonspecific but, using vector analysis, can be better elucidated over current textbook descriptions.

  1. Low-dose CT for quantitative analysis in acute respiratory distress syndrome

    PubMed Central

    2013-01-01

    Introduction The clinical use of serial quantitative computed tomography (CT) to characterize lung disease and guide the optimization of mechanical ventilation in patients with acute respiratory distress syndrome (ARDS) is limited by the risk of cumulative radiation exposure and by the difficulties and risks related to transferring patients to the CT room. We evaluated the effects of tube current-time product (mAs) variations on quantitative results in healthy lungs and in experimental ARDS in order to support the use of low-dose CT for quantitative analysis. Methods In 14 sheep chest CT was performed at baseline and after the induction of ARDS via intravenous oleic acid injection. For each CT session, two consecutive scans were obtained applying two different mAs: 60 mAs was paired with 140, 15 or 7.5 mAs. All other CT parameters were kept unaltered (tube voltage 120 kVp, collimation 32 × 0.5 mm, pitch 0.85, matrix 512 × 512, pixel size 0.625 × 0.625 mm). Quantitative results obtained at different mAs were compared via Bland-Altman analysis. Results Good agreement was observed between 60 mAs and 140 mAs and between 60 mAs and 15 mAs (all biases less than 1%). A further reduction of mAs to 7.5 mAs caused an increase in the bias of poorly aerated and nonaerated tissue (-2.9% and 2.4%, respectively) and determined a significant widening of the limits of agreement for the same compartments (-10.5% to 4.8% for poorly aerated tissue and -5.9% to 10.8% for nonaerated tissue). Estimated mean effective dose at 140, 60, 15 and 7.5 mAs corresponded to 17.8, 7.4, 2.0 and 0.9 mSv, respectively. Image noise of scans performed at 140, 60, 15 and 7.5 mAs corresponded to 10, 16, 38 and 74 Hounsfield units, respectively. Conclusions A reduction of effective dose up to 70% has been achieved with minimal effects on lung quantitative results. Low-dose computed tomography provides accurate quantitative results and could be used to characterize lung compartment distribution and

  2. Oufti: An integrated software package for high-accuracy, high-throughput quantitative microscopy analysis

    PubMed Central

    Paintdakhi, Ahmad; Parry, Bradley; Campos, Manuel; Irnov, Irnov; Elf, Johan; Surovtsev, Ivan; Jacobs-Wagner, Christine

    2016-01-01

    Summary With the realization that bacteria display phenotypic variability among cells and exhibit complex subcellular organization critical for cellular function and behavior, microscopy has re-emerged as a primary tool in bacterial research during the last decade. However, the bottleneck in today’s single-cell studies is quantitative image analysis of cells and fluorescent signals. Here, we address current limitations through the development of Oufti, a stand-alone, open-source software package for automated measurements of microbial cells and fluorescence signals from microscopy images. Oufti provides computational solutions for tracking touching cells in confluent samples, handles various cell morphologies, offers algorithms for quantitative analysis of both diffraction and non-diffraction-limited fluorescence signals, and is scalable for high-throughput analysis of massive datasets, all with subpixel precision. All functionalities are integrated in a single package. The graphical user interface, which includes interactive modules for segmentation, image analysis, and post-processing analysis, makes the software broadly accessible to users irrespective of their computational skills. PMID:26538279

  3. Heart Rate Variability Indexes in Dementia: A Systematic Review with a Quantitative Analysis.

    PubMed

    da Silva, Vanessa Pereira; Ramalho Oliveira, Bruno Ribeiro; Tavares Mello, Roger Gomes; Moraes, Helena; Deslandes, Andrea Camaz; Laks, Jerson

    2018-01-01

    Decreased heart rate variability (HRV) indexes indicate low vagal activity and may be associated with development of dementia. The neurodegenerative process is associated with the cardiovascular autonomic control. The aim of this systematic review was to investigate the effect size (ES) magnitude of the HRV indexes in the evaluation of autonomic dysfunction in older persons with dementia. PubMed (Medline), Web of Science, Scopus, Scielo, Lilacs, and APA Psycnet were consulted. Complete original articles published in English or Portuguese, investigating the association between autonomic dysfunction and dementia, using the HRV indexes were included. The search identified 97 potentially relevant articles. After screening the full text, eight articles were included in the qualitative analysis and six were included in the quantitative analysis. Almost all indexes showed a negative ES for all types of dementia and mild cognitive impairment. The most common frequency band of the power spectrum density function was the high frequency, which was reported by six studies. The meta-analysis of high frequency power in Alzheimer's disease group showed high heterogeneity and inconsistent results. The negative effect size suggests an autonomic dysfunction in all types of dementia as well as mild cognitive impairment. However, further analysis is necessary to support these results. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Quantitative analysis of multiple sclerosis: a feasibility study

    NASA Astrophysics Data System (ADS)

    Li, Lihong; Li, Xiang; Wei, Xinzhou; Sturm, Deborah; Lu, Hongbing; Liang, Zhengrong

    2006-03-01

    Multiple Sclerosis (MS) is an inflammatory and demyelinating disorder of the central nervous system with a presumed immune-mediated etiology. For treatment of MS, the measurements of white matter (WM), gray matter (GM), and cerebral spinal fluid (CSF) are often used in conjunction with clinical evaluation to provide a more objective measure of MS burden. In this paper, we apply a new unifying automatic mixture-based algorithm for segmentation of brain tissues to quantitatively analyze MS. The method takes into account the following effects that commonly appear in MR imaging: 1) The MR data is modeled as a stochastic process with an inherent inhomogeneity effect of smoothly varying intensity; 2) A new partial volume (PV) model is built in establishing the maximum a posterior (MAP) segmentation scheme; 3) Noise artifacts are minimized by a priori Markov random field (MRF) penalty indicating neighborhood correlation from tissue mixture. The volumes of brain tissues (WM, GM) and CSF are extracted from the mixture-based segmentation. Experimental results of feasibility studies on quantitative analysis of MS are presented.

  5. Quality Assessments of Long-Term Quantitative Proteomic Analysis of Breast Cancer Xenograft Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jian-Ying; Chen, Lijun; Zhang, Bai

    The identification of protein biomarkers requires large-scale analysis of human specimens to achieve statistical significance. In this study, we evaluated the long-term reproducibility of an iTRAQ (isobaric tags for relative and absolute quantification) based quantitative proteomics strategy using one channel for universal normalization across all samples. A total of 307 liquid chromatography tandem mass spectrometric (LC-MS/MS) analyses were completed, generating 107 one-dimensional (1D) LC-MS/MS datasets and 8 offline two-dimensional (2D) LC-MS/MS datasets (25 fractions for each set) for human-in-mouse breast cancer xenograft tissues representative of basal and luminal subtypes. Such large-scale studies require the implementation of robust metrics to assessmore » the contributions of technical and biological variability in the qualitative and quantitative data. Accordingly, we developed a quantification confidence score based on the quality of each peptide-spectrum match (PSM) to remove quantification outliers from each analysis. After combining confidence score filtering and statistical analysis, reproducible protein identification and quantitative results were achieved from LC-MS/MS datasets collected over a 16 month period.« less

  6. Quantitative analysis of intermolecular interactions in orthorhombic rubrene

    DOE PAGES

    Hathwar, Venkatesha R.; Sist, Mattia; Jørgensen, Mads R. V.; ...

    2015-08-14

    Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically,more » the presence of C π...C πinteractions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. Finally, the quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.« less

  7. A validated UHPLC-tandem mass spectrometry method for quantitative analysis of flavonolignans in milk thistle (Silybum marianum) extracts.

    PubMed

    Graf, Tyler N; Cech, Nadja B; Polyak, Stephen J; Oberlies, Nicholas H

    2016-07-15

    Validated methods are needed for the analysis of natural product secondary metabolites. These methods are particularly important to translate in vitro observations to in vivo studies. Herein, a method is reported for the analysis of the key secondary metabolites, a series of flavonolignans and a flavonoid, from an extract prepared from the seeds of milk thistle [Silybum marianum (L.) Gaertn. (Asteraceae)]. This report represents the first UHPLC MS-MS method validated for quantitative analysis of these compounds. The method takes advantage of the excellent resolution achievable with UHPLC to provide a complete analysis in less than 7min. The method is validated using both UV and MS detectors, making it applicable in laboratories with different types of analytical instrumentation available. Lower limits of quantitation achieved with this method range from 0.0400μM to 0.160μM with UV and from 0.0800μM to 0.160μM with MS. The new method is employed to evaluate variability in constituent composition in various commercial S. marianum extracts, and to show that storage of the milk thistle compounds in DMSO leads to degradation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Quantitative analysis of titanium concentration using calibration-free laser-induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Zaitun; Prasetyo, S.; Suliyanti, M. M.; Isnaeni; Herbani, Y.

    2018-03-01

    Laser-induced breakdown spectroscopy (LIBS) can be used for quantitative and qualitative analysis. Calibration-free LIBS (CF-LIBS) is a method to quantitatively analyze concentration of elements in a sample in local thermodynamic equilibrium conditions without using available matrix-matched calibration. In this study, we apply CF-LIBS for quantitative analysis of Ti in TiO2 sample. TiO2 powder sample was mixed with polyvinyl alcohol and formed into pellets. An Nd:YAG pulsed laser at a wavelength of 1064 nm was focused onto the sample to generate plasma. The spectrum of plasma was recorded using spectrophotometer then compared to NIST spectral line to determine energy levels and other parameters. The value of plasma temperature obtained using Boltzmann plot is 8127.29 K and electron density from calculation is 2.49×1016 cm-3. Finally, the concentration of Ti in TiO2 sample from this study is 97% that is in proximity with the sample certificate.

  9. Chronic obstructive pulmonary disease: quantitative and visual ventilation pattern analysis at xenon ventilation CT performed by using a dual-energy technique.

    PubMed

    Park, Eun-Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Hyun Ju; Lee, Chang Hyun; Park, Chang Min; Yoo, Chul-Gyu; Kim, Jong Hyo

    2010-09-01

    To evaluate the potential of xenon ventilation computed tomography (CT) in the quantitative and visual analysis of chronic obstructive pulmonary disease (COPD). This study was approved by the institutional review board. After informed consent was obtained, 32 patients with COPD underwent CT performed before the administration of xenon, two-phase xenon ventilation CT with wash-in (WI) and wash-out (WO) periods, and pulmonary function testing (PFT). For quantitative analysis, results of PFT were compared with attenuation parameters from prexenon images and xenon parameters from xenon-enhanced images in the following three areas at each phase: whole lung, lung with normal attenuation, and low-attenuating lung (LAL). For visual analysis, ventilation patterns were categorized according to the pattern of xenon attenuation in the area of structural abnormalities compared with that in the normal-looking background on a per-lobe basis: pattern A consisted of isoattenuation or high attenuation in the WI period and isoattenuation in the WO period; pattern B, isoattenuation or high attenuation in the WI period and high attenuation in the WO period; pattern C, low attenuation in both the WI and WO periods; and pattern D, low attenuation in the WI period and isoattenuation or high attenuation in the WO period. Among various attenuation and xenon parameters, xenon parameters of the LAL in the WO period showed the best inverse correlation with results of PFT (P < .0001). At visual analysis, while emphysema (which affected 99 lobes) commonly showed pattern A or B, airway diseases such as obstructive bronchiolitis (n = 5) and bronchiectasis (n = 2) and areas with a mucus plug (n = 1) or centrilobular nodules (n = 5) showed pattern D or C. WI and WO xenon ventilation CT is feasible for the simultaneous regional evaluation of structural and ventilation abnormalities both quantitatively and qualitatively in patients with COPD. (c) RSNA, 2010.

  10. Peptide code-on-a-microplate for protease activity analysis via MALDI-TOF mass spectrometric quantitation.

    PubMed

    Hu, Junjie; Liu, Fei; Ju, Huangxian

    2015-04-21

    A peptide-encoded microplate was proposed for MALDI-TOF mass spectrometric (MS) analysis of protease activity. The peptide codes were designed to contain a coding region and the substrate of protease for enzymatic cleavage, respectively, and an internal standard method was proposed for the MS quantitation of the cleavage products of these peptide codes. Upon the cleavage reaction in the presence of target proteases, the coding regions were released from the microplate, which were directly quantitated by using corresponding peptides with one-amino acid difference as the internal standards. The coding region could be used as the unique "Protease ID" for the identification of corresponding protease, and the amount of the cleavage product was used for protease activity analysis. Using trypsin and chymotrypsin as the model proteases to verify the multiplex protease assay, the designed "Trypsin ID" and "Chymotrypsin ID" occurred at m/z 761.6 and 711.6. The logarithm value of the intensity ratio of "Protease ID" to internal standard was proportional to trypsin and chymotrypsin concentration in a range from 5.0 to 500 and 10 to 500 nM, respectively. The detection limits for trypsin and chymotrypsin were 2.3 and 5.2 nM, respectively. The peptide-encoded microplate showed good selectivity. This proposed method provided a powerful tool for convenient identification and activity analysis of multiplex proteases.

  11. Quantitative analysis on PUVA-induced skin photodamages using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhai, Juan; Guo, Zhouyi; Liu, Zhiming; Xiong, Honglian; Zeng, Changchun; Jin, Ying

    2009-08-01

    Psoralen plus ultraviolet A radiation (PUVA) therapy is a very important clinical treatment of skin diseases such as vitiligo and psoriasis, but associated with an increased risk of skin photodamages especially photoaging. Since skin biopsy alters the original skin morphology and always requires an iatrogenic trauma, optical coherence tomography (OCT) appears to be a promising technique to study skin damage in vivo. In this study, the Balb/c mice had 8-methoxypsralen (8-MOP) treatment prior to UVA radiation was used as PUVA-induced photo-damaged modal. The OCT imaging of photo-damaged group (modal) and normal group (control) in vivo was obtained of mice dorsal skin at 0, 24, 48, 72 hours after irradiation respectively. And then the results were quantitatively analyzed combined with histological information. The experimental results showed that, PUVA-induced photo-damaged skin had an increase in epidermal thickness (ET), a reduction of attenuation coefficient in OCT images signal, and an increase in brightness of the epidermis layer compared with the control group. In conclusion, noninvasive high-resolution imaging techniques such as OCT may be a promising tool for photobiological studies aimed at assessing photo-damage and repair processes in vivo. It can be used to quantitative analysis of changes in photo-damaged skin, such as the ET and collagen in dermis, provides a theoretical basis for treatment and prevention of skin photodamages.

  12. Quantitative research.

    PubMed

    Watson, Roger

    2015-04-01

    This article describes the basic tenets of quantitative research. The concepts of dependent and independent variables are addressed and the concept of measurement and its associated issues, such as error, reliability and validity, are explored. Experiments and surveys – the principal research designs in quantitative research – are described and key features explained. The importance of the double-blind randomised controlled trial is emphasised, alongside the importance of longitudinal surveys, as opposed to cross-sectional surveys. Essential features of data storage are covered, with an emphasis on safe, anonymous storage. Finally, the article explores the analysis of quantitative data, considering what may be analysed and the main uses of statistics in analysis.

  13. Integrative Analysis of Subcellular Quantitative Proteomics Studies Reveals Functional Cytoskeleton Membrane-Lipid Raft Interactions in Cancer.

    PubMed

    Shah, Anup D; Inder, Kerry L; Shah, Alok K; Cristino, Alexandre S; McKie, Arthur B; Gabra, Hani; Davis, Melissa J; Hill, Michelle M

    2016-10-07

    Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.

  14. Ketamine as a novel treatment for major depressive disorder and bipolar depression: a systematic review and quantitative meta-analysis.

    PubMed

    Lee, Ellen E; Della Selva, Megan P; Liu, Anson; Himelhoch, Seth

    2015-01-01

    Given the significant disability, morbidity and mortality associated with depression, the promising recent trials of ketamine highlight a novel intervention. A meta-analysis was conducted to assess the efficacy of ketamine in comparison with placebo for the reduction of depressive symptoms in patients who meet criteria for a major depressive episode. Two electronic databases were searched in September 2013 for English-language studies that were randomized placebo-controlled trials of ketamine treatment for patients with major depressive disorder or bipolar depression and utilized a standardized rating scale. Studies including participants receiving electroconvulsive therapy and adolescent/child participants were excluded. Five studies were included in the quantitative meta-analysis. The quantitative meta-analysis showed that ketamine significantly reduced depressive symptoms. The overall effect size at day 1 was large and statistically significant with an overall standardized mean difference of 1.01 (95% confidence interval 0.69-1.34) (P<.001), with the effects sustained at 7 days postinfusion. The heterogeneity of the studies was low and not statistically significant, and the funnel plot showed no publication bias. The large and statistically significant effect of ketamine on depressive symptoms supports a promising, new and effective pharmacotherapy with rapid onset, high efficacy and good tolerability. Copyright © 2015. Published by Elsevier Inc.

  15. Quantitative Analysis of Localized Sources Identified by Focal Impulse and Rotor Modulation Mapping in Atrial Fibrillation

    PubMed Central

    Benharash, Peyman; Buch, Eric; Frank, Paul; Share, Michael; Tung, Roderick; Shivkumar, Kalyanam; Mandapati, Ravi

    2015-01-01

    Background New approaches to ablation of atrial fibrillation (AF) include focal impulse and rotor modulation (FIRM) mapping, and initial results reported with this technique have been favorable. We sought to independently evaluate the approach by analyzing quantitative characteristics of atrial electrograms used to identify rotors and describe acute procedural outcomes of FIRM-guided ablation. Methods and Results All FIRM-guided ablation procedures (n=24; 50% paroxysmal) at University of California, Los Angeles Medical Center were included for analysis. During AF, unipolar atrial electrograms collected from a 64-pole basket catheter were used to construct phase maps and identify putative AF sources. These sites were targeted for ablation, in conjunction with pulmonary vein isolation in most patients (n=19; 79%). All patients had rotors identified (mean, 2.3±0.9 per patient; 72% in left atrium). Prespecified acute procedural end point was achieved in 12 of 24 (50%) patients: AF termination (n=1), organization (n=3), or >10% slowing of AF cycle length (n=8). Basket electrodes were within 1 cm of 54% of left atrial surface area, and a mean of 31 electrodes per patient showed interpretable atrial electrograms. Offline analysis revealed no differences between rotor and distant sites in dominant frequency or Shannon entropy. Electroanatomic mapping showed no rotational activation at FIRM-identified rotor sites in 23 of 24 patients (96%). Conclusions FIRM-identified rotor sites did not exhibit quantitative atrial electrogram characteristics expected from rotors and did not differ quantitatively from surrounding tissue. Catheter ablation at these sites, in conjunction with pulmonary vein isolation, resulted in AF termination or organization in a minority of patients (4/24; 17%). Further validation of this approach is necessary. PMID:25873718

  16. The Quantitative Analysis of Chennai Automotive Industry Cluster

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Ethirajan

    2016-07-01

    Chennai, also called as Detroit of India due to presence of Automotive Industry producing over 40 % of the India's vehicle and components. During 2001-2002, the Automotive Component Industries (ACI) in Ambattur, Thirumalizai and Thirumudivakkam Industrial Estate, Chennai has faced problems on infrastructure, technology, procurement, production and marketing. The objective is to study the Quantitative Performance of Chennai Automotive Industry Cluster before (2001-2002) and after the CDA (2008-2009). The methodology adopted is collection of primary data from 100 ACI using quantitative questionnaire and analyzing using Correlation Analysis (CA), Regression Analysis (RA), Friedman Test (FMT), and Kruskall Wallis Test (KWT).The CA computed for the different set of variables reveals that there is high degree of relationship between the variables studied. The RA models constructed establish the strong relationship between the dependent variable and a host of independent variables. The models proposed here reveal the approximate relationship in a closer form. KWT proves, there is no significant difference between three locations clusters with respect to: Net Profit, Production Cost, Marketing Costs, Procurement Costs and Gross Output. This supports that each location has contributed for development of automobile component cluster uniformly. The FMT proves, there is no significant difference between industrial units in respect of cost like Production, Infrastructure, Technology, Marketing and Net Profit. To conclude, the Automotive Industries have fully utilized the Physical Infrastructure and Centralised Facilities by adopting CDA and now exporting their products to North America, South America, Europe, Australia, Africa and Asia. The value chain analysis models have been implemented in all the cluster units. This Cluster Development Approach (CDA) model can be implemented in industries of under developed and developing countries for cost reduction and productivity

  17. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.

    PubMed

    Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei

    2013-12-03

    We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in

  18. Effectiveness of Myocardial Contrast Echocardiography Quantitative Analysis during Adenosine Stress versus Visual Analysis before Percutaneous Therapy in Acute Coronary Pain: A Coronary Artery TIMI Grading Comparing Study

    PubMed Central

    Yang, Lixia; Mu, Yuming; Quaglia, Luiz Augusto; Tang, Qi; Guan, Lina; Wang, Chunmei; Shih, Ming Chi

    2012-01-01

    The study aim was to compare two different stress echocardiography interpretation techniques based on the correlation with thrombosis in myocardial infarction (TIMI ) flow grading from acute coronary syndrome (ACS) patients. Forty-one patients with suspected ACS were studied before diagnostic coronary angiography with myocardial contrast echocardiography (MCE) at rest and at stress. The correlation of visual interpretation of MCE and TIMI flow grade was significant. The quantitative analysis (myocardial perfusion parameters: A, β, and A × β) and TIMI flow grade were significant. MCE visual interpretation and TIMI flow grade had a high degree of agreement, on diagnosing myocardial perfusion abnormality. If one considers TIMI flow grade <3 as abnormal, MCE visual interpretation at rest had 73.1% accuracy with 58.2% sensitivity and 84.2% specificity and at stress had 80.4% accuracy with 76.6% sensitivity and 83.3% specificity. The MCE quantitative analysis has better accuracy with 100% of agreement with different level of TIMI flow grading. MCE quantitative analysis at stress has showed a direct correlation with TIMI flow grade, more significant than the visual interpretation technique. Further studies could measure the clinical relevance of this more objective approach to managing acute coronary syndrome patient before percutaneous coronary intervention (PCI). PMID:22778555

  19. Quantitative analysis of 18F-NaF dynamic PET/CT cannot differentiate malignant from benign lesions in multiple myeloma

    PubMed Central

    Sachpekidis, Christos; Hillengass, Jens; Goldschmidt, Hartmut; Anwar, Hoda; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-01-01

    A renewed interest has been recently developed for the highly sensitive bone-seeking radiopharmaceutical 18F-NaF. Aim of the present study is to evaluate the potential utility of quantitative analysis of 18F-NaF dynamic PET/CT data in differentiating malignant from benign degenerative lesions in multiple myeloma (MM). 80 MM patients underwent whole-body PET/CT and dynamic PET/CT scanning of the pelvis with 18F-NaF. PET/CT data evaluation was based on visual (qualitative) assessment, semi-quantitative (SUV) calculations, and absolute quantitative estimations after application of a 2-tissue compartment model and a non-compartmental approach leading to the extraction of fractal dimension (FD). In total 263 MM lesions were demonstrated on 18F-NaF PET/CT. Semi-quantitative and quantitative evaluations were performed for 25 MM lesions as well as for 25 benign, degenerative and traumatic lesions. Mean SUVaverage for MM lesions was 11.9 and mean SUVmax was 23.2. Respectively, SUVaverage and SUVmax for degenerative lesions were 13.5 and 20.2. Kinetic analysis of 18F-NaF revealed the following mean values for MM lesions: K1 = 0.248 (1/min), k3 = 0.359 (1/min), influx (Ki) = 0.107 (1/min), FD = 1.382, while the respective values for degenerative lesions were: K1 = 0.169 (1/min), k3 = 0.422 (1/min), influx (Ki) = 0.095 (1/min), FD = 1. 411. No statistically significant differences between MM and benign degenerative disease regarding SUVaverage, SUVmax, K1, k3 and influx (Ki) were demonstrated. FD was significantly higher in degenerative than in malignant lesions. The present findings show that quantitative analysis of 18F-NaF PET data cannot differentiate malignant from benign degenerative lesions in MM patients, supporting previously published results, which reflect the limited role of 18F-NaF PET/CT in the diagnostic workup of MM. PMID:28913153

  20. Quantitative analysis of 18F-NaF dynamic PET/CT cannot differentiate malignant from benign lesions in multiple myeloma.

    PubMed

    Sachpekidis, Christos; Hillengass, Jens; Goldschmidt, Hartmut; Anwar, Hoda; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-01-01

    A renewed interest has been recently developed for the highly sensitive bone-seeking radiopharmaceutical 18 F-NaF. Aim of the present study is to evaluate the potential utility of quantitative analysis of 18 F-NaF dynamic PET/CT data in differentiating malignant from benign degenerative lesions in multiple myeloma (MM). 80 MM patients underwent whole-body PET/CT and dynamic PET/CT scanning of the pelvis with 18 F-NaF. PET/CT data evaluation was based on visual (qualitative) assessment, semi-quantitative (SUV) calculations, and absolute quantitative estimations after application of a 2-tissue compartment model and a non-compartmental approach leading to the extraction of fractal dimension (FD). In total 263 MM lesions were demonstrated on 18 F-NaF PET/CT. Semi-quantitative and quantitative evaluations were performed for 25 MM lesions as well as for 25 benign, degenerative and traumatic lesions. Mean SUV average for MM lesions was 11.9 and mean SUV max was 23.2. Respectively, SUV average and SUV max for degenerative lesions were 13.5 and 20.2. Kinetic analysis of 18 F-NaF revealed the following mean values for MM lesions: K 1 = 0.248 (1/min), k 3 = 0.359 (1/min), influx (K i ) = 0.107 (1/min), FD = 1.382, while the respective values for degenerative lesions were: K 1 = 0.169 (1/min), k 3 = 0.422 (1/min), influx (K i ) = 0.095 (1/min), FD = 1. 411. No statistically significant differences between MM and benign degenerative disease regarding SUV average , SUV max , K 1 , k 3 and influx (K i ) were demonstrated. FD was significantly higher in degenerative than in malignant lesions. The present findings show that quantitative analysis of 18 F-NaF PET data cannot differentiate malignant from benign degenerative lesions in MM patients, supporting previously published results, which reflect the limited role of 18 F-NaF PET/CT in the diagnostic workup of MM.

  1. Development of quantitative exposure data for a pooled exposure-response analysis of 10 silica cohorts.

    PubMed

    Mannetje, Andrea 't; Steenland, Kyle; Checkoway, Harvey; Koskela, Riitta-Sisko; Koponen, Matti; Attfield, Michael; Chen, Jingqiong; Hnizdo, Eva; DeKlerk, Nicholas; Dosemeci, Mustafa

    2002-08-01

    Comprehensive quantitative silica exposure estimates over time, measured in the same units across a number of cohorts, would make possible a pooled exposure-response analysis for lung cancer. Such an analysis would help clarify the continuing controversy regarding whether silica causes lung cancer. Existing quantitative exposure data for 10 silica-exposed cohorts were retrieved from the original investigators. Occupation- and time-specific exposure estimates were either adopted/adapted or developed for each cohort, and converted to milligram per cubic meter (mg/m(3)) respirable crystalline silica. Quantitative exposure assignments were typically based on a large number (thousands) of raw measurements, or otherwise consisted of exposure estimates by experts (for two cohorts). Median exposure level of the cohorts ranged between 0.04 and 0.59 mg/m(3) respirable crystalline silica. Exposure estimates were partially validated via their successful prediction of silicosis in these cohorts. Existing data were successfully adopted or modified to create comparable quantitative exposure estimates over time for 10 silica-exposed cohorts, permitting a pooled exposure-response analysis. The difficulties encountered in deriving common exposure estimates across cohorts are discussed. Copyright 2002 Wiley-Liss, Inc.

  2. Applying Quantitative Genetic Methods to Primate Social Behavior

    PubMed Central

    Brent, Lauren J. N.

    2013-01-01

    Increasingly, behavioral ecologists have applied quantitative genetic methods to investigate the evolution of behaviors in wild animal populations. The promise of quantitative genetics in unmanaged populations opens the door for simultaneous analysis of inheritance, phenotypic plasticity, and patterns of selection on behavioral phenotypes all within the same study. In this article, we describe how quantitative genetic techniques provide studies of the evolution of behavior with information that is unique and valuable. We outline technical obstacles for applying quantitative genetic techniques that are of particular relevance to studies of behavior in primates, especially those living in noncaptive populations, e.g., the need for pedigree information, non-Gaussian phenotypes, and demonstrate how many of these barriers are now surmountable. We illustrate this by applying recent quantitative genetic methods to spatial proximity data, a simple and widely collected primate social behavior, from adult rhesus macaques on Cayo Santiago. Our analysis shows that proximity measures are consistent across repeated measurements on individuals (repeatable) and that kin have similar mean measurements (heritable). Quantitative genetics may hold lessons of considerable importance for studies of primate behavior, even those without a specific genetic focus. PMID:24659839

  3. Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel

    NASA Astrophysics Data System (ADS)

    Kelton, Randall; Sola, Jalal Fathi; Meletis, Efstathios I.; Huang, Haiying

    2018-05-01

    Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.

  4. Characterization of breast lesion using T1-perfusion magnetic resonance imaging: Qualitative vs. quantitative analysis.

    PubMed

    Thakran, S; Gupta, P K; Kabra, V; Saha, I; Jain, P; Gupta, R K; Singh, A

    2018-06-14

    The objective of this study was to quantify the hemodynamic parameters using first pass analysis of T 1 -perfusion magnetic resonance imaging (MRI) data of human breast and to compare these parameters with the existing tracer kinetic parameters, semi-quantitative and qualitative T 1 -perfusion analysis in terms of lesion characterization. MRI of the breast was performed in 50 women (mean age, 44±11 [SD] years; range: 26-75) years with a total of 15 benign and 35 malignant breast lesions. After pre-processing, T 1 -perfusion MRI data was analyzed using qualitative approach by two radiologists (visual inspection of the kinetic curve into types I, II or III), semi-quantitative (characterization of kinetic curve types using empirical parameters), generalized-tracer-kinetic-model (tracer kinetic parameters) and first pass analysis (hemodynamic-parameters). Chi-squared test, t-test, one-way analysis-of-variance (ANOVA) using Bonferroni post-hoc test and receiver-operating-characteristic (ROC) curve were used for statistical analysis. All quantitative parameters except leakage volume (Ve), qualitative (type-I and III) and semi-quantitative curves (type-I and III) provided significant differences (P<0.05) between benign and malignant lesions. Kinetic parameters, particularly volume transfer coefficient (K trans ) provided a significant difference (P<0.05) between all grades except grade-II vs III. The hemodynamic parameter (relative-leakage-corrected-breast-blood-volume [rBBVcorr) provided a statistically significant difference (P<0.05) between all grades. It also provided highest sensitivity and specificity among all parameters in differentiation between different grades of malignant breast lesions. Quantitative parameters, particularly rBBVcorr and K trans provided similar sensitivity and specificity in differentiating benign from malignant breast lesions for this cohort. Moreover, rBBVcorr provided better differentiation between different grades of malignant breast

  5. A temperature-controlled photoelectrochemical cell for quantitative product analysis.

    PubMed

    Corson, Elizabeth R; Creel, Erin B; Kim, Youngsang; Urban, Jeffrey J; Kostecki, Robert; McCloskey, Bryan D

    2018-05-01

    In this study, we describe the design and operation of a temperature-controlled photoelectrochemical cell for analysis of gaseous and liquid products formed at an illuminated working electrode. This cell is specifically designed to quantitatively analyze photoelectrochemical processes that yield multiple gas and liquid products at low current densities and exhibit limiting reactant concentrations that prevent these processes from being studied in traditional single chamber electrolytic cells. The geometry of the cell presented in this paper enables front-illumination of the photoelectrode and maximizes the electrode surface area to electrolyte volume ratio to increase liquid product concentration and hence enhances ex situ spectroscopic sensitivity toward them. Gas is bubbled through the electrolyte in the working electrode chamber during operation to maintain a saturated reactant concentration and to continuously mix the electrolyte. Gaseous products are detected by an in-line gas chromatograph, and liquid products are analyzed ex situ by nuclear magnetic resonance. Cell performance was validated by examining carbon dioxide reduction on a silver foil electrode, showing comparable results both to those reported in the literature and identical experiments performed in a standard parallel-electrode electrochemical cell. To demonstrate a photoelectrochemical application of the cell, CO 2 reduction experiments were carried out on a plasmonic nanostructured silver photocathode and showed different product distributions under dark and illuminated conditions.

  6. A temperature-controlled photoelectrochemical cell for quantitative product analysis

    NASA Astrophysics Data System (ADS)

    Corson, Elizabeth R.; Creel, Erin B.; Kim, Youngsang; Urban, Jeffrey J.; Kostecki, Robert; McCloskey, Bryan D.

    2018-05-01

    In this study, we describe the design and operation of a temperature-controlled photoelectrochemical cell for analysis of gaseous and liquid products formed at an illuminated working electrode. This cell is specifically designed to quantitatively analyze photoelectrochemical processes that yield multiple gas and liquid products at low current densities and exhibit limiting reactant concentrations that prevent these processes from being studied in traditional single chamber electrolytic cells. The geometry of the cell presented in this paper enables front-illumination of the photoelectrode and maximizes the electrode surface area to electrolyte volume ratio to increase liquid product concentration and hence enhances ex situ spectroscopic sensitivity toward them. Gas is bubbled through the electrolyte in the working electrode chamber during operation to maintain a saturated reactant concentration and to continuously mix the electrolyte. Gaseous products are detected by an in-line gas chromatograph, and liquid products are analyzed ex situ by nuclear magnetic resonance. Cell performance was validated by examining carbon dioxide reduction on a silver foil electrode, showing comparable results both to those reported in the literature and identical experiments performed in a standard parallel-electrode electrochemical cell. To demonstrate a photoelectrochemical application of the cell, CO2 reduction experiments were carried out on a plasmonic nanostructured silver photocathode and showed different product distributions under dark and illuminated conditions.

  7. Feasibility of high-resolution quantitative perfusion analysis in patients with heart failure.

    PubMed

    Sammut, Eva; Zarinabad, Niloufar; Wesolowski, Roman; Morton, Geraint; Chen, Zhong; Sohal, Manav; Carr-White, Gerry; Razavi, Reza; Chiribiri, Amedeo

    2015-02-12

    Cardiac magnetic resonance (CMR) is playing an expanding role in the assessment of patients with heart failure (HF). The assessment of myocardial perfusion status in HF can be challenging due to left ventricular (LV) remodelling and wall thinning, coexistent scar and respiratory artefacts. The aim of this study was to assess the feasibility of quantitative CMR myocardial perfusion analysis in patients with HF. A group of 58 patients with heart failure (HF; left ventricular ejection fraction, LVEF ≤ 50%) and 33 patients with normal LVEF (LVEF >50%), referred for suspected coronary artery disease, were studied. All subjects underwent quantitative first-pass stress perfusion imaging using adenosine according to standard acquisition protocols. The feasibility of quantitative perfusion analysis was then assessed using high-resolution, 3 T kt perfusion and voxel-wise Fermi deconvolution. 30/58 (52%) subjects in the HF group had underlying ischaemic aetiology. Perfusion abnormalities were seen amongst patients with ischaemic HF and patients with normal LV function. No regional perfusion defect was observed in the non-ischaemic HF group. Good agreement was found between visual and quantitative analysis across all groups. Absolute stress perfusion rate, myocardial perfusion reserve (MPR) and endocardial-epicardial MPR ratio identified areas with abnormal perfusion in the ischaemic HF group (p = 0.02; p = 0.04; p = 0.02, respectively). In the Normal LV group, MPR and endocardial-epicardial MPR ratio were able to distinguish between normal and abnormal segments (p = 0.04; p = 0.02 respectively). No significant differences of absolute stress perfusion rate or MPR were observed comparing visually normal segments amongst groups. Our results demonstrate the feasibility of high-resolution voxel-wise perfusion assessment in patients with HF.

  8. Qualitative and quantitative temporal analysis of licit and illicit drugs in wastewater in Australia using liquid chromatography coupled to mass spectrometry.

    PubMed

    Bade, Richard; White, Jason M; Gerber, Cobus

    2018-01-01

    The combination of qualitative and quantitative bimonthly analysis of pharmaceuticals and illicit drugs using liquid chromatography coupled to mass spectrometry is presented. A liquid chromatography-quadrupole time of flight instrument equipped with Sequential Window Acquisition of all THeoretical fragment-ion spectra (SWATH) was used to qualitatively screen 346 compounds in influent wastewater from two wastewater treatment plants in South Australia over a 14-month period. A total of 100 compounds were confirmed and/or detected using this strategy, with 61 confirmed in all samples including antidepressants (amitriptyline, dothiepin, doxepin), antipsychotics (amisulpride, clozapine), illicit drugs (cocaine, methamphetamine, amphetamine, 3,4-methylenedioxymethamphetamine (MDMA)), and known drug adulterants (lidocaine and tetramisole). A subset of these compounds was also included in a quantitative method, analyzed on a liquid chromatography-triple quadrupole mass spectrometer. The use of illicit stimulants (methamphetamine) showed a clear decrease, levels of opioid analgesics (morphine and methadone) remained relatively stable, while the use of new psychoactive substances (methylenedioxypyrovalerone (MDPV) and Alpha PVP) varied with no visible trend. This work demonstrates the value that high-frequency sampling combined with quantitative and qualitative analysis can deliver. Graphical abstract Temporal analysis of licit and illicit drugs in South Australia.

  9. A novel iris transillumination grading scale allowing flexible assessment with quantitative image analysis and visual matching.

    PubMed

    Wang, Chen; Brancusi, Flavia; Valivullah, Zaheer M; Anderson, Michael G; Cunningham, Denise; Hedberg-Buenz, Adam; Power, Bradley; Simeonov, Dimitre; Gahl, William A; Zein, Wadih M; Adams, David R; Brooks, Brian

    2018-01-01

    To develop a sensitive scale of iris transillumination suitable for clinical and research use, with the capability of either quantitative analysis or visual matching of images. Iris transillumination photographic images were used from 70 study subjects with ocular or oculocutaneous albinism. Subjects represented a broad range of ocular pigmentation. A subset of images was subjected to image analysis and ranking by both expert and nonexpert reviewers. Quantitative ordering of images was compared with ordering by visual inspection. Images were binned to establish an 8-point scale. Ranking consistency was evaluated using the Kendall rank correlation coefficient (Kendall's tau). Visual ranking results were assessed using Kendall's coefficient of concordance (Kendall's W) analysis. There was a high degree of correlation among the image analysis, expert-based and non-expert-based image rankings. Pairwise comparisons of the quantitative ranking with each reviewer generated an average Kendall's tau of 0.83 ± 0.04 (SD). Inter-rater correlation was also high with Kendall's W of 0.96, 0.95, and 0.95 for nonexpert, expert, and all reviewers, respectively. The current standard for assessing iris transillumination is expert assessment of clinical exam findings. We adapted an image-analysis technique to generate quantitative transillumination values. Quantitative ranking was shown to be highly similar to a ranking produced by both expert and nonexpert reviewers. This finding suggests that the image characteristics used to quantify iris transillumination do not require expert interpretation. Inter-rater rankings were also highly similar, suggesting that varied methods of transillumination ranking are robust in terms of producing reproducible results.

  10. Semi-quantitative analysis of salivary gland scintigraphy in Sjögren's syndrome diagnosis: a first-line tool.

    PubMed

    Angusti, Tiziana; Pilati, Emanuela; Parente, Antonella; Carignola, Renato; Manfredi, Matteo; Cauda, Simona; Pizzigati, Elena; Dubreuil, Julien; Giammarile, Francesco; Podio, Valerio; Skanjeti, Andrea

    2017-09-01

    The aim of this study was the assessment of semi-quantified salivary gland dynamic scintigraphy (SGdS) parameters independently and in an integrated way in order to predict primary Sjögren's syndrome (pSS). Forty-six consecutive patients (41 females; age 61 ± 11 years) with sicca syndrome were studied by SGdS after injection of 200 MBq of pertechnetate. In sixteen patients, pSS was diagnosed, according to American-European Consensus Group criteria (AECGc). Semi-quantitative parameters (uptake (UP) and excretion fraction (EF)) were obtained for each gland. ROC curves were used to determine the best cut-off value. The area under the curve (AUC) was used to estimate the accuracy of each semi-quantitative analysis. To assess the correlation between scintigraphic results and disease severity, semi-quantitative parameters were plotted versus Sjögren's syndrome disease activity index (ESSDAI). A nomogram was built to perform an integrated evaluation of all the scintigraphic semi-quantitative data. Both UP and EF of salivary glands were significantly lower in pSS patients compared to those in non-pSS (p < 0.001). ROC curve showed significantly large AUC for both the parameters (p < 0.05). Parotid UP and submandibular EF, assessed by univariated and multivariate logistic regression, showed a significant and independent correlation with pSS diagnosis (p value <0.05). No correlation was found between SGdS semi-quantitative parameters and ESSDAI. The proposed nomogram accuracy was 87%. SGdS is an accurate and reproducible tool for the diagnosis of pSS. ESSDAI was not shown to be correlated with SGdS data. SGdS should be the first-line imaging technique in patients with suspected pSS.

  11. Quantitative analysis of ground penetrating radar data in the Mu Us Sandland

    NASA Astrophysics Data System (ADS)

    Fu, Tianyang; Tan, Lihua; Wu, Yongqiu; Wen, Yanglei; Li, Dawei; Duan, Jinlong

    2018-06-01

    Ground penetrating radar (GPR), which can reveal the sedimentary structure and development process of dunes, is widely used to evaluate aeolian landforms. The interpretations for GPR profiles are mostly based on qualitative descriptions of geometric features of the radar reflections. This research quantitatively analyzed the waveform parameter characteristics of different radar units by extracting the amplitude and time interval parameters of GPR data in the Mu Us Sandland in China, and then identified and interpreted different sedimentary structures. The results showed that different types of radar units had specific waveform parameter characteristics. The main waveform parameter characteristics of sand dune radar facies and sandstone radar facies included low amplitudes and wide ranges of time intervals, ranging from 0 to 0.25 and 4 to 33 ns respectively, and the mean amplitudes changed gradually with time intervals. The amplitude distribution curves of various sand dune radar facies were similar as unimodal distributions. The radar surfaces showed high amplitudes with time intervals concentrated in high-value areas, ranging from 0.08 to 0.61 and 9 to 34 ns respectively, and the mean amplitudes changed drastically with time intervals. The amplitude and time interval values of lacustrine radar facies were between that of sand dune radar facies and radar surfaces, ranging from 0.08 to 0.29 and 11 to 30 ns respectively, and the mean amplitude and time interval curve was approximately trapezoidal. The quantitative extraction and analysis of GPR reflections could help distinguish various radar units and provide evidence for identifying sedimentary structure in aeolian landforms.

  12. Classification-based quantitative analysis of stable isotope labeling by amino acids in cell culture (SILAC) data.

    PubMed

    Kim, Seongho; Carruthers, Nicholas; Lee, Joohyoung; Chinni, Sreenivasa; Stemmer, Paul

    2016-12-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is a practical and powerful approach for quantitative proteomic analysis. A key advantage of SILAC is the ability to simultaneously detect the isotopically labeled peptides in a single instrument run and so guarantee relative quantitation for a large number of peptides without introducing any variation caused by separate experiment. However, there are a few approaches available to assessing protein ratios and none of the existing algorithms pays considerable attention to the proteins having only one peptide hit. We introduce new quantitative approaches to dealing with SILAC protein-level summary using classification-based methodologies, such as Gaussian mixture models with EM algorithms and its Bayesian approach as well as K-means clustering. In addition, a new approach is developed using Gaussian mixture model and a stochastic, metaheuristic global optimization algorithm, particle swarm optimization (PSO), to avoid either a premature convergence or being stuck in a local optimum. Our simulation studies show that the newly developed PSO-based method performs the best among others in terms of F1 score and the proposed methods further demonstrate the ability of detecting potential markers through real SILAC experimental data. No matter how many peptide hits the protein has, the developed approach can be applicable, rescuing many proteins doomed to removal. Furthermore, no additional correction for multiple comparisons is necessary for the developed methods, enabling direct interpretation of the analysis outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Case-Deletion Diagnostics for Maximum Likelihood Multipoint Quantitative Trait Locus Linkage Analysis

    PubMed Central

    Mendoza, Maria C.B.; Burns, Trudy L.; Jones, Michael P.

    2009-01-01

    Objectives Case-deletion diagnostic methods are tools that allow identification of influential observations that may affect parameter estimates and model fitting conclusions. The goal of this paper was to develop two case-deletion diagnostics, the exact case deletion (ECD) and the empirical influence function (EIF), for detecting outliers that can affect results of sib-pair maximum likelihood quantitative trait locus (QTL) linkage analysis. Methods Subroutines to compute the ECD and EIF were incorporated into the maximum likelihood QTL variance estimation components of the linkage analysis program MAPMAKER/SIBS. Performance of the diagnostics was compared in simulation studies that evaluated the proportion of outliers correctly identified (sensitivity), and the proportion of non-outliers correctly identified (specificity). Results Simulations involving nuclear family data sets with one outlier showed EIF sensitivities approximated ECD sensitivities well for outlier-affected parameters. Sensitivities were high, indicating the outlier was identified a high proportion of the time. Simulations also showed the enormous computational time advantage of the EIF. Diagnostics applied to body mass index in nuclear families detected observations influential on the lod score and model parameter estimates. Conclusions The EIF is a practical diagnostic tool that has the advantages of high sensitivity and quick computation. PMID:19172086

  14. Quantitative Proteomic Analysis of the Hfq-Regulon in Sinorhizobium meliloti 2011

    PubMed Central

    Sobrero, Patricio; Schlüter, Jan-Philip; Lanner, Ulrike; Schlosser, Andreas; Becker, Anke; Valverde, Claudio

    2012-01-01

    Riboregulation stands for RNA-based control of gene expression. In bacteria, small non-coding RNAs (sRNAs) are a major class of riboregulatory elements, most of which act at the post-transcriptional level by base-pairing target mRNA genes. The RNA chaperone Hfq facilitates antisense interactions between target mRNAs and regulatory sRNAs, thus influencing mRNA stability and/or translation rate. In the α-proteobacterium Sinorhizobium meliloti strain 2011, the identification and detection of multiple sRNAs genes and the broadly pleitropic phenotype associated to the absence of a functional Hfq protein both support the existence of riboregulatory circuits controlling gene expression to ensure the fitness of this bacterium in both free living and symbiotic conditions. In order to identify target mRNAs subject to Hfq-dependent riboregulation, we have compared the proteome of an hfq mutant and the wild type S. meliloti by quantitative proteomics following protein labelling with 15N. Among 2139 univocally identified proteins, a total of 195 proteins showed a differential abundance between the Hfq mutant and the wild type strain; 65 proteins accumulated ≥2-fold whereas 130 were downregulated (≤0.5-fold) in the absence of Hfq. This profound proteomic impact implies a major role for Hfq on regulation of diverse physiological processes in S. meliloti, from transport of small molecules to homeostasis of iron and nitrogen. Changes in the cellular levels of proteins involved in transport of nucleotides, peptides and amino acids, and in iron homeostasis, were confirmed with phenotypic assays. These results represent the first quantitative proteomic analysis in S. meliloti. The comparative analysis of the hfq mutant proteome allowed identification of novel strongly Hfq-regulated genes in S. meliloti. PMID:23119037

  15. Quantitative proteomic analysis of the Hfq-regulon in Sinorhizobium meliloti 2011.

    PubMed

    Sobrero, Patricio; Schlüter, Jan-Philip; Lanner, Ulrike; Schlosser, Andreas; Becker, Anke; Valverde, Claudio

    2012-01-01

    Riboregulation stands for RNA-based control of gene expression. In bacteria, small non-coding RNAs (sRNAs) are a major class of riboregulatory elements, most of which act at the post-transcriptional level by base-pairing target mRNA genes. The RNA chaperone Hfq facilitates antisense interactions between target mRNAs and regulatory sRNAs, thus influencing mRNA stability and/or translation rate. In the α-proteobacterium Sinorhizobium meliloti strain 2011, the identification and detection of multiple sRNAs genes and the broadly pleitropic phenotype associated to the absence of a functional Hfq protein both support the existence of riboregulatory circuits controlling gene expression to ensure the fitness of this bacterium in both free living and symbiotic conditions. In order to identify target mRNAs subject to Hfq-dependent riboregulation, we have compared the proteome of an hfq mutant and the wild type S. meliloti by quantitative proteomics following protein labelling with (15)N. Among 2139 univocally identified proteins, a total of 195 proteins showed a differential abundance between the Hfq mutant and the wild type strain; 65 proteins accumulated ≥2-fold whereas 130 were downregulated (≤0.5-fold) in the absence of Hfq. This profound proteomic impact implies a major role for Hfq on regulation of diverse physiological processes in S. meliloti, from transport of small molecules to homeostasis of iron and nitrogen. Changes in the cellular levels of proteins involved in transport of nucleotides, peptides and amino acids, and in iron homeostasis, were confirmed with phenotypic assays. These results represent the first quantitative proteomic analysis in S. meliloti. The comparative analysis of the hfq mutant proteome allowed identification of novel strongly Hfq-regulated genes in S. meliloti.

  16. A Computer-Aided Analysis Method of SPECT Brain Images for Quantitative Treatment Monitoring: Performance Evaluations and Clinical Applications.

    PubMed

    Zheng, Xiujuan; Wei, Wentao; Huang, Qiu; Song, Shaoli; Wan, Jieqing; Huang, Gang

    2017-01-01

    The objective and quantitative analysis of longitudinal single photon emission computed tomography (SPECT) images are significant for the treatment monitoring of brain disorders. Therefore, a computer aided analysis (CAA) method is introduced to extract a change-rate map (CRM) as a parametric image for quantifying the changes of regional cerebral blood flow (rCBF) in longitudinal SPECT brain images. The performances of the CAA-CRM approach in treatment monitoring are evaluated by the computer simulations and clinical applications. The results of computer simulations show that the derived CRMs have high similarities with their ground truths when the lesion size is larger than system spatial resolution and the change rate is higher than 20%. In clinical applications, the CAA-CRM approach is used to assess the treatment of 50 patients with brain ischemia. The results demonstrate that CAA-CRM approach has a 93.4% accuracy of recovered region's localization. Moreover, the quantitative indexes of recovered regions derived from CRM are all significantly different among the groups and highly correlated with the experienced clinical diagnosis. In conclusion, the proposed CAA-CRM approach provides a convenient solution to generate a parametric image and derive the quantitative indexes from the longitudinal SPECT brain images for treatment monitoring.

  17. Comprehensive Quantitative Analysis of Ovarian and Breast Cancer Tumor Peptidomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhe; Wu, Chaochao; Xie, Fang

    Aberrant degradation of proteins is associated with many pathological states, including cancers. Mass spectrometric analysis of tumor peptidomes, the intracellular and intercellular products of protein degradation, has the potential to provide biological insights on proteolytic processing in cancer. However, attempts to use the information on these smaller protein degradation products from tumors for biomarker discovery and cancer biology studies have been fairly limited to date, largely due to the lack of effective approaches for robust peptidomics identification and quantification, and the prevalence of confounding factors and biases associated with sample handling and processing. Herein, we have developed an effective andmore » robust analytical platform for comprehensive analyses of tissue peptidomes, and which is suitable for high throughput quantitative studies. The reproducibility and coverage of the platform, as well as the suitability of clinical ovarian tumor and patient-derived breast tumor xenograft samples with post-excision delay of up to 60 min before freezing for peptidomics analysis, have been demonstrated. Additionally, our data also show that the peptidomics profiles can effectively separate breast cancer subtypes, reflecting tumor-associated protease activities. In conclusion, peptidomics complements results obtainable from conventional bottom-up proteomics, and provides insights not readily obtainable from such approaches.« less

  18. Quantitative Analysis of Intracellular Motility Based on Optical Flow Model

    PubMed Central

    Li, Heng

    2017-01-01

    Analysis of cell mobility is a key issue for abnormality identification and classification in cell biology research. However, since cell deformation induced by various biological processes is random and cell protrusion is irregular, it is difficult to measure cell morphology and motility in microscopic images. To address this dilemma, we propose an improved variation optical flow model for quantitative analysis of intracellular motility, which not only extracts intracellular motion fields effectively but also deals with optical flow computation problem at the border by taking advantages of the formulation based on L1 and L2 norm, respectively. In the energy functional of our proposed optical flow model, the data term is in the form of L2 norm; the smoothness of the data changes with regional features through an adaptive parameter, using L1 norm near the edge of the cell and L2 norm away from the edge. We further extract histograms of oriented optical flow (HOOF) after optical flow field of intracellular motion is computed. Then distances of different HOOFs are calculated as the intracellular motion features to grade the intracellular motion. Experimental results show that the features extracted from HOOFs provide new insights into the relationship between the cell motility and the special pathological conditions. PMID:29065574

  19. Comprehensive Quantitative Analysis of Ovarian and Breast Cancer Tumor Peptidomes

    DOE PAGES

    Xu, Zhe; Wu, Chaochao; Xie, Fang; ...

    2014-10-28

    Aberrant degradation of proteins is associated with many pathological states, including cancers. Mass spectrometric analysis of tumor peptidomes, the intracellular and intercellular products of protein degradation, has the potential to provide biological insights on proteolytic processing in cancer. However, attempts to use the information on these smaller protein degradation products from tumors for biomarker discovery and cancer biology studies have been fairly limited to date, largely due to the lack of effective approaches for robust peptidomics identification and quantification, and the prevalence of confounding factors and biases associated with sample handling and processing. Herein, we have developed an effective andmore » robust analytical platform for comprehensive analyses of tissue peptidomes, and which is suitable for high throughput quantitative studies. The reproducibility and coverage of the platform, as well as the suitability of clinical ovarian tumor and patient-derived breast tumor xenograft samples with post-excision delay of up to 60 min before freezing for peptidomics analysis, have been demonstrated. Additionally, our data also show that the peptidomics profiles can effectively separate breast cancer subtypes, reflecting tumor-associated protease activities. In conclusion, peptidomics complements results obtainable from conventional bottom-up proteomics, and provides insights not readily obtainable from such approaches.« less

  20. Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Muldoon, Timothy J.; Thekkek, Nadhi; Roblyer, Darren; Maru, Dipen; Harpaz, Noam; Potack, Jonathan; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2010-03-01

    Early detection of neoplasia in patients with Barrett's esophagus is essential to improve outcomes. The aim of this ex vivo study was to evaluate the ability of high-resolution microendoscopic imaging and quantitative image analysis to identify neoplastic lesions in patients with Barrett's esophagus. Nine patients with pathologically confirmed Barrett's esophagus underwent endoscopic examination with biopsies or endoscopic mucosal resection. Resected fresh tissue was imaged with fiber bundle microendoscopy; images were analyzed by visual interpretation or by quantitative image analysis to predict whether the imaged sites were non-neoplastic or neoplastic. The best performing pair of quantitative features were chosen based on their ability to correctly classify the data into the two groups. Predictions were compared to the gold standard of histopathology. Subjective analysis of the images by expert clinicians achieved average sensitivity and specificity of 87% and 61%, respectively. The best performing quantitative classification algorithm relied on two image textural features and achieved a sensitivity and specificity of 87% and 85%, respectively. This ex vivo pilot trial demonstrates that quantitative analysis of images obtained with a simple microendoscope system can distinguish neoplasia in Barrett's esophagus with good sensitivity and specificity when compared to histopathology and to subjective image interpretation.

  1. [Quantitative analysis of Cu in water by collinear DP-LIBS].

    PubMed

    Zheng, Mei-Lan; Yao, Ming-Yin; Chen, Tian-Bing; Lin, Yong-Zeng; Li, Wen-Bing; Liu, Mu-Hua

    2014-07-01

    The purpose of this research is to study the influence of double pulse laser induced breakdown spectroscopy (DP-LIBS) on the sensitivity of Cu in water. The water solution of Cu was tested by collinear DP-LIBS in this article. The results show that spectral intensity of Cu can be enhanced obviously by DP-LIBS, compared with single pulse laser induced breakdown spectroscopy (SP-LIBS). Besides, the experimental results were significantly impacted by delay time between laser pulse and spectrometer acquisition, delay time of double laser pulse and energy of laser pulse and so on. The paper determined the best conditions for DP-LIBS detecting Cu in water. The optimal acquisition delay time was 1 380 ns. The best laser pulse delay time was 25 ns. The most appropriate energy of double laser pulse was 100 mJ. Characteristic analysis of spectra of Cu at 324.7 and 327.4 nm was done for quantitative analysis. The detection limit was 3.5 microg x mL(-1) at 324.7 nm, and the detection limit was 4.84 microg x mL(-1) at 327.4 nm. The relative standard deviation of the two characteristic spectral lines was within 10%. The calibration curve of characteristic spectral line, established by 327.4 nm, was verified with 500 microg x mL(-1) sample. Concentration of the sample was 446 microg x mL(-1) calculated by the calibration curve. This research shows that the detection sensitivity of Cu in water can be improved by DP-LIBS. At the same time, it had high stability.

  2. Geographical classification of Epimedium based on HPLC fingerprint analysis combined with multi-ingredients quantitative analysis.

    PubMed

    Xu, Ning; Zhou, Guofu; Li, Xiaojuan; Lu, Heng; Meng, Fanyun; Zhai, Huaqiang

    2017-05-01

    A reliable and comprehensive method for identifying the origin and assessing the quality of Epimedium has been developed. The method is based on analysis of HPLC fingerprints, combined with similarity analysis, hierarchical cluster analysis (HCA), principal component analysis (PCA) and multi-ingredient quantitative analysis. Nineteen batches of Epimedium, collected from different areas in the western regions of China, were used to establish the fingerprints and 18 peaks were selected for the analysis. Similarity analysis, HCA and PCA all classified the 19 areas into three groups. Simultaneous quantification of the five major bioactive ingredients in the Epimedium samples was also carried out to confirm the consistency of the quality tests. These methods were successfully used to identify the geographical origin of the Epimedium samples and to evaluate their quality. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Time-Resolved Fluorescent Immunochromatography of Aflatoxin B1 in Soybean Sauce: A Rapid and Sensitive Quantitative Analysis.

    PubMed

    Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Zhang, Wen

    2016-07-14

    Rapid and quantitative sensing of aflatoxin B1 with high sensitivity and specificity has drawn increased attention of studies investigating soybean sauce. A sensitive and rapid quantitative immunochromatographic sensing method was developed for the detection of aflatoxin B1 based on time-resolved fluorescence. It combines the advantages of time-resolved fluorescent sensing and immunochromatography. The dynamic range of a competitive and portable immunoassay was 0.3-10.0 µg·kg(-1), with a limit of detection (LOD) of 0.1 µg·kg(-1) and recoveries of 87.2%-114.3%, within 10 min. The results showed good correlation (R² > 0.99) between time-resolved fluorescent immunochromatographic strip test and high performance liquid chromatography (HPLC). Soybean sauce samples analyzed using time-resolved fluorescent immunochromatographic strip test revealed that 64.2% of samples contained aflatoxin B1 at levels ranging from 0.31 to 12.5 µg·kg(-1). The strip test is a rapid, sensitive, quantitative, and cost-effective on-site screening technique in food safety analysis.

  4. Comparative study of contrast-enhanced ultrasound qualitative and quantitative analysis for identifying benign and malignant breast tumor lumps.

    PubMed

    Liu, Jian; Gao, Yun-Hua; Li, Ding-Dong; Gao, Yan-Chun; Hou, Ling-Mi; Xie, Ting

    2014-01-01

    To compare the value of contrast-enhanced ultrasound (CEUS) qualitative and quantitative analysis in the identification of breast tumor lumps. Qualitative and quantitative indicators of CEUS for 73 cases of breast tumor lumps were retrospectively analyzed by univariate and multivariate approaches. Logistic regression was applied and ROC curves were drawn for evaluation and comparison. The CEUS qualitative indicator-generated regression equation contained three indicators, namely enhanced homogeneity, diameter line expansion and peak intensity grading, which demonstrated prediction accuracy for benign and malignant breast tumor lumps of 91.8%; the quantitative indicator-generated regression equation only contained one indicator, namely the relative peak intensity, and its prediction accuracy was 61.5%. The corresponding areas under the ROC curve for qualitative and quantitative analyses were 91.3% and 75.7%, respectively, which exhibited a statistically significant difference by the Z test (P<0.05). The ability of CEUS qualitative analysis to identify breast tumor lumps is better than with quantitative analysis.

  5. Novel quantitative analysis of autofluorescence images for oral cancer screening.

    PubMed

    Huang, Tze-Ta; Huang, Jehn-Shyun; Wang, Yen-Yun; Chen, Ken-Chung; Wong, Tung-Yiu; Chen, Yi-Chun; Wu, Che-Wei; Chan, Leong-Perng; Lin, Yi-Chu; Kao, Yu-Hsun; Nioka, Shoko; Yuan, Shyng-Shiou F; Chung, Pau-Choo

    2017-05-01

    VELscope® was developed to inspect oral mucosa autofluorescence. However, its accuracy is heavily dependent on the examining physician's experience. This study was aimed toward the development of a novel quantitative analysis of autofluorescence images for oral cancer screening. Patients with either oral cancer or precancerous lesions and a control group with normal oral mucosa were enrolled in this study. White light images and VELscope® autofluorescence images of the lesions were taken with a digital camera. The lesion in the image was chosen as the region of interest (ROI). The average intensity and heterogeneity of the ROI were calculated. A quadratic discriminant analysis (QDA) was utilized to compute boundaries based on sensitivity and specificity. 47 oral cancer lesions, 54 precancerous lesions, and 39 normal oral mucosae controls were analyzed. A boundary of specificity of 0.923 and a sensitivity of 0.979 between the oral cancer lesions and normal oral mucosae were validated. The oral cancer and precancerous lesions could also be differentiated from normal oral mucosae with a specificity of 0.923 and a sensitivity of 0.970. The novel quantitative analysis of the intensity and heterogeneity of VELscope® autofluorescence images used in this study in combination with a QDA classifier can be used to differentiate oral cancer and precancerous lesions from normal oral mucosae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Three-dimensional modeling and quantitative analysis of gap junction distributions in cardiac tissue.

    PubMed

    Lackey, Daniel P; Carruth, Eric D; Lasher, Richard A; Boenisch, Jan; Sachse, Frank B; Hitchcock, Robert W

    2011-11-01

    Gap junctions play a fundamental role in intercellular communication in cardiac tissue. Various types of heart disease including hypertrophy and ischemia are associated with alterations of the spatial arrangement of gap junctions. Previous studies applied two-dimensional optical and electron-microscopy to visualize gap junction arrangements. In normal cardiomyocytes, gap junctions were primarily found at cell ends, but can be found also in more central regions. In this study, we extended these approaches toward three-dimensional reconstruction of gap junction distributions based on high-resolution scanning confocal microscopy and image processing. We developed methods for quantitative characterization of gap junction distributions based on analysis of intensity profiles along the principal axes of myocytes. The analyses characterized gap junction polarization at cell ends and higher-order statistical image moments of intensity profiles. The methodology was tested in rat ventricular myocardium. Our analysis yielded novel quantitative data on gap junction distributions. In particular, the analysis demonstrated that the distributions exhibit significant variability with respect to polarization, skewness, and kurtosis. We suggest that this methodology provides a quantitative alternative to current approaches based on visual inspection, with applications in particular in characterization of engineered and diseased myocardium. Furthermore, we propose that these data provide improved input for computational modeling of cardiac conduction.

  7. Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy.

    PubMed

    Guo, L B; Hao, Z Q; Shen, M; Xiong, W; He, X N; Xie, Z Q; Gao, M; Li, X Y; Zeng, X Y; Lu, Y F

    2013-07-29

    To improve the accuracy of quantitative analysis in laser-induced breakdown spectroscopy, the plasma produced by a Nd:YAG laser from steel targets was confined by a cavity. A number of elements with low concentrations, such as vanadium (V), chromium (Cr), and manganese (Mn), in the steel samples were investigated. After the optimization of the cavity dimension and laser fluence, significant enhancement factors of 4.2, 3.1, and 2.87 in the emission intensity of V, Cr, and Mn lines, respectively, were achieved at a laser fluence of 42.9 J/cm(2) using a hemispherical cavity (diameter: 5 mm). More importantly, the correlation coefficient of the V I 440.85/Fe I 438.35 nm was increased from 0.946 (without the cavity) to 0.981 (with the cavity); and similar results for Cr I 425.43/Fe I 425.08 nm and Mn I 476.64/Fe I 492.05 nm were also obtained. Therefore, it was demonstrated that the accuracy of quantitative analysis with low concentration elements in steel samples was improved, because the plasma became uniform with spatial confinement. The results of this study provide a new pathway for improving the accuracy of quantitative analysis of LIBS.

  8. Tissue microarrays and quantitative tissue-based image analysis as a tool for oncology biomarker and diagnostic development.

    PubMed

    Dolled-Filhart, Marisa P; Gustavson, Mark D

    2012-11-01

    Translational oncology has been improved by using tissue microarrays (TMAs), which facilitate biomarker analysis of large cohorts on a single slide. This has allowed for rapid analysis and validation of potential biomarkers for prognostic and predictive value, as well as for evaluation of biomarker prevalence. Coupled with quantitative analysis of immunohistochemical (IHC) staining, objective and standardized biomarker data from tumor samples can further advance companion diagnostic approaches for the identification of drug-responsive or resistant patient subpopulations. This review covers the advantages, disadvantages and applications of TMAs for biomarker research. Research literature and reviews of TMAs and quantitative image analysis methodology have been surveyed for this review (with an AQUA® analysis focus). Applications such as multi-marker diagnostic development and pathway-based biomarker subpopulation analyses are described. Tissue microarrays are a useful tool for biomarker analyses including prevalence surveys, disease progression assessment and addressing potential prognostic or predictive value. By combining quantitative image analysis with TMAs, analyses will be more objective and reproducible, allowing for more robust IHC-based diagnostic test development. Quantitative multi-biomarker IHC diagnostic tests that can predict drug response will allow for greater success of clinical trials for targeted therapies and provide more personalized clinical decision making.

  9. Timed function tests, motor function measure, and quantitative thigh muscle MRI in ambulant children with Duchenne muscular dystrophy: A cross-sectional analysis.

    PubMed

    Schmidt, Simone; Hafner, Patricia; Klein, Andrea; Rubino-Nacht, Daniela; Gocheva, Vanya; Schroeder, Jonas; Naduvilekoot Devasia, Arjith; Zuesli, Stephanie; Bernert, Guenther; Laugel, Vincent; Bloetzer, Clemens; Steinlin, Maja; Capone, Andrea; Gloor, Monika; Tobler, Patrick; Haas, Tanja; Bieri, Oliver; Zumbrunn, Thomas; Fischer, Dirk; Bonati, Ulrike

    2018-01-01

    The development of new therapeutic agents for the treatment of Duchenne muscular dystrophy has put a focus on defining outcome measures most sensitive to capture treatment effects. This cross-sectional analysis investigates the relation between validated clinical assessments such as the 6-minute walk test, motor function measure and quantitative muscle MRI of thigh muscles in ambulant Duchenne muscular dystrophy patients, aged 6.5 to 10.8 years (mean 8.2, SD 1.1). Quantitative muscle MRI included the mean fat fraction using a 2-point Dixon technique, and transverse relaxation time (T2) measurements. All clinical assessments were highly significantly inter-correlated with p < 0.001. The strongest correlation with the motor function measure and its D1-subscore was shown by the 6-minute walk test. Clinical assessments showed no correlation with age. Importantly, quantitative muscle MRI values significantly correlated with all clinical assessments with the extensors showing the strongest correlation. In contrast to the clinical assessments, quantitative muscle MRI values were highly significantly correlated with age. In conclusion, the motor function measure and timed function tests measure disease severity in a highly comparable fashion and all tests correlated with quantitative muscle MRI values quantifying fatty muscle degeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Image velocimetry and spectral analysis enable quantitative characterization of larval zebrafish gut motility.

    PubMed

    Ganz, J; Baker, R P; Hamilton, M K; Melancon, E; Diba, P; Eisen, J S; Parthasarathy, R

    2018-05-02

    Normal gut function requires rhythmic and coordinated movements that are affected by developmental processes, physical and chemical stimuli, and many debilitating diseases. The imaging and characterization of gut motility, especially regarding periodic, propagative contractions driving material transport, are therefore critical goals. Previous image analysis approaches have successfully extracted properties related to the temporal frequency of motility modes, but robust measures of contraction magnitude, especially from in vivo image data, remain challenging to obtain. We developed a new image analysis method based on image velocimetry and spectral analysis that reveals temporal characteristics such as frequency and wave propagation speed, while also providing quantitative measures of the amplitude of gut motion. We validate this approach using several challenges to larval zebrafish, imaged with differential interference contrast microscopy. Both acetylcholine exposure and feeding increase frequency and amplitude of motility. Larvae lacking enteric nervous system gut innervation show the same average motility frequency, but reduced and less variable amplitude compared to wild types. Our image analysis approach enables insights into gut dynamics in a wide variety of developmental and physiological contexts and can also be extended to analyze other types of cell movements. © 2018 John Wiley & Sons Ltd.

  11. Quantitative analysis of glycerophospholipids by LC-MS: acquisition, data handling, and interpretation

    PubMed Central

    Myers, David S.; Ivanova, Pavlina T.; Milne, Stephen B.; Brown, H. Alex

    2012-01-01

    As technology expands what it is possible to accurately measure, so too the challenges faced by modern mass spectrometry applications expand. A high level of accuracy in lipid quantitation across thousands of chemical species simultaneously is demanded. While relative changes in lipid amounts with varying conditions may provide initial insights or point to novel targets, there are many questions that require determination of lipid analyte absolute quantitation. Glycerophospholipids present a significant challenge in this regard, given the headgroup diversity, large number of possible acyl chain combinations, and vast range of ionization efficiency of species. Lipidomic output is being used more often not just for profiling of the masses of species, but also for highly-targeted flux-based measurements which put additional burdens on the quantitation pipeline. These first two challenges bring into sharp focus the need for a robust lipidomics workflow including deisotoping, differentiation from background noise, use of multiple internal standards per lipid class, and the use of a scriptable environment in order to create maximum user flexibility and maintain metadata on the parameters of the data analysis as it occurs. As lipidomics technology develops and delivers more output on a larger number of analytes, so must the sophistication of statistical post-processing also continue to advance. High-dimensional data analysis methods involving clustering, lipid pathway analysis, and false discovery rate limitation are becoming standard practices in a maturing field. PMID:21683157

  12. Pulmonary nodule characterization, including computer analysis and quantitative features.

    PubMed

    Bartholmai, Brian J; Koo, Chi Wan; Johnson, Geoffrey B; White, Darin B; Raghunath, Sushravya M; Rajagopalan, Srinivasan; Moynagh, Michael R; Lindell, Rebecca M; Hartman, Thomas E

    2015-03-01

    Pulmonary nodules are commonly detected in computed tomography (CT) chest screening of a high-risk population. The specific visual or quantitative features on CT or other modalities can be used to characterize the likelihood that a nodule is benign or malignant. Visual features on CT such as size, attenuation, location, morphology, edge characteristics, and other distinctive "signs" can be highly suggestive of a specific diagnosis and, in general, be used to determine the probability that a specific nodule is benign or malignant. Change in size, attenuation, and morphology on serial follow-up CT, or features on other modalities such as nuclear medicine studies or MRI, can also contribute to the characterization of lung nodules. Imaging analytics can objectively and reproducibly quantify nodule features on CT, nuclear medicine, and magnetic resonance imaging. Some quantitative techniques show great promise in helping to differentiate benign from malignant lesions or to stratify the risk of aggressive versus indolent neoplasm. In this article, we (1) summarize the visual characteristics, descriptors, and signs that may be helpful in management of nodules identified on screening CT, (2) discuss current quantitative and multimodality techniques that aid in the differentiation of nodules, and (3) highlight the power, pitfalls, and limitations of these various techniques.

  13. Quantitative Schlieren analysis applied to holograms of crystals grown on Spacelab 3

    NASA Technical Reports Server (NTRS)

    Brooks, Howard L.

    1986-01-01

    In order to extract additional information about crystals grown in the microgravity environment of Spacelab, a quantitative schlieren analysis technique was developed for use in a Holography Ground System of the Fluid Experiment System. Utilizing the Unidex position controller, it was possible to measure deviation angles produced by refractive index gradients of 0.5 milliradians. Additionally, refractive index gradient maps for any recorded time during the crystal growth were drawn and used to create solute concentration maps for the environment around the crystal. The technique was applied to flight holograms of Cell 204 of the Fluid Experiment System that were recorded during the Spacelab 3 mission on STS 51B. A triglycine sulfate crystal was grown under isothermal conditions in the cell and the data gathered with the quantitative schlieren analysis technique is consistent with a diffusion limited growth process.

  14. Gene Level Meta-Analysis of Quantitative Traits by Functional Linear Models.

    PubMed

    Fan, Ruzong; Wang, Yifan; Boehnke, Michael; Chen, Wei; Li, Yun; Ren, Haobo; Lobach, Iryna; Xiong, Momiao

    2015-08-01

    Meta-analysis of genetic data must account for differences among studies including study designs, markers genotyped, and covariates. The effects of genetic variants may differ from population to population, i.e., heterogeneity. Thus, meta-analysis of combining data of multiple studies is difficult. Novel statistical methods for meta-analysis are needed. In this article, functional linear models are developed for meta-analyses that connect genetic data to quantitative traits, adjusting for covariates. The models can be used to analyze rare variants, common variants, or a combination of the two. Both likelihood-ratio test (LRT) and F-distributed statistics are introduced to test association between quantitative traits and multiple variants in one genetic region. Extensive simulations are performed to evaluate empirical type I error rates and power performance of the proposed tests. The proposed LRT and F-distributed statistics control the type I error very well and have higher power than the existing methods of the meta-analysis sequence kernel association test (MetaSKAT). We analyze four blood lipid levels in data from a meta-analysis of eight European studies. The proposed methods detect more significant associations than MetaSKAT and the P-values of the proposed LRT and F-distributed statistics are usually much smaller than those of MetaSKAT. The functional linear models and related test statistics can be useful in whole-genome and whole-exome association studies. Copyright © 2015 by the Genetics Society of America.

  15. Large-scale quantitative analysis of painting arts.

    PubMed

    Kim, Daniel; Son, Seung-Woo; Jeong, Hawoong

    2014-12-11

    Scientists have made efforts to understand the beauty of painting art in their own languages. As digital image acquisition of painting arts has made rapid progress, researchers have come to a point where it is possible to perform statistical analysis of a large-scale database of artistic paints to make a bridge between art and science. Using digital image processing techniques, we investigate three quantitative measures of images - the usage of individual colors, the variety of colors, and the roughness of the brightness. We found a difference in color usage between classical paintings and photographs, and a significantly low color variety of the medieval period. Interestingly, moreover, the increment of roughness exponent as painting techniques such as chiaroscuro and sfumato have advanced is consistent with historical circumstances.

  16. Quantitative characterisation of sedimentary grains

    NASA Astrophysics Data System (ADS)

    Tunwal, Mohit; Mulchrone, Kieran F.; Meere, Patrick A.

    2016-04-01

    Analysis of sedimentary texture helps in determining the formation, transportation and deposition processes of sedimentary rocks. Grain size analysis is traditionally quantitative, whereas grain shape analysis is largely qualitative. A semi-automated approach to quantitatively analyse shape and size of sand sized sedimentary grains is presented. Grain boundaries are manually traced from thin section microphotographs in the case of lithified samples and are automatically identified in the case of loose sediments. Shape and size paramters can then be estimated using a software package written on the Mathematica platform. While automated methodology already exists for loose sediment analysis, the available techniques for the case of lithified samples are limited to cases of high definition thin section microphotographs showing clear contrast between framework grains and matrix. Along with the size of grain, shape parameters such as roundness, angularity, circularity, irregularity and fractal dimension are measured. A new grain shape parameter developed using Fourier descriptors has also been developed. To test this new approach theoretical examples were analysed and produce high quality results supporting the accuracy of the algorithm. Furthermore sandstone samples from known aeolian and fluvial environments from the Dingle Basin, County Kerry, Ireland were collected and analysed. Modern loose sediments from glacial till from County Cork, Ireland and aeolian sediments from Rajasthan, India have also been collected and analysed. A graphical summary of the data is presented and allows for quantitative distinction between samples extracted from different sedimentary environments.

  17. Toward best practices in data processing and analysis for intact biotherapeutics by MS in quantitative bioanalysis.

    PubMed

    Kellie, John F; Kehler, Jonathan R; Karlinsey, Molly Z; Summerfield, Scott G

    2017-12-01

    Typically, quantitation of biotherapeutics from biological matrices by LC-MS is based on a surrogate peptide approach to determine molecule concentration. Recent efforts have focused on quantitation of the intact protein molecules or larger mass subunits of monoclonal antibodies. To date, there has been limited guidance for large or intact protein mass quantitation for quantitative bioanalysis. Intact- and subunit-level analyses of biotherapeutics from biological matrices are performed at 12-25 kDa mass range with quantitation data presented. Linearity, bias and other metrics are presented along with recommendations made on the viability of existing quantitation approaches. This communication is intended to start a discussion around intact protein data analysis and processing, recognizing that other published contributions will be required.

  18. Quantitative descriptive analysis and principal component analysis for sensory characterization of Indian milk product cham-cham.

    PubMed

    Puri, Ritika; Khamrui, Kaushik; Khetra, Yogesh; Malhotra, Ravinder; Devraja, H C

    2016-02-01

    Promising development and expansion in the market of cham-cham, a traditional Indian dairy product is expected in the coming future with the organized production of this milk product by some large dairies. The objective of this study was to document the extent of variation in sensory properties of market samples of cham-cham collected from four different locations known for their excellence in cham-cham production and to find out the attributes that govern much of variation in sensory scores of this product using quantitative descriptive analysis (QDA) and principal component analysis (PCA). QDA revealed significant (p < 0.05) difference in sensory attributes of cham-cham among the market samples. PCA identified four significant principal components that accounted for 72.4 % of the variation in the sensory data. Factor scores of each of the four principal components which primarily correspond to sweetness/shape/dryness of interior, surface appearance/surface dryness, rancid and firmness attributes specify the location of each market sample along each of the axes in 3-D graphs. These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring attributes of cham-cham that contribute most to its sensory acceptability.

  19. Quantitative Assessment of In-solution Digestion Efficiency Identifies Optimal Protocols for Unbiased Protein Analysis*

    PubMed Central

    León, Ileana R.; Schwämmle, Veit; Jensen, Ole N.; Sprenger, Richard R.

    2013-01-01

    The majority of mass spectrometry-based protein quantification studies uses peptide-centric analytical methods and thus strongly relies on efficient and unbiased protein digestion protocols for sample preparation. We present a novel objective approach to assess protein digestion efficiency using a combination of qualitative and quantitative liquid chromatography-tandem MS methods and statistical data analysis. In contrast to previous studies we employed both standard qualitative as well as data-independent quantitative workflows to systematically assess trypsin digestion efficiency and bias using mitochondrial protein fractions. We evaluated nine trypsin-based digestion protocols, based on standard in-solution or on spin filter-aided digestion, including new optimized protocols. We investigated various reagents for protein solubilization and denaturation (dodecyl sulfate, deoxycholate, urea), several trypsin digestion conditions (buffer, RapiGest, deoxycholate, urea), and two methods for removal of detergents before analysis of peptides (acid precipitation or phase separation with ethyl acetate). Our data-independent quantitative liquid chromatography-tandem MS workflow quantified over 3700 distinct peptides with 96% completeness between all protocols and replicates, with an average 40% protein sequence coverage and an average of 11 peptides identified per protein. Systematic quantitative and statistical analysis of physicochemical parameters demonstrated that deoxycholate-assisted in-solution digestion combined with phase transfer allows for efficient, unbiased generation and recovery of peptides from all protein classes, including membrane proteins. This deoxycholate-assisted protocol was also optimal for spin filter-aided digestions as compared with existing methods. PMID:23792921

  20. A Quantitative Content Analysis of Mercer University MEd, EdS, and Doctoral Theses

    ERIC Educational Resources Information Center

    Randolph, Justus J.; Gaiek, Lura S.; White, Torian A.; Slappey, Lisa A.; Chastain, Andrea; Harris, Rose Prejean

    2010-01-01

    Quantitative content analysis of a body of research not only helps budding researchers understand the culture, language, and expectations of scholarship, it helps identify deficiencies and inform policy and practice. Because of these benefits, an analysis of a census of 980 Mercer University MEd, EdS, and doctoral theses was conducted. Each thesis…

  1. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl−/− retinal transcriptomes

    PubMed Central

    Brooks, Matthew J.; Rajasimha, Harsha K.; Roger, Jerome E.

    2011-01-01

    Purpose Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived retinal transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis. Methods Retinal mRNA profiles of 21-day-old wild-type (WT) and neural retina leucine zipper knockout (Nrl−/−) mice were generated by deep sequencing, in triplicate, using Illumina GAIIx. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays. Results Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 16,014 transcripts in the retinas of WT and Nrl−/− mice with BWA workflow and 34,115 transcripts with TopHat workflow. RNA-seq data confirmed stable expression of 25 known housekeeping genes, and 12 of these were validated with qRT–PCR. RNA-seq data had a linear relationship with qRT–PCR for more than four orders of magnitude and a goodness of fit (R2) of 0.8798. Approximately 10% of the transcripts showed differential expression between the WT and Nrl−/− retina, with a fold change ≥1.5 and p value <0.05. Altered expression of 25 genes was confirmed with qRT–PCR, demonstrating the high degree of sensitivity of the RNA-seq method. Hierarchical clustering of differentially expressed genes uncovered several as yet uncharacterized genes that may contribute to retinal function. Data analysis with BWA and TopHat workflows revealed a significant overlap yet provided complementary insights in transcriptome profiling. Conclusions Our study represents the first detailed analysis of retinal

  2. Diagnostic accuracy of semi-quantitative and quantitative culture techniques for the diagnosis of catheter-related infections in newborns and molecular typing of isolated microorganisms.

    PubMed

    Riboli, Danilo Flávio Moraes; Lyra, João César; Silva, Eliane Pessoa; Valadão, Luisa Leite; Bentlin, Maria Regina; Corrente, José Eduardo; Rugolo, Ligia Maria Suppo de Souza; da Cunha, Maria de Lourdes Ribeiro de Souza

    2014-05-22

    Catheter-related bloodstream infections (CR-BSIs) have become the most common cause of healthcare-associated bloodstream infections in neonatal intensive care units (ICUs). Microbiological evidence implicating catheters as the source of bloodstream infection is necessary to establish the diagnosis of CR-BSIs. Semi-quantitative culture is used to determine the presence of microorganisms on the external catheter surface, whereas quantitative culture also isolates microorganisms present inside the catheter. The main objective of this study was to determine the sensitivity and specificity of these two techniques for the diagnosis of CR-BSIs in newborns from a neonatal ICU. In addition, PFGE was used for similarity analysis of the microorganisms isolated from catheters and blood cultures. Semi-quantitative and quantitative methods were used for the culture of catheter tips obtained from newborns. Strains isolated from catheter tips and blood cultures which exhibited the same antimicrobial susceptibility profile were included in the study as positive cases of CR-BSI. PFGE of the microorganisms isolated from catheters and blood cultures was performed for similarity analysis and detection of clones in the ICU. A total of 584 catheter tips from 399 patients seen between November 2005 and June 2012 were analyzed. Twenty-nine cases of CR-BSI were confirmed. Coagulase-negative staphylococci (CoNS) were the most frequently isolated microorganisms, including S. epidermidis as the most prevalent species (65.5%), followed by S. haemolyticus (10.3%), yeasts (10.3%), K. pneumoniae (6.9%), S. aureus (3.4%), and E. coli (3.4%). The sensitivity of the semi-quantitative and quantitative techniques was 72.7% and 59.3%, respectively, and specificity was 95.7% and 94.4%. The diagnosis of CR-BSIs based on PFGE analysis of similarity between strains isolated from catheter tips and blood cultures showed 82.6% sensitivity and 100% specificity. The semi-quantitative culture method showed higher

  3. Quantitative imaging biomarkers: the application of advanced image processing and analysis to clinical and preclinical decision making.

    PubMed

    Prescott, Jeffrey William

    2013-02-01

    The importance of medical imaging for clinical decision making has been steadily increasing over the last four decades. Recently, there has also been an emphasis on medical imaging for preclinical decision making, i.e., for use in pharamaceutical and medical device development. There is also a drive towards quantification of imaging findings by using quantitative imaging biomarkers, which can improve sensitivity, specificity, accuracy and reproducibility of imaged characteristics used for diagnostic and therapeutic decisions. An important component of the discovery, characterization, validation and application of quantitative imaging biomarkers is the extraction of information and meaning from images through image processing and subsequent analysis. However, many advanced image processing and analysis methods are not applied directly to questions of clinical interest, i.e., for diagnostic and therapeutic decision making, which is a consideration that should be closely linked to the development of such algorithms. This article is meant to address these concerns. First, quantitative imaging biomarkers are introduced by providing definitions and concepts. Then, potential applications of advanced image processing and analysis to areas of quantitative imaging biomarker research are described; specifically, research into osteoarthritis (OA), Alzheimer's disease (AD) and cancer is presented. Then, challenges in quantitative imaging biomarker research are discussed. Finally, a conceptual framework for integrating clinical and preclinical considerations into the development of quantitative imaging biomarkers and their computer-assisted methods of extraction is presented.

  4. Qualitative and Quantitative Analysis of the Major Constituents in Chinese Medical Preparation Lianhua-Qingwen Capsule by UPLC-DAD-QTOF-MS

    PubMed Central

    Jia, Weina; Wang, Chunhua; Wang, Yuefei; Pan, Guixiang; Jiang, Miaomiao; Li, Zheng; Zhu, Yan

    2015-01-01

    Lianhua-Qingwen capsule (LQC) is a commonly used Chinese medical preparation to treat viral influenza and especially played a very important role in the fight against severe acute respiratory syndrome (SARS) in 2002-2003 in China. In this paper, a rapid ultraperformance liquid chromatography coupled with diode-array detector and quadrupole time-of-flight mass spectrometry (UPLC-DAD-QTOF-MS) method was established for qualitative and quantitative analysis of the major constituents of LQC. A total of 61 compounds including flavonoids, phenylpropanoids, anthraquinones, triterpenoids, iridoids, and other types of compounds were unambiguously or tentatively identified by comparing the retention times and accurate mass measurement with reference compounds or literature data. Among them, twelve representative compounds were further quantified as chemical markers in quantitative analysis, including salidroside, chlorogenic acid, forsythoside E, cryptochlorogenic acid, amygdalin, sweroside, hyperin, rutin, forsythoside A, phillyrin, rhein, and glycyrrhizic acid. The UPLC-DAD method was evaluated with linearity, limit of detection (LOD), limit of quantification (LOQ), precision, stability, repeatability, and recovery tests. The results showed that the developed quantitative method was linear, sensitive, and precise for the quality control of LQC. PMID:25654135

  5. Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using (1) H-NMR spectroscopy.

    PubMed

    Santos Pimenta, Lúcia P; Schilthuizen, Menno; Verpoorte, Robert; Choi, Young Hae

    2014-01-01

    Prunus serotina is native to North America but has been invasively introduced in Europe since the seventeenth century. This plant contains cyanogenic glycosides that are believed to be related to its success as an invasive plant. For these compounds, chromatographic- or spectrometric-based (targeting on HCN hydrolysis) methods of analysis have been employed so far. However, the conventional methods require tedious preparation steps and a long measuring time. To develop a fast and simple method to quantify the cyanogenic glycosides, amygdalin and prunasin in dried Prunus serotina leaves without any pre-purification steps using (1) H-NMR spectroscopy. Extracts of Prunus serotina leaves using CH3 OH-d4 and KH2 PO4 buffer in D2 O (1:1) were quantitatively analysed for amygdalin and prunasin using (1) H-NMR spectroscopy. Different internal standards were evaluated for accuracy and stability. The purity of quantitated (1) H-NMR signals was evaluated using several two-dimensional NMR experiments. Trimethylsilylpropionic acid sodium salt-d4 proved most suitable as the internal standard for quantitative (1) H-NMR analysis. Two-dimensional J-resolved NMR was shown to be a useful tool to confirm the structures and to check for possible signal overlapping with the target signals for the quantitation. Twenty-two samples of P. serotina were subsequently quantitatively analysed for the cyanogenic glycosides prunasin and amygdalin. The NMR method offers a fast, high-throughput analysis of cyanogenic glycosides in dried leaves permitting simultaneous quantification and identification of prunasin and amygdalin in Prunus serotina. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Mixing Qualitative and Quantitative Methods: Insights into Design and Analysis Issues

    ERIC Educational Resources Information Center

    Lieber, Eli

    2009-01-01

    This article describes and discusses issues related to research design and data analysis in the mixing of qualitative and quantitative methods. It is increasingly desirable to use multiple methods in research, but questions arise as to how best to design and analyze the data generated by mixed methods projects. I offer a conceptualization for such…

  7. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development

    NASA Technical Reports Server (NTRS)

    Norga, Koenraad K.; Gurganus, Marjorie C.; Dilda, Christy L.; Yamamoto, Akihiko; Lyman, Richard F.; Patel, Prajal H.; Rubin, Gerald M.; Hoskins, Roger A.; Mackay, Trudy F.; Bellen, Hugo J.

    2003-01-01

    BACKGROUND: The identification of the function of all genes that contribute to specific biological processes and complex traits is one of the major challenges in the postgenomic era. One approach is to employ forward genetic screens in genetically tractable model organisms. In Drosophila melanogaster, P element-mediated insertional mutagenesis is a versatile tool for the dissection of molecular pathways, and there is an ongoing effort to tag every gene with a P element insertion. However, the vast majority of P element insertion lines are viable and fertile as homozygotes and do not exhibit obvious phenotypic defects, perhaps because of the tendency for P elements to insert 5' of transcription units. Quantitative genetic analysis of subtle effects of P element mutations that have been induced in an isogenic background may be a highly efficient method for functional genome annotation. RESULTS: Here, we have tested the efficacy of this strategy by assessing the extent to which screening for quantitative effects of P elements on sensory bristle number can identify genes affecting neural development. We find that such quantitative screens uncover an unusually large number of genes that are known to function in neural development, as well as genes with yet uncharacterized effects on neural development, and novel loci. CONCLUSIONS: Our findings establish the use of quantitative trait analysis for functional genome annotation through forward genetics. Similar analyses of quantitative effects of P element insertions will facilitate our understanding of the genes affecting many other complex traits in Drosophila.

  8. New insight in quantitative analysis of vascular permeability during immune reaction (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kalchenko, Vyacheslav; Molodij, Guillaume; Kuznetsov, Yuri; Smolyakov, Yuri; Israeli, David; Meglinski, Igor; Harmelin, Alon

    2016-03-01

    The use of fluorescence imaging of vascular permeability becomes a golden standard for assessing the inflammation process during experimental immune response in vivo. The use of the optical fluorescence imaging provides a very useful and simple tool to reach this purpose. The motivation comes from the necessity of a robust and simple quantification and data presentation of inflammation based on a vascular permeability. Changes of the fluorescent intensity, as a function of time is a widely accepted method to assess the vascular permeability during inflammation related to the immune response. In the present study we propose to bring a new dimension by applying a more sophisticated approach to the analysis of vascular reaction by using a quantitative analysis based on methods derived from astronomical observations, in particular by using a space-time Fourier filtering analysis followed by a polynomial orthogonal modes decomposition. We demonstrate that temporal evolution of the fluorescent intensity observed at certain pixels correlates quantitatively to the blood flow circulation at normal conditions. The approach allows to determine the regions of permeability and monitor both the fast kinetics related to the contrast material distribution in the circulatory system and slow kinetics associated with extravasation of the contrast material. Thus, we introduce a simple and convenient method for fast quantitative visualization of the leakage related to the inflammatory (immune) reaction in vivo.

  9. Real-Time Quantitative Analysis of Valproic Acid in Exhaled Breath by Low Temperature Plasma Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoxia; Shi, Songyue; Gamez, Gerardo

    2017-04-01

    Real-time analysis of exhaled human breath is a rapidly growing field in analytical science and has great potential for rapid and noninvasive clinical diagnosis and drug monitoring. In the present study, an LTP-MS method was developed for real-time, in-vivo and quantitative analysis of γ-valprolactone, a metabolite of valproic acid (VPA), in exhaled breath without any sample pretreatment. In particular, the effect of working conditions and geometry of the LTP source on the ions of interest, protonated molecular ion at m/z 143 and ammonium adduct ion at m/z 160, were systematically characterized. Tandem mass spectrometry (MS/MS) with collision-induced dissociation (CID) was carried out in order to identify γ-valprolactone molecular ions ( m/z 143), and the key fragment ion ( m/z 97) was used for quantitation. In addition, the fragmentation of ammonium adduct ions to protonated molecular ions was performed in-source to improve the signal-to-noise ratio. At optimum conditions, signal reproducibility with an RSD of 8% was achieved. The concentration of γ-valprolactone in exhaled breath was determined for the first time to be 4.83 (±0.32) ng/L by using standard addition method. Also, a calibration curve was obtained with a linear range from 0.7 to 22.5 ng/L, and the limit of detection was 0.18 ng/L for γ-valprolactone in standard gas samples. Our results show that LTP-MS is a powerful analytical platform with high sensitivity for quantitative analysis of volatile organic compounds in human breath, and can have potential applications in pharmacokinetics or for patient monitoring and treatment.

  10. Application of magnetic carriers to two examples of quantitative cell analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Qian, Zhixi; Choi, Young Suk; David, Allan E.; Todd, Paul; Hanley, Thomas R.

    2017-04-01

    The use of magnetophoretic mobility as a surrogate for fluorescence intensity in quantitative cell analysis was investigated. The objectives of quantitative fluorescence flow cytometry include establishing a level of labeling for the setting of parameters in fluorescence activated cell sorters (FACS) and the determination of levels of uptake of fluorescently labeled substrates by living cells. Likewise, the objectives of quantitative magnetic cytometry include establishing a level of labeling for the setting of parameters in flowing magnetic cell sorters and the determination of levels of uptake of magnetically labeled substrates by living cells. The magnetic counterpart to fluorescence intensity is magnetophoretic mobility, defined as the velocity imparted to a suspended cell per unit of magnetic ponderomotive force. A commercial velocimeter available for making this measurement was used to demonstrate both applications. Cultured Gallus lymphoma cells were immunolabeled with commercial magnetic beads and shown to have adequate magnetophoretic mobility to be separated by a novel flowing magnetic separator. Phagocytosis of starch nanoparticles having magnetic cores by cultured Chinese hamster ovary cells, a CHO line, was quantified on the basis of magnetophoretic mobility.

  11. On sweat analysis for quantitative estimation of dehydration during physical exercise.

    PubMed

    Ring, Matthias; Lohmueller, Clemens; Rauh, Manfred; Eskofier, Bjoern M

    2015-08-01

    Quantitative estimation of water loss during physical exercise is of importance because dehydration can impair both muscular strength and aerobic endurance. A physiological indicator for deficit of total body water (TBW) might be the concentration of electrolytes in sweat. It has been shown that concentrations differ after physical exercise depending on whether water loss was replaced by fluid intake or not. However, to the best of our knowledge, this fact has not been examined for its potential to quantitatively estimate TBW loss. Therefore, we conducted a study in which sweat samples were collected continuously during two hours of physical exercise without fluid intake. A statistical analysis of these sweat samples revealed significant correlations between chloride concentration in sweat and TBW loss (r = 0.41, p <; 0.01), and between sweat osmolality and TBW loss (r = 0.43, p <; 0.01). A quantitative estimation of TBW loss resulted in a mean absolute error of 0.49 l per estimation. Although the precision has to be improved for practical applications, the present results suggest that TBW loss estimation could be realizable using sweat samples.

  12. Implementing a Quantitative Analysis Design Tool for Future Generation Interfaces

    DTIC Science & Technology

    2012-03-01

    with Remotely Piloted Aircraft (RPA) has resulted in the need of a platform to evaluate interface design. The Vigilant Spirit Control Station ( VSCS ...Spirit interface. A modified version of the HCI Index was successfully applied to perform a quantitative analysis of the baseline VSCS interface and...time of the original VSCS interface. These results revealed the effectiveness of the tool and demonstrated in the design of future generation

  13. A quantitative analysis of coupled oscillations using mobile accelerometer sensors

    NASA Astrophysics Data System (ADS)

    Castro-Palacio, Juan Carlos; Velázquez-Abad, Luisberis; Giménez, Fernando; Monsoriu, Juan A.

    2013-05-01

    In this paper, smartphone acceleration sensors were used to perform a quantitative analysis of mechanical coupled oscillations. Symmetric and asymmetric normal modes were studied separately in the first two experiments. In the third, a coupled oscillation was studied as a combination of the normal modes. Results indicate that acceleration sensors of smartphones, which are very familiar to students, represent valuable measurement instruments for introductory and first-year physics courses.

  14. Applying Knowledge of Quantitative Design and Analysis

    ERIC Educational Resources Information Center

    Baskas, Richard S.

    2011-01-01

    This study compared and contrasted two quantitative scholarly articles in relation to their research designs. Their designs were analyzed by the comparison of research references and research specific vocabulary to describe how various research methods were used. When researching and analyzing quantitative scholarly articles, it is imperative to…

  15. Quantitative iTRAQ secretome analysis of Aspergillus niger reveals novel hydrolytic enzymes.

    PubMed

    Adav, Sunil S; Li, An A; Manavalan, Arulmani; Punt, Peter; Sze, Siu Kwan

    2010-08-06

    The natural lifestyle of Aspergillus niger made them more effective secretors of hydrolytic proteins and becomes critical when this species were exploited as hosts for the commercial secretion of heterologous proteins. The protein secretion profile of A. niger and its mutant at different pH was explored using iTRAQ-based quantitative proteomics approach coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). This study characterized 102 highly confident unique proteins in the secretome with zero false discovery rate based on decoy strategy. The iTRAQ technique identified and relatively quantified many hydrolyzing enzymes such as cellulases, hemicellulases, glycoside hydrolases, proteases, peroxidases, and protein translocating transporter proteins during fermentation. The enzymes have potential application in lignocellulosic biomass hydrolysis for biofuel production, for example, the cellulolytic and hemicellulolytic enzymes glucan 1,4-alpha-glucosidase, alpha-glucosidase C, endoglucanase, alpha l-arabinofuranosidase, beta-mannosidase, glycosyl hydrolase; proteases such as tripeptidyl-peptidase, aspergillopepsin, and other enzymes including cytochrome c oxidase, cytochrome c oxidase, glucose oxidase were highly expressed in A. niger and its mutant secretion. In addition, specific enzyme production can be stimulated by controlling pH of the culture medium. Our results showed comprehensive unique secretory protein profile of A. niger, its regulation at different pH, and the potential application of iTRAQ-based quantitative proteomics for the microbial secretome analysis.

  16. A quantitative analysis of IRAS maps of molecular clouds

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.; Adams, Fred C.

    1994-01-01

    We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.

  17. Capillary nano-immunoassays: advancing quantitative proteomics analysis, biomarker assessment, and molecular diagnostics.

    PubMed

    Chen, Jin-Qiu; Wakefield, Lalage M; Goldstein, David J

    2015-06-06

    There is an emerging demand for the use of molecular profiling to facilitate biomarker identification and development, and to stratify patients for more efficient treatment decisions with reduced adverse effects. In the past decade, great strides have been made to advance genomic, transcriptomic and proteomic approaches to address these demands. While there has been much progress with these large scale approaches, profiling at the protein level still faces challenges due to limitations in clinical sample size, poor reproducibility, unreliable quantitation, and lack of assay robustness. A novel automated capillary nano-immunoassay (CNIA) technology has been developed. This technology offers precise and accurate measurement of proteins and their post-translational modifications using either charge-based or size-based separation formats. The system not only uses ultralow nanogram levels of protein but also allows multi-analyte analysis using a parallel single-analyte format for increased sensitivity and specificity. The high sensitivity and excellent reproducibility of this technology make it particularly powerful for analysis of clinical samples. Furthermore, the system can distinguish and detect specific protein post-translational modifications that conventional Western blot and other immunoassays cannot easily capture. This review will summarize and evaluate the latest progress to optimize the CNIA system for comprehensive, quantitative protein and signaling event characterization. It will also discuss how the technology has been successfully applied in both discovery research and clinical studies, for signaling pathway dissection, proteomic biomarker assessment, targeted treatment evaluation and quantitative proteomic analysis. Lastly, a comparison of this novel system with other conventional immuno-assay platforms is performed.

  18. Quantitative analysis of low-density SNP data for parentage assignment and estimation of family contributions to pooled samples.

    PubMed

    Henshall, John M; Dierens, Leanne; Sellars, Melony J

    2014-09-02

    While much attention has focused on the development of high-density single nucleotide polymorphism (SNP) assays, the costs of developing and running low-density assays have fallen dramatically. This makes it feasible to develop and apply SNP assays for agricultural species beyond the major livestock species. Although low-cost low-density assays may not have the accuracy of the high-density assays widely used in human and livestock species, we show that when combined with statistical analysis approaches that use quantitative instead of discrete genotypes, their utility may be improved. The data used in this study are from a 63-SNP marker Sequenom® iPLEX Platinum panel for the Black Tiger shrimp, for which high-density SNP assays are not currently available. For quantitative genotypes that could be estimated, in 5% of cases the most likely genotype for an individual at a SNP had a probability of less than 0.99. Matrix formulations of maximum likelihood equations for parentage assignment were developed for the quantitative genotypes and also for discrete genotypes perturbed by an assumed error term. Assignment rates that were based on maximum likelihood with quantitative genotypes were similar to those based on maximum likelihood with perturbed genotypes but, for more than 50% of cases, the two methods resulted in individuals being assigned to different families. Treating genotypes as quantitative values allows the same analysis framework to be used for pooled samples of DNA from multiple individuals. Resulting correlations between allele frequency estimates from pooled DNA and individual samples were consistently greater than 0.90, and as high as 0.97 for some pools. Estimates of family contributions to the pools based on quantitative genotypes in pooled DNA had a correlation of 0.85 with estimates of contributions from DNA-derived pedigree. Even with low numbers of SNPs of variable quality, parentage testing and family assignment from pooled samples are

  19. Feared consequences of panic attacks in panic disorder: a qualitative and quantitative analysis.

    PubMed

    Raffa, Susan D; White, Kamila S; Barlow, David H

    2004-01-01

    Cognitions are hypothesized to play a central role in panic disorder (PD). Previous studies have used questionnaires to assess cognitive content, focusing on prototypical cognitions associated with PD; however, few studies have qualitatively examined cognitions associated with the feared consequences of panic attacks. The purpose of this study was to conduct a qualitative and quantitative analysis of feared consequences of panic attacks. The initial, qualitative analysis resulted in the development of 32 categories of feared consequences. The categories were derived from participant responses to a standardized, semi-structured question (n = 207). Five expert-derived categories were then utilized to quantitatively examine the relationship between cognitions and indicators of PD severity. Cognitions did not predict PD severity; however, correlational analyses indicated some predictive validity to the expert-derived categories. The qualitative analysis identified additional areas of patient-reported concern not included in previous research that may be important in the assessment and treatment of PD.

  20. Quantitative analysis of the chromatin of lymphocytes: an assay on comparative structuralism.

    PubMed

    Meyer, F

    1980-01-01

    With 26 letters we can form all the words we use, and with a few words it is possible to form an infinite number of different meaningful sentences. In our case, the letters will be a few simple neighborhood image transformations and area measurements. The paper shows how, by iterating these transformations, it is possible to obtain a good quantitative description of the nuclear structure of Feulgen-stained lymphocytes (CLL and normal). The fact that we restricted ourselves to a small number of image transformations made it possible to construct an image analysis system (TAS) able to do these transformations very quickly. We will see, successively, how to segment the nucleus itself, the chromatin, and the interchromatinic channels, how openings and closings lead to size and spatial distribution curves, and how skeletons may be used for measuring the lengths of interchromatinic channels.

  1. Simulating realistic predator signatures in quantitative fatty acid signature analysis

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.

    2015-01-01

    Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use computer simulation to evaluate statistical characteristics of diet estimators for the populations they study. Similar computer simulations have been used to explore and compare the performance of different variations of the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algorithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic properties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas of quantitative ecology in which bootstrap samples are post-processed prior to their use.

  2. Kinetics analysis and quantitative calculations for the successive radioactive decay process

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiping; Yan, Deyue; Zhao, Yuliang; Chai, Zhifang

    2015-01-01

    The general radioactive decay kinetics equations with branching were developed and the analytical solutions were derived by Laplace transform method. The time dependence of all the nuclide concentrations can be easily obtained by applying the equations to any known radioactive decay series. Taking the example of thorium radioactive decay series, the concentration evolution over time of various nuclide members in the family has been given by the quantitative numerical calculations with a computer. The method can be applied to the quantitative prediction and analysis for the daughter nuclides in the successive decay with branching of the complicated radioactive processes, such as the natural radioactive decay series, nuclear reactor, nuclear waste disposal, nuclear spallation, synthesis and identification of superheavy nuclides, radioactive ion beam physics and chemistry, etc.

  3. Quantitative analysis of rectal cancer by spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Q. Q.; Wu, X. J.; Tang, T.; Zhu, S. W.; Yao, Q.; Gao, Bruce Z.; Yuan, X. C.

    2012-08-01

    To quantify OCT images of rectal tissue for clinic diagnosis, the scattering coefficient of the tissue is extracted by curve fitting the OCT signals to a confocal single model. A total of 1000 measurements (half and half of normal and malignant tissues) were obtained from 16 recta. The normal rectal tissue has a larger scattering coefficient ranging from 1.09 to 5.41 mm-1 with a mean value of 2.29 mm-1 (std:±0.32), while the malignant group shows lower scattering property and the values ranging from 0.25 to 2.69 mm-1 with a mean value of 1.41 mm-1 (std:±0.18). The peri-cancer of recta has also been investigated to distinguish the difference between normal and malignant rectal tissue. The results demonstrate that the quantitative analysis of the rectal tissue can be used as a promising diagnostic criterion of early rectal cancer, which has great value for clinical medical applications.

  4. Dispersal of Invasive Forest Insects via Recreational Firewood: A Quantitative Analysis

    Treesearch

    Frank H. Koch; Denys Yemshanov; Roger D. Magarey; William D. Smith

    2012-01-01

    Recreational travel is a recognized vector for the spread of invasive species in North America. However, there has been little quantitative analysis of the risks posed by such travel and the associated transport of firewood. In this study, we analyzed the risk of forest insect spread with firewood and estimated related dispersal parameters for application in...

  5. Inter-rater reliability of motor unit number estimates and quantitative motor unit analysis in the tibialis anterior muscle.

    PubMed

    Boe, S G; Dalton, B H; Harwood, B; Doherty, T J; Rice, C L

    2009-05-01

    To establish the inter-rater reliability of decomposition-based quantitative electromyography (DQEMG) derived motor unit number estimates (MUNEs) and quantitative motor unit (MU) analysis. Using DQEMG, two examiners independently obtained a sample of needle and surface-detected motor unit potentials (MUPs) from the tibialis anterior muscle from 10 subjects. Coupled with a maximal M wave, surface-detected MUPs were used to derive a MUNE for each subject and each examiner. Additionally, size-related parameters of the individual MUs were obtained following quantitative MUP analysis. Test-retest MUNE values were similar with high reliability observed between examiners (ICC=0.87). Additionally, MUNE variability from test-retest as quantified by a 95% confidence interval was relatively low (+/-28 MUs). Lastly, quantitative data pertaining to MU size, complexity and firing rate were similar between examiners. MUNEs and quantitative MU data can be obtained with high reliability by two independent examiners using DQEMG. Establishing the inter-rater reliability of MUNEs and quantitative MU analysis using DQEMG is central to the clinical applicability of the technique. In addition to assessing response to treatments over time, multiple clinicians may be involved in the longitudinal assessment of the MU pool of individuals with disorders of the central or peripheral nervous system.

  6. On-line multiple component analysis for efficient quantitative bioprocess development.

    PubMed

    Dietzsch, Christian; Spadiut, Oliver; Herwig, Christoph

    2013-02-20

    On-line monitoring devices for the precise determination of a multitude of components are a prerequisite for fast bioprocess quantification. On-line measured values have to be checked for quality and consistency, in order to extract quantitative information from these data. In the present study we characterized a novel on-line sampling and analysis device comprising an automatic photometric robot. We connected this on-line device to a bioreactor and concomitantly measured six components (i.e. glucose, glycerol, ethanol, acetate, phosphate and ammonium) during different batch cultivations of Pichia pastoris. The on-line measured data did not show significant deviations from off-line taken samples and were consequently used for incremental rate and yield calculations. In this respect we highlighted the importance of data quality and discussed the phenomenon of error propagation. On-line calculated rates and yields depicted the physiological responses of the P. pastoris cells in unlimited and limited cultures. A more detailed analysis of the physiological state was possible by considering the off-line determined biomass dry weight and the calculation of specific rates. Here we present a novel device for on-line monitoring of bioprocesses, which ensures high data quality in real-time and therefore refers to a valuable tool for Process Analytical Technology (PAT). Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Spectral Feature Analysis for Quantitative Estimation of Cyanobacteria Chlorophyll-A

    NASA Astrophysics Data System (ADS)

    Lin, Yi; Ye, Zhanglin; Zhang, Yugan; Yu, Jie

    2016-06-01

    In recent years, lake eutrophication caused a large of Cyanobacteria bloom which not only brought serious ecological disaster but also restricted the sustainable development of regional economy in our country. Chlorophyll-a is a very important environmental factor to monitor water quality, especially for lake eutrophication. Remote sensed technique has been widely utilized in estimating the concentration of chlorophyll-a by different kind of vegetation indices and monitoring its distribution in lakes, rivers or along coastline. For each vegetation index, its quantitative estimation accuracy for different satellite data might change since there might be a discrepancy of spectral resolution and channel center between different satellites. The purpose this paper is to analyze the spectral feature of chlorophyll-a with hyperspectral data (totally 651 bands) and use the result to choose the optimal band combination for different satellites. The analysis method developed here in this study could be useful to recognize and monitor cyanobacteria bloom automatically and accrately. In our experiment, the reflectance (from 350nm to 1000nm) of wild cyanobacteria in different consistency (from 0 to 1362.11ug/L) and the corresponding chlorophyll-a concentration were measured simultaneously. Two kinds of hyperspectral vegetation indices were applied in this study: simple ratio (SR) and narrow band normalized difference vegetation index (NDVI), both of which consists of any two bands in the entire 651 narrow bands. Then multivariate statistical analysis was used to construct the linear, power and exponential models. After analyzing the correlation between chlorophyll-a and single band reflectance, SR, NDVI respetively, the optimal spectral index for quantitative estimation of cyanobacteria chlorophyll-a, as well corresponding central wavelength and band width were extracted. Results show that: Under the condition of water disturbance, SR and NDVI are both suitable for quantitative

  8. Quantitative Analysis by Isotopic Dilution Using Mass Spectroscopy: The Determination of Caffeine by GC-MS.

    ERIC Educational Resources Information Center

    Hill, Devon W.; And Others

    1988-01-01

    Describes a laboratory technique for quantitative analysis of caffeine by an isotopic dilution method for coupled gas chromatography-mass spectroscopy. Discusses caffeine analysis and experimental methodology. Lists sample caffeine concentrations found in common products. (MVL)

  9. Qualitative and quantitative analysis of monomers in polyesters for food contact materials.

    PubMed

    Brenz, Fabrian; Linke, Susanne; Simat, Thomas

    2017-02-01

    Polyesters (PESs) are gaining more importance on the food contact material (FCM) market and the variety of properties and applications is expected to be wide. In order to acquire the desired properties manufacturers can combine several FCM-approved polyvalent carboxylic acids (PCAs) and polyols as monomers. However, information about the qualitative and quantitative composition of FCM articles is often limited. The method presented here describes the analysis of PESs with the identification and quantification of 25 PES monomers (10 PCA, 15 polyols) by HPLC with diode array detection (HPLC-DAD) and GC-MS after alkaline hydrolysis. Accurate identification and quantification were demonstrated by the analysis of seven different FCM articles made of PESs. The results explained between 97.2% and 103.4% w/w of the polymer composition whilst showing equal molar amounts of PCA and polyols. Quantification proved to be precise and sensitive with coefficients of variation (CVs) below 6.0% for PES samples with monomer concentrations typically ranging from 0.02% to 75% w/w. The analysis of 15 PES samples for the FCM market revealed the presence of five different PCAs and 11 different polyols (main monomers, co-monomers, non-intentionally added substances (NIAS)) showing the wide variety of monomers in modern PESs. The presented method provides a useful tool for commercial, state and research laboratories as well as for producers and distributors facing the task of FCM risk assessment. It can be applied for the identification and quantification of migrating monomers and the prediction of oligomer compositions from the identified monomers, respectively.

  10. Large-Scale Quantitative Analysis of Painting Arts

    PubMed Central

    Kim, Daniel; Son, Seung-Woo; Jeong, Hawoong

    2014-01-01

    Scientists have made efforts to understand the beauty of painting art in their own languages. As digital image acquisition of painting arts has made rapid progress, researchers have come to a point where it is possible to perform statistical analysis of a large-scale database of artistic paints to make a bridge between art and science. Using digital image processing techniques, we investigate three quantitative measures of images – the usage of individual colors, the variety of colors, and the roughness of the brightness. We found a difference in color usage between classical paintings and photographs, and a significantly low color variety of the medieval period. Interestingly, moreover, the increment of roughness exponent as painting techniques such as chiaroscuro and sfumato have advanced is consistent with historical circumstances. PMID:25501877

  11. Quantitative analysis of the effect of environmental-scanning electron microscopy on collagenous tissues.

    PubMed

    Lee, Woowon; Toussaint, Kimani C

    2018-05-31

    Environmental-scanning electron microscopy (ESEM) is routinely applied to various biological samples due to its ability to maintain a wet environment while imaging; moreover, the technique obviates the need for sample coating. However, there is limited research carried out on electron-beam (e-beam) induced tissue damage resulting from using the ESEM. In this paper, we use quantitative second-harmonic generation (SHG) microscopy to examine the effects of e-beam exposure from the ESEM on collagenous tissue samples prepared as either fixed, frozen, wet or dehydrated. Quantitative SHG analysis of tissues, before and after ESEM e-beam exposure in low-vacuum mode, reveals evidence of cross-linking of collagen fibers, however there are no structural differences observed in fixed tissue. Meanwhile wet-mode ESEM appears to radically alter the structure from a regular fibrous arrangement to a more random fiber orientation. We also confirm that ESEM images of collagenous tissues show higher spatial resolution compared to SHG microscopy, but the relative tradeoff with collagen specificity reduces its effectiveness in quantifying collagen fiber organization. Our work provides insight on both the limitations of the ESEM for tissue imaging, and the potential opportunity to use as a complementary technique when imaging fine features in the non-collagenous regions of tissue samples.

  12. Quantitative Chemical Imaging and Unsupervised Analysis Using Hyperspectral Coherent Anti-Stokes Raman Scattering Microscopy

    PubMed Central

    2013-01-01

    In this work, we report a method to acquire and analyze hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy images of organic materials and biological samples resulting in an unbiased quantitative chemical analysis. The method employs singular value decomposition on the square root of the CARS intensity, providing an automatic determination of the components above noise, which are retained. Complex CARS susceptibility spectra, which are linear in the chemical composition, are retrieved from the CARS intensity spectra using the causality of the susceptibility by two methods, and their performance is evaluated by comparison with Raman spectra. We use non-negative matrix factorization applied to the imaginary part and the nonresonant real part of the susceptibility with an additional concentration constraint to obtain absolute susceptibility spectra of independently varying chemical components and their absolute concentration. We demonstrate the ability of the method to provide quantitative chemical analysis on known lipid mixtures. We then show the relevance of the method by imaging lipid-rich stem-cell-derived mouse adipocytes as well as differentiated embryonic stem cells with a low density of lipids. We retrieve and visualize the most significant chemical components with spectra given by water, lipid, and proteins segmenting the image into the cell surrounding, lipid droplets, cytosol, and the nucleus, and we reveal the chemical structure of the cells, with details visualized by the projection of the chemical contrast into a few relevant channels. PMID:24099603

  13. A Content Analysis of Quantitative Research in Journal of Marital and Family Therapy: A 10-Year Review.

    PubMed

    Parker, Elizabeth O; Chang, Jennifer; Thomas, Volker

    2016-01-01

    We examined the trends of quantitative research over the past 10 years in the Journal of Marital and Family Therapy (JMFT). Specifically, within the JMFT, we investigated the types and trends of research design and statistical analysis within the quantitative research that was published in JMFT from 2005 to 2014. We found that while the amount of peer-reviewed articles have increased over time, the percentage of quantitative research has remained constant. We discussed the types and trends of statistical analysis and the implications for clinical work and training programs in the field of marriage and family therapy. © 2016 American Association for Marriage and Family Therapy.

  14. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum—Phytophthora capsici Phytopathosystem

    PubMed Central

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G.; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset

  15. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum-Phytophthora capsici Phytopathosystem.

    PubMed

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset

  16. The other half of the story: effect size analysis in quantitative research.

    PubMed

    Maher, Jessica Middlemis; Markey, Jonathan C; Ebert-May, Diane

    2013-01-01

    Statistical significance testing is the cornerstone of quantitative research, but studies that fail to report measures of effect size are potentially missing a robust part of the analysis. We provide a rationale for why effect size measures should be included in quantitative discipline-based education research. Examples from both biological and educational research demonstrate the utility of effect size for evaluating practical significance. We also provide details about some effect size indices that are paired with common statistical significance tests used in educational research and offer general suggestions for interpreting effect size measures. Finally, we discuss some inherent limitations of effect size measures and provide further recommendations about reporting confidence intervals.

  17. Quantitative Analysis of the Trends Exhibited by the Three Interdisciplinary Biological Sciences: Biophysics, Bioinformatics, and Systems Biology.

    PubMed

    Kang, Jonghoon; Park, Seyeon; Venkat, Aarya; Gopinath, Adarsh

    2015-12-01

    New interdisciplinary biological sciences like bioinformatics, biophysics, and systems biology have become increasingly relevant in modern science. Many papers have suggested the importance of adding these subjects, particularly bioinformatics, to an undergraduate curriculum; however, most of their assertions have relied on qualitative arguments. In this paper, we will show our metadata analysis of a scientific literature database (PubMed) that quantitatively describes the importance of the subjects of bioinformatics, systems biology, and biophysics as compared with a well-established interdisciplinary subject, biochemistry. Specifically, we found that the development of each subject assessed by its publication volume was well described by a set of simple nonlinear equations, allowing us to characterize them quantitatively. Bioinformatics, which had the highest ratio of publications produced, was predicted to grow between 77% and 93% by 2025 according to the model. Due to the large number of publications produced in bioinformatics, which nearly matches the number published in biochemistry, it can be inferred that bioinformatics is almost equal in significance to biochemistry. Based on our analysis, we suggest that bioinformatics be added to the standard biology undergraduate curriculum. Adding this course to an undergraduate curriculum will better prepare students for future research in biology.

  18. The Measles Vaccination Narrative in Twitter: A Quantitative Analysis

    PubMed Central

    Radzikowski, Jacek; Jacobsen, Kathryn H; Croitoru, Arie; Crooks, Andrew; Delamater, Paul L

    2016-01-01

    Background The emergence of social media is providing an alternative avenue for information exchange and opinion formation on health-related issues. Collective discourse in such media leads to the formation of a complex narrative, conveying public views and perceptions. Objective This paper presents a study of Twitter narrative regarding vaccination in the aftermath of the 2015 measles outbreak, both in terms of its cyber and physical characteristics. We aimed to contribute to the analysis of the data, as well as presenting a quantitative interdisciplinary approach to analyze such open-source data in the context of health narratives. Methods We collected 669,136 tweets referring to vaccination from February 1 to March 9, 2015. These tweets were analyzed to identify key terms, connections among such terms, retweet patterns, the structure of the narrative, and connections to the geographical space. Results The data analysis captures the anatomy of the themes and relations that make up the discussion about vaccination in Twitter. The results highlight the higher impact of stories contributed by news organizations compared to direct tweets by health organizations in communicating health-related information. They also capture the structure of the antivaccination narrative and its terms of reference. Analysis also revealed the relationship between community engagement in Twitter and state policies regarding child vaccination. Residents of Vermont and Oregon, the two states with the highest rates of non-medical exemption from school-entry vaccines nationwide, are leading the social media discussion in terms of participation. Conclusions The interdisciplinary study of health-related debates in social media across the cyber-physical debate nexus leads to a greater understanding of public concerns, views, and responses to health-related issues. Further coalescing such capabilities shows promise towards advancing health communication, thus supporting the design of more

  19. The Measles Vaccination Narrative in Twitter: A Quantitative Analysis.

    PubMed

    Radzikowski, Jacek; Stefanidis, Anthony; Jacobsen, Kathryn H; Croitoru, Arie; Crooks, Andrew; Delamater, Paul L

    2016-01-01

    The emergence of social media is providing an alternative avenue for information exchange and opinion formation on health-related issues. Collective discourse in such media leads to the formation of a complex narrative, conveying public views and perceptions. This paper presents a study of Twitter narrative regarding vaccination in the aftermath of the 2015 measles outbreak, both in terms of its cyber and physical characteristics. We aimed to contribute to the analysis of the data, as well as presenting a quantitative interdisciplinary approach to analyze such open-source data in the context of health narratives. We collected 669,136 tweets referring to vaccination from February 1 to March 9, 2015. These tweets were analyzed to identify key terms, connections among such terms, retweet patterns, the structure of the narrative, and connections to the geographical space. The data analysis captures the anatomy of the themes and relations that make up the discussion about vaccination in Twitter. The results highlight the higher impact of stories contributed by news organizations compared to direct tweets by health organizations in communicating health-related information. They also capture the structure of the antivaccination narrative and its terms of reference. Analysis also revealed the relationship between community engagement in Twitter and state policies regarding child vaccination. Residents of Vermont and Oregon, the two states with the highest rates of non-medical exemption from school-entry vaccines nationwide, are leading the social media discussion in terms of participation. The interdisciplinary study of health-related debates in social media across the cyber-physical debate nexus leads to a greater understanding of public concerns, views, and responses to health-related issues. Further coalescing such capabilities shows promise towards advancing health communication, thus supporting the design of more effective strategies that take into account the complex

  20. Quantitative analysis of protein-ligand interactions by NMR.

    PubMed

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  1. The application of drug dose equivalence in the quantitative analysis of receptor occupation and drug combinations

    PubMed Central

    Tallarida, Ronald J.; Raffa, Robert B.

    2014-01-01

    In this review we show that the concept of dose equivalence for two drugs, the theoretical basis of the isobologram, has a wider use in the analysis of pharmacological data derived from single and combination drug use. In both its application to drug combination analysis with isoboles and certain other actions, listed below, the determination of doses, or receptor occupancies, that yield equal effects provide useful metrics that can be used to obtain quantitative information on drug actions without postulating any intimate mechanism of action. These other drug actions discussed here include (1) combinations of agonists that produce opposite effects, (2) analysis of inverted U-shaped dose effect curves of single agents, (3) analysis on the effect scale as an alternative to isoboles and (4) the use of occupation isoboles to examine competitive antagonism in the dual receptor case. New formulas derived to assess the statistical variance for additive combinations are included, and the more detailed mathematical topics are included in the appendix. PMID:20546783

  2. The quantitative analysis of OH in vesuvianite: a polarized FTIR and SIMS study

    NASA Astrophysics Data System (ADS)

    Bellatreccia, Fabio; della Ventura, Giancarlo; Ottolini, Luisa; Libowitzky, Eugen; Beran, Anton

    2005-05-01

    A well-characterized suite of vesuvianite samples from the volcanic ejecta (skarn or syenites) from Latium (Italy) was studied by single-crystal, polarized radiation, Fourier-transform infrared (FTIR) spectroscopy and secondary-ion mass-spectrometry (SIMS). OH-stretching FTIR spectra consist of a rather well-defined triplet of broad bands at higher-frequency (3,700 3,300 cm-1) and a very broad composite absorption below 3,300 cm-1. Measurements with E//c or E⊥c show that all bands are strongly polarized with maximum absorption for E//c. They are in agreement with previous band assignments (Groat et al. Can Mineral 33:609, 1995) to the two O(11) H(1) and O(10) H(2) groups in the structure. Pleochroic measurements with changing direction of the E vector of the incident radiation show that the orientation of the O(11) H(1) dipole is OH∧c~35°, in excellent agreement with the neutron data of Lager et al. (Can Mineral 37:763, 1999). A SIMS-based calibration curve at ~10% rel. accuracy has been worked out and used as reference for the quantitative analysis of H2O in vesuvianite by FTIR. Based on previous SIMS results for silicate minerals (Ottolini and Hawthorne in J Anal At Spectrom 16:1266, 2001; Ottolini et al. in Am Mineral 87:1477, 2002) the SiO2 and FeO content of the matrix were assumed as the major factors to be considered at a first approximation in the selection of the standards for H. The lack of vesuvianite standards for quantitative SIMS analysis of H2O has been here overcome by selecting low-silica elbaite crystals (Ottolini et al. in Am Mineral 87:1477, 2002). The resulting integrated molar absorption FTIR coefficient for vesuvianite is ɛi=100.000±2.000 l mol-1 cm-2. SIMS data for Li, B, F, Sr, Y, Be, Ba REE, U and Th are also provided in the paper.

  3. Systematic review of quantitative clinical gait analysis in patients with dementia.

    PubMed

    van Iersel, M B; Hoefsloot, W; Munneke, M; Bloem, B R; Olde Rikkert, M G M

    2004-02-01

    Diminished mobility often accompanies dementia and has a great impact on independence and quality of life. New treatment strategies for dementia are emerging, but the effects on gait remains to be studied objectively. In this review we address the general effects of dementia on gait as revealed by quantitative gait analysis. A systematic literature search with the (MESH) terms: 'dementia' and 'gait disorders' in Medline, CC, Psychlit and CinaHL between 1980-2002. Main inclusion criteria: controlled studies; patients with dementia; quantitative gait data. Seven publications met the inclusion criteria. All compared gait in Alzheimer's Disease (AD) with healthy elderly controls; one also assessed gait in Vascular Dementia (VaD). The methodology used was inconsistent and often had many shortcomings. However, there were several consistent findings: walking velocity decreased in dementia compared to healthy controls and decreased further with progressing severity of dementia. VaD was associated with a significant decrease in walking velocity compared to AD subjects. Dementia was associated with a shortened step length, an increased double support time and step to step variability. Gait in dementia is hardly analyzed in a well-designed manner. Despite this, the literature suggests that quantitative gait analysis can be sufficiently reliable and responsive to measure decline in walking velocity between subjects with and without dementia. More research is required to assess, both on an individual and a group level, how the minimal clinically relevant changes in gait in elderly demented patients should be defined and what would be the most responsive method to measure these changes.

  4. Foot and Ankle Kinematics and Dynamic Electromyography: Quantitative Analysis of Recovery From Peroneal Neuropathy in a Professional Football Player.

    PubMed

    Prasad, Nikhil K; Coleman Wood, Krista A; Spinner, Robert J; Kaufman, Kenton R

    The assessment of neuromuscular recovery after peripheral nerve surgery has typically been a subjective physical examination. The purpose of this report was to assess the value of gait analysis in documenting recovery quantitatively. A professional football player underwent gait analysis before and after surgery for a peroneal intraneural ganglion cyst causing a left-sided foot drop. Surface electromyography (SEMG) recording from surface electrodes and motion parameter acquisition from a computerized motion capture system consisting of 10 infrared cameras were performed simultaneously. A comparison between SEMG recordings before and after surgery showed a progression from disorganized activation in the left tibialis anterior and peroneus longus muscles to temporally appropriate activation for the phase of the gait cycle. Kinematic analysis of ankle motion planes showed resolution from a complete foot drop preoperatively to phase-appropriate dorsiflexion postoperatively. Gait analysis with dynamic SEMG and motion capture complements physical examination when assessing postoperative recovery in athletes.

  5. A Fan-tastic Quantitative Exploration of Ohm's Law

    NASA Astrophysics Data System (ADS)

    Mitchell, Brandon; Ekey, Robert; McCullough, Roy; Reitz, William

    2018-02-01

    Teaching simple circuits and Ohm's law to students in the introductory classroom has been extensively investigated through the common practice of using incandescent light bulbs to help students develop a conceptual foundation before moving on to quantitative analysis. However, the bulb filaments' resistance has a large temperature dependence, which makes them less suitable as a tool for quantitative analysis. Some instructors show that light bulbs do not obey Ohm's law either outright or through inquiry-based laboratory experiments. Others avoid the subject altogether by using bulbs strictly for qualitative purposes and then later switching to resistors for a numerical analysis, or by changing the operating conditions of the bulb so that it is "barely" glowing. It seems incongruous to develop a conceptual basis for the behavior of simple circuits using bulbs only to later reveal that they do not follow Ohm's law. Recently, small computer fans were proposed as a suitable replacement of bulbs for qualitative analysis of simple circuits where the current is related to the rotational speed of the fans. In this contribution, we demonstrate that fans can also be used for quantitative measurements and provide suggestions for successful classroom implementation.

  6. Quantitative 13C NMR characterization of fast pyrolysis oils

    DOE PAGES

    Happs, Renee M.; Lisa, Kristina; Ferrell, III, Jack R.

    2016-10-20

    Quantitative 13C NMR analysis of model catalytic fast pyrolysis (CFP) oils following literature procedures showed poor agreement for aromatic hydrocarbons between NMR measured concentrations and actual composition. Furthermore, modifying integration regions based on DEPT analysis for aromatic carbons resulted in better agreement. Solvent effects were also investigated for hydrotreated CFP oil.

  7. Quantitative 13C NMR characterization of fast pyrolysis oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happs, Renee M.; Lisa, Kristina; Ferrell, III, Jack R.

    Quantitative 13C NMR analysis of model catalytic fast pyrolysis (CFP) oils following literature procedures showed poor agreement for aromatic hydrocarbons between NMR measured concentrations and actual composition. Furthermore, modifying integration regions based on DEPT analysis for aromatic carbons resulted in better agreement. Solvent effects were also investigated for hydrotreated CFP oil.

  8. Quantitative photogrammetric analysis of the Klapp method for treating idiopathic scoliosis.

    PubMed

    Iunes, Denise H; Cecílio, Maria B B; Dozza, Marina A; Almeida, Polyanna R

    2010-01-01

    Few studies have proved that physical therapy techniques are efficient in the treatment of scoliosis. To analyze the efficiency of the Klapp method for the treatment of scoliosis, through a quantitative analysis using computerized biophotogrammetry. Sixteen participants of a mean age of 15+/-2.61 yrs. with idiopathic scoliosis were treated using the Klapp method. To analyze the results from the treatment, they were all of photographed before and after the treatments, following a standardized photographic method. All of the photographs were analyzed quantitatively by the same examiner using the ALCimagem 2000 software. The statistical analyses were performed using the paired t-test with a significance level of 5%. The treatments showed improvements in the angles which evaluated the symmetry of the shoulders, i.e. the acromioclavicular joint angle (AJ; p=0.00) and sternoclavicular joint angle (SJ; p=0.01). There were also improvements in the angle that evaluated the left Thales triangle (DeltaT; p=0.02). Regarding flexibility, there were improvements in the tibiotarsal angle (TTA; p=0.01) and in the hip joint angles (HJA; p=0.00). There were no changes in the vertebral curvatures and nor improvements in head positioning. Only the lumbar curvature, evaluated by the lumbar lordosis angle (LL; p=0.00), changed after the treatments. The Klapp method was an efficient therapeutic technique for treating asymmetries of the trunk and improving its flexibility. However, it was not efficient for pelvic asymmetry modifications in head positioning, cervical lordosis or thoracic kyphosis.

  9. Quantitative phosphoproteomic analysis of host responses in human lung epithelial (A549) cells during influenza virus infection.

    PubMed

    Dapat, Clyde; Saito, Reiko; Suzuki, Hiroshi; Horigome, Tsuneyoshi

    2014-01-22

    The emergence of antiviral drug-resistant influenza viruses highlights the need for alternative therapeutic strategies. Elucidation of host factors required during virus infection provides information not only on the signaling pathways involved but also on the identification of novel drug targets. RNA interference screening method had been utilized by several studies to determine these host factors; however, proteomics data on influenza host factors are currently limited. In this study, quantitative phosphoproteomic analysis of human lung cell line (A549) infected with 2009 pandemic influenza virus A (H1N1) virus was performed. Phosphopeptides were enriched from tryptic digests of total protein of infected and mock-infected cells using a titania column on an automated purification system followed by iTRAQ labeling. Identification and quantitative analysis of iTRAQ-labeled phosphopeptides were performed using LC-MS/MS. We identified 366 phosphorylation sites on 283 proteins. Of these, we detected 43 upregulated and 35 downregulated proteins during influenza virus infection. Gene ontology enrichment analysis showed that majority of the identified proteins are phosphoproteins involved in RNA processing, immune system process and response to infection. Host-virus interaction network analysis had identified 23 densely connected subnetworks. Of which, 13 subnetworks contained proteins with altered phosphorylation levels during by influenza virus infection. Our results will help to identify potential drug targets that can be pursued for influenza antiviral drug development. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Extraction and quantitative analysis of iodine in solid and solution matrixes.

    PubMed

    Brown, Christopher F; Geiszler, Keith N; Vickerman, Tanya S

    2005-11-01

    129I is a contaminant of interest in the vadose zone and groundwater at numerous federal and privately owned facilities. Several techniques have been utilized to extract iodine from solid matrixes; however, all of them rely on two fundamental approaches: liquid extraction or chemical/heat-facilitated volatilization. While these methods are typically chosen for their ease of implementation, they do not totally dissolve the solid. We defined a method that produces complete solid dissolution and conducted laboratory tests to assess its efficacy to extract iodine from solid matrixes. Testing consisted of potassium nitrate/potassium hydroxide fusion of the sample, followed by sample dissolution in a mixture of sulfuric acid and sodium bisulfite. The fusion extraction method resulted in complete sample dissolution of all solid matrixes tested. Quantitative analysis of 127I and 129I via inductively coupled plasma mass spectrometry showed better than +/-10% accuracy for certified reference standards, with the linear operating range extending more than 3 orders of magnitude (0.005-5 microg/L). Extraction and analysis of four replicates of standard reference material containing 5 microg/g 127I resulted in an average recovery of 98% with a relative deviation of 6%. This simple and cost-effective technique can be applied to solid samples of varying matrixes with little or no adaptation.

  11. Using the iPhone as a device for a rapid quantitative analysis of trinitrotoluene in soil.

    PubMed

    Choodum, Aree; Kanatharana, Proespichaya; Wongniramaikul, Worawit; Daeid, Niamh Nic

    2013-10-15

    Mobile 'smart' phones have become almost ubiquitous in society and are typically equipped with a high-resolution digital camera which can be used to produce an image very conveniently. In this study, the built-in digital camera of a smart phone (iPhone) was used to capture the results from a rapid quantitative colorimetric test for trinitrotoluene (TNT) in soil. The results were compared to those from a digital single-lens reflex (DSLR) camera. The colored product from the selective test for TNT was quantified using an innovative application of photography where the relationships between the Red Green Blue (RGB) values and the concentrations of colorimetric product were exploited. The iPhone showed itself to be capable of being used more conveniently than the DSLR while providing similar analytical results with increased sensitivity. The wide linear range and low detection limits achieved were comparable with those from spectrophotometric quantification methods. Low relative errors in the range of 0.4 to 6.3% were achieved in the analysis of control samples and 0.4-6.2% for spiked soil extracts with good precision (2.09-7.43% RSD) for the analysis over 4 days. The results demonstrate that the iPhone provides the potential to be used as an ideal novel platform for the development of a rapid on site semi quantitative field test for the analysis of explosives. © 2013 Elsevier B.V. All rights reserved.

  12. Techniques for quantitative LC-MS/MS analysis of protein therapeutics: advances in enzyme digestion and immunocapture.

    PubMed

    Fung, Eliza N; Bryan, Peter; Kozhich, Alexander

    2016-04-01

    LC-MS/MS has been investigated to quantify protein therapeutics in biological matrices. The protein therapeutics is digested by an enzyme to generate surrogate peptide(s) before LC-MS/MS analysis. One challenge is isolating protein therapeutics in the presence of large number of endogenous proteins in biological matrices. Immunocapture, in which a capture agent is used to preferentially bind the protein therapeutics over other proteins, is gaining traction. The protein therapeutics is eluted for digestion and LC-MS/MS analysis. One area of tremendous potential for immunocapture-LC-MS/MS is to obtain quantitative data where ligand-binding assay alone is not sufficient, for example, quantitation of antidrug antibody complexes. Herein, we present an overview of recent advance in enzyme digestion and immunocapture applicable to protein quantitation.

  13. Quantitative option analysis for implementation and management of landfills.

    PubMed

    Kerestecioğlu, Merih

    2016-09-01

    The selection of the most feasible strategy for implementation of landfills is a challenging step. Potential implementation options of landfills cover a wide range, from conventional construction contracts to the concessions. Montenegro, seeking to improve the efficiency of the public services while maintaining affordability, was considering privatisation as a way to reduce public spending on service provision. In this study, to determine the most feasible model for construction and operation of a regional landfill, a quantitative risk analysis was implemented with four steps: (i) development of a global risk matrix; (ii) assignment of qualitative probabilities of occurrences and magnitude of impacts; (iii) determination of the risks to be mitigated, monitored, controlled or ignored; (iv) reduction of the main risk elements; and (v) incorporation of quantitative estimates of probability of occurrence and expected impact for each risk element in the reduced risk matrix. The evaluated scenarios were: (i) construction and operation of the regional landfill by the public sector; (ii) construction and operation of the landfill by private sector and transfer of the ownership to the public sector after a pre-defined period; and (iii) operation of the landfill by the private sector, without ownership. The quantitative risk assessment concluded that introduction of a public private partnership is not the most feasible option, unlike the common belief in several public institutions in developing countries. A management contract for the first years of operation was advised to be implemented, after which, a long term operating contract may follow. © The Author(s) 2016.

  14. An Ibm PC/AT-Based Image Acquisition And Processing System For Quantitative Image Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Yongmin; Alexander, Thomas

    1986-06-01

    In recent years, a large number of applications have been developed for image processing systems in the area of biological imaging. We have already finished the development of a dedicated microcomputer-based image processing and analysis system for quantitative microscopy. The system's primary function has been to facilitate and ultimately automate quantitative image analysis tasks such as the measurement of cellular DNA contents. We have recognized from this development experience, and interaction with system users, biologists and technicians, that the increasingly widespread use of image processing systems, and the development and application of new techniques for utilizing the capabilities of such systems, would generate a need for some kind of inexpensive general purpose image acquisition and processing system specially tailored for the needs of the medical community. We are currently engaged in the development and testing of hardware and software for a fairly high-performance image processing computer system based on a popular personal computer. In this paper, we describe the design and development of this system. Biological image processing computer systems have now reached a level of hardware and software refinement where they could become convenient image analysis tools for biologists. The development of a general purpose image processing system for quantitative image analysis that is inexpensive, flexible, and easy-to-use represents a significant step towards making the microscopic digital image processing techniques more widely applicable not only in a research environment as a biologist's workstation, but also in clinical environments as a diagnostic tool.

  15. Quantitative morphometric analysis for the tectonic characterisation of northern Tunisia.

    NASA Astrophysics Data System (ADS)

    Camafort, Miquel; Pérez-Peña, José Vicente; Booth-Rea, Guillermo; Ranero, César R.; Gràcia, Eulàlia; Azañón, José Miguel; Melki, Fetheddine; Ouadday, Mohamed

    2016-04-01

    Northern Tunisia is characterized by low deformation rates and low to moderate seismicity. Although instrumental seismicity reaches maximum magnitudes of Mw 5.5, some historical earthquakes have occurred with catastrophic consequences in this region. Aiming to improve our knowledge of active tectonics in Tunisia, we carried out both a quantitative morphometric analysis and field study in the north-western region. We applied different morphometric tools, like river profiles, knickpoint analysis, hypsometric curves and integrals and drainage pattern anomalies in order to differentiate between zones with high or low recent tectonic activity. This analysis helps identifying uplift and subsidence zones, which we relate to fault activity. Several active faults in a sparse distribution were identified. A selected sector was studied with a field campaign to test the results obtained with the quantitative analysis. During the fieldwork we identified geological evidence of recent activity and a considerable seismogenic potential along El Alia-Teboursouk (ETF) and Dkhila (DF) faults. The ETF fault could be responsible of one of the most devastating historical earthquakes in northern Tunisia that destroyed Utique in 412 A.D. Geological evidence include fluvial terraces folded by faults, striated and cracked pebbles, clastic dikes, sand volcanoes, coseismic cracks, etc. Although not reflected in the instrumental seismicity, our results support an important seismic hazard, evidenced by the several active tectonic structures identified and the two seismogenic faults described. After obtaining the current active tectonic framework of Tunisia we discuss our results within the western Mediterranean trying to contribute to the understanding of the western Mediterranean tectonic context. With our results, we suggest that the main reason explaining the sparse and scarce seismicity of the area in contrast with the adjacent parts of the Nubia-Eurasia boundary is due to its extended

  16. Modelling Framework and the Quantitative Analysis of Distributed Energy Resources in Future Distribution Networks

    NASA Astrophysics Data System (ADS)

    Han, Xue; Sandels, Claes; Zhu, Kun; Nordström, Lars

    2013-08-01

    There has been a large body of statements claiming that the large-scale deployment of Distributed Energy Resources (DERs) could eventually reshape the future distribution grid operation in numerous ways. Thus, it is necessary to introduce a framework to measure to what extent the power system operation will be changed by various parameters of DERs. This article proposed a modelling framework for an overview analysis on the correlation between DERs. Furthermore, to validate the framework, the authors described the reference models of different categories of DERs with their unique characteristics, comprising distributed generation, active demand and electric vehicles. Subsequently, quantitative analysis was made on the basis of the current and envisioned DER deployment scenarios proposed for Sweden. Simulations are performed in two typical distribution network models for four seasons. The simulation results show that in general the DER deployment brings in the possibilities to reduce the power losses and voltage drops by compensating power from the local generation and optimizing the local load profiles.

  17. Economic analysis of light brown apple moth using GIS and quantitative modeling

    Treesearch

    Glenn Fowler; Lynn Garrett; Alison Neeley; Roger Magarey; Dan Borchert; Brian Spears

    2011-01-01

    We conducted an economic analysis of the light brown apple moth (LBAM), (piphyas postvittana (Walker)), whose presence in California has resulted in a regulatory program. Our objective was to quantitatively characterize the economic costs to apple, grape, orange, and pear crops that would result from LBAM's introduction into the continental...

  18. Rapid Determination of Lymphogranuloma Venereum Serovars of Chlamydia trachomatis by Quantitative High-Resolution Melt Analysis (HRMA)

    PubMed Central

    Stevens, Matthew P.; Garland, Suzanne M.; Zaia, Angelo M.; Tabrizi, Sepehr N.

    2012-01-01

    A quantitative high-resolution melt analysis assay was developed to differentiate lymphogranuloma venereum-causing serovars of Chlamydia trachomatis (L1 to L3) from other C. trachomatis serovars (D to K). The detection limit of this assay is approximately 10 copies per reaction, comparable to the limits of other quantitative-PCR-based methods. PMID:22933594

  19. Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis.

    PubMed

    Yee, A; Lam, M P Y; Tam, V; Chan, W C W; Chu, I K; Cheah, K S E; Cheung, K M C; Chan, D

    2016-03-01

    Intervertebral disc degeneration (IDD) can lead to symptomatic conditions including sciatica and back pain. The purpose of this study is to understand the extracellular matrix (ECM) changes in disc biology through comparative proteomic analysis of degenerated and non-degenerated human intervertebral disc (IVD) tissues of different ages. Seven non-degenerated (11-46 years of age) and seven degenerated (16-53 years of age) annulus fibrosus (AF) and nucleus pulposus (NP) samples were used. Proteins were extracted using guanidine hydrochloride, separated from large proteoglycans (PGs) by caesium chloride (CsCl) density gradient ultracentrifugation, and identified using liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS). For quantitative comparison, proteins were labeled with iTRAQ reagents. Collagen fibrils in the NP were assessed using scanning electron microscopy (SEM). In the AF, quantitative analysis revealed increased levels of HTRA1, COMP and CILP in degeneration when compared with samples from older individuals. Fibronectin showed increment with age and degeneration. In the NP, more CILP and CILP2 were present in degenerated samples of younger individuals. Reduced protein solubility was observed in degenerated and older non-degenerated samples correlated with an accumulation of type I collagen in the insoluble fibers. Characterization of collagen fibrils in the NP revealed smaller mean fibril diameters and decreased porosity in the degenerated samples. Our study identified distinct matrix changes associated with aging and degeneration in the intervertebral discs (IVDs). The nature of the ECM changes, together with observed decreased in solubility and changes in fibril diameter is consistent with a fibrotic-like environment. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  20. Quantitative analysis of the anti-noise performance of an m-sequence in an electromagnetic method

    NASA Astrophysics Data System (ADS)

    Yuan, Zhe; Zhang, Yiming; Zheng, Qijia

    2018-02-01

    An electromagnetic method with a transmitted waveform coded by an m-sequence achieved better anti-noise performance compared to the conventional manner with a square-wave. The anti-noise performance of the m-sequence varied with multiple coding parameters; hence, a quantitative analysis of the anti-noise performance for m-sequences with different coding parameters was required to optimize them. This paper proposes the concept of an identification system, with the identified Earth impulse response obtained by measuring the system output with the input of the voltage response. A quantitative analysis of the anti-noise performance of the m-sequence was achieved by analyzing the amplitude-frequency response of the corresponding identification system. The effects of the coding parameters on the anti-noise performance are summarized by numerical simulation, and their optimization is further discussed in our conclusions; the validity of the conclusions is further verified by field experiment. The quantitative analysis method proposed in this paper provides a new insight into the anti-noise mechanism of the m-sequence, and could be used to evaluate the anti-noise performance of artificial sources in other time-domain exploration methods, such as the seismic method.

  1. Quantitative and Qualitative Analysis of Bacteria in Er(III) Solution by Thin-Film Magnetopheresis

    PubMed Central

    Zborowski, Maciej; Tada, Yoko; Malchesky, Paul S.; Hall, Geraldine S.

    1993-01-01

    Magnetic deposition, quantitation, and identification of bacteria reacting with the paramagnetic trivalent lanthanide ion, Er3+, was evaluated. The magnetic deposition method was dubbed thin-film magnetopheresis. The optimization of the magnetic deposition protocol was accomplished with Escherichia coli as a model organism in 150 mM NaCl and 5 mM ErCl3 solution. Three gram-positive bacteria, Staphylococcus epidermidis, Staphylococcus saprophyticus, and Enterococcus faecalis, and four gram-negative bacteria, E. coli, Pseudomonas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae, were subsequently investigated. Quantitative analysis consisted of the microscopic cell count and a scattered-light scanning of the magnetically deposited material aided by the computer data acquisition system. Qualitative analysis consisted of Gram stain differentiation and fluorescein isothiocyanate staining in combination with selected antisera against specific types of bacteria on the solid substrate. The magnetic deposition protocol allowed quantitative detection of E. coli down to the concentration of 105 CFU ml-1, significant in clinical diagnosis applications such as urinary tract infections. Er3+ did not interfere with the typical appearance of the Gram-stained bacteria nor with the antigen recognition by the antibody in the immunohistological evaluations. Indirect antiserum-fluorescein isothiocyanate labelling correctly revealed the presence of E. faecalis and P. aeruginosa in the magnetically deposited material obtained from the mixture of these two bacterial species. On average, the reaction of gram-positive organisms was significantly stronger to the magnetic field in the presence of Er3+ than the reaction of gram-negative organisms. The thin-film magnetophoresis offers promise as a rapid method for quantitative and qualitative analysis of bacteria in solutions such as urine or environmental water. Images PMID:16348916

  2. Quantitative analysis of domain texture in polycrystalline barium titanate by polarized Raman microprobe spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakashita, Tatsuo; Chazono, Hirokazu; Pezzotti, Giuseppe

    2007-12-01

    A quantitative determination of domain distribution in polycrystalline barium titanate (BaTiO3, henceforth BT) ceramics has been pursued with the aid of a microprobe polarized Raman spectrometer. The crystallographic texture and domain orientation distribution of BT ceramics, which switched upon applying stress according to ferroelasticity principles, were determined from the relative intensity of selected phonon modes, taking into consideration a theoretical analysis of the angular dependence of phonon mode intensity for the tetragonal BT phase. Furthermore, the angular dependence of Raman intensity measured in polycrystalline BT depended on the statistical distribution of domain angles in the laser microprobe, which was explicitly taken into account in this work for obtaining a quantitative analysis of domain orientation for in-plane textured BT polycrystalline materials.

  3. Quantitative analysis of surface characteristics and morphology in Death Valley, California using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Kierein-Young, K. S.; Kruse, F. A.; Lefkoff, A. B.

    1992-01-01

    The Jet Propulsion Laboratory Airborne Synthetic Aperture Radar (JPL-AIRSAR) is used to collect full polarimetric measurements at P-, L-, and C-bands. These data are analyzed using the radar analysis and visualization environment (RAVEN). The AIRSAR data are calibrated using in-scene corner reflectors to allow for quantitative analysis of the radar backscatter. RAVEN is used to extract surface characteristics. Inversion models are used to calculate quantitative surface roughness values and fractal dimensions. These values are used to generate synthetic surface plots that represent the small-scale surface structure of areas in Death Valley. These procedures are applied to a playa, smooth salt-pan, and alluvial fan surfaces in Death Valley. Field measurements of surface roughness are used to verify the accuracy.

  4. Qualitative and quantitative analysis of mixtures of compounds containing both hydrogen and deuterium

    NASA Technical Reports Server (NTRS)

    Crespi, H. L.; Harkness, L.; Katz, J. J.; Norman, G.; Saur, W.

    1969-01-01

    Method allows qualitative and quantitative analysis of mixtures of partially deuterated compounds. Nuclear magnetic resonance spectroscopy determines location and amount of deuterium in organic compounds but not fully deuterated compounds. Mass spectroscopy can detect fully deuterated species but not the location.

  5. Quantitative Analysis Tools and Digital Phantoms for Deformable Image Registration Quality Assurance.

    PubMed

    Kim, Haksoo; Park, Samuel B; Monroe, James I; Traughber, Bryan J; Zheng, Yiran; Lo, Simon S; Yao, Min; Mansur, David; Ellis, Rodney; Machtay, Mitchell; Sohn, Jason W

    2015-08-01

    This article proposes quantitative analysis tools and digital phantoms to quantify intrinsic errors of deformable image registration (DIR) systems and establish quality assurance (QA) procedures for clinical use of DIR systems utilizing local and global error analysis methods with clinically realistic digital image phantoms. Landmark-based image registration verifications are suitable only for images with significant feature points. To address this shortfall, we adapted a deformation vector field (DVF) comparison approach with new analysis techniques to quantify the results. Digital image phantoms are derived from data sets of actual patient images (a reference image set, R, a test image set, T). Image sets from the same patient taken at different times are registered with deformable methods producing a reference DVFref. Applying DVFref to the original reference image deforms T into a new image R'. The data set, R', T, and DVFref, is from a realistic truth set and therefore can be used to analyze any DIR system and expose intrinsic errors by comparing DVFref and DVFtest. For quantitative error analysis, calculating and delineating differences between DVFs, 2 methods were used, (1) a local error analysis tool that displays deformation error magnitudes with color mapping on each image slice and (2) a global error analysis tool that calculates a deformation error histogram, which describes a cumulative probability function of errors for each anatomical structure. Three digital image phantoms were generated from three patients with a head and neck, a lung and a liver cancer. The DIR QA was evaluated using the case with head and neck. © The Author(s) 2014.

  6. A survey of tools for the analysis of quantitative PCR (qPCR) data.

    PubMed

    Pabinger, Stephan; Rödiger, Stefan; Kriegner, Albert; Vierlinger, Klemens; Weinhäusel, Andreas

    2014-09-01

    Real-time quantitative polymerase-chain-reaction (qPCR) is a standard technique in most laboratories used for various applications in basic research. Analysis of qPCR data is a crucial part of the entire experiment, which has led to the development of a plethora of methods. The released tools either cover specific parts of the workflow or provide complete analysis solutions. Here, we surveyed 27 open-access software packages and tools for the analysis of qPCR data. The survey includes 8 Microsoft Windows, 5 web-based, 9 R-based and 5 tools from other platforms. Reviewed packages and tools support the analysis of different qPCR applications, such as RNA quantification, DNA methylation, genotyping, identification of copy number variations, and digital PCR. We report an overview of the functionality, features and specific requirements of the individual software tools, such as data exchange formats, availability of a graphical user interface, included procedures for graphical data presentation, and offered statistical methods. In addition, we provide an overview about quantification strategies, and report various applications of qPCR. Our comprehensive survey showed that most tools use their own file format and only a fraction of the currently existing tools support the standardized data exchange format RDML. To allow a more streamlined and comparable analysis of qPCR data, more vendors and tools need to adapt the standardized format to encourage the exchange of data between instrument software, analysis tools, and researchers.

  7. Genome-wide Linkage Analysis for Identifying Quantitative Trait Loci Involved in the Regulation of Lipoprotein a (Lpa) Levels

    PubMed Central

    López, Sonia; Buil, Alfonso; Ordoñez, Jordi; Souto, Juan Carlos; Almasy, Laura; Lathrop, Mark; Blangero, John; Blanco-Vaca, Francisco; Fontcuberta, Jordi; Soria, José Manuel

    2009-01-01

    Lipoprotein Lp(a) levels are highly heritable and are associated with cardiovascular risk. We performed a genome-wide linkage analysis to delineate the genomic regions that influence the concentration of Lp(a) in families from the Genetic Analysis of Idiopathic Thrombophilia (GAIT) Project. Lp(a) levels were measured in 387 individuals belonging to 21 extended Spanish families. A total of 485 DNA microsatellite markers were genotyped to provide a 7.1 cM genetic map. A variance component linkage method was used to evaluate linkage and to detect quantitative trait loci (QTLs). The main QTL that showed strong evidence of linkage with Lp(a) levels was located at the structural gene for apo(a) on Chromosome 6 (LOD score=13.8). Interestingly, another QTL influencing Lp(a) concentration was located on Chromosome 2 with a LOD score of 2.01. This region contains several candidate genes. One of them is the tissue factor pathway inhibitor (TFPI), which has antithrombotic action and also has the ability to bind lipoproteins. However, quantitative trait association analyses performed with 12 SNPs in TFPI gene revealed no association with Lp(a) levels. Our study confirms previous results on the genetic basis of Lp(a) levels. In addition, we report a new QTL on Chromosome 2 involved in the quantitative variation of Lp(a). These data should serve as the basis for further detection of candidate genes and to elucidate the relationship between the concentration of Lp(a) and cardiovascular risk. PMID:18560444

  8. Chemical Fingerprint and Quantitative Analysis for the Quality Evaluation of Platycladi cacumen by Ultra-performance Liquid Chromatography Coupled with Hierarchical Cluster Analysis.

    PubMed

    Shan, Mingqiu; Li, Sam Fong Yau; Yu, Sheng; Qian, Yan; Guo, Shuchen; Zhang, Li; Ding, Anwei

    2018-01-01

    Platycladi cacumen (dried twigs and leaves of Platycladus orientalis (L.) Franco) is a frequently utilized Chinese medicinal herb. To evaluate the quality of the phytomedcine, an ultra-performance liquid chromatographic method with diode array detection was established for chemical fingerprinting and quantitative analysis. In this study, 27 batches of P. cacumen from different regions were collected for analysis. A chemical fingerprint with 20 common peaks was obtained using Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine (Version 2004A). Among these 20 components, seven flavonoids (myricitrin, isoquercitrin, quercitrin, afzelin, cupressuflavone, amentoflavone and hinokiflavone) were identified and determined simultaneously. In the method validation, the seven analytes showed good regressions (R ≥ 0.9995) within linear ranges and good recoveries from 96.4% to 103.3%. Furthermore, with the contents of these seven flavonoids, hierarchical clustering analysis was applied to distinguish the 27 batches into five groups. The chemometric results showed that these groups were almost consistent with geographical positions and climatic conditions of the production regions. Integrating fingerprint analysis, simultaneous determination and hierarchical clustering analysis, the established method is rapid, sensitive, accurate and readily applicable, and also provides a significant foundation for quality control of P. cacumen efficiently. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Quantitative and Qualitative Analysis of Phenolic and Flavonoid Content in Moringa oleifera Lam and Ocimum tenuiflorum L.

    PubMed Central

    Sankhalkar, Sangeeta; Vernekar, Vrunda

    2016-01-01

    Background: Number of secondary compounds is produced by plants as natural antioxidants. Moringa oleifera Lam. and Ocimum tenuiflorum L. are known for their wide applications in food and pharmaceutical industry. Objective: To compare phenolic and flavonoid content in M. oleifera Lam and O. tenuiflorum L. by quantitative and qualitative analysis. Materials and Methods: Phenolic and flavonoid content were studied spectrophotometrically and by paper chromatography in M. oleifera Lam. and O. tenuiflorum L. Results: Higher phenolic and flavonoid content were observed in Moringa leaf and flower. Ocimum flower showed higher phenolic content and low flavonoid in comparison to Moringa. Flavonoids such as biflavonyl, flavones, glycosylflavones, and kaempferol were identified by paper chromatography. Phytochemical analysis for flavonoid, tannins, saponins, alkaloids, reducing sugars, and anthraquinones were tested positive for Moringa and Ocimum leaf as well as flower. Conclusions: In the present study higher phenolic and flavonoid content, indicated the natural antioxidant nature of Moringa and Ocimum signifying their medicinal importance. SUMMARY Moringa oleifera Lam. and Ocimum tenuiflorum L. are widly grown in India and are known for their medicinal properties. Number of secondary metabolites like phenolics and flavonoids are known to be present in both the plants. The present study was conducted with an objective to qualitatively and quantitatively compare the phenolics and flavanoids in these two medicinally important plants.Quantitation of total phenolics and flavanoids was done by spectrophotometrically while qualitative analysis was perfomed by paper chromatography and by phytochemical tests. Our results have shown higher phenolics and flavanoid content in Moringa leaf and flower. However, higher phenolic content was absent in Ocimum flower compared to that of Moringa. Phytochemical analysis of various metabolites such as flavonoids, tanins, sapponins, alkaloids

  10. Quantitative and Qualitative Analysis of Phenolic and Flavonoid Content in Moringa oleifera Lam and Ocimum tenuiflorum L.

    PubMed

    Sankhalkar, Sangeeta; Vernekar, Vrunda

    2016-01-01

    Number of secondary compounds is produced by plants as natural antioxidants. Moringa oleifera Lam. and Ocimum tenuiflorum L. are known for their wide applications in food and pharmaceutical industry. To compare phenolic and flavonoid content in M. oleifera Lam and O. tenuiflorum L. by quantitative and qualitative analysis. Phenolic and flavonoid content were studied spectrophotometrically and by paper chromatography in M. oleifera Lam. and O. tenuiflorum L. Higher phenolic and flavonoid content were observed in Moringa leaf and flower. Ocimum flower showed higher phenolic content and low flavonoid in comparison to Moringa. Flavonoids such as biflavonyl, flavones, glycosylflavones, and kaempferol were identified by paper chromatography. Phytochemical analysis for flavonoid, tannins, saponins, alkaloids, reducing sugars, and anthraquinones were tested positive for Moringa and Ocimum leaf as well as flower. In the present study higher phenolic and flavonoid content, indicated the natural antioxidant nature of Moringa and Ocimum signifying their medicinal importance. Moringa oleifera Lam. and Ocimum tenuiflorum L. are widly grown in India and are known for their medicinal properties. Number of secondary metabolites like phenolics and flavonoids are known to be present in both the plants. The present study was conducted with an objective to qualitatively and quantitatively compare the phenolics and flavanoids in these two medicinally important plants.Quantitation of total phenolics and flavanoids was done by spectrophotometrically while qualitative analysis was perfomed by paper chromatography and by phytochemical tests. Our results have shown higher phenolics and flavanoid content in Moringa leaf and flower. However, higher phenolic content was absent in Ocimum flower compared to that of Moringa. Phytochemical analysis of various metabolites such as flavonoids, tanins, sapponins, alkaloids, anthraquinones revealed that both the plant extracts were rich sources of

  11. Quantitative analysis of the polarization characteristics of atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Gubarkova, Ekaterina V.; Kirillin, Michail Y.; Dudenkova, Varvara V.; Kiseleva, Elena B.; Moiseev, Alexander A.; Gelikonov, Grigory V.; Timofeeva, Lidia B.; Fiks, Ilya I.; Feldchtein, Felix I.; Gladkova, Natalia D.

    2016-04-01

    In this study we demonstrate the capability of cross-polarization optical coherence tomography (CP OCT) to assess collagen and elastin fibers condition in atherosclerotic plaques basing on ratio of the OCT signal levels in cross- and co- polarizations. We consider the depolarization factor (DF) and the effective birefringence (Δn) as quantitative characteristics of CP OCT images. We revealed that calculation of both DF and Δn in the region of interest (fibrous cap) yields a statistically significant difference between stable and unstable plaques (0.46+/-0.21 vs 0.09+/-0.04 for IDF; (4.7+/-1.0)•10-4 vs (2.5+/-0.7)•10-4 for Δn p<0.05). In parallel with CP OCT we used the nonlinear microscopy for analysis of thin cross-section of atherosclerotic plaque, revealing the different average isotropy index of collagen and elastin fibers for stable and unstable plaques (0.30 +/- 0.10 vs 0.70 +/- 0.08; p<0.001). The proposed approach for quantitative assessment of CP OCT images allows cross-scattering and birefringence characterization of stable and unstable atherosclerotic plaques.

  12. Quantitative analysis of Ni2+/Ni3+ in Li[NixMnyCoz]O2 cathode materials: Non-linear least-squares fitting of XPS spectra

    NASA Astrophysics Data System (ADS)

    Fu, Zewei; Hu, Juntao; Hu, Wenlong; Yang, Shiyu; Luo, Yunfeng

    2018-05-01

    Quantitative analysis of Ni2+/Ni3+ using X-ray photoelectron spectroscopy (XPS) is important for evaluating the crystal structure and electrochemical performance of Lithium-nickel-cobalt-manganese oxide (Li[NixMnyCoz]O2, NMC). However, quantitative analysis based on Gaussian/Lorentzian (G/L) peak fitting suffers from the challenges of reproducibility and effectiveness. In this study, the Ni2+ and Ni3+ standard samples and a series of NMC samples with different Ni doping levels were synthesized. The Ni2+/Ni3+ ratios in NMC were quantitatively analyzed by non-linear least-squares fitting (NLLSF). Two Ni 2p overall spectra of synthesized Li [Ni0.33Mn0.33Co0.33]O2(NMC111) and bulk LiNiO2 were used as the Ni2+ and Ni3+ reference standards. Compared to G/L peak fitting, the fitting parameters required no adjustment, meaning that the spectral fitting process was free from operator dependence and the reproducibility was improved. Comparison of residual standard deviation (STD) showed that the fitting quality of NLLSF was superior to that of G/L peaks fitting. Overall, these findings confirmed the reproducibility and effectiveness of the NLLSF method in XPS quantitative analysis of Ni2+/Ni3+ ratio in Li[NixMnyCoz]O2 cathode materials.

  13. Analysis of high accuracy, quantitative proteomics data in the MaxQB database.

    PubMed

    Schaab, Christoph; Geiger, Tamar; Stoehr, Gabriele; Cox, Juergen; Mann, Matthias

    2012-03-01

    MS-based proteomics generates rapidly increasing amounts of precise and quantitative information. Analysis of individual proteomic experiments has made great strides, but the crucial ability to compare and store information across different proteome measurements still presents many challenges. For example, it has been difficult to avoid contamination of databases with low quality peptide identifications, to control for the inflation in false positive identifications when combining data sets, and to integrate quantitative data. Although, for example, the contamination with low quality identifications has been addressed by joint analysis of deposited raw data in some public repositories, we reasoned that there should be a role for a database specifically designed for high resolution and quantitative data. Here we describe a novel database termed MaxQB that stores and displays collections of large proteomics projects and allows joint analysis and comparison. We demonstrate the analysis tools of MaxQB using proteome data of 11 different human cell lines and 28 mouse tissues. The database-wide false discovery rate is controlled by adjusting the project specific cutoff scores for the combined data sets. The 11 cell line proteomes together identify proteins expressed from more than half of all human genes. For each protein of interest, expression levels estimated by label-free quantification can be visualized across the cell lines. Similarly, the expression rank order and estimated amount of each protein within each proteome are plotted. We used MaxQB to calculate the signal reproducibility of the detected peptides for the same proteins across different proteomes. Spearman rank correlation between peptide intensity and detection probability of identified proteins was greater than 0.8 for 64% of the proteome, whereas a minority of proteins have negative correlation. This information can be used to pinpoint false protein identifications, independently of peptide database

  14. Smile line assessment comparing quantitative measurement and visual estimation.

    PubMed

    Van der Geld, Pieter; Oosterveld, Paul; Schols, Jan; Kuijpers-Jagtman, Anne Marie

    2011-02-01

    Esthetic analysis of dynamic functions such as spontaneous smiling is feasible by using digital videography and computer measurement for lip line height and tooth display. Because quantitative measurements are time-consuming, digital videography and semiquantitative (visual) estimation according to a standard categorization are more practical for regular diagnostics. Our objective in this study was to compare 2 semiquantitative methods with quantitative measurements for reliability and agreement. The faces of 122 male participants were individually registered by using digital videography. Spontaneous and posed smiles were captured. On the records, maxillary lip line heights and tooth display were digitally measured on each tooth and also visually estimated according to 3-grade and 4-grade scales. Two raters were involved. An error analysis was performed. Reliability was established with kappa statistics. Interexaminer and intraexaminer reliability values were high, with median kappa values from 0.79 to 0.88. Agreement of the 3-grade scale estimation with quantitative measurement showed higher median kappa values (0.76) than the 4-grade scale estimation (0.66). Differentiating high and gummy smile lines (4-grade scale) resulted in greater inaccuracies. The estimation of a high, average, or low smile line for each tooth showed high reliability close to quantitative measurements. Smile line analysis can be performed reliably with a 3-grade scale (visual) semiquantitative estimation. For a more comprehensive diagnosis, additional measuring is proposed, especially in patients with disproportional gingival display. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  15. Quantitative Risk Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helms, J.

    2017-02-10

    The US energy sector is vulnerable to multiple hazards including both natural disasters and malicious attacks from an intelligent adversary. The question that utility owners, operators and regulators face is how to prioritize their investments to mitigate the risks from a hazard that can have the most impact on the asset of interest. In order to be able to understand their risk landscape and develop a prioritized mitigation strategy, they must quantify risk in a consistent way across all hazards their asset is facing. Without being able to quantitatively measure risk, it is not possible to defensibly prioritize security investmentsmore » or evaluate trade-offs between security and functionality. Development of a methodology that will consistently measure and quantify risk across different hazards is needed.« less

  16. Development of a Fourier transform infrared spectroscopy coupled to UV-Visible analysis technique for aminosides and glycopeptides quantitation in antibiotic locks.

    PubMed

    Sayet, G; Sinegre, M; Ben Reguiga, M

    2014-01-01

    Antibiotic Lock technique maintains catheters' sterility in high-risk patients with long-term parenteral nutrition. In our institution, vancomycin, teicoplanin, amikacin and gentamicin locks are prepared in the pharmaceutical department. In order to insure patient safety and to comply to regulatory requirements, antibiotic locks are submitted to qualitative and quantitative assays prior to their release. The aim of this study was to develop an alternative quantitation technique for each of these 4 antibiotics, using a Fourier transform infrared (FTIR) coupled to UV-Visible spectroscopy and to compare results to HPLC or Immunochemistry assays. Prevalidation studies permitted to assess spectroscopic conditions used for antibiotic locks quantitation: FTIR/UV combinations were used for amikacin (1091-1115cm(-1) and 208-224nm), vancomycin (1222-1240cm(-1) and 276-280nm), and teicoplanin (1226-1230cm(-1) and 278-282nm). Gentamicin was quantified with FTIR only (1045-1169cm(-1) and 2715-2850cm(-1)) due to interferences in UV domain of parabens, preservatives present in the commercial brand used to prepare locks. For all AL, the method was linear (R(2)=0.996 to 0.999), accurate, repeatable (intraday RSD%: from 2.9 to 7.1% and inter-days RSD%: 2.9 to 5.1%) and precise. Compared to the reference methods, the FTIR/UV method appeared tightly correlated (Pearson factor: 97.4 to 99.9%) and did not show significant difference in recovery determinations. We developed a new simple reliable analysis technique for antibiotics quantitation in locks using an original association of FTIR and UV analysis, allowing a short time analysis to identify and quantify the studied antibiotics. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. A Quantitative Description of FBI Public Relations.

    ERIC Educational Resources Information Center

    Gibson, Dirk C.

    1997-01-01

    States that the Federal Bureau of Investigation (FBI) had the most successful media relations program of all government agencies from the 1930s to the 1980s. Uses quantitative analysis to show why those media efforts were successful. Identifies themes that typified the verbal component of FBI publicity and the broad spectrum of mass communication…

  18. Comparison among Reconstruction Algorithms for Quantitative Analysis of 11C-Acetate Cardiac PET Imaging.

    PubMed

    Shi, Ximin; Li, Nan; Ding, Haiyan; Dang, Yonghong; Hu, Guilan; Liu, Shuai; Cui, Jie; Zhang, Yue; Li, Fang; Zhang, Hui; Huo, Li

    2018-01-01

    Kinetic modeling of dynamic 11 C-acetate PET imaging provides quantitative information for myocardium assessment. The quality and quantitation of PET images are known to be dependent on PET reconstruction methods. This study aims to investigate the impacts of reconstruction algorithms on the quantitative analysis of dynamic 11 C-acetate cardiac PET imaging. Suspected alcoholic cardiomyopathy patients ( N = 24) underwent 11 C-acetate dynamic PET imaging after low dose CT scan. PET images were reconstructed using four algorithms: filtered backprojection (FBP), ordered subsets expectation maximization (OSEM), OSEM with time-of-flight (TOF), and OSEM with both time-of-flight and point-spread-function (TPSF). Standardized uptake values (SUVs) at different time points were compared among images reconstructed using the four algorithms. Time-activity curves (TACs) in myocardium and blood pools of ventricles were generated from the dynamic image series. Kinetic parameters K 1 and k 2 were derived using a 1-tissue-compartment model for kinetic modeling of cardiac flow from 11 C-acetate PET images. Significant image quality improvement was found in the images reconstructed using iterative OSEM-type algorithms (OSME, TOF, and TPSF) compared with FBP. However, no statistical differences in SUVs were observed among the four reconstruction methods at the selected time points. Kinetic parameters K 1 and k 2 also exhibited no statistical difference among the four reconstruction algorithms in terms of mean value and standard deviation. However, for the correlation analysis, OSEM reconstruction presented relatively higher residual in correlation with FBP reconstruction compared with TOF and TPSF reconstruction, and TOF and TPSF reconstruction were highly correlated with each other. All the tested reconstruction algorithms performed similarly for quantitative analysis of 11 C-acetate cardiac PET imaging. TOF and TPSF yielded highly consistent kinetic parameter results with superior

  19. Meta-analysis is not an exact science: Call for guidance on quantitative synthesis decisions.

    PubMed

    Haddaway, Neal R; Rytwinski, Trina

    2018-05-01

    Meta-analysis is becoming increasingly popular in the field of ecology and environmental management. It increases the effective power of analyses relative to single studies, and allows researchers to investigate effect modifiers and sources of heterogeneity that could not be easily examined within single studies. Many systematic reviewers will set out to conduct a meta-analysis as part of their synthesis, but meta-analysis requires a niche set of skills that are not widely held by the environmental research community. Each step in the process of carrying out a meta-analysis requires decisions that have both scientific and statistical implications. Reviewers are likely to be faced with a plethora of decisions over which effect size to choose, how to calculate variances, and how to build statistical models. Some of these decisions may be simple based on appropriateness of the options. At other times, reviewers must choose between equally valid approaches given the information available to them. This presents a significant problem when reviewers are attempting to conduct a reliable synthesis, such as a systematic review, where subjectivity is minimised and all decisions are documented and justified transparently. We propose three urgent, necessary developments within the evidence synthesis community. Firstly, we call on quantitative synthesis experts to improve guidance on how to prepare data for quantitative synthesis, providing explicit detail to support systematic reviewers. Secondly, we call on journal editors and evidence synthesis coordinating bodies (e.g. CEE) to ensure that quantitative synthesis methods are adequately reported in a transparent and repeatable manner in published systematic reviews. Finally, where faced with two or more broadly equally valid alternative methods or actions, reviewers should conduct multiple analyses, presenting all options, and discussing the implications of the different analytical approaches. We believe it is vital to tackle

  20. Qualitative and quantitative analysis of an additive element in metal oxide nanometer film using laser induced breakdown spectroscopy.

    PubMed

    Xiu, Junshan; Liu, Shiming; Sun, Meiling; Dong, Lili

    2018-01-20

    The photoelectric performance of metal ion-doped TiO 2 film will be improved with the changing of the compositions and concentrations of additive elements. In this work, the TiO 2 films doped with different Sn concentrations were obtained with the hydrothermal method. Qualitative and quantitative analysis of the Sn element in TiO 2 film was achieved with laser induced breakdown spectroscopy (LIBS) with the calibration curves plotted accordingly. The photoelectric characteristics of TiO 2 films doped with different Sn content were observed with UV visible absorption spectra and J-V curves. All results showed that Sn doping could improve the optical absorption to be red-shifted and advance the photoelectric properties of the TiO 2 films. We had obtained that when the concentration of Sn doping in TiO 2 films was 11.89  mmol/L, which was calculated by the LIBS calibration curves, the current density of the film was the largest, which indicated the best photoelectric performance. It indicated that LIBS was a potential and feasible measured method, which was applied to qualitative and quantitative analysis of the additive element in metal oxide nanometer film.

  1. Identification of internal control genes for quantitative expression analysis by real-time PCR in bovine peripheral lymphocytes.

    PubMed

    Spalenza, Veronica; Girolami, Flavia; Bevilacqua, Claudia; Riondato, Fulvio; Rasero, Roberto; Nebbia, Carlo; Sacchi, Paola; Martin, Patrice

    2011-09-01

    Gene expression studies in blood cells, particularly lymphocytes, are useful for monitoring potential exposure to toxicants or environmental pollutants in humans and livestock species. Quantitative PCR is the method of choice for obtaining accurate quantification of mRNA transcripts although variations in the amount of starting material, enzymatic efficiency, and the presence of inhibitors can lead to evaluation errors. As a result, normalization of data is of crucial importance. The most common approach is the use of endogenous reference genes as an internal control, whose expression should ideally not vary among individuals and under different experimental conditions. The accurate selection of reference genes is therefore an important step in interpreting quantitative PCR studies. Since no systematic investigation in bovine lymphocytes has been performed, the aim of the present study was to assess the expression stability of seven candidate reference genes in circulating lymphocytes collected from 15 dairy cows. Following the characterization by flow cytometric analysis of the cell populations obtained from blood through a density gradient procedure, three popular softwares were used to evaluate the gene expression data. The results showed that two genes are sufficient for normalization of quantitative PCR studies in cattle lymphocytes and that YWAHZ, S24 and PPIA are the most stable genes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe.

    PubMed

    Takahashi, J; Kawakami, K; Raabe, D

    2017-04-01

    The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A quantitative analysis of biodiversity and the recreational value of potential national parks in Denmark.

    PubMed

    Larsen, Frank Wugt; Petersen, Anders Højgård; Strange, Niels; Lund, Mette Palitzsch; Rahbek, Carsten

    2008-05-01

    Denmark has committed itself to the European 2010 target to halt the loss of biodiversity. Currently, Denmark is in the process of designating larger areas as national parks, and 7 areas (of a possible 32 larger nature areas) have been selected for pilot projects to test the feasibility of establishing national parks. In this article, we first evaluate the effectiveness of the a priori network of national parks proposed through expert and political consensus versus a network chosen specifically for biodiversity through quantitative analysis. Second, we analyze the potential synergy between preserving biodiversity in terms of species representation and recreational values in selecting a network of national parks. We use the actual distribution of 973 species within these 32 areas and 4 quantitative measures of recreational value. Our results show that the 7 pilot project areas are not significantly more effective in representing species than expected by chance and that considerably more efficient networks can be selected. Moreover, it is possible to select more-effective networks of areas that combine high representation of species with high ranking in terms of recreational values. Therefore, our findings suggest possible synergies between outdoor recreation and biodiversity conservation when selecting networks of national parks. Overall, this Danish case illustrates that data-driven analysis can not only provide valuable information to guide the decision-making process of designating national parks, but it can also be a means to identify solutions that simultaneously fulfill several goals (biodiversity preservation and recreational values).

  4. Evaluation of coronary stenosis with the aid of quantitative image analysis in histological cross sections.

    PubMed

    Dulohery, Kate; Papavdi, Asteria; Michalodimitrakis, Manolis; Kranioti, Elena F

    2012-11-01

    Coronary artery atherosclerosis is a hugely prevalent condition in the Western World and is often encountered during autopsy. Atherosclerotic plaques can cause luminal stenosis: which, if over a significant level (75%), is said to contribute to cause of death. Estimation of stenosis can be macroscopically performed by the forensic pathologists at the time of autopsy or by microscopic examination. This study compares macroscopic estimation with quantitative microscopic image analysis with a particular focus on the assessment of significant stenosis (>75%). A total of 131 individuals were analysed. The sample consists of an atherosclerotic group (n=122) and a control group (n=9). The results of the two methods were significantly different from each other (p=0.001) and the macroscopic method gave a greater percentage stenosis by an average of 3.5%. Also, histological examination of coronary artery stenosis yielded a difference in significant stenosis in 11.5% of cases. The differences were attributed to either histological quantitative image analysis underestimation; gross examination overestimation; or, a combination of both. The underestimation may have come from tissue shrinkage during tissue processing for histological specimen. The overestimation from the macroscopic assessment can be attributed to the lumen shape, to the examiner observer error or to a possible bias to diagnose coronary disease when no other cause of death is apparent. The results indicate that the macroscopic estimation is open to more biases and that histological quantitative image analysis only gives a precise assessment of stenosis ex vivo. Once tissue shrinkage, if any, is accounted for then histological quantitative image analysis will yield a more accurate assessment of in vivo stenosis. It may then be considered a complementary tool for the examination of coronary stenosis. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  5. Quantitative image analysis for investigating cell-matrix interactions

    NASA Astrophysics Data System (ADS)

    Burkel, Brian; Notbohm, Jacob

    2017-07-01

    The extracellular matrix provides both chemical and physical cues that control cellular processes such as migration, division, differentiation, and cancer progression. Cells can mechanically alter the matrix by applying forces that result in matrix displacements, which in turn may localize to form dense bands along which cells may migrate. To quantify the displacements, we use confocal microscopy and fluorescent labeling to acquire high-contrast images of the fibrous material. Using a technique for quantitative image analysis called digital volume correlation, we then compute the matrix displacements. Our experimental technology offers a means to quantify matrix mechanics and cell-matrix interactions. We are now using these experimental tools to modulate mechanical properties of the matrix to study cell contraction and migration.

  6. Quantitative Analysis of Color Differences within High Contrast, Low Power Reversible Electrophoretic Displays

    DOE PAGES

    Giera, Brian; Bukosky, Scott; Lee, Elaine; ...

    2018-01-23

    Here, quantitative color analysis is performed on videos of high contrast, low power reversible electrophoretic deposition (EPD)-based displays operated under different applied voltages. This analysis is coded in an open-source software, relies on a color differentiation metric, ΔE * 00, derived from digital video, and provides an intuitive relationship between the operating conditions of the devices and their performance. Time-dependent ΔE * 00 color analysis reveals color relaxation behavior, recoverability for different voltage sequences, and operating conditions that can lead to optimal performance.

  7. Quantitative Analysis of Color Differences within High Contrast, Low Power Reversible Electrophoretic Displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giera, Brian; Bukosky, Scott; Lee, Elaine

    Here, quantitative color analysis is performed on videos of high contrast, low power reversible electrophoretic deposition (EPD)-based displays operated under different applied voltages. This analysis is coded in an open-source software, relies on a color differentiation metric, ΔE * 00, derived from digital video, and provides an intuitive relationship between the operating conditions of the devices and their performance. Time-dependent ΔE * 00 color analysis reveals color relaxation behavior, recoverability for different voltage sequences, and operating conditions that can lead to optimal performance.

  8. A Quantitative Analysis of the Extrinsic and Intrinsic Turnover Factors of Relational Database Support Professionals

    ERIC Educational Resources Information Center

    Takusi, Gabriel Samuto

    2010-01-01

    This quantitative analysis explored the intrinsic and extrinsic turnover factors of relational database support specialists. Two hundred and nine relational database support specialists were surveyed for this research. The research was conducted based on Hackman and Oldham's (1980) Job Diagnostic Survey. Regression analysis and a univariate ANOVA…

  9. A Quantitative Analysis of Pulsed Signals Emitted by Wild Bottlenose Dolphins.

    PubMed

    Luís, Ana Rita; Couchinho, Miguel N; Dos Santos, Manuel E

    2016-01-01

    Common bottlenose dolphins (Tursiops truncatus), produce a wide variety of vocal emissions for communication and echolocation, of which the pulsed repertoire has been the most difficult to categorize. Packets of high repetition, broadband pulses are still largely reported under a general designation of burst-pulses, and traditional attempts to classify these emissions rely mainly in their aural characteristics and in graphical aspects of spectrograms. Here, we present a quantitative analysis of pulsed signals emitted by wild bottlenose dolphins, in the Sado estuary, Portugal (2011-2014), and test the reliability of a traditional classification approach. Acoustic parameters (minimum frequency, maximum frequency, peak frequency, duration, repetition rate and inter-click-interval) were extracted from 930 pulsed signals, previously categorized using a traditional approach. Discriminant function analysis revealed a high reliability of the traditional classification approach (93.5% of pulsed signals were consistently assigned to their aurally based categories). According to the discriminant function analysis (Wilk's Λ = 0.11, F3, 2.41 = 282.75, P < 0.001), repetition rate is the feature that best enables the discrimination of different pulsed signals (structure coefficient = 0.98). Classification using hierarchical cluster analysis led to a similar categorization pattern: two main signal types with distinct magnitudes of repetition rate were clustered into five groups. The pulsed signals, here described, present significant differences in their time-frequency features, especially repetition rate (P < 0.001), inter-click-interval (P < 0.001) and duration (P < 0.001). We document the occurrence of a distinct signal type-short burst-pulses, and highlight the existence of a diverse repertoire of pulsed vocalizations emitted in graded sequences. The use of quantitative analysis of pulsed signals is essential to improve classifications and to better assess the contexts of

  10. Acousto-Optic Tunable Filter Spectroscopic Instrumentation for Quantitative Near-Ir Analysis of Organic Materials.

    NASA Astrophysics Data System (ADS)

    Eilert, Arnold James

    1995-01-01

    The utility of near-IR spectroscopy for routine quantitative analyses of a wide variety of compositional, chemical, or physical parameters of organic materials is well understood. It can be used for relatively fast and inexpensive non-destructive bulk material analysis before, during, and after processing. It has been demonstrated as being a particularly useful technique for numerous analytical applications in cereal (food and feed) science and industry. Further fulfillment of the potential of near-IR spectroscopic analysis, both in the process and laboratory environment, is reliant upon the development of instrumentation that is capable of meeting the challenges of increasingly difficult applications. One approach to the development of near-IR spectroscopic instrumentation that holds a great deal of promise is acousto-optic tunable filter (AOTF) technology. A combination of attributes offered by AOTF spectrometry, including speed, optical throughput, wavelength reproducibility, ruggedness (no -moving-parts operation) and flexibility, make it particularly desirable for numerous applications. A series of prototype (research model) acousto -optic tunable filter instruments were developed and tested in order to investigate the feasibility of the technology for quantitative near-IR spectrometry. Development included design, component procurement, assembly and/or configuration of the optical and electronic subsystems of which each functional spectrometer arrangement was comprised, as well as computer interfacing and acquisition/control software development. Investigation of this technology involved an evolution of several operational spectrometer systems, each of which offered improvements over its predecessor. Appropriate testing was conducted at various stages of development. Demonstrations of the potential applicability of our AOTF spectrometer to quantitative process monitoring or laboratory analysis of numerous organic substances, including food materials, were

  11. Quantitative analysis of Si1-xGex alloy films by SIMS and XPS depth profiling using a reference material

    NASA Astrophysics Data System (ADS)

    Oh, Won Jin; Jang, Jong Shik; Lee, Youn Seoung; Kim, Ansoon; Kim, Kyung Joong

    2018-02-01

    Quantitative analysis methods of multi-element alloy films were compared. The atomic fractions of Si1-xGex alloy films were measured by depth profiling analysis with secondary ion mass spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS). Intensity-to-composition conversion factor (ICF) was used as a mean to convert the intensities to compositions instead of the relative sensitivity factors. The ICFs were determined from a reference Si1-xGex alloy film by the conventional method, average intensity (AI) method and total number counting (TNC) method. In the case of SIMS, although the atomic fractions measured by oxygen ion beams were not quantitative due to severe matrix effect, the results by cesium ion beam were very quantitative. The quantitative analysis results by SIMS using MCs2+ ions are comparable to the results by XPS. In the case of XPS, the measurement uncertainty was highly improved by the AI method and TNC method.

  12. Quantitative Analysis of Subcellular Distribution of the SUMO Conjugation System by Confocal Microscopy Imaging.

    PubMed

    Mas, Abraham; Amenós, Montse; Lois, L Maria

    2016-01-01

    Different studies point to an enrichment in SUMO conjugation in the cell nucleus, although non-nuclear SUMO targets also exist. In general, the study of subcellular localization of proteins is essential for understanding their function within a cell. Fluorescence microscopy is a powerful tool for studying subcellular protein partitioning in living cells, since fluorescent proteins can be fused to proteins of interest to determine their localization. Subcellular distribution of proteins can be influenced by binding to other biomolecules and by posttranslational modifications. Sometimes these changes affect only a portion of the protein pool or have a partial effect, and a quantitative evaluation of fluorescence images is required to identify protein redistribution among subcellular compartments. In order to obtain accurate data about the relative subcellular distribution of SUMO conjugation machinery members, and to identify the molecular determinants involved in their localization, we have applied quantitative confocal microscopy imaging. In this chapter, we will describe the fluorescent protein fusions used in these experiments, and how to measure, evaluate, and compare average fluorescence intensities in cellular compartments by image-based analysis. We show the distribution of some components of the Arabidopsis SUMOylation machinery in epidermal onion cells and how they change their distribution in the presence of interacting partners or even when its activity is affected.

  13. Seniors' online communities: a quantitative content analysis.

    PubMed

    Nimrod, Galit

    2010-06-01

    To examine the contents and characteristics of seniors' online communities and to explore their potential benefits to older adults. Quantitative content analysis of a full year's data from 14 leading online communities using a novel computerized system. The overall database included 686,283 messages. There was a constant increase in the daily activity level during the research period. Content analysis identified 13 main subjects discussed in the communities, including (in descending order) "Fun on line," "Retirement," "Family," "Health," "Work and Study," "Recreation" "Finance," "Religion and Spirituality," "Technology," "Aging," "Civic and Social," "Shopping," and "Travels." The overall tone was somewhat more positive than negative. The findings suggest that the utilities of Information and Communications Technologies for older adults that were identified in previous research are valid for seniors' online communities as well. However, the findings suggest several other possible benefits, which may be available only to online communities. The communities may provide social support, contribute to self-preservation, and serve as an opportunity for self-discovery and growth. Because they offer both leisure activity and an expanded social network, it is suggested that active participation in the communities may contribute to the well-being of older adults. Directions for future research and applied implications are further discussed.

  14. Diagnostic efficacy of contrast-enhanced sonography by combined qualitative and quantitative analysis in breast lesions: a comparative study with magnetic resonance imaging.

    PubMed

    Wang, Lin; Du, Jing; Li, Feng-Hua; Fang, Hua; Hua, Jia; Wan, Cai-Feng

    2013-10-01

    The purpose of this study was to evaluate the diagnostic efficacy of contrast-enhanced sonography for differentiation of breast lesions by combined qualitative and quantitative analyses in comparison to magnetic resonance imaging (MRI). Fifty-six patients with American College of Radiology Breast Imaging Reporting and Data System category 3 to 5 breast lesions on conventional sonography were evaluated by contrast-enhanced sonography and MRI. A comparative analysis of diagnostic results between contrast-enhanced sonography and MRI was conducted in light of the pathologic findings. Pathologic analysis showed 26 benign and 30 malignant lesions. The predominant enhancement patterns of the benign lesions on contrast-enhanced sonography were homogeneous, centrifugal, and isoenhancement or hypoenhancement, whereas the patterns of the malignant lesions were mainly heterogeneous, centripetal, and hyperenhancement. The detection rates for perfusion defects and peripheral radial vessels in the malignant group were much higher than those in the benign group (P < .05). As to quantitative analysis, statistically significant differences were found in peak and time-to-peak values between the groups (P < .05). With pathologic findings as the reference standard, the sensitivity, specificity, and accuracy of contrast-enhanced sonography and MRI were 90.0%, 92.3%, 91.1% and 96.7%, 88.5%, and 92.9%, respectively. The two methods had a concordant rate of 87.5% (49 of 56), and the concordance test gave a value of κ = 0.75, indicating that there was high concordance in breast lesion assessment between the two diagnostic modalities. Contrast-enhanced sonography provided typical enhancement patterns and valuable quantitative parameters, which showed good agreement with MRI in diagnostic efficacy and may potentially improve characterization of breast lesions.

  15. New approaches for the analysis of confluent cell layers with quantitative phase digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Pohl, L.; Kaiser, M.; Ketelhut, S.; Pereira, S.; Goycoolea, F.; Kemper, Björn

    2016-03-01

    Digital holographic microscopy (DHM) enables high resolution non-destructive inspection of technical surfaces and minimally-invasive label-free live cell imaging. However, the analysis of confluent cell layers represents a challenge as quantitative DHM phase images in this case do not provide sufficient information for image segmentation, determination of the cellular dry mass or calculation of the cell thickness. We present novel strategies for the analysis of confluent cell layers with quantitative DHM phase contrast utilizing a histogram based-evaluation procedure. The applicability of our approach is illustrated by quantification of drug induced cell morphology changes and it is shown that the method is capable to quantify reliable global morphology changes of confluent cell layers.

  16. Quantitative analysis of collagens and fibronectin expression in human right ventricular hypertrophy.

    PubMed

    Peters, T H; Sharma, H S; Yilmaz, E; Bogers, A J

    1999-06-30

    One of the main features in human tetralogy of Fallot (TF) is right ventricular hypertrophy (RVH) due to pressure (sub-pulmonary stenosis) and volume overload (ventricular septal defect). Currently, primary correction at a young age is the treatment of choice. To unravel the role of extracellular matrix in RVH, we examined myocardial expression of collagens and fibronectin in TF patients with primary correction (TF1, age 0.7 +/- 0.2 yr.), secondary surgery (TF2, age 36.9 +/- 4.6 yr), and in age-matched control patients. Sirius red staining quantified by video imaging showed significantly increased interstitial staining for collagens in both TF1 and TF2 groups as compared to respective controls. Fibronectin was expressed in extracellular spaces, perivascular regions, and in some cardiomyocytes. Quantitative analysis of fibronectin revealed increased expression in only TF1 group as compared to respective control. Our results indicate an increased amount of myocardial extracellular matrix deposition as a sign of fibrosis during RVH in patients with TF.

  17. Clinical applications of a quantitative analysis of regional lift ventricular wall motion

    NASA Technical Reports Server (NTRS)

    Leighton, R. F.; Rich, J. M.; Pollack, M. E.; Altieri, P. I.

    1975-01-01

    Observations were summarized which may have clinical application. These were obtained from a quantitative analysis of wall motion that was used to detect both hypokinesis and tardokinesis in left ventricular cineangiograms. The method was based on statistical comparisons with normal values for regional wall motion derived from the cineangiograms of patients who were found not to have heart disease.

  18. Comparative and quantitative analysis of antioxidant and scavenging potential of Indigofera tinctoria Linn. extracts.

    PubMed

    Singh, Rashmi; Sharma, Shatruhan; Sharma, Veena

    2015-07-01

    To compare and elucidate the antioxidant efficacy of ethanolic and hydroethanolic extracts of Indigofera tinctoria Linn. (Fabaceae family). Various in-vitro antioxidant assays and free radical-scavenging assays were done. Quantitative measurements of various phytoconstituents, reductive abilities and chelating potential were carried out along with standard compounds. Half inhibitory concentration (IC50) values for ethanol and hydroethanol extracts were analyzed and compared with respective standards. Hydroethanolic extracts showed considerably more potent antioxidant activity in comparison to ethanol extracts. Hydroethanolic extracts had lower IC50 values than ethanol extracts in the case of DPPH, metal chelation and hydroxyl radical-scavenging capacity (829, 659 and 26.7 μg/mL) but had slightly higher values than ethanol in case of SO2- and NO2-scavenging activity (P<0.001 vs standard). Quantitative measurements also showed that the abundance of phenolic and flavonoid bioactive phytoconstituents were significantly (P<0.001) greater in hydroethanol extracts (212.920 and 149.770 mg GAE and rutin/g of plant extract respectively) than in ethanol extracts (211.691 and 132.603 mg GAE and rutin/g of plant extract respectively). Karl Pearson's correlation analysis (r2) between various antioxidant parameters and bioactive components also associated the antioxidant potential of I. tinctoria with various phytoconstituents, especially phenolics, flavonoids, saponins and tannins. This study may be helpful to draw the attention of researchers towards the hydroethanol extracts of I. tinctoria, which has a high yield, and great prospects in herbal industries to produce inexpensive and powerful herbal products.

  19. Detection of sex chromosome aneuploidies using quantitative fluorescent PCR in the Hungarian population.

    PubMed

    Nagy, Balint; Nagy, Richard Gyula; Lazar, Levente; Schonleber, Julianna; Papp, Csaba; Rigo, Janos

    2015-05-20

    Aneuploidies are the most frequent chromosomal abnormalities at birth. Autosomal aneuploidies cause serious malformations like trisomy 21, trisomy 18 and trisomy 13. However sex chromosome aneuploidies are causing less severe syndromes. For the detection of these aneuploidies, the "gold standard" method is the cytogenetic analysis of fetal cells, karyograms show all numerical and structural abnormalities, but it takes 2-4 weeks to get the reports. Molecular biological methods were developed to overcome the long culture time, thus, FISH and quantitative fluorescent PCR were introduced. In this work we show our experience with a commercial kit for the detection of sex chromosome aneuploidies. We analyzed 20.173 amniotic fluid samples for the period of 2006-2013 in our department. A conventional cytogenetic analysis was performed on the samples. We checked the reliability of quantitative fluorescent PCR and DNA fragment analysis on those samples where sex chromosomal aneuploidy was diagnosed. From the 20.173 amniotic fluid samples we found 50 samples with sex chromosome aneuploidy. There were 19 samples showing 46, XO, 17 samples with 46, XXY, 9 samples with 47, XXX and 5 samples with 47, XYY karyotypes. The applied quantitative fluorescent PCR and DNA fragment analyses method are suitable to detect all abnormal sex chromosome aneuploidies. Quantitative fluorescent PCR is a fast and reliable method for detection of sex chromosome aneuploidies. Copyright © 2015. Published by Elsevier B.V.

  20. Quantitative analysis of drug distribution by ambient mass spectrometry imaging method with signal extinction normalization strategy and inkjet-printing technology.

    PubMed

    Luo, Zhigang; He, Jingjing; He, Jiuming; Huang, Lan; Song, Xiaowei; Li, Xin; Abliz, Zeper

    2018-03-01

    Quantitative mass spectrometry imaging (MSI) is a robust approach that provides both quantitative and spatial information for drug candidates' research. However, because of complicated signal suppression and interference, acquiring accurate quantitative information from MSI data remains a challenge, especially for whole-body tissue sample. Ambient MSI techniques using spray-based ionization appear to be ideal for pharmaceutical quantitative MSI analysis. However, it is more challenging, as it involves almost no sample preparation and is more susceptible to ion suppression/enhancement. Herein, based on our developed air flow-assisted desorption electrospray ionization (AFADESI)-MSI technology, an ambient quantitative MSI method was introduced by integrating inkjet-printing technology with normalization of the signal extinction coefficient (SEC) using the target compound itself. The method utilized a single calibration curve to quantify multiple tissue types. Basic blue 7 and an antitumor drug candidate (S-(+)-deoxytylophorinidine, CAT) were chosen to initially validate the feasibility and reliability of the quantitative MSI method. Rat tissue sections (heart, kidney, and brain) administered with CAT was then analyzed. The quantitative MSI analysis results were cross-validated by LC-MS/MS analysis data of the same tissues. The consistency suggests that the approach is able to fast obtain the quantitative MSI data without introducing interference into the in-situ environment of the tissue sample, and is potential to provide a high-throughput, economical and reliable approach for drug discovery and development. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Quantitative model analysis with diverse biological data: applications in developmental pattern formation.

    PubMed

    Pargett, Michael; Umulis, David M

    2013-07-15

    Mathematical modeling of transcription factor and signaling networks is widely used to understand if and how a mechanism works, and to infer regulatory interactions that produce a model consistent with the observed data. Both of these approaches to modeling are informed by experimental data, however, much of the data available or even acquirable are not quantitative. Data that is not strictly quantitative cannot be used by classical, quantitative, model-based analyses that measure a difference between the measured observation and the model prediction for that observation. To bridge the model-to-data gap, a variety of techniques have been developed to measure model "fitness" and provide numerical values that can subsequently be used in model optimization or model inference studies. Here, we discuss a selection of traditional and novel techniques to transform data of varied quality and enable quantitative comparison with mathematical models. This review is intended to both inform the use of these model analysis methods, focused on parameter estimation, and to help guide the choice of method to use for a given study based on the type of data available. Applying techniques such as normalization or optimal scaling may significantly improve the utility of current biological data in model-based study and allow greater integration between disparate types of data. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. A combined qualitative and quantitative procedure for the chemical analysis of urinary calculi

    PubMed Central

    Hodgkinson, A.

    1971-01-01

    A better understanding of the physico-chemical principles underlying the formation of calculus has led to a need for more precise information on the chemical composition of stones. A combined qualitative and quantitative procedure for the chemical analysis of urinary calculi which is suitable for routine use is presented. The procedure involves five simple qualitative tests followed by the quantitative determination of calcium, magnesium, inorganic phosphate, and oxalate. These data are used to calculate the composition of the stone in terms of calcium oxalate, apatite, and magnesium ammonium phosphate. Analytical results and derived values for five representative types of calculi are presented. PMID:5551382

  3. Quantitative analysis of the mixtures of illicit drugs using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Dejun; Zhao, Shusen; Shen, Jingling

    2008-03-01

    A method was proposed to quantitatively inspect the mixtures of illicit drugs with terahertz time-domain spectroscopy technique. The mass percentages of all components in a mixture can be obtained by linear regression analysis, on the assumption that all components in the mixture and their absorption features be known. For illicit drugs were scarce and expensive, firstly we used common chemicals, Benzophenone, Anthraquinone, Pyridoxine hydrochloride and L-Ascorbic acid in the experiment. Then illicit drugs and a common adulterant, methamphetamine and flour, were selected for our experiment. Experimental results were in significant agreement with actual content, which suggested that it could be an effective method for quantitative identification of illicit drugs.

  4. Fusing Quantitative Requirements Analysis with Model-based Systems Engineering

    NASA Technical Reports Server (NTRS)

    Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven

    2006-01-01

    A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.

  5. Quantitative proteomic analysis of human lung tumor xenografts treated with the ectopic ATP synthase inhibitor citreoviridin.

    PubMed

    Wu, Yi-Hsuan; Hu, Chia-Wei; Chien, Chih-Wei; Chen, Yu-Ju; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2013-01-01

    ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy.

  6. Quantitative Proteomic Analysis of Human Lung Tumor Xenografts Treated with the Ectopic ATP Synthase Inhibitor Citreoviridin

    PubMed Central

    Wu, Yi-Hsuan; Hu, Chia-Wei; Chien, Chih-Wei; Chen, Yu-Ju; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2013-01-01

    ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy. PMID:23990911

  7. PANDA-view: An easy-to-use tool for statistical analysis and visualization of quantitative proteomics data.

    PubMed

    Chang, Cheng; Xu, Kaikun; Guo, Chaoping; Wang, Jinxia; Yan, Qi; Zhang, Jian; He, Fuchu; Zhu, Yunping

    2018-05-22

    Compared with the numerous software tools developed for identification and quantification of -omics data, there remains a lack of suitable tools for both downstream analysis and data visualization. To help researchers better understand the biological meanings in their -omics data, we present an easy-to-use tool, named PANDA-view, for both statistical analysis and visualization of quantitative proteomics data and other -omics data. PANDA-view contains various kinds of analysis methods such as normalization, missing value imputation, statistical tests, clustering and principal component analysis, as well as the most commonly-used data visualization methods including an interactive volcano plot. Additionally, it provides user-friendly interfaces for protein-peptide-spectrum representation of the quantitative proteomics data. PANDA-view is freely available at https://sourceforge.net/projects/panda-view/. 1987ccpacer@163.com and zhuyunping@gmail.com. Supplementary data are available at Bioinformatics online.

  8. Oqtans: the RNA-seq workbench in the cloud for complete and reproducible quantitative transcriptome analysis.

    PubMed

    Sreedharan, Vipin T; Schultheiss, Sebastian J; Jean, Géraldine; Kahles, André; Bohnert, Regina; Drewe, Philipp; Mudrakarta, Pramod; Görnitz, Nico; Zeller, Georg; Rätsch, Gunnar

    2014-05-01

    We present Oqtans, an open-source workbench for quantitative transcriptome analysis, that is integrated in Galaxy. Its distinguishing features include customizable computational workflows and a modular pipeline architecture that facilitates comparative assessment of tool and data quality. Oqtans integrates an assortment of machine learning-powered tools into Galaxy, which show superior or equal performance to state-of-the-art tools. Implemented tools comprise a complete transcriptome analysis workflow: short-read alignment, transcript identification/quantification and differential expression analysis. Oqtans and Galaxy facilitate persistent storage, data exchange and documentation of intermediate results and analysis workflows. We illustrate how Oqtans aids the interpretation of data from different experiments in easy to understand use cases. Users can easily create their own workflows and extend Oqtans by integrating specific tools. Oqtans is available as (i) a cloud machine image with a demo instance at cloud.oqtans.org, (ii) a public Galaxy instance at galaxy.cbio.mskcc.org, (iii) a git repository containing all installed software (oqtans.org/git); most of which is also available from (iv) the Galaxy Toolshed and (v) a share string to use along with Galaxy CloudMan.

  9. Retrieval of complex χ(2) parts for quantitative analysis of sum-frequency generation intensity spectra

    PubMed Central

    Hofmann, Matthias J.; Koelsch, Patrick

    2015-01-01

    Vibrational sum-frequency generation (SFG) spectroscopy has become an established technique for in situ surface analysis. While spectral recording procedures and hardware have been optimized, unique data analysis routines have yet to be established. The SFG intensity is related to probing geometries and properties of the system under investigation such as the absolute square of the second-order susceptibility χ(2)2. A conventional SFG intensity measurement does not grant access to the complex parts of χ(2) unless further assumptions have been made. It is therefore difficult, sometimes impossible, to establish a unique fitting solution for SFG intensity spectra. Recently, interferometric phase-sensitive SFG or heterodyne detection methods have been introduced to measure real and imaginary parts of χ(2) experimentally. Here, we demonstrate that iterative phase-matching between complex spectra retrieved from maximum entropy method analysis and fitting of intensity SFG spectra (iMEMfit) leads to a unique solution for the complex parts of χ(2) and enables quantitative analysis of SFG intensity spectra. A comparison between complex parts retrieved by iMEMfit applied to intensity spectra and phase sensitive experimental data shows excellent agreement between the two methods. PMID:26450297

  10. Recommendations for Quantitative Analysis of Small Molecules by Matrix-assisted laser desorption ionization mass spectrometry

    PubMed Central

    Wang, Poguang; Giese, Roger W.

    2017-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) has been used for quantitative analysis of small molecules for many years. It is usually preceded by an LC separation step when complex samples are tested. With the development several years ago of “modern MALDI” (automation, high repetition laser, high resolution peaks), the ease of use and performance of MALDI as a quantitative technique greatly increased. This review focuses on practical aspects of modern MALDI for quantitation of small molecules conducted in an ordinary way (no special reagents, devices or techniques for the spotting step of MALDI), and includes our ordinary, preferred Methods The review is organized as 18 recommendations with accompanying explanations, criticisms and exceptions. PMID:28118972

  11. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae

    PubMed Central

    Teste, Marie-Ange; Duquenne, Manon; François, Jean M; Parrou, Jean-Luc

    2009-01-01

    Background Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae. Results From public microarray datasets, we selected potential reference genes whose expression remained apparently invariable during long-term growth on glucose. Using the algorithm geNorm, ALG9, TAF10, TFC1 and UBC6 turned out to be genes whose expression remained stable, independent of the growth conditions and the strain backgrounds tested in this study. We then showed that the geometric averaging of any subset of three genes among the six most stable genes resulted in very similar normalized data, which contrasted with inconsistent results among various biological samples when the normalization was performed with ACT1. Normalization with multiple selected genes was therefore applied to transcriptional analysis of genes involved in glycogen metabolism. We determined an induction ratio of 100-fold for GPH1 and 20-fold for GSY2 between the exponential phase and the diauxic shift on glucose. There was no induction of these two genes at this transition phase on galactose, although in both cases, the kinetics of glycogen accumulation was similar. In contrast, SGA1 expression was independent of the carbon source and increased by 3-fold in stationary phase. Conclusion In this work, we provided a set of genes that are suitable reference

  12. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae.

    PubMed

    Teste, Marie-Ange; Duquenne, Manon; François, Jean M; Parrou, Jean-Luc

    2009-10-30

    Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae. From public microarray datasets, we selected potential reference genes whose expression remained apparently invariable during long-term growth on glucose. Using the algorithm geNorm, ALG9, TAF10, TFC1 and UBC6 turned out to be genes whose expression remained stable, independent of the growth conditions and the strain backgrounds tested in this study. We then showed that the geometric averaging of any subset of three genes among the six most stable genes resulted in very similar normalized data, which contrasted with inconsistent results among various biological samples when the normalization was performed with ACT1. Normalization with multiple selected genes was therefore applied to transcriptional analysis of genes involved in glycogen metabolism. We determined an induction ratio of 100-fold for GPH1 and 20-fold for GSY2 between the exponential phase and the diauxic shift on glucose. There was no induction of these two genes at this transition phase on galactose, although in both cases, the kinetics of glycogen accumulation was similar. In contrast, SGA1 expression was independent of the carbon source and increased by 3-fold in stationary phase. In this work, we provided a set of genes that are suitable reference genes for quantitative gene

  13. Simulation of realistic abnormal SPECT brain perfusion images: application in semi-quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ward, T.; Fleming, J. S.; Hoffmann, S. M. A.; Kemp, P. M.

    2005-11-01

    Simulation is useful in the validation of functional image analysis methods, particularly when considering the number of analysis techniques currently available lacking thorough validation. Problems exist with current simulation methods due to long run times or unrealistic results making it problematic to generate complete datasets. A method is presented for simulating known abnormalities within normal brain SPECT images using a measured point spread function (PSF), and incorporating a stereotactic atlas of the brain for anatomical positioning. This allows for the simulation of realistic images through the use of prior information regarding disease progression. SPECT images of cerebral perfusion have been generated consisting of a control database and a group of simulated abnormal subjects that are to be used in a UK audit of analysis methods. The abnormality is defined in the stereotactic space, then transformed to the individual subject space, convolved with a measured PSF and removed from the normal subject image. The dataset was analysed using SPM99 (Wellcome Department of Imaging Neuroscience, University College, London) and the MarsBaR volume of interest (VOI) analysis toolbox. The results were evaluated by comparison with the known ground truth. The analysis showed improvement when using a smoothing kernel equal to system resolution over the slightly larger kernel used routinely. Significant correlation was found between effective volume of a simulated abnormality and the detected size using SPM99. Improvements in VOI analysis sensitivity were found when using the region median over the region mean. The method and dataset provide an efficient methodology for use in the comparison and cross validation of semi-quantitative analysis methods in brain SPECT, and allow the optimization of analysis parameters.

  14. Quantitative analysis of comparative genomic hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manoir, S. du; Bentz, M.; Joos, S.

    1995-01-01

    Comparative genomic hybridization (CGH) is a new molecular cytogenetic method for the detection of chromosomal imbalances. Following cohybridization of DNA prepared from a sample to be studied and control DNA to normal metaphase spreads, probes are detected via different fluorochromes. The ratio of the test and control fluorescence intensities along a chromosome reflects the relative copy number of segments of a chromosome in the test genome. Quantitative evaluation of CGH experiments is required for the determination of low copy changes, e.g., monosomy or trisomy, and for the definition of the breakpoints involved in unbalanced rearrangements. In this study, a programmore » for quantitation of CGH preparations is presented. This program is based on the extraction of the fluorescence ratio profile along each chromosome, followed by averaging of individual profiles from several metaphase spreads. Objective parameters critical for quantitative evaluations were tested, and the criteria for selection of suitable CGH preparations are described. The granularity of the chromosome painting and the regional inhomogeneity of fluorescence intensities in metaphase spreads proved to be crucial parameters. The coefficient of variation of the ratio value for chromosomes in balanced state (CVBS) provides a general quality criterion for CGH experiments. Different cutoff levels (thresholds) of average fluorescence ratio values were compared for their specificity and sensitivity with regard to the detection of chromosomal imbalances. 27 refs., 15 figs., 1 tab.« less

  15. Verbal Rehearsal and Memory in Children with Closed Head Injury: A Quantitative and Qualitative Analysis.

    ERIC Educational Resources Information Center

    Harris, Jessica R.

    1996-01-01

    Nine closed head injured (CHI) children (mean age 11 years) with post-onset intervals of 7 months to 8 years were given an overt free recall task. Quantitative analysis suggested inefficient passive rehearsal strategy by severely injured subjects. Qualitative analysis revealed differences between CHI children and controls in rehearsal strategies,…

  16. Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sciancalepore, Corrado, E-mail: corrado.sciancalepore@unimore.it; Bondioli, Federica; INSTM Consortium, Via G. Giusti 9, 51121 Firenze

    2015-02-15

    An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals wasmore » followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe{sub 3}O{sub 4} nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis.« less

  17. Quantitative analysis of biomedical samples using synchrotron radiation microbeams

    NASA Astrophysics Data System (ADS)

    Ektessabi, Ali; Shikine, Shunsuke; Yoshida, Sohei

    2001-07-01

    X-ray fluorescence (XRF) using a synchrotron radiation (SR) microbeam was applied to investigate distributions and concentrations of elements in single neurons of patients with neurodegenerative diseases. In this paper we introduce a computer code that has been developed to quantify the trace elements and matrix elements at the single cell level. This computer code has been used in studies of several important neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and parkinsonism-dementia complex (PDC), as well as in basic biological experiments to determine the elemental changes in cells due to incorporation of foreign metal elements. The substantial nigra (SN) tissue obtained from the autopsy specimens of patients with Guamanian parkinsonism-dementia complex (PDC) and control cases were examined. Quantitative XRF analysis showed that neuromelanin granules of Parkinsonian SN contained higher levels of Fe than those of the control. The concentrations were in the ranges of 2300-3100 ppm and 2000-2400 ppm respectively. On the contrary, Zn and Ni in neuromelanin granules of SN tissue from the PDC case were lower than those of the control. Especially Zn was less than 40 ppm in SN tissue from the PDC case while it was 560-810 ppm in the control. These changes are considered to be closely related to the neuro-degeneration and cell death.

  18. Quantitative Analysis of NAD Synthesis-Breakdown Fluxes.

    PubMed

    Liu, Ling; Su, Xiaoyang; Quinn, William J; Hui, Sheng; Krukenberg, Kristin; Frederick, David W; Redpath, Philip; Zhan, Le; Chellappa, Karthikeyani; White, Eileen; Migaud, Marie; Mitchison, Timothy J; Baur, Joseph A; Rabinowitz, Joshua D

    2018-05-01

    The redox cofactor nicotinamide adenine dinucleotide (NAD) plays a central role in metabolism and is a substrate for signaling enzymes including poly-ADP-ribose-polymerases (PARPs) and sirtuins. NAD concentration falls during aging, which has triggered intense interest in strategies to boost NAD levels. A limitation in understanding NAD metabolism has been reliance on concentration measurements. Here, we present isotope-tracer methods for NAD flux quantitation. In cell lines, NAD was made from nicotinamide and consumed largely by PARPs and sirtuins. In vivo, NAD was made from tryptophan selectively in the liver, which then excreted nicotinamide. NAD fluxes varied widely across tissues, with high flux in the small intestine and spleen and low flux in the skeletal muscle. Intravenous administration of nicotinamide riboside or mononucleotide delivered intact molecules to multiple tissues, but the same agents given orally were metabolized to nicotinamide in the liver. Thus, flux analysis can reveal tissue-specific NAD metabolism. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Accurate ECG diagnosis of atrial tachyarrhythmias using quantitative analysis: a prospective diagnostic and cost-effectiveness study.

    PubMed

    Krummen, David E; Patel, Mitul; Nguyen, Hong; Ho, Gordon; Kazi, Dhruv S; Clopton, Paul; Holland, Marian C; Greenberg, Scott L; Feld, Gregory K; Faddis, Mitchell N; Narayan, Sanjiv M

    2010-11-01

    Quantitative ECG Analysis. Optimal atrial tachyarrhythmia management is facilitated by accurate electrocardiogram interpretation, yet typical atrial flutter (AFl) may present without sawtooth F-waves or RR regularity, and atrial fibrillation (AF) may be difficult to separate from atypical AFl or rapid focal atrial tachycardia (AT). We analyzed whether improved diagnostic accuracy using a validated analysis tool significantly impacts costs and patient care. We performed a prospective, blinded, multicenter study using a novel quantitative computerized algorithm to identify atrial tachyarrhythmia mechanism from the surface ECG in patients referred for electrophysiology study (EPS). In 122 consecutive patients (age 60 ± 12 years) referred for EPS, 91 sustained atrial tachyarrhythmias were studied. ECGs were also interpreted by 9 physicians from 3 specialties for comparison and to allow healthcare system modeling. Diagnostic accuracy was compared to the diagnosis at EPS. A Markov model was used to estimate the impact of improved arrhythmia diagnosis. We found 13% of typical AFl ECGs had neither sawtooth flutter waves nor RR regularity, and were misdiagnosed by the majority of clinicians (0/6 correctly diagnosed by consensus visual interpretation) but correctly by quantitative analysis in 83% (5/6, P = 0.03). AF diagnosis was also improved through use of the algorithm (92%) versus visual interpretation (primary care: 76%, P < 0.01). Economically, we found that these improvements in diagnostic accuracy resulted in an average cost-savings of $1,303 and 0.007 quality-adjusted-life-years per patient. Typical AFl and AF are frequently misdiagnosed using visual criteria. Quantitative analysis improves diagnostic accuracy and results in improved healthcare costs and patient outcomes. © 2010 Wiley Periodicals, Inc.

  20. Quantitative coronary plaque analysis predicts high-risk plaque morphology on coronary computed tomography angiography: results from the ROMICAT II trial.

    PubMed

    Liu, Ting; Maurovich-Horvat, Pál; Mayrhofer, Thomas; Puchner, Stefan B; Lu, Michael T; Ghemigian, Khristine; Kitslaar, Pieter H; Broersen, Alexander; Pursnani, Amit; Hoffmann, Udo; Ferencik, Maros

    2018-02-01

    Semi-automated software can provide quantitative assessment of atherosclerotic plaques on coronary CT angiography (CTA). The relationship between established qualitative high-risk plaque features and quantitative plaque measurements has not been studied. We analyzed the association between quantitative plaque measurements and qualitative high-risk plaque features on coronary CTA. We included 260 patients with plaque who underwent coronary CTA in the Rule Out Myocardial Infarction/Ischemia Using Computer Assisted Tomography (ROMICAT) II trial. Quantitative plaque assessment and qualitative plaque characterization were performed on a per coronary segment basis. Quantitative coronary plaque measurements included plaque volume, plaque burden, remodeling index, and diameter stenosis. In qualitative analysis, high-risk plaque was present if positive remodeling, low CT attenuation plaque, napkin-ring sign or spotty calcium were detected. Univariable and multivariable logistic regression analyses were performed to assess the association between quantitative and qualitative high-risk plaque assessment. Among 888 segments with coronary plaque, high-risk plaque was present in 391 (44.0%) segments by qualitative analysis. In quantitative analysis, segments with high-risk plaque had higher total plaque volume, low CT attenuation plaque volume, plaque burden and remodeling index. Quantitatively assessed low CT attenuation plaque volume (odds ratio 1.12 per 1 mm 3 , 95% CI 1.04-1.21), positive remodeling (odds ratio 1.25 per 0.1, 95% CI 1.10-1.41) and plaque burden (odds ratio 1.53 per 0.1, 95% CI 1.08-2.16) were associated with high-risk plaque. Quantitative coronary plaque characteristics (low CT attenuation plaque volume, positive remodeling and plaque burden) measured by semi-automated software correlated with qualitative assessment of high-risk plaque features.

  1. Quantitative mutant analysis of viral quasispecies by chip-based matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry

    PubMed Central

    Amexis, Georgios; Oeth, Paul; Abel, Kenneth; Ivshina, Anna; Pelloquin, Francois; Cantor, Charles R.; Braun, Andreas; Chumakov, Konstantin

    2001-01-01

    RNA viruses exist as quasispecies, heterogeneous and dynamic mixtures of mutants having one or more consensus sequences. An adequate description of the genomic structure of such viral populations must include the consensus sequence(s) plus a quantitative assessment of sequence heterogeneities. For example, in quality control of live attenuated viral vaccines, the presence of even small quantities of mutants or revertants may indicate incomplete or unstable attenuation that may influence vaccine safety. Previously, we demonstrated the monitoring of oral poliovirus vaccine with the use of mutant analysis by PCR and restriction enzyme cleavage (MAPREC). In this report, we investigate genetic variation in live attenuated mumps virus vaccine by using both MAPREC and a platform (DNA MassArray) based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Mumps vaccines prepared from the Jeryl Lynn strain typically contain at least two distinct viral substrains, JL1 and JL2, which have been characterized by full length sequencing. We report the development of assays for characterizing sequence variants in these substrains and demonstrate their use in quantitative analysis of substrains and sequence variations in mixed virus cultures and mumps vaccines. The results obtained from both the MAPREC and MALDI-TOF methods showed excellent correlation. This suggests the potential utility of MALDI-TOF for routine quality control of live viral vaccines and for assessment of genetic stability and quantitative monitoring of genetic changes in other RNA viruses of clinical interest. PMID:11593021

  2. Applying quantitative adiposity feature analysis models to predict benefit of bevacizumab-based chemotherapy in ovarian cancer patients

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; More, Kathleen; Ding, Kai; Liu, Hong; Zheng, Bin

    2016-03-01

    How to rationally identify epithelial ovarian cancer (EOC) patients who will benefit from bevacizumab or other antiangiogenic therapies is a critical issue in EOC treatments. The motivation of this study is to quantitatively measure adiposity features from CT images and investigate the feasibility of predicting potential benefit of EOC patients with or without receiving bevacizumab-based chemotherapy treatment using multivariate statistical models built based on quantitative adiposity image features. A dataset involving CT images from 59 advanced EOC patients were included. Among them, 32 patients received maintenance bevacizumab after primary chemotherapy and the remaining 27 patients did not. We developed a computer-aided detection (CAD) scheme to automatically segment subcutaneous fat areas (VFA) and visceral fat areas (SFA) and then extracted 7 adiposity-related quantitative features. Three multivariate data analysis models (linear regression, logistic regression and Cox proportional hazards regression) were performed respectively to investigate the potential association between the model-generated prediction results and the patients' progression-free survival (PFS) and overall survival (OS). The results show that using all 3 statistical models, a statistically significant association was detected between the model-generated results and both of the two clinical outcomes in the group of patients receiving maintenance bevacizumab (p<0.01), while there were no significant association for both PFS and OS in the group of patients without receiving maintenance bevacizumab. Therefore, this study demonstrated the feasibility of using quantitative adiposity-related CT image features based statistical prediction models to generate a new clinical marker and predict the clinical outcome of EOC patients receiving maintenance bevacizumab-based chemotherapy.

  3. New Tools for Comparing Microscopy Images: Quantitative Analysis of Cell Types in Bacillus subtilis

    PubMed Central

    van Gestel, Jordi; Vlamakis, Hera

    2014-01-01

    Fluorescence microscopy is a method commonly used to examine individual differences between bacterial cells, yet many studies still lack a quantitative analysis of fluorescence microscopy data. Here we introduce some simple tools that microbiologists can use to analyze and compare their microscopy images. We show how image data can be converted to distribution data. These data can be subjected to a cluster analysis that makes it possible to objectively compare microscopy images. The distribution data can further be analyzed using distribution fitting. We illustrate our methods by scrutinizing two independently acquired data sets, each containing microscopy images of a doubly labeled Bacillus subtilis strain. For the first data set, we examined the expression of srfA and tapA, two genes which are expressed in surfactin-producing and matrix-producing cells, respectively. For the second data set, we examined the expression of eps and tapA; these genes are expressed in matrix-producing cells. We show that srfA is expressed by all cells in the population, a finding which contrasts with a previously reported bimodal distribution of srfA expression. In addition, we show that eps and tapA do not always have the same expression profiles, despite being expressed in the same cell type: both operons are expressed in cell chains, while single cells mainly express eps. These findings exemplify that the quantification and comparison of microscopy data can yield insights that otherwise would go unnoticed. PMID:25448819

  4. Quantitative analysis of fungicide azoxystrobin in agricultural samples with rapid, simple and reliable monoclonal immunoassay.

    PubMed

    Watanabe, Eiki; Miyake, Shiro

    2013-01-15

    This work presents analytical performance of a kit-based direct competitive enzyme-linked immunosorbent assay (dc-ELISA) for azoxystrobin detection in agricultural products. The dc-ELISA was sufficiently sensitive for analysis of residue levels close to the maximum residue limits. The dc-ELISA did not show cross-reactivity to other strobilurin analogues. Absorbance decreased with the increase of methanol concentration in sample solution from 2% to 40%, while the standard curve became most linear when the sample solution contained 10% methanol. Agricultural samples were extracted with methanol, and the extracts were diluted with water to 10% methanol adequate. No significant matrix interference was observed. Satisfying recovery was found for all of spiked samples and the results were well agreed with the analysis with liquid chromatography. These results clearly indicate that the kit-based dc-ELISA is suitable for the rapid, simple, quantitative and reliable determination of the fungicide. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. [Study of Cervical Exfoliated Cell's DNA Quantitative Analysis Based on Multi-Spectral Imaging Technology].

    PubMed

    Wu, Zheng; Zeng, Li-bo; Wu, Qiong-shui

    2016-02-01

    The conventional cervical cancer screening methods mainly include TBS (the bethesda system) classification method and cellular DNA quantitative analysis, however, by using multiple staining method in one cell slide, which is staining the cytoplasm with Papanicolaou reagent and the nucleus with Feulgen reagent, the study of achieving both two methods in the cervical cancer screening at the same time is still blank. Because the difficulty of this multiple staining method is that the absorbance of the non-DNA material may interfere with the absorbance of DNA, so that this paper has set up a multi-spectral imaging system, and established an absorbance unmixing model by using multiple linear regression method based on absorbance's linear superposition character, and successfully stripped out the absorbance of DNA to run the DNA quantitative analysis, and achieved the perfect combination of those two kinds of conventional screening method. Through a series of experiment we have proved that between the absorbance of DNA which is calculated by the absorbance unmixxing model and the absorbance of DNA which is measured there is no significant difference in statistics when the test level is 1%, also the result of actual application has shown that there is no intersection between the confidence interval of the DNA index of the tetraploid cells which are screened by using this paper's analysis method when the confidence level is 99% and the DNA index's judging interval of cancer cells, so that the accuracy and feasibility of the quantitative DNA analysis with multiple staining method expounded by this paper have been verified, therefore this analytical method has a broad application prospect and considerable market potential in early diagnosis of cervical cancer and other cancers.

  6. Quantitative Analysis of Venus Radar Backscatter Data in ArcGIS

    NASA Technical Reports Server (NTRS)

    Long, S. M.; Grosfils, E. B.

    2005-01-01

    Ongoing mapping of the Ganiki Planitia (V14) quadrangle of Venus and definition of material units has involved an integrated but qualitative analysis of Magellan radar backscatter images and topography using standard geomorphological mapping techniques. However, such analyses do not take full advantage of the quantitative information contained within the images. Analysis of the backscatter coefficient allows a much more rigorous statistical comparison between mapped units, permitting first order selfsimilarity tests of geographically separated materials assigned identical geomorphological labels. Such analyses cannot be performed directly on pixel (DN) values from Magellan backscatter images, because the pixels are scaled to the Muhleman law for radar echoes on Venus and are not corrected for latitudinal variations in incidence angle. Therefore, DN values must be converted based on pixel latitude back to their backscatter coefficient values before accurate statistical analysis can occur. Here we present a method for performing the conversions and analysis of Magellan backscatter data using commonly available ArcGIS software and illustrate the advantages of the process for geological mapping.

  7. [Evaluation on methodological problems in reports concerning quantitative analysis of syndrome differentiation of diabetes mellitus].

    PubMed

    Chen, Bi-Cang; Wu, Qiu-Ying; Xiang, Cheng-Bin; Zhou, Yi; Guo, Ling-Xiang; Zhao, Neng-Jiang; Yang, Shu-Yu

    2006-01-01

    To evaluate the quality of reports published in recent 10 years in China about quantitative analysis of syndrome differentiation for diabetes mellitus (DM) in order to explore the methodological problems in these reports and find possible solutions. The main medical literature databases in China were searched. Thirty-one articles were included and evaluated by the principles of clinical epidemiology. There were many mistakes and deficiencies in these articles, such as clinical trial designs, diagnosis criteria for DM, standards of syndrome differentiation of DM, case inclusive and exclusive criteria, sample size and estimation, data comparability and statistical methods. It is necessary and important to improve the quality of reports concerning quantitative analysis of syndrome differentiation of DM in light of the principles of clinical epidemiology.

  8. Toward Monitoring Parkinson's Through Analysis of Static Handwriting Samples: A Quantitative Analytical Framework.

    PubMed

    Zhi, Naiqian; Jaeger, Beverly Kris; Gouldstone, Andrew; Sipahi, Rifat; Frank, Samuel

    2017-03-01

    Detection of changes in micrographia as a manifestation of symptomatic progression or therapeutic response in Parkinson's disease (PD) is challenging as such changes can be subtle. A computerized toolkit based on quantitative analysis of handwriting samples would be valuable as it could supplement and support clinical assessments, help monitor micrographia, and link it to PD. Such a toolkit would be especially useful if it could detect subtle yet relevant changes in handwriting morphology, thus enhancing resolution of the detection procedure. This would be made possible by developing a set of metrics sensitive enough to detect and discern micrographia with specificity. Several metrics that are sensitive to the characteristics of micrographia were developed, with minimal sensitivity to confounding handwriting artifacts. These metrics capture character size-reduction, ink utilization, and pixel density within a writing sample from left to right. They are used here to "score" handwritten signatures of 12 different individuals corresponding to healthy and symptomatic PD conditions, and sample control signatures that had been artificially reduced in size for comparison purposes. Moreover, metric analyses of samples from ten of the 12 individuals for which clinical diagnosis time is known show considerable informative variations when applied to static signature samples obtained before and after diagnosis. In particular, a measure called pixel density variation showed statistically significant differences ( ) between two comparison groups of remote signature recordings: earlier versus recent, based on independent and paired t-test analyses on a total of 40 signature samples. The quantitative framework developed here has the potential to be used in future controlled experiments to study micrographia and links to PD from various aspects, including monitoring and assessment of applied interventions and treatments. The inherent value in this methodology is further enhanced by

  9. A semi-quantitative approach to GMO risk-benefit analysis.

    PubMed

    Morris, E Jane

    2011-10-01

    In many countries there are increasing calls for the benefits of genetically modified organisms (GMOs) to be considered as well as the risks, and for a risk-benefit analysis to form an integral part of GMO regulatory frameworks. This trend represents a shift away from the strict emphasis on risks, which is encapsulated in the Precautionary Principle that forms the basis for the Cartagena Protocol on Biosafety, and which is reflected in the national legislation of many countries. The introduction of risk-benefit analysis of GMOs would be facilitated if clear methodologies were available to support the analysis. Up to now, methodologies for risk-benefit analysis that would be applicable to the introduction of GMOs have not been well defined. This paper describes a relatively simple semi-quantitative methodology that could be easily applied as a decision support tool, giving particular consideration to the needs of regulators in developing countries where there are limited resources and experience. The application of the methodology is demonstrated using the release of an insect resistant maize variety in South Africa as a case study. The applicability of the method in the South African regulatory system is also discussed, as an example of what might be involved in introducing changes into an existing regulatory process.

  10. Sample normalization methods in quantitative metabolomics.

    PubMed

    Wu, Yiman; Li, Liang

    2016-01-22

    To reveal metabolomic changes caused by a biological event in quantitative metabolomics, it is critical to use an analytical tool that can perform accurate and precise quantification to examine the true concentration differences of individual metabolites found in different samples. A number of steps are involved in metabolomic analysis including pre-analytical work (e.g., sample collection and storage), analytical work (e.g., sample analysis) and data analysis (e.g., feature extraction and quantification). Each one of them can influence the quantitative results significantly and thus should be performed with great care. Among them, the total sample amount or concentration of metabolites can be significantly different from one sample to another. Thus, it is critical to reduce or eliminate the effect of total sample amount variation on quantification of individual metabolites. In this review, we describe the importance of sample normalization in the analytical workflow with a focus on mass spectrometry (MS)-based platforms, discuss a number of methods recently reported in the literature and comment on their applicability in real world metabolomics applications. Sample normalization has been sometimes ignored in metabolomics, partially due to the lack of a convenient means of performing sample normalization. We show that several methods are now available and sample normalization should be performed in quantitative metabolomics where the analyzed samples have significant variations in total sample amounts. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Teaching Fundamental Skills in Microsoft Excel to First-Year Students in Quantitative Analysis

    ERIC Educational Resources Information Center

    Rubin, Samuel J.; Abrams, Binyomin

    2015-01-01

    Despite their technological savvy, most students entering university lack the necessary computer skills to succeed in a quantitative analysis course, in which they are often expected to input, analyze, and plot results of experiments without any previous formal education in Microsoft Excel or similar programs. This lack of formal education results…

  12. Testicular Dysgenesis Syndrome and the Estrogen Hypothesis: A Quantitative Meta-Analysis

    PubMed Central

    Martin, Olwenn V.; Shialis, Tassos; Lester, John N.; Scrimshaw, Mark D.; Boobis, Alan R.; Voulvoulis, Nikolaos

    2008-01-01

    Background Male reproductive tract abnormalities such as hypospadias and cryptorchidism, and testicular cancer have been proposed to comprise a common syndrome together with impaired spermatogenesis with a common etiology resulting from the disruption of gonadal development during fetal life, the testicular dysgenesis syndrome (TDS). The hypothesis that in utero exposure to estrogenic agents could induce these disorders was first proposed in 1993. The only quantitative summary estimate of the association between prenatal exposure to estrogenic agents and testicular cancer was published over 10 years ago, and other systematic reviews of the association between estrogenic compounds, other than the potent pharmaceutical estrogen diethylstilbestrol (DES), and TDS end points have remained inconclusive. Objectives We conducted a quantitative meta-analysis of the association between the end points related to TDS and prenatal exposure to estrogenic agents. Inclusion in this analysis was based on mechanistic criteria, and the plausibility of an estrogen receptor (ER)-α–mediated mode of action was specifically explored. Results We included in this meta-analysis eight studies investigating the etiology of hypospadias and/or cryptorchidism that had not been identified in previous systematic reviews. Four additional studies of pharmaceutical estrogens yielded a statistically significant updated summary estimate for testicular cancer. Conclusions The doubling of the risk ratios for all three end points investigated after DES exposure is consistent with a shared etiology and the TDS hypothesis but does not constitute evidence of an estrogenic mode of action. Results of the subset analyses point to the existence of unidentified sources of heterogeneity between studies or within the study population. PMID:18288311

  13. Testicular dysgenesis syndrome and the estrogen hypothesis: a quantitative meta-analysis.

    PubMed

    Martin, Olwenn V; Shialis, Tassos; Lester, John N; Scrimshaw, Mark D; Boobis, Alan R; Voulvoulis, Nikolaos

    2008-02-01

    Male reproductive tract abnormalities such as hypospadias and cryptorchidism, and testicular cancer have been proposed to comprise a common syndrome together with impaired spermatogenesis with a common etiology resulting from the disruption of gonadal development during fetal life, the testicular dysgenesis syndrome (TDS). The hypothesis that in utero exposure to estrogenic agents could induce these disorders was first proposed in 1993. The only quantitative summary estimate of the association between prenatal exposure to estrogenic agents and testicular cancer was published over 10 years ago, and other systematic reviews of the association between estrogenic compounds, other than the potent pharmaceutical estrogen diethylstilbestrol (DES), and TDS end points have remained inconclusive. We conducted a quantitative meta-analysis of the association between the end points related to TDS and prenatal exposure to estrogenic agents. Inclusion in this analysis was based on mechanistic criteria, and the plausibility of an estrogen receptor (ER)-alpha-mediated mode of action was specifically explored. We included in this meta-analysis eight studies investigating the etiology of hypospadias and/or cryptorchidism that had not been identified in previous systematic reviews. Four additional studies of pharmaceutical estrogens yielded a statistically significant updated summary estimate for testicular cancer. The doubling of the risk ratios for all three end points investigated after DES exposure is consistent with a shared etiology and the TDS hypothesis but does not constitute evidence of an estrogenic mode of action. Results of the subset analyses point to the existence of unidentified sources of heterogeneity between studies or within the study population.

  14. Detection, monitoring, and quantitative analysis of wildfires with the BIRD satellite

    NASA Astrophysics Data System (ADS)

    Oertel, Dieter A.; Briess, Klaus; Lorenz, Eckehard; Skrbek, Wolfgang; Zhukov, Boris

    2004-02-01

    Increasing concern about environment and interest to avoid losses led to growing demands on space borne fire detection, monitoring and quantitative parameter estimation of wildfires. The global change research community intends to quantify the amount of gaseous and particulate matter emitted from vegetation fires, peat fires and coal seam fires. The DLR Institute of Space Sensor Technology and Planetary Exploration (Berlin-Adlershof) developed a small satellite called BIRD (Bi-spectral Infrared Detection) which carries a sensor package specially designed for fire detection. BIRD was launched as a piggy-back satellite on October 22, 2001 with ISRO"s Polar Satellite Launch Vehicle (PSLV). It is circling the Earth on a polar and sun-synchronous orbit at an altitude of 572 km and it is providing unique data for detailed analysis of high temperature events on Earth surface. The BIRD sensor package is dedicated for high resolution and reliable fire recognition. Active fire analysis is possible in the sub-pixel domain. The leading channel for fire detection and monitoring is the MIR channel at 3.8 μm. The rejection of false alarms is based on procedures using MIR/NIR (Middle Infra Red/Near Infra Red) and MIR/TIR (Middle Infra Red/Thermal Infra Red) radiance ratio thresholds. Unique results of BIRD wildfire detection and analysis over fire prone regions in Australia and Asia will be presented. BIRD successfully demonstrates innovative fire recognition technology for small satellites which permit to retrieve quantitative characteristics of active burning wildfires, such as the equivalent fire temperature, fire area, radiative energy release, fire front length and fire front strength.

  15. Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptome

    PubMed Central

    Chaudhuri, Roy R.; Yu, Lu; Kanji, Alpa; Perkins, Timothy T.; Gardner, Paul P.; Choudhary, Jyoti; Maskell, Duncan J.

    2011-01-01

    Campylobacter jejuni is the most common bacterial cause of foodborne disease in the developed world. Its general physiology and biochemistry, as well as the mechanisms enabling it to colonize and cause disease in various hosts, are not well understood, and new approaches are required to understand its basic biology. High-throughput sequencing technologies provide unprecedented opportunities for functional genomic research. Recent studies have shown that direct Illumina sequencing of cDNA (RNA-seq) is a useful technique for the quantitative and qualitative examination of transcriptomes. In this study we report RNA-seq analyses of the transcriptomes of C. jejuni (NCTC11168) and its rpoN mutant. This has allowed the identification of hitherto unknown transcriptional units, and further defines the regulon that is dependent on rpoN for expression. The analysis of the NCTC11168 transcriptome was supplemented by additional proteomic analysis using liquid chromatography-MS. The transcriptomic and proteomic datasets represent an important resource for the Campylobacter research community. PMID:21816880

  16. QUANTITATIVE RADIO-CHEMICAL ANALYSIS-SOLVENT EXTRACTION OF MOLYBDENUM-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wish, L.

    1961-09-12

    A method was developed for the rapid quantitative separation of Mo/sup 99/ from fission product mixtures. It is based on the extraction of Mo into a solution of alpha -benzoin oxime in chloroform. The main contaminants are Zr, Nb, and 1. The first two are eliminated by couple with fluoride and the third by volatilization or solvent extraction. About 5% of the Te/sup 99/ daughter is extracted with its parent, and it is necessary to wait 48 hrs for equilibrium of fission product mixtures by this method and a standard radiochemical gravimetric procedure showed agreement within 1 to 2%. (auth)

  17. PIQMIe: a web server for semi-quantitative proteomics data management and analysis

    PubMed Central

    Kuzniar, Arnold; Kanaar, Roland

    2014-01-01

    We present the Proteomics Identifications and Quantitations Data Management and Integration Service or PIQMIe that aids in reliable and scalable data management, analysis and visualization of semi-quantitative mass spectrometry based proteomics experiments. PIQMIe readily integrates peptide and (non-redundant) protein identifications and quantitations from multiple experiments with additional biological information on the protein entries, and makes the linked data available in the form of a light-weight relational database, which enables dedicated data analyses (e.g. in R) and user-driven queries. Using the web interface, users are presented with a concise summary of their proteomics experiments in numerical and graphical forms, as well as with a searchable protein grid and interactive visualization tools to aid in the rapid assessment of the experiments and in the identification of proteins of interest. The web server not only provides data access through a web interface but also supports programmatic access through RESTful web service. The web server is available at http://piqmie.semiqprot-emc.cloudlet.sara.nl or http://www.bioinformatics.nl/piqmie. This website is free and open to all users and there is no login requirement. PMID:24861615

  18. The Strategic Environment Assessment bibliographic network: A quantitative literature review analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caschili, Simone, E-mail: s.caschili@ucl.ac.uk; De Montis, Andrea; Ganciu, Amedeo

    2014-07-01

    Academic literature has been continuously growing at such a pace that it can be difficult to follow the progression of scientific achievements; hence, the need to dispose of quantitative knowledge support systems to analyze the literature of a subject. In this article we utilize network analysis tools to build a literature review of scientific documents published in the multidisciplinary field of Strategic Environment Assessment (SEA). The proposed approach helps researchers to build unbiased and comprehensive literature reviews. We collect information on 7662 SEA publications and build the SEA Bibliographic Network (SEABN) employing the basic idea that two publications are interconnectedmore » if one cites the other. We apply network analysis at macroscopic (network architecture), mesoscopic (sub graph) and microscopic levels (node) in order to i) verify what network structure characterizes the SEA literature, ii) identify the authors, disciplines and journals that are contributing to the international discussion on SEA, and iii) scrutinize the most cited and important publications in the field. Results show that the SEA is a multidisciplinary subject; the SEABN belongs to the class of real small world networks with a dominance of publications in Environmental studies over a total of 12 scientific sectors. Christopher Wood, Olivia Bina, Matthew Cashmore, and Andrew Jordan are found to be the leading authors while Environmental Impact Assessment Review is by far the scientific journal with the highest number of publications in SEA studies. - Highlights: • We utilize network analysis to analyze scientific documents in the SEA field. • We build the SEA Bibliographic Network (SEABN) of 7662 publications. • We apply network analysis at macroscopic, mesoscopic and microscopic network levels. • We identify SEABN architecture, relevant publications, authors, subjects and journals.« less

  19. Quantitative CMMI Assessment for Offshoring through the Analysis of Project Management Repositories

    NASA Astrophysics Data System (ADS)

    Sunetnanta, Thanwadee; Nobprapai, Ni-On; Gotel, Olly

    The nature of distributed teams and the existence of multiple sites in offshore software development projects pose a challenging setting for software process improvement. Often, the improvement and appraisal of software processes is achieved through a turnkey solution where best practices are imposed or transferred from a company’s headquarters to its offshore units. In so doing, successful project health checks and monitoring for quality on software processes requires strong project management skills, well-built onshore-offshore coordination, and often needs regular onsite visits by software process improvement consultants from the headquarters’ team. This paper focuses on software process improvement as guided by the Capability Maturity Model Integration (CMMI) and proposes a model to evaluate the status of such improvement efforts in the context of distributed multi-site projects without some of this overhead. The paper discusses the application of quantitative CMMI assessment through the collection and analysis of project data gathered directly from project repositories to facilitate CMMI implementation and reduce the cost of such implementation for offshore-outsourced software development projects. We exemplify this approach to quantitative CMMI assessment through the analysis of project management data and discuss the future directions of this work in progress.

  20. Optimization of homonuclear 2D NMR for fast quantitative analysis: application to tropine-nortropine mixtures.

    PubMed

    Giraudeau, Patrick; Guignard, Nadia; Hillion, Emilie; Baguet, Evelyne; Akoka, Serge

    2007-03-12

    Quantitative analysis by (1)H NMR is often hampered by heavily overlapping signals that may occur for complex mixtures, especially those containing similar compounds. Bidimensional homonuclear NMR spectroscopy can overcome this difficulty. A thorough review of acquisition and post-processing parameters was carried out to obtain accurate and precise, quantitative 2D J-resolved and DQF-COSY spectra in a much reduced time, thus limiting the spectrometer instabilities in the course of time. The number of t(1) increments was reduced as much as possible, and standard deviation was improved by optimization of spectral width, number of transients, phase cycling and apodization function. Localized polynomial baseline corrections were applied to the relevant chemical shift areas. Our method was applied to tropine-nortropine mixtures. Quantitative J-resolved spectra were obtained in less than 3 min and quantitative DQF-COSY spectra in 12 min, with an accuracy of 3% for J-spectroscopy and 2% for DQF-COSY, and a standard deviation smaller than 1%.

  1. Quantitative analysis of global veterinary human resources.

    PubMed

    Kouba, V

    2003-12-01

    This analysis of global veterinary personnel was based on the available quantitative data reported by individual countries to international organisations. The analysis begins with a time series of globally reported numbers of veterinarians, starting in the year 1959 (140,391). In 2000 this number reached 691,379. Of this total, 27.77% of veterinarians were working as government officials, 15.38% were working in laboratories, universities and training institutions and 46.33% were working as private practitioners. The ratio of veterinarians to technicians was 1:0.63. The global average of resources serviced by each veterinarian was as follows: 8,760 inhabitants; 189 km2 of land area and 20 km2 of arable land; 1,925 cattle, 242 buffaloes, 87 horses, 1,309 pigs, 1,533 sheep and 20,714 chickens; in abattoirs: 401 slaughtered cattle, 699 slaughtered sheep and 1,674 slaughtered pigs; the production of 336 tonnes (t) of meat, 708 t cow milk and 74 t hen eggs; in international trade: 12 cattle, 23 sheep, 22 pigs, 1 horse, 1,086 chickens, 33 t meat and meat products; 2,289 units of livestock (50 minutes of annual veterinary working time for each unit). These averages were also analysed according to employment categories. The author also discusses factors influencing veterinary personnel analyses and planning.

  2. Relating interesting quantitative time series patterns with text events and text features

    NASA Astrophysics Data System (ADS)

    Wanner, Franz; Schreck, Tobias; Jentner, Wolfgang; Sharalieva, Lyubka; Keim, Daniel A.

    2013-12-01

    In many application areas, the key to successful data analysis is the integrated analysis of heterogeneous data. One example is the financial domain, where time-dependent and highly frequent quantitative data (e.g., trading volume and price information) and textual data (e.g., economic and political news reports) need to be considered jointly. Data analysis tools need to support an integrated analysis, which allows studying the relationships between textual news documents and quantitative properties of the stock market price series. In this paper, we describe a workflow and tool that allows a flexible formation of hypotheses about text features and their combinations, which reflect quantitative phenomena observed in stock data. To support such an analysis, we combine the analysis steps of frequent quantitative and text-oriented data using an existing a-priori method. First, based on heuristics we extract interesting intervals and patterns in large time series data. The visual analysis supports the analyst in exploring parameter combinations and their results. The identified time series patterns are then input for the second analysis step, in which all identified intervals of interest are analyzed for frequent patterns co-occurring with financial news. An a-priori method supports the discovery of such sequential temporal patterns. Then, various text features like the degree of sentence nesting, noun phrase complexity, the vocabulary richness, etc. are extracted from the news to obtain meta patterns. Meta patterns are defined by a specific combination of text features which significantly differ from the text features of the remaining news data. Our approach combines a portfolio of visualization and analysis techniques, including time-, cluster- and sequence visualization and analysis functionality. We provide two case studies, showing the effectiveness of our combined quantitative and textual analysis work flow. The workflow can also be generalized to other

  3. A Quantitative Spatial Proteomics Analysis of Proteome Turnover in Human Cells*

    PubMed Central

    Boisvert, François-Michel; Ahmad, Yasmeen; Gierliński, Marek; Charrière, Fabien; Lamont, Douglas; Scott, Michelle; Barton, Geoff; Lamond, Angus I.

    2012-01-01

    Measuring the properties of endogenous cell proteins, such as expression level, subcellular localization, and turnover rates, on a whole proteome level remains a major challenge in the postgenome era. Quantitative methods for measuring mRNA expression do not reliably predict corresponding protein levels and provide little or no information on other protein properties. Here we describe a combined pulse-labeling, spatial proteomics and data analysis strategy to characterize the expression, localization, synthesis, degradation, and turnover rates of endogenously expressed, untagged human proteins in different subcellular compartments. Using quantitative mass spectrometry and stable isotope labeling with amino acids in cell culture, a total of 80,098 peptides from 8,041 HeLa proteins were quantified, and their spatial distribution between the cytoplasm, nucleus and nucleolus determined and visualized using specialized software tools developed in PepTracker. Using information from ion intensities and rates of change in isotope ratios, protein abundance levels and protein synthesis, degradation and turnover rates were calculated for the whole cell and for the respective cytoplasmic, nuclear, and nucleolar compartments. Expression levels of endogenous HeLa proteins varied by up to seven orders of magnitude. The average turnover rate for HeLa proteins was ∼20 h. Turnover rate did not correlate with either molecular weight or net charge, but did correlate with abundance, with highly abundant proteins showing longer than average half-lives. Fast turnover proteins had overall a higher frequency of PEST motifs than slow turnover proteins but no general correlation was observed between amino or carboxyl terminal amino acid identities and turnover rates. A subset of proteins was identified that exist in pools with different turnover rates depending on their subcellular localization. This strongly correlated with subunits of large, multiprotein complexes, suggesting a general

  4. Automatic variable selection method and a comparison for quantitative analysis in laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Duan, Fajie; Fu, Xiao; Jiang, Jiajia; Huang, Tingting; Ma, Ling; Zhang, Cong

    2018-05-01

    In this work, an automatic variable selection method for quantitative analysis of soil samples using laser-induced breakdown spectroscopy (LIBS) is proposed, which is based on full spectrum correction (FSC) and modified iterative predictor weighting-partial least squares (mIPW-PLS). The method features automatic selection without artificial processes. To illustrate the feasibility and effectiveness of the method, a comparison with genetic algorithm (GA) and successive projections algorithm (SPA) for different elements (copper, barium and chromium) detection in soil was implemented. The experimental results showed that all the three methods could accomplish variable selection effectively, among which FSC-mIPW-PLS required significantly shorter computation time (12 s approximately for 40,000 initial variables) than the others. Moreover, improved quantification models were got with variable selection approaches. The root mean square errors of prediction (RMSEP) of models utilizing the new method were 27.47 (copper), 37.15 (barium) and 39.70 (chromium) mg/kg, which showed comparable prediction effect with GA and SPA.

  5. A Quantitative Features Analysis of Recommended No- and Low-Cost Preschool E-Books

    ERIC Educational Resources Information Center

    Parette, Howard P.; Blum, Craig; Luthin, Katie

    2015-01-01

    In recent years, recommended e-books have drawn increasing attention from early childhood education professionals. This study applied a quantitative descriptive features analysis of cost (n = 70) and no-cost (n = 60) e-books recommended by the Texas Computer Education Association. While t tests revealed no statistically significant differences…

  6. Quantitative Analysis of Trace Element Impurity Levels in Some Gem-Quality Diamonds

    NASA Astrophysics Data System (ADS)

    McNeill, J. C.; Klein-Bendavid, O.; Pearson, D. G.; Nowell, G. M.; Ottley, C. J.; Chinn, I.; Malarkey, J.

    2009-05-01

    Perhaps the most important information required to understand the origin of diamonds is the nature of the fluid that they crystallise from. Constraining the identity of the diamond-forming fluid for high purity gem diamonds is hampered by analytical challenges because of the very low analyte levels involved. Here we use a new ultra- low blank 'off-line' laser ablation method coupled to sector-field ICPMS for the quantitative analysis of fluid-poor gem diamonds. Ten diamonds comprised of both E- and P-type parageneses, from the Premier Mine, South Africa, were analysed for trace element abundances. We assume that the elemental signatures arise from low densities of sub-microscopic fluid inclusions that are analogous to the much higher densities of fluid inclusions commonly found within fluid-rich diamonds exhibiting fibrous growth. Repeatability of multiple (>20) blanks yielded consistently low values so that using the current procedure our limits of quantitation (10-ã blank) are <1pg for most trace elements, except for Sr, Zr, Ba, from 2-9pg and Pb ~30pg. Trace element patterns of the Premier diamond suite show enrichment of LREE over HREE. Abundances broadly decrease with increasing elemental compatibility. As a suite the chondrite normalised diamond patterns show negative Sr, Zr, Ti and Y anomalies and positive U, and Pb anomalies. All sample abundances are very depleted relative to chondrites (0.1 to 0.001X ch). HREE range from 0.1 to 1ppb as do Y, Nb, Cs. Other lighter elements vary from 2-30ppb. Pb reaches several ppb and Ti ranges from ppb values up to 2ppm. No significant difference were observed between the trace element systematics of the eclogitic and peridotitic diamonds. Overall, these initial data have inter-element fractionation patterns similar to those evident from fluid-rich fibrous diamonds and can be sued to infer that both types of diamond-forming fluids share a common origin.

  7. Screening hypochromism (sieve effect) in red blood cells: a quantitative analysis

    PubMed Central

    Razi Naqvi, K.

    2014-01-01

    Multiwavelength UV-visible spectroscopy, Kramers-Kronig analysis, and several other experimental and theoretical tools have been applied over the last several decades to fathom absorption and scattering of light by suspensions of micron-sized pigmented particles, including red blood cells, but a satisfactory quantitative analysis of the difference between the absorption spectra of suspension of intact and lysed red blood cells is still lacking. It is stressed that such a comparison is meaningful only if the pertinent spectra are free from, or have been corrected for, scattering losses, and it is shown that Duysens’ theory can, whereas that of Vekshin cannot, account satisfactorily for the observed hypochromism of suspensions of red blood cells. PMID:24761307

  8. Screening hypochromism (sieve effect) in red blood cells: a quantitative analysis.

    PubMed

    Razi Naqvi, K

    2014-04-01

    Multiwavelength UV-visible spectroscopy, Kramers-Kronig analysis, and several other experimental and theoretical tools have been applied over the last several decades to fathom absorption and scattering of light by suspensions of micron-sized pigmented particles, including red blood cells, but a satisfactory quantitative analysis of the difference between the absorption spectra of suspension of intact and lysed red blood cells is still lacking. It is stressed that such a comparison is meaningful only if the pertinent spectra are free from, or have been corrected for, scattering losses, and it is shown that Duysens' theory can, whereas that of Vekshin cannot, account satisfactorily for the observed hypochromism of suspensions of red blood cells.

  9. Quantitative secondary ion mass spectrometric analysis of secondary ion polarity in GaN films implanted with oxygen

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Minako; Sakaguchi, Isao; Adachi, Yutaka; Ohashi, Naoki

    2016-10-01

    Quantitative analyses of N and O ions in GaN thin films implanted with oxygen ions (16O+) were conducted by secondary ion mass spectrometry (SIMS). Positive (CsM+) and negative secondary ions extracted by Cs+ primary ion bombardment were analyzed for oxygen quantitative analysis. The oxygen depth profiles were obtained using two types of primary ion beams: a Gaussian-type beam and a broad spot beam. The oxygen peak concentrations in GaN samples were from 3.2 × 1019 to 7.0 × 1021 atoms/cm3. The depth profiles show equivalent depth resolutions in the two analyses. The intensity of negative oxygen ions was approximately two orders of magnitude higher than that of positive ions. In contrast, the O/N intensity ratio measured using CsM+ molecular ions was close to the calculated atomic density ratio, indicating that the SIMS depth profiling using CsM+ ions is much more effective for the measurements of O and N ions in heavy O-implanted GaN than that using negative ions.

  10. Tannin structural elucidation and quantitative ³¹P NMR analysis. 2. Hydrolyzable tannins and proanthocyanidins.

    PubMed

    Melone, Federica; Saladino, Raffaele; Lange, Heiko; Crestini, Claudia

    2013-10-02

    An unprecedented analytical method that allows simultaneous structural and quantitative characterization of all functional groups present in tannins is reported. In situ labeling of all labile H groups (aliphatic and phenolic hydroxyls and carboxylic acids) with a phosphorus-containing reagent (Cl-TMDP) followed by quantitative ³¹P NMR acquisition constitutes a novel fast and reliable analytical tool for the analysis of tannins and proanthocyanidins with significant implications for the fields of food and feed analyses, tannery, and the development of natural polyphenolics containing products.

  11. Quantitative analysis of Al-Si alloy using calibration free laser induced breakdown spectroscopy (CF-LIBS)

    NASA Astrophysics Data System (ADS)

    Shakeel, Hira; Haq, S. U.; Aisha, Ghulam; Nadeem, Ali

    2017-06-01

    The quantitative analysis of the standard aluminum-silicon alloy has been performed using calibration free laser induced breakdown spectroscopy (CF-LIBS). The plasma was produced using the fundamental harmonic (1064 nm) of the Nd: YAG laser and the emission spectra were recorded at 3.5 μs detector gate delay. The qualitative analysis of the emission spectra confirms the presence of Mg, Al, Si, Ti, Mn, Fe, Ni, Cu, Zn, Sn, and Pb in the alloy. The background subtracted and self-absorption corrected emission spectra were used for the estimation of plasma temperature as 10 100 ± 300 K. The plasma temperature and self-absorption corrected emission lines of each element have been used for the determination of concentration of each species present in the alloy. The use of corrected emission intensities and accurate evaluation of plasma temperature yield reliable quantitative analysis up to a maximum 2.2% deviation from reference sample concentration.

  12. Quantitative trace analysis of complex mixtures using SABRE hyperpolarization.

    PubMed

    Eshuis, Nan; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco

    2015-01-26

    Signal amplification by reversible exchange (SABRE) is an emerging nuclear spin hyperpolarization technique that strongly enhances NMR signals of small molecules in solution. However, such signal enhancements have never been exploited for concentration determination, as the efficiency of SABRE can strongly vary between different substrates or even between nuclear spins in the same molecule. The first application of SABRE for the quantitative analysis of a complex mixture is now reported. Despite the inherent complexity of the system under investigation, which involves thousands of competing binding equilibria, analytes at concentrations in the low micromolar range could be quantified from single-scan SABRE spectra using a standard-addition approach. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Rock surface roughness measurement using CSI technique and analysis of surface characterization by qualitative and quantitative results

    NASA Astrophysics Data System (ADS)

    Mukhtar, Husneni; Montgomery, Paul; Gianto; Susanto, K.

    2016-01-01

    In order to develop image processing that is widely used in geo-processing and analysis, we introduce an alternative technique for the characterization of rock samples. The technique that we have used for characterizing inhomogeneous surfaces is based on Coherence Scanning Interferometry (CSI). An optical probe is first used to scan over the depth of the surface roughness of the sample. Then, to analyse the measured fringe data, we use the Five Sample Adaptive method to obtain quantitative results of the surface shape. To analyse the surface roughness parameters, Hmm and Rq, a new window resizing analysis technique is employed. The results of the morphology and surface roughness analysis show micron and nano-scale information which is characteristic of each rock type and its history. These could be used for mineral identification and studies in rock movement on different surfaces. Image processing is thus used to define the physical parameters of the rock surface.

  14. Quantitative analysis of immobilized penicillinase using enzyme-modified AlGaN/GaN field-effect transistors.

    PubMed

    Müntze, Gesche Mareike; Baur, Barbara; Schäfer, Wladimir; Sasse, Alexander; Howgate, John; Röth, Kai; Eickhoff, Martin

    2015-02-15

    Penicillinase-modified AlGaN/GaN field-effect transistors (PenFETs) are utilized to systematically investigate the covalently immobilized enzyme penicillinase under different experimental conditions. We demonstrate quantitative evaluation of covalently immobilized penicillinase layers on pH-sensitive field-effect transistors (FETs) using an analytical kinetic PenFET model. This kinetic model is explicitly suited for devices with thin enzyme layers that are not diffusion-limited, as it is the case for the PenFETs discussed here. By means of the kinetic model it was possible to extract the Michaelis constant of covalently immobilized penicillinase as well as relative transport coefficients of the different species associated with the enzymatic reaction which, exempli gratia, give information about the permeability of the enzymatic layer. Based on this analysis we quantify the reproducibility and the stability of the analyzed PenFETs over the course of 33 days as well as the influence of pH and buffer concentration on the properties of the enzymatic layer. Thereby the stability measurements reveal a Michalis constant KM of (67 ± 13)μM while the chronological development of the relative transport coefficients suggests a detachment of physisorbed penicillinase during the first two weeks since production. Our results show that AlGaN/GaN PenFETs prepared by covalent immobilization of a penicillinase enzyme layer present a powerful tool for quantitative analysis of enzyme functionality. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies.

    PubMed

    Ogino, S; Cantor, M; Kawasaki, T; Brahmandam, M; Kirkner, G J; Weisenberger, D J; Campan, M; Laird, P W; Loda, M; Fuchs, C S

    2006-07-01

    The concept of CpG island methylator phenotype (CIMP) is not universally accepted. Even if specific clinicopathological features have been associated with CIMP, investigators often failed to demonstrate a bimodal distribution of the number of methylated markers, which would suggest CIMP as a distinct subtype of colorectal cancer. Previous studies primarily used methylation specific polymerase chain reaction which might detect biologically insignificant low levels of methylation. To demonstrate a distinct genetic profile of CIMP colorectal cancer using quantitative DNA methylation analysis that can distinguish high from low levels of DNA methylation. We developed quantitative real time polymerase chain reaction (MethyLight) assays and measured DNA methylation (percentage of methylated reference) of five carefully selected loci (promoters of CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1) in 460 colorectal cancers from large prospective cohorts. There was a clear bimodal distribution of 80 microsatellite instability-high (MSI-H) tumours according to the number of methylated promoters, with no tumours showing 3/5 methylated loci. Thus we defined CIMP as having >or=4/5 methylated loci, and 17% (78) of the 460 tumours were classified as CIMP. CIMP was significantly associated with female sex, MSI, BRAF mutations, and wild-type KRAS. Both CIMP MSI-H tumours and CIMP microsatellite stable (MSS) tumours showed much higher frequencies of BRAF mutations (63% and 54%) than non-CIMP counterparts (non-CIMP MSI-H (0%, p<10(-5)) and non-CIMP MSS tumours (6.6%, p<10(-4)), respectively). CIMP is best characterised by quantitative DNA methylation analysis. CIMP is a distinct epigenotype of colorectal cancer and may be less frequent than previously reported.

  16. Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models

    PubMed Central

    Chiu, Chi-yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-ling; Xiong, Momiao; Fan, Ruzong

    2017-01-01

    To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data. PMID:28000696

  17. Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models.

    PubMed

    Chiu, Chi-Yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-Ling; Xiong, Momiao; Fan, Ruzong

    2017-02-01

    To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data.

  18. Multispectral colour analysis for quantitative evaluation of pseudoisochromatic color deficiency tests

    NASA Astrophysics Data System (ADS)

    Ozolinsh, Maris; Fomins, Sergejs

    2010-11-01

    Multispectral color analysis was used for spectral scanning of Ishihara and Rabkin color deficiency test book images. It was done using tunable liquid-crystal LC filters built in the Nuance II analyzer. Multispectral analysis keeps both, information on spatial content of tests and on spectral content. Images were taken in the range of 420-720nm with a 10nm step. We calculated retina neural activity charts taking into account cone sensitivity functions, and processed charts in order to find the visibility of latent symbols in color deficiency plates using cross-correlation technique. In such way the quantitative measure is found for each of diagnostics plate for three different color deficiency carrier types - protanopes, deutanopes and tritanopes. Multispectral color analysis allows to determine the CIE xyz color coordinates of pseudoisochromatic plate design elements and to perform statistical analysis of these data to compare the color quality of available color deficiency test books.

  19. Quantitative and sensitive analysis of CN molecules using laser induced low pressure He plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardede, Marincan; Hedwig, Rinda; Abdulmadjid, Syahrun Nur

    2015-03-21

    We report the results of experimental study on CN 388.3 nm and C I 247.8 nm emission characteristics using 40 mJ laser irradiation with He and N{sub 2} ambient gases. The results obtained with N{sub 2} ambient gas show undesirable interference effect between the native CN emission and the emission of CN molecules arising from the recombination of native C ablated from the sample with the N dissociated from the ambient gas. This problem is overcome by the use of He ambient gas at low pressure of 2 kPa, which also offers the additional advantages of cleaner and stronger emission lines. The resultmore » of applying this favorable experimental condition to emission spectrochemical measurement of milk sample having various protein concentrations is shown to yield a close to linear calibration curve with near zero extrapolated intercept. Additionally, a low detection limit of 5 μg/g is found in this experiment, making it potentially applicable for quantitative and sensitive CN analysis. The visibility of laser induced breakdown spectroscopy with low pressure He gas is also demonstrated by the result of its application to spectrochemical analysis of fossil samples. Furthermore, with the use of CO{sub 2} ambient gas at 600 Pa mimicking the Mars atmosphere, this technique also shows promising applications to exploration in Mars.« less

  20. Automated quantitative cytological analysis using portable microfluidic microscopy.

    PubMed

    Jagannadh, Veerendra Kalyan; Murthy, Rashmi Sreeramachandra; Srinivasan, Rajesh; Gorthi, Sai Siva

    2016-06-01

    In this article, a portable microfluidic microscopy based approach for automated cytological investigations is presented. Inexpensive optical and electronic components have been used to construct a simple microfluidic microscopy system. In contrast to the conventional slide-based methods, the presented method employs microfluidics to enable automated sample handling and image acquisition. The approach involves the use of simple in-suspension staining and automated image acquisition to enable quantitative cytological analysis of samples. The applicability of the presented approach to research in cellular biology is shown by performing an automated cell viability assessment on a given population of yeast cells. Further, the relevance of the presented approach to clinical diagnosis and prognosis has been demonstrated by performing detection and differential assessment of malaria infection in a given sample. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. QFASAR: Quantitative fatty acid signature analysis with R

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.

    2017-01-01

    Knowledge of predator diets provides essential insights into their ecology, yet diet estimation is challenging and remains an active area of research.Quantitative fatty acid signature analysis (QFASA) is a popular method of estimating diet composition that continues to be investigated and extended. However, software to implement QFASA has only recently become publicly available.I summarize a new R package, qfasar, for diet estimation using QFASA methods. The package also provides functionality to evaluate and potentially improve the performance of a library of prey signature data, compute goodness-of-fit diagnostics, and support simulation-based research. Several procedures in the package have not previously been published.qfasar makes traditional and recently published QFASA diet estimation methods accessible to ecologists for the first time. Use of the package is illustrated with signature data from Chukchi Sea polar bears and potential prey species.

  2. In patients suffering from major depressive disorders, quantitative EEG showed favorable changes in left and right prefrontal cortex.

    PubMed

    Haghighi, Mohammad; Ludyga, Sebastian; Rahimi, Boshra; Jahangard, Leila; Ahmadpanah, Mohammad; Torabian, Saadat; Esnaashari, Farzaneh; Nazaribadie, Marzieh; Bajoghli, Hafez; Sadeghi Bahmani, Dena; Holsboer-Trachsler, Edith; Brand, Serge

    2017-05-01

    Patients suffering from major depressive disorders (MDD) report anhedonia, low concentration and lack of goal-oriented behavior. Data from imaging and quantitative EEG (QEEG) studies show an asymmetry in the prefrontal cortex (PFC), with lower left as compared to right PFC-activity, associated with specific depression-related behavior. Cordance is a QEEG measurement, which combines absolute and relative power of EEG-spectra with strong correlations with regional perfusion. The aim of the present study was to investigate to what extent a four weeks lasting treatment with a standard SSRI had an influence on neuronal activation and MDD-related symptoms. Twenty patients suffering from severe MDD were treated with citalopram (40mg) for four consecutive weeks. At baseline and at the end of the treatment, patients underwent QEEG. Experts rated the degree of depression with the Hamilton Depression Rating Scale (HDRS). Over time, theta cordance increased over right ventromedial and left dorsolateral PFC, whereas alpha cordance decreased over dorsolateral PFC. Improvement in MDD-related symptoms was higher in patients showing decreased EEG theta cordance over right dorsal PFC and increased EEG alpha cordance over left dorsolateral PFC. In patients suffering from MDD, treatment response was associated with favorable changes in neuronal activity. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  3. A qualitative and quantitative analysis of the New Zealand media portrayal of Down syndrome.

    PubMed

    Wardell, S; Fitzgerald, R P; Legge, M; Clift, K

    2014-04-01

    There are only a small number of studies that systematically explore the tensions between the global shift to universal screening and the media representations of the people with Down syndrome. This paper contributes to the literature by analyzing the New Zealand media coverage of this topic. To describe the content and quality of selected New Zealand media references to Down syndrome in light of the claim by New Zealand support group Saving Downs of state supported eugenics via universal screening. Quantitative content analysis was conducted of 140 relevant New Zealand articles (from 2001 to 2011) and qualitative critical discourse analysis of 18 relevant articles (from 2009 to 2011) selected from television, magazine and newspaper. The content analysis showed no strong directional reporting although the quality of life for people with Down syndrome was represented as slightly negative. Most articles focused on issues of society, government and care rather than genetics. The qualitative analysis identified themes around quality of life, information and bias, preparedness, eugenics, the visualness of disability and the need for public debate around genetic screening and testing. The New Zealand print media coverage of these issues has been relatively balanced. Recent mixed media coverage of the topic is critical, complex and socially inclusive of people with Down syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Adduct ion-targeted qualitative and quantitative analysis of polyoxypregnanes by ultra-high pressure liquid chromatography coupled with triple quadrupole mass spectrometry.

    PubMed

    Wu, Xu; Zhu, Lin; Ma, Jiang; Ye, Yang; Lin, Ge

    2017-10-25

    Polyoxypregnane and its glycosides (POPs) are frequently present in plants of Asclepiadaceae family, and have a variety of biological activities. There is a great need to comprehensively profile these phytochemicals and to quantify them for monitoring their contents in the herbs and the biological samples. However, POPs undergo extensive adduct ion formation in ESI-MS, which has posed a challenge for qualitative and quantitative analysis of POPs. In the present study, we took the advantage of such extensive adduct ion formation to investigate the suitability of adduct ion-targeted analysis of POPs. For the qualitative analysis, we firstly demonstrated that the sodium and ammonium adduct ion-targeted product ion scans (PIS) provided adequate MS/MS fragmentations for structural characterization of POPs. Aided with precursor ion (PI) scans, which showed high selectivity and sensitivity and improved peak assignment confidence in conjunction with full scan (FS), the informative adduct ion-targeted PIS enabled rapid POPs profiling. For the quantification, we used formic acid rather than ammonium acetate as an additive in the mobile phase to avoid simultaneous formation of sodium and ammonium adduct ions, and greatly improved reproducibility of MS response of POPs. By monitoring the solely formed sodium adduct ions [M+Na] + , a method for simultaneous quantification of 25 POPs in the dynamic multiple reaction monitoring mode was then developed and validated. Finally, the aforementioned methods were applied to qualitative and quantitative analysis of POPs in the extract of a traditional Chinses medicinal herb, Marsdenia tenacissima (Roxb.) Wight et Arn., and in the plasma obtained from the rats treated with this herb. The results demonstrated that adduct ion formation could be optimized for the qualitative and quantitative analysis of POPs, and our developed PI/FS-PIS scanning and sole [M+Na] + ion monitoring significantly improved the analysis of POPs in both herbal and

  5. EDXRF quantitative analysis of chromophore chemical elements in corundum samples.

    PubMed

    Bonizzoni, L; Galli, A; Spinolo, G; Palanza, V

    2009-12-01

    Corundum is a crystalline form of aluminum oxide (Al(2)O(3)) and is one of the rock-forming minerals. When aluminum oxide is pure, the mineral is colorless, but the presence of trace amounts of other elements such as iron, titanium, and chromium in the crystal lattice gives the typical colors (including blue, red, violet, pink, green, yellow, orange, gray, white, colorless, and black) of gemstone varieties. The starting point for our work is the quantitative evaluation of the concentration of chromophore chemical elements with a precision as good as possible to match the data obtained by different techniques as such as optical absorption photoluminescence. The aim is to give an interpretation of the absorption bands present in the NIR and visible ranges which do not involve intervalence charge transfer transitions (Fe(2+) --> Fe(3+) and Fe(2+) --> Ti(4+)), commonly considered responsible of the important features of the blue sapphire absorption spectra. So, we developed a method to evaluate as accurately as possible the autoabsorption effects and the secondary excitation effects which frequently are sources of relevant errors in the quantitative EDXRF analysis.

  6. Quantitative structure activity relationship and risk analysis of some pesticides in the goat milk.

    PubMed

    Muhammad, Faqir; Awais, Mian Muhammad; Akhtar, Masood; Anwar, Muhammad Irfan

    2013-01-04

    The detection and quantification of different pesticides in the goat milk samples collected from different localities of Faisalabad, Pakistan was performed by HPLC using solid phase microextraction. The analysis showed that about 50% milk samples were contaminated with pesticides. The mean±SEM levels (ppm) of cyhalothrin, endosulfan, chlorpyrifos and cypermethrin were 0.34±0.007, 0.063±0.002, 0.034±0.002 and 0.092±0.002, respectively; whereas, methyl parathion was not detected in any of the analyzed samples. Quantitative structure activity relationship (QSAR) models were suggested to predict the residues of unknown pesticides in the goat milk using their known physicochemical characteristics including molecular weight (MW), melting point (MP), and log octanol to water partition coefficient (Ko/w) in relation to the characteristics such as pH, % fat, specific gravity and refractive index of goat milk. The analysis revealed good correlation coefficient (R2 = 0.985) for goat QSAR model. The coefficients for Ko/w and refractive index for the studied pesticides were higher in goat milk. This suggests that these are better determinants for pesticide residue prediction in the milk of these animals. Based upon the determined pesticide residues and their provisional tolerable daily intakes, risk analysis was also conducted which showed that daily intake levels of pesticide residues including cyhalothrin, chlorpyrifos and cypermethrin in present study are 2.68, 5.19 and 2.71 times higher, respectively in the goat milk. This intake of pesticide contaminated milk might pose health hazards to humans in this locality.

  7. Quantitative structure activity relationship and risk analysis of some pesticides in the goat milk

    PubMed Central

    2013-01-01

    The detection and quantification of different pesticides in the goat milk samples collected from different localities of Faisalabad, Pakistan was performed by HPLC using solid phase microextraction. The analysis showed that about 50% milk samples were contaminated with pesticides. The mean±SEM levels (ppm) of cyhalothrin, endosulfan, chlorpyrifos and cypermethrin were 0.34±0.007, 0.063±0.002, 0.034±0.002 and 0.092±0.002, respectively; whereas, methyl parathion was not detected in any of the analyzed samples. Quantitative structure activity relationship (QSAR) models were suggested to predict the residues of unknown pesticides in the goat milk using their known physicochemical characteristics including molecular weight (MW), melting point (MP), and log octanol to water partition coefficient (Ko/w) in relation to the characteristics such as pH, % fat, specific gravity and refractive index of goat milk. The analysis revealed good correlation coefficient (R2 = 0.985) for goat QSAR model. The coefficients for Ko/w and refractive index for the studied pesticides were higher in goat milk. This suggests that these are better determinants for pesticide residue prediction in the milk of these animals. Based upon the determined pesticide residues and their provisional tolerable daily intakes, risk analysis was also conducted which showed that daily intake levels of pesticide residues including cyhalothrin, chlorpyrifos and cypermethrin in present study are 2.68, 5.19 and 2.71 times higher, respectively in the goat milk. This intake of pesticide contaminated milk might pose health hazards to humans in this locality. PMID:23369514

  8. Functional Genomics Analysis of Big Data Identifies Novel Peroxisome Proliferator-Activated Receptor γ Target Single Nucleotide Polymorphisms Showing Association With Cardiometabolic Outcomes.

    PubMed

    Richardson, Kris; Schnitzler, Gavin R; Lai, Chao-Qiang; Ordovas, Jose M

    2015-12-01

    Cardiovascular disease and type 2 diabetes mellitus represent overlapping diseases where a large portion of the variation attributable to genetics remains unexplained. An important player in their pathogenesis is peroxisome proliferator-activated receptor γ (PPARγ) that is involved in lipid and glucose metabolism and maintenance of metabolic homeostasis. We used a functional genomics methodology to interrogate human chromatin immunoprecipitation-sequencing, genome-wide association studies, and expression quantitative trait locus data to inform selection of candidate functional single nucleotide polymorphisms (SNPs) falling in PPARγ motifs. We derived 27 328 chromatin immunoprecipitation-sequencing peaks for PPARγ in human adipocytes through meta-analysis of 3 data sets. The PPARγ consensus motif showed greatest enrichment and mapped to 8637 peaks. We identified 146 SNPs in these motifs. This number was significantly less than would be expected by chance, and Inference of Natural Selection from Interspersed Genomically coHerent elemenTs analysis indicated that these motifs are under weak negative selection. A screen of these SNPs against genome-wide association studies for cardiometabolic traits revealed significant enrichment with 16 SNPs. A screen against the MuTHER expression quantitative trait locus data revealed 8 of these were significantly associated with altered gene expression in human adipose, more than would be expected by chance. Several SNPs fall close, or are linked by expression quantitative trait locus to lipid-metabolism loci including CYP26A1. We demonstrated the use of functional genomics to identify SNPs of potential function. Specifically, that SNPs within PPARγ motifs that bind PPARγ in adipocytes are significantly associated with cardiometabolic disease and with the regulation of transcription in adipose. This method may be used to uncover functional SNPs that do not reach significance thresholds in the agnostic approach of genome

  9. Fluorescence-based Western blotting for quantitation of protein biomarkers in clinical samples.

    PubMed

    Zellner, Maria; Babeluk, Rita; Diestinger, Michael; Pirchegger, Petra; Skeledzic, Senada; Oehler, Rudolf

    2008-09-01

    Since most high throughput techniques used in biomarker discovery are very time and cost intensive, highly specific and quantitative analytical alternative application methods are needed for the routine analysis. Conventional Western blotting allows detection of specific proteins to the level of single isotypes while its quantitative accuracy is rather limited. We report a novel and improved quantitative Western blotting method. The use of fluorescently labelled secondary antibodies strongly extends the dynamic range of the quantitation and improves the correlation with the protein amount (r=0.997). By an additional fluorescent staining of all proteins immediately after their transfer to the blot membrane, it is possible to visualise simultaneously the antibody binding and the total protein profile. This allows for an accurate correction for protein load. Applying this normalisation it could be demonstrated that fluorescence-based Western blotting is able to reproduce a quantitative analysis of two specific proteins in blood platelet samples from 44 subjects with different diseases as initially conducted by 2D-DIGE. These results show that the proposed fluorescence-based Western blotting is an adequate application technique for biomarker quantitation and suggest possibilities of employment that go far beyond.

  10. Effects of Computer Programming on Students' Cognitive Performance: A Quantitative Synthesis.

    ERIC Educational Resources Information Center

    Liao, Yuen-Kuang Cliff

    A meta-analysis was performed to synthesize existing data concerning the effects of computer programing on cognitive outcomes of students. Sixty-five studies were located from three sources, and their quantitative data were transformed into a common scale--Effect Size (ES). The analysis showed that 58 (89%) of the study-weighted ESs were positive…

  11. Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis

    PubMed Central

    Morelli, Sylvia A.; Sacchet, Matthew D.; Zaki, Jamil

    2015-01-01

    Individuals experience reward not only when directly receiving positive outcomes (e.g., food or money), but also when observing others receive such outcomes. This latter phenomenon, known as vicarious reward, is a perennial topic of interest among psychologists and economists. More recently, neuroscientists have begun exploring the neuroanatomy underlying vicarious reward. Here we present a quantitative whole-brain meta-analysis of this emerging literature. We identified 25 functional neuroimaging studies that included contrasts between vicarious reward and a neutral control, and subjected these contrasts to an activation likelihood estimate (ALE) meta-analysis. This analysis revealed a consistent pattern of activation across studies, spanning structures typically associated with the computation of value (especially ventromedial prefrontal cortex) and mentalizing (including dorsomedial prefrontal cortex and superior temporal sulcus). We further quantitatively compared this activation pattern to activation foci from a previous meta-analysis of personal reward. Conjunction analyses yielded overlapping VMPFC activity in response to personal and vicarious reward. Contrast analyses identified preferential engagement of the nucleus accumbens in response to personal as compared to vicarious reward, and in mentalizing-related structures in response to vicarious as compared to personal reward. These data shed light on the common and unique components of the reward that individuals experience directly and through their social connections. PMID:25554428

  12. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism.

    PubMed

    Zouari, Inès; Salvioli, Alessandra; Chialva, Matteo; Novero, Mara; Miozzi, Laura; Tenore, Gian Carlo; Bagnaresi, Paolo; Bonfante, Paola

    2014-03-21

    Tomato (Solanum lycopersicum) establishes a beneficial symbiosis with arbuscular mycorrhizal (AM) fungi. The formation of the mycorrhizal association in the roots leads to plant-wide modulation of gene expression. To understand the systemic effect of the fungal symbiosis on the tomato fruit, we used RNA-Seq to perform global transcriptome profiling on Moneymaker tomato fruits at the turning ripening stage. Fruits were collected at 55 days after flowering, from plants colonized with Funneliformis mosseae and from control plants, which were fertilized to avoid responses related to nutrient deficiency. Transcriptome analysis identified 712 genes that are differentially expressed in fruits from mycorrhizal and control plants. Gene Ontology (GO) enrichment analysis of these genes showed 81 overrepresented functional GO classes. Up-regulated GO classes include photosynthesis, stress response, transport, amino acid synthesis and carbohydrate metabolism functions, suggesting a general impact of fungal symbiosis on primary metabolisms and, particularly, on mineral nutrition. Down-regulated GO classes include cell wall, metabolism and ethylene response pathways. Quantitative RT-PCR validated the RNA-Seq results for 12 genes out of 14 when tested at three fruit ripening stages, mature green, breaker and turning. Quantification of fruit nutraceutical and mineral contents produced values consistent with the expression changes observed by RNA-Seq analysis. This RNA-Seq profiling produced a novel data set that explores the intersection of mycorrhization and fruit development. We found that the fruits of mycorrhizal plants show two transcriptomic "signatures": genes characteristic of a climacteric fleshy fruit, and genes characteristic of mycorrhizal status, like phosphate and sulphate transporters. Moreover, mycorrhizal plants under low nutrient conditions produce fruits with a nutrient content similar to those from non-mycorrhizal plants under high nutrient conditions

  13. Quantitative analysis of a scar's pliability, perfusion and metrology

    NASA Astrophysics Data System (ADS)

    Gonzalez, Mariacarla; Sevilla, Nicole; Chue-Sang, Joseph; Ramella-Roman, Jessica C.

    2017-02-01

    The primary effect of scarring is the loss of function in the affected area. Scarring also leads to physical and psychological problems that could be devastating to the patient's life. Currently, scar assessment is highly subjective and physician dependent. The examination relies on the expertise of the physician to determine the characteristics of the scar by touch and visual examination using the Vancouver scar scale (VSS), which categorizes scars depending on pigmentation, pliability, height and vascularity. In order to establish diagnostic guidelines for scar formation, a quantitative, accurate assessment method needs to be developed. An instrument capable of measuring all categories was developed; three of the aforementioned parameters will be explored. In order to look at pliability, a durometer which measures the amount of resistance a surface exerts to prevent the permanent indentation of the surface is used due to its simplicity and quantitative output. To look at height and vascularity, a profilometry system that collects the location of the scar in three-dimensions and laser speckle imaging (LSI), which shows the dynamic changes in perfusion, respectively, are used. Gelatin phantoms were utilized to measure pliability. Finally, dynamic changes in skin perfusion of volunteers' forearms undergoing pressure cuff occlusion were measured, along with incisional scars.

  14. Qualitative and quantitative analysis of palmar dermatoglyphics among smokeless tobacco users.

    PubMed

    Vijayaraghavan, Athreya; Aswath, Nalini

    2015-01-01

    Palm prints formed once does not change throughout life and is not influenced by environment. Palmar Dermatoglyphics can indicate the development of potentially malignant and malignant lesions and help in identifying persons at high risk of developing Oral submucous fibrosis (OSMF) and Oral squamous cell carcinoma (OSSC). To analyze the qualitative [finger ridge pattern and presence or absence of hypothenar pattern] and quantitative [mean ATD angle and total AB ridge count] variations in Palmar Dermatoglyphics in patients suffering from OSMF and OSCC. A prospective comparative study among 40 patients (Group I--10 samples of smokeless tobacco users with OSMF, Group II--10 samples of smokeless tobacco users with OSCC, Group III--10 samples of smokeless tobacco users without OSMF or OSCC and Group IV--10 samples without smokeless tobacco habit without OSMF and OSCC as controls) were selected. The palm prints were recorded using an HP inkjet scanner. The patients were asked to place the palm gently on the scanner with the fingers wide apart from each other. The images of the palm prints were edited and qualitative and quantitative analysis were done. Statistical analysis such as Kruskal Wallis, Post Hoc and Analysis of Varience were done. A highly significant difference among the finger ridge, hypothenar pattern and mean ATD angle (P<0.001) and total AB ridge count (P=0.005) in OSMF and OSCC patients were obtained. There is predominance of arches and loops, presence of hypothenar pattern, decrease in mean ATD angle and total AB ridge count in OSMF and Oral Cancer patients. Palmar Dermatoglyphics can predict the probable occurrence of OSMF and OSCC in smokelees tobacco users.

  15. Qualitative, semi-quantitative, and quantitative simulation of the osmoregulation system in yeast

    PubMed Central

    Pang, Wei; Coghill, George M.

    2015-01-01

    In this paper we demonstrate how Morven, a computational framework which can perform qualitative, semi-quantitative, and quantitative simulation of dynamical systems using the same model formalism, is applied to study the osmotic stress response pathway in yeast. First the Morven framework itself is briefly introduced in terms of the model formalism employed and output format. We then built a qualitative model for the biophysical process of the osmoregulation in yeast, and a global qualitative-level picture was obtained through qualitative simulation of this model. Furthermore, we constructed a Morven model based on existing quantitative model of the osmoregulation system. This model was then simulated qualitatively, semi-quantitatively, and quantitatively. The obtained simulation results are presented with an analysis. Finally the future development of the Morven framework for modelling the dynamic biological systems is discussed. PMID:25864377

  16. Quantitative high-speed laryngoscopic analysis of vocal fold vibration in fatigued voice of young karaoke singers.

    PubMed

    Yiu, Edwin M-L; Wang, Gaowu; Lo, Andy C Y; Chan, Karen M-K; Ma, Estella P-M; Kong, Jiangping; Barrett, Elizabeth Ann

    2013-11-01

    The present study aimed to determine whether there were physiological differences in the vocal fold vibration between nonfatigued and fatigued voices using high-speed laryngoscopic imaging and quantitative analysis. Twenty participants aged from 18 to 23 years (mean, 21.2 years; standard deviation, 1.3 years) with normal voice were recruited to participate in an extended singing task. Vocal fatigue was induced using a singing task. High-speed laryngoscopic image recordings of /i/ phonation were taken before and after the singing task. The laryngoscopic images were semiautomatically analyzed with the quantitative high-speed video processing program to extract indices related to the anteroposterior dimension (length), transverse dimension (width), and the speed of opening and closing. Significant reduction in the glottal length-to-width ratio index was found after vocal fatigue. Physiologically, this indicated either a significantly shorter (anteroposteriorly) or a wider (transversely) glottis after vocal fatigue. The high-speed imaging technique using quantitative analysis has the potential for early identification of vocally fatigued voice. Copyright © 2013 The Voice Foundation. All rights reserved.

  17. A Quantitative Analysis of Cognitive Strategy Usage in the Marking of Two GCSE Examinations

    ERIC Educational Resources Information Center

    Suto, W. M. Irenka; Greatorex, Jackie

    2008-01-01

    Diverse strategies for marking GCSE examinations have been identified, ranging from simple automatic judgements to complex cognitive operations requiring considerable expertise. However, little is known about patterns of strategy usage or how such information could be utilised by examiners. We conducted a quantitative analysis of previous verbal…

  18. Connecting qualitative observation and quantitative measurement for enhancing quantitative literacy in plant anatomy course

    NASA Astrophysics Data System (ADS)

    Nuraeni, E.; Rahmat, A.

    2018-05-01

    Forming of cognitive schemes of plant anatomy concepts is performed by processing of qualitative and quantitative data obtained from microscopic observations. To enhancing student’s quantitative literacy, strategy of plant anatomy course was modified by adding the task to analyze quantitative data produced by quantitative measurement of plant anatomy guided by material course. Participant in this study was 24 biology students and 35 biology education students. Quantitative Literacy test, complex thinking in plant anatomy test and questioner used to evaluate the course. Quantitative literacy capability data was collected by quantitative literacy test with the rubric from the Association of American Colleges and Universities, Complex thinking in plant anatomy by test according to Marzano and questioner. Quantitative literacy data are categorized according to modified Rhodes and Finley categories. The results showed that quantitative literacy of biology education students is better than biology students.

  19. New tools for comparing microscopy images: quantitative analysis of cell types in Bacillus subtilis.

    PubMed

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-02-15

    Fluorescence microscopy is a method commonly used to examine individual differences between bacterial cells, yet many studies still lack a quantitative analysis of fluorescence microscopy data. Here we introduce some simple tools that microbiologists can use to analyze and compare their microscopy images. We show how image data can be converted to distribution data. These data can be subjected to a cluster analysis that makes it possible to objectively compare microscopy images. The distribution data can further be analyzed using distribution fitting. We illustrate our methods by scrutinizing two independently acquired data sets, each containing microscopy images of a doubly labeled Bacillus subtilis strain. For the first data set, we examined the expression of srfA and tapA, two genes which are expressed in surfactin-producing and matrix-producing cells, respectively. For the second data set, we examined the expression of eps and tapA; these genes are expressed in matrix-producing cells. We show that srfA is expressed by all cells in the population, a finding which contrasts with a previously reported bimodal distribution of srfA expression. In addition, we show that eps and tapA do not always have the same expression profiles, despite being expressed in the same cell type: both operons are expressed in cell chains, while single cells mainly express eps. These findings exemplify that the quantification and comparison of microscopy data can yield insights that otherwise would go unnoticed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Clinical and quantitative analysis of patients with crowned dens syndrome.

    PubMed

    Takahashi, Teruyuki; Tamura, Masato; Takasu, Toshiaki; Kamei, Satoshi

    2017-05-15

    Crowned dens syndrome (CDS) is a radioclinical entity defined by calcium deposition on the transverse ligament of atlas (TLA). In this study, the novel semi-quantitative diagnostic criteria for CDS to evaluate the degree of calcification on TLA by cervical CT are proposed. From January 2010 to September 2014, 35 patients who were diagnosed with CDS by cervical CT were adopted as subjects in this study. Based on novel criteria, calcium deposition on TLA was classified into "Stage" and "Grade", to make a score, which was evaluated semi-quantitatively. The correlation between calcification score and CRP level or pain score, and the effects of treatments, such as NSAIDs and corticosteroids, were statistically analyzed. The total calcification score from added "Stage" and "Grade" scores demonstrated a significantly strong and linear correlation with CRP level (R 2 =0.823, **p<0.01). In the multiple comparison test for the treatment effects, significant improvement of the CRP level and pain score were demonstrated after corticosteroid therapy (**p<0.01) compared with NSAIDs. In the conditional logistic regression analysis, the rapid end of corticosteroid therapy was an independent risk factor for relapse of cervico-occipital pain [OR=50.761, *p=0.0419]. The degree of calcification on TLA evaluated by the novel semi-quantitative criteria significantly correlated with CRP level. In the treatment of CDS, it is recommended that a low dosage (15-30mg) of corticosteroids be used as first-line drugs rather than conventional NSAID therapy. Additionally, it is also recommended to gradually decrease the dosage of corticosteroids. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Risk Factors for Chronic Subdural Hematoma Recurrence Identified Using Quantitative Computed Tomography Analysis of Hematoma Volume and Density.

    PubMed

    Stavrinou, Pantelis; Katsigiannis, Sotirios; Lee, Jong Hun; Hamisch, Christina; Krischek, Boris; Mpotsaris, Anastasios; Timmer, Marco; Goldbrunner, Roland

    2017-03-01

    Chronic subdural hematoma (CSDH), a common condition in elderly patients, presents a therapeutic challenge with recurrence rates of 33%. We aimed to identify specific prognostic factors for recurrence using quantitative analysis of hematoma volume and density. We retrospectively reviewed radiographic and clinical data of 227 CSDHs in 195 consecutive patients who underwent evacuation of the hematoma through a single burr hole, 2 burr holes, or a mini-craniotomy. To examine the relationship between hematoma recurrence and various clinical, radiologic, and surgical factors, we used quantitative image-based analysis to measure the hematoma and trapped air volumes and the hematoma densities. Recurrence of CSDH occurred in 35 patients (17.9%). Multivariate logistic regression analysis revealed that the percentage of hematoma drained and postoperative CSDH density were independent risk factors for recurrence. All 3 evacuation methods were equally effective in draining the hematoma (71.7% vs. 73.7% vs. 71.9%) without observable differences in postoperative air volume captured in the subdural space. Quantitative image analysis provided evidence that percentage of hematoma drained and postoperative CSDH density are independent prognostic factors for subdural hematoma recurrence. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. [Simultaneous quantitative analysis of five alkaloids in Sophora flavescens by multi-components assay by single marker].

    PubMed

    Chen, Jing; Wang, Shu-Mei; Meng, Jiang; Sun, Fei; Liang, Sheng-Wang

    2013-05-01

    To establish a new method for quality evaluation and validate its feasibilities by simultaneous quantitative assay of five alkaloids in Sophora flavescens. The new quality evaluation method, quantitative analysis of multi-components by single marker (QAMS), was established and validated with S. flavescens. Five main alkaloids, oxymatrine, sophocarpine, matrine, oxysophocarpine and sophoridine, were selected as analytes to evaluate the quality of rhizome of S. flavescens, and the relative correction factor has good repeatibility. Their contents in 21 batches of samples, collected from different areas, were determined by both external standard method and QAMS. The method was evaluated by comparison of the quantitative results between external standard method and QAMS. No significant differences were found in the quantitative results of five alkaloids in 21 batches of S. flavescens determined by external standard method and QAMS. It is feasible and suitable to evaluate the quality of rhizome of S. flavescens by QAMS.

  3. Quantitative analysis on the urban flood mitigation effect by the extensive green roof system.

    PubMed

    Lee, J Y; Moon, H J; Kim, T I; Kim, H W; Han, M Y

    2013-10-01

    Extensive green-roof systems are expected to have a synergetic effect in mitigating urban runoff, decreasing temperature and supplying water to a building. Mitigation of runoff through rainwater retention requires the effective design of a green-roof catchment. This study identified how to improve building runoff mitigation through quantitative analysis of an extensive green-roof system. Quantitative analysis of green-roof runoff characteristics indicated that the extensive green roof has a high water-retaining capacity response to rainfall of less than 20 mm/h. As the rainfall intensity increased, the water-retaining capacity decreased. The catchment efficiency of an extensive green roof ranged from 0.44 to 0.52, indicating reduced runoff comparing with efficiency of 0.9 for a concrete roof. Therefore, extensive green roofs are an effective storm water best-management practice and the proposed parameters can be applied to an algorithm for rainwater-harvesting tank design. © 2013 Elsevier Ltd. All rights reserved.

  4. MALDI-TOF mass spectrometry for quantitative gene expression analysis of acid responses in Staphylococcus aureus.

    PubMed

    Rode, Tone Mari; Berget, Ingunn; Langsrud, Solveig; Møretrø, Trond; Holck, Askild

    2009-07-01

    Microorganisms are constantly exposed to new and altered growth conditions, and respond by changing gene expression patterns. Several methods for studying gene expression exist. During the last decade, the analysis of microarrays has been one of the most common approaches applied for large scale gene expression studies. A relatively new method for gene expression analysis is MassARRAY, which combines real competitive-PCR and MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry. In contrast to microarray methods, MassARRAY technology is suitable for analysing a larger number of samples, though for a smaller set of genes. In this study we compare the results from MassARRAY with microarrays on gene expression responses of Staphylococcus aureus exposed to acid stress at pH 4.5. RNA isolated from the same stress experiments was analysed using both the MassARRAY and the microarray methods. The MassARRAY and microarray methods showed good correlation. Both MassARRAY and microarray estimated somewhat lower fold changes compared with quantitative real-time PCR (qRT-PCR). The results confirmed the up-regulation of the urease genes in acidic environments, and also indicated the importance of metal ion regulation. This study shows that the MassARRAY technology is suitable for gene expression analysis in prokaryotes, and has advantages when a set of genes is being analysed for an organism exposed to many different environmental conditions.

  5. Quantitative analysis of crystalline pharmaceuticals in tablets by pattern-fitting procedure using X-ray diffraction pattern.

    PubMed

    Takehira, Rieko; Momose, Yasunori; Yamamura, Shigeo

    2010-10-15

    A pattern-fitting procedure using an X-ray diffraction pattern was applied to the quantitative analysis of binary system of crystalline pharmaceuticals in tablets. Orthorhombic crystals of isoniazid (INH) and mannitol (MAN) were used for the analysis. Tablets were prepared under various compression pressures using a direct compression method with various compositions of INH and MAN. Assuming that X-ray diffraction pattern of INH-MAN system consists of diffraction intensities from respective crystals, observed diffraction intensities were fitted to analytic expression based on X-ray diffraction theory and separated into two intensities from INH and MAN crystals by a nonlinear least-squares procedure. After separation, the contents of INH were determined by using the optimized normalization constants for INH and MAN. The correction parameter including all the factors that are beyond experimental control was required for quantitative analysis without calibration curve. The pattern-fitting procedure made it possible to determine crystalline phases in the range of 10-90% (w/w) of the INH contents. Further, certain characteristics of the crystals in the tablets, such as the preferred orientation, size of crystallite, and lattice disorder were determined simultaneously. This method can be adopted to analyze compounds whose crystal structures are known. It is a potentially powerful tool for the quantitative phase analysis and characterization of crystals in tablets and powders using X-ray diffraction patterns. Copyright 2010 Elsevier B.V. All rights reserved.

  6. PIQMIe: a web server for semi-quantitative proteomics data management and analysis.

    PubMed

    Kuzniar, Arnold; Kanaar, Roland

    2014-07-01

    We present the Proteomics Identifications and Quantitations Data Management and Integration Service or PIQMIe that aids in reliable and scalable data management, analysis and visualization of semi-quantitative mass spectrometry based proteomics experiments. PIQMIe readily integrates peptide and (non-redundant) protein identifications and quantitations from multiple experiments with additional biological information on the protein entries, and makes the linked data available in the form of a light-weight relational database, which enables dedicated data analyses (e.g. in R) and user-driven queries. Using the web interface, users are presented with a concise summary of their proteomics experiments in numerical and graphical forms, as well as with a searchable protein grid and interactive visualization tools to aid in the rapid assessment of the experiments and in the identification of proteins of interest. The web server not only provides data access through a web interface but also supports programmatic access through RESTful web service. The web server is available at http://piqmie.semiqprot-emc.cloudlet.sara.nl or http://www.bioinformatics.nl/piqmie. This website is free and open to all users and there is no login requirement. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D)

    PubMed Central

    Li, Weizhe; Germain, Ronald N.

    2017-01-01

    Organ homeostasis, cellular differentiation, signal relay, and in situ function all depend on the spatial organization of cells in complex tissues. For this reason, comprehensive, high-resolution mapping of cell positioning, phenotypic identity, and functional state in the context of macroscale tissue structure is critical to a deeper understanding of diverse biological processes. Here we report an easy to use method, clearing-enhanced 3D (Ce3D), which generates excellent tissue transparency for most organs, preserves cellular morphology and protein fluorescence, and is robustly compatible with antibody-based immunolabeling. This enhanced signal quality and capacity for extensive probe multiplexing permits quantitative analysis of distinct, highly intermixed cell populations in intact Ce3D-treated tissues via 3D histo-cytometry. We use this technology to demonstrate large-volume, high-resolution microscopy of diverse cell types in lymphoid and nonlymphoid organs, as well as to perform quantitative analysis of the composition and tissue distribution of multiple cell populations in lymphoid tissues. Combined with histo-cytometry, Ce3D provides a comprehensive strategy for volumetric quantitative imaging and analysis that bridges the gap between conventional section imaging and disassociation-based techniques. PMID:28808033

  8. Quantitative analysis of sitagliptin using the (19)F-NMR method: a universal technique for fluorinated compound detection.

    PubMed

    Zhang, Fen-Fen; Jiang, Meng-Hong; Sun, Lin-Lin; Zheng, Feng; Dong, Lei; Shah, Vishva; Shen, Wen-Bin; Ding, Ya

    2015-01-07

    To expand the application scope of nuclear magnetic resonance (NMR) technology in quantitative analysis of pharmaceutical ingredients, (19)F nuclear magnetic resonance ((19)F-NMR) spectroscopy has been employed as a simple, rapid, and reproducible approach for the detection of a fluorine-containing model drug, sitagliptin phosphate monohydrate (STG). ciprofloxacin (Cipro) has been used as the internal standard (IS). Influential factors, including the relaxation delay time (d1) and pulse angle, impacting the accuracy and precision of spectral data are systematically optimized. Method validation has been carried out in terms of precision and intermediate precision, linearity, limit of detection (LOD) and limit of quantification (LOQ), robustness, and stability. To validate the reliability and feasibility of the (19)F-NMR technology in quantitative analysis of pharmaceutical analytes, the assay result has been compared with that of (1)H-NMR. The statistical F-test and student t-test at 95% confidence level indicate that there is no significant difference between these two methods. Due to the advantages of (19)F-NMR, such as higher resolution and suitability for biological samples, it can be used as a universal technology for the quantitative analysis of other fluorine-containing pharmaceuticals and analytes.

  9. Quantitative analysis of transmittance and photoluminescence using a low cost apparatus

    NASA Astrophysics Data System (ADS)

    Onorato, P.; Malgieri, M.; De Ambrosis, A.

    2016-01-01

    We show how a low cost spectrometer, based on the use of inexpensive diffraction transmission gratings coupled with a commercial digital photo camera or a cellphone, can be assembled and employed to obtain quantitative spectra of different sources. In particular, we discuss its use in studying the spectra of fluorescent colored ink, used in highlighting pens, for which the transmission band and the emission peaks are measured and related to the ink color.

  10. Quantitative charge-tags for sterol and oxysterol analysis.

    PubMed

    Crick, Peter J; William Bentley, T; Abdel-Khalik, Jonas; Matthews, Ian; Clayton, Peter T; Morris, Andrew A; Bigger, Brian W; Zerbinati, Chiara; Tritapepe, Luigi; Iuliano, Luigi; Wang, Yuqin; Griffiths, William J

    2015-02-01

    Global sterol analysis is challenging owing to the extreme diversity of sterol natural products, the tendency of cholesterol to dominate in abundance over all other sterols, and the structural lack of a strong chromophore or readily ionized functional group. We developed a method to overcome these challenges by using different isotope-labeled versions of the Girard P reagent (GP) as quantitative charge-tags for the LC-MS analysis of sterols including oxysterols. Sterols/oxysterols in plasma were extracted in ethanol containing deuterated internal standards, separated by C18 solid-phase extraction, and derivatized with GP, with or without prior oxidation of 3β-hydroxy to 3-oxo groups. By use of different isotope-labeled GPs, it was possible to analyze in a single LC-MS analysis both sterols/oxysterols that naturally possess a 3-oxo group and those with a 3β-hydroxy group. Intra- and interassay CVs were <15%, and recoveries for representative oxysterols and cholestenoic acids were 85%-108%. By adopting a multiplex approach to isotope labeling, we analyzed up to 4 different samples in a single run. Using plasma samples, we could demonstrate the diagnosis of inborn errors of metabolism and also the export of oxysterols from brain via the jugular vein. This method allows the profiling of the widest range of sterols/oxysterols in a single analytical run and can be used to identify inborn errors of cholesterol synthesis and metabolism. © 2014 American Association for Clinical Chemistry.

  11. Evaluating the Quantitative Capabilities of Metagenomic Analysis Software.

    PubMed

    Kerepesi, Csaba; Grolmusz, Vince

    2016-05-01

    DNA sequencing technologies are applied widely and frequently today to describe metagenomes, i.e., microbial communities in environmental or clinical samples, without the need for culturing them. These technologies usually return short (100-300 base-pairs long) DNA reads, and these reads are processed by metagenomic analysis software that assign phylogenetic composition-information to the dataset. Here we evaluate three metagenomic analysis software (AmphoraNet--a webserver implementation of AMPHORA2--, MG-RAST, and MEGAN5) for their capabilities of assigning quantitative phylogenetic information for the data, describing the frequency of appearance of the microorganisms of the same taxa in the sample. The difficulties of the task arise from the fact that longer genomes produce more reads from the same organism than shorter genomes, and some software assign higher frequencies to species with longer genomes than to those with shorter ones. This phenomenon is called the "genome length bias." Dozens of complex artificial metagenome benchmarks can be found in the literature. Because of the complexity of those benchmarks, it is usually difficult to judge the resistance of a metagenomic software to this "genome length bias." Therefore, we have made a simple benchmark for the evaluation of the "taxon-counting" in a metagenomic sample: we have taken the same number of copies of three full bacterial genomes of different lengths, break them up randomly to short reads of average length of 150 bp, and mixed the reads, creating our simple benchmark. Because of its simplicity, the benchmark is not supposed to serve as a mock metagenome, but if a software fails on that simple task, it will surely fail on most real metagenomes. We applied three software for the benchmark. The ideal quantitative solution would assign the same proportion to the three bacterial taxa. We have found that AMPHORA2/AmphoraNet gave the most accurate results and the other two software were under

  12. Technique for quantitative RT-PCR analysis directly from single muscle fibers.

    PubMed

    Wacker, Michael J; Tehel, Michelle M; Gallagher, Philip M

    2008-07-01

    The use of single-cell quantitative RT-PCR has greatly aided the study of gene expression in fields such as muscle physiology. For this study, we hypothesized that single muscle fibers from a biopsy can be placed directly into the reverse transcription buffer and that gene expression data can be obtained without having to first extract the RNA. To test this hypothesis, biopsies were taken from the vastus lateralis of five male subjects. Single muscle fibers were isolated and underwent RNA isolation (technique 1) or placed directly into reverse transcription buffer (technique 2). After cDNA conversion, individual fiber cDNA was pooled and quantitative PCR was performed using primer-probes for beta(2)-microglobulin, glyceraldehyde-3-phosphate dehydrogenase, insulin-like growth factor I receptor, and glucose transporter subtype 4. The no RNA extraction method provided similar quantitative PCR data as that of the RNA extraction method. A third technique was also tested in which we used one-quarter of an individual fiber's cDNA for PCR (not pooled) and the average coefficient of variation between fibers was <8% (cycle threshold value) for all genes studied. The no RNA extraction technique was tested on isolated muscle fibers using a gene known to increase after exercise (pyruvate dehydrogenase kinase 4). We observed a 13.9-fold change in expression after resistance exercise, which is consistent with what has been previously observed. These results demonstrate a successful method for gene expression analysis directly from single muscle fibers.

  13. Optimized protocol for quantitative multiple reaction monitoring-based proteomic analysis of formalin-fixed, paraffin embedded tissues

    PubMed Central

    Kennedy, Jacob J.; Whiteaker, Jeffrey R.; Schoenherr, Regine M.; Yan, Ping; Allison, Kimberly; Shipley, Melissa; Lerch, Melissa; Hoofnagle, Andrew N.; Baird, Geoffrey Stuart; Paulovich, Amanda G.

    2016-01-01

    Despite a clinical, economic, and regulatory imperative to develop companion diagnostics, precious few new biomarkers have been successfully translated into clinical use, due in part to inadequate protein assay technologies to support large-scale testing of hundreds of candidate biomarkers in formalin-fixed paraffin embedded (FFPE) tissues. While the feasibility of using targeted, multiple reaction monitoring-mass spectrometry (MRM-MS) for quantitative analyses of FFPE tissues has been demonstrated, protocols have not been systematically optimized for robust quantification across a large number of analytes, nor has the performance of peptide immuno-MRM been evaluated. To address this gap, we used a test battery approach coupled to MRM-MS with the addition of stable isotope labeled standard peptides (targeting 512 analytes) to quantitatively evaluate the performance of three extraction protocols in combination with three trypsin digestion protocols (i.e. 9 processes). A process based on RapiGest buffer extraction and urea-based digestion was identified to enable similar quantitation results from FFPE and frozen tissues. Using the optimized protocols for MRM-based analysis of FFPE tissues, median precision was 11.4% (across 249 analytes). There was excellent correlation between measurements made on matched FFPE and frozen tissues, both for direct MRM analysis (R2 = 0.94) and immuno-MRM (R2 = 0.89). The optimized process enables highly reproducible, multiplex, standardizable, quantitative MRM in archival tissue specimens. PMID:27462933

  14. Quantitative analysis of perfumes in talcum powder by using headspace sorptive extraction.

    PubMed

    Ng, Khim Hui; Heng, Audrey; Osborne, Murray

    2012-03-01

    Quantitative analysis of perfume dosage in talcum powder has been a challenge due to interference of the matrix and has so far not been widely reported. In this study, headspace sorptive extraction (HSSE) was validated as a solventless sample preparation method for the extraction and enrichment of perfume raw materials from talcum powder. Sample enrichment is performed on a thick film of poly(dimethylsiloxane) (PDMS) coated onto a magnetic stir bar incorporated in a glass jacket. Sampling is done by placing the PDMS stir bar in the headspace vial by using a holder. The stir bar is then thermally desorbed online with capillary gas chromatography-mass spectrometry. The HSSE method is based on the same principles as headspace solid-phase microextraction (HS-SPME). Nevertheless, a relatively larger amount of extracting phase is coated on the stir bar as compared to SPME. Sample amount and extraction time were optimized in this study. The method has shown good repeatability (with relative standard deviation no higher than 12.5%) and excellent linearity with correlation coefficients above 0.99 for all analytes. The method was also successfully applied in the quantitative analysis of talcum powder spiked with perfume at different dosages. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Some Epistemological Considerations Concerning Quantitative Analysis

    ERIC Educational Resources Information Center

    Dobrescu, Emilian

    2008-01-01

    This article presents the author's address at the 2007 "Journal of Applied Quantitative Methods" ("JAQM") prize awarding festivity. The festivity was included in the opening of the 4th International Conference on Applied Statistics, November 22, 2008, Bucharest, Romania. In the address, the author reflects on three theses that…

  16. Quantitative Analysis Of Acoustic Emission From Rock Fracture Experiments

    NASA Astrophysics Data System (ADS)

    Goodfellow, Sebastian David

    This thesis aims to advance the methods of quantitative acoustic emission (AE) analysis by calibrating sensors, characterizing sources, and applying the results to solve engi- neering problems. In the first part of this thesis, we built a calibration apparatus and successfully calibrated two commercial AE sensors. The ErgoTech sensor was found to have broadband velocity sensitivity and the Panametrics V103 was sensitive to surface normal displacement. These calibration results were applied to two AE data sets from rock fracture experiments in order to characterize the sources of AE events. The first data set was from an in situ rock fracture experiment conducted at the Underground Research Laboratory (URL). The Mine-By experiment was a large scale excavation response test where both AE (10 kHz - 1 MHz) and microseismicity (MS) (1 Hz - 10 kHz) were monitored. Using the calibration information, magnitude, stress drop, dimension and energy were successfully estimated for 21 AE events recorded in the tensile region of the tunnel wall. Magnitudes were in the range -7.5 < Mw < -6.8, which is consistent with other laboratory AE results, and stress drops were within the range commonly observed for induced seismicity in the field (0.1 - 10 MPa). The second data set was AE collected during a true-triaxial deformation experiment, where the objectives were to characterize laboratory AE sources and identify issues related to moving the analysis from ideal in situ conditions to more complex laboratory conditions in terms of the ability to conduct quantitative AE analysis. We found AE magnitudes in the range -7.8 < Mw < -6.7 and as with the in situ data, stress release was within the expected range of 0.1 - 10 MPa. We identified four major challenges to quantitative analysis in the laboratory, which in- hibited our ability to study parameter scaling (M0 ∝ fc -3 scaling). These challenges were 0c (1) limited knowledge of attenuation which we proved was continuously evolving, (2

  17. A PCR primer bank for quantitative gene expression analysis.

    PubMed

    Wang, Xiaowei; Seed, Brian

    2003-12-15

    Although gene expression profiling by microarray analysis is a useful tool for assessing global levels of transcriptional activity, variability associated with the data sets usually requires that observed differences be validated by some other method, such as real-time quantitative polymerase chain reaction (real-time PCR). However, non-specific amplification of non-target genes is frequently observed in the latter, confounding the analysis in approximately 40% of real-time PCR attempts when primer-specific labels are not used. Here we present an experimentally validated algorithm for the identification of transcript-specific PCR primers on a genomic scale that can be applied to real-time PCR with sequence-independent detection methods. An online database, PrimerBank, has been created for researchers to retrieve primer information for their genes of interest. PrimerBank currently contains 147 404 primers encompassing most known human and mouse genes. The primer design algorithm has been tested by conventional and real-time PCR for a subset of 112 primer pairs with a success rate of 98.2%.

  18. Multidimensional analysis of the frequencies and rates of cytokine secretion from single cells by quantitative microengraving.

    PubMed

    Han, Qing; Bradshaw, Elizabeth M; Nilsson, Björn; Hafler, David A; Love, J Christopher

    2010-06-07

    The large diversity of cells that comprise the human immune system requires methods that can resolve the individual contributions of specific subsets to an immunological response. Microengraving is process that uses a dense, elastomeric array of microwells to generate microarrays of proteins secreted from large numbers of individual live cells (approximately 10(4)-10(5) cells/assay). In this paper, we describe an approach based on this technology to quantify the rates of secretion from single immune cells. Numerical simulations of the microengraving process indicated an operating regime between 30 min-4 h that permits quantitative analysis of the rates of secretion. Through experimental validation, we demonstrate that microengraving can provide quantitative measurements of both the frequencies and the distribution in rates of secretion for up to four cytokines simultaneously released from individual viable primary immune cells. The experimental limits of detection ranged from 0.5 to 4 molecules/s for IL-6, IL-17, IFNgamma, IL-2, and TNFalpha. These multidimensional measures resolve the number and intensities of responses by cells exposed to stimuli with greater sensitivity than single-parameter assays for cytokine release. We show that cells from different donors exhibit distinct responses based on both the frequency and magnitude of cytokine secretion when stimulated under different activating conditions. Primary T cells with specific profiles of secretion can also be recovered after microengraving for subsequent expansion in vitro. These examples demonstrate the utility of quantitative, multidimensional profiles of single cells for analyzing the diversity and dynamics of immune responses in vitro and for identifying rare cells from clinical samples.

  19. Quantitative Medical Image Analysis for Clinical Development of Therapeutics

    NASA Astrophysics Data System (ADS)

    Analoui, Mostafa

    There has been significant progress in development of therapeutics for prevention and management of several disease areas in recent years, leading to increased average life expectancy, as well as of quality of life, globally. However, due to complexity of addressing a number of medical needs and financial burden of development of new class of therapeutics, there is a need for better tools for decision making and validation of efficacy and safety of new compounds. Numerous biological markers (biomarkers) have been proposed either as adjunct to current clinical endpoints or as surrogates. Imaging biomarkers are among rapidly increasing biomarkers, being examined to expedite effective and rational drug development. Clinical imaging often involves a complex set of multi-modality data sets that require rapid and objective analysis, independent of reviewer's bias and training. In this chapter, an overview of imaging biomarkers for drug development is offered, along with challenges that necessitate quantitative and objective image analysis. Examples of automated and semi-automated analysis approaches are provided, along with technical review of such methods. These examples include the use of 3D MRI for osteoarthritis, ultrasound vascular imaging, and dynamic contrast enhanced MRI for oncology. Additionally, a brief overview of regulatory requirements is discussed. In conclusion, this chapter highlights key challenges and future directions in this area.

  20. [Quantitative analysis of drug expenditures variability in dermatology units].

    PubMed

    Moreno-Ramírez, David; Ferrándiz, Lara; Ramírez-Soto, Gabriel; Muñoyerro, M Dolores

    2013-01-01

    Variability in adjusted drug expenditures among clinical departments raises the possibility of difficult access to certain therapies at the time that avoidable expenditures may also exist. Nevertheless, drug expenditures are not usually applied to clinical practice variability analysis. To identify and quantify variability in drug expenditures in comparable dermatology department of the Servicio Andaluz de Salud. Comparative economic analysis regarding the drug expenditures adjusted to population and health care production in 18 dermatology departments of the Servicio Andaluz de Salud. The 2012 cost and production data (homogeneous production units -HPU-)were provided by Inforcoan, the cost accounting information system of the Servicio Andaluz de Salud. The observed drug expenditure ratio ranged from 0.97?/inh to 8.90?/inh and from 208.45?/HPU to 1,471.95?/ HPU. The Pearson correlation between drug expenditure and population was 0.25 and 0.35 for the correlation between expenditure and homogeneous production (p=0.32 and p=0,15, respectively), both Pearson coefficients confirming the lack of correlation and arelevant degree of variability in drug expenditures. The quantitative analysis of variability performed through Pearson correlation has confirmed the existence of drug expenditure variability among comparable dermatology departments. Copyright © 2013 SEFH. Published by AULA MEDICA. All rights reserved.

  1. Quantitative Detection of Cracks in Steel Using Eddy Current Pulsed Thermography.

    PubMed

    Shi, Zhanqun; Xu, Xiaoyu; Ma, Jiaojiao; Zhen, Dong; Zhang, Hao

    2018-04-02

    Small cracks are common defects in steel and often lead to catastrophic accidents in industrial applications. Various nondestructive testing methods have been investigated for crack detection; however, most current methods focus on qualitative crack identification and image processing. In this study, eddy current pulsed thermography (ECPT) was applied for quantitative crack detection based on derivative analysis of temperature variation. The effects of the incentive parameters on the temperature variation were analyzed in the simulation study. The crack profile and position are identified in the thermal image based on the Canny edge detection algorithm. Then, one or more trajectories are determined through the crack profile in order to determine the crack boundary through its temperature distribution. The slope curve along the trajectory is obtained. Finally, quantitative analysis of the crack sizes was performed by analyzing the features of the slope curves. The experimental verification showed that the crack sizes could be quantitatively detected with errors of less than 1%. Therefore, the proposed ECPT method was demonstrated to be a feasible and effective nondestructive approach for quantitative crack detection.

  2. Coupling Reagent for UV/vis Absorbing Azobenzene-Based Quantitative Analysis of the Extent of Functional Group Immobilization on Silica.

    PubMed

    Choi, Ra-Young; Lee, Chang-Hee; Jun, Chul-Ho

    2018-05-18

    A methallylsilane coupling reagent, containing both a N-hydroxysuccinimidyl(NHS)-ester group and a UV/vis absorbing azobenzene linker undergoes acid-catalyzed immobilization on silica. Analysis of the UV/vis absorption band associated with the azobenzene group in the adduct enables facile quantitative determination of the extent of loading of the NHS groups. Reaction of NHS-groups on the silica surface with amine groups of GOx and rhodamine can be employed to generate enzyme or dye-immobilized silica for quantitative analysis.

  3. Time-Gated Raman Spectroscopy for Quantitative Determination of Solid-State Forms of Fluorescent Pharmaceuticals.

    PubMed

    Lipiäinen, Tiina; Pessi, Jenni; Movahedi, Parisa; Koivistoinen, Juha; Kurki, Lauri; Tenhunen, Mari; Yliruusi, Jouko; Juppo, Anne M; Heikkonen, Jukka; Pahikkala, Tapio; Strachan, Clare J

    2018-04-03

    Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An additional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4 CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares (RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing.

  4. Quantitative Analysis of the Contributing Factors Affecting Specialty Care No-Show Rates at Brooke Army Medical Center

    DTIC Science & Technology

    2007-03-30

    2002). In the Vein Treatment Surgery Center in Texas, failure to properly cancel cosmetic appointments will result in forfeiture of the patients’ $100...appointments. This problem affects more than just the United States. Missed appointments cost the National Healthcare System ( NHS ) in England a...significant amount of money last year. Official figures from the NHS showed 5.7 million appointments were missed in 2004-2005 (Carvel, 2006). When patients

  5. Quantitative Analysis in the General Chemistry Laboratory: Training Students to Analyze Individual Results in the Context of Collective Data

    ERIC Educational Resources Information Center

    Ling, Chris D.; Bridgeman, Adam J.

    2011-01-01

    Titration experiments are ideal for generating large data sets for use in quantitative-analysis activities that are meaningful and transparent to general chemistry students. We report the successful implementation of a sophisticated quantitative exercise in which the students identify a series of unknown acids by determining their molar masses…

  6. Quantitative analysis of enhanced malignant and benign lesions on contrast-enhanced spectral mammography.

    PubMed

    Deng, Chih-Ying; Juan, Yu-Hsiang; Cheung, Yun-Chung; Lin, Yu-Ching; Lo, Yung-Feng; Lin, GiGin; Chen, Shin-Cheh; Ng, Shu-Hang

    2018-02-27

    To retrospectively analyze the quantitative measurement and kinetic enhancement among pathologically proven benign and malignant lesions using contrast-enhanced spectral mammography (CESM). We investigated the differences in enhancement between 44 benign and 108 malignant breast lesions in CESM, quantifying the extent of enhancements and the relative enhancements between early (between 2-3 min after contrast medium injection) and late (3-6 min) phases. The enhancement was statistically stronger in malignancies compared to benign lesions, with good performance by the receiver operating characteristic curve [0.877, 95% confidence interval (0.813-0.941)]. Using optimal cut-off value at 220.94 according to Youden index, the sensitivity was 75.9%, specificity 88.6%, positive likelihood ratio 6.681, negative likelihood ratio 0.272 and accuracy 82.3%. The relative enhancement patterns of benign and malignant lesions, showing 29.92 vs 73.08% in the elevated pattern, 7.14 vs 92.86% in the steady pattern, 5.71 vs 94.29% in the depressed pattern, and 80.00 vs 20.00% in non-enhanced lesions (p < 0.0001), respectively. Despite variations in the degree of tumour angiogenesis, quantitative analysis of the breast lesions on CESM documented the malignancies had distinctive stronger enhancement and depressed relative enhancement patterns than benign lesions. Advances in knowledge: To our knowledge, this is the first study evaluating the feasibility of quantifying lesion enhancement on CESM. The quantities of enhancement were informative for assessing breast lesions in which the malignancies had stronger enhancement and more relative depressed enhancement than the benign lesions.

  7. Quantitative genetic analysis of brain copper and zinc in BXD recombinant inbred mice.

    PubMed

    Jones, Leslie C; McCarthy, Kristin A; Beard, John L; Keen, Carl L; Jones, Byron C

    2006-01-01

    Copper and zinc are trace nutrients essential for normal brain function, yet an excess of these elements can be toxic. It is important therefore that these metals be closely regulated. We recently conducted a quantitative trait loci (QTL) analysis to identify chromosomal regions in the mouse containing possible regulatory genes. The animals came from 15 strains of the BXD/Ty recombinant inbred (RI) strain panel and the brain regions analyzed were frontal cortex, caudate-putamen, nucleus accumbens and ventral midbrain. Several QTL were identified for copper and/or zinc, most notably on chromosomes 1, 8, 16 and 17. Genetic correlational analysis also revealed associations between these metals and dopamine, cocaine responses, saccharine preference, immune response and seizure susceptibility. Notably, the QTL on chromosome 17 is also associated with seizure susceptibility and contains the histocompatibility H2 complex. This work shows that regulation of zinc and copper is under polygenic influence and is intimately related to CNS function. Future work will reveal genes underlying the QTL and how they interact with other genes and the environment. More importantly, revelation of the genetic underpinnings of copper and zinc brain homeostasis will aid our understanding of neurological diseases that are related to copper and zinc imbalance.

  8. Qualitative, semi-quantitative, and quantitative simulation of the osmoregulation system in yeast.

    PubMed

    Pang, Wei; Coghill, George M

    2015-05-01

    In this paper we demonstrate how Morven, a computational framework which can perform qualitative, semi-quantitative, and quantitative simulation of dynamical systems using the same model formalism, is applied to study the osmotic stress response pathway in yeast. First the Morven framework itself is briefly introduced in terms of the model formalism employed and output format. We then built a qualitative model for the biophysical process of the osmoregulation in yeast, and a global qualitative-level picture was obtained through qualitative simulation of this model. Furthermore, we constructed a Morven model based on existing quantitative model of the osmoregulation system. This model was then simulated qualitatively, semi-quantitatively, and quantitatively. The obtained simulation results are presented with an analysis. Finally the future development of the Morven framework for modelling the dynamic biological systems is discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Quantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells.

    PubMed

    Zhu, Xiaoyu; Liu, Xin; Cheng, Zhongyi; Zhu, Jun; Xu, Lei; Wang, Fengsong; Qi, Wulin; Yan, Jiawei; Liu, Ning; Sun, Zimin; Liu, Huilan; Peng, Xiaojun; Hao, Yingchan; Zheng, Nan; Wu, Quan

    2016-01-29

    Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics.

  10. Research Review: Neural response to threat in children, adolescents, and adults after child maltreatment - a quantitative meta-analysis.

    PubMed

    Hein, Tyler C; Monk, Christopher S

    2017-03-01

    Child maltreatment is common and has long-term consequences for affective function. Investigations of neural consequences of maltreatment have focused on the amygdala. However, developmental neuroscience indicates that other brain regions are also likely to be affected by child maltreatment, particularly in the social information processing network (SIPN). We conducted a quantitative meta-analysis to: confirm that maltreatment is related to greater bilateral amygdala activation in a large sample that was pooled across studies; investigate other SIPN structures that are likely candidates for altered function; and conduct a data-driven examination to identify additional regions that show altered activation in maltreated children, teens, and adults. We conducted an activation likelihood estimation analysis with 1,733 participants across 20 studies of emotion processing in maltreated individuals. Maltreatment is associated with increased bilateral amygdala activation to emotional faces. One SIPN structure is altered: superior temporal gyrus, of the detection node, is hyperactive in maltreated individuals. The results of the whole-brain corrected analysis also show hyperactivation of the parahippocampal gyrus and insula in maltreated individuals. The meta-analysis confirms that maltreatment is related to increased bilateral amygdala reactivity and also shows that maltreatment affects multiple additional structures in the brain that have received little attention in the literature. Thus, although the majority of studies examining maltreatment and brain function have focused on the amygdala, these findings indicate that the neural consequences of child maltreatment involve a broader network of structures. © 2016 Association for Child and Adolescent Mental Health.

  11. The quantitative surface analysis of an antioxidant additive in a lubricant oil matrix by desorption electrospray ionization mass spectrometry

    PubMed Central

    Da Costa, Caitlyn; Reynolds, James C; Whitmarsh, Samuel; Lynch, Tom; Creaser, Colin S

    2013-01-01

    RATIONALE Chemical additives are incorporated into commercial lubricant oils to modify the physical and chemical properties of the lubricant. The quantitative analysis of additives in oil-based lubricants deposited on a surface without extraction of the sample from the surface presents a challenge. The potential of desorption electrospray ionization mass spectrometry (DESI-MS) for the quantitative surface analysis of an oil additive in a complex oil lubricant matrix without sample extraction has been evaluated. METHODS The quantitative surface analysis of the antioxidant additive octyl (4-hydroxy-3,5-di-tert-butylphenyl)propionate in an oil lubricant matrix was carried out by DESI-MS in the presence of 2-(pentyloxy)ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate as an internal standard. A quadrupole/time-of-flight mass spectrometer fitted with an in-house modified ion source enabling non-proximal DESI-MS was used for the analyses. RESULTS An eight-point calibration curve ranging from 1 to 80 µg/spot of octyl (4-hydroxy-3,5-di-tert-butylphenyl)propionate in an oil lubricant matrix and in the presence of the internal standard was used to determine the quantitative response of the DESI-MS method. The sensitivity and repeatability of the technique were assessed by conducting replicate analyses at each concentration. The limit of detection was determined to be 11 ng/mm2 additive on spot with relative standard deviations in the range 3–14%. CONCLUSIONS The application of DESI-MS to the direct, quantitative surface analysis of a commercial lubricant additive in a native oil lubricant matrix is demonstrated. © 2013 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons, Ltd. PMID:24097398

  12. Development of CD3 cell quantitation algorithms for renal allograft biopsy rejection assessment utilizing open source image analysis software.

    PubMed

    Moon, Andres; Smith, Geoffrey H; Kong, Jun; Rogers, Thomas E; Ellis, Carla L; Farris, Alton B Brad

    2018-02-01

    Renal allograft rejection diagnosis depends on assessment of parameters such as interstitial inflammation; however, studies have shown interobserver variability regarding interstitial inflammation assessment. Since automated image analysis quantitation can be reproducible, we devised customized analysis methods for CD3+ T-cell staining density as a measure of rejection severity and compared them with established commercial methods along with visual assessment. Renal biopsy CD3 immunohistochemistry slides (n = 45), including renal allografts with various degrees of acute cellular rejection (ACR) were scanned for whole slide images (WSIs). Inflammation was quantitated in the WSIs using pathologist visual assessment, commercial algorithms (Aperio nuclear algorithm for CD3+ cells/mm 2 and Aperio positive pixel count algorithm), and customized open source algorithms developed in ImageJ with thresholding/positive pixel counting (custom CD3+%) and identification of pixels fulfilling "maxima" criteria for CD3 expression (custom CD3+ cells/mm 2 ). Based on visual inspections of "markup" images, CD3 quantitation algorithms produced adequate accuracy. Additionally, CD3 quantitation algorithms correlated between each other and also with visual assessment in a statistically significant manner (r = 0.44 to 0.94, p = 0.003 to < 0.0001). Methods for assessing inflammation suggested a progression through the tubulointerstitial ACR grades, with statistically different results in borderline versus other ACR types, in all but the custom methods. Assessment of CD3-stained slides using various open source image analysis algorithms presents salient correlations with established methods of CD3 quantitation. These analysis techniques are promising and highly customizable, providing a form of on-slide "flow cytometry" that can facilitate additional diagnostic accuracy in tissue-based assessments.

  13. Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines.

    PubMed

    Vester, Diana; Rapp, Erdmann; Gade, Dörte; Genzel, Yvonne; Reichl, Udo

    2009-06-01

    Over the last years virus-host cell interactions were investigated in numerous studies. Viral strategies for evasion of innate immune response, inhibition of cellular protein synthesis and permission of viral RNA and protein production were disclosed. With quantitative proteome technology, comprehensive studies concerning the impact of viruses on the cellular machinery of their host cells at protein level are possible. Therefore, 2-D DIGE and nanoHPLC-nanoESI-MS/MS analysis were used to qualitatively and quantitatively determine the dynamic cellular proteome responses of two mammalian cell lines to human influenza A virus infection. A cell line used for vaccine production (MDCK) was compared with a human lung carcinoma cell line (A549) as a reference model. Analyzing 2-D gels of the proteomes of uninfected and influenza-infected host cells, 16 quantitatively altered protein spots (at least +/-1.7-fold change in relative abundance, p<0.001) were identified for both cell lines. Most significant changes were found for keratins, major components of the cytoskeleton system, and for Mx proteins, interferon-induced key components of the host cell defense. Time series analysis of infection processes allowed the identification of further proteins that are described to be involved in protein synthesis, signal transduction and apoptosis events. Most likely, these proteins are required for supporting functions during influenza viral life cycle or host cell stress response. Quantitative proteome-wide profiling of virus infection can provide insights into complexity and dynamics of virus-host cell interactions and may accelerate antiviral research and support optimization of vaccine manufacturing processes.

  14. Quantitative analysis of glycoprotein glycans.

    PubMed

    Orlando, Ron

    2013-01-01

    The ability to quantitatively determine changes in the N- and O-linked glycans is an essential component of comparative glycomics. Multiple strategies are available to by which this can be accomplished, including; both label free approaches and isotopic labeling strategies. The focus of this chapter is to describe each of these approaches while providing insight into their strengths and weaknesses, so that glycomic investigators can make an educated choice of the strategy that is best suited for their particular application.

  15. Correlation between quantitative traits and correlation between corresponding LOD scores: detection of pleiotropic effects.

    PubMed

    Ulgen, Ayse; Han, Zhihua; Li, Wentian

    2003-12-31

    We address the question of whether statistical correlations among quantitative traits lead to correlation of linkage results of these traits. Five measured quantitative traits (total cholesterol, fasting glucose, HDL cholesterol, blood pressure, and triglycerides), and one derived quantitative trait (total cholesterol divided by the HDL cholesterol) are used for phenotype correlation studies. Four of them are used for linkage analysis. We show that although correlation among phenotypes partially reflects the correlation among linkage analysis results, the LOD-score correlations are on average low. The most significant peaks found by using different traits do not often overlap. Studying covariances at specific locations in LOD scores may provide clues for further bivariate linkage analyses.

  16. Quantitative Analysis of Diffusion-Weighted Imaging for Diagnosis of Puerperal Breast Abscess After Polyacrylamide Hydrogel Augmentation Mammoplasty: Compared with Other Conventional Modalities.

    PubMed

    Liu, Lihua; Long, Miaomiao; Wang, Junping; Liu, Ning; Ge, Xihong; Hu, Zhandong; Shen, Wen

    2015-02-01

    Puerperal breast abscess after polyacrylamide hydrogel (PAAG) augmentation mammoplasty can induce breast auto-inflation resulting in serious consequences. Mammography, ultrasound, and conventional MRI are poor at detecting related PAAG abnormality histologically. We evaluated the value of diffusion-weighted imaging (DWI) in the quantitative analysis of puerperal PAAG abscess after augmentation mammoplasty. This was a retrospective study, and a waiver for informed consent was granted. Sixteen puerperal women with breast discomfort underwent conventional breast non-enhanced MRI and axial DWI using a 3T MR scanner. Qualitative analysis of the signal intensity on DWI and conventional sequences was performed. The apparent diffusion coefficient (ADC) values of the affected and contralateral normal PAAG cysts were measured quantitatively. Paired t test was used to evaluate whether there was significant difference. Both affected and normal PAAG cysts showed equal signal intensity on conventional T1WI and fat saturation T2WI, which were not helpful in detecting puerperal PAAG abscess. However, the affected PAAG cysts had a significantly decreased ADC value of 1.477 ± 0.332 × 10(-3)mm(2)/s and showed obvious hypo-intensity on the ADC map and increased signal intensity on DWI compared with the ADC value of 2.775 ± 0.233 × 10(-3)mm(2)/s of the contralateral normal PAAG cysts. DWI and quantitative measurement of ADC values are of great value for the diagnosis of puerperal PAAG abscess. Standardized MRI should be suggested to these puerperal women with breast discomfort or just for the purpose of check up. DWI should be selected as the essential MRI sequence.

  17. Quantitative transmission Raman spectroscopy of pharmaceutical tablets and capsules.

    PubMed

    Johansson, Jonas; Sparén, Anders; Svensson, Olof; Folestad, Staffan; Claybourn, Mike

    2007-11-01

    Quantitative analysis of pharmaceutical formulations using the new approach of transmission Raman spectroscopy has been investigated. For comparison, measurements were also made in conventional backscatter mode. The experimental setup consisted of a Raman probe-based spectrometer with 785 nm excitation for measurements in backscatter mode. In transmission mode the same system was used to detect the Raman scattered light, while an external diode laser of the same type was used as excitation source. Quantitative partial least squares models were developed for both measurement modes. The results for tablets show that the prediction error for an independent test set was lower for the transmission measurements with a relative root mean square error of about 2.2% as compared with 2.9% for the backscatter mode. Furthermore, the models were simpler in the transmission case, for which only a single partial least squares (PLS) component was required to explain the variation. The main reason for the improvement using the transmission mode is a more representative sampling of the tablets compared with the backscatter mode. Capsules containing mixtures of pharmaceutical powders were also assessed by transmission only. The quantitative results for the capsules' contents were good, with a prediction error of 3.6% w/w for an independent test set. The advantage of transmission Raman over backscatter Raman spectroscopy has been demonstrated for quantitative analysis of pharmaceutical formulations, and the prospects for reliable, lean calibrations for pharmaceutical analysis is discussed.

  18. Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite

    NASA Astrophysics Data System (ADS)

    Peng, Tiefeng; Liu, Bin; Gao, Xuechao; Luo, Liqun; Sun, Hongjuan

    2018-06-01

    Expandable graphite is widely used as a new functional carbon material, especially as fire-retardant; however, its practical application is limited due to the high expansion temperature. In this work, preparation process of low temperature and highly expandable graphite was studied, using natural flake graphite as raw material and KMnO4/HClO4/NH4NO3 as oxidative intercalations. The structure, morphology, functional groups and thermal properties were characterized during expanding process by Fourier transform infrared spectroscopy (FTIR), Raman spectra, thermo-gravimetry differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM). The analysis showed that by oxidation intercalation, some oxygen-containing groups were grafted on the edge and within the graphite layer. The intercalation reagent entered the graphite layer to increase the interlayer spacing. After expansion, the original flaky expandable graphite was completely transformed into worm-like expanded graphite. The order of graphite intercalation compounds (GICs) was proposed and determined to be 3 for the prepared expandable graphite, based on quantitative XRD peak analysis. Meanwhile, the detailed intercalation mechanisms were also proposed. The comprehensive investigation paved a benchmark for the industrial application of such sulfur-free expanded graphite.

  19. High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples.

    PubMed

    Bian, Xihui; Li, Shujuan; Lin, Ligang; Tan, Xiaoyao; Fan, Qingjie; Li, Ming

    2016-06-21

    Accurate prediction of the model is fundamental to the successful analysis of complex samples. To utilize abundant information embedded over frequency and time domains, a novel regression model is presented for quantitative analysis of hydrocarbon contents in the fuel oil samples. The proposed method named as high and low frequency unfolded PLSR (HLUPLSR), which integrates empirical mode decomposition (EMD) and unfolded strategy with partial least squares regression (PLSR). In the proposed method, the original signals are firstly decomposed into a finite number of intrinsic mode functions (IMFs) and a residue by EMD. Secondly, the former high frequency IMFs are summed as a high frequency matrix and the latter IMFs and residue are summed as a low frequency matrix. Finally, the two matrices are unfolded to an extended matrix in variable dimension, and then the PLSR model is built between the extended matrix and the target values. Coupled with Ultraviolet (UV) spectroscopy, HLUPLSR has been applied to determine hydrocarbon contents of light gas oil and diesel fuels samples. Comparing with single PLSR and other signal processing techniques, the proposed method shows superiority in prediction ability and better model interpretation. Therefore, HLUPLSR method provides a promising tool for quantitative analysis of complex samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Radiologic-Pathologic Analysis of Contrast-enhanced and Diffusion-weighted MR Imaging in Patients with HCC after TACE: Diagnostic Accuracy of 3D Quantitative Image Analysis

    PubMed Central

    Chapiro, Julius; Wood, Laura D.; Lin, MingDe; Duran, Rafael; Cornish, Toby; Lesage, David; Charu, Vivek; Schernthaner, Rüdiger; Wang, Zhijun; Tacher, Vania; Savic, Lynn Jeanette; Kamel, Ihab R.

    2014-01-01

    Purpose To evaluate the diagnostic performance of three-dimensional (3Dthree-dimensional) quantitative enhancement-based and diffusion-weighted volumetric magnetic resonance (MR) imaging assessment of hepatocellular carcinoma (HCChepatocellular carcinoma) lesions in determining the extent of pathologic tumor necrosis after transarterial chemoembolization (TACEtransarterial chemoembolization). Materials and Methods This institutional review board–approved retrospective study included 17 patients with HCChepatocellular carcinoma who underwent TACEtransarterial chemoembolization before surgery. Semiautomatic 3Dthree-dimensional volumetric segmentation of target lesions was performed at the last MR examination before orthotopic liver transplantation or surgical resection. The amount of necrotic tumor tissue on contrast material–enhanced arterial phase MR images and the amount of diffusion-restricted tumor tissue on apparent diffusion coefficient (ADCapparent diffusion coefficient) maps were expressed as a percentage of the total tumor volume. Visual assessment of the extent of tumor necrosis and tumor response according to European Association for the Study of the Liver (EASLEuropean Association for the Study of the Liver) criteria was performed. Pathologic tumor necrosis was quantified by using slide-by-slide segmentation. Correlation analysis was performed to evaluate the predictive values of the radiologic techniques. Results At histopathologic examination, the mean percentage of tumor necrosis was 70% (range, 10%–100%). Both 3Dthree-dimensional quantitative techniques demonstrated a strong correlation with tumor necrosis at pathologic examination (R2 = 0.9657 and R2 = 0.9662 for quantitative EASLEuropean Association for the Study of the Liver and quantitative ADCapparent diffusion coefficient, respectively) and a strong intermethod agreement (R2 = 0.9585). Both methods showed a significantly lower discrepancy with pathologically measured necrosis (residual