Sample records for quantitative anatomic comparison

  1. Specification and estimation of sources of bias affecting neurological studies in PET/MR with an anatomical brain phantom

    NASA Astrophysics Data System (ADS)

    Teuho, J.; Johansson, J.; Linden, J.; Saunavaara, V.; Tolvanen, T.; Teräs, M.

    2014-01-01

    Selection of reconstruction parameters has an effect on the image quantification in PET, with an additional contribution from a scanner-specific attenuation correction method. For achieving comparable results in inter- and intra-center comparisons, any existing quantitative differences should be identified and compensated for. In this study, a comparison between PET, PET/CT and PET/MR is performed by using an anatomical brain phantom, to identify and measure the amount of bias caused due to differences in reconstruction and attenuation correction methods especially in PET/MR. Differences were estimated by using visual, qualitative and quantitative analysis. The qualitative analysis consisted of a line profile analysis for measuring the reproduction of anatomical structures and the contribution of the amount of iterations to image contrast. The quantitative analysis consisted of measurement and comparison of 10 anatomical VOIs, where the HRRT was considered as the reference. All scanners reproduced the main anatomical structures of the phantom adequately, although the image contrast on the PET/MR was inferior when using a default clinical brain protocol. Image contrast was improved by increasing the amount of iterations from 2 to 5 while using 33 subsets. Furthermore, a PET/MR-specific bias was detected, which resulted in underestimation of the activity values in anatomical structures closest to the skull, due to the MR-derived attenuation map that ignores the bone. Thus, further improvements for the PET/MR reconstruction and attenuation correction could be achieved by optimization of RAMLA-specific reconstruction parameters and implementation of bone to the attenuation template.

  2. Subject-specific longitudinal shape analysis by coupling spatiotemporal shape modeling with medial analysis

    NASA Astrophysics Data System (ADS)

    Hong, Sungmin; Fishbaugh, James; Rezanejad, Morteza; Siddiqi, Kaleem; Johnson, Hans; Paulsen, Jane; Kim, Eun Young; Gerig, Guido

    2017-02-01

    Modeling subject-specific shape change is one of the most important challenges in longitudinal shape analysis of disease progression. Whereas anatomical change over time can be a function of normal aging, anatomy can also be impacted by disease related degeneration. Anatomical shape change may also be affected by structural changes from neighboring shapes, which may cause non-linear variations in pose. In this paper, we propose a framework to analyze disease related shape changes by coupling extrinsic modeling of the ambient anatomical space via spatiotemporal deformations with intrinsic shape properties from medial surface analysis. We compare intrinsic shape properties of a subject-specific shape trajectory to a normative 4D shape atlas representing normal aging to isolate shape changes related to disease. The spatiotemporal shape modeling establishes inter/intra subject anatomical correspondence, which in turn enables comparisons between subjects and the 4D shape atlas, and also quantitative analysis of disease related shape change. The medial surface analysis captures intrinsic shape properties related to local patterns of deformation. The proposed framework jointly models extrinsic longitudinal shape changes in the ambient anatomical space, as well as intrinsic shape properties to give localized measurements of degeneration. Six high risk subjects and six controls are randomly sampled from a Huntington's disease image database for qualitative and quantitative comparison.

  3. Evaluation of patients with painful total hip arthroplasty using combined single photon emission tomography and conventional computerized tomography (SPECT/CT) - a comparison of semi-quantitative versus 3D volumetric quantitative measurements.

    PubMed

    Barthassat, Emilienne; Afifi, Faik; Konala, Praveen; Rasch, Helmut; Hirschmann, Michael T

    2017-05-08

    It was the primary purpose of our study to evaluate the inter- and intra-observer reliability of a standardized SPECT/CT algorithm for evaluating patients with painful primary total hip arthroplasty (THA). The secondary purpose was a comparison of semi-quantitative and 3D volumetric quantification method for assessment of bone tracer uptake (BTU) in those patients. A novel SPECT/CT localization scheme consisting of 14 femoral and 4 acetabular regions on standardized axial and coronal slices was introduced and evaluated in terms of inter- and intra-observer reliability in 37 consecutive patients with hip pain after THA. BTU for each anatomical region was assessed semi-quantitatively using a color-coded Likert type scale (0-10) and volumetrically quantified using a validated software. Two observers interpreted the SPECT/CT findings in all patients two times with six weeks interval between interpretations in random order. Semi-quantitative and quantitative measurements were compared in terms of reliability. In addition, the values were correlated using Pearson`s correlation. A factorial cluster analysis of BTU was performed to identify clinically relevant regions, which should be grouped and analysed together. The localization scheme showed high inter- and intra-observer reliabilities for all femoral and acetabular regions independent of the measurement method used (semiquantitative versus 3D volumetric quantitative measurements). A high to moderate correlation between both measurement methods was shown for the distal femur, the proximal femur and the acetabular cup. The factorial cluster analysis showed that the anatomical regions might be summarized into three distinct anatomical regions. These were the proximal femur, the distal femur and the acetabular cup region. The SPECT/CT algorithm for assessment of patients with pain after THA is highly reliable independent from the measurement method used. Three clinically relevant anatomical regions (proximal femoral, distal femoral, acetabular) were identified.

  4. Landmark-Based 3D Elastic Registration of Pre- and Postoperative Liver CT Data

    NASA Astrophysics Data System (ADS)

    Lange, Thomas; Wörz, Stefan; Rohr, Karl; Schlag, Peter M.

    The qualitative and quantitative comparison of pre- and postoperative image data is an important possibility to validate computer assisted surgical procedures. Due to deformations after surgery a non-rigid registration scheme is a prerequisite for a precise comparison. Interactive landmark-based schemes are a suitable approach. Incorporation of a priori knowledge about the anatomical structures to be registered may help to reduce interaction time and improve accuracy. Concerning pre- and postoperative CT data of oncological liver resections the intrahepatic vessels are suitable anatomical structures. In addition to using landmarks at vessel branchings, we here introduce quasi landmarks at vessel segments with anisotropic localization precision. An experimental comparison of interpolating thin-plate splines (TPS) and Gaussian elastic body splines (GEBS) as well as approximating GEBS on both types of landmarks is performed.

  5. [Induced autotetraploid grape mutants].

    PubMed

    Kuliev, V M

    2011-01-01

    The methods of experimental mitotic and meiotic polyploidy in grapes are represented in the article. Results of cytological, histo-anatomical, biomorphological researches of induced autotetraploids are shown. Genetic characteristics, parameters of generative organs, quantitative and structural genome changes were studied. Comparative quantitative changes in the content of chloroplast and mitochondrion DNAs and RNAs in diploids and autotetraploids were defined. Also are shown. The biology-economic evaluation of autotetraploids on comparison with the initial grape variety is represented.

  6. In vitro and in vivo comparison of wrist MR imaging at 3.0 and 7.0 tesla using a gradient echo sequence and identical eight-channel coil array designs.

    PubMed

    Nordmeyer-Massner, Jurek A; Wyss, Michael; Andreisek, Gustav; Pruessmann, Klaas P; Hodler, Juerg

    2011-03-01

    To evaluate in vivo MR imaging of the wrist at 3.0 Tesla (T) and 7.0T quantitatively and qualitatively. To enable unbiased signal-to-noise ratio (SNR) comparisons, geometrically identical eight-channel receiver arrays were used at both field strengths. First, in vitro images of a phantom bottle were acquired at 3.0T and 7.0T to obtain an estimate of the maximum SNR gain that can be expected. MR images of the dominant wrist of 10 healthy volunteers were acquired at both field strengths. All measurements were done using the same sequence parameters. Quantitative SNR maps were calculated on a pixel-by-pixel basis and analyzed in several regions-of-interest. Furthermore, the images were qualitatively evaluated by two independent radiologists. The quantitative analysis showed SNR increases of up to 100% at 7.0T compared with 3.0T, with considerable variation between different anatomical structures. The qualitative analysis revealed no significant difference in the visualization of anatomical structures comparing 3.0T and 7.0T MR images (P>0.05). The presented results establish the SNR benefits of the transition from 3.0T to 7.0T for wrist imaging without bias by different array designs and based on exact, algebraic SNR quantification. The observed SNR increase nearly reaches expected values but varies greatly between different tissues. It does not necessarily improve the visibility of anatomic structures but adds valuable latitude for sequence optimization. Copyright © 2011 Wiley-Liss, Inc.

  7. Quantitative Comparison of 21 Protocols for Labeling Hippocampal Subfields and Parahippocampal Subregions in In Vivo MRI: Towards a Harmonized Segmentation Protocol

    PubMed Central

    Yushkevich, Paul A.; Amaral, Robert S. C.; Augustinack, Jean C.; Bender, Andrew R.; Bernstein, Jeffrey D.; Boccardi, Marina; Bocchetta, Martina; Burggren, Alison C.; Carr, Valerie A.; Chakravarty, M. Mallar; Chetelat, Gael; Daugherty, Ana M.; Davachi, Lila; Ding, Song-Lin; Ekstrom, Arne; Geerlings, Mirjam I.; Hassan, Abdul; Huang, Yushan; Iglesias, Eugenio; La Joie, Renaud; Kerchner, Geoffrey A.; LaRocque, Karen F.; Libby, Laura A.; Malykhin, Nikolai; Mueller, Susanne G.; Olsen, Rosanna K.; Palombo, Daniela J.; Parekh, Mansi B; Pluta, John B.; Preston, Alison R.; Pruessner, Jens C.; Ranganath, Charan; Raz, Naftali; Schlichting, Margaret L.; Schoemaker, Dorothee; Singh, Sachi; Stark, Craig E. L.; Suthana, Nanthia; Tompary, Alexa; Turowski, Marta M.; Van Leemput, Koen; Wagner, Anthony D.; Wang, Lei; Winterburn, Julie L.; Wisse, Laura E.M.; Yassa, Michael A.; Zeineh, Michael M.

    2015-01-01

    OBJECTIVE An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1–3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol. METHOD MRI scans of a single healthy adult human subject were acquired both at 3 Tesla and 7 Tesla. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement. RESULTS The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail. CONCLUSIONS The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies. PMID:25596463

  8. Multidimensional quantitative analysis of mRNA expression within intact vertebrate embryos.

    PubMed

    Trivedi, Vikas; Choi, Harry M T; Fraser, Scott E; Pierce, Niles A

    2018-01-08

    For decades, in situ hybridization methods have been essential tools for studies of vertebrate development and disease, as they enable qualitative analyses of mRNA expression in an anatomical context. Quantitative mRNA analyses typically sacrifice the anatomy, relying on embryo microdissection, dissociation, cell sorting and/or homogenization. Here, we eliminate the trade-off between quantitation and anatomical context, using quantitative in situ hybridization chain reaction (qHCR) to perform accurate and precise relative quantitation of mRNA expression with subcellular resolution within whole-mount vertebrate embryos. Gene expression can be queried in two directions: read-out from anatomical space to expression space reveals co-expression relationships in selected regions of the specimen; conversely, read-in from multidimensional expression space to anatomical space reveals those anatomical locations in which selected gene co-expression relationships occur. As we demonstrate by examining gene circuits underlying somitogenesis, quantitative read-out and read-in analyses provide the strengths of flow cytometry expression analyses, but by preserving subcellular anatomical context, they enable bi-directional queries that open a new era for in situ hybridization. © 2018. Published by The Company of Biologists Ltd.

  9. Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    PubMed Central

    Diogo, Rui; Esteve-Altava, Borja; Smith, Christopher; Boughner, Julia C.; Rasskin-Gutman, Diego

    2015-01-01

    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual’s survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts—their topological patterns relative to each other—using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures. PMID:26452269

  10. Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy.

    PubMed

    Diogo, Rui; Esteve-Altava, Borja; Smith, Christopher; Boughner, Julia C; Rasskin-Gutman, Diego

    2015-01-01

    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures.

  11. Age-related differences in regional brain volumes: A comparison of optimized voxel-based morphometry to manual volumetry

    PubMed Central

    Kennedy, Kristen M.; Erickson, Kirk I.; Rodrigue, Karen M.; Voss, Michelle W.; Colcombe, Stan J.; Kramer, Arthur F.; Acker, James D.; Raz, Naftali

    2009-01-01

    Regional manual volumetry is the gold standard of in vivo neuroanatomy, but is labor-intensive, can be imperfectly reliable, and allows for measuring limited number of regions. Voxel-based morphometry (VBM) has perfect repeatability and assesses local structure across the whole brain. However, its anatomic validity is unclear, and with its increasing popularity, a systematic comparison of VBM to manual volumetry is necessary. The few existing comparison studies are limited by small samples, qualitative comparisons, and limited selection and modest reliability of manual measures. Our goal was to overcome those limitations by quantitatively comparing optimized VBM findings with highly reliable multiple regional measures in a large sample (N = 200) across a wide agespan (18–81). We report a complex pattern of similarities and differences. Peak values of VBM volume estimates (modulated density) produced stronger age differences and a different spatial distribution from manual measures. However, when we aggregated VBM-derived information across voxels contained in specific anatomically defined regions (masks), the patterns of age differences became more similar, although important discrepancies emerged. Notably, VBM revealed stronger age differences in the regions bordering CSF and white matter areas prone to leukoaraiosis, and VBM was more likely to report nonlinearities in age-volume relationships. In the white matter regions, manual measures showed stronger negative associations with age than the corresponding VBM-based masks. We conclude that VBM provides realistic estimates of age differences in the regional gray matter only when applied to anatomically defined regions, but overestimates effects when individual peaks are interpreted. It may be beneficial to use VBM as a first-pass strategy, followed by manual measurement of anatomically-defined regions. PMID:18276037

  12. Quantitative and qualitative comparison of MR imaging of the temporomandibular joint at 1.5 and 3.0 T using an optimized high-resolution protocol

    PubMed Central

    Spinner, Georg; Wyss, Michael; Erni, Stefan; Ettlin, Dominik A; Nanz, Daniel; Ulbrich, Erika J; Gallo, Luigi M; Andreisek, Gustav

    2016-01-01

    Objectives: To quantitatively and qualitatively compare MRI of the temporomandibular joint (TMJ) using an optimized high-resolution protocol at 3.0 T and a clinical standard protocol at 1.5 T. Methods: A phantom and 12 asymptomatic volunteers were MR imaged using a 2-channel surface coil (standard TMJ coil) at 1.5 and 3.0 T (Philips Achieva and Philips Ingenia, respectively; Philips Healthcare, Best, Netherlands). Imaging protocol consisted of coronal and oblique sagittal proton density-weighted turbo spin echo sequences. For quantitative evaluation, a spherical phantom was imaged. Signal-to-noise ratio (SNR) maps were calculated on a voxelwise basis. For qualitative evaluation, all volunteers underwent MRI of the TMJ with the jaw in closed position. Two readers independently assessed visibility and delineation of anatomical structures of the TMJ and overall image quality on a 5-point Likert scale. Quantitative and qualitative measurements were compared between field strengths. Results: The quantitative analysis showed similar SNR for the high-resolution protocol at 3.0 T compared with the clinical protocol at 1.5 T. The qualitative analysis showed significantly better visibility and delineation of clinically relevant anatomical structures of the TMJ, including the TMJ disc and pterygoid muscle as well as better overall image quality at 3.0 T than at 1.5 T. Conclusions: The presented results indicate that expected gains in SNR at 3.0 T can be used to increase the spatial resolution when imaging the TMJ, which translates into increased visibility and delineation of anatomical structures of the TMJ. Therefore, imaging at 3.0 T should be preferred over 1.5 T for imaging the TMJ. PMID:26371077

  13. Quantitative and qualitative comparison of MR imaging of the temporomandibular joint at 1.5 and 3.0 T using an optimized high-resolution protocol.

    PubMed

    Manoliu, Andrei; Spinner, Georg; Wyss, Michael; Erni, Stefan; Ettlin, Dominik A; Nanz, Daniel; Ulbrich, Erika J; Gallo, Luigi M; Andreisek, Gustav

    2016-01-01

    To quantitatively and qualitatively compare MRI of the temporomandibular joint (TMJ) using an optimized high-resolution protocol at 3.0 T and a clinical standard protocol at 1.5 T. A phantom and 12 asymptomatic volunteers were MR imaged using a 2-channel surface coil (standard TMJ coil) at 1.5 and 3.0 T (Philips Achieva and Philips Ingenia, respectively; Philips Healthcare, Best, Netherlands). Imaging protocol consisted of coronal and oblique sagittal proton density-weighted turbo spin echo sequences. For quantitative evaluation, a spherical phantom was imaged. Signal-to-noise ratio (SNR) maps were calculated on a voxelwise basis. For qualitative evaluation, all volunteers underwent MRI of the TMJ with the jaw in closed position. Two readers independently assessed visibility and delineation of anatomical structures of the TMJ and overall image quality on a 5-point Likert scale. Quantitative and qualitative measurements were compared between field strengths. The quantitative analysis showed similar SNR for the high-resolution protocol at 3.0 T compared with the clinical protocol at 1.5 T. The qualitative analysis showed significantly better visibility and delineation of clinically relevant anatomical structures of the TMJ, including the TMJ disc and pterygoid muscle as well as better overall image quality at 3.0 T than at 1.5 T. The presented results indicate that expected gains in SNR at 3.0 T can be used to increase the spatial resolution when imaging the TMJ, which translates into increased visibility and delineation of anatomical structures of the TMJ. Therefore, imaging at 3.0 T should be preferred over 1.5 T for imaging the TMJ.

  14. Quality Assurance Assessment of Diagnostic and Radiation Therapy–Simulation CT Image Registration for Head and Neck Radiation Therapy: Anatomic Region of Interest–based Comparison of Rigid and Deformable Algorithms

    PubMed Central

    Mohamed, Abdallah S. R.; Ruangskul, Manee-Naad; Awan, Musaddiq J.; Baron, Charles A.; Kalpathy-Cramer, Jayashree; Castillo, Richard; Castillo, Edward; Guerrero, Thomas M.; Kocak-Uzel, Esengul; Yang, Jinzhong; Court, Laurence E.; Kantor, Michael E.; Gunn, G. Brandon; Colen, Rivka R.; Frank, Steven J.; Garden, Adam S.; Rosenthal, David I.

    2015-01-01

    Purpose To develop a quality assurance (QA) workflow by using a robust, curated, manually segmented anatomic region-of-interest (ROI) library as a benchmark for quantitative assessment of different image registration techniques used for head and neck radiation therapy–simulation computed tomography (CT) with diagnostic CT coregistration. Materials and Methods Radiation therapy–simulation CT images and diagnostic CT images in 20 patients with head and neck squamous cell carcinoma treated with curative-intent intensity-modulated radiation therapy between August 2011 and May 2012 were retrospectively retrieved with institutional review board approval. Sixty-eight reference anatomic ROIs with gross tumor and nodal targets were then manually contoured on images from each examination. Diagnostic CT images were registered with simulation CT images rigidly and by using four deformable image registration (DIR) algorithms: atlas based, B-spline, demons, and optical flow. The resultant deformed ROIs were compared with manually contoured reference ROIs by using similarity coefficient metrics (ie, Dice similarity coefficient) and surface distance metrics (ie, 95% maximum Hausdorff distance). The nonparametric Steel test with control was used to compare different DIR algorithms with rigid image registration (RIR) by using the post hoc Wilcoxon signed-rank test for stratified metric comparison. Results A total of 2720 anatomic and 50 tumor and nodal ROIs were delineated. All DIR algorithms showed improved performance over RIR for anatomic and target ROI conformance, as shown for most comparison metrics (Steel test, P < .008 after Bonferroni correction). The performance of different algorithms varied substantially with stratification by specific anatomic structures or category and simulation CT section thickness. Conclusion Development of a formal ROI-based QA workflow for registration assessment demonstrated improved performance with DIR techniques over RIR. After QA, DIR implementation should be the standard for head and neck diagnostic CT and simulation CT allineation, especially for target delineation. © RSNA, 2014 Online supplemental material is available for this article. PMID:25380454

  15. Three-dimensional histology: tools and application to quantitative assessment of cell-type distribution in rabbit heart

    PubMed Central

    Burton, Rebecca A.B.; Lee, Peter; Casero, Ramón; Garny, Alan; Siedlecka, Urszula; Schneider, Jürgen E.; Kohl, Peter; Grau, Vicente

    2014-01-01

    Aims Cardiac histo-anatomical organization is a major determinant of function. Changes in tissue structure are a relevant factor in normal and disease development, and form targets of therapeutic interventions. The purpose of this study was to test tools aimed to allow quantitative assessment of cell-type distribution from large histology and magnetic resonance imaging- (MRI) based datasets. Methods and results Rabbit heart fixation during cardioplegic arrest and MRI were followed by serial sectioning of the whole heart and light-microscopic imaging of trichrome-stained tissue. Segmentation techniques developed specifically for this project were applied to segment myocardial tissue in the MRI and histology datasets. In addition, histology slices were segmented into myocytes, connective tissue, and undefined. A bounding surface, containing the whole heart, was established for both MRI and histology. Volumes contained in the bounding surface (called ‘anatomical volume’), as well as that identified as containing any of the above tissue categories (called ‘morphological volume’), were calculated. The anatomical volume was 7.8 cm3 in MRI, and this reduced to 4.9 cm3 after histological processing, representing an ‘anatomical’ shrinkage by 37.2%. The morphological volume decreased by 48% between MRI and histology, highlighting the presence of additional tissue-level shrinkage (e.g. an increase in interstitial cleft space). The ratio of pixels classified as containing myocytes to pixels identified as non-myocytes was roughly 6:1 (61.6 vs. 9.8%; the remaining fraction of 28.6% was ‘undefined’). Conclusion Qualitative and quantitative differentiation between myocytes and connective tissue, using state-of-the-art high-resolution serial histology techniques, allows identification of cell-type distribution in whole-heart datasets. Comparison with MRI illustrates a pronounced reduction in anatomical and morphological volumes during histology processing. PMID:25362175

  16. SU-C-207B-02: Maximal Noise Reduction Filter with Anatomical Structures Preservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maitree, R; Guzman, G; Chundury, A

    Purpose: All medical images contain noise, which can result in an undesirable appearance and can reduce the visibility of anatomical details. There are varieties of techniques utilized to reduce noise such as increasing the image acquisition time and using post-processing noise reduction algorithms. However, these techniques are increasing the imaging time and cost or reducing tissue contrast and effective spatial resolution which are useful diagnosis information. The three main focuses in this study are: 1) to develop a novel approach that can adaptively and maximally reduce noise while preserving valuable details of anatomical structures, 2) to evaluate the effectiveness ofmore » available noise reduction algorithms in comparison to the proposed algorithm, and 3) to demonstrate that the proposed noise reduction approach can be used clinically. Methods: To achieve a maximal noise reduction without destroying the anatomical details, the proposed approach automatically estimated the local image noise strength levels and detected the anatomical structures, i.e. tissue boundaries. Such information was used to adaptively adjust strength of the noise reduction filter. The proposed algorithm was tested on 34 repeating swine head datasets and 54 patients MRI and CT images. The performance was quantitatively evaluated by image quality metrics and manually validated for clinical usages by two radiation oncologists and one radiologist. Results: Qualitative measurements on repeated swine head images demonstrated that the proposed algorithm efficiently removed noise while preserving the structures and tissues boundaries. In comparisons, the proposed algorithm obtained competitive noise reduction performance and outperformed other filters in preserving anatomical structures. Assessments from the manual validation indicate that the proposed noise reduction algorithm is quite adequate for some clinical usages. Conclusion: According to both clinical evaluation (human expert ranking) and qualitative assessment, the proposed approach has superior noise reduction and anatomical structures preservation capabilities over existing noise removal methods. Senior Author Dr. Deshan Yang received research funding form ViewRay and Varian.« less

  17. Tissue dielectric constant (TDC) as an index of localized arm skin water: differences between measuring probes and genders.

    PubMed

    Mayrovitz, H N; Weingrad, D N; Brlit, F; Lopez, L B; Desfor, R

    2015-03-01

    An easily measured, non-invasive, quantitative estimate of local skin tissue water is useful to assess local lymphedema and its change. One method uses skin tissue dielectric constant (TDC) values that at 300 MHz TDC depend on free and bound water within the measurement volume. In practice such measurements have been done with a research-type multi-probe, but recently a hand-held compact-probe has become available that may be more clinically convenient. Because most available published data is based on multiprobe measurements it is important to characterize possible differences between devices that unless known might lead to ambiguous quantitative comparisons between TDC values. Thus, our purpose was to evaluate potential differences in measured TDC values between multi-probe and compact-probe devices with respect to probe effective sampling depth, anatomical site, and gender and also to compare compact-probe TDC values measured on women with and without breast cancer (BC). TDC was measured bilaterally on forearms and biceps of 32 male and 32 female volunteers and on 12 female patients awaiting surgery for breast cancer. Results show that 1) TDC values at 2.5 mm depth were significantly less than at 1.5 mm; 2) Female TDC values were significantly less than male values; 3) TDC values were not different between females with and without BC; and 4) dominant/non-dominant arm TDC ratios were not significantly different for any probe among genders or arm anatomical site. These findings indicate that probe type differences in absolute TDC values are present and should be taken into account when TDC values are compared. However, comparisons based on inter-arm TDC ratios are not statistically different among probes with respect to gender or anatomical location.

  18. Quantitative ENT endoscopy: the future in the new millennium

    NASA Astrophysics Data System (ADS)

    Mueller, Andreas; Schubert, Mario

    1999-06-01

    In Otorhinolaryngology the endoscopic appraisal of luminal dimensions of the nose, the throat, the larynx and the trachea is a daily problem. Those concerned with endoscopy know, that endoscopes distort dimensions of examined anatomical structures. To draw conclusions on luminal dimensions from the endoscopic pictures additional measuring devices are required. We developed a new method of measuring luminal dimensions in rigid or flexible endoscopy. For this a laser beam directed radially marks the anatomical lumen of interest in the videoendoscopic vision. The laser ring becomes deformed according to the form of the cavity explored. By keeping the distance defined between the laser ring and the top of the endoscope, the endoscopic video image can be measured. A piece of software developed by us calculates from the pictures the cross sectional area as well as the extension of benign or malign stenosis of the cavity explored. The result of the endoscopic measuring procedure can be visualized 3D on a PC-monitor. We are going to demonstrate the result of our clinical experience in different otorhinolaryngological diseases with the new endoscopic measuring kit in comparison to standard endoscopy. A further perspective is the endoscopic measuring kit in comparison to standard endoscopy. A further perspective is the endoscopic assisted manufacturing (EAM) of anatomical adapted stents, tubes and cannules.

  19. Experimental comparison of landmark-based methods for 3D elastic registration of pre- and postoperative liver CT data

    NASA Astrophysics Data System (ADS)

    Lange, Thomas; Wörz, Stefan; Rohr, Karl; Schlag, Peter M.

    2009-02-01

    The qualitative and quantitative comparison of pre- and postoperative image data is an important possibility to validate surgical procedures, in particular, if computer assisted planning and/or navigation is performed. Due to deformations after surgery, partially caused by the removal of tissue, a non-rigid registration scheme is a prerequisite for a precise comparison. Interactive landmark-based schemes are a suitable approach, if high accuracy and reliability is difficult to achieve by automatic registration approaches. Incorporation of a priori knowledge about the anatomical structures to be registered may help to reduce interaction time and improve accuracy. Concerning pre- and postoperative CT data of oncological liver resections the intrahepatic vessels are suitable anatomical structures. In addition to using branching landmarks for registration, we here introduce quasi landmarks at vessel segments with high localization precision perpendicular to the vessels and low precision along the vessels. A comparison of interpolating thin-plate splines (TPS), interpolating Gaussian elastic body splines (GEBS) and approximating GEBS on landmarks at vessel branchings as well as approximating GEBS on the introduced vessel segment landmarks is performed. It turns out that the segment landmarks provide registration accuracies as good as branching landmarks and can improve accuracy if combined with branching landmarks. For a low number of landmarks segment landmarks are even superior.

  20. Quantitative Wood Anatomy-Practical Guidelines.

    PubMed

    von Arx, Georg; Crivellaro, Alan; Prendin, Angela L; Čufar, Katarina; Carrer, Marco

    2016-01-01

    Quantitative wood anatomy analyzes the variability of xylem anatomical features in trees, shrubs, and herbaceous species to address research questions related to plant functioning, growth, and environment. Among the more frequently considered anatomical features are lumen dimensions and wall thickness of conducting cells, fibers, and several ray properties. The structural properties of each xylem anatomical feature are mostly fixed once they are formed, and define to a large extent its functionality, including transport and storage of water, nutrients, sugars, and hormones, and providing mechanical support. The anatomical features can often be localized within an annual growth ring, which allows to establish intra-annual past and present structure-function relationships and its sensitivity to environmental variability. However, there are many methodological challenges to handle when aiming at producing (large) data sets of xylem anatomical data. Here we describe the different steps from wood sample collection to xylem anatomical data, provide guidance and identify pitfalls, and present different image-analysis tools for the quantification of anatomical features, in particular conducting cells. We show that each data production step from sample collection in the field, microslide preparation in the lab, image capturing through an optical microscope and image analysis with specific tools can readily introduce measurement errors between 5 and 30% and more, whereby the magnitude usually increases the smaller the anatomical features. Such measurement errors-if not avoided or corrected-may make it impossible to extract meaningful xylem anatomical data in light of the rather small range of variability in many anatomical features as observed, for example, within time series of individual plants. Following a rigid protocol and quality control as proposed in this paper is thus mandatory to use quantitative data of xylem anatomical features as a powerful source for many research topics.

  1. Quantitative Wood Anatomy—Practical Guidelines

    PubMed Central

    von Arx, Georg; Crivellaro, Alan; Prendin, Angela L.; Čufar, Katarina; Carrer, Marco

    2016-01-01

    Quantitative wood anatomy analyzes the variability of xylem anatomical features in trees, shrubs, and herbaceous species to address research questions related to plant functioning, growth, and environment. Among the more frequently considered anatomical features are lumen dimensions and wall thickness of conducting cells, fibers, and several ray properties. The structural properties of each xylem anatomical feature are mostly fixed once they are formed, and define to a large extent its functionality, including transport and storage of water, nutrients, sugars, and hormones, and providing mechanical support. The anatomical features can often be localized within an annual growth ring, which allows to establish intra-annual past and present structure-function relationships and its sensitivity to environmental variability. However, there are many methodological challenges to handle when aiming at producing (large) data sets of xylem anatomical data. Here we describe the different steps from wood sample collection to xylem anatomical data, provide guidance and identify pitfalls, and present different image-analysis tools for the quantification of anatomical features, in particular conducting cells. We show that each data production step from sample collection in the field, microslide preparation in the lab, image capturing through an optical microscope and image analysis with specific tools can readily introduce measurement errors between 5 and 30% and more, whereby the magnitude usually increases the smaller the anatomical features. Such measurement errors—if not avoided or corrected—may make it impossible to extract meaningful xylem anatomical data in light of the rather small range of variability in many anatomical features as observed, for example, within time series of individual plants. Following a rigid protocol and quality control as proposed in this paper is thus mandatory to use quantitative data of xylem anatomical features as a powerful source for many research topics. PMID:27375641

  2. Using Anatomic Magnetic Resonance Image Information to Enhance Visualization and Interpretation of Functional Images: A Comparison of Methods Applied to Clinical Arterial Spin Labeling Images

    PubMed Central

    Dai, Weiying; Soman, Salil; Hackney, David B.; Wong, Eric T.; Robson, Philip M.; Alsop, David C.

    2017-01-01

    Functional imaging provides hemodynamic and metabolic information and is increasingly being incorporated into clinical diagnostic and research studies. Typically functional images have reduced signal-to-noise ratio and spatial resolution compared to other non-functional cross sectional images obtained as part of a routine clinical protocol. We hypothesized that enhancing visualization and interpretation of functional images with anatomic information could provide preferable quality and superior diagnostic value. In this work, we implemented five methods (frequency addition, frequency multiplication, wavelet transform, non-subsampled contourlet transform and intensity-hue-saturation) and a newly proposed ShArpening by Local Similarity with Anatomic images (SALSA) method to enhance the visualization of functional images, while preserving the original functional contrast and quantitative signal intensity characteristics over larger spatial scales. Arterial spin labeling blood flow MR images of the brain were visualization enhanced using anatomic images with multiple contrasts. The algorithms were validated on a numerical phantom and their performance on images of brain tumor patients were assessed by quantitative metrics and neuroradiologist subjective ratings. The frequency multiplication method had the lowest residual error for preserving the original functional image contrast at larger spatial scales (55%–98% of the other methods with simulated data and 64%–86% with experimental data). It was also significantly more highly graded by the radiologists (p<0.005 for clear brain anatomy around the tumor). Compared to other methods, the SALSA provided 11%–133% higher similarity with ground truth images in the simulation and showed just slightly lower neuroradiologist grading score. Most of these monochrome methods do not require any prior knowledge about the functional and anatomic image characteristics, except the acquired resolution. Hence, automatic implementation on clinical images should be readily feasible. PMID:27723582

  3. Material Properties of Human Ocular Tissue at 7-µm Resolution.

    PubMed

    Rohrbach, Daniel; Ito, Kazuyo; Lloyd, Harriet O; Silverman, Ronald H; Yoshida, Kenji; Yamaguchi, Tadashi; Mamou, Jonathan

    2017-09-01

    Quantitative assessment of the material properties of ocular tissues can provide valuable information for investigating several ophthalmic diseases. Quantitative acoustic microscopy (QAM) offers a means of obtaining such information, but few QAM investigations have been conducted on human ocular tissue. We imaged the optic nerve (ON) and iridocorneal angle in 12-µm deparaffinized sections of the human eye using a custom-built acoustic microscope with a 250-MHz transducer (7-µm lateral resolution). The two-dimensional QAM maps of ultrasound attenuation (α), speed of sound ( c), acoustic impedance ( Z), bulk modulus ( K), and mass density (ρ) were generated. Scanned samples were then stained and imaged by light microscopy for comparison with QAM maps. The spatial resolution and contrast of scanning acoustic microscopy (SAM) maps were sufficient to resolve anatomic layers of the retina (Re); anatomic features in SAM maps corresponded to those seen by light microscopy. Significant variations of the acoustic parameters were found. For example, the sclera was 220 MPa stiffer than Re, choroid, and ON tissue. To the authors' knowledge, this is the first systematic study to assess c, Z, K, ρ, and α of human ocular tissue at the high ultrasound frequencies used in this study.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, W. James; Albertson, R Craig; Jacob, Rick E.

    Here we present a re-description of Abudefduf luridus and reassign it to the genus Similiparma. We supplement traditional diagnoses and descriptions of this species with quantitative anatomical data collected from a family-wide geometric morphometric analysis of head morphology (44 species representing all 30 damselfish genera) and data from cranial micro-CT scans of fishes in the genus Similiparma. The use of geometric morphometric analyses (and other methods of shape analysis) permits detailed comparisons between the morphology of specific taxa and the anatomical diversity that has arisen in an entire lineage. This provides a particularly useful supplement to traditional description methods andmore » we recommend the use of such techniques by systematists. Similiparma and its close relatives constitute a branch of the damselfish phylogenetic tree that predominantly inhabits rocky reefs in the Atlantic and Eastern Pacific, as opposed to the more commonly studied damselfishes that constitute a large portion of the ichthyofauna on all coral-reef communities.« less

  5. Constrained vertebrate evolution by pleiotropic genes.

    PubMed

    Hu, Haiyang; Uesaka, Masahiro; Guo, Song; Shimai, Kotaro; Lu, Tsai-Ming; Li, Fang; Fujimoto, Satoko; Ishikawa, Masato; Liu, Shiping; Sasagawa, Yohei; Zhang, Guojie; Kuratani, Shigeru; Yu, Jr-Kai; Kusakabe, Takehiro G; Khaitovich, Philipp; Irie, Naoki

    2017-11-01

    Despite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or 'bodyplan') remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages that pattern the bodyplan (the phylotype hypothesis); however, there has been no quantitative testing of this idea with a phylum-wide comparison of species. Here, based on data from early-to-late embryonic transcriptomes collected from eight chordates, we suggest that the phylotype hypothesis would be better applied to vertebrates than chordates. Furthermore, we found that vertebrates' conserved mid-embryonic developmental programmes are intensively recruited to other developmental processes, and the degree of the recruitment positively correlates with their evolutionary conservation and essentiality for normal development. Thus, we propose that the intensively recruited genetic system during vertebrates' organogenesis period imposed constraints on its diversification through pleiotropic constraints, which ultimately led to the common anatomical pattern observed in vertebrates.

  6. Development of quantitative analysis method for stereotactic brain image: assessment of reduced accumulation in extent and severity using anatomical segmentation.

    PubMed

    Mizumura, Sunao; Kumita, Shin-ichiro; Cho, Keiichi; Ishihara, Makiko; Nakajo, Hidenobu; Toba, Masahiro; Kumazaki, Tatsuo

    2003-06-01

    Through visual assessment by three-dimensional (3D) brain image analysis methods using stereotactic brain coordinates system, such as three-dimensional stereotactic surface projections and statistical parametric mapping, it is difficult to quantitatively assess anatomical information and the range of extent of an abnormal region. In this study, we devised a method to quantitatively assess local abnormal findings by segmenting a brain map according to anatomical structure. Through quantitative local abnormality assessment using this method, we studied the characteristics of distribution of reduced blood flow in cases with dementia of the Alzheimer type (DAT). Using twenty-five cases with DAT (mean age, 68.9 years old), all of whom were diagnosed as probable Alzheimer's disease based on NINCDS-ADRDA, we collected I-123 iodoamphetamine SPECT data. A 3D brain map using the 3D-SSP program was compared with the data of 20 cases in the control group, who age-matched the subject cases. To study local abnormalities on the 3D images, we divided the whole brain into 24 segments based on anatomical classification. We assessed the extent of an abnormal region in each segment (rate of the coordinates with a Z-value that exceeds the threshold value, in all coordinates within a segment), and severity (average Z-value of the coordinates with a Z-value that exceeds the threshold value). This method clarified orientation and expansion of reduced accumulation, through classifying stereotactic brain coordinates according to the anatomical structure. This method was considered useful for quantitatively grasping distribution abnormalities in the brain and changes in abnormality distribution.

  7. Anatomical Knowledge Retention in Third-Year Medical Students Prior to Obstetrics and Gynecology and Surgery Rotations

    ERIC Educational Resources Information Center

    Jurjus, Rosalyn A.; Lee, Juliet; Ahle, Samantha; Brown, Kirsten M.; Butera, Gisela; Goldman, Ellen F.; Krapf, Jill M.

    2014-01-01

    Surgical anatomy is taught early in medical school training. The literature shows that many physicians, especially surgical specialists, think that anatomical knowledge of medical students is inadequate and nesting of anatomical sciences later in the clinical curriculum may be necessary. Quantitative data concerning this perception of an…

  8. Anatomical location differences between mutated and wild-type isocitrate dehydrogenase 1 in low-grade gliomas.

    PubMed

    Yu, Jinhua; Shi, Zhifeng; Ji, Chunhong; Lian, Yuxi; Wang, Yuanyuan; Chen, Liang; Mao, Ying

    2017-10-01

    Anatomical location of gliomas has been considered as a factor implicating the contributions of a specific precursor cells during the tumor growth. Isocitrate dehydrogenase 1 (IDH1) is a pathognomonic biomarker with a significant impact on the development of gliomas and remarkable prognostic effect. The correlation between anatomical location of tumor and IDH1 states for low-grade gliomas was analyzed quantitatively in this study. Ninety-two patients diagnosed of low-grade glioma pathologically were recruited in this study, including 65 patients with IDH1-mutated glioma and 27 patients with wide-type IDH1. A convolutional neural network was designed to segment the tumor from three-dimensional magnetic resonance imaging images. Voxel-based lesion symptom mapping was then employed to study the tumor location distribution differences between gliomas with mutated and wild-type IDH1. In order to characterize the location differences quantitatively, the Automated Anatomical Labeling Atlas was used to partition the standard brain atlas into 116 anatomical volumes of interests (AVOIs). The percentages of tumors with different IDH1 states in 116 AVOIs were calculated and compared. Support vector machine and AdaBoost algorithms were used to estimate the IDH1 status based on the 116 location features of each patient. Experimental results proved that the quantitative tumor location measurement could be a very important group of imaging features in biomarker estimation based on radiomics analysis of glioma.

  9. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    PubMed

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  10. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities

    PubMed Central

    Weidlich, Georg A.

    2016-01-01

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404

  11. Automatic segmentation of male pelvic anatomy on computed tomography images: a comparison with multiple observers in the context of a multicentre clinical trial.

    PubMed

    Geraghty, John P; Grogan, Garry; Ebert, Martin A

    2013-04-30

    This study investigates the variation in segmentation of several pelvic anatomical structures on computed tomography (CT) between multiple observers and a commercial automatic segmentation method, in the context of quality assurance and evaluation during a multicentre clinical trial. CT scans of two prostate cancer patients ('benchmarking cases'), one high risk (HR) and one intermediate risk (IR), were sent to multiple radiotherapy centres for segmentation of prostate, rectum and bladder structures according to the TROG 03.04 "RADAR" trial protocol definitions. The same structures were automatically segmented using iPlan software for the same two patients, allowing structures defined by automatic segmentation to be quantitatively compared with those defined by multiple observers. A sample of twenty trial patient datasets were also used to automatically generate anatomical structures for quantitative comparison with structures defined by individual observers for the same datasets. There was considerable agreement amongst all observers and automatic segmentation of the benchmarking cases for bladder (mean spatial variations < 0.4 cm across the majority of image slices). Although there was some variation in interpretation of the superior-inferior (cranio-caudal) extent of rectum, human-observer contours were typically within a mean 0.6 cm of automatically-defined contours. Prostate structures were more consistent for the HR case than the IR case with all human observers segmenting a prostate with considerably more volume (mean +113.3%) than that automatically segmented. Similar results were seen across the twenty sample datasets, with disagreement between iPlan and observers dominant at the prostatic apex and superior part of the rectum, which is consistent with observations made during quality assurance reviews during the trial. This study has demonstrated quantitative analysis for comparison of multi-observer segmentation studies. For automatic segmentation algorithms based on image-registration as in iPlan, it is apparent that agreement between observer and automatic segmentation will be a function of patient-specific image characteristics, particularly for anatomy with poor contrast definition. For this reason, it is suggested that automatic registration based on transformation of a single reference dataset adds a significant systematic bias to the resulting volumes and their use in the context of a multicentre trial should be carefully considered.

  12. The potential of statistical shape modelling for geometric morphometric analysis of human teeth in archaeological research

    PubMed Central

    Fernee, Christianne; Browne, Martin; Zakrzewski, Sonia

    2017-01-01

    This paper introduces statistical shape modelling (SSM) for use in osteoarchaeology research. SSM is a full field, multi-material analytical technique, and is presented as a supplementary geometric morphometric (GM) tool. Lower mandibular canines from two archaeological populations and one modern population were sampled, digitised using micro-CT, aligned, registered to a baseline and statistically modelled using principal component analysis (PCA). Sample material properties were incorporated as a binary enamel/dentin parameter. Results were assessed qualitatively and quantitatively using anatomical landmarks. Finally, the technique’s application was demonstrated for inter-sample comparison through analysis of the principal component (PC) weights. It was found that SSM could provide high detail qualitative and quantitative insight with respect to archaeological inter- and intra-sample variability. This technique has value for archaeological, biomechanical and forensic applications including identification, finite element analysis (FEA) and reconstruction from partial datasets. PMID:29216199

  13. PET guidance for liver radiofrequency ablation: an evaluation

    NASA Astrophysics Data System (ADS)

    Lei, Peng; Dandekar, Omkar; Mahmoud, Faaiza; Widlus, David; Malloy, Patrick; Shekhar, Raj

    2007-03-01

    Radiofrequency ablation (RFA) is emerging as the primary mode of treatment of unresectable malignant liver tumors. With current intraoperative imaging modalities, quick, precise, and complete localization of lesions remains a challenge for liver RFA. Fusion of intraoperative CT and preoperative PET images, which relies on PET and CT registration, can produce a new image with complementary metabolic and anatomic data and thus greatly improve the targeting accuracy. Unlike neurological images, alignment of abdominal images by combined PET/CT scanner is prone to errors as a result of large nonrigid misalignment in abdominal images. Our use of a normalized mutual information-based 3D nonrigid registration technique has proven powerful for whole-body PET and CT registration. We demonstrate here that this technique is capable of acceptable abdominal PET and CT registration as well. In five clinical cases, both qualitative and quantitative validation showed that the registration is robust and accurate. Quantitative accuracy was evaluated by comparison between the result from the algorithm and clinical experts. The accuracy of registration is much less than the allowable margin in liver RFA. Study findings show the technique's potential to enable the augmentation of intraoperative CT with preoperative PET to reduce procedure time, avoid repeating procedures, provide clinicians with complementary functional/anatomic maps, avoid omitting dispersed small lesions, and improve the accuracy of tumor targeting in liver RFA.

  14. A benchmark for comparison of dental radiography analysis algorithms.

    PubMed

    Wang, Ching-Wei; Huang, Cheng-Ta; Lee, Jia-Hong; Li, Chung-Hsing; Chang, Sheng-Wei; Siao, Ming-Jhih; Lai, Tat-Ming; Ibragimov, Bulat; Vrtovec, Tomaž; Ronneberger, Olaf; Fischer, Philipp; Cootes, Tim F; Lindner, Claudia

    2016-07-01

    Dental radiography plays an important role in clinical diagnosis, treatment and surgery. In recent years, efforts have been made on developing computerized dental X-ray image analysis systems for clinical usages. A novel framework for objective evaluation of automatic dental radiography analysis algorithms has been established under the auspices of the IEEE International Symposium on Biomedical Imaging 2015 Bitewing Radiography Caries Detection Challenge and Cephalometric X-ray Image Analysis Challenge. In this article, we present the datasets, methods and results of the challenge and lay down the principles for future uses of this benchmark. The main contributions of the challenge include the creation of the dental anatomy data repository of bitewing radiographs, the creation of the anatomical abnormality classification data repository of cephalometric radiographs, and the definition of objective quantitative evaluation for comparison and ranking of the algorithms. With this benchmark, seven automatic methods for analysing cephalometric X-ray image and two automatic methods for detecting bitewing radiography caries have been compared, and detailed quantitative evaluation results are presented in this paper. Based on the quantitative evaluation results, we believe automatic dental radiography analysis is still a challenging and unsolved problem. The datasets and the evaluation software will be made available to the research community, further encouraging future developments in this field. (http://www-o.ntust.edu.tw/~cweiwang/ISBI2015/). Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Kinematic Analysis of a Six-Degrees-of-Freedom Model Based on ISB Recommendation: A Repeatability Analysis and Comparison with Conventional Gait Model.

    PubMed

    Żuk, Magdalena; Pezowicz, Celina

    2015-01-01

    Objective. The purpose of the present work was to assess the validity of a six-degrees-of-freedom gait analysis model based on the ISB recommendation on definitions of joint coordinate systems (ISB 6DOF) through a quantitative comparison with the Helen Hays model (HH) and repeatability assessment. Methods. Four healthy subjects were analysed with both marker sets: an HH marker set and four marker clusters in ISB 6DOF. A navigated pointer was used to indicate the anatomical landmark position in the cluster reference system according to the ISB recommendation. Three gait cycles were selected from the data collected simultaneously for the two marker sets. Results. Two protocols showed good intertrial repeatability, which apart from pelvic rotation did not exceed 2°. The greatest differences between protocols were observed in the transverse plane as well as for knee angles. Knee internal/external rotation revealed the lowest subject-to-subject and interprotocol repeatability and inconsistent patterns for both protocols. Knee range of movement in transverse plane was overestimated for the HH set (the mean is 34°), which could indicate the cross-talk effect. Conclusions. The ISB 6DOF anatomically based protocol enabled full 3D kinematic description of joints according to the current standard with clinically acceptable intertrial repeatability and minimal equipment requirements.

  16. Adapting anatomy teaching to surgical trends: a combination of classical dissection, medical imaging, and 3D-printing technologies.

    PubMed

    Fasel, Jean H D; Aguiar, Diego; Kiss-Bodolay, Daniel; Montet, Xavier; Kalangos, Afksendiyos; Stimec, Bojan V; Ratib, Osman

    2016-04-01

    Many regions worldwide report difficulties in recruiting applicants to surgery. One strategy proposed to reverse this trend consists of early exposure of medical students to the field. Against this backdrop, the present study presents an innovative approach for anatomy teaching, integrating a surgically relevant trend: 3D printing. Whole-body computed tomography (CT) was made of two cadavers. Twelve students performed measurements and 3D reconstructions of selected anatomical structures (Osirix, Mimics). 3D printed (3DP) models were obtained (ZPrinter 310 Plus), and the students completed the analogous measurements on these replicas. Finally, classical anatomical dissection was performed and the same parameters were measured. The differences between the values obtained by the three modalities were submitted to standard statistical analysis (Wilcoxon two-tail paired test). Qualitative comparison of the digital 3D reconstructions based on the students' manual CT segmentation and the anatomical reality showed excellent correlation. Quantitatively, the values measured on the CT images and the physical models created by 3D printing differed from those measured on the cadavers by less than 2 mm. Students were highly appreciative of the approach (CT, 3DP, cadaver). Their average satisfaction score was 5.8 on a 1-6 scale. This study shows that the approach proposed can be achieved. The results obtained also show that CT-based 3D printed models are close to the authentic anatomic reality. The program allows early and interactive exposure of medical students to a surgically relevant trend-in this case 3D printing.

  17. A Preliminary Quantitative Comparison of Vibratory Amplitude Using Rigid and Flexible Stroboscopic Assessment.

    PubMed

    Hosbach-Cannon, Carly J; Lowell, Soren Y; Kelley, Richard T; Colton, Raymond H

    2016-07-01

    The purpose of this study was to establish preliminary, quantitative data on amplitude of vibration during stroboscopic assessment in healthy speakers with normal voice characteristics. Amplitude of vocal fold vibration is a core physiological parameter used in diagnosing voice disorders, yet quantitative data are lacking to guide the determination of what constitutes normal vibratory amplitude. Eleven participants were assessed during sustained vowel production using rigid and flexible endoscopy with stroboscopy. Still images were extracted from digital recordings of a sustained /i/ produced at a comfortable pitch and loudness, with F0 controlled so that levels were within ±15% of each participant's comfortable mean level as determined from connected speech. Glottal width (GW), true vocal fold (TVF) length, and TVF width were measured from still frames representing the maximum open phase of the vibratory cycle. To control for anatomic and magnification differences across participants, GW was normalized to TVF length. GW as a ratio of TVF width was also computed for comparison with prior studies. Mean values and standard deviations were computed for the normalized measures. Paired t tests showed no significant differences between rigid and flexible endoscopy methods. Interrater and intrarater reliability values for raw measurements were found to be high (0.89-0.99). These preliminary quantitative data may be helpful in determining normality or abnormality of vocal fold vibration. Results indicate that quantified amplitude of vibration is similar between endoscopic methods, a clinically relevant finding for individuals performing and interpreting stroboscopic assessments. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  18. Obesity and worsening of chronic venous disease and joint mobility.

    PubMed

    Belczak, Cleusa Ema Quilici; de Godoy, José Maria Pereira; Belzack, Sergio Quilici; Ramos, Rubiana Neves; Caffaro, Roberto Augusto

    2014-09-01

    The aim of this study was to investigate a possible relationship between obesity and decreased mobility of the talocrural joint and in turn chronic venous disease. One hundred obese patients recruited at Hospital Santa Casa de Maringa, Parana were enrolled by order of arrival at the hospital in a randomized quantitative cross-sectional study. Inclusion criteria were patients with a body mass index above 30 kg/m(2) and the exclusion criteria were infectious conditions that would interfere with the assessment. Patients were graded according to the clinical, etiological, anatomical and pathophysiological classification. Talocrural goniometry was performed to assess the degree of mobility of the legs. The Kolmogorov-Smirnov normality test, Kruskal-Wallis test, Dunn's Multiple comparison test and analysis of variance were used for statistical analysis tests with an alpha error of 5% being considered acceptable. The increase in body mass index is correlated to the reduction in joint mobility (Kruskal-Wallis test: p-value <0.0001) and increase in clinical, etiological, anatomical and pathophysiological classification is correlated to a decrease in joint mobility and the increase in age is associated with an increase in clinical, etiological, anatomical and pathophysiological classification (Kruskal-Wallis test: p-value <0.0001). Obesity is associated with deterioration in joint mobility and worsening of chronic venous disease. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  19. Neuronal metabolomics by ion mobility mass spectrometry: cocaine effects on glucose and selected biogenic amine metabolites in the frontal cortex, striatum, and thalamus of the rat.

    PubMed

    Kaplan, Kimberly A; Chiu, Veronica M; Lukus, Peter A; Zhang, Xing; Siems, William F; Schenk, James O; Hill, Herbert H

    2013-02-01

    We report results of studies of global and targeted neuronal metabolomes by ambient pressure ion mobility mass spectrometry. The rat frontal cortex, striatum, and thalamus were sampled from control nontreated rats and those treated with acute cocaine or pargyline. Quantitative evaluations were made by standard additions or isotopic dilution. The mass detection limit was ~100 pmol varying with the analyte. Targeted metabolites of dopamine, serotonin, and glucose followed the rank order of distribution expected between the anatomical areas. Data was evaluated by principal component analysis on 764 common metabolites (identified by m/z and reduced mobility). Differences between anatomical areas and treatment groups were observed for 53 % of these metabolites using principal component analysis. Global and targeted metabolic differences were observed between the three anatomical areas with contralateral differences between some areas. Following drug treatments, global and targeted metabolomes were found to shift relative to controls and still maintained anatomical differences. Pargyline reduced 3,4-dihydroxyphenylacetic acid below detection limits, and 5-HIAA varied between anatomical regions. Notable findings were: (1) global metabolomes were different between anatomical areas and were altered by acute cocaine providing a broad but targeted window of discovery for metabolic changes produced by drugs of abuse; (2) quantitative analysis was demonstrated using isotope dilution and standard addition; (3) cocaine changed glucose and biogenic amine metabolism in the anatomical areas tested; and (4) the largest effect of cocaine was on the glycolysis metabolome in the thalamus confirming inferences from previous positron emission tomography studies using 2-deoxyglucose.

  20. Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging☆

    PubMed Central

    Oishi, Kenichi; Faria, Andreia V.; Yoshida, Shoko; Chang, Linda; Mori, Susumu

    2013-01-01

    The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a “growth percentile chart,” which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced. Future directions include multimodal image analysis and personalization for clinical application. PMID:23796902

  1. Bridging the Gap between the Human and Macaque Connectome: A Quantitative Comparison of Global Interspecies Structure-Function Relationships and Network Topology

    PubMed Central

    Miranda-Dominguez, Oscar; Mills, Brian D.; Grayson, David; Woodall, Andrew; Grant, Kathleen A.; Kroenke, Christopher D.

    2014-01-01

    Resting state functional connectivity MRI (rs-fcMRI) may provide a powerful and noninvasive “bridge” for comparing brain function between patients and experimental animal models; however, the relationship between human and macaque rs-fcMRI remains poorly understood. Here, using a novel surface deformation process for species comparisons in the same anatomical space (Van Essen, 2004, 2005), we found high correspondence, but also unique hub topology, between human and macaque functional connectomes. The global functional connectivity match between species was moderate to strong (r = 0.41) and increased when considering the top 15% strongest connections (r = 0.54). Analysis of the match between functional connectivity and the underlying anatomical connectivity, derived from a previous retrograde tracer study done in macaques (Markov et al., 2012), showed impressive structure–function correspondence in both the macaque and human. When examining the strongest structural connections, we found a 70–80% match between structural and functional connectivity matrices in both species. Finally, we compare species on two widely used metrics for studying hub topology: degree and betweenness centrality. The data showed topological agreement across the species, with nodes of the posterior cingulate showing high degree and betweenness centrality. In contrast, nodes in medial frontal and parietal cortices were identified as having high degree and betweenness in the human as opposed to the macaque. Our results provide: (1) a thorough examination and validation for a surface-based interspecies deformation process, (2) a strong theoretical foundation for making interspecies comparisons of rs-fcMRI, and (3) a unique look at topological distinctions between the species. PMID:24741045

  2. MR imaging of the temporomandibular joint: comparison between acquisitions at 7.0 T using dielectric pads and 3.0 T

    PubMed Central

    Kuhn, Felix P; Spinner, Georg; Del Grande, Filippo; Wyss, Michael; Piccirelli, Marco; Erni, Stefan; Pfister, Pascal; Ho, Michael; Sah, Bert-Ram; Filli, Lukas; Ettlin, Dominik A; Gallo, Luigi M; Andreisek, Gustav

    2017-01-01

    Objectives: To qualitatively and quantitatively compare MRI of the temporomandibular joint (TMJ) at 7.0 T using high-permittivity dielectric pads and 3.0 T using a clinical high-resolution protocol. Methods: Institutional review board-approved study with written informed consent. 12 asymptomatic volunteers were imaged at 7.0 and 3.0 T using 32-channel head coils. High-permittivity dielectric pads consisting of barium titanate in deuterated suspension were used for imaging at 7.0 T. Imaging protocol consisted of oblique sagittal proton density weighted turbo spin echo sequences. For quantitative analysis, pixelwise signal-to-noise ratio maps of the TMJ were calculated. For qualitative analysis, images were evaluated by two independent readers using 5-point Likert scales. Quantitative and qualitative results were compared using t-tests and Wilcoxon signed-rank tests, respectively. Results: TMJ imaging at 7.0 T using high-permittivity dielectric pads was feasible in all volunteers. Quantitative analysis showed similar signal-to-noise ratio for both field strengths (mean ± SD; 7.0 T, 13.02 ± 3.92; 3.0 T, 14.02 ± 3.41; two-sample t-tests, p = 0.188). At 7.0 T, qualitative analysis yielded better visibility of all anatomical subregions of the temporomandibular disc (anterior band, intermediate zone and posterior band) than 3.0 T (Wilcoxon signed-rank tests, p < 0.05, corrected for multiple comparisons). Conclusions: MRI of the TMJ at 7.0 T using high-permittivity dielectric pads yields superior visibility of the temporomandibular disc compared with 3.0 T. PMID:27704872

  3. MR imaging of the temporomandibular joint: comparison between acquisitions at 7.0 T using dielectric pads and 3.0 T.

    PubMed

    Kuhn, Felix P; Spinner, Georg; Del Grande, Filippo; Wyss, Michael; Piccirelli, Marco; Erni, Stefan; Pfister, Pascal; Ho, Michael; Sah, Bert-Ram; Filli, Lukas; Ettlin, Dominik A; Gallo, Luigi M; Andreisek, Gustav; Manoliu, Andrei

    2017-01-01

    To qualitatively and quantitatively compare MRI of the temporomandibular joint (TMJ) at 7.0 T using high-permittivity dielectric pads and 3.0 T using a clinical high-resolution protocol. Institutional review board-approved study with written informed consent. 12 asymptomatic volunteers were imaged at 7.0 and 3.0 T using 32-channel head coils. High-permittivity dielectric pads consisting of barium titanate in deuterated suspension were used for imaging at 7.0 T. Imaging protocol consisted of oblique sagittal proton density weighted turbo spin echo sequences. For quantitative analysis, pixelwise signal-to-noise ratio maps of the TMJ were calculated. For qualitative analysis, images were evaluated by two independent readers using 5-point Likert scales. Quantitative and qualitative results were compared using t-tests and Wilcoxon signed-rank tests, respectively. TMJ imaging at 7.0 T using high-permittivity dielectric pads was feasible in all volunteers. Quantitative analysis showed similar signal-to-noise ratio for both field strengths (mean ± SD; 7.0 T, 13.02 ± 3.92; 3.0 T, 14.02 ± 3.41; two-sample t-tests, p = 0.188). At 7.0 T, qualitative analysis yielded better visibility of all anatomical subregions of the temporomandibular disc (anterior band, intermediate zone and posterior band) than 3.0 T (Wilcoxon signed-rank tests, p < 0.05, corrected for multiple comparisons). MRI of the TMJ at 7.0 T using high-permittivity dielectric pads yields superior visibility of the temporomandibular disc compared with 3.0 T.

  4. Contribution of the computed tomography of the anatomical aspects of the sphenoid sinuses to forensic identification.

    PubMed

    Auffret, Mathieu; Garetier, Marc; Diallo, Idris; Aho, Serge; Ben Salem, Douraied

    2016-12-01

    Body identification is the cornerstone of forensic investigation. It can be performed using radiographic techniques, if antemortem images are available. This study was designed to assess the value of visual comparison of the computed tomography (CT) anatomical aspects of the sphenoid sinuses, in forensic individual identification, especially if antemortem dental records, fingerprints or DNA samples are not available. This retrospective work took place in a French university hospital. The supervisor of this study randomly selected from the picture archiving and communication system (PACS), 58 patients who underwent one (16 patients) or two (42 patients) head CT in various neurological contexts. To avoid bias, those studies were prepared (anonymized, and all the head structures but the sphenoid sinuses were excluded), and used to constitute two working lists of 50 (42+8) CT studies of the sphenoid sinuses. An anatomical classification system of the sphenoid sinuses anatomical variations was created based on the anatomical and surgical literature. In these two working lists, three blinded readers had to identify, using the anatomical system and subjective visual comparison, 42 pairs of matched studies, and 16 unmatched studies. Readers were blinded from the exact numbers of matching studies. Each reader correctly identified the 42 pairs of CT with a concordance of 100% [97.5% confidence interval: 91-100%], and the 16 unmatched CT with a concordance of 100% [97.5% confidence interval: 79-100%]. Overall accuracy was 100%. Our study shows that establishing the anatomical concordance of the sphenoid sinuses by visual comparison could be used in personal identification. This easy method, based on a frequently and increasingly prescribed exam, still needs to be assessed on a postmortem cohort. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Infrared thermography quantitative image processing

    NASA Astrophysics Data System (ADS)

    Skouroliakou, A.; Kalatzis, I.; Kalyvas, N.; Grivas, TB

    2017-11-01

    Infrared thermography is an imaging technique that has the ability to provide a map of temperature distribution of an object’s surface. It is considered for a wide range of applications in medicine as well as in non-destructive testing procedures. One of its promising medical applications is in orthopaedics and diseases of the musculoskeletal system where temperature distribution of the body’s surface can contribute to the diagnosis and follow up of certain disorders. Although the thermographic image can give a fairly good visual estimation of distribution homogeneity and temperature pattern differences between two symmetric body parts, it is important to extract a quantitative measurement characterising temperature. Certain approaches use temperature of enantiomorphic anatomical points, or parameters extracted from a Region of Interest (ROI). A number of indices have been developed by researchers to that end. In this study a quantitative approach in thermographic image processing is attempted based on extracting different indices for symmetric ROIs on thermograms of the lower back area of scoliotic patients. The indices are based on first order statistical parameters describing temperature distribution. Analysis and comparison of these indices result in evaluating the temperature distribution pattern of the back trunk expected in healthy, regarding spinal problems, subjects.

  6. Comparison of Cervical Spine Anatomy in Calves, Pigs and Humans.

    PubMed

    Sheng, Sun-Ren; Xu, Hua-Zi; Wang, Yong-Li; Zhu, Qing-An; Mao, Fang-Min; Lin, Yan; Wang, Xiang-Yang

    2016-01-01

    Animals are commonly used to model the human spine for in vitro and in vivo experiments. Many studies have investigated similarities and differences between animals and humans in the lumbar and thoracic vertebrae. However, a quantitative anatomic comparison of calf, pig, and human cervical spines has not been reported. To compare fundamental structural similarities and differences in vertebral bodies from the cervical spines of commonly used experimental animal models and humans. Anatomical morphometric analysis was performed on cervical vertebra specimens harvested from humans and two common large animals (i.e., calves and pigs). Multiple morphometric parameters were directly measured from cervical spine specimens of twelve pigs, twelve calves and twelve human adult cadavers. The following anatomical parameters were measured: vertebral body width (VBW), vertebral body depth (VBD), vertebral body height (VBH), spinal canal width (SCW), spinal canal depth (SCD), pedicle width (PW), pedicle depth (PD), pedicle inclination (PI), dens width (DW), dens depth (DD), total vertebral width (TVW), and total vertebral depth (TVD). The atlantoaxial (C1-2) joint in pigs is similar to that in humans and could serve as a human substitute. The pig cervical spine is highly similar to the human cervical spine, except for two large transverse processes in the anterior regions ofC4-C6. The width and depth of the calf odontoid process were larger than those in humans. VBW and VBD of calf cervical vertebrae were larger than those in humans, but the spinal canal was smaller. Calf C7 was relatively similar to human C7, thus, it may be a good substitute. Pig cervical vertebrae were more suitable human substitutions than calf cervical vertebrae, especially with respect to C1, C2, and C7. The biomechanical properties of nerve vascular anatomy and various segment functions in pig and calf cervical vertebrae must be considered when selecting an animal model for research on the spine.

  7. Reproducibility Between Brain Uptake Ratio Using Anatomic Standardization and Patlak-Plot Methods.

    PubMed

    Shibutani, Takayuki; Onoguchi, Masahisa; Noguchi, Atsushi; Yamada, Tomoki; Tsuchihashi, Hiroko; Nakajima, Tadashi; Kinuya, Seigo

    2015-12-01

    The Patlak-plot and conventional methods of determining brain uptake ratio (BUR) have some problems with reproducibility. We formulated a method of determining BUR using anatomic standardization (BUR-AS) in a statistical parametric mapping algorithm to improve reproducibility. The objective of this study was to demonstrate the inter- and intraoperator reproducibility of mean cerebral blood flow as determined using BUR-AS in comparison to the conventional-BUR (BUR-C) and Patlak-plot methods. The images of 30 patients who underwent brain perfusion SPECT were retrospectively used in this study. The images were reconstructed using ordered-subset expectation maximization and processed using an automatic quantitative analysis for cerebral blood flow of ECD tool. The mean SPECT count was calculated from axial basal ganglia slices of the normal side (slices 31-40) drawn using a 3-dimensional stereotactic region-of-interest template after anatomic standardization. The mean cerebral blood flow was calculated from the mean SPECT count. Reproducibility was evaluated using coefficient of variation and Bland-Altman plotting. For both inter- and intraoperator reproducibility, the BUR-AS method had the lowest coefficient of variation and smallest error range about the Bland-Altman plot. Mean CBF obtained using the BUR-AS method had the highest reproducibility. Compared with the Patlak-plot and BUR-C methods, the BUR-AS method provides greater inter- and intraoperator reproducibility of cerebral blood flow measurement. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. Initial experience with 3D isotropic high-resolution 3 T MR arthrography of the wrist.

    PubMed

    Sutherland, John K; Nozaki, Taiki; Kaneko, Yasuhito; J Yu, Hon; Rafijah, Gregory; Hitt, David; Yoshioka, Hiroshi

    2016-01-16

    Our study was performed to evaluate the image quality of 3 T MR wrist arthrograms with attention to ulnar wrist structures, comparing image quality of isotropic 3D proton density fat suppressed turbo spin echo (PDFS TSE) sequence versus standard 2D 3 T sequences as well as comparison with 1.5 T MR arthrograms. Eleven consecutive 3 T MR wrist arthrograms were performed and the following sequences evaluated: 3D isotropic PDFS, repetition time/echo time (TR/TE) 1400/28.3 ms, voxel size 0.35x0.35x0.35 mm, acquisition time 5 min; 2D coronal sequences with slice thickness 2 mm: T1 fat suppressed turbo spin echo (T1FS TSE) (TR/TE 600/20 ms); proton density (PD) TSE (TR/TE 3499/27 ms). A 1.5 T group of 18 studies with standard sequences were evaluated for comparison. All MR imaging followed fluoroscopically guided intra-articular injection of dilute gadolinium contrast. Qualitative assessment related to delineation of anatomic structures between 1.5 T and 3 T MR arthrograms was carried out using Mann-Whitney test and the differences in delineation of anatomic structures among each sequence in 3 T group were analyzed with Wilcoxon signed-rank test. Quantitative assessment of mean relative signal intensity (SI) and relative contrast measurements was performed using Wilcoxon signed-rank test. Mean qualitative scores for 3 T sequences were significantly higher than 1.5 T (p < 0.01), with isotropic 3D PDFS sequence having highest mean qualitative scores (p < 0.05). Quantitative analysis demonstrated no significant difference in relative signal intensity among the 3 T sequences. Significant differences were found in relative contrast between fluid-bone and fluid-fat comparing 3D and 2D PDFS (p < 0.01). 3D isotropic PDFS sequence showed promise in both qualitative and quantitative assessment, suggesting this may be useful for MR wrist arthrograms at 3 T. Primary reasons for diagnostic potential include the ability to make reformations in any obliquity to follow the components of ulnar side wrist structures including triangular fibrocartilage complex. Additionally, isotropic imaging provides thinner slice thickness with less partial volume averaging allowing for identification of subtle injuries.

  9. An anatomical comparison of Blair and facelift incisions for parotid surgery.

    PubMed

    Nouraei, S A R; Al-Yaghchi, C; Ahmed, J; Kirkpatrick, N; Mansuri, S; Singh, A; Grant, W E

    2006-12-01

    The rhytidectomy approach for parotidectomy allows the incision to be hidden, and post-operative scarring minimised. Furthermore, separate elevation of the Superficial Musculo-Aponeurotic System (SMAS) reduces the incidence of Frey's syndrome, and provides vascularized soft tissue for contour reconstruction. The technique has gained popularity particularly with plastic surgeons, but concerns persist that with this approach, particularly with lesions located anteriorly, access to the gland may be inadequate, and facial nerve identification may be compromised. We undertook an anatomical study to quantitatively compare the surgical access achieved using the facelift approach with the conventional Blair incision, by comparing the distances between the parotid edge and the retracted flaps. Despite reduced tissue elasticity due to formaldehyde fixation, it proved possible to demonstrate all regions of the parotid gland to the operating surgeon with either approach. There were no significant differences in the distance between the parotid edge and the retracted skin flaps (P > 0.1; paired t-test). The facelift approach provides at least equal access to all regions of the parotid gland when compared to a Blair's incision. It is a superior approach aesthetically and its more widespread use in parotid surgery is advocated.

  10. Quantitative morphometric analysis of the lumbar vertebral facets and evaluation of feasibility of lumbar spinal nerve root and spinal canal decompression using the Goel intraarticular facetal spacer distraction technique: A lumbar/cervical facet comparison

    PubMed Central

    Satoskar, Savni R.; Goel, Aimee A.; Mehta, Pooja H.; Goel, Atul

    2014-01-01

    Objective: The authors evaluate the anatomic subtleties of lumbar facets and assess the feasibility and effectiveness of use of ‘Goel facet spacer’ in the treatment of degenerative spinal canal stenosis. Materials and Methods: Twenty-five lumbar vertebral cadaveric dried bones were used for the purpose. A number of morphometric parameters were evaluated both before and after the introduction of Goel facet spacers within the confines of the facet joint. Results: The spacers achieved distraction of facets that was more pronounced in the vertical perspective. Introduction of spacers on both sides resulted in an increase in the intervertebral foraminal height and a circumferential increase in the spinal canal dimensions. Additionally, there was an increase in the disc space or intervertebral body height. The lumbar facets are more vertically and anteroposteriorly oriented when compared to cervical facets that are obliquely and transversely oriented. Conclusions: Understanding the anatomical peculiarities of the lumbar and cervical facets can lead to an optimum utilization of the potential of Goel facet distraction arthrodesis technique in the treatment of spinal degenerative canal stenosis. PMID:25558146

  11. [MRI of focal liver lesions using a 1.5 turbo-spin-echo technique compared with spin-echo technique].

    PubMed

    Steiner, S; Vogl, T J; Fischer, P; Steger, W; Neuhaus, P; Keck, H

    1995-08-01

    The aim of our study was to evaluate a T2-weighted turbo-spinecho sequence in comparison to a T2-weighted spinecho sequence in imaging focal liver lesions. In our study 35 patients with suspected focal liver lesions were examined. Standardised imaging protocol included a conventional T2-weighted SE sequence (TR/TE = 2000/90/45, acquisition time = 10.20) as well as a T2-weighted TSE sequence (TR/TE = 4700/90, acquisition time = 6.33). Calculation of S/N and C/N ratio as a basis of quantitative evaluation was done using standard methods. A diagnostic score was implemented to enable qualitative assessment. In 7% (n = 2) the TSE sequence enabled detection of further liver lesions showing a size of less than 1 cm in diameter. Comparing anatomical details the TSE sequence was superior. S/N and C/N ratio of anatomic and pathologic structures of the TSE sequence were higher compared to results of the SE sequence. Our results indicate that the T2-weighted turbo-spinecho sequence is well appropriate for imaging focal liver lesions, and leads to reduction of imaging time.

  12. Anatomy of the sural nerve: cadaver study and literature review.

    PubMed

    Riedl, Otto; Frey, Manfred

    2013-04-01

    The sural nerve is commonly used as donor for nerve grafting. Contrary to its constant retromalleolar position, formation and course of the proximal sural nerve show great variability. The coexistence of different and deceptive terminologies contributes to the complexity, and reviewing the international literature is confusing. Because detailed anatomical knowledge is essential for efficient and safe sural nerve harvesting, this study aims to bring clarity. Previous sural nerve reports listed in the PubMed database and established anatomical textbooks were reviewed. Different terminologies were compared and adjusted. Anatomical details and variations were noted. Subtle prospective anatomical dissections and comparison with actual data followed. Two hundred twenty-one relevant reports were identified and worked up going back to the nineteenth century. Fourteen established German and English language anatomical textbooks were reviewed. Thirty lower limbs were dissected. In total, this study pools the information of more than 2500 sural nerves. This study covers all information about the sural nerve anatomy published internationally. The coexistence of different and confusing terminologies is pinpointed and adjusted to allow comparison of previous reports and to gain a coordinated data pool of more than 2500 investigated sural nerves. Detailed features are clearly described and summarized, findings from the authors' own prospective dissections complete these data, and the prior existing anatomical confusion is resolved. Finally, clinical implications are described.

  13. Soft Tissue Structure Modelling for Use in Orthopaedic Applications and Musculoskeletal Biomechanics

    NASA Astrophysics Data System (ADS)

    Audenaert, E. A.; Mahieu, P.; van Hoof, T.; Pattyn, C.

    2009-12-01

    We present our methodology for the three-dimensional anatomical and geometrical description of soft tissues, relevant for orthopaedic surgical applications and musculoskeletal biomechanics. The technique involves the segmentation and geometrical description of muscles and neurovascular structures from high-resolution computer tomography scanning for the reconstruction of generic anatomical models. These models can be used for quantitative interpretation of anatomical and biomechanical aspects of different soft tissue structures. This approach should allow the use of these data in other application fields, such as musculoskeletal modelling, simulations for radiation therapy, and databases for use in minimally invasive, navigated and robotic surgery.

  14. KIN-Nav navigation system for kinematic assessment in anterior cruciate ligament reconstruction: features, use, and perspectives.

    PubMed

    Martelli, S; Zaffagnini, S; Bignozzi, S; Lopomo, N F; Iacono, F; Marcacci, M

    2007-10-01

    In this paper a new navigation system, KIN-Nav, developed for research and used during 80 anterior cruciate ligament (ACL) reconstructions is described. KIN-Nav is a user-friendly navigation system for flexible intraoperative acquisitions of anatomical and kinematic data, suitable for validation of biomechanical hypotheses. It performs real-time quantitative evaluation of antero-posterior, internal-external, and varus-valgus knee laxity at any degree of flexion and provides a new interface for this task, suitable also for comparison of pre-operative and post-operative knee laxity and surgical documentation. In this paper the concept and features of KIN-Nav, which represents a new approach to navigation and allows the investigation of new quantitative measurements in ACL reconstruction, are described. Two clinical studies are reported, as examples of clinical potentiality and correct use of this methodology. In this paper a preliminary analysis of KIN-Nav's reliability and clinical efficacy, performed during blinded repeated measures by three independent examiners, is also given. This analysis is the first assessment of the potential of navigation systems for evaluating knee kinematics.

  15. Computed Intranasal Spray Penetration: Comparisons Before and After Nasal Surgery

    PubMed Central

    Frank, Dennis O.; Kimbell, Julia S.; Cannon, Daniel; Rhee, John S.

    2012-01-01

    Background Quantitative methods for comparing intranasal drug delivery efficiencies pre- and postoperatively have not been fully utilized. The objective of this study is to use computational fluid dynamics techniques to evaluate aqueous nasal spray penetration efficiencies before and after surgical correction of intranasal anatomic deformities. Methods Ten three-dimensional models of the nasal cavities were created from pre- and postoperative computed tomography scans in five subjects. Spray simulations were conducted using a particle size distribution ranging from 10–110μm, a spray speed of 3m/s, plume angle of 68°, and with steady state, resting inspiratory airflow present. Two different nozzle positions were compared. Statistical analysis was conducted using Student T-test for matched pairs. Results On the obstructed side, posterior particle deposition after surgery increased by 118% and was statistically significant (p-value=0.036), while anterior particle deposition decreased by 13% and was also statistically significant (p-value=0.020). The fraction of particles that by-passed the airways either pre- or post-operatively was less than 5%. Posterior particle deposition differences between obstructed and contralateral sides of the airways were 113% and 30% for pre- and post-surgery, respectively. Results showed that nozzle positions can influence spray delivery. Conclusions Simulations predicted that surgical correction of nasal anatomic deformities can improve spray penetration to areas where medications can have greater effect. Particle deposition patterns between both sides of the airways are more evenly distributed after surgery. These findings suggest that correcting anatomic deformities may improve intranasal medication delivery. For enhanced particle penetration, patients with nasal deformities may explore different nozzle positions. PMID:22927179

  16. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy

    NASA Astrophysics Data System (ADS)

    Grova, C.; Jannin, P.; Biraben, A.; Buvat, I.; Benali, H.; Bernard, A. M.; Scarabin, J. M.; Gibaud, B.

    2003-12-01

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were found within the range of asymmetry coefficients measured on corresponding real data. The features of the proposed approach are compared with those of other methods previously described to obtain datasets appropriate for the assessment of fusion methods.

  17. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography.

    PubMed

    Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris

    2011-09-01

    Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography leading to underestimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multiresolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low-resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model, which may introduce artifacts in regions where no significant correlation exists between anatomical and functional details. A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present, the new model outperformed the 2D global approach, avoiding artifacts and significantly improving quality of the corrected images and their quantitative accuracy. A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multiresolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information.

  18. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography

    PubMed Central

    Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E.; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris

    2011-01-01

    Purpose Partial volume effects (PVE) are consequences of the limited spatial resolution in emission tomography leading to under-estimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multi-resolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model which may introduce artefacts in regions where no significant correlation exists between anatomical and functional details. Methods A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Results Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present the new model outperformed the 2D global approach, avoiding artefacts and significantly improving quality of the corrected images and their quantitative accuracy. Conclusions A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multi-resolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information. PMID:21978037

  19. Organization of dopamine and serotonin system: Anatomical and functional mapping of monosynaptic inputs using rabies virus.

    PubMed

    Ogawa, Sachie K; Watabe-Uchida, Mitsuko

    2017-05-02

    Dopamine and serotonin play critical roles in flexible behaviors and are related to various psychiatric and motor disorders. This paper reviews the global organization of dopamine and serotonin systems through recent findings using a modified rabies virus. We first introduce methods for comprehensive mapping of monosynaptic inputs. We then describe quantitative comparisons across the data regarding monosynaptic inputs to dopamine neurons versus serotonin neurons. There is surprising similarity between the input to dopamine neurons in the ventral tegmental area (VTA) and the input to serotonin neurons in the dorsal raphe (DR), suggesting functional interactions between these systems. We next introduce studies of mapping monosynaptic inputs to subpopulations of dopamine neurons specified by their projection targets. It was found that the population of dopamine neurons that project to the tail of the striatum (TS) forms an anatomically distinct outlier, suggesting a unique function. From these series of anatomical studies, we propose that there are three information flows that regulate these neuromodulatory systems: the midline stream to serotonin neurons in median raphe (MR) and B6, the central stream to value-coding dopamine neurons and serotonin neurons in rostral DR, and the lateral stream to TS-projecting dopamine neurons. Finally we introduce a new approach to investigate firing patterns of monosynaptic inputs to dopamine neurons in behaving animals. Combining anatomical and physiological findings, we propose that within the central stream, dopamine neurons broadcast a central teaching signal rather than personal teaching signals to multiple brain areas, which are computed in a redundant way in multi-layered neural circuits. Examination of global organization of the dopamine and serotonin circuits not only revealed the complexity of the systems but also revealed some principles of their organization. We will also discuss limitations, practical issues and the possibility of future improvements of the rabies virus-mediated tracing system. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The mummified brain of a pleistocene woolly mammoth (Mammuthus primigenius) compared with the brain of the extant African elephant (Loxodonta africana).

    PubMed

    Kharlamova, Anastasia S; Saveliev, Sergei V; Protopopov, Albert V; Maseko, Busisiwe C; Bhagwandin, Adhil; Manger, Paul R

    2015-11-01

    This study presents the results of an examination of the mummified brain of a pleistocene woolly mammoth (Mammuthus primigenius) recovered from the Yakutian permafrost in Siberia, Russia. This unique specimen (from 39,440-38,850 years BP) provides the rare opportunity to compare the brain morphology of this extinct species with a related extant species, the African elephant (Loxodonta africana). An anatomical description of the preserved brain of the woolly mammoth is provided, along with a series of quantitative analyses of various brain structures. These descriptions are based on visual inspection of the actual specimen as well as qualitative and quantitative comparison of computed tomography imaging data obtained for the woolly mammoth in comparison with magnetic resonance imaging data from three African elephant brains. In general, the brain of the woolly mammoth specimen examined, estimated to weigh between 4,230 and 4,340 g, showed the typical shape, size, and gross structures observed in extant elephants. Quantitative comparative analyses of various features of the brain, such as the amygdala, corpus callosum, cerebellum, and gyrnecephalic index, all indicate that the brain of the woolly mammoth specimen examined has many similarities with that of modern African elephants. The analysis provided here indicates that a specific brain type representative of the Elephantidae is likely to be a feature of this mammalian family. In addition, the extensive similarities between the woolly mammoth brain and the African elephant brain indicate that the specializations observed in the extant elephant brain are likely to have been present in the woolly mammoth. © 2015 Wiley Periodicals, Inc.

  1. Anatomic and Quantitative Temporal Bone CT for Preoperative Assessment of Branchio-Oto-Renal Syndrome.

    PubMed

    Ginat, D T; Ferro, L; Gluth, M B

    2016-12-01

    We describe the temporal bone computed tomography (CT) findings of an unusual case of branchio-oto-renal syndrome with ectopic ossicles that are partially located in the middle cranial fossa. We also describe quantitative temporal bone CT assessment pertaining to cochlear implantation in the setting of anomalous cochlear anatomy associated with this syndrome.

  2. Dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce; Tang, H. Roger; Da Silva, Angela J.; Wong, Kenneth H.; Iwata, Koji; Wu, Max C.

    2001-09-01

    In comparison to conventional medical imaging techniques, dual-modality imaging offers the advantage of correlating anatomical information from X-ray computed tomography (CT) with functional measurements from single-photon emission computed tomography (SPECT) or with positron emission tomography (PET). The combined X-ray/radionuclide images from dual-modality imaging can help the clinician to differentiate disease from normal uptake of radiopharmaceuticals, and to improve diagnosis and staging of disease. In addition, phantom and animal studies have demonstrated that a priori structural information from CT can be used to improve quantification of tissue uptake and organ function by correcting the radionuclide data for errors due to photon attenuation, partial volume effects, scatter radiation, and other physical effects. Dual-modality imaging therefore is emerging as a method of improving the visual quality and the quantitative accuracy of radionuclide imaging for diagnosis of patients with cancer and heart disease.

  3. A Formal Application of Safety and Risk Assessment in Software Systems

    DTIC Science & Technology

    2004-09-01

    characteristics of Software Engineering, Development, and Safety...against a comparison of planned and actual schedules, costs, and characteristics . Software Safety is focused on the reduction of unsafe incidents...they merely carry out the role for which they were anatomically designed.55 Software is characteristically like an anatomical cell as it merely

  4. Comparison of survival outcomes after anatomical resection and non-anatomical resection in patients with hepatocellular carcinoma

    PubMed Central

    Kim, Seheon; Kim, Seokwhan; Song, Insang

    2015-01-01

    Backgrounds/Aims Liver resection is a curative procedure performed worldwide for hepatocellular carcinoma (HCC). Deciding on the appropriate resection range for postoperative hepatic function preservation is an important surgical consideration. This study compares survival outcomes of HCC patients who underwent anatomical or non-anatomical resection, to determine which offers the best clinical survival benefit. Methods One hundred and thirty-one patients underwent liver resection with HCC, between January 2007 and February 2015, and were divided into two groups: those who underwent anatomical liver resection (n=88) and those who underwent non-anatomical liver resection (n=43). Kaplan-Meier survival analysis and Cox regressions were used to compare the disease-free survival (DFS) and overall survival (OS) rates between the groups. Results The mean follow-up periods were 27 and 40 months in the anatomical and non-anatomical groups, respectively (p=0.229). The 3- and 5-year DFS rates were 70% and 60% in the anatomical group and 62% and 48% in the non-anatomical group, respectively. The 3 and 5-year OS rates were 94% and 78% in the anatomical group, and 86% and 80% in the non-anatomical group, respectively. The anatomical group tended to show better outcomes, but the findings were not significant. However, a relative risk of OS between the anatomical and non-anatomical group was 0.234 (95% CI, 0.061-0.896; p=0.034), which is statistically significant. Conclusions Although statistical significance was not detected in survival curves, anatomical resection showed better results. In this respect, anatomical resection is more likely to perform in HCC patients with preserve liver function than non-anatomical resection. PMID:26693235

  5. [Comparative ultrasound visualization of clinically relevant structures for evaluating the infant hip joint utilizing trapezoidal vs. parallel transducers].

    PubMed

    Wunsch, R; Wegener-Panzer, A; Reinehr, T; Aurisch, E; Cleaveland, B; Wunsch, C; Dudwiesus, H

    2011-01-01

    Sonographic evaluation of the infant hip joint according to the method of Graf has proven to be an important pediatric investigative instrument. Our goal was to investigate quantitatively whether (and in what ways) the clinically relevant infant hip joint structures visualize differently when utilizing trapezoidal as opposed to linear transducers. Our approach was both theoretical via a mathematical model and practical with in-vivo measurements in neonates. In a prospective study: 1. theoretical and computed analyses were performed for both linear and trapezoidal transducers regarding their respective accuracy for demonstrating the anatomic geometry of the infant hip, assuming not only correctly centered transducer positioning but also cases with off-centered displacement in the cranial or caudal direction; 2. both hip joints in 97 infants were examined by experienced investigators with comparison of the results for parallel vs. trapezoidal transducers. Theoretical mathematical error analysis reveals no intrinsic systemic deviations between trapezoidal vs. parallel transducers in US scanning of the infant hip and furthermore no inherent disadvantages in the trapezoidal technique. Even when off-center transducer alignments of 1.5 cm are employed in the mathematical models, there is no significant relative distortion of the required anatomic structures when comparing the characteristics of both transducers. The practical in-vivo data from our 97 neonates confirmed the theoretical considerations. No loss of accuracy or other negative factors are evident when trapezoidal transducers are used to visualize the infant hip joint in comparison with the customary parallel technique. There are no significantly measurable differences between the two approaches. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Quantitative T2 Magnetic Resonance Imaging Compared to Morphological Grading of the Early Cervical Intervertebral Disc Degeneration: An Evaluation Approach in Asymptomatic Young Adults

    PubMed Central

    Han, Zhihua; Shao, Lixin; Xie, Yan; Wu, Jianhong; Zhang, Yan; Xin, Hongkui; Ren, Aijun; Guo, Yong; Wang, Deli; He, Qing; Ruan, Dike

    2014-01-01

    Objective The objective of this study was to evaluate the efficacy of quantitative T2 magnetic resonance imaging (MRI) for quantifying early cervical intervertebral disc (IVD) degeneration in asymptomatic young adults by correlating the T2 value with Pfirrmann grade, sex, and anatomic level. Methods Seventy asymptomatic young subjects (34 men and 36 women; mean age, 22.80±2.11 yr; range, 18–25 years) underwent 3.0-T MRI to obtain morphological data (one T1-fast spin echo (FSE) and three-plane T2-FSE, used to assign a Pfirrmann grade (I–V)) and for T2 mapping (multi-echo spin echo). T2 values in the nucleus pulposus (NP, n = 350) and anulus fibrosus (AF, n = 700) were obtained. Differences in T2 values between sexes and anatomic level were evaluated, and linear correlation analysis of T2 values versus degenerative grade was conducted. Findings Cervical IVDs of healthy young adults were commonly determined to be at Pfirrmann grades I and II. T2 values of NPs were significantly higher than those of AF at all anatomic levels (P<0.000). The NP, anterior AF and posterior AF values did not differ significantly between genders at the same anatomic level (P>0.05). T2 values decreased linearly with degenerative grade. Linear correlation analysis revealed a strong negative association between the Pfirrmann grade and the T2 values of the NP (P = 0.000) but not the T2 values of the AF (P = 0.854). However, non-degenerated discs (Pfirrmann grades I and II) showed a wide range of T2 relaxation time. T2 values according to disc degeneration level classification were as follows: grade I (>62.03 ms), grade II (54.60–62.03 ms), grade III (<54.60 ms). Conclusions T2 quantitation provides a more sensitive and robust approach for detecting and characterizing the early stage of cervical IVD degeneration and to create a reliable quantitative in healthy young adults. PMID:24498384

  7. Quantitative T2 magnetic resonance imaging compared to morphological grading of the early cervical intervertebral disc degeneration: an evaluation approach in asymptomatic young adults.

    PubMed

    Chen, Chun; Huang, Minghua; Han, Zhihua; Shao, Lixin; Xie, Yan; Wu, Jianhong; Zhang, Yan; Xin, Hongkui; Ren, Aijun; Guo, Yong; Wang, Deli; He, Qing; Ruan, Dike

    2014-01-01

    The objective of this study was to evaluate the efficacy of quantitative T2 magnetic resonance imaging (MRI) for quantifying early cervical intervertebral disc (IVD) degeneration in asymptomatic young adults by correlating the T2 value with Pfirrmann grade, sex, and anatomic level. Seventy asymptomatic young subjects (34 men and 36 women; mean age, 22.80±2.11 yr; range, 18-25 years) underwent 3.0-T MRI to obtain morphological data (one T1-fast spin echo (FSE) and three-plane T2-FSE, used to assign a Pfirrmann grade (I-V)) and for T2 mapping (multi-echo spin echo). T2 values in the nucleus pulposus (NP, n = 350) and anulus fibrosus (AF, n = 700) were obtained. Differences in T2 values between sexes and anatomic level were evaluated, and linear correlation analysis of T2 values versus degenerative grade was conducted. Cervical IVDs of healthy young adults were commonly determined to be at Pfirrmann grades I and II. T2 values of NPs were significantly higher than those of AF at all anatomic levels (P<0.000). The NP, anterior AF and posterior AF values did not differ significantly between genders at the same anatomic level (P>0.05). T2 values decreased linearly with degenerative grade. Linear correlation analysis revealed a strong negative association between the Pfirrmann grade and the T2 values of the NP (P = 0.000) but not the T2 values of the AF (P = 0.854). However, non-degenerated discs (Pfirrmann grades I and II) showed a wide range of T2 relaxation time. T2 values according to disc degeneration level classification were as follows: grade I (>62.03 ms), grade II (54.60-62.03 ms), grade III (<54.60 ms). T2 quantitation provides a more sensitive and robust approach for detecting and characterizing the early stage of cervical IVD degeneration and to create a reliable quantitative in healthy young adults.

  8. Review and standardization of cell phone exposure calculations using the SAM phantom and anatomically correct head models.

    PubMed

    Beard, Brian B; Kainz, Wolfgang

    2004-10-13

    We reviewed articles using computational RF dosimetry to compare the Specific Anthropomorphic Mannequin (SAM) to anatomically correct models of the human head. Published conclusions based on such comparisons have varied widely. We looked for reasons that might cause apparently similar comparisons to produce dissimilar results. We also looked at the information needed to adequately compare the results of computational RF dosimetry studies. We concluded studies were not comparable because of differences in definitions, models, and methodology. Therefore we propose a protocol, developed by an IEEE standards group, as an initial step in alleviating this problem. The protocol calls for a benchmark validation study comparing the SAM phantom to two anatomically correct models of the human head. It also establishes common definitions and reporting requirements that will increase the comparability of all computational RF dosimetry studies of the human head.

  9. Review and standardization of cell phone exposure calculations using the SAM phantom and anatomically correct head models

    PubMed Central

    Beard, Brian B; Kainz, Wolfgang

    2004-01-01

    We reviewed articles using computational RF dosimetry to compare the Specific Anthropomorphic Mannequin (SAM) to anatomically correct models of the human head. Published conclusions based on such comparisons have varied widely. We looked for reasons that might cause apparently similar comparisons to produce dissimilar results. We also looked at the information needed to adequately compare the results of computational RF dosimetry studies. We concluded studies were not comparable because of differences in definitions, models, and methodology. Therefore we propose a protocol, developed by an IEEE standards group, as an initial step in alleviating this problem. The protocol calls for a benchmark validation study comparing the SAM phantom to two anatomically correct models of the human head. It also establishes common definitions and reporting requirements that will increase the comparability of all computational RF dosimetry studies of the human head. PMID:15482601

  10. [Selection of occlusal scheme on masticatory function in denture wearers].

    PubMed

    Koide, Kaoru

    2004-12-01

    The characteristics of full balanced occlusion (FBO) and lingualized occlusion (LO), which are occlusions that make up removable dentures, were investigated from the standpoint of masticatory function, and an attempt was made to clarify criteria for selecting and configuring occlusions to suit individual cases. Since there have been few studies that have quantitatively compared FBO and LO from the aspect of masticatory function, we decided to organize and present the characteristics of both in this paper based on our findings from studies carried out in our department. We found that LO offered a higher ability of food crushing, showed higher masticatory performance in the case of hard foods, displayed faster as well as smoother masticatory movement, and showed chewing patterns that were closer to the chopper type compared with FBO. Moreover, subjective evaluation by subjects indicated that "it was easier to eat and the food tasted better" with the LO compared with the FBO in the case of general foods. Furthermore, a comparison of anatomical form and bladed form of upper lingual cusps in the case of LO showed no difference between the anatomical form and the bladed form in terms of masticatory performance in the case of any of the test foods, but the bladed form offered a higher ability of food crushing, displayed faster and smoother masticatory movement, and showed chewing patterns that were closer to the chopper type. In addition, subjective evaluation by subjects showed that it was easier for them to eat raw carrots and pickled radish, which are hard foods generally thought to be difficult to eat with dentures, with the bladed form compared with the anatomical form.

  11. Comparison of qualitative and quantitative analysis of T2-weighted MRI scans in chronic-progressive multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Adams, Hans-Peter; Wagner, Simone; Koziol, James A.

    1998-06-01

    Magnetic resonance imaging (MRI) is routinely used for the diagnosis of multiple sclerosis (MS), and for objective assessment of the extent of disease as a marker of treatment efficacy in MS clinical trials. The purpose of this study is to compare the evaluation of T2-weighted MRI scans in MS patients using a semi-automated quantitative technique with an independent assessment by a neurologist. Baseline, 6- month, and 12-month T2-weighted MRI scans from 41 chronic progressive MS patients were examined. The lesion volume ranged from 0.50 to 51.56 cm2 (mean: 8.08 cm2). Reproducibility of the quantitative technique was assessed by the re-evaluation of a random subset of 20 scans, the coefficient of variation of the replicate determinations was 8.2%. The reproducibility of the neurologist evaluations was assessed by the re-evaluation of a random subset of 10 patients. The rank correlation between the results of the two methods was 0.097, which did not significantly differ from zero. Disease-related activity in T2-weighted MRI scans is a multi-dimensional construct, and is not adequately summarized solely by determination of lesion volume. In this setting, image analysis software should not only support storage and retrieval as sets of pixels, but should also support links to an anatomical dictionary.

  12. EmbryoMiner: A new framework for interactive knowledge discovery in large-scale cell tracking data of developing embryos.

    PubMed

    Schott, Benjamin; Traub, Manuel; Schlagenhauf, Cornelia; Takamiya, Masanari; Antritter, Thomas; Bartschat, Andreas; Löffler, Katharina; Blessing, Denis; Otte, Jens C; Kobitski, Andrei Y; Nienhaus, G Ulrich; Strähle, Uwe; Mikut, Ralf; Stegmaier, Johannes

    2018-04-01

    State-of-the-art light-sheet and confocal microscopes allow recording of entire embryos in 3D and over time (3D+t) for many hours. Fluorescently labeled structures can be segmented and tracked automatically in these terabyte-scale 3D+t images, resulting in thousands of cell migration trajectories that provide detailed insights to large-scale tissue reorganization at the cellular level. Here we present EmbryoMiner, a new interactive open-source framework suitable for in-depth analyses and comparisons of entire embryos, including an extensive set of trajectory features. Starting at the whole-embryo level, the framework can be used to iteratively focus on a region of interest within the embryo, to investigate and test specific trajectory-based hypotheses and to extract quantitative features from the isolated trajectories. Thus, the new framework provides a valuable new way to quantitatively compare corresponding anatomical regions in different embryos that were manually selected based on biological prior knowledge. As a proof of concept, we analyzed 3D+t light-sheet microscopy images of zebrafish embryos, showcasing potential user applications that can be performed using the new framework.

  13. Fully automatic multi-atlas segmentation of CTA for partial volume correction in cardiac SPECT/CT

    NASA Astrophysics Data System (ADS)

    Liu, Qingyi; Mohy-ud-Din, Hassan; Boutagy, Nabil E.; Jiang, Mingyan; Ren, Silin; Stendahl, John C.; Sinusas, Albert J.; Liu, Chi

    2017-05-01

    Anatomical-based partial volume correction (PVC) has been shown to improve image quality and quantitative accuracy in cardiac SPECT/CT. However, this method requires manual segmentation of various organs from contrast-enhanced computed tomography angiography (CTA) data. In order to achieve fully automatic CTA segmentation for clinical translation, we investigated the most common multi-atlas segmentation methods. We also modified the multi-atlas segmentation method by introducing a novel label fusion algorithm for multiple organ segmentation to eliminate overlap and gap voxels. To evaluate our proposed automatic segmentation, eight canine 99mTc-labeled red blood cell SPECT/CT datasets that incorporated PVC were analyzed, using the leave-one-out approach. The Dice similarity coefficient of each organ was computed. Compared to the conventional label fusion method, our proposed label fusion method effectively eliminated gaps and overlaps and improved the CTA segmentation accuracy. The anatomical-based PVC of cardiac SPECT images with automatic multi-atlas segmentation provided consistent image quality and quantitative estimation of intramyocardial blood volume, as compared to those derived using manual segmentation. In conclusion, our proposed automatic multi-atlas segmentation method of CTAs is feasible, practical, and facilitates anatomical-based PVC of cardiac SPECT/CT images.

  14. Functional specialisation of pelvic limb anatomy in horses (Equus caballus)

    PubMed Central

    Payne, RC; Hutchinson, JR; Robilliard, JJ; Smith, NC; Wilson, AM

    2005-01-01

    We provide quantitative anatomical data on the muscle–tendon units of the equine pelvic limb. Specifically, we recorded muscle mass, fascicle length, pennation angle, tendon mass and tendon rest length. Physiological cross sectional area was then determined and maximum isometric force estimated. There was proximal-to-distal reduction in muscle volume and fascicle length. Proximal limb tendons were few and, where present, were relatively short. By contrast, distal limb tendons were numerous and long in comparison to mean muscle fascicle length, increasing potential for elastic energy storage. When compared with published data on thoracic limb muscles, proximal pelvic limb muscles were larger in volume and had shorter fascicles. Distal limb muscle architecture was similar in thoracic and pelvic limbs with the exception of flexor digitorum lateralis (lateral head of the deep digital flexor), the architecture of which was similar to that of the pelvic and thoracic limb superficial digital flexors, suggesting a functional similarity. PMID:15960766

  15. Palisade endings and proprioception in extraocular muscles: a comparison with skeletal muscles.

    PubMed

    Lienbacher, Karoline; Horn, Anja K E

    2012-12-01

    This article describes current views on motor and sensory control of extraocular muscles (EOMs) based on anatomical data. The special morphology of EOMs, including their motor innervation, is described in comparison to classical skeletal limb and trunk muscles. The presence of proprioceptive organs is reviewed with emphasis on the palisade endings (PEs), which are unique to EOMs, but the function of which is still debated. In consideration of the current new anatomical data about the location of cell bodies of PEs, a hypothesis on the function of PEs in EOMs and the multiply innervated muscle fibres they are attached to is put forward.

  16. An anatomically based protocol for the description of foot segment kinematics during gait.

    PubMed

    Leardini, A; Benedetti, M G; Catani, F; Simoncini, L; Giannini, S

    1999-10-01

    To design a technique for the in vivo description of ankle and other foot joint rotations to be applied in routine functional evaluation using non-invasive stereophotogrammetry. Position and orientation of tibia/fibula, calcaneus, mid-foot, 1st metatarsal and hallux segments were tracked during the stance phase of walking in nine asymptomatic subjects. Rigid clusters of reflective markers were used for foot segment pose estimation. Anatomical landmark calibration was applied for the reconstruction of anatomical landmarks. Previous studies have analysed only a limited number of joints or have proposed invasive techniques. Anatomical landmark trajectories were reconstructed in the laboratory frame using data from the anatomical calibration procedure. Anatomical co-ordinate frames were defined using the obtained landmark trajectories. Joint co-ordinate systems were used to calculate corresponding joint rotations in all three anatomical planes. The patterns of the joint rotations were highly repeatable within subjects. Consistent patterns between subjects were also exhibited at most of the joints. The method proposed enables a detailed description of ankle and other foot joint rotations on an anatomical base. Joint rotations can therefore be expressed in the well-established terminology necessary for their clinical interpretation. Functional evaluation of patients affected by foot diseases has recently called for more detailed and non-invasive protocols for the description of foot joint rotations during gait. The proposed method can help clinicians to distinguish between normal and pathological pattern of foot joint rotations, and to quantitatively assess the restoration of normal function after treatment.

  17. A quantitative comparison of morphological and histological characteristics of collagen in the rabbit medial collateral ligament.

    PubMed

    Wan, Chao; Hao, Zhixiu; Wen, Shizhu

    2013-12-01

    Collagen fiber is one of the critical factors in determining mechanical properties of ligaments and both the morphological and histological characteristics of collagen have been widely studied. However, there was still no consensus about whether the morphological characteristics of collagen correlated with its histological characteristics in physiological ligaments. Rabbit medial collateral ligaments (MCLs) were measured under a transmission electron microscope and a polarized light microscope plus picrosirius red-staining to obtain the distributions of collagen fibril diameters and types at different anatomical sites of rabbit MCLs, respectively. The correlation between the fibril diameter and type was determined by a correlation analysis. The collagen fibril diameters at the different anatomical sites had different distributions (unimodal or bimodal) and mean fibril diameters were found to increase significantly from the anterior part to the posterior part (P=0.0482) as well as from the proximal to the distal sections (P=0.0208). Type I collagen in the core portion of MCLs was significantly less than at the other four peripheral areas (P<0.005) but no significant variation was found in each respective portion (P>0.05). The low coefficient in the correlation analysis (r=0.3759) demonstrated collagen fibril diameters had no correlation with collagen types. This may provide a new view of collagen types in studying the mechanical behavior of ligaments. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Comparison of three methods for registration of abdominal/pelvic volume data sets from functional-anatomic scans

    NASA Astrophysics Data System (ADS)

    Mahmoud, Faaiza; Ton, Anthony; Crafoord, Joakim; Kramer, Elissa L.; Maguire, Gerald Q., Jr.; Noz, Marilyn E.; Zeleznik, Michael P.

    2000-06-01

    The purpose of this work was to evaluate three volumetric registration methods in terms of technique, user-friendliness and time requirements. CT and SPECT data from 11 patients were interactively registered using: a 3D method involving only affine transformation; a mixed 3D - 2D non-affine (warping) method; and a 3D non-affine (warping) method. In the first method representative isosurfaces are generated from the anatomical images. Registration proceeds through translation, rotation, and scaling in all three space variables. Resulting isosurfaces are fused and quantitative measurements are possible. In the second method, the 3D volumes are rendered co-planar by performing an oblique projection. Corresponding landmark pairs are chosen on matching axial slice sets. A polynomial warp is then applied. This method has undergone extensive validation and was used to evaluate the results. The third method employs visualization tools. The data model allows images to be localized within two separate volumes. Landmarks are chosen on separate slices. Polynomial warping coefficients are generated and data points from one volume are moved to the corresponding new positions. The two landmark methods were the least time consuming (10 to 30 minutes from start to finish), but did demand a good knowledge of anatomy. The affine method was tedious and required a fair understanding of 3D geometry.

  19. Anatomical versus non-anatomical single bundle anterior cruciate ligament reconstruction: a cadaveric study of comparison of knee stability.

    PubMed

    Lim, Hong-Chul; Yoon, Yong-Cheol; Wang, Joon-Ho; Bae, Ji-Hoon

    2012-12-01

    The purpose of this study was to compare the initial stability of anatomical and non-anatomical single bundle anterior cruciate ligament (ACL) reconstruction and to determine which would better restore intact knee kinematics. Our hypothesis was that the initial stability of anatomical single bundle ACL reconstruction would be superior to that of non-anatomical single bundle ACL reconstruction. Anterior tibial translation (ATT) and internal rotation of the tibia were measured with a computer navigation system in seven pairs of fresh-frozen cadaveric knees under two testing conditions (manual maximum anterior force, and a manual maximum anterior force combined with an internal rotational force). Tests were performed at 0, 30, 60, and 90 degrees of flexion with the ACL intact, the ACL transected, and after reconstruction of one side of a pair with either anatomical or non-anatomical single bundle ACL reconstruction. Under manual maximal anterior force, both reconstruction techniques showed no significant difference of ATT when compared to ACL intact knee state at 30° of knee flexion (p > 0.05). Under the combined anterior and internal rotatory force, non-anatomical single-bundle ACL reconstruction showed significant difference of ATT compared to those in ACL intact group (p < 0.05). In contrast, central anatomical single bundle ACL reconstruction showed no significant difference of ATT compared to those in ACL intact group (p > 0.05). Internal rotation of the tibia showed no significant difference in the ACL intact, the ACL transected, non-anatomical reconstructed and anatomical reconstructed knees. Anatomical single bundle ACL reconstruction restored the initial stability closer to the native ACL under combined anterior and internal rotational forces when compared to non-anatomical ACL single bundle reconstruction.

  20. Quantitative assessment of emphysema from whole lung CT scans: comparison with visual grading

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Apanosovich, Tatiyana V.; Wang, Jianwei; Yankelevitz, David F.; Henschke, Claudia I.

    2009-02-01

    Emphysema is a disease of the lungs that destroys the alveolar air sacs and induces long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema and for visual assessment by radiologists of the extent present in the lungs. Several measures have been introduced for the quantification of the extent of disease directly from CT data in order to add to the qualitative assessments made by radiologists. In this paper we compare emphysema index, mean lung density, histogram percentiles, and the fractal dimension to visual grade in order to evaluate the predictability of radiologist visual scoring of emphysema from low-dose CT scans through quantitative scores, in order to determine which measures can be useful as surrogates for visual assessment. All measures were computed over nine divisions of the lung field (whole lung, individual lungs, and upper/middle/lower thirds of each lung) for each of 148 low-dose, whole lung scans. In addition, a visual grade of each section was also given by an expert radiologist. One-way ANOVA and multinomial logistic regression were used to determine the ability of the measures to predict visual grade from quantitative score. We found that all measures were able to distinguish between normal and severe grades (p<0.01), and between mild/moderate and all other grades (p<0.05). However, no measure was able to distinguish between mild and moderate cases. Approximately 65% prediction accuracy was achieved from using quantitative score to predict visual grade, with 73% if mild and moderate cases are considered as a single class.

  1. Experimental methods and transport models for drug delivery across the blood-brain barrier.

    PubMed

    Fu, Bingmei M

    2012-06-01

    The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB, e.g., the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents and drug carriers, and presented newly developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Finally, on the basis of the experimental observations and the quantitative models, several strategies for drug delivery through the BBB were proposed.

  2. Experimental Methods and Transport Models for Drug Delivery across the Blood-Brain Barrier

    PubMed Central

    Fu, Bingmei M

    2017-01-01

    The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB, e.g., the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents and drug carriers, and presented newly developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Finally, on the basis of the experimental observations and the quantitative models, several strategies for drug delivery through the BBB were proposed. PMID:22201587

  3. A comparison between various radiological techniques in the localization and analysis of impacted and supernumerary teeth.

    PubMed

    Ziegler, Christoph M; Klimowicz, Thomas R

    2013-01-01

    An increasing number of different types of commercial cone-beam computed tomography (CBCT) devices are available for three-dimensional (3D) imaging in the field of dental and maxillofacial radiology. When removing impacted or supernumerary teeth, surgical teams often operate adjacent significant anatomical structures such as nerves, vessels, adjacent teeth roots, and paranasal sinuses. It is therefore important to choose the appropriate surgical approach to avoid iatrogenic damage to the essential anatomical neighbouring structures. CBCT, also called digital volume tomography (DVT), can visualize impacted and supernumerary teeth in all standard planes, as well as multisectional 3D views. These devices have shown to be highly beneficial in the assessment of small bony lesions and maxillofacial injuries. However, it is still necessary to determine the effectiveness of such devices in the assessment of impacted and supernumerary teeth, in comparison to the conventional radiological methods of intraoral X-rays and panoramic X-rays. During a period of 2 years, a total of 61 patients of whom majority had impacted teeth or supernumerary elements in the frontal maxillary region were studied with CBCT and treated at the St. Olavs University Hospital. Patients were referred to our Department of Oral and Maxillofacial Surgery with both conventional and digital intraoral X-rays and/or panoramic X-rays. None had any acute infections or odontogenic abscesses, and most presented with asymptomatic impacted tooth. A comparison between the preoperative conventional and the CBCT images, the resulting diagnoses, and the intraoperative findings as "gold standard" were made and recorded in a compiled scoring sheet. The objects of interest were researched with the magnification method. Each patient was identified only with a patient number. In contrast to the conventional X-rays, the pre-surgical evaluation with the CBCT revealed detailed imaging of significant anatomical structures and objects of interest, with highly accurate anatomical and morphologic imaging, when compared to the intraoperative findings. Furthermore, no diagnostic problems, in relation to the anatomical localization, occurred preoperatively. The CBCT provides true and precise anatomical information with high surgical predictability without distortion or artefacts, and is superior to conventional radiography. It enables more time-efficient surgeries and reduces costs and surgical complications.

  4. Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid

    PubMed Central

    Gorczynska, Iwona; Migacz, Justin V.; Zawadzki, Robert J.; Capps, Arlie G.; Werner, John S.

    2016-01-01

    We compared the performance of three OCT angiography (OCTA) methods: speckle variance, amplitude decorrelation and phase variance for imaging of the human retina and choroid. Two averaging methods, split spectrum and volume averaging, were compared to assess the quality of the OCTA vascular images. All data were acquired using a swept-source OCT system at 1040 nm central wavelength, operating at 100,000 A-scans/s. We performed a quantitative comparison using a contrast-to-noise (CNR) metric to assess the capability of the three methods to visualize the choriocapillaris layer. For evaluation of the static tissue noise suppression in OCTA images we proposed to calculate CNR between the photoreceptor/RPE complex and the choriocapillaris layer. Finally, we demonstrated that implementation of intensity-based OCT imaging and OCT angiography methods allows for visualization of retinal and choroidal vascular layers known from anatomic studies in retinal preparations. OCT projection imaging of data flattened to selected retinal layers was implemented to visualize retinal and choroidal vasculature. User guided vessel tracing was applied to segment the retinal vasculature. The results were visualized in a form of a skeletonized 3D model. PMID:27231598

  5. Estimating anatomical wrist joint motion with a robotic exoskeleton.

    PubMed

    Rose, Chad G; Kann, Claudia K; Deshpande, Ashish D; O'Malley, Marcia K

    2017-07-01

    Robotic exoskeletons can provide the high intensity, long duration targeted therapeutic interventions required for regaining motor function lost as a result of neurological injury. Quantitative measurements by exoskeletons have been proposed as measures of rehabilitative outcomes. Exoskeletons, in contrast to end effector designs, have the potential to provide a direct mapping between human and robot joints. This mapping rests on the assumption that anatomical axes and robot axes are aligned well, and that movement within the exoskeleton is negligible. These assumptions hold well for simple one degree-of-freedom joints, but may not be valid for multi-articular joints with unique musculoskeletal properties such as the wrist. This paper presents an experiment comparing robot joint kinematic measurements from an exoskeleton to anatomical joint angles measured with a motion capture system. Joint-space position measurements and task-space smoothness metrics were compared between the two measurement modalities. The experimental results quantify the error between joint-level position measurements, and show that exoskeleton kinematic measurements preserve smoothness characteristics found in anatomical measures of wrist movements.

  6. Cardiovascular cast model fabrication and casting effectiveness evaluation in fetus with severe congenital heart disease or normal heart.

    PubMed

    Wang, Yu; Cao, Hai-yan; Xie, Ming-xing; He, Lin; Han, Wei; Hong, Liu; Peng, Yuan; Hu, Yun-fei; Song, Ben-cai; Wang, Jing; Wang, Bin; Deng, Cheng

    2016-04-01

    To investigate the application and effectiveness of vascular corrosion technique in preparing fetal cardiovascular cast models, 10 normal fetal heart specimens with other congenital disease (control group) and 18 specimens with severe congenital heart disease (case group) from induced abortions were enrolled in this study from March 2013 to June 2015 in our hospital. Cast models were prepared by injecting casting material into vascular lumen to demonstrate real geometries of fetal cardiovascular system. Casting effectiveness was analyzed in terms of local anatomic structures and different anatomical levels (including overall level, atrioventricular and great vascular system, left-sided and right-sided heart), as well as different trimesters of pregnancy. In our study, all specimens were successfully casted. Casting effectiveness analysis of local anatomic structures showed a mean score from 1.90±1.45 to 3.60±0.52, without significant differences between case and control groups in most local anatomic structures except left ventricle, which had a higher score in control group (P=0.027). Inter-group comparison of casting effectiveness in different anatomical levels showed no significant differences between the two groups. Intra-group comparison also revealed undifferentiated casting effectiveness between atrioventricular and great vascular system, or left-sided and right-sided heart in corresponding group. Third-trimester group had a significantly higher perfusion score in great vascular system than second-trimester group (P=0.046), while the other anatomical levels displayed no such difference. Vascular corrosion technique can be successfully used in fabrication of fetal cardiovascular cast model. It is also a reliable method to demonstrate three-dimensional anatomy of severe congenital heart disease and normal heart in fetus.

  7. A critical appraisal of 11th century treatise by Ibn Sina (Avicenna) on the anatomy of the vascular system: Comparison with modern anatomic descriptions.

    PubMed

    Mazengenya, P; Bhikha, R

    2018-06-01

    Ibn Sina (also known as Avicenna in the West) was the most famous physician and medical scientist of the medieval era. His book, the Canon of Medicine comprised a vast collection of medical information ranging from basic medical sciences to specialised medical fields. Herein, we present an analysis of the cardiovascular system, particularly giving an in-depth comparison of the structural and functional anatomy of the arteries and veins of the body as described by Avicenna in the Canon of Medicine and comparing them to modern extant anatomical literature. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Modular Classification of Endoscopic Endonasal Transsphenoidal Approaches to Sellar Region: Anatomic Quantitative Study.

    PubMed

    Belotti, Francesco; Doglietto, Francesco; Schreiber, Alberto; Ravanelli, Marco; Ferrari, Marco; Lancini, Davide; Rampinelli, Vittorio; Hirtler, Lena; Buffoli, Barbara; Bolzoni Villaret, Andrea; Maroldi, Roberto; Rodella, Luigi Fabrizio; Nicolai, Piero; Fontanella, Marco Maria

    2018-01-01

    Endoscopic visualization does not necessarily correspond to an adequate working space. The need for balancing invasiveness and adequacy of sellar tumor exposure has recently led to the description of multiple endoscopic endonasal transsphenoidal approaches. Comparative anatomic data on these variants are lacking. We sought to quantitatively compare endoscopic endonasal transsphenoidal approaches to the sella and parasellar region, using the concept of "surgical pyramid." Four endoscopic transsphenoidal approaches were performed in 10 injected specimens: 1) hemisphenoidotomy; 2) transrostral; 3) extended transrostral (with superior turbinectomy); and 4) extended transrostral with posterior ethmoidectomy. ApproachViewer software (part of GTx-Eyes II, University Health Network, Toronto, Canada) with a dedicated navigation system was used to quantify the surgical pyramid volume, as well as exposure of sellar and parasellar areas. Statistical analyses were performed with Friedman's tests and Nemenyi's procedure. Hemisphenoidotomy provided limited exposure of the sellar area and a small working volume. A transrostral approach was necessary to expose the entire sella. Exposure of lateral parasellar areas required superior turbinectomy or posterior ethmoidectomy. The differences between each of the modules was statistically significant. The present study validates, from an anatomic point of view, a modular classification of endoscopic endonasal transsphenoidal approaches to the sellar region. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    NASA Astrophysics Data System (ADS)

    Ford, N. L.; Martin, E. L.; Lewis, J. F.; Veldhuizen, R. A. W.; Holdsworth, D. W.; Drangova, M.

    2009-04-01

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  10. Comparison of femur tunnel aperture location in patients undergoing transtibial and anatomical single-bundle anterior cruciate ligament reconstruction.

    PubMed

    Lee, Dae-Hee; Kim, Hyun-Jung; Ahn, Hyeong-Sik; Bin, Seong-Il

    2016-12-01

    Although three-dimensional computed tomography (3D-CT) has been used to compare femoral tunnel position following transtibial and anatomical anterior cruciate ligament (ACL) reconstruction, no consensus has been reached on which technique results in a more anatomical position because methods of quantifying femoral tunnel position on 3D-CT have not been consistent. This meta-analysis was therefore performed to compare femoral tunnel location following transtibial and anatomical ACL reconstruction, in both the low-to-high and deep-to-shallow directions. This meta-analysis included all studies that used 3D-CT to compare femoral tunnel location, using quadrant or anatomical coordinate axis methods, following transtibial and anatomical (AM portal or OI) single-bundle ACL reconstruction. Six studies were included in the meta-analysis. Femoral tunnel location was 18 % higher in the low-to-high direction, but was not significant in the deep-to-shallow direction, using the transtibial technique than the anatomical methods, when measured using the anatomical coordinate axis method. When measured using the quadrant method, however, femoral tunnel positions were significantly higher (21 %) and shallower (6 %) with transtibial than anatomical methods of ACL reconstruction. The anatomical ACL reconstruction techniques led to a lower femoral tunnel aperture location than the transtibial technique, suggesting the superiority of anatomical techniques for creating new femoral tunnels during revision ACL reconstruction in femoral tunnel aperture location in the low-to-high direction. However, the mean difference in the deep-to-shallow direction differed by method of measurement. Meta-analysis, Level II.

  11. Measuring Brain Connectivity: Diffusion Tensor Imaging Validates Resting State Temporal Correlations

    PubMed Central

    Skudlarski, Pawel; Jagannathan, Kanchana; Calhoun, Vince D.; Hampson, Michelle; Skudlarska, Beata A.; Pearlson, Godfrey

    2015-01-01

    Diffusion tensor imaging (DTI) and resting state temporal correlations (RSTC) are two leading techniques for investigating the connectivity of the human brain. They have been widely used to investigate the strength of anatomical and functional connections between distant brain regions in healthy subjects, and in clinical populations. Though they are both based on magnetic resonance imaging (MRI) they have not yet been compared directly. In this work both techniques were employed to create global connectivity matrices covering the whole brain gray matter. This allowed for direct comparisons between functional connectivity measured by RSTC with anatomical connectivity quantified using DTI tractography. We found that connectivity matrices obtained using both techniques showed significant agreement. Connectivity maps created for a priori defined anatomical regions showed significant correlation, and furthermore agreement was especially high in regions showing strong overall connectivity, such as those belonging to the default mode network. Direct comparison between functional RSTC and anatomical DTI connectivity, presented here for the first time, links two powerful approaches for investigating brain connectivity and shows their strong agreement. It provides a crucial multi-modal validation for resting state correlations as representing neuronal connectivity. The combination of both techniques presented here allows for further combining them to provide richer representation of brain connectivity both in the healthy brain and in clinical conditions. PMID:18771736

  12. Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations.

    PubMed

    Skudlarski, Pawel; Jagannathan, Kanchana; Calhoun, Vince D; Hampson, Michelle; Skudlarska, Beata A; Pearlson, Godfrey

    2008-11-15

    Diffusion tensor imaging (DTI) and resting state temporal correlations (RSTC) are two leading techniques for investigating the connectivity of the human brain. They have been widely used to investigate the strength of anatomical and functional connections between distant brain regions in healthy subjects, and in clinical populations. Though they are both based on magnetic resonance imaging (MRI) they have not yet been compared directly. In this work both techniques were employed to create global connectivity matrices covering the whole brain gray matter. This allowed for direct comparisons between functional connectivity measured by RSTC with anatomical connectivity quantified using DTI tractography. We found that connectivity matrices obtained using both techniques showed significant agreement. Connectivity maps created for a priori defined anatomical regions showed significant correlation, and furthermore agreement was especially high in regions showing strong overall connectivity, such as those belonging to the default mode network. Direct comparison between functional RSTC and anatomical DTI connectivity, presented here for the first time, links two powerful approaches for investigating brain connectivity and shows their strong agreement. It provides a crucial multi-modal validation for resting state correlations as representing neuronal connectivity. The combination of both techniques presented here allows for further combining them to provide richer representation of brain connectivity both in the healthy brain and in clinical conditions.

  13. Renal Tumor Anatomic Complexity: Clinical Implications for Urologists.

    PubMed

    Joshi, Shreyas S; Uzzo, Robert G

    2017-05-01

    Anatomic tumor complexity can be objectively measured and reported using nephrometry. Various scoring systems have been developed in an attempt to correlate tumor complexity with intraoperative and postoperative outcomes. Nephrometry may also predict tumor biology in a noninvasive, reproducible manner. Other scoring systems can help predict surgical complexity and the likelihood of complications, independent of tumor characteristics. The accumulated data in this new field provide provocative evidence that objectifying anatomic complexity can consolidate reporting mechanisms and improve metrics of comparisons. Further prospective validation is needed to understand the full descriptive and predictive ability of the various nephrometry scores. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Velocity Measurement in Carotid Artery: Quantitative Comparison of Time-Resolved 3D Phase-Contrast MRI and Image-based Computational Fluid Dynamics

    PubMed Central

    Sarrami-Foroushani, Ali; Nasr Esfahany, Mohsen; Nasiraei Moghaddam, Abbas; Saligheh Rad, Hamidreza; Firouznia, Kavous; Shakiba, Madjid; Ghanaati, Hossein; Wilkinson, Iain David; Frangi, Alejandro Federico

    2015-01-01

    Background: Understanding hemodynamic environment in vessels is important for realizing the mechanisms leading to vascular pathologies. Objectives: Three-dimensional velocity vector field in carotid bifurcation is visualized using TR 3D phase-contrast magnetic resonance imaging (TR 3D PC MRI) and computational fluid dynamics (CFD). This study aimed to present a qualitative and quantitative comparison of the velocity vector field obtained by each technique. Subjects and Methods: MR imaging was performed on a 30-year old male normal subject. TR 3D PC MRI was performed on a 3 T scanner to measure velocity in carotid bifurcation. 3D anatomical model for CFD was created using images obtained from time-of-flight MR angiography. Velocity vector field in carotid bifurcation was predicted using CFD and PC MRI techniques. A statistical analysis was performed to assess the agreement between the two methods. Results: Although the main flow patterns were the same for the both techniques, CFD showed a greater resolution in mapping the secondary and circulating flows. Overall root mean square (RMS) errors for all the corresponding data points in PC MRI and CFD were 14.27% in peak systole and 12.91% in end diastole relative to maximum velocity measured at each cardiac phase. Bland-Altman plots showed a very good agreement between the two techniques. However, this study was not aimed to validate any of methods, instead, the consistency was assessed to accentuate the similarities and differences between Time-resolved PC MRI and CFD. Conclusion: Both techniques provided quantitatively consistent results of in vivo velocity vector fields in right internal carotid artery (RCA). PC MRI represented a good estimation of main flow patterns inside the vasculature, which seems to be acceptable for clinical use. However, limitations of each technique should be considered while interpreting results. PMID:26793288

  15. Development of a quantitative multivariable radiographic method to evaluate anatomic changes associated with laminitis in the forefeet of donkeys.

    PubMed

    Collins, Simon N; Dyson, Sue J; Murray, Rachel C; Newton, J Richard; Burden, Faith; Trawford, Andrew F

    2012-08-01

    To establish and validate an objective method of radiographic diagnosis of anatomic changes in laminitic forefeet of donkeys on the basis of data from a comprehensive series of radiographic measurements. 85 donkeys with and 85 without forelimb laminitis for baseline data determination; a cohort of 44 donkeys with and 18 without forelimb laminitis was used for validation analyses. For each donkey, lateromedial radiographic views of 1 weight-bearing forelimb were obtained; images from 11 laminitic and 2 nonlaminitic donkeys were excluded (motion artifact) from baseline data determination. Data from an a priori selection of 19 measurements of anatomic features of laminitic and nonlaminitic donkey feet were analyzed by use of a novel application of multivariate statistical techniques. The resultant diagnostic models were validated in a blinded manner with data from the separate cohort of laminitic and nonlaminitic donkeys. Data were modeled, and robust statistical rules were established for the diagnosis of anatomic changes within laminitic donkey forefeet. Component 1 scores ≤ -3.5 were indicative of extreme anatomic change, and scores from -2.0 to 0.0 denoted modest change. Nonlaminitic donkeys with a score from 0.5 to 1.0 should be considered as at risk for laminitis. Results indicated that the radiographic procedures evaluated can be used for the identification, assessment, and monitoring of anatomic changes associated with laminitis. Screening assessments by use of this method may enable early detection of mild anatomic change and identification of at-risk donkeys.

  16. A Comprehensive Reanalysis of the Distal Iliotibial Band: Quantitative Anatomy, Radiographic Markers, and Biomechanical Properties.

    PubMed

    Godin, Jonathan A; Chahla, Jorge; Moatshe, Gilbert; Kruckeberg, Bradley M; Muckenhirn, Kyle J; Vap, Alexander R; Geeslin, Andrew G; LaPrade, Robert F

    2017-09-01

    The qualitative anatomy of the distal iliotibial band (ITB) has previously been described. However, a comprehensive characterization of the quantitative anatomic, radiographic, and biomechanical properties of the Kaplan fibers of the deep distal ITB has not yet been established. It is paramount to delineate these characteristics to fully understand the distal ITB's contribution to rotational knee stability. Purpose/Hypothesis: There were 2 distinct purposes for this study: (1) to perform a quantitative anatomic and radiographic evaluation of the distal ITB's attachment sites and their relationships to pertinent osseous and soft tissue landmarks, and (2) to quantify the biomechanical properties of the deep (Kaplan) fibers of the distal ITB. It was hypothesized that the distal ITB has definable parameters concerning its anatomic attachments and consistent relationships to surgically pertinent landmarks with correlating plain radiographic findings. In addition, it was hypothesized that the biomechanical properties of the Kaplan fibers would support their role as important restraints against internal rotation. Descriptive laboratory study. Ten nonpaired, fresh-frozen human cadaveric knees (mean age, 61.1 years; range, 54-65 years) were dissected for anatomic and radiographic purposes. A coordinate measuring device quantified the attachment areas of the distal ITB to the distal femur, patella, and proximal tibia and their relationships to pertinent bony landmarks. A radiographic analysis was performed by inserting pins into the attachment sites of relevant anatomic structures to assess their location relative to pertinent bony landmarks with fluoroscopic guidance. A further biomechanical assessment of 10 cadaveric knees quantified the load to failure and stiffness of the Kaplan fibers' insertion on the distal femur after a preconditioning protocol. Two separate deep (Kaplan) fiber bundles were identified with attachments to 2 newly identified femoral bony prominences (ridges). The proximal and distal bundles inserted on the distal femur 53.6 mm (95% CI, 50.7-56.6 mm) and 31.4 mm (95% CI, 27.3-35.5 mm) proximal to the lateral epicondyle, respectively. The centers of the bundle insertions were 22.5 mm (95% CI, 19.1-25.9 mm) apart. The total insertion area of the distal ITB on the proximal tibia was 429.1 mm 2 (95% CI, 349.2-509.1 mm 2 ). A distinct capsulo-osseous layer of the distal ITB was also identified that was intimately related to the lateral knee capsule. Its origin was in close proximity to the lateral gastrocnemius tubercle, and it inserted on the proximal tibia at the lateral tibial tubercle between the fibular head and the Gerdy tubercle. Radiographic analysis supported the quantitative anatomic findings. The mean maximum load during pull-to-failure testing was 71.3 N (95% CI, 41.2-101.4 N) and 170.2 N (95% CI, 123.6-216.8 N) for the proximal and distal Kaplan bundles, respectively. The most important finding of this study was that 2 distinct deep bundles (Kaplan fibers) of the distal ITB were identified. Each bundle of the deep layer of the ITB was associated with a newly identified distinct bony ridge. Radiographic analysis confirmed the measurements previously recorded and established reproducible landmarks for the newly described structures. Biomechanical testing revealed that the Kaplan fibers had a strong attachment to the distal femur, thereby supporting a role in rotational knee stability. The identification of 2 distinct deep fiber (Kaplan) attachments clarifies the function of the ITB more definitively. The results also support the role of the ITB in rotatory knee stability because of the fibers' vectors and their identified maximum loads. These findings provide the anatomic and biomechanical foundation needed for the development of reconstruction or repair techniques to anatomically address these deficiencies in knee ligament injuries.

  17. Anatomical and Electrophysiological Comparison of CA1 Pyramidal Neurons of the Rat and Mouse

    PubMed Central

    Routh, Brandy N.; Johnston, Daniel; Harris, Kristen

    2009-01-01

    The study of learning and memory at the single-neuron level has relied on the use of many animal models, most notably rodents. Although many physiological and anatomical studies have been carried out in rats, the advent of genetically engineered mice has necessitated the comparison of new results in mice to established results from rats. Here we compare fundamental physiological and morphological properties and create three-dimensional compartmental models of identified hippocampal CA1 pyramidal neurons of one strain of rat, Sprague–Dawley, and two strains of mice, C57BL/6 and 129/SvEv. We report several differences in neuronal physiology and anatomy among the three animal groups, the most notable being that neurons of the 129/SvEv mice, but not the C57BL/6 mice, have higher input resistance, lower dendritic surface area, and smaller spines than those of rats. A surprising species-specific difference in membrane resonance indicates that both mouse strains have lower levels of the hyperpolarization-activated nonspecific cation current Ih. Simulations suggest that differences in Ih kinetics rather than maximal conductance account for the lower resonance. Our findings indicate that comparisons of data obtained across strains or species will need to account for these and potentially other physiological and anatomical differences. PMID:19675296

  18. [Histo-anatomical researches of two subspecies of Lavandula angustifolia Mill].

    PubMed

    Robu, Silvia; Galeş, Ramona; Toma, C; Stănescu, Ursula

    2011-01-01

    The structure of the inflorescences of two subspecies of Lavandula angustifolia sL. angustifolia ssp. angustifolia and. L. angustifolia ssp. pyrenaica (D.C.) Guineaţ was studied to determine the range of variation in certain histo-anatomical characters. The flower and leaf structure has been analysed on cross and superficial section using the usual techniques and methods applied in plant histo-anatomical research. In cross-section, inflorescence axis has a squared-shape contour, with four proeminent ribs. On the epiderme of inflorescence axis there are present stomata, trichoms and secretory hairs. The trichoms are pluricelullar and T-branched. The secretory hairs have a short pedicel and a uni-or bicellular head. The study revealed that there are only quantitative differences, referring to the degree of sclerification and lignification of mechanical elements and the size of the vascular bundles.

  19. Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.

    PubMed

    Rakvongthai, Yothin; El Fakhri, Georges

    2017-07-01

    Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Scatter and veiling glare corrections for quantitative digital subtraction angiography

    NASA Astrophysics Data System (ADS)

    Ersahin, Atila; Molloi, Sabee Y.; Qian, Yao-Jin

    1994-05-01

    In order to quantitate anatomical and physiological parameters such as vessel dimensions and volumetric blood flow, it is necessary to make corrections for scatter and veiling glare (SVG), which are the major sources of nonlinearities in videodensitometric digital subtraction angiography (DSA). A convolution filtering technique has been investigated to estimate SVG distribution in DSA images without the need to sample the SVG for each patient. This technique utilizes exposure parameters and image gray levels to estimate SVG intensity by predicting the total thickness for every pixel in the image. At this point, corrections were also made for variation of SVG fraction with beam energy and field size. To test its ability to estimate SVG intensity, the correction technique was applied to images of a Lucite step phantom, anthropomorphic chest phantom, head phantom, and animal models at different thicknesses, projections, and beam energies. The root-mean-square (rms) percentage error of these estimates were obtained by comparison with direct SVG measurements made behind a lead strip. The average rms percentage errors in the SVG estimate for the 25 phantom studies and for the 17 animal studies were 6.22% and 7.96%, respectively. These results indicate that the SVG intensity can be estimated for a wide range of thicknesses, projections, and beam energies.

  1. Aortic root segmentation in 4D transesophageal echocardiography

    NASA Astrophysics Data System (ADS)

    Chechani, Shubham; Suresh, Rahul; Patwardhan, Kedar A.

    2018-02-01

    The Aortic Valve (AV) is an important anatomical structure which lies on the left side of the human heart. The AV regulates the flow of oxygenated blood from the Left Ventricle (LV) to the rest of the body through aorta. Pathologies associated with the AV manifest themselves in structural and functional abnormalities of the valve. Clinical management of pathologies often requires repair, reconstruction or even replacement of the valve through surgical intervention. Assessment of these pathologies as well as determination of specific intervention procedure requires quantitative evaluation of the valvular anatomy. 4D (3D + t) Transesophageal Echocardiography (TEE) is a widely used imaging technique that clinicians use for quantitative assessment of cardiac structures. However, manual quantification of 3D structures is complex, time consuming and suffers from inter-observer variability. Towards this goal, we present a semiautomated approach for segmentation of the aortic root (AR) structure. Our approach requires user-initialized landmarks in two reference frames to provide AR segmentation for full cardiac cycle. We use `coarse-to-fine' B-spline Explicit Active Surface (BEAS) for AR segmentation and Masked Normalized Cross Correlation (NCC) method for AR tracking. Our method results in approximately 0.51 mm average localization error in comparison with ground truth annotation performed by clinical experts on 10 real patient cases (139 3D volumes).

  2. Quantitative measurement and analysis for detection and treatment planning of developmental dysplasia of the hip

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Lu, Hongbing; Chen, Hanyong; Zhao, Li; Shi, Zhengxing; Liang, Zhengrong

    2009-02-01

    Developmental dysplasia of the hip is a congenital hip joint malformation affecting the proximal femurs and acetabulum that are subluxatable, dislocatable, and dislocated. Conventionally, physicians made diagnoses and treatments only based on findings from two-dimensional (2D) images by manually calculating clinic parameters. However, anatomical complexity of the disease and the limitation of current standard procedures make accurate diagnosis quite difficultly. In this study, we developed a system that provides quantitative measurement of 3D clinical indexes based on computed tomography (CT) images. To extract bone structure from surrounding tissues more accurately, the system firstly segments the bone using a knowledge-based fuzzy clustering method, which is formulated by modifying the objective function of the standard fuzzy c-means algorithm with additive adaptation penalty. The second part of the system calculates automatically the clinical indexes, which are extended from 2D to 3D for accurate description of spatial relationship between femurs and acetabulum. To evaluate the system performance, experimental study based on 22 patients with unilateral or bilateral affected hip was performed. The results of 3D acetabulum index (AI) automatically provided by the system were validated by comparison with 2D results measured by surgeons manually. The correlation between the two results was found to be 0.622 (p<0.01).

  3. Longitudinal development of cortical thickness, folding, and fiber density networks in the first 2 years of life.

    PubMed

    Nie, Jingxin; Li, Gang; Wang, Li; Shi, Feng; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2014-08-01

    Quantitatively characterizing the development of cortical anatomical networks during the early stage of life plays an important role in revealing the relationship between cortical structural connection and high-level functional development. The development of correlation networks of cortical-thickness, cortical folding, and fiber-density is systematically analyzed in this article to study the relationship between different anatomical properties during the first 2 years of life. Specifically, longitudinal MR images of 73 healthy subjects from birth to 2 year old are used. For each subject at each time point, its measures of cortical thickness, cortical folding, and fiber density are projected to its cortical surface that has been partitioned into 78 cortical regions. Then, the correlation matrices for cortical thickness, cortical folding, and fiber density at each time point can be constructed, respectively, by computing the inter-regional Pearson correlation coefficient (of any pair of ROIs) across all 73 subjects. Finally, the presence/absence pattern (i.e., binary pattern) of the connection network is constructed from each inter-regional correlation matrix, and its statistical and anatomical properties are adopted to analyze the longitudinal development of anatomical networks. The results show that the development of anatomical network could be characterized differently by using different anatomical properties (i.e., using cortical thickness, cortical folding, or fiber density). Copyright © 2013 Wiley Periodicals, Inc.

  4. Quantitative analysis of diffusion tensor orientation: theoretical framework.

    PubMed

    Wu, Yu-Chien; Field, Aaron S; Chung, Moo K; Badie, Benham; Alexander, Andrew L

    2004-11-01

    Diffusion-tensor MRI (DT-MRI) yields information about the magnitude, anisotropy, and orientation of water diffusion of brain tissues. Although white matter tractography and eigenvector color maps provide visually appealing displays of white matter tract organization, they do not easily lend themselves to quantitative and statistical analysis. In this study, a set of visual and quantitative tools for the investigation of tensor orientations in the human brain was developed. Visual tools included rose diagrams, which are spherical coordinate histograms of the major eigenvector directions, and 3D scatterplots of the major eigenvector angles. A scatter matrix of major eigenvector directions was used to describe the distribution of major eigenvectors in a defined anatomic region. A measure of eigenvector dispersion was developed to describe the degree of eigenvector coherence in the selected region. These tools were used to evaluate directional organization and the interhemispheric symmetry of DT-MRI data in five healthy human brains and two patients with infiltrative diseases of the white matter tracts. In normal anatomical white matter tracts, a high degree of directional coherence and interhemispheric symmetry was observed. The infiltrative diseases appeared to alter the eigenvector properties of affected white matter tracts, showing decreased eigenvector coherence and interhemispheric symmetry. This novel approach distills the rich, 3D information available from the diffusion tensor into a form that lends itself to quantitative analysis and statistical hypothesis testing. (c) 2004 Wiley-Liss, Inc.

  5. Construction of a 3-D anatomical model for teaching temporal lobectomy.

    PubMed

    de Ribaupierre, Sandrine; Wilson, Timothy D

    2012-06-01

    Although we live and work in 3 dimensional space, most of the anatomical teaching during medical school is done on 2-D (books, TV and computer screens, etc). 3-D spatial abilities are essential for a surgeon but teaching spatial skills in a non-threatening and safe educational environment is a much more difficult pedagogical task. Currently, initial anatomical knowledge formation or specific surgical anatomy techniques, are taught either in the OR itself, or in cadaveric labs; which means that the trainee has only limited exposure. 3-D computer models incorporated into virtual learning environments may provide an intermediate and key step in a blended learning approach for spatially challenging anatomical knowledge formation. Specific anatomical structures and their spatial orientation can be further clinically contextualized through demonstrations of surgical procedures in the 3-D digital environments. Recordings of digital models enable learner reviews, taking as much time as they want, stopping the demonstration, and/or exploring the model to understand the anatomical relation of each structure. We present here how a temporal lobectomy virtual model has been developed to aid residents and fellows conceptualization of the anatomical relationships between different cerebral structures during that procedure. We suggest in comparison to cadaveric dissection, such virtual models represent a cost effective pedagogical methodology providing excellent support for anatomical learning and surgical technique training. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Intraoperative Comparison of Anatomical versus Round Implants in Breast Augmentation: A Randomized Controlled Trial.

    PubMed

    Hidalgo, David A; Weinstein, Andrew L

    2017-03-01

    The purpose of this randomized controlled trial was to determine whether anatomical implants are aesthetically superior to round implants in breast augmentation. Seventy-five patients undergoing primary breast augmentation had a round silicone implant of optimal volume, projection, and diameter placed in one breast and an anatomical silicone device of similar volume and optimal shape placed in the other. After intraoperative photographs were taken, the anatomical device was replaced by a round implant to complete the procedure. A survey designed to measure breast aesthetics was administered to 10 plastic surgeon and 10 lay reviewers for blind evaluation of the 75 cases. No observable difference in breast aesthetics between anatomical and round implants was reported by plastic surgeons in 43.6 percent or by lay individuals in 29.2 percent of cases. When a difference was perceived, neither plastic surgeons nor lay individuals preferred the anatomical side more often than the round side. Plastic surgeons judged the anatomical side superior in 51.1 percent of cases and the round side superior in 48.9 percent of cases (p = 0.496). Lay individuals judged the anatomical side superior in 46.7 percent of cases and the round side superior in 53.3 percent (p = 0.140). Plastic surgeons identified implant shape correctly in only 26.5 percent of cases. This study provides high-level evidence supporting no aesthetic superiority of anatomical over round implants. Given that anatomical implants have important and unique disadvantages, a lack of proven aesthetic superiority argues against their continued use in breast augmentation. Therapeutic, I.

  7. Evaluation of the diagnostic yield of dental radiography and cone-beam computed tomography for the identification of anatomic landmarks in small to medium-sized brachycephalic dogs.

    PubMed

    Döring, Sophie; Arzi, Boaz; Barich, Catherine R; Hatcher, David C; Kass, Philip H; Verstraete, Frank J M

    2018-01-01

    OBJECTIVE To evaluate the diagnostic yield of dental radiography (Rad method) and 3 cone-beam CT (CBCT) methods for the identification of predefined anatomic landmarks in brachycephalic dogs. ANIMALS 19 client-owned brachycephalic dogs admitted for evaluation and treatment of dental disease. PROCEDURES 26 predefined anatomic landmarks were evaluated separately by use of the RAD method and 3 CBCT software modules (serial CBCT slices and custom cross sections, tridimensional rendering, and reconstructed panoramic views). A semiquantitative scoring system was used, and mean scores were calculated for each anatomic landmark and imaging method. The Friedman test was used to evaluate values for significant differences in diagnostic yield. For values that were significant, the Wilcoxon signed rank test was used with the Bonferroni-Holm multiple comparison adjustment to determine significant differences among each of the 6 possible pairs of diagnostic methods. RESULTS Differences of diagnostic yield among the Rad and 3 CBCT methods were significant for 19 of 26 anatomic landmarks. For these landmarks, Rad scores were significantly higher than scores for reconstructed panoramic views for 4 of 19 anatomic landmarks, but Rad scores were significantly lower than scores for reconstructed panoramic views for 8 anatomic landmarks, tridimensional rendering for 18 anatomic landmarks, and serial CBCT slices and custom cross sections for all 19 anatomic landmarks. CONCLUSIONS AND CLINICAL RELEVANCE CBCT methods were better suited than dental radiography for the identification of anatomic landmarks in brachycephalic dogs. Results of this study can serve as a basis for CBCT evaluation of dental disorders in brachycephalic dogs.

  8. Dynamic and quantitative evaluation of degenerative mitral valve disease: a dedicated framework based on cardiac magnetic resonance imaging.

    PubMed

    Sturla, Francesco; Onorati, Francesco; Puppini, Giovanni; Pappalardo, Omar A; Selmi, Matteo; Votta, Emiliano; Faggian, Giuseppe; Redaelli, Alberto

    2017-04-01

    Accurate quantification of mitral valve (MV) morphology and dynamic behavior over the cardiac cycle is crucial to understand the mechanisms of degenerative MV dysfunction and to guide the surgical intervention. Cardiac magnetic resonance (CMR) imaging has progressively been adopted to evaluate MV pathophysiology, although a dedicated framework is required to perform a quantitative assessment of the functional MV anatomy. We investigated MV dynamic behavior in subjects with normal MV anatomy (n=10) and patients referred to surgery due to degenerative MV prolapse, classified as fibro-elastic deficiency (FED, n=9) and Barlow's disease (BD, n=10). A CMR-dedicated framework was adopted to evaluate prolapse height and volume and quantitatively assess valvular morphology and papillary muscles (PAPs) function over the cardiac cycle. Multiple comparison was used to investigate the hallmarks associated to MV degenerative prolapse and evaluate the feasibility of anatomical and functional distinction between FED and BD phenotypes. On average, annular dimensions were significantly (P<0.05) larger in BD than in FED and normal subjects while no significant differences were noticed between FED and normal. MV eccentricity progressively decreased passing from normal to FED and BD, with the latter exhibiting a rounder annulus shape. Over the cardiac cycle, we noticed significant differences for BD during systole with an abnormal annular enlargement between mid and late systole (LS) (P<0.001 vs. normal); the PAPs dynamics remained comparable in the three groups. Prolapse height and volume highlighted significant differences among normal, FED and BD valves. Our CMR-dedicated framework allows for the quantitative and dynamic evaluation of MV apparatus, with quantifiable annular alterations representing the primary hallmark of severe MV degeneration. This may aid surgeons in the evaluation of the severity of MV dysfunction and the selection of the appropriate MV treatment.

  9. Current issues with standards in the measurement and documentation of human skeletal anatomy.

    PubMed

    Magee, Justin; McClelland, Brian; Winder, John

    2012-09-01

    Digital modeling of human anatomy has become increasingly important and relies on well-documented quantitative anatomy literature. This type of documentation is common for the spine and pelvis; however, significant issues exist due to the lack of standardization in measurement and technique. Existing literature on quantitative anatomy for the spine and pelvis of white adults (aged 18-65 years, separated into decadal categories) was reviewed from the disciplines of anatomy, manipulative therapy, anthropometrics, occupational ergonomics, biomechanics and forensic science. The data were unified into a single normative model of the sub-axial spine. Two-dimensional orthographic drawings were produced from the 590 individual measurements identified, which informed the development of a 3D digital model. A similar review of full range of motion data was conducted as a meta-analysis and the results were applied to the existing model, providing an inter-connected, articulated digital spine. During these data analysis processes several inconsistencies were observed accompanied by an evidential lack of standardization with measurement and recording of data. These have been categorized as: anatomical terminology; scaling of measurements; measurement methodology, dimension and anatomical reference positions; global coordinate systems. There is inconsistency in anatomical terminology where independent researchers use the same terms to describe different aspects of anatomy or different terms for the same anatomy. Published standards exist for measurement methods of the human body regarding spatial interaction, anthropometric databases, automotive applications, clothing industries and for computer manikins, but none exists for skeletal anatomy. Presentation of measurements often lacks formal structure in clinical publications, seldom providing geometric reference points, therefore making digital reconstruction difficult. Published quantitative data does not follow existing international published standards relating to engineering drawing and visual communication. Large variations are also evident in standards or guidelines used for global coordinate systems across biomechanics, ergonomics, software systems and 3D software applications. This paper identifies where established good practice exists and suggests additional recommendations, informing an improved communication protocol, to assist reconstruction of skeletal anatomy using 3D digital modeling. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  10. Wavelet-based resolution recovery using an anatomical prior provides quantitative recovery for human population phantom PET [11C]raclopride data

    NASA Astrophysics Data System (ADS)

    Shidahara, M.; Tsoumpas, C.; McGinnity, C. J.; Kato, T.; Tamura, H.; Hammers, A.; Watabe, H.; Turkheimer, F. E.

    2012-05-01

    The objective of this study was to evaluate a resolution recovery (RR) method using a variety of simulated human brain [11C]raclopride positron emission tomography (PET) images. Simulated datasets of 15 numerical human phantoms were processed by a wavelet-based RR method using an anatomical prior. The anatomical prior was in the form of a hybrid segmented atlas, which combined an atlas for anatomical labelling and a PET image for functional labelling of each anatomical structure. We applied RR to both 60 min static and dynamic PET images. Recovery was quantified in 84 regions, comparing the typical ‘true’ value for the simulation, as obtained in normal subjects, simulated and RR PET images. The radioactivity concentration in the white matter, striatum and other cortical regions was successfully recovered for the 60 min static image of all 15 human phantoms; the dependence of the solution on accurate anatomical information was demonstrated by the difficulty of the technique to retrieve the subthalamic nuclei due to mismatch between the two atlases used for data simulation and recovery. Structural and functional synergy for resolution recovery (SFS-RR) improved quantification in the caudate and putamen, the main regions of interest, from -30.1% and -26.2% to -17.6% and -15.1%, respectively, for the 60 min static image and from -51.4% and -38.3% to -27.6% and -20.3% for the binding potential (BPND) image, respectively. The proposed methodology proved effective in the RR of small structures from brain [11C]raclopride PET images. The improvement is consistent across the anatomical variability of a simulated population as long as accurate anatomical segmentations are provided.

  11. Measurement of the relative afferent pupillary defect in retinal detachment.

    PubMed

    Bovino, J A; Burton, T C

    1980-07-01

    A swinging flashlight test and calibrated neutral density filters were used to quantitate the depth of relative afferent pupillary defects in ten patients with retinal detachment. Postoperatively, the pupillary responses returned to normal in seven of nine patients with anatomically successful surgery.

  12. Evaluation of the BreastSimulator software platform for breast tomography

    NASA Astrophysics Data System (ADS)

    Mettivier, G.; Bliznakova, K.; Sechopoulos, I.; Boone, J. M.; Di Lillo, F.; Sarno, A.; Castriconi, R.; Russo, P.

    2017-08-01

    The aim of this work was the evaluation of the software BreastSimulator, a breast x-ray imaging simulation software, as a tool for the creation of 3D uncompressed breast digital models and for the simulation and the optimization of computed tomography (CT) scanners dedicated to the breast. Eight 3D digital breast phantoms were created with glandular fractions in the range 10%-35%. The models are characterised by different sizes and modelled realistic anatomical features. X-ray CT projections were simulated for a dedicated cone-beam CT scanner and reconstructed with the FDK algorithm. X-ray projection images were simulated for 5 mono-energetic (27, 32, 35, 43 and 51 keV) and 3 poly-energetic x-ray spectra typically employed in current CT scanners dedicated to the breast (49, 60, or 80 kVp). Clinical CT images acquired from two different clinical breast CT scanners were used for comparison purposes. The quantitative evaluation included calculation of the power-law exponent, β, from simulated and real breast tomograms, based on the power spectrum fitted with a function of the spatial frequency, f, of the form S(f)  =  α/f   β . The breast models were validated by comparison against clinical breast CT and published data. We found that the calculated β coefficients were close to that of clinical CT data from a dedicated breast CT scanner and reported data in the literature. In evaluating the software package BreastSimulator to generate breast models suitable for use with breast CT imaging, we found that the breast phantoms produced with the software tool can reproduce the anatomical structure of real breasts, as evaluated by calculating the β exponent from the power spectral analysis of simulated images. As such, this research tool might contribute considerably to the further development, testing and optimisation of breast CT imaging techniques.

  13. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    PubMed

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  14. Brain tissues atrophy is not always the best structural biomarker of physiological aging: A multimodal cross-sectional study.

    PubMed

    Cherubini, Andrea; Caligiuri, Maria Eugenia; Péran, Patrice; Sabatini, Umberto; Cosentino, Carlo; Amato, Francesco

    2015-01-01

    This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2* relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. These findings highlight the importance of a combined evaluation of multimodal biomarkers for the study of aging and point to a number of novel applications for the method described.

  15. Importance of Multimodal MRI in Characterizing Brain Tissue and Its Potential Application for Individual Age Prediction.

    PubMed

    Cherubini, Andrea; Caligiuri, Maria Eugenia; Peran, Patrice; Sabatini, Umberto; Cosentino, Carlo; Amato, Francesco

    2016-09-01

    This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2(*) relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. The results of the linear model were used to predict apparent age in different regions of individual brain. This approach pointed to a number of novel applications that could potentially help highlighting areas particularly vulnerable to disease.

  16. Accuracy and efficiency of computer-aided anatomical analysis using 3D visualization software based on semi-automated and automated segmentations.

    PubMed

    An, Gao; Hong, Li; Zhou, Xiao-Bing; Yang, Qiong; Li, Mei-Qing; Tang, Xiang-Yang

    2017-03-01

    We investigated and compared the functionality of two 3D visualization software provided by a CT vendor and a third-party vendor, respectively. Using surgical anatomical measurement as baseline, we evaluated the accuracy of 3D visualization and verified their utility in computer-aided anatomical analysis. The study cohort consisted of 50 adult cadavers fixed with the classical formaldehyde method. The computer-aided anatomical analysis was based on CT images (in DICOM format) acquired by helical scan with contrast enhancement, using a CT vendor provided 3D visualization workstation (Syngo) and a third-party 3D visualization software (Mimics) that was installed on a PC. Automated and semi-automated segmentations were utilized in the 3D visualization workstation and software, respectively. The functionality and efficiency of automated and semi-automated segmentation methods were compared. Using surgical anatomical measurement as a baseline, the accuracy of 3D visualization based on automated and semi-automated segmentations was quantitatively compared. In semi-automated segmentation, the Mimics 3D visualization software outperformed the Syngo 3D visualization workstation. No significant difference was observed in anatomical data measurement by the Syngo 3D visualization workstation and the Mimics 3D visualization software (P>0.05). Both the Syngo 3D visualization workstation provided by a CT vendor and the Mimics 3D visualization software by a third-party vendor possessed the needed functionality, efficiency and accuracy for computer-aided anatomical analysis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Development and investigation of single-scan TV radiography for the acquisition of dynamic physiologic data

    NASA Technical Reports Server (NTRS)

    Baily, N. A.

    1974-01-01

    Research data obtained by the low dose electronic radiography system are reported. Data cover: (1) localization and tracking of Ta screws implanted in the inner wall of the right ventrical of the heart, (2) use of cross hairs to outline inner or outer heart wall contours, (3) quantitative measure of anatomical components which are stationary in size or change size dynamically, and (4) study of dynamic quantitative data from roentenologic or fluoroscopic procedures.

  18. A biomechanical modeling guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    NASA Astrophysics Data System (ADS)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2017-03-01

    Four-dimensional (4D) cone-beam computed tomography (CBCT) enables motion tracking of anatomical structures and removes artifacts introduced by motion. However, the imaging time/dose of 4D-CBCT is substantially longer/higher than traditional 3D-CBCT. We previously developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, to reconstruct high-quality 4D-CBCT from limited number of projections to reduce the imaging time/dose. However, the accuracy of SMEIR is limited in reconstructing low-contrast regions with fine structure details. In this study, we incorporate biomechanical modeling into the SMEIR algorithm (SMEIR-Bio), to improve the reconstruction accuracy at low-contrast regions with fine details. The efficacy of SMEIR-Bio is evaluated using 11 lung patient cases and compared to that of the original SMEIR algorithm. Qualitative and quantitative comparisons showed that SMEIR-Bio greatly enhances the accuracy of reconstructed 4D-CBCT volume in low-contrast regions, which can potentially benefit multiple clinical applications including the treatment outcome analysis.

  19. High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates.

    PubMed

    Seiriki, Kaoru; Kasai, Atsushi; Hashimoto, Takeshi; Schulze, Wiebke; Niu, Misaki; Yamaguchi, Shun; Nakazawa, Takanobu; Inoue, Ken-Ichi; Uezono, Shiori; Takada, Masahiko; Naka, Yuichiro; Igarashi, Hisato; Tanuma, Masato; Waschek, James A; Ago, Yukio; Tanaka, Kenji F; Hayata-Takano, Atsuko; Nagayasu, Kazuki; Shintani, Norihito; Hashimoto, Ryota; Kunii, Yasuto; Hino, Mizuki; Matsumoto, Junya; Yabe, Hirooki; Nagai, Takeharu; Fujita, Katsumasa; Matsuda, Toshio; Takuma, Kazuhiro; Baba, Akemichi; Hashimoto, Hitoshi

    2017-06-21

    Subcellular resolution imaging of the whole brain and subsequent image analysis are prerequisites for understanding anatomical and functional brain networks. Here, we have developed a very high-speed serial-sectioning imaging system named FAST (block-face serial microscopy tomography), which acquires high-resolution images of a whole mouse brain in a speed range comparable to that of light-sheet fluorescence microscopy. FAST enables complete visualization of the brain at a resolution sufficient to resolve all cells and their subcellular structures. FAST renders unbiased quantitative group comparisons of normal and disease model brain cells for the whole brain at a high spatial resolution. Furthermore, FAST is highly scalable to non-human primate brains and human postmortem brain tissues, and can visualize neuronal projections in a whole adult marmoset brain. Thus, FAST provides new opportunities for global approaches that will allow for a better understanding of brain systems in multiple animal models and in human diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Dynamic infrared thermography (DIRT) for assessment of skin blood perfusion in cranioplasty: a proof of concept for qualitative comparison with the standard indocyanine green video angiography (ICGA).

    PubMed

    Rathmann, P; Chalopin, C; Halama, D; Giri, P; Meixensberger, J; Lindner, D

    2018-03-01

    Complications in wound healing after neurosurgical operations occur often due to scarred dehiscence with skin blood perfusion disturbance. The standard imaging method for intraoperative skin perfusion assessment is the invasive indocyanine green video angiography (ICGA). The noninvasive dynamic infrared thermography (DIRT) is a promising alternative modality that was evaluated by comparison with ICGA. The study was carried out in two parts: (1) investigation of technical conditions for intraoperative use of DIRT for its comparison with ICGA, and (2) visual and quantitative comparison of both modalities in a proof of concept on nine patients. Time-temperature curves in DIRT and time-intensity curves in ICGA for defined regions of interest were analyzed. New perfusion parameters were defined in DIRT and compared with the usual perfusion parameters in ICGA. The visual observation of the image data in DIRT and ICGA showed that operation material, anatomical structures and skin perfusion are represented similarly in both modalities. Although the analysis of the curves and perfusion parameter values showed differences between patients, no complications were observed clinically. These differences were represented in DIRT and ICGA equivalently. DIRT has shown a great potential for intraoperative use, with several advantages over ICGA. The technique is passive, contactless and noninvasive. The practicability of the intraoperative recording of the same operation field section with ICGA and DIRT has been demonstrated. The promising results of this proof of concept provide a basis for a trial with a larger number of patients.

  1. Early postoperative cartilage evaluation by magnetic resonance imaging using T2 mapping after arthroscopic partial medial meniscectomy.

    PubMed

    Kato, Kammei; Arai, Yuji; Ikoma, Kazuya; Nakagawa, Shuji; Inoue, Hiroaki; Kan, Hiroyuki; Matsuki, Tomohiro; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2015-12-01

    This study was performed to quantitatively evaluate postoperative changes in cartilage by T2 mapping after arthroscopic partial medial meniscectomy. The study enrolled 17 patients with 20 knees that underwent arthroscopic partial medial meniscectomy. MRI was performed preoperatively and at six months postoperatively, with subjects evaluated by T2 mapping of the central part of the medial condyle of the femur in the sagittal plane. Regions of interest (ROIs) were set at 10 points between the point of intersection of the anatomical axis of the femur and the articular surface of the medial condyle and posterior area approximately 90 degrees to the anatomical axis. Pre- and postoperative T2 values at each ROI were evaluated. Postoperative T2 values were significantly longer than preoperative values at approximately 20, 30, 40, and 50 degrees to the anatomical axis of the femur. The maximum change between pre- and postoperative T2 values was +6.65% at 30 degrees to the anatomical axis. Mechanical stress at positions approximately 20, 30, 40, and 50 degrees relative to the anatomical axis of the femur increased soon after arthroscopic medial meniscectomy. These findings indicate the start of degeneration, via disorganization of collagen arrays, of the articular cartilage and increased water content. Copyright © 2015. Published by Elsevier Inc.

  2. Automated anatomical description of pleural thickening towards improvement of its computer-assisted diagnosis

    NASA Astrophysics Data System (ADS)

    Chaisaowong, Kraisorn; Jiang, Mingze; Faltin, Peter; Merhof, Dorit; Eisenhawer, Christian; Gube, Monika; Kraus, Thomas

    2016-03-01

    Pleural thickenings are caused by asbestos exposure and may evolve into malignant pleural mesothelioma. An early diagnosis plays a key role towards an early treatment and an increased survival rate. Today, pleural thickenings are detected by visual inspection of CT data, which is time-consuming and underlies the physician's subjective judgment. A computer-assisted diagnosis system to automatically assess pleural thickenings has been developed, which includes not only a quantitative assessment with respect to size and location, but also enhances this information with an anatomical description, i.e. lung side (left, right), part of pleura (pars costalis, mediastinalis, diaphragmatica, spinalis), as well as vertical (upper, middle, lower) and horizontal (ventral, dorsal) position. For this purpose, a 3D anatomical model of the lung surface has been manually constructed as a 3D atlas. Three registration sub-steps including rigid, affine, and nonrigid registration align the input patient lung to the 3D anatomical atlas model of the lung surface. Finally, each detected pleural thickening is assigned a set of labels describing its anatomical properties. Through this added information, an enhancement to the existing computer-assisted diagnosis system is presented in order to assure a higher precision and reproducible assessment of pleural thickenings, aiming at the diagnosis of the pleural mesothelioma in its early stage.

  3. Evaluation of morpho-anatomical and chemical differences between varieties of the medicinal plant Casearia sylvestris Swartz.

    PubMed

    Claudino, Josiane C; Sacramento, Luis V S do; Koch, Ingrid; Santos, Helen A; Cavalheiro, Alberto J; Tininis, Aristeu G; Santos, André G dos

    2013-01-01

    Casearia sylvestris Swartz (Salicaceae) has been used in traditional medicine and its leaf extracts have been exhibited important pharmacological activities. The species presents morphological, chemical and genetic variation. Two varieties are considered due external morphological differences: C. sylvestris var. sylvestris and var. lingua. There are difficulties in definition of these varieties. The objective of this work is to evaluate chemical and morpho-anatomical differences between C. sylvestris varieties that can be applied in their distinction for pharmaceutical or botanical purposes. Transverse and paradermic sections of leaves were prepared for morpho-anatomical, histochemical and quantitative microscopy (stomatal and palisade index) analyses. Diterpene profiles of the specimens were obtained by HPLC-DAD and TLC. Morpho-anatomical analyses demonstrated significant differences between the varieties only in paradermic sections: var. sylvestris--polygonal epidermic cell walls and hypostomatic; var. lingua--rounded epidermic cell walls and amphistomatic. No differences were observed for stomatal index; palisade index was found 2.8 for var. lingua and 3.9 for var. sylvestris. Chromatographic analyses confirmed previous results demonstrating that diterpene profile in varieties differs, with predominance of these metabolites in var. sylvestris. In conclusion, this work indicates that chromatographic analysis besides morpho-anatomical analysis can be applied in distinction of C. sylvestris varieties.

  4. Simulation of realistic abnormal SPECT brain perfusion images: application in semi-quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ward, T.; Fleming, J. S.; Hoffmann, S. M. A.; Kemp, P. M.

    2005-11-01

    Simulation is useful in the validation of functional image analysis methods, particularly when considering the number of analysis techniques currently available lacking thorough validation. Problems exist with current simulation methods due to long run times or unrealistic results making it problematic to generate complete datasets. A method is presented for simulating known abnormalities within normal brain SPECT images using a measured point spread function (PSF), and incorporating a stereotactic atlas of the brain for anatomical positioning. This allows for the simulation of realistic images through the use of prior information regarding disease progression. SPECT images of cerebral perfusion have been generated consisting of a control database and a group of simulated abnormal subjects that are to be used in a UK audit of analysis methods. The abnormality is defined in the stereotactic space, then transformed to the individual subject space, convolved with a measured PSF and removed from the normal subject image. The dataset was analysed using SPM99 (Wellcome Department of Imaging Neuroscience, University College, London) and the MarsBaR volume of interest (VOI) analysis toolbox. The results were evaluated by comparison with the known ground truth. The analysis showed improvement when using a smoothing kernel equal to system resolution over the slightly larger kernel used routinely. Significant correlation was found between effective volume of a simulated abnormality and the detected size using SPM99. Improvements in VOI analysis sensitivity were found when using the region median over the region mean. The method and dataset provide an efficient methodology for use in the comparison and cross validation of semi-quantitative analysis methods in brain SPECT, and allow the optimization of analysis parameters.

  5. Patterns of postnatal ontogeny of the skull and lower jaw of snakes as revealed by micro-CT scan data and three-dimensional geometric morphometrics.

    PubMed

    Palci, Alessandro; Lee, Michael S Y; Hutchinson, Mark N

    2016-12-01

    We compared the head skeleton (skull and lower jaw) of juvenile and adult specimens of five snake species [Anilios (=Ramphotyphlops) bicolor, Cylindrophis ruffus, Aspidites melanocephalus, Acrochordus arafurae, and Notechis scutatus] and two lizard outgroups (Ctenophorus decresii, Varanus gilleni). All major ontogenetic changes observed were documented both qualitatively and quantitatively. Qualitative comparisons were based on high-resolution micro-CT scanning of the specimens, and detailed quantitative analyses were performed using three-dimensional geometric morphometrics. Two sets of landmarks were used, one for accurate representation of the intraspecific transformations of each skull and jaw configuration, and the other for comparison between taxa. Our results document the ontogenetic elaboration of crests and processes for muscle attachment (especially for cervical and adductor muscles); negative allometry in the braincase of all taxa; approximately isometric growth of the snout of all taxa except Varanus and Anilios (positively allometric); and positive allometry in the quadrates of the macrostomatan snakes Aspidites, Acrochordus and Notechis, but also, surprisingly, in the iguanian lizard Ctenophorus. Ontogenetic trajectories from principal component analysis provide evidence for paedomorphosis in Anilios and peramorphosis in Acrochordus. Some primitive (lizard-like) features are described for the first time in the juvenile Cylindrophis. Two distinct developmental trajectories for the achievement of the macrostomatan (large-gaped) condition in adult snakes are documented, driven either by positive allometry of supratemporal and quadrate (in pythons), or of quadrate alone (in sampled caenophidians); this is consistent with hypothesised homoplasy in this adaptive complex. Certain traits (e.g. shape of coronoid process, marginal tooth counts) are more stable throughout postnatal ontogeny than others (e.g. basisphenoid keel), with implications for their reliability as phylogenetic characters. © 2016 Anatomical Society.

  6. Characterization of Breast Implant Surfaces, Shapes, and Biomechanics: A Comparison of High Cohesive Anatomically Shaped Textured Silicone, Breast Implants from Three Different Manufacturers.

    PubMed

    Atlan, Michael; Bigerelle, Maxence; Larreta-garde, Véronique; Hindié, Mathilde; Hedén, Per

    2016-02-01

    Several companies offer anatomically shaped breast implants but differences among manufacturers are often misunderstood. The shell texture is a crucial parameter for anatomically shaped implants to prevent rotation and to decrease the risk of capsular contracture, even though concerns have recently been raised concerning the complications associated with textured breast implants. The aim of this study was to characterize differences in terms of texture, cell adhesion, shape, and stiffness between some commonly used anatomically shaped implants from three different manufacturers. Five commercially available anatomically shaped breast implants from 3 different manufacturers (Allergan, Mentor, and Sebbin) were used. Scanning electron microscopy, X-ray microtomography, and scanning mechanical microscopy were used to characterize the shell texture. Human fibroblast adhesion onto the shells was evaluated. 3D models of the implants were obtained using CT-scan acquisitions to analyze their shape. Implant stiffness was evaluated using a tractiometer. Major differences were observed in the topography of the textures of the shells, but this was not conveyed by a statistically significant fibroblast adhesion difference. However, fibroblasts adhered better on anatomically shaped textured implants than on smooth implants (p < 0.01). Our work pointed out differences in the Biocell® texture in comparison with older studies. The 3D analysis showed significant shape differences between the anatomically shaped implants of the 3 companies, despite similar dimensions. Implant stiffness was comparable among the 3 brands. Each texture had its specific topography, and this work is the first description of Sebbin anatomic breast implant texturation. Moreover, major discrepancies were found in the analysis of the Biocell® texture when comparing our results with previous reports. These differences may have clinical implications and are discussed. This study also highlighted major shape differences among breast implants from different manufacturers, which is quite counterintuitive. The clinical impact of these differences however needs further investigation. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  7. Skeletal idiopathic osteosclerosis helps to perform personal identification of unknown decedents: A novel contribution from anatomical variants through CT scan.

    PubMed

    De Angelis, D; Gibelli, D; Palazzo, E; Sconfienza, L; Obertova, Z; Cattaneo, C

    2016-07-01

    Personal identification consists of the comparison of ante-mortem information from a missing person with post-mortem data obtained from an unidentified corpse. Such procedure is based on the assessment of individualizing features which may help in providing a conclusive identification between ante-mortem and post-mortem material. Anatomical variants may provide important clues to correctly identify human remains. Areas of idiopathic osteosclerosis (IO), or dense bone islands (DBIs) characterized by radiopaque areas of dense, trabeculated, non-inflamed vital bone represent one of these, potentially individualizing, anatomical features. This study presents a case where the finding of DBI was crucial for a positive identification through CT-scan. A decomposed body was found in an apartment in June 2014 in advanced decomposition and no dental records were available to perform a comparison for positive identification. Genetic tests were not applicable because of the lack of relatives in a direct line. The analysis of the only ante-mortem documentation, a CT-scan to the deceased dating back to August 2009, showed the presence of three DBIs within the trabecular bone of the proximal portion of the right femur. The same bony district was removed from the corpse during the autopsy and analysed by CT-scan, which verified the presence of the same features. Forensic practitioners should therefore be aware of the great importance of anatomical bone variants, such as dense bone islands for identification purposes, and the importance of advanced radiological technique for addressing the individualizing potential of such variants. We propose that anatomical variants of the human skeleton should be considered as being "primary identification characteristics" similar to dental status, fingerprints and DNA. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Comparative analyses of the neuron numbers and volumes of the amygdaloid complex in old and new world primates.

    PubMed

    Carlo, C N; Stefanacci, L; Semendeferi, K; Stevens, C F

    2010-04-15

    The amygdaloid complex (AC), a key component of the limbic system, is a brain region critical for the detection and interpretation of emotionally salient information. Therefore, changes in its structure and function are likely to provide correlates of mood and emotion disorders, diseases that afflict a large portion of the human population. Previous gross comparisons of the AC in control and diseased individuals have, however, mainly failed to discover these expected correlations with diseases. We have characterized AC nuclei in different nonhuman primate species to establish a baseline for more refined comparisons between the normal and the diseased amygdala. AC nuclei volume and neuron number in 19 subdivisions are reported from 13 Old and New World primate brains, spanning five primate species, and compared with corresponding data from humans. Analysis of the four largest AC nuclei revealed that volume and neuron number of one component, the central nucleus, has a negative allometric relationship with total amygdala volume and neuron number, which is in contrast with the isometric relationship found in the other AC nuclei (for both neuron number and volume). Neuron density decreases across all four nuclei according to a single power law with an exponent of about minus one-half. Because we have included quantitative comparisons with great apes and humans, our conclusions apply to human brains, and our scaling laws can potentially be used to study the anatomical correlates of the amygdala in disorders involving pathological emotion processing. (c) 2009 Wiley-Liss, Inc.

  9. A comparison of three fiber tract delineation methods and their impact on white matter analysis.

    PubMed

    Sydnor, Valerie J; Rivas-Grajales, Ana María; Lyall, Amanda E; Zhang, Fan; Bouix, Sylvain; Karmacharya, Sarina; Shenton, Martha E; Westin, Carl-Fredrik; Makris, Nikos; Wassermann, Demian; O'Donnell, Lauren J; Kubicki, Marek

    2018-05-19

    Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical populations. Improvements in dMRI tractography algorithms, which reconstruct macroscopic three-dimensional white matter fiber pathways, have allowed for methodological advances in the study of white matter; however, insufficient attention has been paid to comparing post-tractography methods that extract white matter fiber tracts of interest from whole-brain tractography. Here we conduct a comparison of three representative and conceptually distinct approaches to fiber tract delineation: 1) a manual multiple region of interest-based approach, 2) an atlas-based approach, and 3) a groupwise fiber clustering approach, by employing methods that exemplify these approaches to delineate the arcuate fasciculus, the middle longitudinal fasciculus, and the uncinate fasciculus in 10 healthy male subjects. We enable qualitative comparisons across methods, conduct quantitative evaluations of tract volume, tract length, mean fractional anisotropy, and true positive and true negative rates, and report measures of intra-method and inter-method agreement. We discuss methodological similarities and differences between the three approaches and the major advantages and drawbacks of each, and review research and clinical contexts for which each method may be most apposite. Emphasis is given to the means by which different white matter fiber tract delineation approaches may systematically produce variable results, despite utilizing the same input tractography and reliance on similar anatomical knowledge. Copyright © 2018. Published by Elsevier Inc.

  10. Evaluation of disease progression in INCL by MR spectroscopy

    PubMed Central

    Baker, Eva H; Levin, Sondra W; Zhang, Zhongjian; Mukherjee, Anil B

    2015-01-01

    Objective Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating neurodegenerative storage disease caused by palmitoyl-protein thioesterase-1 deficiency, which impairs degradation of palmitoylated proteins (constituents of ceroid) by lysosomal hydrolases. Consequent lysosomal ceroid accumulation leads to neuronal injury. As part of a pilot study to evaluate treatment benefits of cysteamine bitartrate and N-acetylcysteine, we quantitatively measured brain metabolite levels using magnetic resonance spectroscopy (MRS). Methods A subset of two patients from a larger treatment and follow-up study underwent serial quantitative single-voxel MRS examinations of five anatomical sites. Three echo times were acquired in order to estimate metabolite T2. Measured metabolite levels included correction for partial volume of cerebrospinal fluid. Comparison of INCL patients was made to a reference group composed of asymptomatic and minimally symptomatic Niemann-Pick disease type C patients. Results In INCL patients, N-acetylaspartate (NAA) was abnormally low at all locations upon initial measurement, and further declined throughout the follow-up period. In the cerebrum (affected early in the disease course), choline and myo-inositol were initially elevated and fell during the follow-up period, whereas in the cerebellum and brainstem (affected later), choline and myo-inositol were initially normal and rose subsequently. Interpretation Choline and myo-inositol levels in our patients are consistent with patterns of neuroinflammation observed in two INCL mouse models. Low, persistently declining NAA was expected based on the progressive, irreversible nature of the disease. Progression of metabolite levels in INCL has not been previously quantified; therefore the results of this study serve as a reference for quantitative evaluation of future therapeutic interventions. PMID:26339674

  11. Registration of knee joint surfaces for the in vivo study of joint injuries based on magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Rita W. T.; Habib, Ayman F.; Frayne, Richard; Ronsky, Janet L.

    2006-03-01

    In-vivo quantitative assessments of joint conditions and health status can help to increase understanding of the pathology of osteoarthritis, a degenerative joint disease that affects a large population each year. Magnetic resonance imaging (MRI) provides a non-invasive and accurate means to assess and monitor joint properties, and has become widely used for diagnosis and biomechanics studies. Quantitative analyses and comparisons of MR datasets require accurate alignment of anatomical structures, thus image registration becomes a necessary procedure for these applications. This research focuses on developing a registration technique for MR knee joint surfaces to allow quantitative study of joint injuries and health status. It introduces a novel idea of translating techniques originally developed for geographic data in the field of photogrammetry and remote sensing to register 3D MR data. The proposed algorithm works with surfaces that are represented by randomly distributed points with no requirement of known correspondences. The algorithm performs matching locally by identifying corresponding surface elements, and solves for the transformation parameters relating the surfaces by minimizing normal distances between them. This technique was used in three applications to: 1) register temporal MR data to verify the feasibility of the algorithm to help monitor diseases, 2) quantify patellar movement with respect to the femur based on the transformation parameters, and 3) quantify changes in contact area locations between the patellar and femoral cartilage at different knee flexion angles. The results indicate accurate registration and the proposed algorithm can be applied for in-vivo study of joint injuries with MRI.

  12. Quantitative Analysis Tools and Digital Phantoms for Deformable Image Registration Quality Assurance.

    PubMed

    Kim, Haksoo; Park, Samuel B; Monroe, James I; Traughber, Bryan J; Zheng, Yiran; Lo, Simon S; Yao, Min; Mansur, David; Ellis, Rodney; Machtay, Mitchell; Sohn, Jason W

    2015-08-01

    This article proposes quantitative analysis tools and digital phantoms to quantify intrinsic errors of deformable image registration (DIR) systems and establish quality assurance (QA) procedures for clinical use of DIR systems utilizing local and global error analysis methods with clinically realistic digital image phantoms. Landmark-based image registration verifications are suitable only for images with significant feature points. To address this shortfall, we adapted a deformation vector field (DVF) comparison approach with new analysis techniques to quantify the results. Digital image phantoms are derived from data sets of actual patient images (a reference image set, R, a test image set, T). Image sets from the same patient taken at different times are registered with deformable methods producing a reference DVFref. Applying DVFref to the original reference image deforms T into a new image R'. The data set, R', T, and DVFref, is from a realistic truth set and therefore can be used to analyze any DIR system and expose intrinsic errors by comparing DVFref and DVFtest. For quantitative error analysis, calculating and delineating differences between DVFs, 2 methods were used, (1) a local error analysis tool that displays deformation error magnitudes with color mapping on each image slice and (2) a global error analysis tool that calculates a deformation error histogram, which describes a cumulative probability function of errors for each anatomical structure. Three digital image phantoms were generated from three patients with a head and neck, a lung and a liver cancer. The DIR QA was evaluated using the case with head and neck. © The Author(s) 2014.

  13. Evaluation of disease progression in INCL by MR spectroscopy.

    PubMed

    Baker, Eva H; Levin, Sondra W; Zhang, Zhongjian; Mukherjee, Anil B

    2015-08-01

    Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating neurodegenerative storage disease caused by palmitoyl-protein thioesterase-1 deficiency, which impairs degradation of palmitoylated proteins (constituents of ceroid) by lysosomal hydrolases. Consequent lysosomal ceroid accumulation leads to neuronal injury. As part of a pilot study to evaluate treatment benefits of cysteamine bitartrate and N-acetylcysteine, we quantitatively measured brain metabolite levels using magnetic resonance spectroscopy (MRS). A subset of two patients from a larger treatment and follow-up study underwent serial quantitative single-voxel MRS examinations of five anatomical sites. Three echo times were acquired in order to estimate metabolite T2. Measured metabolite levels included correction for partial volume of cerebrospinal fluid. Comparison of INCL patients was made to a reference group composed of asymptomatic and minimally symptomatic Niemann-Pick disease type C patients. In INCL patients, N-acetylaspartate (NAA) was abnormally low at all locations upon initial measurement, and further declined throughout the follow-up period. In the cerebrum (affected early in the disease course), choline and myo-inositol were initially elevated and fell during the follow-up period, whereas in the cerebellum and brainstem (affected later), choline and myo-inositol were initially normal and rose subsequently. Choline and myo-inositol levels in our patients are consistent with patterns of neuroinflammation observed in two INCL mouse models. Low, persistently declining NAA was expected based on the progressive, irreversible nature of the disease. Progression of metabolite levels in INCL has not been previously quantified; therefore the results of this study serve as a reference for quantitative evaluation of future therapeutic interventions.

  14. Comparison of in vitro flows past a mechanical heart valve in anatomical and axisymmetric aorta models

    NASA Astrophysics Data System (ADS)

    Haya, Laura; Tavoularis, Stavros

    2017-06-01

    Flow characteristics past a bileaflet mechanical heart valve were measured under physiological flow conditions in a straight tube with an axisymmetric expansion, similar to vessels used in previous studies, and in an anatomical model of the aorta. We found that anatomical features, including the three-lobed sinus and the aorta's curvature affected significantly the flow characteristics. The turbulent and viscous stresses were presented and discussed as indicators for potential blood damage and thrombosis. Both types of stresses, averaged over the two axial measurement planes, were significantly lower in the anatomical model than in the axisymmetric one. This difference was attributed to the lower height-to-width ratio and more gradual contraction of the anatomical aortic sinus. The curvature of the aorta caused asymmetries in the velocity and stress distributions during forward flow. Secondary flows resulting from the aorta's curvature are thought to have redistributed the fluid stresses transversely, resulting in a more homogeneous stress distribution in the anatomical aortic root than in the axisymmetric root. The results of this study demonstrate the importance of modelling accurately the aortic geometry in experimental and computational studies of prosthetic devices. Moreover, our findings suggest that grafts used for aortic root replacement should approximate as closely as possible the shape of the natural sinuses.

  15. Comparison of large-scale human brain functional and anatomical networks in schizophrenia.

    PubMed

    Nelson, Brent G; Bassett, Danielle S; Camchong, Jazmin; Bullmore, Edward T; Lim, Kelvin O

    2017-01-01

    Schizophrenia is a disease with disruptions in thought, emotion, and behavior. The dysconnectivity hypothesis suggests these disruptions are due to aberrant brain connectivity. Many studies have identified connectivity differences but few have been able to unify gray and white matter findings into one model. Here we develop an extension of the Network-Based Statistic (NBS) called NBSm (Multimodal Network-based statistic) to compare functional and anatomical networks in schizophrenia. Structural, resting functional, and diffusion magnetic resonance imaging data were collected from 29 chronic patients with schizophrenia and 29 healthy controls. Images were preprocessed, and average time courses were extracted for 90 regions of interest (ROI). Functional connectivity matrices were estimated by pairwise correlations between wavelet coefficients of ROI time series. Following diffusion tractography, anatomical connectivity matrices were estimated by white matter streamline counts between each pair of ROIs. Global and regional strength were calculated for each modality. NBSm was used to find significant overlap between functional and anatomical components that distinguished health from schizophrenia. Global strength was decreased in patients in both functional and anatomical networks. Regional strength was decreased in all regions in functional networks and only one region in anatomical networks. NBSm identified a distinguishing functional component consisting of 46 nodes with 113 links (p < 0.001), a distinguishing anatomical component with 47 nodes and 50 links (p = 0.002), and a distinguishing intermodal component with 26 nodes (p < 0.001). NBSm is a powerful technique for understanding network-based group differences present in both anatomical and functional data. In light of the dysconnectivity hypothesis, these results provide compelling evidence for the presence of significant overlapping anatomical and functional disruption in people with schizophrenia.

  16. Cluster-based upper body marker models for three-dimensional kinematic analysis: Comparison with an anatomical model and reliability analysis.

    PubMed

    Boser, Quinn A; Valevicius, Aïda M; Lavoie, Ewen B; Chapman, Craig S; Pilarski, Patrick M; Hebert, Jacqueline S; Vette, Albert H

    2018-04-27

    Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Analyzing 7000 texts on deep brain stimulation: what do they tell us?

    PubMed

    Ineichen, Christian; Christen, Markus

    2015-01-01

    The enormous increase in numbers of scientific publications in the last decades requires quantitative methods for obtaining a better understanding of topics and developments in various fields. In this exploratory study, we investigate the emergence, trends, and connections of topics within the whole text corpus of the deep brain stimulation (DBS) literature based on more than 7000 papers (title and abstracts) published between 1991 to 2014 using a network approach. Taking the co-occurrence of basic terms that represent important topics within DBS as starting point, we outline the statistics of interconnections between DBS indications, anatomical targets, positive, and negative effects, as well as methodological, technological, and economic issues. This quantitative approach confirms known trends within the literature (e.g., regarding the emergence of psychiatric indications). The data also reflect an increased discussion about complex issues such as personality connected tightly to the ethical context, as well as an apparent focus on depression as important DBS indication, where the co-occurrence of terms related to negative effects is low both for the indication as well as the related anatomical targets. We also discuss consequences of the analysis from a bioethical perspective, i.e., how such a quantitative analysis could uncover hidden subject matters that have ethical relevance. For example, we find that hardware-related issues in DBS are far more robustly connected to an ethical context compared to impulsivity, concrete side-effects or death/suicide. Our contribution also outlines the methodology of quantitative text analysis that combines statistical approaches with expert knowledge. It thus serves as an example how innovative quantitative tools can be made useful for gaining a better understanding in the field of DBS.

  18. Analyzing 7000 texts on deep brain stimulation: what do they tell us?

    PubMed Central

    Ineichen, Christian; Christen, Markus

    2015-01-01

    The enormous increase in numbers of scientific publications in the last decades requires quantitative methods for obtaining a better understanding of topics and developments in various fields. In this exploratory study, we investigate the emergence, trends, and connections of topics within the whole text corpus of the deep brain stimulation (DBS) literature based on more than 7000 papers (title and abstracts) published between 1991 to 2014 using a network approach. Taking the co-occurrence of basic terms that represent important topics within DBS as starting point, we outline the statistics of interconnections between DBS indications, anatomical targets, positive, and negative effects, as well as methodological, technological, and economic issues. This quantitative approach confirms known trends within the literature (e.g., regarding the emergence of psychiatric indications). The data also reflect an increased discussion about complex issues such as personality connected tightly to the ethical context, as well as an apparent focus on depression as important DBS indication, where the co-occurrence of terms related to negative effects is low both for the indication as well as the related anatomical targets. We also discuss consequences of the analysis from a bioethical perspective, i.e., how such a quantitative analysis could uncover hidden subject matters that have ethical relevance. For example, we find that hardware-related issues in DBS are far more robustly connected to an ethical context compared to impulsivity, concrete side-effects or death/suicide. Our contribution also outlines the methodology of quantitative text analysis that combines statistical approaches with expert knowledge. It thus serves as an example how innovative quantitative tools can be made useful for gaining a better understanding in the field of DBS. PMID:26578908

  19. Autoradiographic method for quantitation of deposition and distribution of radiocalcium in bone

    PubMed Central

    Lawrence Riggs, B; Bassingthwaighte, James B.; Jowsey, Jenifer; Peter Pequegnat, E

    2010-01-01

    A method is described for quantitating autoradiographs of bone-seeking isotopes in microscopic sections of bone. Autoradiographs of bone sections containing 45Ca and internal calibration standards are automatically scanned with a microdensitometer. The digitized optical density output is stored on magnetic tape and is converted by computer to equivalent activity of 45Ca per gram of bone. The computer determines the total 45Ca uptake in the bone section and, on the basis of optical density and anatomic position, quantitatively divides the uptake into 4 components, each representing a separate physiologic process (bone formation, secondary mineralization, diffuse long-term exchange, and surface short-term exchange). The method is also applicable for quantitative analysis of microradiographs of bone sections for mineral content and density. PMID:5416906

  20. Anatomical Distribution of Lipids in Human Brain Cortex by Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Veloso, Antonio; Astigarraga, Egoitz; Barreda-Gómez, Gabriel; Manuel, Iván; Ferrer, Isidro; Teresa Giralt, María; Ochoa, Begoña; Fresnedo, Olatz; Rodríguez-Puertas, Rafael; Fernández, José A.

    2011-02-01

    Molecular mass images of tissues will be biased if differences in the physicochemical properties of the microenvironment affect the intensity of the spectra. To address this issue, we have performed—by means of MALDI-TOF mass spectrometry—imaging on slices and lipidomic analysis in extracts of frontal cortex, both from the same postmortem tissue samples of human brain. An external calibration was used to achieve a mass accuracy of 10 ppm (1 σ) in the spectra of the extracts, although the final assignment was based on a comparison with previously reported species. The spectra recorded directly from tissue slices (imaging) show excellent s/n ratios, almost comparable to those obtained from the extracts. In addition, they retain the information about the anatomical distribution of the molecular species present in autopsied frozen tissue. Further comparison between the spectra from lipid extracts devoid of proteins and those recorded directly from the tissue unambiguously show that the differences in lipid composition between gray and white matter observed in the mass images are not an artifact due to microenvironmental influences of each anatomical area on the signal intensity, but real variations in the lipid composition.

  1. Comparative leaf and root anatomy of two Dendrobium species (Orchidaceae) from different habitat in relation to their potential adaptation to drought

    NASA Astrophysics Data System (ADS)

    Metusala, D.; Supriatna, J.; Nisyawati, Sopandie, D.

    2017-07-01

    Dendrobium capra and Dendrobium arcuatum are closely related in phylogeny, but they have very contrasting vegetative morphology and habitats. D. capra is known as a species that is well-adapted to dry lowland teak forest habitat in East Java, where most trees drop their leaves in summer, while D. arcuatum has adapted to mid or high land moist forest at elevation up to 800 m dpl. In order to investigate their potential adaptation to drought stress in the climate change era, we have compared and analyzed the leaf and root anatomical characteristics of both species. Transversal sections were made using hand mini microtome, dehydrated in graded alcohol series and stained with safranin 1 % and fastgreen 1 %. Leaf scraping technique has been used to prepare paradermal sections, and then dehydrated in graded alcohol series and stained with safranin 1 %. Quantitative anatomical characteristics between D. capra and D. arcuatum have been compared using a t-test. The result showed that there were significant differences on anatomical characters between both species. Compared to D. arcuatum, D. capra shows more developed anatomical features for adapting to drought and dry condition. These anatomical features were a thicker cuticle, thicker epidermis, presence of hypodermis, thicker mesophyll, broader primary vascular bundle, well developed xylem's sclerenchyma, lower stomatal density, thicker and high proportion of velamen.

  2. Brain plasticity, memory, and aging: a discussion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, E.L.; Rosenzweig, M.R.

    1977-12-01

    It is generally assumed that memory faculties decline with age. A discussion of the relationship of memory and aging and the possibility of retarding the potential decline is hampered by the fact that no satisfactory explanation of memory is available in either molecular or anatomical terms. However, this lack of description of memory does not mean that there is a lack of suggested mechanisms for long-term memory storage. Present theories of memory usually include first, neurophysiological or electrical events, followed by a series of chemical events which ultimately lead to long-lasting anatomical changes in the brain. Evidence is increasing formore » the biochemical and anatomical plasticity of the nervous system and its importance in the normal functioning of the brain. Modification of this plasticity may be an important factor in senescence. This discussion reports experiments which indicate that protein synthesis and anatomical changes may be involved in long-term memory storage. Environmental influences can produce quantitative differences in brain anatomy and in behavior. In experimental animals, enriched environments lead to more complex anatomical patterns than do colony or impoverished environments. This raises fundamental questions about the adequacy of the isolated animal which is frequently being used as a model for aging research. A more important applied question is the role of social and intellectual stimulation in influencing aging of the human brain.« less

  3. Afferent innervation patterns of the saccule in pigeons

    NASA Technical Reports Server (NTRS)

    Zakir, M.; Huss, D.; Dickman, J. D.

    2003-01-01

    The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.

  4. Neuronavigation using three-dimensional proton magnetic resonance spectroscopy data.

    PubMed

    Kanberoglu, Berkay; Moore, Nina Z; Frakes, David; Karam, Lina J; Debbins, Josef P; Preul, Mark C

    2014-01-01

    Applications in clinical medicine can benefit from fusion of spectroscopy data with anatomical imagery. For example, new 3-dimensional (3D) spectroscopy techniques allow for improved correlation of metabolite profiles with specific regions of interest in anatomical tumor images, which can be useful in characterizing and treating heterogeneous tumors that appear structurally homogeneous. We sought to develop a clinical workflow and uniquely capable custom software tool to integrate advanced 3-tesla 3D proton magnetic resonance spectroscopic imaging ((1)H-MRSI) into industry standard image-guided neuronavigation systems, especially for use in brain tumor surgery. (1)H-MRSI spectra from preoperative scanning on 15 patients with recurrent or newly diagnosed meningiomas were processed and analyzed, and specific voxels were selected based on their chemical contents. 3D neuronavigation overlays were then generated and applied to anatomical image data in the operating room. The proposed 3D methods fully account for scanner calibration and comprise tools that we have now made publicly available. The new methods were quantitatively validated through a phantom study and applied successfully to mitigate biopsy uncertainty in a clinical study of meningiomas. The proposed methods improve upon the current state of the art in neuronavigation through the use of detailed 3D (1)H-MRSI data. Specifically, 3D MRSI-based overlays provide comprehensive, quantitative visual cues and location information during neurosurgery, enabling a progressive new form of online spectroscopy-guided neuronavigation. © 2014 S. Karger AG, Basel.

  5. Local tissue air ratio in an anatomic phantom for 60Co total body irradiation.

    PubMed

    Vrtar, M; Purisić, A

    1991-07-01

    Tissue-air ratio (TAR), as the basic dosimetric function, is not ideally applicable to all important locations in total body irradiation (TBI) dosimetry because it generally refers to central ray measurements. We therefore introduced the local TAR which depends on the specific distribution of the scattering centres around the location of interest. Local TAR measurements were performed in an anatomic water phantom, produced by a sculptor, representing a patient during TBI in the real treatment position. A comparison has been made between TAR values, defined on the beam's ray at different locations in the anatomic phantom and cubic phantoms of different size. The local TAR values in the anatomic phantom, having more realistic outer surface curvatures, are lower by a few percent in most locations. We consider these values more accurate and better applicable to TBI conditions than those obtained in cubic water phantoms, even if the volume of the phantom is adapted to the particular side of the body.

  6. In Vivo Electrochemical Evidence for Simultaneous 5-HT and Histamine Release in the Rat Substantia Nigra pars Reticulata Following Medial Forebrain Bundle Stimulation

    PubMed Central

    Hashemi, Parastoo; Dankoski, Elyse C.; Wood, Kevin M.; Ambrose, R. Ellen; Wightman, R. Mark

    2011-01-01

    Exploring the mechanisms of serotonin (5-hydoxytryptophan (5-HT)) in the brain requires an in vivo method that combines fast temporal resolution with chemical selectivity. Fast-scan cyclic voltammetry (FSCV) is a technique with sufficient temporal and chemical resolution for probing dynamic 5-HT neurotransmission events; however, traditionally it has not been possible to probe in vivo 5-HT mechanisms. Recently, we optimized FSCV for measuring 5-HT release and uptake in vivo in the substantia nigra pars reticulata (SNR) with electrical stimulation of the dorsal raphe nucleus (DRN) in the rat brain. Here, we address technical challenges associated with rat DRN surgery by electrically stimulating 5-HT projections in the medial forebrain bundle (MFB), a more accessible anatomical location. MFB stimulation elicits 5-HT in the SNR; furthermore, we find simultaneous release of an additional species. We use electrochemical and pharmacological methods and describe physiological, anatomical and independent chemical analyses to identify this species as histamine. We also show pharmacologically that increasing the lifetime of extracellular histamine significantly decreases 5-HT release, most likely due to increased activation of histamine H-3 receptors that inhibit 5-HT release. Despite this, under physiological conditions, we find by kinetic comparisons of DRN and MFB stimulations that the simultaneous release of histamine does not interfere with the quantitative 5-HT concentration profile. We therefore present a novel and robust electrical stimulation of the MFB that is technically less challenging than DRN stimulation to study 5-HT and histamine release in the SNR. PMID:21682723

  7. Transformation of a cadaver population: Analysis of a South African cadaver program, 1921-2013.

    PubMed

    Kramer, Beverley; Hutchinson, Erin F

    2015-01-01

    Anatomy has served as a cornerstone in the training of various allied and clinical disciplines and has traditionally been based on dissection of the human body. Thus, to pursue this method of teaching and learning, access to cadavers is of continuing importance. Over a significant period of time unclaimed cadavers have performed an essential role in the teaching of anatomy in South Africa and in Africa. As recent cadaver numbers were declining at the School of Anatomical Sciences, University of the Witwatersrand, Johannesburg and difficulty in procurement was being experienced, the purpose of this study was to critically evaluate the composition of our cadaver population over time so as to provide possible strategies to arrest the decline. A retrospective, quantitative analysis of cadaver records from the School of Anatomical Sciences between 1921 and 2013 was undertaken. Analysis included a comparison of Poisson counts and Fischer's exact test. A significant decrease in the number of cadavers received during the period 2000-2013 and a slow bequest program over the same period of time has led to concerns about the sustainability of teaching anatomy through dissection. Decreases in the numbers of males and cadavers of the black population group occurred between 1990 and 2013, and of bequests from 2000 to 2013. An influence on the cadaver population from a changing political climate and change in socioeconomic status of part of the population was perceived. Changes in sex and population group of the cadavers may have a long-term effect on teaching and research. © 2014 American Association of Anatomists.

  8. Automated segmentation and recognition of the bone structure in non-contrast torso CT images using implicit anatomical knowledge

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Hayashi, T.; Han, M.; Chen, H.; Hara, T.; Fujita, H.; Yokoyama, R.; Kanematsu, M.; Hoshi, H.

    2009-02-01

    X-ray CT images have been widely used in clinical diagnosis in recent years. A modern CT scanner can generate about 1000 CT slices to show the details of all the human organs within 30 seconds. However, CT image interpretations (viewing 500-1000 slices of CT images manually in front of a screen or films for each patient) require a lot of time and energy. Therefore, computer-aided diagnosis (CAD) systems that can support CT image interpretations are strongly anticipated. Automated recognition of the anatomical structures in CT images is a basic pre-processing of the CAD system. The bone structure is a part of anatomical structures and very useful to act as the landmarks for predictions of the other different organ positions. However, the automated recognition of the bone structure is still a challenging issue. This research proposes an automated scheme for segmenting the bone regions and recognizing the bone structure in noncontrast torso CT images. The proposed scheme was applied to 48 torso CT cases and a subjective evaluation for the experimental results was carried out by an anatomical expert following the anatomical definition. The experimental results showed that the bone structure in 90% CT cases have been recognized correctly. For quantitative evaluation, automated recognition results were compared to manual inputs of bones of lower limb created by an anatomical expert on 10 randomly selected CT cases. The error (maximum distance in 3D) between the recognition results and manual inputs distributed from 3-8 mm in different parts of the bone regions.

  9. Normal cross-sectional anatomy of the bovine digit: comparison of computed tomography and limb anatomy.

    PubMed

    Raji, A R; Sardari, K; Mohammadi, H R

    2008-06-01

    The purpose of this study was to define the structures of the digits and hoof in Holstein dairy cattle by using computed tomography scan (CT scan). Transverse, sagittal and dorsoplantar CT images of two isolated cattle cadaver digits were obtained using a Siemens ARTX2 Somatom. The CT images were compared to corresponding frozen cross-sections. Relevant anatomical structures were identified and labelled at each level. The CT images provided anatomical detail of the digits and hoof in Holstein dairy cattle. Transversal images provided excellent depiction of anatomical structures when compared to corresponding frozen cross-sections. The information presented in this paper would serve as an initial reference to the evaluation of CT images of the digits and hoof in Holstein dairy cattle.

  10. Is One Trial Sufficient to Obtain Excellent Pressure Pain Threshold Reliability in the Low Back of Asymptomatic Individuals? A Test-Retest Study.

    PubMed

    Balaguier, Romain; Madeleine, Pascal; Vuillerme, Nicolas

    2016-01-01

    The assessment of pressure pain threshold (PPT) provides a quantitative value related to the mechanical sensitivity to pain of deep structures. Although excellent reliability of PPT has been reported in numerous anatomical locations, its absolute and relative reliability in the lower back region remains to be determined. Because of the high prevalence of low back pain in the general population and because low back pain is one of the leading causes of disability in industrialized countries, assessing pressure pain thresholds over the low back is particularly of interest. The purpose of this study study was (1) to evaluate the intra- and inter- absolute and relative reliability of PPT within 14 locations covering the low back region of asymptomatic individuals and (2) to determine the number of trial required to ensure reliable PPT measurements. Fifteen asymptomatic subjects were included in this study. PPTs were assessed among 14 anatomical locations in the low back region over two sessions separated by one hour interval. For the two sessions, three PPT assessments were performed on each location. Reliability was assessed computing intraclass correlation coefficients (ICC), standard error of measurement (SEM) and minimum detectable change (MDC) for all possible combinations between trials and sessions. Bland-Altman plots were also generated to assess potential bias in the dataset. Relative reliability for both intra- and inter- session was almost perfect with ICC ranged from 0.85 to 0.99. With respect to the intra-session, no statistical difference was reported for ICCs and SEM regardless of the conducted comparisons between trials. Conversely, for inter-session, ICCs and SEM values were significantly larger when two consecutive PPT measurements were used for data analysis. No significant difference was observed for the comparison between two consecutive measurements and three measurements. Excellent relative and absolute reliabilities were reported for both intra- and inter-session. Reliable measurements can be equally achieved when using the mean of two or three consecutive PPT measurements, as usually proposed in the literature, or with only the first one. Although reliability was almost perfect regardless of the conducted comparison between PPT assessments, our results suggest using two consecutive measurements to obtain higher short term absolute reliability.

  11. Quantitative anatomical study of taste buds in fungiform papillae of young and old Fischer rats.

    PubMed

    Mistretta, C M; Oakley, I A

    1986-05-01

    To determine if differences in neural taste responses relate to taste bud loss in old age, taste buds were counted in fungiform papillae of Fischer 344 rats aged 4 to 6 months, 20 to 24 months, and 30 to 37 months. Papillae anterior to the intermolar eminence on one half of the tongue were examined in serial sections. Presence or absence of a taste bud was noted and taste bud diameter was measured. Average percentages of papillae that contained a taste bud in the three groups were 99.6, 99.3, and 94.7%. This is a significant age-related difference but actual number of taste buds lost in the oldest rats was small. Taste bud diameter did not differ with age and general anatomical characteristics of buds were similar in all groups. Thus, anatomical observations on taste bud maintenance in rats over a wide age range, coupled with neurophysiological data, demonstrate that the integrity of the peripheral gustatory system is not altered greatly in old age.

  12. Quantitative mouse brain phenotyping based on single and multispectral MR protocols

    PubMed Central

    Badea, Alexandra; Gewalt, Sally; Avants, Brian B.; Cook, James J.; Johnson, G. Allan

    2013-01-01

    Sophisticated image analysis methods have been developed for the human brain, but such tools still need to be adapted and optimized for quantitative small animal imaging. We propose a framework for quantitative anatomical phenotyping in mouse models of neurological and psychiatric conditions. The framework encompasses an atlas space, image acquisition protocols, and software tools to register images into this space. We show that a suite of segmentation tools (Avants, Epstein et al., 2008) designed for human neuroimaging can be incorporated into a pipeline for segmenting mouse brain images acquired with multispectral magnetic resonance imaging (MR) protocols. We present a flexible approach for segmenting such hyperimages, optimizing registration, and identifying optimal combinations of image channels for particular structures. Brain imaging with T1, T2* and T2 contrasts yielded accuracy in the range of 83% for hippocampus and caudate putamen (Hc and CPu), but only 54% in white matter tracts, and 44% for the ventricles. The addition of diffusion tensor parameter images improved accuracy for large gray matter structures (by >5%), white matter (10%), and ventricles (15%). The use of Markov random field segmentation further improved overall accuracy in the C57BL/6 strain by 6%; so Dice coefficients for Hc and CPu reached 93%, for white matter 79%, for ventricles 68%, and for substantia nigra 80%. We demonstrate the segmentation pipeline for the widely used C57BL/6 strain, and two test strains (BXD29, APP/TTA). This approach appears promising for characterizing temporal changes in mouse models of human neurological and psychiatric conditions, and may provide anatomical constraints for other preclinical imaging, e.g. fMRI and molecular imaging. This is the first demonstration that multiple MR imaging modalities combined with multivariate segmentation methods lead to significant improvements in anatomical segmentation in the mouse brain. PMID:22836174

  13. A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology

    PubMed Central

    Kolasinski, James; Chance, Steven A.; DeLuca, Gabriele C.; Esiri, Margaret M.; Chang, Eun-Hyuk; Palace, Jacqueline A.; McNab, Jennifer A.; Jenkinson, Mark; Miller, Karla L.; Johansen-Berg, Heidi

    2012-01-01

    Multiple sclerosis is a chronic inflammatory neurological condition characterized by focal and diffuse neurodegeneration and demyelination throughout the central nervous system. Factors influencing the progression of pathology are poorly understood. One hypothesis is that anatomical connectivity influences the spread of neurodegeneration. This predicts that measures of neurodegeneration will correlate most strongly between interconnected structures. However, such patterns have been difficult to quantify through post-mortem neuropathology or in vivo scanning alone. In this study, we used the complementary approaches of whole brain post-mortem magnetic resonance imaging and quantitative histology to assess patterns of multiple sclerosis pathology. Two thalamo-cortical projection systems were considered based on their distinct neuroanatomy and their documented involvement in multiple sclerosis: lateral geniculate nucleus to primary visual cortex and mediodorsal nucleus of the thalamus to prefrontal cortex. Within the anatomically distinct thalamo-cortical projection systems, magnetic resonance imaging derived cortical thickness was correlated significantly with both a measure of myelination in the connected tract and a measure of connected thalamic nucleus cell density. Such correlations did not exist between these markers of neurodegeneration across different thalamo-cortical systems. Magnetic resonance imaging lesion analysis depicted clearly demarcated subcortical lesions impinging on the white matter tracts of interest; however, quantitation of the extent of lesion-tract overlap failed to demonstrate any appreciable association with the severity of markers of diffuse pathology within each thalamo-cortical projection system. Diffusion-weighted magnetic resonance imaging metrics in both white matter tracts were correlated significantly with a histologically derived measure of tract myelination. These data demonstrate for the first time the relevance of functional anatomical connectivity to the spread of multiple sclerosis pathology in a ‘tract-specific’ pattern. Furthermore, the persisting relationship between metrics from post-mortem diffusion-weighted magnetic resonance imaging and histological measures from fixed tissue further validates the potential of imaging for future neuropathological studies. PMID:23065787

  14. Anatomical frame identification and reconstruction for repeatable lower limb joint kinematics estimates.

    PubMed

    Donati, Marco; Camomilla, Valentina; Vannozzi, Giuseppe; Cappozzo, Aurelio

    2008-07-19

    The quantitative description of joint mechanics during movement requires the reconstruction of the position and orientation of selected anatomical axes with respect to a laboratory reference frame. These anatomical axes are identified through an ad hoc anatomical calibration procedure and their position and orientation are reconstructed relative to bone-embedded frames normally derived from photogrammetric marker positions and used to describe movement. The repeatability of anatomical calibration, both within and between subjects, is crucial for kinematic and kinetic end results. This paper illustrates an anatomical calibration approach, which does not require anatomical landmark manual palpation, described in the literature to be prone to great indeterminacy. This approach allows for the estimate of subject-specific bone morphology and automatic anatomical frame identification. The experimental procedure consists of digitization through photogrammetry of superficial points selected over the areas of the bone covered with a thin layer of soft tissue. Information concerning the location of internal anatomical landmarks, such as a joint center obtained using a functional approach, may also be added. The data thus acquired are matched with the digital model of a deformable template bone. Consequently, the repeatability of pelvis, knee and hip joint angles is determined. Five volunteers, each of whom performed five walking trials, and six operators, with no specific knowledge of anatomy, participated in the study. Descriptive statistics analysis was performed during upright posture, showing a limited dispersion of all angles (less than 3 deg) except for hip and knee internal-external rotation (6 deg and 9 deg, respectively). During level walking, the ratio of inter-operator and inter-trial error and an absolute subject-specific repeatability were assessed. For pelvic and hip angles, and knee flexion-extension the inter-operator error was equal to the inter-trial error-the absolute error ranging from 0.1 deg to 0.9 deg. Knee internal-external rotation and ab-adduction showed, on average, inter-operator errors, which were 8% and 28% greater than the relevant inter-trial errors, respectively. The absolute error was in the range 0.9-2.9 deg.

  15. Comparison of Pap smear quality with anatomical spatula and convenience (spatula-cytobrush) methods: a single blind clinical trial.

    PubMed

    Abdali, Khadijeh; Soleimani, Marzieh; Khajehei, Marjan; Tabatabaee, Hamid Reza; Komar, Perikala V; Montazer, Nader Riaz

    2010-01-01

    The Papanicolaou smear is a standard test for cervical cancer screening; however, the most important challenge is high false negative results. Several factors contribute to this problem and one the most important is inappropriate sampling. The aim of this study was to compare the quality of smears obtained by either an anatomical spatula or a spatula-cyto brush. One hundred married women participated in this single blind clinical trial. After all participants were interviewed, two samples were obtained from each: one with a spatula-cytobrush and another with an anatomical spatula. Slides were prepared and assessed by two pathologists for kappa coefficient analysis. Cell adequacy was 96.1 % in anatomical spatula method and 91.2 % in spatula-cyto brush method (p= 0.016). The rates for endocervical cells and metaplasia cells were 70.6%and 24.5%, respectively, with the anatomical spatula method and 69.6% and 24.5% using a spatula-cytobrush (p<0.001). No one reported pain and the amount of bleeding was 38.2% in both methods (p>0.05). In addition, there were no statistically significant differences regarding infection and inflammatory reactions (p>0.05). Based on the findings of this study, the results of sampling with anatomical spatula were more acceptable and better than those of spatula-cytobrush sampling.

  16. Quantitative assessment of anatomical change using a virtual proton depth radiograph for adaptive head and neck proton therapy.

    PubMed

    Wang, Peng; Yin, Lingshu; Zhang, Yawei; Kirk, Maura; Song, Gang; Ahn, Peter H; Lin, Alexander; Gee, James; Dolney, Derek; Solberg, Timothy D; Maughan, Richard; McDonough, James; Teo, Boon-Keng Kevin

    2016-03-08

    The aim of this work is to demonstrate the feasibility of using water-equivalent thickness (WET) and virtual proton depth radiographs (PDRs) of intensity corrected cone-beam computed tomography (CBCT) to detect anatomical change and patient setup error to trigger adaptive head and neck proton therapy. The planning CT (pCT) and linear accelerator (linac) equipped CBCTs acquired weekly during treatment of a head and neck patient were used in this study. Deformable image registration (DIR) was used to register each CBCT with the pCT and map Hounsfield units (HUs) from the planning CT (pCT) onto the daily CBCT. The deformed pCT is referred as the corrected CBCT (cCBCT). Two dimensional virtual lateral PDRs were generated using a ray-tracing technique to project the cumulative WET from a virtual source through the cCBCT and the pCT onto a virtual plane. The PDRs were used to identify anatomic regions with large variations in the proton range between the cCBCT and pCT using a threshold of 3 mm relative difference of WET and 3 mm search radius criteria. The relationship between PDR differences and dose distribution is established. Due to weight change and tumor response during treatment, large variations in WETs were observed in the relative PDRs which corresponded spatially with an increase in the number of failing points within the GTV, especially in the pharynx area. Failing points were also evident near the posterior neck due to setup variations. Differences in PDRs correlated spatially to differences in the distal dose distribution in the beam's eye view. Virtual PDRs generated from volumetric data, such as pCTs or CBCTs, are potentially a useful quantitative tool in proton therapy. PDRs and WET analysis may be used to detect anatomical change from baseline during treatment and trigger further analysis in adaptive proton therapy.

  17. DIFFUSION-WEIGHTED IMAGING TRACTOGRAPHY-BASED PARCELLATION OF THE HUMAN PARIETAL CORTEX AND COMPARISON WITH HUMAN AND MACAQUE RESTING STATE FUNCTIONAL CONNECTIVITY

    PubMed Central

    Mars, Rogier B.; Jbabdi, Saad; Sallet, Jérôme; O’Reilly, Jill X.; Croxson, Paula L.; Olivier, Etienne; Noonan, MaryAnn P.; Bergmann, Caroline; Mitchell, Anna S.; Baxter, Mark G.; Behrens, Timothy E.J.; Johansen-Berg, Heidi; Tomassini, Valentina; Miller, Karla L.; Rushworth, Matthew F.S.

    2011-01-01

    Despite the prominence of parietal activity in human neuromaging investigations of sensorimotor and cognitive processes there remains uncertainty about basic aspects of parietal cortical anatomical organization. Descriptions of human parietal cortex draw heavily on anatomical schemes developed in other primate species but the validity of such comparisons has been questioned by claims that there are fundamental differences between the parietal cortex in humans and other primates. A scheme is presented for parcellation of human lateral parietal cortex into component regions on the basis of anatomical connectivity and the functional interactions of the resulting clusters with other brain regions. Anatomical connectivity was estimated using diffusion-weighted magnetic resonance image (MRI) based tractography and functional interactions were assessed by correlations in activity measured with functional MRI (fMRI) at rest. Resting state functional connectivity was also assessed directly in the rhesus macaque lateral parietal cortex in an additional experiment and the patterns found reflected known neuroanatomical connections. Cross-correlation in the tractography-based connectivity patterns of parietal voxels reliably parcellated human lateral parietal cortex into ten component clusters. The resting state functional connectivity of human superior parietal and intraparietal clusters with frontal and extrastriate cortex suggested correspondences with areas in macaque superior and intraparietal sulcus. Functional connectivity patterns with parahippocampal cortex and premotor cortex again suggested fundamental correspondences between inferior parietal cortex in humans and macaques. In contrast, the human parietal cortex differs in the strength of its interactions between the central inferior parietal lobule region and the anterior prefrontal cortex. PMID:21411650

  18. Segregation of Form, Color, Movement, and Depth: Anatomy, Physiology, and Perception.

    ERIC Educational Resources Information Center

    Livingstone, Margaret; Hubel, David

    1988-01-01

    Summarizes the anatomical, physiological, and psychological evidence related to the primate visual system. States that comparison of perceptual abilities with the electrophysiological properties of neurons may help deduce functions of visual areas. (RT)

  19. Posture and posturology, anatomical and physiological profiles: overview and current state of art.

    PubMed

    Carini, Francesco; Mazzola, Margherita; Fici, Chiara; Palmeri, Salvatore; Messina, Massimo; Damiani, Provvidenza; Tomasello, Giovanni

    2017-04-28

    posture is the position of the body in the space, and is controlled by a set of anatomical structures. The maintenance and the control of posture are a set of interactions between muscle-skeletal, visual, vestibular, and skin system. Lately there are numerous studies that correlate the muscle-skeletal and the maintenance of posture. In particular, the correction of defects and obstruction of temporomandibular disorders, seem to have an impact on posture. The aim of this work is to collect information in literature on posture and the influence of the stomatognathic system on postural system. Comparison of the literature on posture and posturology by consulting books and scientific sites. the results obtained from the comparison of the literature show a discrepancy between the thesis. Some studies support the correlation between stomatognathic system and posture, while others deny such a correlation. further studies are necessary to be able to confirm one or the other argument.

  20. 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries.

    PubMed

    Canstein, C; Cachot, P; Faust, A; Stalder, A F; Bock, J; Frydrychowicz, A; Küffer, J; Hennig, J; Markl, M

    2008-03-01

    The knowledge of local vascular anatomy and function in the human body is of high interest for the diagnosis and treatment of cardiovascular disease. A comprehensive analysis of the hemodynamics in the thoracic aorta is presented based on the integration of flow-sensitive 4D MRI with state-of-the-art rapid prototyping technology and computational fluid dynamics (CFD). Rapid prototyping was used to transform aortic geometries as measured by contrast-enhanced MR angiography into realistic vascular models with large anatomical coverage. Integration into a flow circuit with patient-specific pulsatile in-flow conditions and application of flow-sensitive 4D MRI permitted detailed analysis of local and global 3D flow dynamics in a realistic vascular geometry. Visualization of characteristic 3D flow patterns and quantitative comparisons of the in vitro experiments with in vivo data and CFD simulations in identical vascular geometries were performed to evaluate the accuracy of vascular model systems. The results indicate the potential of such patient-specific model systems for detailed experimental simulation of realistic vascular hemodynamics. Further studies are warranted to examine the influence of refined boundary conditions of the human circulatory system such as fluid-wall interaction and their effect on normal and pathological blood flow characteristics associated with vascular geometry. (c) 2008 Wiley-Liss, Inc.

  1. Comparative histology of mouse, rat, and human pelvic ligaments.

    PubMed

    Iwanaga, Ritsuko; Orlicky, David J; Arnett, Jameson; Guess, Marsha K; Hurt, K Joseph; Connell, Kathleen A

    2016-11-01

    The uterosacral (USL) and cardinal ligaments (CL) provide support to the uterus and pelvic organs, and the round ligaments (RL) maintain their position in the pelvis. In women with pelvic organ prolapse (POP), the connective tissue, smooth muscle, vasculature, and innervation of the pelvic support structures are altered. Rodents are commonly used animal models for POP research. However, the pelvic ligaments have not been defined in these animals. In this study, we hypothesized that the gross anatomy and histological composition of pelvic ligaments in rodents and humans are similar. We performed an extensive literature search for anatomical and histological descriptions of the pelvic support ligaments in rodents. We also performed anatomical dissections of the pelvis to define anatomical landmarks in relation to the ligaments. In addition, we identified the histological components of the pelvic ligaments and performed quantitative analysis of the smooth muscle bundles and connective tissue of the USL and RL. The anatomy of the USL, CL, and RL and their anatomical landmarks are similar in mice, rats, and humans. All species contain the same cellular components and have similar histological architecture. However, the cervical portion of the mouse USL and RL contain more smooth muscle and less connective tissue compared with rat and human ligaments. The pelvic support structures of rats and mice are anatomically and histologically similar to those of humans. We propose that both mice and rats are appropriate, cost-effective models for directed studies in POP research.

  2. COMICS: Cartoon Visualization of Omics Data in Spatial Context Using Anatomical Ontologies

    PubMed Central

    2017-01-01

    COMICS is an interactive and open-access web platform for integration and visualization of molecular expression data in anatomograms of zebrafish, carp, and mouse model systems. Anatomical ontologies are used to map omics data across experiments and between an experiment and a particular visualization in a data-dependent manner. COMICS is built on top of several existing resources. Zebrafish and mouse anatomical ontologies with their controlled vocabulary (CV) and defined hierarchy are used with the ontoCAT R package to aggregate data for comparison and visualization. Libraries from the QGIS geographical information system are used with the R packages “maps” and “maptools” to visualize and interact with molecular expression data in anatomical drawings of the model systems. COMICS allows users to upload their own data from omics experiments, using any gene or protein nomenclature they wish, as long as CV terms are used to define anatomical regions or developmental stages. Common nomenclatures such as the ZFIN gene names and UniProt accessions are provided additional support. COMICS can be used to generate publication-quality visualizations of gene and protein expression across experiments. Unlike previous tools that have used anatomical ontologies to interpret imaging data in several animal models, including zebrafish, COMICS is designed to take spatially resolved data generated by dissection or fractionation and display this data in visually clear anatomical representations rather than large data tables. COMICS is optimized for ease-of-use, with a minimalistic web interface and automatic selection of the appropriate visual representation depending on the input data. PMID:29083911

  3. COMICS: Cartoon Visualization of Omics Data in Spatial Context Using Anatomical Ontologies.

    PubMed

    Travin, Dmitrii; Popov, Iaroslav; Guler, Arzu Tugce; Medvedev, Dmitry; van der Plas-Duivesteijn, Suzanne; Varela, Monica; Kolder, Iris C R M; Meijer, Annemarie H; Spaink, Herman P; Palmblad, Magnus

    2018-01-05

    COMICS is an interactive and open-access web platform for integration and visualization of molecular expression data in anatomograms of zebrafish, carp, and mouse model systems. Anatomical ontologies are used to map omics data across experiments and between an experiment and a particular visualization in a data-dependent manner. COMICS is built on top of several existing resources. Zebrafish and mouse anatomical ontologies with their controlled vocabulary (CV) and defined hierarchy are used with the ontoCAT R package to aggregate data for comparison and visualization. Libraries from the QGIS geographical information system are used with the R packages "maps" and "maptools" to visualize and interact with molecular expression data in anatomical drawings of the model systems. COMICS allows users to upload their own data from omics experiments, using any gene or protein nomenclature they wish, as long as CV terms are used to define anatomical regions or developmental stages. Common nomenclatures such as the ZFIN gene names and UniProt accessions are provided additional support. COMICS can be used to generate publication-quality visualizations of gene and protein expression across experiments. Unlike previous tools that have used anatomical ontologies to interpret imaging data in several animal models, including zebrafish, COMICS is designed to take spatially resolved data generated by dissection or fractionation and display this data in visually clear anatomical representations rather than large data tables. COMICS is optimized for ease-of-use, with a minimalistic web interface and automatic selection of the appropriate visual representation depending on the input data.

  4. Quantitative Comparison of the Microscopic Anatomy of the Human ACL Femoral and Tibial Entheses

    PubMed Central

    Beaulieu, Mélanie L.; Carey, Grace E.; Schlecht, Stephen H.; Wojtys, Edward M.; Ashton-Miller, James A.

    2015-01-01

    The femoral enthesis of the human anterior cruciate ligament (ACL) is known to be more susceptible to injury than the tibial enthesis. To determine whether anatomic differences might help explain this difference, we quantified the microscopic appearance of both entheses in 15 unembalmed knee specimens using light microscopy, toluidine blue stain and image analysis. The amount of calcified fibrocartilage and uncalcified fibrocartilage, and the ligament entheseal attachment angle were then compared between the femoral and tibial entheses via linear mixed-effects models. The results showed marked differences in anatomy between the two entheses. The femoral enthesis exhibited a 3.9-fold more acute ligament attachment angle than the tibial enthesis (p < 0.001), a 43% greater calcified fibrocartilage tissue area (p < 0.001), and a 226% greater uncalcified fibrocartilage depth (p < 0.001), with the latter differences being particularly pronounced in the central region. We conclude that the ACL femoral enthesis has more fibrocartilage and a more acute ligament attachment angle than the tibial enthesis, which provides insight into why it is more vulnerable to failure. PMID:26134706

  5. Breast imaging with ultrasound tomography: update on a comparative study with MR

    NASA Astrophysics Data System (ADS)

    Ranger, Bryan; Littrup, Peter; Duric, Neb; Li, Cuiping; Schmidt, Steven; Rama, Olsi; Bey-Knight, Lisa

    2011-03-01

    The objective of this study is to present imaging parameters and display thresholds of an ultrasound tomography (UST) prototype in order to demonstrate analogous visualization of overall breast anatomy and lesions relative to magnetic resonance (MR). Thirty-six women were imaged with MR and our UST prototype. The UST scan generated sound speed, attenuation, and reflection images and were subjected to variable thresholds then fused together into a single UST image. Qualitative and quantitative comparisons of MR and UST images were utilized to identify anatomical similarities and mass characteristics. Overall, UST demonstrated the ability to visualize and characterize breast tissues in a manner comparable to MR without the use of IV contrast. For optimal visualization, fused images utilized thresholds of 1.46+/-0.1 km/s for sound speed to represent architectural features of the breast including parenchyma. An arithmetic combination of images using the logical .AND. and .OR. operators, along with thresholds of 1.52+/-0.03 km/s for sound speed and 0.16+/-0.04 dB/cm for attenuation, allowed for mass detection and characterization similar to MR.

  6. High resolution anatomical and quantitative MRI of the entire human occipital lobe ex vivo at 9.4T.

    PubMed

    Sengupta, S; Fritz, F J; Harms, R L; Hildebrand, S; Tse, D H Y; Poser, B A; Goebel, R; Roebroeck, A

    2018-03-01

    Several magnetic resonance imaging (MRI) contrasts are sensitive to myelin content in gray matter in vivo which has ignited ambitions of MRI-based in vivo cortical histology. Ultra-high field (UHF) MRI, at fields of 7T and beyond, is crucial to provide the resolution and contrast needed to sample contrasts over the depth of the cortex and get closer to layer resolved imaging. Ex vivo MRI of human post mortem samples is an important stepping stone to investigate MRI contrast in the cortex, validate it against histology techniques applied in situ to the same tissue, and investigate the resolutions needed to translate ex vivo findings to in vivo UHF MRI. Here, we investigate key technology to extend such UHF studies to large human brain samples while maintaining high resolution, which allows investigation of the layered architecture of several cortical areas over their entire 3D extent and their complete borders where architecture changes. A 16 channel cylindrical phased array radiofrequency (RF) receive coil was constructed to image a large post mortem occipital lobe sample (~80×80×80mm 3 ) in a wide-bore 9.4T human scanner with the aim of achieving high-resolution anatomical and quantitative MR images. Compared with a human head coil at 9.4T, the maximum Signal-to-Noise ratio (SNR) was increased by a factor of about five in the peripheral cortex. Although the transmit profile with a circularly polarized transmit mode at 9.4T is relatively inhomogeneous over the large sample, this challenge was successfully resolved with parallel transmit using the kT-points method. Using this setup, we achieved 60μm anatomical images for the entire occipital lobe showing increased spatial definition of cortical details compared to lower resolutions. In addition, we were able to achieve sufficient control over SNR, B 0 and B 1 homogeneity and multi-contrast sampling to perform quantitative T 2 * mapping over the same volume at 200μm. Markov Chain Monte Carlo sampling provided maximum posterior estimates of quantitative T 2 * and their uncertainty, allowing delineation of the stria of Gennari over the entire length and width of the calcarine sulcus. We discuss how custom RF receive coil arrays built to specific large post mortem sample sizes can provide a platform for UHF cortical layer-specific quantitative MRI over large fields of view. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Differences in subependymal vein anatomy may predispose preterm infants to GMH-IVH.

    PubMed

    Tortora, Domenico; Severino, Mariasavina; Malova, Mariya; Parodi, Alessandro; Morana, Giovanni; Sedlacik, Jan; Govaert, Paul; Volpe, Joseph J; Rossi, Andrea; Ramenghi, Luca Antonio

    2018-01-01

    The anatomy of the deep venous system plays an important role in the pathogenesis of brain lesions in the preterm brain as shown by different histological studies. The aims of this study were to compare the subependymal vein anatomy of preterm neonates with germinal matrix haemorrhage-intraventricular haemorrhage (GMH-IVH), as evaluated by susceptibility-weighted imaging (SWI) venography, with a group of age-matched controls with normal brain MRI, and to explore the relationship between the anatomical features of subependymal veins and clinical risk factors for GMH-IVH. SWI venographies of 48 neonates with GMH-IVH and 130 neonates with normal brain MRI were retrospectively evaluated. Subependymal vein anatomy was classified into six different patterns: type 1 represented the classic pattern and types 2-6 were considered anatomic variants. A quantitative analysis of the venous curvature index was performed. Variables were analysed by using Mann-Whitney U and χ 2 tests, and a multiple logistic regression analysis was performed to evaluate the association between anatomical features, clinical factors and GMH-IVH. A significant difference was noticed among the six anatomical patterns according to the presence of GMH-IVH (χ 2 =14.242, p=0.014). Anatomic variants were observed with higher frequency in neonates with GMH-IVH than in controls (62.2% and 49.6%, respectively). Neonates with GMH-IVH presented a narrower curvature of the terminal portion of subependymal veins (p<0.05). These anatomical features were significantly associated with GMH-IVH (p<0.05). Preterm neonates with GMH-IVH show higher variability of subependymal veins anatomy confirming a potential role as predisposing factor for GMH-IVH. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Take away body parts! An investigation into the use of 3D-printed anatomical models in undergraduate anatomy education.

    PubMed

    Smith, Claire F; Tollemache, Nicholas; Covill, Derek; Johnston, Malcolm

    2018-01-01

    Understanding the three-dimensional (3D) nature of the human form is imperative for effective medical practice and the emergence of 3D printing creates numerous opportunities to enhance aspects of medical and healthcare training. A recently deceased, un-embalmed donor was scanned through high-resolution computed tomography. The scan data underwent segmentation and post-processing and a range of 3D-printed anatomical models were produced. A four-stage mixed-methods study was conducted to evaluate the educational value of the models in a medical program. (1) A quantitative pre/post-test to assess change in learner knowledge following 3D-printed model usage in a small group tutorial; (2) student focus group (3) a qualitative student questionnaire regarding personal student model usage (4) teaching faculty evaluation. The use of 3D-printed models in small-group anatomy teaching session resulted in a significant increase in knowledge (P = 0.0001) when compared to didactic 2D-image based teaching methods. Student focus groups yielded six key themes regarding the use of 3D-printed anatomical models: model properties, teaching integration, resource integration, assessment, clinical imaging, and pathology and anatomical variation. Questionnaires detailed how students used the models in the home environment and integrated them with anatomical learning resources such as textbooks and anatomy lectures. In conclusion, 3D-printed anatomical models can be successfully produced from the CT data set of a recently deceased donor. These models can be used in anatomy education as a teaching tool in their own right, as well as a method for augmenting the curriculum and complementing established learning modalities, such as dissection-based teaching. Anat Sci Educ 11: 44-53. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  9. Anatomical knowledge retention in third-year medical students prior to obstetrics and gynecology and surgery rotations.

    PubMed

    Jurjus, Rosalyn A; Lee, Juliet; Ahle, Samantha; Brown, Kirsten M; Butera, Gisela; Goldman, Ellen F; Krapf, Jill M

    2014-01-01

    Surgical anatomy is taught early in medical school training. The literature shows that many physicians, especially surgical specialists, think that anatomical knowledge of medical students is inadequate and nesting of anatomical sciences later in the clinical curriculum may be necessary. Quantitative data concerning this perception of an anatomical knowledge deficit are lacking, as are specifics as to what content should be reinforced. This study identifies baseline areas of strength and weakness in the surgical anatomy knowledge of medical students entering surgical rotations. Third-year medical students completed a 20-25-question test at the beginning of the General Surgery and Obstetrics and Gynecology rotations. Knowledge of inguinal anatomy (45.3%), orientation in abdominal cavity (38.8%), colon (27.7%), and esophageal varices (12.8%) was poor. The numbers in parentheses are the percentage of questions answered correctly per topic. In comparing those scores to matched test items from this cohort as first-year students in the anatomy course, the drop in retention overall was very significant (P = 0.009) from 86.9 to 51.5%. Students also scored lower in questions relating to pelvic organs (46.7%), urogenital development (54.0%), pulmonary development (17.8%), and pregnancy (17.8%). These data showed that indeed, knowledge of surgical anatomy is poor for medical students entering surgical clerkships. These data collected will be utilized to create interactive learning modules, aimed at improving clinically relevant anatomical knowledge retention. These modules, which will be available to students during their inpatient surgical rotations, connect basic anatomy principles to clinical cases, with the ultimate goal of closing the anatomical knowledge gap. © 2014 American Association of Anatomists.

  10. Three-dimensional Cervical Movement Characteristics in Healthy Subjects and Subgroups of Chronic Neck Pain Patients Based on Their Pain Location.

    PubMed

    Waeyaert, Patirck; Jansen, Daniel; Bastiaansen, Marco; Scafoglieri, Aldo; Buyl, Ronald; Schmitt, Maarten; Cattrysse, Erik

    2016-08-01

    A cross-sectional observational study of three-dimensional (3D) cervical kinematics in 41 chronic neck pain (CNPs) patients and 156 asymptomatic controls. The objective was to investigate 3D cervical kinematics by analyzing and comparing quantitative and qualitative parameters in healthy subjects and CNPs. Furthermore, subgroups were formed to explore the influence of pain-location on cervical kinematics. The possible correlation of kinematic parameters with the degree of functional disability was examined as well. In patients with chronic neck pain, a clear pathological cause is frequently not identifiable. Therefore, the need to assess neck pain with a broader view than structure or anatomical-based divergences is desirable. Movements of the cervical spine were registered using an electromagnetic tracking system. Quantitative and qualitative kinematics were analyzed for active axial rotation, lateral bending, and flexion-extension motion components. During lateral bending, the range of the main motion demonstrated significant higher values (P = 0.001) in the controls (mean: 68.67° ± 15.17°) than patients (mean: 59.28° ± 15.41°). Significant differences were demonstrated between subgroups for several kinematic parameters (P < 0.05). Although differences were predominantly recorded between the "symmetrical" and "asymmetrical" pain group, some parameters also distinguished subgroups from controls. On average, the symmetrical group showed significant less harmonic movement patterns, expressed by qualitative parameters, in comparison with the "asymmetrical" group and controls. Furthermore, the "asymmetrical" group showed significant lower scores on quantitative parameters than the "symmetrical" group and controls. The degree of functional disability correlated moderately with changes in qualitative parameters. In this study, chronic neck pain patients with a symmetrical pain pattern showed significant poorer quality of movement, while those with asymmetrical pain showed a significant reduction in quantitative measures. Subgrouping of neck patients based on pain location may be of help for further research and clinics. 4.

  11. Dynamic and quantitative evaluation of degenerative mitral valve disease: a dedicated framework based on cardiac magnetic resonance imaging

    PubMed Central

    Onorati, Francesco; Puppini, Giovanni; Pappalardo, Omar A.; Selmi, Matteo; Votta, Emiliano; Faggian, Giuseppe; Redaelli, Alberto

    2017-01-01

    Background Accurate quantification of mitral valve (MV) morphology and dynamic behavior over the cardiac cycle is crucial to understand the mechanisms of degenerative MV dysfunction and to guide the surgical intervention. Cardiac magnetic resonance (CMR) imaging has progressively been adopted to evaluate MV pathophysiology, although a dedicated framework is required to perform a quantitative assessment of the functional MV anatomy. Methods We investigated MV dynamic behavior in subjects with normal MV anatomy (n=10) and patients referred to surgery due to degenerative MV prolapse, classified as fibro-elastic deficiency (FED, n=9) and Barlow’s disease (BD, n=10). A CMR-dedicated framework was adopted to evaluate prolapse height and volume and quantitatively assess valvular morphology and papillary muscles (PAPs) function over the cardiac cycle. Multiple comparison was used to investigate the hallmarks associated to MV degenerative prolapse and evaluate the feasibility of anatomical and functional distinction between FED and BD phenotypes. Results On average, annular dimensions were significantly (P<0.05) larger in BD than in FED and normal subjects while no significant differences were noticed between FED and normal. MV eccentricity progressively decreased passing from normal to FED and BD, with the latter exhibiting a rounder annulus shape. Over the cardiac cycle, we noticed significant differences for BD during systole with an abnormal annular enlargement between mid and late systole (LS) (P<0.001 vs. normal); the PAPs dynamics remained comparable in the three groups. Prolapse height and volume highlighted significant differences among normal, FED and BD valves. Conclusions Our CMR-dedicated framework allows for the quantitative and dynamic evaluation of MV apparatus, with quantifiable annular alterations representing the primary hallmark of severe MV degeneration. This may aid surgeons in the evaluation of the severity of MV dysfunction and the selection of the appropriate MV treatment. PMID:28540065

  12. One Medicine, One Acupuncture

    PubMed Central

    Robinson, Narda G.

    2012-01-01

    Simple Summary “One Acupuncture”, modeled after “One Medicine”, embodies a system of translational acupuncture built upon science and hypothesis-driven research. Forging a synthesis between human and veterinary acupuncture requires consistency in point location across species so that meaningful comparisons can be made. The human acupuncture network provides a template of well-studied neurovascular sites that have changed little over the years, in comparison to their veterinary counterparts. This paper identifies disparities that remain. Reconciling inconsistencies will bolster the ability for researchers and clinicians to better understand and interpret findings from acupuncture studies on various species so that more can benefit from these insights. Abstract “One Acupuncture”, like “One Medicine”, has the potential to improve research quality and clinical outcomes. However, while human acupuncture point locations have remained largely consistent over time, the veterinary versions remain imprecise and variable. Establishing anatomical criteria for veterinary acupuncture atlases in keeping with the human template will create congruence across species, benefiting both research and practice. Anatomic criteria for points based on objectively verifiable structures will facilitate translational research. Functionally comparative innervation, in particular, should be similar between species, as the nerves initiate and mediate physiologic changes that result from point stimulation. If researchers choose points that activate different nerves in one species than in another, unpredictable outcomes may occur. Variability in point placement will impede progress and hamper the ability of researchers and clinicians to make meaningful comparisons across species. This paper reveals incongruities that remain between human and veterinary acupuncture points, illustrating the need to analyze anatomical characteristics of each point to assure accuracy in selecting transpositional acupuncture locations. PMID:26487029

  13. Identification among morphologically similar Argyreia (Convolvulaceae) based on leaf anatomy and phenetic analyses.

    PubMed

    Traiperm, Paweena; Chow, Janene; Nopun, Possathorn; Staples, G; Swangpol, Sasivimon C

    2017-12-01

    The genus Argyreia Lour. is one of the species-rich Asian genera in the family Convolvulaceae. Several species complexes were recognized in which taxon delimitation was imprecise, especially when examining herbarium materials without fully developed open flowers. The main goal of this study is to investigate and describe leaf anatomy for some morphologically similar Argyreia using epidermal peeling, leaf and petiole transverse sections, and scanning electron microscopy. Phenetic analyses including cluster analysis and principal component analysis were used to investigate the similarity of these morpho-types. Anatomical differences observed between the morpho-types include epidermal cell walls and the trichome types on the leaf epidermis. Additional differences in the leaf and petiole transverse sections include the epidermal cell shape of the adaxial leaf blade, the leaf margins, and the petiole transverse sectional outline. The phenogram from cluster analysis using the UPGMA method represented four groups with an R value of 0.87. Moreover, the important quantitative and qualitative leaf anatomical traits of the four groups were confirmed by the principal component analysis of the first two components. The results from phenetic analyses confirmed the anatomical differentiation between the morpho-types. Leaf anatomical features regarded as particularly informative for morpho-type differentiation can be used to supplement macro morphological identification.

  14. An anatomic study of nipple position and areola size in Asian men.

    PubMed

    Kasai, Shogo; Shimizu, Yusuke; Nagasao, Tomohisa; Ohnishi, Fumio; Minabe, Toshiharu; Momosawa, Akira; Kishi, Kazuo

    2015-02-01

    In planning gender-reassignment surgery for biological women and treating men with gynecomastia, surgeons must have a thorough understanding of anatomically correct nipple positions and appropriate areola sizes in men. The authors sought to determine whether body height or body mass index (BMI) affects nipple position or areola size in men. Anatomic measurements of the nipples and areolae of 50 Japanese men were obtained. A relative coordinate system was defined, where the medial-lateral and superior-inferior positions of the nipple were quantitatively indicated by distance ratios between anatomic landmarks. Nipple positions were evaluated for each patient by referring to this coordinate system, and the positions were compared between groups categorized by body height or BMI. Nipple position was not significantly affected by body height. However, the nipple tended to be located more laterally in participants with higher BMI. The vertical nipple position differed between standing and supine positions. Tall men had larger areolae than short men; however, areola size did not differ with respect to BMI. Nipple position and areola size vary by body shape. Consideration of the differences is recommended when performing procedures such as female-to-male gender-reassignment surgery or correction of gynecomastia. © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  15. Localization of Broca's Area Using Functional MR Imaging: Quantitative Evaluation of Paradigms.

    PubMed

    Kim, Chi Heon; Kim, Jae-Hun; Chung, Chun Kee; Kim, June Sic; Lee, Jong-Min; Lee, Sang Kun

    2009-04-01

    Functional magnetic resonance imaging (fMRI) is frequently used to localize language areas in a non-invasive manner. Various paradigms for presurgical localization of language areas have been developed, but a systematic quantitative evaluation of the efficiency of those paradigms has not been performed. In the present study, the authors analyzed different language paradigms to see which paradigm is most efficient in localizing frontal language areas. Five men and five women with no neurological deficits participated (mean age, 24 years) in this study. All volunteers were right-handed. Each subject performed 4 tasks, including fixation (Fix), sentence reading (SR), pseudoword reading (PR), and word generation (WG). Fixation and pseudoword reading were used as contrasts. The functional area was defined as the area(s) with a t-value of more than 3.92 in fMRI with different tasks. To apply an anatomical constraint, we used a brain atlas mapping system, which is available in AFNI, to define the anatomical frontal language area. The numbers of voxels in overlapped area between anatomical and functional area were individually counted in the frontal expressive language area. Of the various combinations, the word generation task was most effective in delineating the frontal expressive language area when fixation was used as a contrast (p<0.05). The sensitivity of this test for localizing Broca's area was 81% and specificity was 70%. Word generation versus fixation could effectively and reliably delineate the frontal language area. A customized effective paradigm should be analyzed in order to evaluate various language functions.

  16. Quantitative Analysis of Electro-Anatomical Maps: Application to an Experimental Model of Left Bundle Branch Block/Cardiac Resynchronization Therapy

    PubMed Central

    Duchateau, Nicolas; Kostantyn Butakov, Constantine Butakoff; Andreu, David; Fernández-Armenta, Juan; Bijnens, Bart; Berruezo, Antonio; Sitges, Marta; Camara, Oscar

    2017-01-01

    Electro-anatomical maps (EAMs) are commonly acquired in clinical routine for guiding ablation therapies. They provide voltage and activation time information on a 3-D anatomical mesh representation, making them useful for analyzing the electrical activation patterns in specific pathologies. However, the variability between the different acquisitions and anatomies hampers the comparison between different maps. This paper presents two contributions for the analysis of electrical patterns in EAM data from biventricular surfaces of cardiac chambers. The first contribution is an integrated automatic 2-D disk representation (2-D bull’s eye plot) of the left ventricle (LV) and right ventricle (RV) obtained with a quasi-conformal mapping from the 3-D EAM meshes, that allows an analysis of cardiac resynchronization therapy (CRT) lead positioning, interpretation of global (total activation time), and local indices (local activation time (LAT), surrogates of conduction velocity, inter-ventricular, and transmural delays) that characterize changes in the electrical activation pattern. The second contribution is a set of indices derived from the electrical activation: speed maps, computed from LAT values, to study the electrical wave propagation, and histograms of isochrones to analyze regional electrical heterogeneities in the ventricles. We have applied the proposed methods to look for the underlying physiological mechanisms of left bundle branch block (LBBB) and CRT, with the goal of optimizing the therapy by improving CRT response. To better illustrate the benefits of the proposed tools, we created a set of synthetically generated and fully controlled activation patterns, where the proposed representation and indices were validated. Then, the proposed analysis tools are used to analyze EAM data from an experimental swine model of induced LBBB with an implanted CRT device. We have analyzed and compared the electrical activation patterns at baseline, LBBB, and CRT stages in four animals: two without any structural disease and two with an induced infarction. By relating the CRT lead location with electrical dyssynchrony, we evaluated current hypotheses about lead placement in CRT and showed that optimal pacing sites should target the RV lead close to the apex and the LV one distant from it. PMID:29164019

  17. Volumetric Nephrogram Represents Renal Function and Complements Aortic Anatomic Severity Grade in Predicting EVAR Outcomes.

    PubMed

    Balceniuk, Mark D; Trakimas, Lauren; Aghaie, Claudia; Mix, Doran; Rasheed, Khurram; Seaman, Matthew; Ellis, Jennifer; Glocker, Roan; Doyle, Adam; Stoner, Michael C

    2018-07-01

    Chronic kidney disease (CKD) is a predictor of poor outcomes for patients undergoing endovascular aortic aneurysm repair (EVAR). Anatomic severity grade (ASG) represents a quantitative mechanism for assessing anatomical suitability for endovascular aortic repair. Anatomic severity grade has been correlated with repair outcomes and resource utilization. The purpose of this study was to identify a novel renal perfusion metric as a way to assist ASG with predicting EVAR outcomes. Retrospective review of a prospectively maintained database identified elective infrarenal aortic aneurysm repair cases. Anatomic grading was undertaken by independent reviewers. Using volumetric software, kidney volume, and a novel measure of kidney functional volume, the volumetric nephrogram (VN) was recorded. Systematic evaluation of the relationship of kidney volume and VN to CKD and ASG was undertaken using linear regression and receiver-operator statistical tools. A total of 386 cases with patient and anatomic data were identified and graded. Mean age was 72.9 ± 0.4 years. Renal volume <281 mL correlated with CKD (area under the curve [AUC] = .708; P ≤ .0001). Volumetric nephrogram <22.5 HU·L correlated with CKD (AUC = 0.764; P ≤ .0001). High (≥15) ASG scores correlated with both renal volume (AUC = .628; P ≤ .0001) and VN (AUC = .628; P ≤ .0001). Regression analysis demonstrated a strong, inverse relationship between ASG and VN ( R 2 = .95). These data demonstrate that VN is a strong predictor of CKD in a large database of patients undergoing elective aneurysm repair. We demonstrate an inverse relationship between renal function and ASG that has not been previously described in the literature. Additionally, we have shown that VN complements ASG as a model of overall cardiovascular health and atherosclerotic burden. Outcomes in patients with poor renal function may be related to anatomical issues in addition to well-described systemic ramifications.

  18. [On human morphological studies in New Spain and in Mexico of nineteenth century].

    PubMed

    de Micheli, Alfredo; Izaguirre-Avila, Raúl

    2007-01-01

    The renewed anatomical studies reached a culmination in the XVI century allowing the discovery of the pulmonary blood circulation and later of the systemic blood circulation. The XVII century saw the coming of microscopic anatomy and the XVIII witness the systematization of pathological anatomy. These studies will be impelled during following century toward the clinical-anatomical comparison. Regarding to America, the anatomical studies began in New Spain, when the first textbooks of anatomy, surgery and physiology were published. The first anatomy chair was established in 1621 at the Royal and Papal University of Mexico. The teaching of anatomy was modernized, making that more practical, at the Royal School of Surgery, which began to function in 1770. In the Establishment of Medical Sciences, founded in 1833, surgery was incorporated to internal medicine. This fact permitted to unify the anatomical teaching. If on examines the lists of textbooks utilized in the different periods, it comes out that these books belonged with the contemporaneous advances of science. This consideration concerns also the receptional thesis presented to Faculty of Medicine during the XIX century.

  19. High-frequency 3D echodentographic imaging modality for early assessment of periodontal diseases: in vitro study

    NASA Astrophysics Data System (ADS)

    Mahmoud, Ahmed M.; Ngan, Peter; Crout, Richard; Mukdadi, Osama M.

    2009-02-01

    The use of ultrasound in dentistry is still an open growing area of research. Currently, there is a lack of imaging modalities to accurately predict minute structures and defects in the jawbone. In particular, the inability of 2D radiographic images to detect bony periodontal defects resulted from infection of the periodontium. This study investigates the feasibility of high frequency ultrasound to reconstruct high resolution 3D surface images of human jawbone. Methods: A dentate and non-dentate mandibles were used in this study. The system employs high frequency single-element ultrasound focused transducers (15-30 MHz) for scanning. Continuous acquisition using a 1 GHz data acquisition card is synchronized with a high precision two-dimensional stage positioning system of +/-1 μm resolution for acquiring accurate and quantitative measurements of the mandible in vitro. Radio frequency (RF) signals are acquired laterally 44-45.5 μm apart for each frame. Different frames are reconstructed 500 μm apart for the 3D reconstruction. Signal processing algorithms are applied on the received ultrasound signals for filtering, focusing, and envelope detection before frame reconstruction. Furthermore, an edge detection technique is adopted to detect the bone surface in each frame. Finally, all edges are combined together in order to render a 3D surface image of the jawbone. Major anatomical landmarks on the resultant images were confirmed with the anatomical structures on the mandibles to show the efficacy of the system. Comparison were also made with conventional 2D radiographs to show the superiority of the ultrasound imaging system in diagnosing small defects in the lateral, axial and elevation planes of space. Results: The landmarks on all ultrasound images matched with those on the mandible, indicating the efficacy of the system in detecting small structures in human jaw bones. Comparison with conventional 2D radiographic images of the same mandible showed superiority of the 3D ultrasound images in detecting defects in the elevation plane of space. These results suggest that the high frequency ultrasound system shows great potential in providing a non-invasive method to characterize the jawbone and detect periodontal diseases at earlier stages.

  20. Revision surgery in anterior cruciate ligament reconstruction: a cohort study of 17,682 patients from the Swedish National Knee Ligament Register.

    PubMed

    Desai, Neel; Andernord, Daniel; Sundemo, David; Alentorn-Geli, Eduard; Musahl, Volker; Fu, Freddie; Forssblad, Magnus; Samuelsson, Kristian

    2017-05-01

    To investigate the association between surgical variables and the risk of revision surgery after ACL reconstruction in the Swedish National Knee Ligament Register. This cohort study was based on data from the Swedish National Knee Ligament Register. Patients who underwent primary single-bundle ACL reconstruction with hamstring tendon were included. Follow-up started with primary ACL reconstruction and ended with ACL revision surgery or on 31 December, 2014, whichever occurred first. Details on surgical technique were collected using an online questionnaire. All group comparisons were made in relation to an "anatomic" reference group, comprised of essential AARSC items, defined as utilization of accessory medial portal drilling, anatomic tunnel placement, visualization of insertion sites and pertinent landmarks. Study end-point was revision surgery. A total of 108 surgeons (61.7%) replied to the questionnaire. A total of 17,682 patients were included [n = 10,013 males (56.6%) and 7669 females (43.4%)]. The overall revision rate was 3.1%. Older age as well as cartilage injury evident at index surgery was associated with a decreased risk of revision surgery. The group using transtibial drilling and non-anatomic bone tunnel placement was associated with a lower risk of revision surgery [HR 0.694 (95% CI 0.490-0.984); P = 0.041] compared with the anatomic reference group. The anatomic reference group showed no difference in risk of revision surgery compared with the transtibial drilling groups with partial anatomic [HR 0.759 (95% CI 0.548-1.051), n.s.] and anatomic tunnel placement [HR 0.944 (95% CI 0.718-1.241), n.s.]. The anatomic reference group showed a decreased risk of revision surgery compared with the transportal drilling group with anatomic placement [HR 1.310 (95% CI 1.047-1.640); P = 0.018]. Non-anatomic bone tunnel placement via transtibial drilling resulted in the lowest risk of revision surgery after ACL reconstruction. The risk of revision surgery increased when using transportal drilling. Performing anatomic ACL reconstruction utilizing eight selected essential items from the AARSC lowered the risk of revision surgery associated with transportal drilling and anatomic bone tunnel placement. Detailed knowledge of surgical technique using the AARSC predicts the risk of ACL revision surgery. III.

  1. Nonlocal atlas-guided multi-channel forest learning for human brain labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Guangkai; Gao, Yaozong; Wu, Guorong

    Purpose: It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features canmore » be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). Methods: In particular, the authors employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical structures). Specifically, at each of the iterations, the random forest will output tentative labeling maps of the target image, from which the authors compute spatial label context features and then use in combination with original appearance features of the target image to refine the labeling. Moreover, to accommodate the high inter-subject variations, the authors further extend their learning-based label fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final labeling result according to the consensus of results from all atlases. Results: The authors have comprehensively evaluated their method on both public LONI-LBPA40 and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors use the dice similarity coefficient to measure the overlap degree. Their method achieves average overlaps of 82.56% on 54 regions of interest (ROIs) and 79.78% on 80 ROIs, respectively, which significantly outperform the baseline method (random forests), with the average overlaps of 72.48% on 54 ROIs and 72.09% on 80 ROIs, respectively. Conclusions: The proposed methods have achieved the highest labeling accuracy, compared to several state-of-the-art methods in the literature.« less

  2. Nonlocal atlas-guided multi-channel forest learning for human brain labeling

    PubMed Central

    Ma, Guangkai; Gao, Yaozong; Wu, Guorong; Wu, Ligang; Shen, Dinggang

    2016-01-01

    Purpose: It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features can be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). Methods: In particular, the authors employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical structures). Specifically, at each of the iterations, the random forest will output tentative labeling maps of the target image, from which the authors compute spatial label context features and then use in combination with original appearance features of the target image to refine the labeling. Moreover, to accommodate the high inter-subject variations, the authors further extend their learning-based label fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final labeling result according to the consensus of results from all atlases. Results: The authors have comprehensively evaluated their method on both public LONI_LBPA40 and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors use the dice similarity coefficient to measure the overlap degree. Their method achieves average overlaps of 82.56% on 54 regions of interest (ROIs) and 79.78% on 80 ROIs, respectively, which significantly outperform the baseline method (random forests), with the average overlaps of 72.48% on 54 ROIs and 72.09% on 80 ROIs, respectively. Conclusions: The proposed methods have achieved the highest labeling accuracy, compared to several state-of-the-art methods in the literature. PMID:26843260

  3. A quantitative comparison of corrective and perfective maintenance

    NASA Technical Reports Server (NTRS)

    Henry, Joel; Cain, James

    1994-01-01

    This paper presents a quantitative comparison of corrective and perfective software maintenance activities. The comparison utilizes basic data collected throughout the maintenance process. The data collected are extensive and allow the impact of both types of maintenance to be quantitatively evaluated and compared. Basic statistical techniques test relationships between and among process and product data. The results show interesting similarities and important differences in both process and product characteristics.

  4. Quantitative multimodality imaging in cancer research and therapy.

    PubMed

    Yankeelov, Thomas E; Abramson, Richard G; Quarles, C Chad

    2014-11-01

    Advances in hardware and software have enabled the realization of clinically feasible, quantitative multimodality imaging of tissue pathophysiology. Earlier efforts relating to multimodality imaging of cancer have focused on the integration of anatomical and functional characteristics, such as PET-CT and single-photon emission CT (SPECT-CT), whereas more-recent advances and applications have involved the integration of multiple quantitative, functional measurements (for example, multiple PET tracers, varied MRI contrast mechanisms, and PET-MRI), thereby providing a more-comprehensive characterization of the tumour phenotype. The enormous amount of complementary quantitative data generated by such studies is beginning to offer unique insights into opportunities to optimize care for individual patients. Although important technical optimization and improved biological interpretation of multimodality imaging findings are needed, this approach can already be applied informatively in clinical trials of cancer therapeutics using existing tools. These concepts are discussed herein.

  5. Anatomic tibial component design can increase tibial coverage and rotational alignment accuracy: a comparison of six contemporary designs.

    PubMed

    Dai, Yifei; Scuderi, Giles R; Bischoff, Jeffrey E; Bertin, Kim; Tarabichi, Samih; Rajgopal, Ashok

    2014-12-01

    The aim of this study was to comprehensively evaluate contemporary tibial component designs against global tibial anatomy. We hypothesized that anatomically designed tibial components offer increased morphological fit to the resected proximal tibia with increased alignment accuracy compared to symmetric and asymmetric designs. Using a multi-ethnic bone dataset, six contemporary tibial component designs were investigated, including anatomic, asymmetric, and symmetric design types. Investigations included (1) measurement of component conformity to the resected tibia using a comprehensive set of size and shape metrics; (2) assessment of component coverage on the resected tibia while ensuring clinically acceptable levels of rotation and overhang; and (3) evaluation of the incidence and severity of component downsizing due to adherence to rotational alignment and overhang requirements, and the associated compromise in tibial coverage. Differences in coverage were statistically compared across designs and ethnicities, as well as between placements with or without enforcement of proper rotational alignment. Compared to non-anatomic designs investigated, the anatomic design exhibited better conformity to resected tibial morphology in size and shape, higher tibial coverage (92% compared to 85-87%), more cortical support (posteromedial region), lower incidence of downsizing (3% compared to 39-60%), and less compromise of tibial coverage (0.5% compared to 4-6%) when enforcing proper rotational alignment. The anatomic design demonstrated meaningful increase in tibial coverage with accurate rotational alignment compared to symmetric and asymmetric designs, suggesting its potential for less intra-operative compromises and improved performance. III.

  6. Facial asymmetry quantitative evaluation in oculoauriculovertebral spectrum.

    PubMed

    Manara, Renzo; Schifano, Giovanni; Brotto, Davide; Mardari, Rodica; Ghiselli, Sara; Gerunda, Antonio; Ghirotto, Cristina; Fusetti, Stefano; Piacentile, Katherine; Scienza, Renato; Ermani, Mario; Martini, Alessandro

    2016-03-01

    Facial asymmetries in oculoauriculovertebral spectrum (OAVS) patients might require surgical corrections that are mostly based on qualitative approach and surgeon's experience. The present study aimed to develop a quantitative 3D CT imaging-based procedure suitable for maxillo-facial surgery planning in OAVS patients. Thirteen OAVS patients (mean age 3.5 ± 4.0 years; range 0.2-14.2, 6 females) and 13 controls (mean age 7.1 ± 5.3 years; range 0.6-15.7, 5 females) who underwent head CT examination were retrospectively enrolled. Eight bilateral anatomical facial landmarks were defined on 3D CT images (porion, orbitale, most anterior point of frontozygomatic suture, most superior point of temporozygomatic suture, most posterior-lateral point of the maxilla, gonion, condylion, mental foramen) and distance from orthogonal planes (in millimeters) was used to evaluate the asymmetry on each axis and to calculate a global asymmetry index of each anatomical landmark. Mean asymmetry values and relative confidence intervals were obtained from the control group. OAVS patients showed 2.5 ± 1.8 landmarks above the confidence interval while considering the global asymmetry values; 12 patients (92%) showed at least one pathologically asymmetric landmark. Considering each axis, the mean number of pathologically asymmetric landmarks increased to 5.5 ± 2.6 (p = 0.002) and all patients presented at least one significant landmark asymmetry. Modern CT-based 3D reconstructions allow accurate assessment of facial bone asymmetries in patients affected by OAVS. The evaluation as a global score and in different orthogonal axes provides precise quantitative data suitable for maxillo-facial surgical planning. CT-based 3D reconstruction might allow a quantitative approach for planning and following-up maxillo-facial surgery in OAVS patients.

  7. Laminar Cortical Dynamics of Cognitive and Motor Working Memory, Sequence Learning and Performance: Toward a Unified Theory of How the Cerebral Cortex Works

    ERIC Educational Resources Information Center

    Grossberg, Stephen; Pearson, Lance R.

    2008-01-01

    How does the brain carry out working memory storage, categorization, and voluntary performance of event sequences? The LIST PARSE neural model proposes an answer that unifies the explanation of cognitive, neurophysiological, and anatomical data. It quantitatively simulates human cognitive data about immediate serial recall and free recall, and…

  8. Gamma-Aminobutyric acid and benzodiazepine receptors in the kindling model of epilepsy: a quantitative radiohistochemical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, C.; Pedersen, H.B.; McNamara, J.O.

    1985-10-01

    Quantitative radiohistochemistry was utilized to study alterations of gamma-aminobutyric acid (GABA) and benzodiazepine receptors in the kindling model of epilepsy. The radioligands used for GABA and benzodiazepine receptors were (TH) muscimol and (TH)flunitrazepam, respectively. GABA receptor binding was increased by 22% in fascia dentata of the hippocampal formation but not in neocortex or substantia nigra of kindled rats. Within fascia dentata, GABA receptor binding was increased to an equivalent extent in stratum granulosum and throughout stratum moleculare; no increase was found in dentate hilus or stratum lacunosummoleculare or stratum radiatum of CA1. The increased binding was present at 24 hrmore » but not at 28 days after the last kindled seizure. The direction, anatomic distribution, and time course of the increased GABA receptor binding were paralleled by increased benzodiazepine receptor binding. The anatomic distribution of the increased GABA receptor binding is consistent with a localization to somata and dendritic trees of dentate granule cells. The authors suggest that increased GABA and benzodiazepine receptor binding may contribute to enhanced inhibition of dentate granule cells demonstrated electrophysiologically in kindled animals.« less

  9. Elimination of motion, pulsatile flow and cross-talk artifacts using blade sequences in lumbar spine MR imaging.

    PubMed

    Lavdas, Eleftherios; Mavroidis, Panayiotis; Kostopoulos, Spiros; Glotsos, Dimitrios; Roka, Violeta; Koutsiaris, Aristotle G; Batsikas, Georgios; Sakkas, Georgios K; Tsagkalis, Antonios; Notaras, Ioannis; Stathakis, Sotirios; Papanikolaou, Nikos; Vassiou, Katerina

    2013-07-01

    The purpose of this study is to evaluate the ability of T2 turbo spin echo (TSE) axial and sagittal BLADE sequences in reducing or even eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MRI examinations. Forty four patients, who had routinely undergone a lumbar spine examination, participated in the study. The following pairs of sequences with and without BLADE were compared: a) T2 TSE Sagittal (SAG) in thirty two cases, and b) T2 TSE Axial (AX) also in thirty two cases. Both quantitative and qualitative analyses were performed based on measurements in different normal anatomical structures and examination of seven characteristics, respectively. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion, pulsatile flow and cross-talk artifacts was evaluated. Based on the results of the qualitative analysis for the different sequences and anatomical structures, the BLADE sequences were found to be significantly superior to the conventional ones in all the cases. The BLADE sequences eliminated the motion artifacts in all the cases. In our results, it was found that in the examined sequences (sagittal and axial) the differences between the BLADE and conventional sequences regarding the elimination of motion, pulsatile flow and cross-talk artifacts were statistically significant. In all the comparisons, the T2 TSE BLADE sequences were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable of potentially eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MR images and producing high quality images in collaborative and non-collaborative patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Gross morphology and morphometric sequelae in the hippocampus, fornix, and corpus callosum of patients with severe non-missile traumatic brain injury without macroscopically detectable lesions: a T1 weighted MRI study

    PubMed Central

    Tomaiuolo, F; Carlesimo, G; Di, P; Petrides, M; Fera, F; Bonanni, R; Formisano, R; Pasqualetti, P; Caltagirone, C

    2004-01-01

    Objective: The gross morphology and morphometry of the hippocampus, fornix, and corpus callosum in patients with severe non-missile traumatic brain injury (nmTBI) without obvious neuroradiological lesions was examined and the volumes of these structures were correlated with performance on memory tests. In addition, the predictability of the length of coma from the selected anatomical volumes was examined. Method: High spatial resolution T1 weighted MRI scans of the brain (1 mm3) and neuropsychological evaluations with standardised tests were performed at least 3 months after trauma in 19 patients. Results: In comparison with control subjects matched in terms of gender and age, volume reduction in the hippocampus, fornix, and corpus callosum of the nmTBI patients was quantitatively significant. The length of coma correlated with the volume reduction in the corpus callosum. Immediate free recall of word lists correlated with the volume of the fornix and the corpus callosum. Delayed recall of word lists and immediate recall of the Rey figure both correlated with the volume of the fornix. Delayed recall of the Rey figure correlated with the volume of the fornix and the right hippocampus. Conclusion: These findings demonstrate that in severe nmTBI without obvious neuroradiological lesions there is a clear hippocampal, fornix, and callosal volume reduction. The length of coma predicts the callosal volume reduction, which could be considered a marker of the severity of axonal loss. A few memory test scores correlated with the volumes of the selected anatomical structures. This relationship with memory performance may reflect the diffuse nature of the damage, leading to the disruption of neural circuits at multiple levels and the progressive neural degeneration occurring in TBI. PMID:15314123

  11. Multivariate analysis of variations in intrinsic foot musculature among hominoids.

    PubMed

    Oishi, Motoharu; Ogihara, Naomichi; Shimizu, Daisuke; Kikuchi, Yasuhiro; Endo, Hideki; Une, Yumi; Soeta, Satoshi; Amasaki, Hajime; Ichihara, Nobutsune

    2018-05-01

    Comparative analysis of the foot muscle architecture among extant great apes is important for understanding the evolution of the human foot and, hence, human habitual bipedal walking. However, to our knowledge, there is no previous report of a quantitative comparison of hominoid intrinsic foot muscle dimensions. In the present study, we quantitatively compared muscle dimensions of the hominoid foot by means of multivariate analysis. The foot muscle mass and physiological cross-sectional area (PCSA) of five chimpanzees, one bonobo, two gorillas, and six orangutans were obtained by our own dissections, and those of humans were taken from published accounts. The muscle mass and PCSA were respectively divided by the total mass and total PCSA of the intrinsic muscles of the entire foot for normalization. Variations in muscle architecture among human and extant great apes were quantified based on principal component analysis. Our results demonstrated that the muscle architecture of the orangutan was the most distinctive, having a larger first dorsal interosseous muscle and smaller abductor hallucis brevis muscle. On the other hand, the gorilla was found to be unique in having a larger abductor digiti minimi muscle. Humans were distinguished from extant great apes by a larger quadratus plantae muscle. The chimpanzee and the bonobo appeared to have very similar muscle architecture, with an intermediate position between the human and the orangutan. These differences (or similarities) in architecture of the intrinsic foot muscles among humans and great apes correspond well to the differences in phylogeny, positional behavior, and locomotion. © 2018 Anatomical Society.

  12. Discover mouse gene coexpression landscapes using dictionary learning and sparse coding.

    PubMed

    Li, Yujie; Chen, Hanbo; Jiang, Xi; Li, Xiang; Lv, Jinglei; Peng, Hanchuan; Tsien, Joe Z; Liu, Tianming

    2017-12-01

    Gene coexpression patterns carry rich information regarding enormously complex brain structures and functions. Characterization of these patterns in an unbiased, integrated, and anatomically comprehensive manner will illuminate the higher-order transcriptome organization and offer genetic foundations of functional circuitry. Here using dictionary learning and sparse coding, we derived coexpression networks from the space-resolved anatomical comprehensive in situ hybridization data from Allen Mouse Brain Atlas dataset. The key idea is that if two genes use the same dictionary to represent their original signals, then their gene expressions must share similar patterns, thereby considering them as "coexpressed." For each network, we have simultaneous knowledge of spatial distributions, the genes in the network and the extent a particular gene conforms to the coexpression pattern. Gene ontologies and the comparisons with published gene lists reveal biologically identified coexpression networks, some of which correspond to major cell types, biological pathways, and/or anatomical regions.

  13. Penetrating maxillary sinus injury caused by a construction nail passing through the orbital cavity.

    PubMed

    Simsek, Tekin; Demir, Bulent; Yosma, Engin; Keles, Musa K; Abdullayev, Asef

    2014-03-01

    Because of its anatomic position, the orbit is frequently subject to trauma, leading to functional and cosmetic problems. After blunt trauma, orbital fractures can cause functional problems by trapping the periocular tissues without affecting the anatomic integrity of the globe. In comparison, high-energy penetrating injuries can cause serious consequences such as disrupting the lacrimal drainage system and causing loss of vision. In rare cases, however, penetration of the orbit by a foreign body can result in a treatable injury that causes no functional or cosmetic problems.This article presents a patient in whom a nail penetrated the orbit from the inferomedial margin and reached the maxillary sinus without damaging the globe, extraocular muscles, or lacrimal duct system. Reports of similar injuries are reviewed, focusing on the anatomic structures that might be traumatized, to guide the readers in considering the diagnosis and treatment of such injuries.

  14. A geometric analysis of semicircular canals and induced activity in their peripheral afferents in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Reisine, H.; Simpson, J. I.; Henn, V.

    1988-01-01

    Experiments were carried out to determine anatomically the planes of the semicircular canals of two juvenile rhesus monkeys, using plastic casts of the semicircular canals, and the anatomical measurements were related to the directional coding of neural signals transmitted by primary afferents innervating the same simicircular canals. In the experiments, animals were prepared for monitoring the eye position by the implantation of silver-silver chloride electrodes into the bony orbit. Following the recording of semicircular canal afferent activity, the animals were sacrificed; plastic casting resin was injected into the bony canals; and, when the temporal bone was demineralized and removed, the coordinates of points spaced along the circumference of the canal casts were measured. A comparison of the sensitivity vectors determined in these experiments and the anatomical measures showed that the average difference between a sensitivity vector and its respective normal vector was 6.3 deg.

  15. Importance of preoperative imaging with 64-row three-dimensional multidetector computed tomography for safer video-assisted thoracic surgery in lung cancer.

    PubMed

    Akiba, Tadashi; Marushima, Hideki; Harada, Junta; Kobayashi, Susumu; Morikawa, Toshiaki

    2009-01-01

    Video-assisted thoracic surgery (VATS) has recently been adopted for complicated anatomical lung resections. During these thoracoscopic procedures, surgeons view the operative field on a two-dimensional (2-D) video monitor and cannot palpate the organ directly, thus frequently encountering anatomical difficulties. This study aimed to estimate the usefulness of preoperative three-dimensional (3-D) imaging of thoracic organs. We compared the preoperative 64-row three-dimensional multidetector computed tomography (3DMDCT) findings of lung cancer-affected thoracic organs to the operative findings. In comparison to the operative findings, the branches of pulmonary arteries, veins, and bronchi were well defined in the 3D-MDCT images of 27 patients. 3D-MDCT imaging is useful for preoperatively understanding the individual thoracic anatomy in lung cancer surgery. This modality can therefore contribute to safer anatomical pulmonary operations, especially in VATS.

  16. Arthroscopy or ultrasound in undergraduate anatomy education: a randomized cross-over controlled trial.

    PubMed

    Knobe, Matthias; Carow, John Bennet; Ruesseler, Miriam; Leu, Benjamin Moritz; Simon, Melanie; Beckers, Stefan K; Ghassemi, Alireza; Sönmez, Tolga T; Pape, Hans-Christoph

    2012-09-09

    The exponential growth of image-based diagnostic and minimally invasive interventions requires a detailed three-dimensional anatomical knowledge and increases the demand towards the undergraduate anatomical curriculum. This randomized controlled trial investigates whether musculoskeletal ultrasound (MSUS) or arthroscopic methods can increase the anatomical knowledge uptake. Second-year medical students were randomly allocated to three groups. In addition to the compulsory dissection course, the ultrasound group (MSUS) was taught by eight, didactically and professionally trained, experienced student-teachers and the arthroscopy group (ASK) was taught by eight experienced physicians. The control group (CON) acquired the anatomical knowledge only via the dissection course. Exposure (MSUS and ASK) took place in two separate lessons (75 minutes each, shoulder and knee joint) and introduced standard scan planes using a 10-MHz ultrasound system as well as arthroscopy tutorials at a simulator combined with video tutorials. The theoretical anatomic learning outcomes were tested using a multiple-choice questionnaire (MCQ), and after cross-over an objective structured clinical examination (OSCE). Differences in student's perceptions were evaluated using Likert scale-based items. The ASK-group (n = 70, age 23.4 (20-36) yrs.) performed moderately better in the anatomical MC exam in comparison to the MSUS-group (n = 84, age 24.2 (20-53) yrs.) and the CON-group (n = 88, 22.8 (20-33) yrs.; p = 0.019). After an additional arthroscopy teaching 1% of students failed the MC exam, in contrast to 10% in the MSUS- or CON-group, respectively. The benefit of the ASK module was limited to the shoulder area (p < 0.001). The final examination (OSCE) showed no significant differences between any of the groups with good overall performances. In the evaluation, the students certified the arthroscopic tutorial a greater advantage concerning anatomical skills with higher spatial imagination in comparison to the ultrasound tutorial (p = 0.002; p < 0.001). The additional implementation of arthroscopy tutorials to the dissection course during the undergraduate anatomy training is profitable and attractive to students with respect to complex joint anatomy. Simultaneous teaching of basic-skills in musculoskeletal ultrasound should be performed by medical experts, but seems to be inferior to the arthroscopic 2D-3D-transformation, and is regarded by students as more difficult to learn. Although arthroscopy and ultrasound teaching do not have a major effect on learning joint anatomy, they have the potency to raise the interest in surgery.

  17. Arthroscopy or ultrasound in undergraduate anatomy education: a randomized cross-over controlled trial

    PubMed Central

    2012-01-01

    Background The exponential growth of image-based diagnostic and minimally invasive interventions requires a detailed three-dimensional anatomical knowledge and increases the demand towards the undergraduate anatomical curriculum. This randomized controlled trial investigates whether musculoskeletal ultrasound (MSUS) or arthroscopic methods can increase the anatomical knowledge uptake. Methods Second-year medical students were randomly allocated to three groups. In addition to the compulsory dissection course, the ultrasound group (MSUS) was taught by eight, didactically and professionally trained, experienced student-teachers and the arthroscopy group (ASK) was taught by eight experienced physicians. The control group (CON) acquired the anatomical knowledge only via the dissection course. Exposure (MSUS and ASK) took place in two separate lessons (75 minutes each, shoulder and knee joint) and introduced standard scan planes using a 10-MHz ultrasound system as well as arthroscopy tutorials at a simulator combined with video tutorials. The theoretical anatomic learning outcomes were tested using a multiple-choice questionnaire (MCQ), and after cross-over an objective structured clinical examination (OSCE). Differences in student’s perceptions were evaluated using Likert scale-based items. Results The ASK-group (n = 70, age 23.4 (20–36) yrs.) performed moderately better in the anatomical MC exam in comparison to the MSUS-group (n = 84, age 24.2 (20–53) yrs.) and the CON-group (n = 88, 22.8 (20–33) yrs.; p = 0.019). After an additional arthroscopy teaching 1% of students failed the MC exam, in contrast to 10% in the MSUS- or CON-group, respectively. The benefit of the ASK module was limited to the shoulder area (p < 0.001). The final examination (OSCE) showed no significant differences between any of the groups with good overall performances. In the evaluation, the students certified the arthroscopic tutorial a greater advantage concerning anatomical skills with higher spatial imagination in comparison to the ultrasound tutorial (p = 0.002; p < 0.001). Conclusions The additional implementation of arthroscopy tutorials to the dissection course during the undergraduate anatomy training is profitable and attractive to students with respect to complex joint anatomy. Simultaneous teaching of basic-skills in musculoskeletal ultrasound should be performed by medical experts, but seems to be inferior to the arthroscopic 2D-3D-transformation, and is regarded by students as more difficult to learn. Although arthroscopy and ultrasound teaching do not have a major effect on learning joint anatomy, they have the potency to raise the interest in surgery. PMID:22958784

  18. Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Sobel, Eric; Jiang, Huabei

    2009-11-01

    We present for the first time in vivo full three-dimensional (3-D) photoacoustic tomography (PAT) of the distal interphalangeal joint in a human subject. Both absorbed energy density and absorption coefficient images of the joint are quantitatively obtained using our finite-element-based photoacoustic image reconstruction algorithm coupled with the photon diffusion equation. The results show that major anatomical features in the joint along with the side arteries can be imaged with a 1-MHz transducer in a spherical scanning geometry. In addition, the cartilages associated with the joint can be quantitatively differentiated from the phalanx. This in vivo study suggests that the 3-D PAT method described has the potential to be used for early diagnosis of joint diseases such as osteoarthritis and rheumatoid arthritis.

  19. A Detailed Data-Driven Network Model of Prefrontal Cortex Reproduces Key Features of In Vivo Activity

    PubMed Central

    Hass, Joachim; Hertäg, Loreen; Durstewitz, Daniel

    2016-01-01

    The prefrontal cortex is centrally involved in a wide range of cognitive functions and their impairment in psychiatric disorders. Yet, the computational principles that govern the dynamics of prefrontal neural networks, and link their physiological, biochemical and anatomical properties to cognitive functions, are not well understood. Computational models can help to bridge the gap between these different levels of description, provided they are sufficiently constrained by experimental data and capable of predicting key properties of the intact cortex. Here, we present a detailed network model of the prefrontal cortex, based on a simple computationally efficient single neuron model (simpAdEx), with all parameters derived from in vitro electrophysiological and anatomical data. Without additional tuning, this model could be shown to quantitatively reproduce a wide range of measures from in vivo electrophysiological recordings, to a degree where simulated and experimentally observed activities were statistically indistinguishable. These measures include spike train statistics, membrane potential fluctuations, local field potentials, and the transmission of transient stimulus information across layers. We further demonstrate that model predictions are robust against moderate changes in key parameters, and that synaptic heterogeneity is a crucial ingredient to the quantitative reproduction of in vivo-like electrophysiological behavior. Thus, we have produced a physiologically highly valid, in a quantitative sense, yet computationally efficient PFC network model, which helped to identify key properties underlying spike time dynamics as observed in vivo, and can be harvested for in-depth investigation of the links between physiology and cognition. PMID:27203563

  20. Familial intracranial aneurysms: is anatomic vulnerability heritable?

    PubMed

    Mackey, Jason; Brown, Robert D; Moomaw, Charles J; Hornung, Richard; Sauerbeck, Laura; Woo, Daniel; Foroud, Tatiana; Gandhi, Dheeraj; Kleindorfer, Dawn; Flaherty, Matthew L; Meissner, Irene; Anderson, Craig; Rouleau, Guy; Connolly, E Sander; Deka, Ranjan; Koller, Daniel L; Abruzzo, Todd; Huston, John; Broderick, Joseph P

    2013-01-01

    Previous studies have suggested that family members with intracranial aneurysms (IAs) often harbor IAs in similar anatomic locations. IA location is important because of its association with rupture. We tested the hypothesis that anatomic susceptibility to IA location exists using a family-based IA study. We identified all affected probands and first-degree relatives (FDRs) with a definite or probable phenotype in each family. We stratified each IA of the probands by major arterial territory and calculated each family's proband-FDR territory concordance and overall contribution to the concordance analysis. We then matched each family unit to an unrelated family unit selected randomly with replacement and performed 1001 simulations. The median concordance proportions, odds ratios (ORs), and P values from the 1001 logistic regression analyses were used to represent the final results of the analysis. There were 323 family units available for analysis, including 323 probands and 448 FDRs, with a total of 1176 IAs. IA territorial concordance was higher in the internal carotid artery (55.4% versus 45.6%; OR, 1.54 [1.04-2.27]; P=0.032), middle cerebral artery (45.8% versus 30.5%; OR, 1.99 [1.22-3.22]; P=0.006), and vertebrobasilar system (26.6% versus 11.3%; OR, 2.90 [1.05-8.24], P=0.04) distributions in the true family compared with the comparison family. Concordance was also higher when any location was considered (53.0% versus 40.7%; OR, 1.82 [1.34-2.46]; P<0.001). In a highly enriched sample with familial predisposition to IA development, we found that IA territorial concordance was higher when probands were compared with their own affected FDRs than with comparison FDRs, which suggests that anatomic vulnerability to IA formation exists. Future studies of IA genetics should consider stratifying cases by IA location.

  1. Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches

    PubMed Central

    Bernard, Jessica A.; Seidler, Rachael D.; Hassevoort, Kelsey M.; Benson, Bryan L.; Welsh, Robert C.; Wiggins, Jillian Lee; Jaeggi, Susanne M.; Buschkuehl, Martin; Monk, Christopher S.; Jonides, John; Peltier, Scott J.

    2012-01-01

    The cerebellum plays a role in a wide variety of complex behaviors. In order to better understand the role of the cerebellum in human behavior, it is important to know how this structure interacts with cortical and other subcortical regions of the brain. To date, several studies have investigated the cerebellum using resting-state functional connectivity magnetic resonance imaging (fcMRI; Krienen and Buckner, 2009; O'Reilly et al., 2010; Buckner et al., 2011). However, none of this work has taken an anatomically-driven lobular approach. Furthermore, though detailed maps of cerebral cortex and cerebellum networks have been proposed using different network solutions based on the cerebral cortex (Buckner et al., 2011), it remains unknown whether or not an anatomical lobular breakdown best encompasses the networks of the cerebellum. Here, we used fcMRI to create an anatomically-driven connectivity atlas of the cerebellar lobules. Timecourses were extracted from the lobules of the right hemisphere and vermis. We found distinct networks for the individual lobules with a clear division into “motor” and “non-motor” regions. We also used a self-organizing map (SOM) algorithm to parcellate the cerebellum. This allowed us to investigate redundancy and independence of the anatomically identified cerebellar networks. We found that while anatomical boundaries in the anterior cerebellum provide functional subdivisions of a larger motor grouping defined using our SOM algorithm, in the posterior cerebellum, the lobules were made up of sub-regions associated with distinct functional networks. Together, our results indicate that the lobular boundaries of the human cerebellum are not necessarily indicative of functional boundaries, though anatomical divisions can be useful. Additionally, driving the analyses from the cerebellum is key to determining the complete picture of functional connectivity within the structure. PMID:22907994

  2. Parcellation of the human substantia nigra based on anatomical connectivity to the striatum☆

    PubMed Central

    Chowdhury, Rumana; Lambert, Christian; Dolan, Raymond J.; Düzel, Emrah

    2013-01-01

    Substantia nigra/ventral tegmental area (SN/VTA) subregions, defined by dopaminergic projections to the striatum, are differentially affected by health (e.g. normal aging) and disease (e.g. Parkinson's disease). This may have an impact on reward processing which relies on dopaminergic regions and circuits. We acquired diffusion tensor imaging (DTI) with probabilistic tractography in 30 healthy older adults to determine whether subregions of the SN/VTA could be delineated based on anatomical connectivity to the striatum. We found that a dorsomedial region of the SN/VTA preferentially connected to the ventral striatum whereas a more ventrolateral region connected to the dorsal striatum. These SN/VTA subregions could be characterised by differences in quantitative structural imaging parameters, suggesting different underlying tissue properties. We also observed that these connectivity patterns differentially mapped onto reward dependence personality trait. We show that tractography can be used to parcellate the SN/VTA into anatomically plausible and behaviourally meaningful compartments, an approach that may help future studies to provide a more fine-grained synopsis of pathological changes in the dopaminergic midbrain and their functional impact. PMID:23684858

  3. Use of laser 3D surface digitizer in data collection and 3D modeling of anatomical structures

    NASA Astrophysics Data System (ADS)

    Tse, Kelly; Van Der Wall, Hans; Vu, Dzung H.

    2006-02-01

    A laser digitizer (Konica-Minolta Vivid 910) is used to obtain 3-dimensional surface scans of anatomical structures with a maximum resolution of 0.1mm. Placing the specimen on a turntable allows multiple scans allaround because the scanner only captures data from the portion facing its lens. A computer model is generated using 3D modeling software such as Geomagic. The 3D model can be manipulated on screen for repeated analysis of anatomical features, a useful capability when the specimens are rare or inaccessible (museum collection, fossils, imprints in rock formation.). As accurate measurements can be performed on the computer model, instead of taking measurements on actual specimens only at the archeological excavation site e.g., a variety of quantitative data can be later obtained on the computer model in the laboratory as new ideas come to mind. Our group had used a mechanical contact digitizer (Microscribe) for this purpose, but with the surface digitizer, we have been obtaining data sets more accurately and more quickly.

  4. Magnetic Resonance Imaging and Anatomical Correlation of Human Temporal Lobe Landmarks, in 3D Euclidean Space: A Study of Control and Alzheimer's Disease Subjects.

    PubMed

    Delgado-González, José-Carlos; Florensa-Vila, José; Mansilla-Legorburo, Francisco; Insausti, Ricardo; Artacho-Pérula, Emilio

    2017-01-01

    The medial temporal lobe (MTL), and in particular the hippocampal formation, is essential in the processing and consolidation of declarative memory. The 3D environment of the anatomical structures contained in the MTL is an important issue. Our aim was to explore the spatial relationship of the anatomical structures of the MTL and changes in aging and/or Alzheimer's disease (AD). MTL anatomical landmarks are identified and registered to create a 3D network. The brain network is quantitatively described as a plane, rostrocaudally-oriented, and presenting Euclidean/real distances. Correspondence between 1.5T RM, 3T RM, and histological sections were assessed to determine the most important recognizable changes in AD, based on statistical significance. In both 1.5T and 3T RM images and histology, inter-rater reliability was high. Sex and hemisphere had no influence on network pattern. Minor changes were found in relation to aging. Distances from the temporal pole to the dentate gyrus showed the most significant differences when comparing control and AD groups. The best discriminative distance between control and AD cases was found in the temporal pole/dentate gyrus rostrocaudal length in histological sections. Moreover, more distances between landmarks were required to obtain 100% discrimination between control (divided into <65 years or >65 years) and AD cases. Changes in the distance between MTL anatomical landmarks can successfully be detected by using measurements of 3D network patterns in control and AD cases.

  5. Automated extraction of temporal motor activity signals from video recordings of neonatal seizures based on adaptive block matching.

    PubMed

    Karayiannis, Nicolaos B; Sami, Abdul; Frost, James D; Wise, Merrill S; Mizrahi, Eli M

    2005-04-01

    This paper presents an automated procedure developed to extract quantitative information from video recordings of neonatal seizures in the form of motor activity signals. This procedure relies on optical flow computation to select anatomical sites located on the infants' body parts. Motor activity signals are extracted by tracking selected anatomical sites during the seizure using adaptive block matching. A block of pixels is tracked throughout a sequence of frames by searching for the most similar block of pixels in subsequent frames; this search is facilitated by employing various update strategies to account for the changing appearance of the block. The proposed procedure is used to extract temporal motor activity signals from video recordings of neonatal seizures and other events not associated with seizures.

  6. Evaluation of an autoclave resistant anatomic nose model for the testing of nasal swabs

    PubMed Central

    Bartolitius, Lennart; Warnke, Philipp; Ottl, Peter; Podbielski, Andreas

    2014-01-01

    A nose model that allows for the comparison of different modes of sample acquisition as well as of nasal swab systems concerning their suitability to detect defined quantities of intranasal microorganisms, and further for training procedures of medical staff, was evaluated. Based on an imprint of a human nose, a model made of a silicone elastomer was formed. Autoclave stability was assessed. Using an inoculation suspension containing Staphylococcus aureus and Staphylococcus epidermidis, the model was compared with standardized glass plate inoculations. Effects of inoculation time, mode of sampling, and sample storage time were assessed. The model was stable to 20 autoclaving cycles. There were no differences regarding the optimum coverage from the nose and from glass plates. Optimum sampling time was 1 h after inoculation. Storage time after sampling was of minor relevance for the recovery. Rotating the swab around its own axis while circling the nasal cavity resulted in best sampling results. The suitability of the assessed nose model for the comparison of sampling strategies and systems was confirmed. Without disadvantages in comparison with sampling from standardized glass plates, the model allows for the assessment of a correct sampling technique due to its anatomically correct shape. PMID:25215192

  7. Evaluation of an autoclave resistant anatomic nose model for the testing of nasal swabs.

    PubMed

    Bartolitius, Lennart; Frickmann, Hagen; Warnke, Philipp; Ottl, Peter; Podbielski, Andreas

    2014-09-01

    A nose model that allows for the comparison of different modes of sample acquisition as well as of nasal swab systems concerning their suitability to detect defined quantities of intranasal microorganisms, and further for training procedures of medical staff, was evaluated. Based on an imprint of a human nose, a model made of a silicone elastomer was formed. Autoclave stability was assessed. Using an inoculation suspension containing Staphylococcus aureus and Staphylococcus epidermidis, the model was compared with standardized glass plate inoculations. Effects of inoculation time, mode of sampling, and sample storage time were assessed. The model was stable to 20 autoclaving cycles. There were no differences regarding the optimum coverage from the nose and from glass plates. Optimum sampling time was 1 h after inoculation. Storage time after sampling was of minor relevance for the recovery. Rotating the swab around its own axis while circling the nasal cavity resulted in best sampling results. The suitability of the assessed nose model for the comparison of sampling strategies and systems was confirmed. Without disadvantages in comparison with sampling from standardized glass plates, the model allows for the assessment of a correct sampling technique due to its anatomically correct shape.

  8. On Quantitative Comparative Research in Communication and Language Evolution

    PubMed Central

    Oller, D. Kimbrough; Griebel, Ulrike

    2014-01-01

    Quantitative comparison of human language and natural animal communication requires improved conceptualizations. We argue that an infrastructural approach to development and evolution incorporating an extended interpretation of the distinctions among illocution, perlocution, and meaning (Austin 1962; Oller and Griebel 2008) can help place the issues relevant to quantitative comparison in perspective. The approach can illuminate the controversy revolving around the notion of functional referentiality as applied to alarm calls, for example in the vervet monkey. We argue that referentiality offers a poor point of quantitative comparison across language and animal communication in the wild. Evidence shows that even newborn human cry could be deemed to show functional referentiality according to the criteria typically invoked by advocates of referentiality in animal communication. Exploring the essence of the idea of illocution, we illustrate an important realm of commonality among animal communication systems and human language, a commonality that opens the door to more productive, quantifiable comparisons. Finally, we delineate two examples of infrastructural communicative capabilities that should be particularly amenable to direct quantitative comparison across humans and our closest relatives. PMID:25285057

  9. On Quantitative Comparative Research in Communication and Language Evolution.

    PubMed

    Oller, D Kimbrough; Griebel, Ulrike

    2014-09-01

    Quantitative comparison of human language and natural animal communication requires improved conceptualizations. We argue that an infrastructural approach to development and evolution incorporating an extended interpretation of the distinctions among illocution, perlocution, and meaning (Austin 1962; Oller and Griebel 2008) can help place the issues relevant to quantitative comparison in perspective. The approach can illuminate the controversy revolving around the notion of functional referentiality as applied to alarm calls, for example in the vervet monkey. We argue that referentiality offers a poor point of quantitative comparison across language and animal communication in the wild. Evidence shows that even newborn human cry could be deemed to show functional referentiality according to the criteria typically invoked by advocates of referentiality in animal communication. Exploring the essence of the idea of illocution, we illustrate an important realm of commonality among animal communication systems and human language, a commonality that opens the door to more productive, quantifiable comparisons. Finally, we delineate two examples of infrastructural communicative capabilities that should be particularly amenable to direct quantitative comparison across humans and our closest relatives.

  10. An extensive assessment of network alignment algorithms for comparison of brain connectomes.

    PubMed

    Milano, Marianna; Guzzi, Pietro Hiram; Tymofieva, Olga; Xu, Duan; Hess, Christofer; Veltri, Pierangelo; Cannataro, Mario

    2017-06-06

    Recently the study of the complex system of connections in neural systems, i.e. the connectome, has gained a central role in neurosciences. The modeling and analysis of connectomes are therefore a growing area. Here we focus on the representation of connectomes by using graph theory formalisms. Macroscopic human brain connectomes are usually derived from neuroimages; the analyzed brains are co-registered in the image domain and brought to a common anatomical space. An atlas is then applied in order to define anatomically meaningful regions that will serve as the nodes of the network - this process is referred to as parcellation. The atlas-based parcellations present some known limitations in cases of early brain development and abnormal anatomy. Consequently, it has been recently proposed to perform atlas-free random brain parcellation into nodes and align brains in the network space instead of the anatomical image space, as a way to deal with the unknown correspondences of the parcels. Such process requires modeling of the brain using graph theory and the subsequent comparison of the structure of graphs. The latter step may be modeled as a network alignment (NA) problem. In this work, we first define the problem formally, then we test six existing state of the art of network aligners on diffusion MRI-derived brain networks. We compare the performances of algorithms by assessing six topological measures. We also evaluated the robustness of algorithms to alterations of the dataset. The results confirm that NA algorithms may be applied in cases of atlas-free parcellation for a fully network-driven comparison of connectomes. The analysis shows MAGNA++ is the best global alignment algorithm. The paper presented a new analysis methodology that uses network alignment for validating atlas-free parcellation brain connectomes. The methodology has been experimented on several brain datasets.

  11. Standard Anatomic Terminologies: Comparison for Use in a Health Information Exchange–Based Prior Computed Tomography (CT) Alerting System

    PubMed Central

    Lowry, Tina; Vreeman, Daniel J; Loo, George T; Delman, Bradley N; Thum, Frederick L; Slovis, Benjamin H; Shapiro, Jason S

    2017-01-01

    Background A health information exchange (HIE)–based prior computed tomography (CT) alerting system may reduce avoidable CT imaging by notifying ordering clinicians of prior relevant studies when a study is ordered. For maximal effectiveness, a system would alert not only for prior same CTs (exams mapped to the same code from an exam name terminology) but also for similar CTs (exams mapped to different exam name terminology codes but in the same anatomic region) and anatomically proximate CTs (exams in adjacent anatomic regions). Notification of previous same studies across an HIE requires mapping of local site CT codes to a standard terminology for exam names (such as Logical Observation Identifiers Names and Codes [LOINC]) to show that two studies with different local codes and descriptions are equivalent. Notifying of prior similar or proximate CTs requires an additional mapping of exam codes to anatomic regions, ideally coded by an anatomic terminology. Several anatomic terminologies exist, but no prior studies have evaluated how well they would support an alerting use case. Objective The aim of this study was to evaluate the fitness of five existing standard anatomic terminologies to support similar or proximate alerts of an HIE-based prior CT alerting system. Methods We compared five standard anatomic terminologies (Foundational Model of Anatomy, Systematized Nomenclature of Medicine Clinical Terms, RadLex, LOINC, and LOINC/Radiological Society of North America [RSNA] Radiology Playbook) to an anatomic framework created specifically for our use case (Simple ANatomic Ontology for Proximity or Similarity [SANOPS]), to determine whether the existing terminologies could support our use case without modification. On the basis of an assessment of optimal terminology features for our purpose, we developed an ordinal anatomic terminology utility classification. We mapped samples of 100 random and the 100 most frequent LOINC CT codes to anatomic regions in each terminology, assigned utility classes for each mapping, and statistically compared each terminology’s utility class rankings. We also constructed seven hypothetical alerting scenarios to illustrate the terminologies’ differences. Results Both RadLex and the LOINC/RSNA Radiology Playbook anatomic terminologies ranked significantly better (P<.001) than the other standard terminologies for the 100 most frequent CTs, but no terminology ranked significantly better than any other for 100 random CTs. Hypothetical scenarios illustrated instances where no standard terminology would support appropriate proximate or similar alerts, without modification. Conclusions LOINC/RSNA Radiology Playbook and RadLex’s anatomic terminologies appear well suited to support proximate or similar alerts for commonly ordered CTs, but for less commonly ordered tests, modification of the existing terminologies with concepts and relations from SANOPS would likely be required. Our findings suggest SANOPS may serve as a framework for enhancing anatomic terminologies in support of other similar use cases. PMID:29242174

  12. Evaluating the impact of an integrated multidisciplinary head & neck competency-based anatomy & radiology teaching approach in radiation oncology: a prospective cohort study

    PubMed Central

    2014-01-01

    Background Modern radiation oncology demands a thorough understanding of gross and cross-sectional anatomy for diagnostic and therapeutic applications. Complex anatomic sites present challenges for learners and are not well-addressed in traditional postgraduate curricula. A multidisciplinary team (MDT) based head-and-neck gross and radiologic anatomy program for radiation oncology trainees was developed, piloted, and empirically assessed for efficacy and learning outcomes. Methods Four site-specific MDT head-and-neck seminars were implemented, each involving a MDT delivering didactic and case-based instruction, supplemented by cadaveric presentations. There was no dedicated contouring instruction. Pre- and post-testing were performed to assess knowledge, and ability to apply knowledge to the clinical setting as defined by accuracy of contouring. Paired analyses of knowledge pretests and posttests were performed by Wilcoxon matched-pair signed-rank test. Results Fifteen post-graduate trainees participated. A statistically significant (p < 0.001) mean absolute improvement of 4.6 points (17.03%) was observed between knowledge pretest and posttest scores. Contouring accuracy was analyzed quantitatively by comparing spatial overlap of participants’ pretest and posttest contours with a gold standard through the dice similarity coefficient. A statistically significant improvement in contouring accuracy was observed for 3 out of 20 anatomical structures. Qualitative and quantitative feedback revealed that participants were more confident at contouring and were enthusiastic towards the seminars. Conclusions MDT seminars were associated with improved knowledge scores and resident satisfaction; however, increased gross and cross-sectional anatomic knowledge did not translate into improvements in contouring accuracy. Further research should evaluate the impact of hands-on contouring sessions in addition to dedicated instructional sessions to develop competencies. PMID:24969509

  13. Multiphase CT scanning and different intravenous contrast media concentrations in combined F-18-FDG PET/CT: Effect on quantitative and clinical assessment.

    PubMed

    Rebière, Marilou; Verburg, Frederik A; Palmowski, Moritz; Krohn, Thomas; Pietsch, Hubertus; Kuhl, Christiane K; Mottaghy, Felix M; Behrendt, Florian F

    2012-08-01

    To evaluate the influence of multiphase CT scanning and different intravenous contrast media on contrast enhancement, attenuation correction and image quality in combined PET/CT. 140 patients were prospectively enrolled for F-18-FDG-PET/CT including a low-dose unenhanced, arterial and venous contrast enhanced CT. The first (second) 70 patients, received contrast medium with 370 (300) mg iodine/ml. The iodine delivery rate (1.3mg/s) and total iodine load (44.4g) were identical for both groups. Contrast enhancement and maximum and mean standardized FDG uptake values (SUVmax and SUVmean) were determined for the un-enhanced, arterial and venous PET/CT at multiple anatomic sites and PET reconstructions were visually evaluated. Arterial contrast enhancement was significantly higher for the 300mg/ml contrast medium compared to 370mgI/ml at all anatomic sites. Venous enhancement was not different between the two contrast media. SUVmean and SUVmax were significantly higher for the contrast enhanced compared to the non-enhanced PET/CT at all anatomic sites (all P<0.001). Tracer uptake was significantly higher in the arterial than in the venous PET/CT in the arteries using both contrast media (all P<0.001). No differences in tracer uptake were found between the contrast media (all P>0.05). Visual assessment revealed no relevant differences between the different PET reconstructions. There is no relevant qualitative influence on the PET scan from the use of different intravenous contrast media in its various phases in combined multiphase PET/CT. For quantitative analysis of tracer uptake it is required to use an identical PET/CT protocol. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Nutrient-induced modifications of wood anatomical traits of Alchornea lojaensis (Euphorbiaceae)

    NASA Astrophysics Data System (ADS)

    Spannl, Susanne; Homeier, Jürgen; Bräuning, Achim

    2016-05-01

    Regarding woody plant responses on higher atmospheric inputs of the macronutrients nitrogen (N) and phosphorous (P) on tropical forests in the future, an adaptive modification of wood anatomical traits on the cellular level of woody plants is expected. As part of an interdisciplinary nutrient manipulation experiment (NUMEX) carried out in Southern Ecuador, we present here the first descriptive and quantitative wood anatomical analysis of the tropical evergreen tree species Alchornea lojaensis (Euphorbiaceae). We sampled branch wood of nine individual trees belonging to treatments with N fertilization, N+P fertilization, and a control group, respectively. Quantitative evaluations of eleven different vessel parameters were conducted. The results showed that this endemic tree species will be able to adapt well to the future effects of climate change and higher nutrient deposition. This was firstly implied by an increase in vessel diameter and consequently a higher theo. area-specific hydraulic conductivity with higher nutrient availability. Secondly, the percentage of small vessels (0-20µm diameter) strongly increased with fertilization. Thirdly, the vessel arrangement (solitary vessels vs. multiple vessel groupings) changed towards a lower percentage of solitary vessel fraction (VS), and concurrently towards a higher total vessel grouping index (VG) and a higher mean group size of non-solitary vessels (VM) after N and N+P addition. We conclude that higher nutrient availability of N and N+P triggered higher foliage amount and water demand, leading to higher cavitation risk in larger vessels. This is counteracted by a stronger grouping of vessels with smaller risk of cavitation to ensure water supply during drier periods that are expected to occur in higher frequency in the near future.

  15. Evaluating the impact of an integrated multidisciplinary head & neck competency-based anatomy & radiology teaching approach in radiation oncology: a prospective cohort study.

    PubMed

    D'Souza, Leah; Jaswal, Jasbir; Chan, Francis; Johnson, Marjorie; Tay, Keng Yeow; Fung, Kevin; Palma, David

    2014-06-26

    Modern radiation oncology demands a thorough understanding of gross and cross-sectional anatomy for diagnostic and therapeutic applications. Complex anatomic sites present challenges for learners and are not well-addressed in traditional postgraduate curricula. A multidisciplinary team (MDT) based head-and-neck gross and radiologic anatomy program for radiation oncology trainees was developed, piloted, and empirically assessed for efficacy and learning outcomes. Four site-specific MDT head-and-neck seminars were implemented, each involving a MDT delivering didactic and case-based instruction, supplemented by cadaveric presentations. There was no dedicated contouring instruction. Pre- and post-testing were performed to assess knowledge, and ability to apply knowledge to the clinical setting as defined by accuracy of contouring. Paired analyses of knowledge pretests and posttests were performed by Wilcoxon matched-pair signed-rank test. Fifteen post-graduate trainees participated. A statistically significant (p < 0.001) mean absolute improvement of 4.6 points (17.03%) was observed between knowledge pretest and posttest scores. Contouring accuracy was analyzed quantitatively by comparing spatial overlap of participants' pretest and posttest contours with a gold standard through the dice similarity coefficient. A statistically significant improvement in contouring accuracy was observed for 3 out of 20 anatomical structures. Qualitative and quantitative feedback revealed that participants were more confident at contouring and were enthusiastic towards the seminars. MDT seminars were associated with improved knowledge scores and resident satisfaction; however, increased gross and cross-sectional anatomic knowledge did not translate into improvements in contouring accuracy. Further research should evaluate the impact of hands-on contouring sessions in addition to dedicated instructional sessions to develop competencies.

  16. Does skull morphology constrain bone ornamentation? A morphometric analysis in the Crocodylia.

    PubMed

    Clarac, F; Souter, T; Cubo, J; de Buffrénil, V; Brochu, C; Cornette, R

    2016-08-01

    Previous quantitative assessments of the crocodylians' dermal bone ornamentation (this ornamentation consists of pits and ridges) has shown that bone sculpture results in a gain in area that differs between anatomical regions: it tends to be higher on the skull table than on the snout. Therefore, a comparative phylogenetic analysis within 17 adult crocodylian specimens representative of the morphological diversity of the 24 extant species has been performed, in order to test if the gain in area due to ornamentation depends on the skull morphology, i.e. shape and size. Quantitative assessment of skull size and shape through geometric morphometrics, and of skull ornamentation through surface analyses, produced a dataset that was analyzed using phylogenetic least-squares regression. The analyses reveal that none of the variables that quantify ornamentation, be they on the snout or the skull table, is correlated with the size of the specimens. Conversely, there is more disparity in the relationships between skull conformations (longirostrine vs. brevirostrine) and ornamentation. Indeed, both parameters GApit (i.e. pit depth and shape) and OArelat (i.e. relative area of the pit set) are negatively correlated with snout elongation, whereas none of the values quantifying ornamentation on the skull table is correlated with skull conformation. It can be concluded that bone sculpture on the snout is influenced by different developmental constrains than on the skull table and is sensible to differences in the local growth 'context' (allometric processes) prevailing in distinct skull parts. Whatever the functional role of bone ornamentation on the skull, if any, it seems to be restricted to some anatomical regions at least for the longirostrine forms that tend to lose ornamentation on the snout. © 2016 Anatomical Society.

  17. A method of combined single-cell electrophysiology and electroporation.

    PubMed

    Graham, Lyle J; Del Abajo, Ricardo; Gener, Thomas; Fernandez, Eduardo

    2007-02-15

    This paper describes a method of extracellular recording and subsequent electroporation with the same electrode in single retinal ganglion cells in vitro. We demonstrate anatomical identification of neurons whose receptive fields were measured quantitatively. We discuss how this simple method should also be applicable for the delivery of a variety of intracellular agents, including gene delivery, to physiologically characterized neurons, both in vitro and in vivo.

  18. Current issues with standards in the measurement and documentation of human skeletal anatomy

    PubMed Central

    Magee, Justin; McClelland, Brian; Winder, John

    2012-01-01

    Digital modeling of human anatomy has become increasingly important and relies on well-documented quantitative anatomy literature. This type of documentation is common for the spine and pelvis; however, significant issues exist due to the lack of standardization in measurement and technique. Existing literature on quantitative anatomy for the spine and pelvis of white adults (aged 18–65 years, separated into decadal categories) was reviewed from the disciplines of anatomy, manipulative therapy, anthropometrics, occupational ergonomics, biomechanics and forensic science. The data were unified into a single normative model of the sub-axial spine. Two-dimensional orthographic drawings were produced from the 590 individual measurements identified, which informed the development of a 3D digital model. A similar review of full range of motion data was conducted as a meta-analysis and the results were applied to the existing model, providing an inter-connected, articulated digital spine. During these data analysis processes several inconsistencies were observed accompanied by an evidential lack of standardization with measurement and recording of data. These have been categorized as: anatomical terminology; scaling of measurements; measurement methodology, dimension and anatomical reference positions; global coordinate systems. There is inconsistency in anatomical terminology where independent researchers use the same terms to describe different aspects of anatomy or different terms for the same anatomy. Published standards exist for measurement methods of the human body regarding spatial interaction, anthropometric databases, automotive applications, clothing industries and for computer manikins, but none exists for skeletal anatomy. Presentation of measurements often lacks formal structure in clinical publications, seldom providing geometric reference points, therefore making digital reconstruction difficult. Published quantitative data does not follow existing international published standards relating to engineering drawing and visual communication. Large variations are also evident in standards or guidelines used for global coordinate systems across biomechanics, ergonomics, software systems and 3D software applications. This paper identifies where established good practice exists and suggests additional recommendations, informing an improved communication protocol, to assist reconstruction of skeletal anatomy using 3D digital modeling. PMID:22747678

  19. Methods for estimating missing human skeletal element osteometric dimensions employed in the revised fully technique for estimating stature.

    PubMed

    Auerbach, Benjamin M

    2011-05-01

    One of the greatest limitations to the application of the revised Fully anatomical stature estimation method is the inability to measure some of the skeletal elements required in its calculation. These element dimensions cannot be obtained due to taphonomic factors, incomplete excavation, or disease processes, and result in missing data. This study examines methods of imputing these missing dimensions using observable Fully measurements from the skeleton and the accuracy of incorporating these missing element estimations into anatomical stature reconstruction. These are further assessed against stature estimations obtained from mathematical regression formulae for the lower limb bones (femur and tibia). Two thousand seven hundred and seventeen North and South American indigenous skeletons were measured, and subsets of these with observable Fully dimensions were used to simulate missing elements and create estimation methods and equations. Comparisons were made directly between anatomically reconstructed statures and mathematically derived statures, as well as with anatomically derived statures with imputed missing dimensions. These analyses demonstrate that, while mathematical stature estimations are more accurate, anatomical statures incorporating missing dimensions are not appreciably less accurate and are more precise. The anatomical stature estimation method using imputed missing dimensions is supported. Missing element estimation, however, is limited to the vertebral column (only when lumbar vertebrae are present) and to talocalcaneal height (only when femora and tibiae are present). Crania, entire vertebral columns, and femoral or tibial lengths cannot be reliably estimated. Further discussion of the applicability of these methods is discussed. Copyright © 2011 Wiley-Liss, Inc.

  20. Outcomes after cryoablation vs. radiofrequency in patients with paroxysmal atrial fibrillation: impact of pulmonary veins anatomy.

    PubMed

    Khoueiry, Z; Albenque, J-P; Providencia, R; Combes, S; Combes, N; Jourda, F; Sousa, P A; Cardin, C; Pasquie, J-L; Cung, T T; Massin, F; Marijon, E; Boveda, S

    2016-09-01

    Pulmonary vein isolation is the mainstay of treatment in catheter ablation of paroxysmal atrial fibrillation (AF). Cryoballoon ablation has been introduced more recently than radiofrequency ablation, the standard technique in most centres. Pulmonary veins frequently display anatomical variants, which may compromise the results of cryoballoon ablation. We aimed to evaluate the mid-term outcomes of cryoballoon ablation in an unselected population with paroxysmal AF from an anatomical viewpoint. Consecutive patients with paroxysmal AF who underwent a first procedure of cryoballoon ablation or radiofrequency were enrolled in this single-centre study. All patients underwent systematic standardized follow-up. Comparisons between radiofrequency and cryoballoon ablation (Arctic Front™ or Arctic Front Advance™) were performed regarding safety and efficacy endpoints, according to pulmonary vein (PV) anatomical variants. A total of 687 patients were enrolled (376 radiofrequency and 311 cryoballoon ablation). Baseline characteristics and distribution of PV anatomical variants were generally similar in the groups. After a mean follow-up of 14 ± 8 months, there was no difference in the incidence of relapse (17.0% cryoballoon ablation vs. 14.1% radiofrequency, P = 0.25). We observed no interaction of PV anatomical variants on mid-term procedural success. Our findings suggest that mid-term outcomes of cryoballoon ablation for paroxysmal AF ablation are similar to those of radiofrequency, regardless of PV anatomy. The presence of anatomical variants of PVs should not discourage the referral of patients with paroxysmal AF for cryoballoon ablation. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  1. Comparison of Bone Remodeling Between an Anatomic Short Stem and a Straight Stem in 1-Stage Bilateral Total Hip Arthroplasty.

    PubMed

    Koyano, Gaku; Jinno, Tetsuya; Koga, Daisuke; Yamauchi, Yuki; Muneta, Takeshi; Okawa, Atsushi

    2017-02-01

    Femurs of dysplastic hips exhibit specific abnormalities, and use of modular or specially designed components is recommended. An anatomic short stem was previously designed specifically for dysplastic hips using 3-dimensional data acquired from dysplastic patients. To investigate effects of stem geometry on bone remodeling, we undertook a prospective, randomized study of patients who had undergone 1-stage bilateral total hip arthroplasty (THA) with the anatomic short stem on one side and a conventional straight stem on the other. The study included 36 patients who underwent the above THA procedure. We assessed bone mineral density as well as the presence of cancellous condensation or bony atrophy due to stress shielding based on the analysis of Gruen's zones and newly defined equal-interval zones, at an average follow-up period of 9.2 years. All stems were bone ingrown stable. Cancellous condensation was observed more proximally, and areas of bone atrophy were narrower on the anatomic short stem side than on the straight stem side. Bone mineral density values reflected results of cancellous condensation and stress shielding and were higher in more proximal zones on the anatomic short stem side than on the straight stem side. Although radiographic results indicated good midterm outcomes of THA with both stems, the loading pattern differed. The anatomic short stem achieved its design purpose in terms of proximal fixation and load transfer and led to better preservation of the proximal femur. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moignier, Alexandra, E-mail: alexandra.moignier@irsn.fr; Derreumaux, Sylvie; Broggio, David

    Purpose: Current retrospective cardiovascular dosimetry studies are based on a representative patient or simple mathematic phantoms. Here, a process of patient modeling was developed to personalize the anatomy of the thorax and to include a heart model with coronary arteries. Methods and Materials: The patient models were hybrid computational phantoms (HCPs) with an inserted detailed heart model. A computed tomography (CT) acquisition (pseudo-CT) was derived from HCP and imported into a treatment planning system where treatment conditions were reproduced. Six current patients were selected: 3 were modeled from their CT images (A patients) and the others were modelled from 2more » orthogonal radiographs (B patients). The method performance and limitation were investigated by quantitative comparison between the initial CT and the pseudo-CT, namely, the morphology and the dose calculation were compared. For the B patients, a comparison with 2 kinds of representative patients was also conducted. Finally, dose assessment was focused on the whole coronary artery tree and the left anterior descending coronary. Results: When 3-dimensional anatomic information was available, the dose calculations performed on the initial CT and the pseudo-CT were in good agreement. For the B patients, comparison of doses derived from HCP and representative patients showed that the HCP doses were either better or equivalent. In the left breast radiation therapy context and for the studied cases, coronary mean doses were at least 5-fold higher than heart mean doses. Conclusions: For retrospective dose studies, it is suggested that HCP offers a better surrogate, in terms of dose accuracy, than representative patients. The use of a detailed heart model eliminates the problem of identifying the coronaries on the patient's CT.« less

  3. Outcomes assessment in rotator cuff pathology: what are we measuring?

    PubMed

    Makhni, Eric C; Steinhaus, Michael E; Morrow, Zachary S; Jobin, Charles M; Verma, Nikhil N; Cole, Brian J; Bach, Bernard R

    2015-12-01

    Assessments used to measure outcomes associated with rotator cuff pathology and after repair are varied. This lack of standardization leads to difficulty drawing comparisons across studies. We hypothesize that this variability in patient-reported outcome measures and objective metrics used in rotator cuff studies persists even in high-impact, peer reviewed journals. All studies assessing rotator cuff tear and repair outcomes in 6 orthopedic journals with a high impact factor from January 2010 to December 2014 were reviewed. Cadaveric and animal studies and those without outcomes were excluded. Outcome measures included range of motion (forward elevation, abduction, external rotation, and internal rotation), strength (in the same 4 planes), tendon integrity imaging, patient satisfaction, and functional assessment scores. Of the 156 included studies, 63% documented range of motion measurements, with 18% reporting range of motion in all 4 planes. Only 38% of studies reported quantitative strength measurements. In 65% of studies, tendon integrity was documented with imaging (38% magnetic resonance imaging/magnetic resonance anrhrogram, 31% ultrasound, and 8% computed tomography arthrogram). Finally, functional score reporting varied significantly, with the 5 most frequently reported scores ranging from 16% to 61% in studies, and 15 of the least reported outcomes were each reported in ≤6% of studies. Significant variability exists in outcomes reporting after rotator cuff tear and repair, making comparisons between clinical studies difficult. Creating a uniformly accepted, validated outcomes tool that assesses pain, function, patient satisfaction, and anatomic integrity would enable consistent outcomes assessment after operative and nonoperative management and allow comparisons across the literature. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. [Comparison study between biological vision and computer vision].

    PubMed

    Liu, W; Yuan, X G; Yang, C X; Liu, Z Q; Wang, R

    2001-08-01

    The development and bearing of biology vision in structure and mechanism were discussed, especially on the aspects including anatomical structure of biological vision, tentative classification of reception field, parallel processing of visual information, feedback and conformity effect of visual cortical, and so on. The new advance in the field was introduced through the study of the morphology of biological vision. Besides, comparison between biological vision and computer vision was made, and their similarities and differences were pointed out.

  5. Radiographic identification of the anterior and posterior root attachments of the medial and lateral menisci.

    PubMed

    James, Evan W; LaPrade, Christopher M; Ellman, Michael B; Wijdicks, Coen A; Engebretsen, Lars; LaPrade, Robert F

    2014-11-01

    Anatomic root placement is necessary to restore native meniscal function during meniscal root repair. Radiographic guidelines for anatomic root placement are essential to improve the accuracy and consistency of anatomic root repair and to optimize outcomes after surgery. To define quantitative radiographic guidelines for identification of the anterior and posterior root attachments of the medial and lateral menisci on anteroposterior (AP) and lateral radiographic views. Descriptive laboratory study. The anterior and posterior roots of the medial and lateral menisci were identified in 12 human cadaveric specimens (average age, 51.3 years; age range, 39-65 years) and labeled using 2-mm radiopaque spheres. True AP and lateral radiographs were obtained, and 2 raters independently measured blinded radiographs in relation to pertinent landmarks and radiographic reference lines. On AP radiographs, the anteromedial and posteromedial roots were, on average, 31.9 ± 5.0 mm and 36.3 ± 3.5 mm lateral to the edge of the medial tibial plateau, respectively. The anterolateral and posterolateral roots were, on average, 37.9 ± 5.2 mm and 39.3 ± 3.8 mm medial to the edge of the lateral tibial plateau, respectively. On lateral radiographs, the anteromedial and anterolateral roots were, on average, 4.8 ± 3.7 mm and 20.5 ± 4.3 mm posterior to the anterior margin of the tibial plateau, respectively. The posteromedial and posterolateral roots were, on average, 18.0 ± 2.8 mm and 19.8 ± 3.5 mm anterior to the posterior margin of the tibial plateau, respectively. The intrarater and interrater intraclass correlation coefficients (ICCs) were >0.958, demonstrating excellent reliability. The meniscal root attachment sites were quantitatively and reproducibly defined with respect to anatomic landmarks and superimposed radiographic reference lines. The high ICCs indicate that the measured radiographic relationships are a consistent means for evaluating meniscal root positions. This study demonstrated consistent and reproducible radiographic guidelines for the location of the meniscal roots. These measurements may be used to assess root positions on intraoperative fluoroscopy and postoperative radiographs. © 2014 The Author(s).

  6. An automated tool for cortical feature analysis: Application to differences on 7 Tesla T2* -weighted images between young and older healthy subjects.

    PubMed

    Doan, Nhat Trung; van Rooden, Sanneke; Versluis, Maarten J; Buijs, Mathijs; Webb, Andrew G; van der Grond, Jeroen; van Buchem, Mark A; Reiber, Johan H C; Milles, Julien

    2015-07-01

    High field T 2 * -weighted MR images of the cerebral cortex are increasingly used to study tissue susceptibility changes related to aging or pathologies. This paper presents a novel automated method for the computation of quantitative cortical measures and group-wise comparison using 7 Tesla T 2 * -weighted magnitude and phase images. The cerebral cortex was segmented using a combination of T 2 * -weighted magnitude and phase information and subsequently was parcellated based on an anatomical atlas. Local gray matter (GM)/white matter (WM) contrast and cortical profiles, which depict the magnitude or phase variation across the cortex, were computed from the magnitude and phase images in each parcellated region and further used for group-wise comparison. Differences in local GM/WM contrast were assessed using linear regression analysis. Regional cortical profiles were compared both globally and locally using permutation testing. The method was applied to compare a group of 10 young volunteers with a group of 15 older subjects. Using local GM/WM contrast, significant differences were revealed in at least 13 of 17 studied regions. Highly significant differences between cortical profiles were shown in all regions. The proposed method can be a useful tool for studying cortical changes in normal aging and potentially in neurodegenerative diseases. Magn Reson Med 74:240-248, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  7. Anatomical analysis of an aye-aye brain (Daubentonia madagascariensis, primates: Prosimii) combining histology, structural magnetic resonance imaging, and diffusion-tensor imaging.

    PubMed

    Kaufman, Jason A; Ahrens, Eric T; Laidlaw, David H; Zhang, Song; Allman, John M

    2005-11-01

    This report presents initial results of a multimodal analysis of tissue volume and microstructure in the brain of an aye-aye (Daubentonia madagascariensis). The left hemisphere of an aye-aye brain was scanned using T2-weighted structural magnetic resonance imaging (MRI) and diffusion-tensor imaging (DTI) prior to histological processing and staining for Nissl substance and myelinated fibers. The objectives of the experiment were to estimate the volume of gross brain regions for comparison with published data on other prosimians and to validate DTI data on fiber anisotropy with histological measurements of fiber spread. Measurements of brain structure volumes in the specimen are consistent with those reported in the literature: the aye-aye has a very large brain for its body size, a reduced volume of visual structures (V1 and LGN), and an increased volume of the olfactory lobe. This trade-off between visual and olfactory reliance is likely a reflection of the nocturnal extractive foraging behavior practiced by Daubentonia. Additionally, frontal cortex volume is large in the aye-aye, a feature that may also be related to its complex foraging behavior and sensorimotor demands. Analysis of DTI data in the anterior cingulum bundle demonstrates a strong correlation between fiber spread as measured from histological sections and fiber spread as measured from DTI. These results represent the first quantitative comparison of DTI data and fiber-stained histology in the brain. (c) 2005 Wiley-Liss, Inc.

  8. Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: an ex vivo study

    PubMed Central

    2017-01-01

    Purpose Optical coherence tomography (OCT) is a noninvasive diagnostic technique that may be useful for both qualitative and quantitative analyses of the periodontium. Micro-computed tomography (micro-CT) is another noninvasive imaging technique capable of providing submicron spatial resolution. The purpose of this study was to present periodontal images obtained using ex vivo dental OCT and to compare OCT images with micro-CT images and histologic sections. Methods Images of ex vivo canine periodontal structures were obtained using OCT. Biologic depth measurements made using OCT were compared to measurements made on histologic sections prepared from the same sites. Visual comparisons were made among OCT, micro-CT, and histologic sections to evaluate whether anatomical details were accurately revealed by OCT. Results The periodontal tissue contour, gingival sulcus, and the presence of supragingival and subgingival calculus could be visualized using OCT. OCT was able to depict the surface topography of the dentogingival complex with higher resolution than micro-CT, but the imaging depth was typically limited to 1.2–1.5 mm. Biologic depth measurements made using OCT were a mean of 0.51 mm shallower than the histologic measurements. Conclusions Dental OCT as used in this study was able to generate high-resolution, cross-sectional images of the superficial portions of periodontal structures. Improvements in imaging depth and the development of an intraoral sensor are likely to make OCT a useful technique for periodontal applications. PMID:28261522

  9. Towards the development of a wearable Electrical Impedance Tomography system: A study about the suitability of a low power bioimpedance front-end.

    PubMed

    Menolotto, Matteo; Rossi, Stefano; Dario, Paolo; Della Torre, Luigi

    2015-01-01

    Wearable systems for remote monitoring of physiological parameter are ready to evolve towards wearable imaging systems. The Electrical Impedance Tomography (EIT) allows the non-invasive investigation of the internal body structure. The characteristics of this low-resolution and low-cost technique match perfectly with the concept of a wearable imaging device. On the other hand low power consumption, which is a mandatory requirement for wearable systems, is not usually discussed for standard EIT applications. In this work a previously developed low power architecture for a wearable bioimpedance sensor is applied to EIT acquisition and reconstruction, to evaluate the impact on the image of the limited signal to noise ratio (SNR), caused by low power design. Some anatomical models of the chest, with increasing geometric complexity, were developed, in order to evaluate and calibrate, through simulations, the parameters of the reconstruction algorithms provided by Electrical Impedance Diffuse Optical Reconstruction Software (EIDORS) project. The simulation results were compared with experimental measurements taken with our bioimpedance device on a phantom reproducing chest tissues properties. The comparison was both qualitative and quantitative through the application of suitable figures of merit; in this way the impact of the noise of the low power front-end on the image quality was assessed. The comparison between simulation and measurement results demonstrated that, despite the limited SNR, the device is accurate enough to be used for the development of an EIT based imaging wearable system.

  10. Renal Function and Diuretic Therapy in Infants and Children. Part i

    ERIC Educational Resources Information Center

    Loggie, Jennifer M. H.; And Others

    1975-01-01

    Included in the review are a description of the anatomic and functional development of the human kidney, a comparison of the renal physiology of the infant and adult, and a discussion of the pediatric clinical pharmacology of the most commonly used diuretic agents. (DB)

  11. Use of regularized principal component analysis to model anatomical changes during head and neck radiation therapy for treatment adaptation and response assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetvertkov, Mikhail A., E-mail: chetvertkov@wayne

    2016-10-15

    Purpose: To develop standard (SPCA) and regularized (RPCA) principal component analysis models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients and assess their potential use in adaptive radiation therapy, and for extracting quantitative information for treatment response assessment. Methods: Planning CT images of ten H&N patients were artificially deformed to create “digital phantom” images, which modeled systematic anatomical changes during radiation therapy. Artificial deformations closely mirrored patients’ actual deformations and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and syntheticmore » CBCTs (i.e., digital phantoms) and between pCT and clinical CBCTs. Patient-specific SPCA and RPCA models were built from these synthetic and clinical DVF sets. EigenDVFs (EDVFs) having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Results: Principal component analysis (PCA) models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade PCA’s ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. Conclusions: Leading EDVFs from the both PCA approaches have the potential to capture systematic anatomical change during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more reliable at capturing systematic changes, enabling dosimetric consequences to be projected once trends are established early in a treatment course, or based on population models.« less

  12. Atlas-based segmentation of 3D cerebral structures with competitive level sets and fuzzy control.

    PubMed

    Ciofolo, Cybèle; Barillot, Christian

    2009-06-01

    We propose a novel approach for the simultaneous segmentation of multiple structures with competitive level sets driven by fuzzy control. To this end, several contours evolve simultaneously toward previously defined anatomical targets. A fuzzy decision system combines the a priori knowledge provided by an anatomical atlas with the intensity distribution of the image and the relative position of the contours. This combination automatically determines the directional term of the evolution equation of each level set. This leads to a local expansion or contraction of the contours, in order to match the boundaries of their respective targets. Two applications are presented: the segmentation of the brain hemispheres and the cerebellum, and the segmentation of deep internal structures. Experimental results on real magnetic resonance (MR) images are presented, quantitatively assessed and discussed.

  13. Experimental study of quantitative assessment of left ventricular mass with contrast enhanced real-time three-dimensional echocardiography.

    PubMed

    Zhuang, Lei; Wang, Xin-Fang; Xie, Ming-Xing; Chen, Li-Xin; Fei, Hong-Wen; Yang, Ying; Wang, Jing; Huang, Run-Qing; Chen, Ou-Di; Wang, Liang-Yu

    2004-01-01

    To evaluate the feasibility and accuracy of measurement of left ventricular mass with intravenous contrast enhanced real-time three-dimensional (RT3D) echocardiography in the experimental setting. RT3D echocardiography was performed in 13 open-chest mongrel dogs before and after intravenous infusion of a perfluorocarbon contrast agent. Left ventricular myocardium volume was measured according to the apical four-plane method provided by TomTec 4D cardio-View RT1.0 software, then the left ventricular mass was calculated as the myocardial volume multiplied by the relative density of myocardium. Correlative analysis and paired t-test were performed between left ventricular mass obtained from RT3D echocardiography and the anatomic measurements. Anatomic measurement of total left ventricular mass was 55.6 +/- 9.3 g, whereas RT3D echocardiographic calculation of left ventricular mass before and after intravenous perfluorocarbon contrast agent was 57.5 +/- 11.4 and 55.5 +/- 9.3 g, respectively. A significant correlation was observed between the RT3D echocardiographic estimates of total left ventricular mass and the corresponding anatomic measurements (r = 0.95). A strong correlation was found between RT3D echocardiographic estimates of left ventricular mass with perfluorocarbon contrast and the anatomic results (r = 0.99). Analysis of intraobserver and interobserver variability showed strong indexes of agreement in the measurement of left ventricular mass with pre and post-contrast RT3D echocardiography. Measurements of left ventricular mass derived from RT3D echocardiography with and without intravenous contrast showed a significant correlation with the anatomic results. Contrast enhanced RT3D echocardiography permitted better visualization of the endocardial border, which would provide a more accurate and reliable means of determining left ventricular myocardial mass in the experimental setting.

  14. The effect of vortex formation on left ventricular filling and mitral valve efficiency.

    PubMed

    Pierrakos, Olga; Vlachos, Pavlos P

    2006-08-01

    A new mechanism for quantifying the filling energetics in the left ventricle (LV) and past mechanical heart valves (MHV) is identified and presented. This mechanism is attributed to vortex formation dynamics past MHV leaflets. Recent studies support the conjecture that the natural healthy left ventricle (LV) performs in an optimum, energy-preserving manner by redirecting the flow with high efficiency. Yet to date, no quantitative proof has been presented. The present work provides quantitative results and validation of a theory based on the dynamics of vortex ring formation, which is governed by a critical formation number (FN) that corresponds to the dimensionless time at which the vortex ring has reached its maximum circulation content, in support of this hypothesis. Herein, several parameters (vortex ring circulation, vortex ring energy, critical FN, hydrodynamic efficiencies, vortex ring propagation speed) have been quantified and presented as a means of bridging the physics of vortex formation in the LV. In fact, the diastolic hydrodynamic efficiencies were found to be 60, 41, and 29%, respectively, for the porcine, anti-anatomical, and anatomical valve configurations. This assessment provides quantitative proof of vortex formation, which is dependent of valve design and orientation, being an important flow characteristic and associated to LV energetics. Time resolved digital particle image velocimetry with kilohertz sampling rate was used to study the ejection of fluid into the LV and resolve the spatiotemporal evolution of the flow. The clinical significance of this study is quantifying vortex formation and the critical FN that can potentially serve as a parameter to quantify the LV filling process and the performance of heart valves.

  15. The craniocaudal extension of posterolateral approaches and their combination: a quantitative anatomic and clinical analysis.

    PubMed

    Safavi-Abbasi, Sam; de Oliveira, Jean G; Deshmukh, Pushpa; Reis, Cassius V; Brasiliense, Leonardo B C; Crawford, Neil R; Feiz-Erfan, Iman; Spetzler, Robert F; Preul, Mark C

    2010-03-01

    The aim of this study was to describe quantitatively the properties of the posterolateral approaches and their combination. Six silicone-injected cadaveric heads were dissected bilaterally. Quantitative data were generated with the Optotrak 3020 system (Northern Digital, Waterloo, Canada) and Surgiscope (Elekta Instruments, Inc., Atlanta, GA), including key anatomic points on the skull base and brainstem. All parameters were measured after the basic retrosigmoid craniectomy and then after combination with a basic far-lateral extension. The clinical results of 20 patients who underwent a combined retrosigmoid and far-lateral approach were reviewed. The change in accessibility to the lower clivus was greatest after the far-lateral extension (mean change, 43.62 +/- 10.98 mm2; P = .001). Accessibility to the constant landmarks, Meckel's cave, internal auditory meatus, and jugular foramen did not change significantly between the 2 approaches (P > .05). The greatest change in accessibility to soft tissue between the 2 approaches was to the lower brainstem (mean change, 33.88 +/- 5.25 mm2; P = .0001). Total removal was achieved in 75% of the cases. The average postoperative Glasgow Outcome Scale score of patients who underwent the combined retrosigmoid and far-lateral approach improved significantly, compared with the preoperative scores. The combination of the far-lateral and simple retrosigmoid approaches significantly increases the petroclival working area and access to the cranial nerves. However, risk of injury to neurovascular structures and time needed to extend the craniotomy must be weighed against the increased working area and angles of attack.

  16. Effect of changes of femoral offset on abductor and joint reaction forces in total hip arthroplasty.

    PubMed

    Rüdiger, Hannes A; Guillemin, Maïka; Latypova, Adeliya; Terrier, Alexandre

    2017-11-01

    Anatomical reconstruction in total hip arthroplasty (THA) allows for physiological muscle function, good functional outcome and implant longevity. Quantitative data on the effect of a loss or gain of femoral offset (FO) are scarce. The aim of this study was to quantitatively describe the effect of FO changes on abductor moment arms, muscle and joint reactions forces. THA was virtually performed on 3D models built from preoperative CT scans of 15 patients undergoing THA. Virtual THA was performed with a perfectly anatomical reconstruction, a loss of 20% of FO (-FO), and a gain of 20% of FO (+FO). These models were combined with a generic musculoskeletal model (OpenSim) to predict moment arms, muscle and joint reaction forces during normal gait cycles. In average, with -FO reconstructions, muscle moment arms decreased, while muscle and hip forces increased significantly (p < 0.001). We observed the opposite with +FO reconstructions. Gluteus medius was more affected than gluteus minimus. -FO had more effect than +FO. A change of 20% of FO induced an average change 8% of abductor moment arms, 16% of their forces, and 6% of the joint reaction force. To our knowledge, this is the first report providing quantitative data on the effect of FO changes on muscle and joint forces during normal gait. A decrease of FO necessitates an increase of abductor muscle force to maintain normal gait, which in turn increases the joint reaction force. This effect underscores the importance of an accurate reconstruction of the femoral offset.

  17. Motion correction for improving the accuracy of dual-energy myocardial perfusion CT imaging

    NASA Astrophysics Data System (ADS)

    Pack, Jed D.; Yin, Zhye; Xiong, Guanglei; Mittal, Priya; Dunham, Simon; Elmore, Kimberly; Edic, Peter M.; Min, James K.

    2016-03-01

    Coronary Artery Disease (CAD) is the leading cause of death globally [1]. Modern cardiac computed tomography angiography (CCTA) is highly effective at identifying and assessing coronary blockages associated with CAD. The diagnostic value of this anatomical information can be substantially increased in combination with a non-invasive, low-dose, correlative, quantitative measure of blood supply to the myocardium. While CT perfusion has shown promise of providing such indications of ischemia, artifacts due to motion, beam hardening, and other factors confound clinical findings and can limit quantitative accuracy. In this paper, we investigate the impact of applying a novel motion correction algorithm to correct for motion in the myocardium. This motion compensation algorithm (originally designed to correct for the motion of the coronary arteries in order to improve CCTA images) has been shown to provide substantial improvements in both overall image quality and diagnostic accuracy of CCTA. We have adapted this technique for application beyond the coronary arteries and present an assessment of its impact on image quality and quantitative accuracy within the context of dual-energy CT perfusion imaging. We conclude that motion correction is a promising technique that can help foster the routine clinical use of dual-energy CT perfusion. When combined, the anatomical information of CCTA and the hemodynamic information from dual-energy CT perfusion should facilitate better clinical decisions about which patients would benefit from treatments such as stent placement, drug therapy, or surgery and help other patients avoid the risks and costs associated with unnecessary, invasive, diagnostic coronary angiography procedures.

  18. Coronal View Ultrasound Imaging of Movement in Different Segments of the Tongue during Paced Recital: Findings from Four Normal Speakers and a Speaker with Partial Glossectomy

    ERIC Educational Resources Information Center

    Bressmann, Tim; Flowers, Heather; Wong, Willy; Irish, Jonathan C.

    2010-01-01

    The goal of this study was to quantitatively describe aspects of coronal tongue movement in different anatomical regions of the tongue. Four normal speakers and a speaker with partial glossectomy read four repetitions of a metronome-paced poem. Their tongue movement was recorded in four coronal planes using two-dimensional B-mode ultrasound…

  19. Anatomy-Based Algorithms for Detecting Oral Cancer Using Reflectance and Fluorescence Spectroscopy

    PubMed Central

    McGee, Sasha; Mardirossian, Vartan; Elackattu, Alphi; Mirkovic, Jelena; Pistey, Robert; Gallagher, George; Kabani, Sadru; Yu, Chung-Chieh; Wang, Zimmern; Badizadegan, Kamran; Grillone, Gregory; Feld, Michael S.

    2010-01-01

    Objectives We used reflectance and fluorescence spectroscopy to noninvasively and quantitatively distinguish benign from dysplastic/malignant oral lesions. We designed diagnostic algorithms to account for differences in the spectral properties among anatomic sites (gingiva, buccal mucosa, etc). Methods In vivo reflectance and fluorescence spectra were collected from 71 patients with oral lesions. The tissue was then biopsied and the specimen evaluated by histopathology. Quantitative parameters related to tissue morphology and biochemistry were extracted from the spectra. Diagnostic algorithms specific for combinations of sites with similar spectral properties were developed. Results Discrimination of benign from dysplastic/malignant lesions was most successful when algorithms were designed for individual sites (area under the receiver operator characteristic curve [ROC-AUC], 0.75 for the lateral surface of the tongue) and was least accurate when all sites were combined (ROC-AUC, 0.60). The combination of sites with similar spectral properties (floor of mouth and lateral surface of the tongue) yielded an ROC-AUC of 0.71. Conclusions Accurate spectroscopic detection of oral disease must account for spectral variations among anatomic sites. Anatomy-based algorithms for single sites or combinations of sites demonstrated good diagnostic performance in distinguishing benign lesions from dysplastic/malignant lesions and consistently performed better than algorithms developed for all sites combined. PMID:19999369

  20. Quantitative evaluation of simulated functional brain networks in graph theoretical analysis.

    PubMed

    Lee, Won Hee; Bullmore, Ed; Frangou, Sophia

    2017-02-01

    There is increasing interest in the potential of whole-brain computational models to provide mechanistic insights into resting-state brain networks. It is therefore important to determine the degree to which computational models reproduce the topological features of empirical functional brain networks. We used empirical connectivity data derived from diffusion spectrum and resting-state functional magnetic resonance imaging data from healthy individuals. Empirical and simulated functional networks, constrained by structural connectivity, were defined based on 66 brain anatomical regions (nodes). Simulated functional data were generated using the Kuramoto model in which each anatomical region acts as a phase oscillator. Network topology was studied using graph theory in the empirical and simulated data. The difference (relative error) between graph theory measures derived from empirical and simulated data was then estimated. We found that simulated data can be used with confidence to model graph measures of global network organization at different dynamic states and highlight the sensitive dependence of the solutions obtained in simulated data on the specified connection densities. This study provides a method for the quantitative evaluation and external validation of graph theory metrics derived from simulated data that can be used to inform future study designs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Prostatome: A combined anatomical and disease based MRI atlas of the prostate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusu, Mirabela; Madabhushi, Anant, E-mail: anant.madabhushi@case.edu; Bloch, B. Nicolas

    Purpose: In this work, the authors introduce a novel framework, the anatomically constrained registration (AnCoR) scheme and apply it to create a fused anatomic-disease atlas of the prostate which the authors refer to as the prostatome. The prostatome combines a MRI based anatomic and a histology based disease atlas. Statistical imaging atlases allow for the integration of information across multiple scales and imaging modalities into a single canonical representation, in turn enabling a fused anatomical-disease representation which may facilitate the characterization of disease appearance relative to anatomic structures. While statistical atlases have been extensively developed and studied for the brain,more » approaches that have attempted to combine pathology and imaging data for study of prostate pathology are not extant. This works seeks to address this gap. Methods: The AnCoR framework optimizes a scoring function composed of two surface (prostate and central gland) misalignment measures and one intensity-based similarity term. This ensures the correct mapping of anatomic regions into the atlas, even when regional MRI intensities are inconsistent or highly variable between subjects. The framework allows for creation of an anatomic imaging and a disease atlas, while enabling their fusion into the anatomic imaging-disease atlas. The atlas presented here was constructed using 83 subjects with biopsy confirmed cancer who had pre-operative MRI (collected at two institutions) followed by radical prostatectomy. The imaging atlas results from mapping thein vivo MRI into the canonical space, while the anatomic regions serve as domain constraints. Elastic co-registration MRI and corresponding ex vivo histology provides “ground truth” mapping of cancer extent on in vivo imaging for 23 subjects. Results: AnCoR was evaluated relative to alternative construction strategies that use either MRI intensities or the prostate surface alone for registration. The AnCoR framework yielded a central gland Dice similarity coefficient (DSC) of 90%, and prostate DSC of 88%, while the misalignment of the urethra and verumontanum was found to be 3.45 mm, and 4.73 mm, respectively, which were measured to be significantly smaller compared to the alternative strategies. As might have been anticipated from our limited cohort of biopsy confirmed cancers, the disease atlas showed that most of the tumor extent was limited to the peripheral zone. Moreover, central gland tumors were typically larger in size, possibly because they are only discernible at a much later stage. Conclusions: The authors presented the AnCoR framework to explicitly model anatomic constraints for the construction of a fused anatomic imaging-disease atlas. The framework was applied to constructing a preliminary version of an anatomic-disease atlas of the prostate, the prostatome. The prostatome could facilitate the quantitative characterization of gland morphology and imaging features of prostate cancer. These techniques, may be applied on a large sample size data set to create a fully developed prostatome that could serve as a spatial prior for targeted biopsies by urologists. Additionally, the AnCoR framework could allow for incorporation of complementary imaging and molecular data, thereby enabling their careful correlation for population based radio-omics studies.« less

  2. Current methods and advances in bone densitometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Gluer, C. C.; Majumdar, S.; Blunt, B. A.; Genant, H. K.

    1995-01-01

    Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis.

  3. Quantitative comparison of the microscopic anatomy of the human ACL femoral and tibial entheses.

    PubMed

    Beaulieu, Mélanie L; Carey, Grace E; Schlecht, Stephen H; Wojtys, Edward M; Ashton-Miller, James A

    2015-12-01

    The femoral enthesis of the human anterior cruciate ligament (ACL) is known to be more susceptible to injury than the tibial enthesis. To determine whether anatomic differences might help explain this difference, we quantified the microscopic appearance of both entheses in 15 unembalmed knee specimens using light microscopy, toluidine blue stain and image analysis. The amount of calcified fibrocartilage and uncalcified fibrocartilage, and the ligament entheseal attachment angle were then compared between the femoral and tibial entheses via linear mixed-effects models. The results showed marked differences in anatomy between the two entheses. The femoral enthesis exhibited a 3.9-fold more acute ligament attachment angle than the tibial enthesis (p<0.001), a 43% greater calcified fibrocartilage tissue area (p<0.001), and a 226% greater uncalcified fibrocartilage depth (p<0.001), with the latter differences being particularly pronounced in the central region. We conclude that the ACL femoral enthesis has more fibrocartilage and a more acute ligament attachment angle than the tibial enthesis, which provides insight into why it is more vulnerable to failure. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Comparison of Middle Ear Visualization With Endoscopy and Microscopy.

    PubMed

    Bennett, Marc L; Zhang, Dongqing; Labadie, Robert F; Noble, Jack H

    2016-04-01

    The primary goal of chronic ear surgery is the creation of a safe, clean dry ear. For cholesteatomas, complete removal of disease is dependent on visualization. Conventional microscopy is adequate for most dissection, but various subregions of the middle ear are better visualized with endoscopy. The purpose of the present study was to quantitatively assess the improved visualization that endoscopes afford as compared with operating microscopes. Microscopic and endoscopic views were simulated using a three-dimensional model developed from temporal bone scans. Surface renderings of the ear canal and middle ear subsegments were defined and the percentage of visualization of each middle ear subsegment, both with and without ossicles, was then determined for the microscope as well as for 0-, 30-, and 45-degree endoscopes. Using this information, we analyzed which mode of visualization is best suited for dissection within a particular anatomical region. Using a 0-degree scope provides significantly more visualization of every subregion, except the antrum, compared with a microscope. In addition, angled scopes permit visualizing significantly more surface area of every subregion of the middle ear than straight scopes or microscopes. Endoscopes offer advantages for cholesteatoma dissection in difficult-to-visualize areas including the sinus tympani and epitympanum.

  5. Comparison study of noise reduction algorithms in dual energy chest digital tomosynthesis

    NASA Astrophysics Data System (ADS)

    Lee, D.; Kim, Y.-S.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.

    2018-04-01

    Dual energy chest digital tomosynthesis (CDT) is a recently developed medical technique that takes advantage of both tomosynthesis and dual energy X-ray images. However, quantum noise, which occurs in dual energy X-ray images, strongly interferes with diagnosis in various clinical situations. Therefore, noise reduction is necessary in dual energy CDT. In this study, noise-compensating algorithms, including a simple smoothing of high-energy images (SSH) and anti-correlated noise reduction (ACNR), were evaluated in a CDT system. We used a newly developed prototype CDT system and anthropomorphic chest phantom for experimental studies. The resulting images demonstrated that dual energy CDT can selectively image anatomical structures, such as bone and soft tissue. Among the resulting images, those acquired with ACNR showed the best image quality. Both coefficient of variation and contrast to noise ratio (CNR) were the highest in ACNR among the three different dual energy techniques, and the CNR of bone was significantly improved compared to the reconstructed images acquired at a single energy. This study demonstrated the clinical value of dual energy CDT and quantitatively showed that ACNR is the most suitable among the three developed dual energy techniques, including standard log subtraction, SSH, and ACNR.

  6. A comparison of education in Greek and English nurses.

    PubMed

    Bakalis, N A; Bowman, G S; Porock, D

    2004-06-01

    Curriculum is an important component of nurse education and is thought to vary from country to country. To determine the level of cardiac knowledge in Greek and English final-year student nurses. Subjects were final-year diploma and degree student nurses (n = 161) from Greece and England. Pictographs (testing knowledge in a pictorial form) were used as a method of data collection. Three anatomical cardiac diagrams were used. Students were asked to label 20 anatomical parts. Final-year English student nurses have better knowledge in the discrete area of cardiac anatomy and physiology (P < 0.05) than their Greek counterparts. Problems associated with translation and interpretation were avoided using pictographs and were shown to be useful measures for determining knowledge in nurses from different countries. The findings of the study are important because they show differences in anatomical knowledge levels between Greek and English students. More research is needed to explore further different levels of knowledge and education within the European Union and the consequences for nurse decision-making and patient outcomes.

  7. Exceptional appendage and soft-tissue preservation in a Middle Triassic horseshoe crab from SW China.

    PubMed

    Hu, Shixue; Zhang, Qiyue; Feldmann, Rodney M; Benton, Michael J; Schweitzer, Carrie E; Huang, Jinyuan; Wen, Wen; Zhou, Changyong; Xie, Tao; Lü, Tao; Hong, Shuigen

    2017-10-26

    Horseshoe crabs are classic "living fossils", supposedly slowly evolving, conservative taxa, with a long fossil record back to the Ordovician. The evolution of their exoskeleton is well documented by fossils, but appendage and soft-tissue preservation is extremely rare. Here we analyse details of appendage and soft-tissue preservation in Yunnanolimulus luopingensis, a Middle Triassic (ca. 244 million years old) horseshoe crab from Yunnan Province, SW China. The remarkable preservation of anatomical details including the chelicerae, five pairs of walking appendages, opisthosomal appendages with book gills, muscles, and fine setae permits comparison with extant horseshoe crabs. The close anatomical similarity between the Middle Triassic horseshoe crabs and their recent analogues documents anatomical conservatism for over 240 million years, suggesting persistence of lifestyle. The occurrence of Carcinoscorpius-type claspers on the first and second walking legs in male individuals of Y. luopingensis indicates that simple chelate claspers in males are plesiomorphic for horseshoe crabs, and the bulbous claspers in Tachypleus and Limulus are derived.

  8. Comparisons of Computed Mobile Phone Induced SAR in the SAM Phantom to That in Anatomically Correct Models of the Human Head.

    PubMed

    Beard, Brian B; Kainz, Wolfgang; Onishi, Teruo; Iyama, Takahiro; Watanabe, Soichi; Fujiwara, Osamu; Wang, Jianqing; Bit-Babik, Giorgi; Faraone, Antonio; Wiart, Joe; Christ, Andreas; Kuster, Niels; Lee, Ae-Kyoung; Kroeze, Hugo; Siegbahn, Martin; Keshvari, Jafar; Abrishamkar, Houman; Simon, Winfried; Manteuffel, Dirk; Nikoloski, Neviana

    2006-06-05

    The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position.

  9. Atlas warping for brain morphometry

    NASA Astrophysics Data System (ADS)

    Machado, Alexei M. C.; Gee, James C.

    1998-06-01

    In this work, we describe an automated approach to morphometry based on spatial normalizations of the data, and demonstrate its application to the analysis of gender differences in the human corpus callosum. The purpose is to describe a population by a reduced and representative set of variables, from which a prior model can be constructed. Our approach is rooted in the assumption that individual anatomies can be considered as quantitative variations on a common underlying qualitative plane. We can therefore imagine that a given individual's anatomy is a warped version of some referential anatomy, also known as an atlas. The spatial warps which transform a labeled atlas into anatomic alignment with a population yield immediate knowledge about organ size and shape in the group. Furthermore, variation within the set of spatial warps is directly related to the anatomic variation among the subjects. Specifically, the shape statistics--mean and variance of the mappings--for the population can be calculated in a special basis, and an eigendecomposition of the variance performed to identify the most significant modes of shape variation. The results obtained with the corpus callosum study confirm the existence of substantial anatomical differences between males and females, as reported in previous experimental work.

  10. Impact of a joint labor-management ergonomics program on upper extremity musculoskeletal symptoms among garment workers.

    PubMed

    Herbert, R; Dropkin, J; Warren, N; Sivin, D; Doucette, J; Kellogg, L; Bardin, J; Kass, D; Zoloth, S

    2001-10-01

    This study evaluated the effect of an ergonomics intervention program on the prevalence and intensity of symptoms of upper extremity work-related musculoskeletal disorders among 36 garment workers performing an operation called spooling. Adjustable chairs were introduced and workers were trained in their use. Symptom surveys were administered prior to and 6 months after introduction of adjustable chairs. Quantitative pre- and post-intervention measurement of joint position was performed utilizing videotapes among a subgroup of nineteen. Eighty nine percent of the cohort reported pain in either the neck or at least one upper extremity anatomic site prior to the adjustable chair intervention. Among subjects reporting pain at baseline, there were significantly decreased pain levels in 10 of 11 anatomic sites after the intervention. Among all subjects, the proportion reporting pain decreased for each anatomic site following the intervention, with statistically significant decreases in 3 sites. However, there were only modest declines in awkward posture among the videotaped subgroup. This study suggests that introduction of an ergonomics program focused on education and introduction of an adjustable chair may diminish musculoskeletal symptomatology in apparel manufacturing workers.

  11. Comparison of CT numbers of organs before and after plastination using standard S-10 technique.

    PubMed

    Shanthi, Pauline; Singh, Rabi Raja; Gibikote, Sridhar; Rabi, Suganthy

    2015-05-01

    Plastination is the art of preserving biological tissues with curable polymers. Imaging with plastinates offers a unique opportunity for radiographic, anatomical, pathological correlation to elucidate complex anatomical relationships. The aim of this study was to make plastinates from cadavers using the standard S-10 plastination technique and to compare the radiological properties of the tissue before and afterwards to examine the suitability of plastinates as phantoms for planning radiotherapy treatment. An above-diaphragm and a below-diaphragm specimen were obtained from a male and a female cadaver, respectively, and subjected to the standard S-10 plastination technique. CT images were obtained before and after plastination and were compared using Treatment Planning System for anatomical accuracy, volume of organs, and CT numbers. The plastinated specimens obtained were dry, robust, and durable. CT imaging of the plastinated specimens showed better anatomical detail of the organs than the preplastinate. Organ volumes were estimated by contouring the organs' outline in the CT images of the preplastinated and postplastinated specimens, revealing an average shrinkage of 25%. CT numbers were higher in the plastinated specimens except in bones and air-filled cavities such as the maxillary air sinus. Although plastination by the standard S-10 technique preserves anatomical accuracy, it increases the CT numbers of the organs because of the density of silicone, making it unsuitable for radiation dosimetry. Further improvements of the technique could yield more suitable plastinated phantoms. © 2015 Wiley Periodicals, Inc.

  12. Validation of cone-beam computed tomography and magnetic resonance imaging of the porcine spine: a comparative study with multidetector computed tomography and anatomical specimens.

    PubMed

    de Freitas, Ricardo Miguel Costa; Andrade, Celi Santos; Caldas, José Guilherme Mendes Pereira; Kanas, Alexandre Fligelman; Cabral, Richard Halti; Tsunemi, Miriam Harumi; Rodríguez, Hernán Joel Cervantes; Rabbani, Said Rahnamaye

    2015-05-01

    New spinal interventions or implants have been tested on ex vivo or in vivo porcine spines, as they are readily available and have been accepted as a comparable model to human cadaver spines. Imaging-guided interventional procedures of the spine are mostly based on fluoroscopy or, still, on multidetector computed tomography (MDCT). Cone-beam computed tomography (CBCT) and magnetic resonance imaging (MRI) are also available methods to guide interventional procedures. Although some MDCT data from porcine spines are available in the literature, validation of the measurements on CBCT and MRI is lacking. To describe and compare the anatomical measurements accomplished with MDCT, CBCT, and MRI of lumbar porcine spines to determine if CBCT and MRI are also useful methods for experimental studies. An experimental descriptive-comparative study. Sixteen anatomical measurements of an individual vertebra from six lumbar porcine spines (n=36 vertebrae) were compared with their MDCT, CBCT, and MRI equivalents. Comparisons were made for the absolute values of the parameters. Similarities were found in all imaging methods. Significant correlation (p<.05) was observed with all variables except those that included cartilaginous tissue from the end plates when the anatomical study was compared with the imaging methods. The CBCT and MRI provided imaging measurements of the lumbar porcine spines that were similar to the anatomical and MDCT data, and they can be useful for specific experimental research studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Quantitative vs. subjective portal verification using digital portal images.

    PubMed

    Bissett, R; Leszczynski, K; Loose, S; Boyko, S; Dunscombe, P

    1996-01-15

    Off-line, computer-aided prescription (simulator) and treatment (portal) image registration using chamfer matching has been implemented on PC based viewing station. The purposes of this study were (a) to evaluate the performance of interactive anatomy and field edge extraction and subsequent registration, and (b) to compare observer's perceptions of field accuracy with measured discrepancies following anatomical registration. Prescription-treatment image pairs for 48 different patients were examined in this study. Digital prescription images were produced with the aid of a television camera and a digital frame grabber, while the treatment images were obtained directly from an on-line portal imaging system. To facilitate perception of low contrast anatomical detail, on-line portal images were enhanced with selective adaptive histogram equalization prior to extraction of anatomical edges. Following interactive extraction of anatomical and field border information by an experienced observer, the identified anatomy was registered using chamfer matching. The degree of conformity between the prescription and treatment fields was quantified using several parameters, which included relative prescription field coverage and overcoverage, as well as the translational and rotational displacements as measured by chamfer matching applied to the boundaries of the two fields. These quantitative measures were compared with subjective evaluations made by four radiation oncologists. All the images in this series that included a range of the most commonly seen treatment sites were registered and the conformity parameters were found. The mean treatment/prescription field coverage and overcoverage were approximately 95 and 7%, respectively before registration. The mean translational displacement in the transverse and cranio-caudal directions were 2.9 and 3.4 mm, respectively. The mean rotational displacement was approximately 2 degrees. For all four oncologists, the portals classified as unacceptable, in terms of the field placement, exhibited significantly higher (p < 0.03) translational errors in the transverse direction. The field coverages were significantly lower (p < 0.05) and the translational errors in the cranio-caudal direction were significantly higher (p < 0.05) for the portals rated as unacceptable by two of the oncologists. From the parameters that were used to quantify the degree of conformity between the prescription and treatment fields, the translational error in the transverse direction correlated best with the oncologists' assessments on the field placement. Field coverage and translational error in the cranio-caudal direction correlated well with assessments of only two out of the four participating oncologists. This can be explained by the fact that for the majority of treatment sites included in the study the positioning of field borders was more critical for the transverse direction. A conclusion for the design of future quantitative and automated on-line portal verification systems is that they will have to model different perceived significances of different types of localization errors intrinsic to oncologist evaluation of portal images.

  14. Hyaline cartilage thickness in radiographically normal cadaveric hips: comparison of spiral CT arthrographic and macroscopic measurements.

    PubMed

    Wyler, Annabelle; Bousson, Valérie; Bergot, Catherine; Polivka, Marc; Leveque, Eric; Vicaut, Eric; Laredo, Jean-Denis

    2007-02-01

    To assess spiral multidetector computed tomographic (CT) arthrography for the depiction of cartilage thickness in hips without cartilage loss, with evaluation of anatomic slices as the reference standard. Permission to perform imaging studies in cadaveric specimens of individuals who had willed their bodies to science was obtained from the institutional review board. Two independent observers measured the femoral and acetabular hyaline cartilage thickness of 12 radiographically normal cadaveric hips (from six women and five men; age range at death, 52-98 years; mean, 76.5 years) on spiral multidetector CT arthrographic reformations and on coronal anatomic slices. Regions of cartilage loss at gross or histologic examination were excluded. CT arthrographic and anatomic measurements in the coronal plane were compared by using Bland-Altman representation and a paired t test. Differences between mean cartilage thicknesses at the points of measurement were tested by means of analysis of variance. Interobserver and intraobserver reproducibilities were determined. At CT arthrography, mean cartilage thickness ranged from 0.32 to 2.53 mm on the femoral head and from 0.95 to 3.13 mm on the acetabulum. Observers underestimated cartilage thickness in the coronal plane by 0.30 mm +/- 0.52 (mean +/- standard error) at CT arthrography (P < .001) compared with the anatomic reference standard. Ninety-five percent of the differences between CT arthrography and anatomic values ranged from -1.34 to 0.74 mm. The difference between mean cartilage thicknesses at the different measurement points was significant for coronal spiral multidetector CT arthrography and anatomic measurement of the femoral head and acetabulum and for sagittal and transverse CT arthrography of the femoral head (P < .001). Changes in cartilage thickness from the periphery to the center of the joint ("gradients") were found by means of spiral multidetector CT arthrography and anatomic measurement. Spiral multidetector CT arthrography depicts cartilage thickness gradients in radiographically normal cadaveric hips. (c) RSNA, 2007.

  15. Extraction of the human cerebral ventricular system from MRI: inclusion of anatomical knowledge and clinical perspective

    NASA Astrophysics Data System (ADS)

    Aziz, Aamer; Hu, Qingmao; Nowinski, Wieslaw L.

    2004-04-01

    The human cerebral ventricular system is a complex structure that is essential for the well being and changes in which reflect disease. It is clinically imperative that the ventricular system be studied in details. For this reason computer assisted algorithms are essential to be developed. We have developed a novel (patent pending) and robust anatomical knowledge-driven algorithm for automatic extraction of the cerebral ventricular system from MRI. The algorithm is not only unique in its image processing aspect but also incorporates knowledge of neuroanatomy, radiological properties, and variability of the ventricular system. The ventricular system is divided into six 3D regions based on the anatomy and its variability. Within each ventricular region a 2D region of interest (ROI) is defined and is then further subdivided into sub-regions. Various strict conditions that detect and prevent leakage into the extra-ventricular space are specified for each sub-region based on anatomical knowledge. Each ROI is processed to calculate its local statistics, local intensity ranges of cerebrospinal fluid and grey and white matters, set a seed point within the ROI, grow region directionally in 3D, check anti-leakage conditions and correct growing if leakage occurs and connects all unconnected regions grown by relaxing growing conditions. The algorithm was tested qualitatively and quantitatively on normal and pathological MRI cases and worked well. In this paper we discuss in more detail inclusion of anatomical knowledge in the algorithm and usefulness of our approach from clinical perspective.

  16. Measurement of gastrocnemius muscle elasticity by shear wave elastography: association with passive ankle joint stiffness and sex differences.

    PubMed

    Chino, Kentaro; Takahashi, Hideyuki

    2016-04-01

    Passive joint stiffness is an important quantitative measure of flexibility, but is affected by muscle volume and all of the anatomical structures located within and over the joint. Shear wave elastography can assess muscle elasticity independent of the influences of muscle volume and the other nearby anatomical structures. We determined how muscle elasticity, as measured using shear wave elastography, is associated with passive joint stiffness and patient sex. Twenty-six healthy men (24.4 ± 5.9 years) and 26 healthy women (25.2 ± 4.8 years) participated in this study. The passive ankle joint stiffness and tissue elasticity of the medial gastrocnemius (MG) were quantified with the ankle in 30° plantar flexion (PF), a neutral anatomical position (NE), and 20° dorsiflexion (DF). No significant difference in passive joint stiffness by sex was observed with the ankle in PF, but significantly greater passive ankle joint stiffness in men than in women was observed in NE and DF. The MG elasticity was not significantly associated with joint stiffness in PF or NE, but it was significantly associated with joint stiffness in DF. There were no significant differences in MG elasticity by sex at any ankle position. Muscle elasticity, measured independent of the confounding effects of muscle volume and the other nearby anatomical structures, is associated with passive joint stiffness in the joint position where the muscle is sufficiently lengthened, but does not vary by sex in any joint position tested.

  17. Cardiovascular and pulmonary dynamics by quantitative imaging

    NASA Technical Reports Server (NTRS)

    Wood, E. H.

    1976-01-01

    The accuracy and range of studies on cardiovascular and pulmonary functions can be greatly facilitated if the motions of the underlying organ systems throughout individual cycles can be directly visualized and readily measured with minimum or preferably no effect on these motions. Achievement of this objective requires development of techniques for quantitative noninvasive or minimally invasive dynamic and stop-action imaging of the organ systems. A review of advances in dynamic quantitative imaging of moving organs reveals that the revolutionary value of cross-sectional and three-dimensional images produced by various types of radiant energy such as X-rays and gamma rays, positrons, electrons, protons, light, and ultrasound for clinical diagnostic and biomedical research applications is just beginning to be realized. The fabrication of a clinically useful cross-section reconstruction device with sensing capabilities for both anatomical structural composition and chemical composition may be possible and awaits future development.

  18. Quantitative fluorescence tomography using a trimodality system: in vivo validation

    PubMed Central

    Lin, Yuting; Barber, William C.; Iwanczyk, Jan S.; Roeck, Werner W.; Nalcioglu, Orhan; Gulsen, Gultekin

    2010-01-01

    A fully integrated trimodality fluorescence, diffuse optical, and x-ray computed tomography (FT∕DOT∕XCT) system for small animal imaging is reported in this work. The main purpose of this system is to obtain quantitatively accurate fluorescence concentration images using a multimodality approach. XCT offers anatomical information, while DOT provides the necessary background optical property map to improve FT image accuracy. The quantitative accuracy of this trimodality system is demonstrated in vivo. In particular, we show that a 2-mm-diam fluorescence inclusion located 8 mm deep in a nude mouse can only be localized when functional a priori information from DOT is available. However, the error in the recovered fluorophore concentration is nearly 87%. On the other hand, the fluorophore concentration can be accurately recovered within 2% error when both DOT functional and XCT structural a priori information are utilized together to guide and constrain the FT reconstruction algorithm. PMID:20799770

  19. Human anatomy: let the students tell us how to teach.

    PubMed

    Davis, Christopher R; Bates, Anthony S; Ellis, Harold; Roberts, Alice M

    2014-01-01

    Anatomy teaching methods have evolved as the medical undergraduate curriculum has modernized. Traditional teaching methods of dissection, prosection, tutorials and lectures are now supplemented by anatomical models and e-learning. Despite these changes, the preferences of medical students and anatomy faculty towards both traditional and contemporary teaching methods and tools are largely unknown. This study quantified medical student and anatomy faculty opinion on various aspects of anatomical teaching at the Department of Anatomy, University of Bristol, UK. A questionnaire was used to explore the perceived effectiveness of different anatomical teaching methods and tools among anatomy faculty (AF) and medical students in year one (Y1) and year two (Y2). A total of 370 preclinical medical students entered the study (76% response rate). Responses were quantified and intergroup comparisons were made. All students and AF were strongly in favor of access to cadaveric specimens and supported traditional methods of small-group teaching with medically qualified demonstrators. Other teaching methods, including e-learning, anatomical models and surgical videos, were considered useful educational tools. In several areas there was disharmony between the opinions of AF and medical students. This study emphasizes the importance of collecting student preferences to optimize teaching methods used in the undergraduate anatomy curriculum. © 2013 American Association of Anatomists.

  20. Ultrafast 3D balanced steady-state free precession MRI of the lung: Assessment of anatomic details in comparison to low-dose CT.

    PubMed

    Heye, Tobias; Sommer, Gregor; Miedinger, David; Bremerich, Jens; Bieri, Oliver

    2015-09-01

    To evaluate the anatomical details offered by a new single breath-hold ultrafast 3D balanced steady-state free precession (uf-bSSFP) sequence in comparison to low-dose chest computed tomography (CT). This was an Institutional Review Board (IRB)-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant prospective study. A total of 20 consecutive patients enrolled in a lung cancer screening trial underwent same-day low-dose chest CT and 1.5T MRI. The presence of pulmonary nodules and anatomical details on 1.9 mm isotropic uf-bSSFP images was compared to 2 mm lung window reconstructions by two readers. The number of branching points on six predefined pulmonary arteries and the distance between the most peripheral visible vessel segment to the pleural surface on thin slices and 50 mm maximum intensity projections (MIP) were assessed. Image quality and sharpness of the pulmonary vasculature were rated on a 5-point scale. The uf-bSSFP detection rate of pulmonary nodules (32 nodules visible on CT and MRI, median diameter 3.9 mm) was 45.5% with 21 false-positive findings (pooled data of both readers). Uf-bSSFP detected 71.2% of branching points visible on CT data. The mean distance between peripheral vasculature and pleural surface was 13.0 ± 4.2 mm (MRI) versus 8.5 ± 3.3 mm (CT) on thin slices and 8.6 ± 3.9 mm (MRI) versus 4.6 ± 2.5 mm (CT) on MIPs. Median image quality and sharpness were rated 4 each. Although CT is superior to MRI, uf-bSSFP imaging provides good anatomical details with sufficient image quality and sharpness obtainable in a single breath-hold covering the entire chest. © 2014 Wiley Periodicals, Inc.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, G.B.; Kiraly, R.J.; Nose, Y.

    The objective of the study is to define the human thorax in a quantitative statistical manner such that the information will be useful to the designers of cardiac prostheses, both total replacement and assist devices. This report pertains specifically to anatomical parameters relevant to the total cardiac prosthesis. This information will also be clinically useful in that the proposed recipient of a cardiac prosthesis can by simple radiography be assured of an adequate fit with the prosthesis prior to the implantation.

  2. Assessing Conifer Ray Parenchyma for Ecological Studies: Pitfalls and Guidelines.

    PubMed

    von Arx, Georg; Arzac, Alberto; Olano, José M; Fonti, Patrick

    2015-01-01

    Ray parenchyma is an essential tissue for tree functioning and survival. This living tissue plays a major role for storage and transport of water, nutrients, and non-structural carbohydrates (NSC), thus regulating xylem hydraulics and growth. However, despite the importance of rays for tree carbon and water relations, methodological challenges hamper knowledge about ray intra- and inter-tree variability and its ecological meaning. In this study we provide a methodological toolbox for soundly quantifying spatial and temporal variability of different ray features. Anatomical ray features were surveyed in different cutting planes (cross-sectional, tangential, and radial) using quantitative image analysis on stem-wood micro-sections sampled from 41 mature Scots pines (Pinus sylvestris). The percentage of ray surface (PERPAR), a proxy for ray volume, was compared among cutting planes and between early- and latewood to assess measurement-induced variability. Different tangential ray metrics were correlated to assess their similarities. The accuracy of cross-sectional and tangential measurements for PERPAR estimates as a function of number of samples and the measured wood surface was assessed using bootstrapping statistical technique. Tangential sections offered the best 3D insight of ray integration into the xylem and provided the most accurate estimates of PERPAR, with 10 samples of 4 mm(2) showing an estimate within ±6.0% of the true mean PERPAR (relative 95% confidence interval, CI95), and 20 samples of 4 mm(2) showing a CI95 of ±4.3%. Cross-sections were most efficient for establishment of time series, and facilitated comparisons with other widely used xylem anatomical features. Earlywood had significantly lower PERPAR (5.77 vs. 6.18%) and marginally fewer initiating rays than latewood. In comparison to tangential sections, PERPAR was systematically overestimated (6.50 vs. 4.92%) and required approximately twice the sample area for similar accuracy. Radial cuttings provided the least accurate PERPAR estimates. This evaluation of ray parenchyma in conifers and the presented guidelines regarding data accuracy as a function of measured wood surface and number of samples represent an important methodological reference for ray quantification, which will ultimately improve the understanding of the fundamental role of ray parenchyma tissue for the performance and survival of trees growing in stressed environments.

  3. Assessing Conifer Ray Parenchyma for Ecological Studies: Pitfalls and Guidelines

    PubMed Central

    von Arx, Georg; Arzac, Alberto; Olano, José M.; Fonti, Patrick

    2015-01-01

    Ray parenchyma is an essential tissue for tree functioning and survival. This living tissue plays a major role for storage and transport of water, nutrients, and non-structural carbohydrates (NSC), thus regulating xylem hydraulics and growth. However, despite the importance of rays for tree carbon and water relations, methodological challenges hamper knowledge about ray intra- and inter-tree variability and its ecological meaning. In this study we provide a methodological toolbox for soundly quantifying spatial and temporal variability of different ray features. Anatomical ray features were surveyed in different cutting planes (cross-sectional, tangential, and radial) using quantitative image analysis on stem-wood micro-sections sampled from 41 mature Scots pines (Pinus sylvestris). The percentage of ray surface (PERPAR), a proxy for ray volume, was compared among cutting planes and between early- and latewood to assess measurement-induced variability. Different tangential ray metrics were correlated to assess their similarities. The accuracy of cross-sectional and tangential measurements for PERPAR estimates as a function of number of samples and the measured wood surface was assessed using bootstrapping statistical technique. Tangential sections offered the best 3D insight of ray integration into the xylem and provided the most accurate estimates of PERPAR, with 10 samples of 4 mm2 showing an estimate within ±6.0% of the true mean PERPAR (relative 95% confidence interval, CI95), and 20 samples of 4 mm2 showing a CI95 of ±4.3%. Cross-sections were most efficient for establishment of time series, and facilitated comparisons with other widely used xylem anatomical features. Earlywood had significantly lower PERPAR (5.77 vs. 6.18%) and marginally fewer initiating rays than latewood. In comparison to tangential sections, PERPAR was systematically overestimated (6.50 vs. 4.92%) and required approximately twice the sample area for similar accuracy. Radial cuttings provided the least accurate PERPAR estimates. This evaluation of ray parenchyma in conifers and the presented guidelines regarding data accuracy as a function of measured wood surface and number of samples represent an important methodological reference for ray quantification, which will ultimately improve the understanding of the fundamental role of ray parenchyma tissue for the performance and survival of trees growing in stressed environments. PMID:26635842

  4. Textural analysis of optical coherence tomography skin images: quantitative differentiation between healthy and cancerous tissues

    NASA Astrophysics Data System (ADS)

    Adabi, Saba; Conforto, Silvia; Hosseinzadeh, Matin; Noe, Shahryar; Daveluy, Steven; Mehregan, Darius; Nasiriavanaki, Mohammadreza

    2017-02-01

    Optical Coherence Tomography (OCT) offers real-time high-resolution three-dimensional images of tissue microstructures. In this study, we used OCT skin images acquired from ten volunteers, neither of whom had any skin conditions addressing the features of their anatomic location. OCT segmented images are analyzed based on their optical properties (attenuation coefficient) and textural image features e.g., contrast, correlation, homogeneity, energy, entropy, etc. Utilizing the information and referring to their clinical insight, we aim to make a comprehensive computational model for the healthy skin. The derived parameters represent the OCT microstructural morphology and might provide biological information for generating an atlas of normal skin from different anatomic sites of human skin and may allow for identification of cell microstructural changes in cancer patients. We then compared the parameters of healthy samples with those of abnormal skin and classified them using a linear Support Vector Machines (SVM) with 82% accuracy.

  5. Ultrasound: medical imaging and beyond (an invited review).

    PubMed

    Azhari, Haim

    2012-09-01

    Medical applications of ultrasound were first investigated about seventy years ago. It has rapidly evolved since then, becoming an essential tool in medical imaging. Ultrasound ability to provide real time images with frame rates exceeding several hundred frames per second allows one to view rapid anatomical changes as well as to guide minimal invasive procedures. By, combining Doppler techniques with anatomical images ultrasound provides real time quantitative flow information as well. It is portable, versatile, cost effective and considered sufficiently hazardless to monitor pregnancy. Moreover, ultrasound has the unique capacity to offer therapeutic capabilities in addition to its outstanding imaging abilities. It can be used for physiotherapy, lithotripsy, and thermal ablation, and recent studies have demonstrated its usefulness in drug delivery, gene therapy and molecular imaging. The purpose of this article is to provide an introductory review of the field covering briefly topics from basic physics through current imaging methods to therapeutic applications.

  6. Dynamics of spiral waves rotating around an obstacle and the existence of a minimal obstacle

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Feng, Xia; Li, Teng-Chao; Qu, Shixian; Wang, Xingang; Zhang, Hong

    2017-05-01

    Pinning of vortices by obstacles plays an important role in various systems. In the heart, anatomical reentry is created when a vortex, also known as the spiral wave, is pinned to an anatomical obstacle, leading to a class of physiologically very important arrhythmias. Previous analyses of its dynamics and instability provide fine estimates in some special circumstances, such as large obstacles or weak excitabilities. Here, to expand theoretical analyses to all circumstances, we propose a general theory whose results quantitatively agree with direct numerical simulations. In particular, when obstacles are small and pinned spiral waves are destabilized, an accurate explanation of the instability in two-dimensional media is provided by the usage of a mapping rule and dimension reduction. The implications of our results are to better understand the mechanism of arrhythmia and thus improve its early prevention.

  7. How to quantify conduits in wood?

    PubMed

    Scholz, Alexander; Klepsch, Matthias; Karimi, Zohreh; Jansen, Steven

    2013-01-01

    Vessels and tracheids represent the most important xylem cells with respect to long distance water transport in plants. Wood anatomical studies frequently provide several quantitative details of these cells, such as vessel diameter, vessel density, vessel element length, and tracheid length, while important information on the three dimensional structure of the hydraulic network is not considered. This paper aims to provide an overview of various techniques, although there is no standard protocol to quantify conduits due to high anatomical variation and a wide range of techniques available. Despite recent progress in image analysis programs and automated methods for measuring cell dimensions, density, and spatial distribution, various characters remain time-consuming and tedious. Quantification of vessels and tracheids is not only important to better understand functional adaptations of tracheary elements to environment parameters, but will also be essential for linking wood anatomy with other fields such as wood development, xylem physiology, palaeobotany, and dendrochronology.

  8. Comparison of ISS, NISS, and RTS score as predictor of mortality in pediatric fall.

    PubMed

    Soni, Kapil Dev; Mahindrakar, Santosh; Gupta, Amit; Kumar, Subodh; Sagar, Sushma; Jhakal, Ashish

    2017-01-01

    Studies to identify an ideal trauma score tool representing prediction of outcomes of the pediatric fall patient remains elusive. Our study was undertaken to identify better predictor of mortality in the pediatric fall patients. Data was retrieved from prospectively maintained trauma registry project at level 1 trauma center developed as part of Multicentric Project-Towards Improving Trauma Care Outcomes (TITCO) in India. Single center data retrieved from a prospectively maintained trauma registry at a level 1 trauma center, New Delhi, for a period ranging from 1 October 2013 to 17 February 2015 was evaluated. Standard anatomic scores Injury Severity Score (ISS) and New Injury Severity Score (NISS) were compared with physiologic score Revised Trauma Score (RTS) using receiver operating curve (ROC). Heart rate and RTS had a statistical difference among the survivors to nonsurvivors. ISS, NISS, and RTS were having 50, 50, and 86% of area under the curve on ROCs, and RTS was statistically significant among them. Physiologically based trauma score systems (RTS) are much better predictors of inhospital mortality in comparison to anatomical based scoring systems (ISS and NISS) for unintentional pediatric falls.

  9. Anatomical noise in contrast-enhanced digital mammography. Part II. Dual-energy imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Melissa L.; Yaffe, Martin J.; Mainprize, James G.

    2013-08-15

    Purpose: Dual-energy (DE) contrast-enhanced digital mammography (CEDM) uses an iodinated contrast agent in combination with digital mammography (DM) to evaluate lesions on the basis of tumor angiogenesis. In DE imaging, low-energy (LE) and high-energy (HE) images are acquired after contrast administration and their logarithms are subtracted to cancel the appearance of normal breast tissue. Often there is incomplete signal cancellation in the subtracted images, creating a background “clutter” that can impair lesion detection. This is the second component of a two-part report on anatomical noise in CEDM. In Part I the authors characterized the anatomical noise for single-energy (SE) temporalmore » subtraction CEDM by a power law, with model parameters α and β. In this work the authors quantify the anatomical noise in DE CEDM clinical images and compare this with the noise in SE CEDM. The influence on the anatomical noise of the presence of iodine in the breast, the timing of imaging postcontrast administration, and the x-ray energy used for acquisition are each evaluated.Methods: The power law parameters, α and β, were measured from unprocessed LE and HE images and from DE subtracted images to quantify the anatomical noise. A total of 98 DE CEDM cases acquired in a previous clinical pilot study were assessed. Conventional DM images from 75 of the women were evaluated for comparison with DE CEDM. The influence of the imaging technique on anatomical noise was determined from an analysis of differences between the power law parameters as measured in DM, LE, HE, and DE subtracted images for each subject.Results: In DE CEDM, weighted image subtraction lowers β to about 1.1 from 3.2 and 3.1 in LE and HE unprocessed images, respectively. The presence of iodine has a small but significant effect in LE images, reducing β by about 0.07 compared to DM, with α unchanged. Increasing the x-ray energy, from that typical in DM to a HE beam, significantly decreases α by about 2 × 10{sup −5} mm{sup 2}, and lowers β by about 0.14 compared to LE images. A comparison of SE and DE CEDM at 4 min postcontrast shows equivalent power law parameters in unprocessed images, and lower α and β by about 3 × 10{sup −5} mm{sup 2} and 0.50, respectively, in DE versus SE subtracted images.Conclusions: Image subtraction in both SE and DE CEDM reduces β by over a factor of 2, while maintaining α below that in DM. Given the equivalent α between SE and DE unprocessed CEDM images, and the smaller anatomical noise in the DE subtracted images, the DE approach may have an advantage over SE CEDM. It will be necessary to test this potential advantage in future lesion detectability experiments, which account for realistic lesion signals. The authors' results suggest that LE images could be used in place of DM images in CEDM exam interpretation.« less

  10. EQUIFAT: A novel scoring system for the semi-quantitative evaluation of regional adipose tissues in Equidae.

    PubMed

    Morrison, Philippa K; Harris, Patricia A; Maltin, Charlotte A; Grove-White, Dai; Argo, Caroline McG

    2017-01-01

    Anatomically distinct adipose tissues represent variable risks to metabolic health in man and some other mammals. Quantitative-imaging of internal adipose depots is problematic in large animals and associations between regional adiposity and health are poorly understood. This study aimed to develop and test a semi-quantitative system (EQUIFAT) which could be applied to regional adipose tissues. Anatomically-defined, photographic images of adipose depots (omental, mesenteric, epicardial, rump) were collected from 38 animals immediately post-mortem. Images were ranked and depot-specific descriptors were developed (1 = no fat visible; 5 = excessive fat present). Nuchal-crest and ventro-abdominal-retroperitoneal adipose depot depths (cm) were transformed to categorical 5 point scores. The repeatability and reliability of EQUIFAT was independently tested by 24 observers. When half scores were permitted, inter-observer agreement was substantial (average κw: mesenteric, 0.79; omental, 0.79; rump 0.61) or moderate (average κw; epicardial, 0.60). Intra-observer repeatability was tested by 8 observers on 2 occasions. Kappa analysis indicated perfect (omental and mesenteric) and substantial agreement (epicardial and rump) between attempts. A further 207 animals were evaluated ante-mortem (age, height, breed-type, gender, body condition score [BCS]) and again immediately post-mortem (EQUIFAT scores, carcass weight). Multivariable, random effect linear regression models were fitted (breed as random effect; BCS as outcome variable). Only height, carcass weight, omental and retroperitoneal EQUIFAT scores remained as explanatory variables in the final model. The EQUIFAT scores developed here demonstrate clear functional differences between regional adipose depots and future studies could be directed towards describing associations between adiposity and disease risk in surgical and post-mortem situations.

  11. EQUIFAT: A novel scoring system for the semi-quantitative evaluation of regional adipose tissues in Equidae

    PubMed Central

    Morrison, Philippa K.; Harris, Patricia A.; Maltin, Charlotte A.; Grove-White, Dai; Argo, Caroline McG.

    2017-01-01

    Anatomically distinct adipose tissues represent variable risks to metabolic health in man and some other mammals. Quantitative-imaging of internal adipose depots is problematic in large animals and associations between regional adiposity and health are poorly understood. This study aimed to develop and test a semi-quantitative system (EQUIFAT) which could be applied to regional adipose tissues. Anatomically-defined, photographic images of adipose depots (omental, mesenteric, epicardial, rump) were collected from 38 animals immediately post-mortem. Images were ranked and depot-specific descriptors were developed (1 = no fat visible; 5 = excessive fat present). Nuchal-crest and ventro-abdominal-retroperitoneal adipose depot depths (cm) were transformed to categorical 5 point scores. The repeatability and reliability of EQUIFAT was independently tested by 24 observers. When half scores were permitted, inter-observer agreement was substantial (average κw: mesenteric, 0.79; omental, 0.79; rump 0.61) or moderate (average κw; epicardial, 0.60). Intra-observer repeatability was tested by 8 observers on 2 occasions. Kappa analysis indicated perfect (omental and mesenteric) and substantial agreement (epicardial and rump) between attempts. A further 207 animals were evaluated ante-mortem (age, height, breed-type, gender, body condition score [BCS]) and again immediately post-mortem (EQUIFAT scores, carcass weight). Multivariable, random effect linear regression models were fitted (breed as random effect; BCS as outcome variable). Only height, carcass weight, omental and retroperitoneal EQUIFAT scores remained as explanatory variables in the final model. The EQUIFAT scores developed here demonstrate clear functional differences between regional adipose depots and future studies could be directed towards describing associations between adiposity and disease risk in surgical and post-mortem situations. PMID:28296956

  12. Real-time, label-free, intraoperative visualization of peripheral nerves and micro-vasculatures using multimodal optical imaging techniques

    PubMed Central

    Cha, Jaepyeong; Broch, Aline; Mudge, Scott; Kim, Kihoon; Namgoong, Jung-Man; Oh, Eugene; Kim, Peter

    2018-01-01

    Accurate, real-time identification and display of critical anatomic structures, such as the nerve and vasculature structures, are critical for reducing complications and improving surgical outcomes. Human vision is frequently limited in clearly distinguishing and contrasting these structures. We present a novel imaging system, which enables noninvasive visualization of critical anatomic structures during surgical dissection. Peripheral nerves are visualized by a snapshot polarimetry that calculates the anisotropic optical properties. Vascular structures, both venous and arterial, are identified and monitored in real-time using a near-infrared laser-speckle-contrast imaging. We evaluate the system by performing in vivo animal studies with qualitative comparison by contrast-agent-aided fluorescence imaging. PMID:29541506

  13. Biomechanical consequences of a nonanatomic posterior medial meniscal root repair.

    PubMed

    LaPrade, Christopher M; Foad, Abdullah; Smith, Sean D; Turnbull, Travis Lee; Dornan, Grant J; Engebretsen, Lars; Wijdicks, Coen A; LaPrade, Robert F

    2015-04-01

    Posterior medial meniscal root tears have been reported to extrude with the meniscus becoming adhered posteromedially along the posterior capsule. While anatomic repair has been reported to restore tibiofemoral contact mechanics, it is unknown whether nonanatomic positioning of a meniscal root repair to a posteromedial location would restore the loading profile of the knee joint. The purpose of this study was to compare the tibiofemoral contact mechanics of a nonanatomic posterior medial meniscal tear with that of the intact knee or anatomic repair. It was hypothesized that a nonanatomic root repair would not restore the tibiofemoral contact pressures and areas to that of the intact or anatomic repair state. Controlled laboratory study. Tibiofemoral contact mechanics were recorded in 6 male human cadaveric knee specimens (average age, 45.8 years) using pressure sensors. Each knee underwent 5 testing conditions for the posterior medial meniscal root: (1) intact knee; (2) root tear; (3) anatomic transtibial pull-out repair; (4) nonanatomic transtibial pull-out repair, placed 5 mm posteromedially along the edge of the articular cartilage; and (5) root tear concomitant with an ACL tear. Knees were loaded with a 1000-N axial compressive force at 4 flexion angles (0°, 30°, 60°, 90°), and contact area, mean contact pressure, and peak contact pressure were calculated. Contact area was significantly lower after nonanatomic repair than for the intact knee at all flexion angles (mean = 44% reduction) and significantly higher for anatomic versus nonanatomic repair at all flexion angles (mean = 27% increase). At 0° and 90°, and when averaged across flexion angles, the nonanatomic repair significantly increased mean contact pressures in comparison to the intact knee or anatomic repair. When averaged across flexion angles, the peak contact pressures after nonanatomic repair were significantly higher than the intact knee but not the anatomic repair. In contrast, when averaged across all flexion angles, the anatomic repair resulted in a 17% reduction in contact area and corresponding increases in mean and peak contact pressures of 13% and 26%, respectively, compared with the intact knee. For most testing conditions, the nonanatomic repair did not restore the contact area or mean contact pressures to that of the intact knee or anatomic repair. However, the anatomic repair produced near-intact contact area and resulted in relatively minimal increases in mean and peak contact pressures compared with the intact knee. Results emphasize the importance of ensuring an anatomic posterior medial meniscal root repair by releasing the extruded menisci from adhesions and the posteromedial capsule. Similar caution toward preventing displacement of the meniscal root repair construct should be emphasized. © 2015 The Author(s).

  14. Original research in pathology: judgment, or evidence-based medicine?

    PubMed

    Crawford, James M

    2007-02-01

    Pathology is both a medical specialty and an investigative scientific discipline, concerned with understanding the essential nature of human disease. Ultimately, pathology is accountable as well, as measured by the accuracy of our diagnoses and the resultant patient care outcomes. As such, we must consider the evidence base underlying our practices. Within the realm of Laboratory Medicine, extensive attention has been given to testing accuracy and precision. Critical examination of the evidence base supporting the clinical use of specific laboratory tests or technologies is a separate endeavor, to which specific attention must be given. In the case of anatomic pathology and more specifically surgical pathology, the expertise required to render a diagnosis is derived foremost from experience, both personal and literature-based. In the first instance, knowledge of the linkage between one's own diagnoses and individual patient outcomes is required, to validate the role of one's own interpretations in the clinical course of patients. Experience comes from seeing this linkage first hand, from which hopefully comes wisdom and, ultimately, good clinical judgment. In the second instance, reading the literature and learning from experts is required. Only a minority of the relevant literature is published in pathology journals to which one may subscribe. A substantial portion of major papers relevant to the practice of anatomic pathology are published in collateral clinical specialty journals devoted to specific disease areas or organs. Active effort is therefore required to seek out the literature beyond the domain of pathology journals. In examining the published literature, the essential question then becomes: Does the practice of anatomic pathology fulfill the tenets of 'evidence-based medicine' (EBM)? If the pinnacle of EBM is 'systematic review of randomized clinical trials, with or without meta-analysis', then anatomic pathology falls far short. Our published literature is largely observational in nature, with reports of case series (with or without statistical analysis) constituting the majority of our 'evidence base'. Moreover, anatomic pathology is subject to 'interobserver variation', and potentially to 'error'. Taken further, individual interpretation of tissue samples is not an objective endeavor, and it is not easy to fulfill the role of a 'gold standard'. Both for rendering of an overall interpretation, and for providing the semi-quantitative and quantitative numerical 'scores' which support evidence-based clinical treatment algorithms, the Pathologist has to exercise a high level of interpretive judgment. Nevertheless, the contribution of anatomic pathology to 'EBM' is remarkably strong. To the extent that our judgmental interpretations become data, our tissue interpretations become the arbiters of patient care management decisions. In a more global sense, we support highly successful cancer screening programs, and play critical roles in the multidisciplinary management of complex patients. The true error is for the clinical practitioners of 'EBM' to forget the contribution to the supporting evidence base of the physicians that are Anatomic Pathologists. Finally, the academic productivity of pathology faculty who operate in the clinical realm must be considered. A survey of six North American academic pathology departments reveals that 26% of all papers published in 2005 came from 'unfunded' clinical faculty. While it is likely that their academic productivity is lower than that of 'funded' research faculty, the contribution of clinical faculty to the knowledge base for the practice of modern medicine, and to the academic reputation of the department, must not be overlooked. The ability of clinical faculty in academic departments of pathology to pursue original scholarship must be supported if our specialty is to retain its preeminence as an investigative scientific discipline in the age of EBM.

  15. Quantitation of maxillary remodeling. 2. Masking of remodeling effects when an "anatomical" method of superimposition is used in the absence of metallic implants.

    PubMed

    Baumrind, S; Korn, E L; Ben-Bassat, Y; West, E E

    1987-06-01

    We report the results of a study aimed at quantifying the differences in the perceived pattern of maxillary remodeling that are observed when different methods are used to superimpose maxillary images in roentgenographic cephalometrics. In a previous article, we reported cumulative changes in the positions of anterior nasal spine (ANS), posterior nasal spine (PNS), and Point A for a sample of 31 subjects with maxillary metallic implants. Measurements had been made on lateral cephalograms taken at annual intervals relative to superimposition on the implants. In the present article, we quantify the differences in the perceived displacement of the same landmarks in the same sample when a standard "anatomical best bit" rule was used in lieu of superimposition on the implants. The anatomical best fit superimposition as herein defined was found in this sample to lose important information on the downward remodeling of the superior surface of the maxilla that had been detected when the implant superimposition was used. In fact, we observed a small artifactual upward displacement of the ANS-PNS line. In the anteroposterior direction, the tendency toward backward displacement of skeletal landmarks through time that had been detected with the implant superimposition was replaced by a small forward displacement of ANS and Point A together with reduced backward displacement of PNS. To the extent that the implant superimposition is to be considered the true and correct one, the anatomical best fit superimposition appears to understate the true downward remodeling of the palate by an average of about 0.3 and 0.4 mm per year, although this value differs at different ages and timepoints. The anatomical best fit superimposition also misses entirely the small mean tendency toward backward remodeling that was observed when the implant superimposition was used. In situations in which there are no implants, clinicians and research workers must necessarily continue to use anatomically based superimpositions with definitions more or less similar to that of the anatomical best fit superimposition used here. When they do so, some systematic errors will be incurred. For grouped data, we believe that the best currently available estimates of the mean errors involved in using the anatomical best fit superimposition to approximate an implant superimposition are the "bias" values included in Table IIC. The secondary implications of these differences to the perceived displacements of the maxillary teeth will be considered in our next article.

  16. Computational fluid dynamics endpoints to characterize obstructive sleep apnea syndrome in children

    PubMed Central

    Luo, Haiyan; Persak, Steven C.; Sin, Sanghun; McDonough, Joseph M.; Isasi, Carmen R.; Arens, Raanan

    2013-01-01

    Computational fluid dynamics (CFD) analysis may quantify the severity of anatomical airway restriction in obstructive sleep apnea syndrome (OSAS) better than anatomical measurements alone. However, optimal CFD model endpoints to characterize or assess OSAS have not been determined. To model upper airway fluid dynamics using CFD and investigate the strength of correlation between various CFD endpoints, anatomical endpoints, and OSAS severity, in obese children with OSAS and controls. CFD models derived from magnetic resonance images were solved at subject-specific peak tidal inspiratory flow; pressure at the choanae was set by nasal resistance. Model endpoints included airway wall minimum pressure (Pmin), flow resistance in the pharynx (Rpharynx), and pressure drop from choanae to a minimum cross section where tonsils and adenoids constrict the pharynx (dPTAmax). Significance of endpoints was analyzed using paired comparisons (t-test or Wilcoxon signed rank test) and Spearman correlation. Fifteen subject pairs were analyzed. Rpharynx and dPTAmax were higher in OSAS than control and most significantly correlated to obstructive apnea-hypopnea index (oAHI), r = 0.48 and r = 0.49, respectively (P < 0.01). Airway minimum cross-sectional correlation to oAHI was weaker (r = −0.39); Pmin was not significantly correlated. CFD model endpoints based on pressure drops in the pharynx were more closely associated with the presence and severity of OSAS than pressures including nasal resistance, or anatomical endpoints. This study supports the usefulness of CFD to characterize anatomical restriction of the pharynx and as an additional tool to evaluate subjects with OSAS. PMID:24265282

  17. Clinical comparative study with a large-area amorphous silicon flat-panel detector: image quality and visibility of anatomic structures on chest radiography.

    PubMed

    Fink, Christian; Hallscheidt, Peter J; Noeldge, Gerd; Kampschulte, Annette; Radeleff, Boris; Hosch, Waldemar P; Kauffmann, Günter W; Hansmann, Jochen

    2002-02-01

    The objective of this study was to compare clinical chest radiographs of a large-area, flat-panel digital radiography system and a conventional film-screen radiography system. The comparison was based on an observer preference study of image quality and visibility of anatomic structures. Routine follow-up chest radiographs were obtained from 100 consecutive oncology patients using a large-area, amorphous silicon flat-panel detector digital radiography system (dose equivalent to a 400-speed film system). Hard-copy images were compared with previous examinations of the same individuals taken on a conventional film-screen system (200-speed). Patients were excluded if changes in the chest anatomy were detected or if the time interval between the examinations exceeded 1 year. Observer preference was evaluated for the image quality and the visibility of 15 anatomic structures using a five-point scale. Dose measurements with a chest phantom showed a dose reduction of approximately 50% with the digital radiography system compared with the film-screen radiography system. The image quality and the visibility of all but one anatomic structure of the images obtained with the digital flat-panel detector system were rated significantly superior (p < or = 0.0003) to those obtained with the conventional film-screen radiography system. The image quality and visibility of anatomic structures on the images obtained by the flat-panel detector system were perceived as equal or superior to the images from conventional film-screen chest radiography. This was true even though the radiation dose was reduced approximately 50% with the digital flat-panel detector system.

  18. Rationale and design of the East-West late lumen loss study: Comparison of late lumen loss between Eastern and Western drug-eluting stent study cohorts.

    PubMed

    Harrison, Robert W; Radhakrishnan, Vaishnavi; Lam, Peter S; Allocco, Dominic J; Brar, Sandeep; Fahy, Martin; Fisher, Rebecca; Ikeno, Fumiaki; Généreux, Philippe; Kimura, Takeshi; Liu, Minglei; Lye, Weng Kit; Mintz, Gary S; Nagai, Hirofumi; Suzuki, Yuka; White, Roseann; Allen, John C; Krucoff, Mitchell W

    2016-12-01

    The contemporary evaluation of novel drug-eluting stents (DES) includes mechanistic observations that characterize postdeployment stent behavior. Quantification of late lumen loss due to neointimal hyperplasia 8-13 months after stent implantation, via quantitative coronary angiography (QCA), constitutes such an observation and is required by most regulatory authorities. Late lumen loss, as determined by QCA, has been validated as a surrogate for clinical endpoints such as target vessel revascularization. The mechanistic response to DES has not been directly compared across predominantly Asian or Western populations, whereas understanding their comparability across geographic populations could enhance global DES evaluation. The East-West late lumen loss study is designed to demonstrate whether the residual differences in late lumen loss, as assessed by QCA, is different between Eastern and Western DES recipients from studies with protocol angiography at 8-13 months of follow-up. Data from independent core laboratories that have characterized angiographic late lumen loss in DES clinical trials with protocol follow-up angiography will be compiled and dichotomized into Eastern and Western populations. A prospectively developed propensity score model incorporating clinical and anatomic variables affecting late lumen loss will be used to adjust comparisons of QCA measurements. Documentation of whether there are clinically meaningful differences in mechanistic response to DES implantation across genetically unique geographies could facilitate both the quality and efficiency of global device evaluation requiring invasive follow-up for novel stent designs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The use of immunohistochemistry for biomarker assessment--can it compete with other technologies?

    PubMed

    Dunstan, Robert W; Wharton, Keith A; Quigley, Catherine; Lowe, Amanda

    2011-10-01

    A morphology-based assay such as immunohistochemistry (IHC) should be a highly effective means to define the expression of a target molecule of interest, especially if the target is a protein. However, over the past decade, IHC as a platform for biomarkers has been challenged by more quantitative molecular assays with reference standards but that lack morphologic context. For IHC to be considered a "top-tier" biomarker assay, it must provide truly quantitative data on par with non-morphologic assays, which means it needs to be run with reference standards. However, creating such standards for IHC will require optimizing all aspects of tissue collection, fixation, section thickness, morphologic criteria for assessment, staining processes, digitization of images, and image analysis. This will also require anatomic pathology to evolve from a discipline that is descriptive to one that is quantitative. A major step in this transformation will be replacing traditional ocular microscopes with computer monitors and whole slide images, for without digitization, there can be no accurate quantitation; without quantitation, there can be no standardization; and without standardization, the value of morphology-based IHC assays will not be realized.

  20. A framework for organizing and selecting quantitative approaches for benefit-harm assessment.

    PubMed

    Puhan, Milo A; Singh, Sonal; Weiss, Carlos O; Varadhan, Ravi; Boyd, Cynthia M

    2012-11-19

    Several quantitative approaches for benefit-harm assessment of health care interventions exist but it is unclear how the approaches differ. Our aim was to review existing quantitative approaches for benefit-harm assessment and to develop an organizing framework that clarifies differences and aids selection of quantitative approaches for a particular benefit-harm assessment. We performed a review of the literature to identify quantitative approaches for benefit-harm assessment. Our team, consisting of clinicians, epidemiologists, and statisticians, discussed the approaches and identified their key characteristics. We developed a framework that helps investigators select quantitative approaches for benefit-harm assessment that are appropriate for a particular decisionmaking context. Our framework for selecting quantitative approaches requires a concise definition of the treatment comparison and population of interest, identification of key benefit and harm outcomes, and determination of the need for a measure that puts all outcomes on a single scale (which we call a benefit and harm comparison metric). We identified 16 quantitative approaches for benefit-harm assessment. These approaches can be categorized into those that consider single or multiple key benefit and harm outcomes, and those that use a benefit-harm comparison metric or not. Most approaches use aggregate data and can be used in the context of single studies or systematic reviews. Although the majority of approaches provides a benefit and harm comparison metric, only four approaches provide measures of uncertainty around the benefit and harm comparison metric (such as a 95 percent confidence interval). None of the approaches considers the actual joint distribution of benefit and harm outcomes, but one approach considers competing risks when calculating profile-specific event rates. Nine approaches explicitly allow incorporating patient preferences. The choice of quantitative approaches depends on the specific question and goal of the benefit-harm assessment as well as on the nature and availability of data. In some situations, investigators may identify only one appropriate approach. In situations where the question and available data justify more than one approach, investigators may want to use multiple approaches and compare the consistency of results. When more evidence on relative advantages of approaches accumulates from such comparisons, it will be possible to make more specific recommendations on the choice of approaches.

  1. A framework for organizing and selecting quantitative approaches for benefit-harm assessment

    PubMed Central

    2012-01-01

    Background Several quantitative approaches for benefit-harm assessment of health care interventions exist but it is unclear how the approaches differ. Our aim was to review existing quantitative approaches for benefit-harm assessment and to develop an organizing framework that clarifies differences and aids selection of quantitative approaches for a particular benefit-harm assessment. Methods We performed a review of the literature to identify quantitative approaches for benefit-harm assessment. Our team, consisting of clinicians, epidemiologists, and statisticians, discussed the approaches and identified their key characteristics. We developed a framework that helps investigators select quantitative approaches for benefit-harm assessment that are appropriate for a particular decisionmaking context. Results Our framework for selecting quantitative approaches requires a concise definition of the treatment comparison and population of interest, identification of key benefit and harm outcomes, and determination of the need for a measure that puts all outcomes on a single scale (which we call a benefit and harm comparison metric). We identified 16 quantitative approaches for benefit-harm assessment. These approaches can be categorized into those that consider single or multiple key benefit and harm outcomes, and those that use a benefit-harm comparison metric or not. Most approaches use aggregate data and can be used in the context of single studies or systematic reviews. Although the majority of approaches provides a benefit and harm comparison metric, only four approaches provide measures of uncertainty around the benefit and harm comparison metric (such as a 95 percent confidence interval). None of the approaches considers the actual joint distribution of benefit and harm outcomes, but one approach considers competing risks when calculating profile-specific event rates. Nine approaches explicitly allow incorporating patient preferences. Conclusion The choice of quantitative approaches depends on the specific question and goal of the benefit-harm assessment as well as on the nature and availability of data. In some situations, investigators may identify only one appropriate approach. In situations where the question and available data justify more than one approach, investigators may want to use multiple approaches and compare the consistency of results. When more evidence on relative advantages of approaches accumulates from such comparisons, it will be possible to make more specific recommendations on the choice of approaches. PMID:23163976

  2. Implementation of an interactive liver surgery planning system

    NASA Astrophysics Data System (ADS)

    Wang, Luyao; Liu, Jingjing; Yuan, Rong; Gu, Shuguo; Yu, Long; Li, Zhitao; Li, Yanzhao; Li, Zhen; Xie, Qingguo; Hu, Daoyu

    2011-03-01

    Liver tumor, one of the most wide-spread diseases, has a very high mortality in China. To improve success rates of liver surgeries and life qualities of such patients, we implement an interactive liver surgery planning system based on contrastenhanced liver CT images. The system consists of five modules: pre-processing, segmentation, modeling, quantitative analysis and surgery simulation. The Graph Cuts method is utilized to automatically segment the liver based on an anatomical prior knowledge that liver is the biggest organ and has almost homogeneous gray value. The system supports users to build patient-specific liver segment and sub-segment models using interactive portal vein branch labeling, and to perform anatomical resection simulation. It also provides several tools to simulate atypical resection, including resection plane, sphere and curved surface. To match actual surgery resections well and simulate the process flexibly, we extend our work to develop a virtual scalpel model and simulate the scalpel movement in the hepatic tissue using multi-plane continuous resection. In addition, the quantitative analysis module makes it possible to assess the risk of a liver surgery. The preliminary results show that the system has the potential to offer an accurate 3D delineation of the liver anatomy, as well as the tumors' location in relation to vessels, and to facilitate liver resection surgeries. Furthermore, we are testing the system in a full-scale clinical trial.

  3. Functional anatomy of the gibbon forelimb: adaptations to a brachiating lifestyle

    PubMed Central

    Michilsens, Fana; Vereecke, Evie E; D'Août, Kristiaan; Aerts, Peter

    2009-01-01

    It has been shown that gibbons are able to brachiate with very low mechanical costs. The conversion of muscle activity into smooth, purposeful movement of the limb depends on the morphometry of muscles and their mechanical action on the skeleton. Despite the gibbon's reputation for excellence in brachiation, little information is available regarding either its gross musculoskeletal anatomy or its more detailed muscle–tendon architecture. We provide quantitative anatomical data on the muscle–tendon architecture (muscle mass, physiological cross-sectional area, fascicle length and tendon length) of the forelimb of four gibbon species, collected by detailed dissections of unfixed cadavers. Data are compared between different gibbon species and with similar published data of non-brachiating primates such as macaques, chimpanzees and humans. No quantitative differences are found between the studied gibbon species. Both their forelimb anatomy and muscle dimensions are comparable when normalized to the same body mass. Gibbons have shoulder flexors, extensors, rotator muscles and elbow flexors with a high power or work-generating capacity and their wrist flexors have a high force-generating capacity. Compared with other primates, the elbow flexors of gibbons are particularly powerful, suggesting that these muscles are particularly important for a brachiating lifestyle. Based on this anatomical study, the shoulder flexors, extensors, rotator muscles, elbow flexors and wrist flexors are expected to contribute the most to brachiation. PMID:19519640

  4. Imaging Metals in Brain Tissue by Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS)

    PubMed Central

    Hare, Dominic J.; Kysenius, Kai; Paul, Bence; Knauer, Beate; Hutchinson, Robert W.; O'Connor, Ciaran; Fryer, Fred; Hennessey, Tom P.; Bush, Ashley I.; Crouch, Peter J.; Doble, Philip A.

    2017-01-01

    Metals are found ubiquitously throughout an organism, with their biological role dictated by both their chemical reactivity and abundance within a specific anatomical region. Within the brain, metals have a highly compartmentalized distribution, depending on the primary function they play within the central nervous system. Imaging the spatial distribution of metals has provided unique insight into the biochemical architecture of the brain, allowing direct correlation between neuroanatomical regions and their known function with regard to metal-dependent processes. In addition, several age-related neurological disorders feature disrupted metal homeostasis, which is often confined to small regions of the brain that are otherwise difficult to analyze. Here, we describe a comprehensive method for quantitatively imaging metals in the mouse brain, using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) and specially designed image processing software. Focusing on iron, copper and zinc, which are three of the most abundant and disease-relevant metals within the brain, we describe the essential steps in sample preparation, analysis, quantitative measurements and image processing to produce maps of metal distribution within the low micrometer resolution range. This technique, applicable to any cut tissue section, is capable of demonstrating the highly variable distribution of metals within an organ or system, and can be used to identify changes in metal homeostasis and absolute levels within fine anatomical structures. PMID:28190025

  5. The Effect of Concept Mapping on Student Understanding and Correlation with Student Learning Styles

    NASA Astrophysics Data System (ADS)

    Mosley, William G.

    This study investigated the use of concept mapping as a pedagogical strategy to promote change in the learning styles of pre-nursing students. Students' individual learning styles revealed two subsets of students; those who demonstrated a learning style that favors abstract conceptualization and those who demonstrated a learning style that favors concrete experience. Students in the experimental groups performed concept mapping activities designed to facilitate an integrative understanding of interactions between various organ systems of the body while the control group received a traditional didactic instruction without performing concept mapping activities. Both qualitative and quantitative data were collected in order to measure differences in student achievement. Analysis of the quantitative data revealed no significant change in the learning styles of students in either the control or experimental groups. Learning style groups were analyzed qualitatively for recurring or emergent themes that students identified as facilitating their learning. An analysis of qualitative data revealed that most students in the pre-nursing program were able to identify concepts within the class based upon visual cues, and a majority of these students exhibited the learning style of abstract conceptualization. As the laboratory experience for the course involves an examination of the anatomical structures of the human body, a visual identification of these structures seemed to be the most logical method to measure students' ability to identify anatomical structures.

  6. Reduction of foveal bulges and other anatomical changes in fellow eyes of patients with unilateral idiopathic macular hole without vitreomacular pathologic changes.

    PubMed

    Delas, Barbara; Julio, Gemma; Fernández-Vega, Álvaro; Casaroli-Marano, Ricardo P; Nadal, Jeroni

    2017-11-01

    To compare the foveal characteristics in fellow eyes (FE) of patients with unilateral idiopathic macular hole without vitreomacular pathologic changes with eyes of healthy controls. Forty-seven FE and 52 eyes of 52 age- and sex-matched healthy controls were studied. Quantitative assessment of the dome-shaped appearance of the hyperreflective lines that represent external limiting membrane (ELM_bulge) and inner outer segment junctions (IS/OS_bulge) were made by optical coherence tomography (OCT) images. Inner retinal complex thickness (IRCT) was quantitatively assessed at 1000 and 2000 μm of the foveal center in nasal and temporal quadrants. Presence of alterations in the inner retinal outer layers and central foveal thickness (CFT) were also analyzed. Significantly lower ELM_bulge (p < 0.0001; Mann-Whitney test) and IS/OS_bulge (p < 0.001; student t test) and higher cases with COST alterations, expressed as a diffuse line (p < 0.006; Chi 2 test) were found in FE than control eyes. IRCT were significantly reduced in FE at all the studied locations when comparing to control eyes (p < 0.05; student t test), maintaining anatomical proportionality among locations. FE without pathologic vitreomacular interactions seems to present some central cone alterations that may be related to other causes than vitreomacular traction.

  7. SU-G-JeP3-05: Geometry Based Transperineal Ultrasound Probe Positioning for Image Guided Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camps, S; With, P de; Verhaegen, F

    2016-06-15

    Purpose: The use of ultrasound (US) imaging in radiotherapy is not widespread, primarily due to the need for skilled operators performing the scans. Automation of probe positioning has the potential to remove this need and minimize operator dependence. We introduce an algorithm for obtaining a US probe position that allows good anatomical structure visualization based on clinical requirements. The first application is on 4D transperineal US images of prostate cancer patients. Methods: The algorithm calculates the probe position and orientation using anatomical information provided by a reference CT scan, always available in radiotherapy workflows. As initial test, we apply themore » algorithm on a CIRS pelvic US phantom to obtain a set of possible probe positions. Subsequently, five of these positions are randomly chosen and used to acquire actual US volumes of the phantom. Visual inspection of these volumes reveal if the whole prostate, and adjacent edges of bladder and rectum are fully visualized, as clinically required. In addition, structure positions on the acquired US volumes are compared to predictions of the algorithm. Results: All acquired volumes fulfill the clinical requirements as specified in the previous section. Preliminary quantitative evaluation was performed on thirty consecutive slices of two volumes, on which the structures are easily recognizable. The mean absolute distances (MAD) between actual anatomical structure positions and positions predicted by the algorithm were calculated. This resulted in MAD of 2.4±0.4 mm for prostate, 3.2±0.9 mm for bladder and 3.3±1.3 mm for rectum. Conclusion: Visual inspection and quantitative evaluation show that the algorithm is able to propose probe positions that fulfill all clinical requirements. The obtained MAD is on average 2.9 mm. However, during evaluation we assumed no errors in structure segmentation and probe positioning. In future steps, accurate estimation of these errors will allow for better evaluation of the achieved accuracy.« less

  8. MRI to delineate the gross tumor volume of nasopharyngeal cancers: which sequences and planes should be used?

    PubMed

    Popovtzer, Aron; Ibrahim, Mohannad; Tatro, Daniel; Feng, Felix Y; Ten Haken, Randall K; Eisbruch, Avraham

    2014-09-01

    Magnetic resonance imaging (MRI) has been found to be better than computed tomography for defining the extent of primary gross tumor volume (GTV) in advanced nasopharyngeal cancer. It is routinely applied for target delineation in planning radiotherapy. However, the specific MRI sequences/planes that should be used are unknown. Twelve patients with nasopharyngeal cancer underwent primary GTV evaluation with gadolinium-enhanced axial T1 weighted image (T1) and T2 weighted image (T2), coronal T1, and sagittal T1 sequences. Each sequence was registered with the planning computed tomography scans. Planning target volumes (PTVs) were derived by uniform expansions of the GTVs. The volumes encompassed by the various sequences/planes, and the volumes common to all sequences/planes, were compared quantitatively and anatomically to the volume delineated by the commonly used axial T1-based dataset. Addition of the axial T2 sequence increased the axial T1-based GTV by 12% on average (p = 0.004), and composite evaluations that included the coronal T1 and sagittal T1 planes increased the axial T1-based GTVs by 30% on average (p = 0.003). The axial T1-based PTVs were increased by 20% by the additional sequences (p = 0.04). Each sequence/plane added unique volume extensions. The GTVs common to all the T1 planes accounted for 38% of the total volumes of all the T1 planes. Anatomically, addition of the coronal and sagittal-based GTVs extended the axial T1-based GTV caudally and cranially, notably to the base of the skull. Adding MRI planes and sequences to the traditional axial T1 sequence yields significant quantitative and anatomically important extensions of the GTVs and PTVs. For accurate target delineation in nasopharyngeal cancer, we recommend that GTVs be outlined in all MRI sequences/planes and registered with the planning computed tomography scans.

  9. Comparison of Bone Grafts From Various Donor Sites in Human Bone Specimens.

    PubMed

    Kamal, Mohammad; Gremse, Felix; Rosenhain, Stefanie; Bartella, Alexander K; Hölzle, Frank; Kessler, Peter; Lethaus, Bernd

    2018-05-14

    The objective of the current study was to compare the three-dimensional (3D) morphometric microstructure in human cadaveric bone specimens taken from various commonly utilized donor sites for autogenous bone grafting. Autogenous bone grafts can be harvested from various anatomic sites and express heterogeneous bone quality with a specific 3D microstructure for each site. The long-term structural integrity and susceptibility to resorption of the graft depend on the selected donor bone. Micro-computed tomography generates high-resolution datasets of bone structures and calcifications making this modality versatile for microarchitecture analysis and quantification of the bone. Six bone specimens, 10 mm in length, where anatomically possible, were obtained from various anatomical sites from 10 human dentate cadavers (4 men, 6 women, mean age 69.5 years). Specimens were scanned using a micro-computed tomography device and volumetrically reconstructed. A virtual cylindrical inclusion was reconstructed to analyze the bone mineral density and structural morphometric analysis using bone indices: relative bone volume, surface density, trabecular thicknesses, and trabecular separation. Calvarial bone specimens showed the highest mineral density, followed by the chin, then mandibular ramus then the tibia, whereas iliac crest and maxillary tuberosity had lower bone mineral densities. The pairwise comparison revealed statistically significant differences in the bone mineral density and relative bone volume index in the calvaria, mandibular ramus, mandibular symphysis groups when compared with those in the iliac crest and maxillary tuberosity, suggesting higher bone quality in the former groups than in the latter; tibial specimens expressed variable results.

  10. The benefits of magnetic resonance imaging methods to extend the knowledge of the anatomical organisation of the periaqueductal gray in mammals.

    PubMed

    Menant, Ophélie; Andersson, Frédéric; Zelena, Dóra; Chaillou, Elodie

    2016-11-01

    The periaqueductal gray (PAG) is a mesencephalic brain structure involved in the expression of numerous behaviours such as maternal, sexual and emotional. Histological approaches showed the PAG is composed by subdivisions with specific cell organisation, neurochemical composition and connections with the rest of the brain. The comparison of studies performed in rodents and cats as the most often examined species, suggests that PAG organisation differs between mammals. However, we should also consider the plurality of the methods used in these studies that makes difficult the comparison of the PAG organisation between species. Therefore, to study the PAG in all mammals including human, the most relevant in vivo imaging method seems to be the magnetic resonance imaging (MRI). The purpose of this review was to summarize the knowledge of the anatomical organisation of the PAG in mammals and highlights the benefits of MRI methods to extend this knowledge. Results obtained by MRI so far support the conclusions of ex vivo studies, especially to describe the subdivisions and the connections of the PAG. In these latter, diffusion-weighted MRI and functional connectivity seem the most appropriate methods. In conclusion firstly, the MRI seems to be the best judicious method to compare species and improve the comprehension of the role of the PAG. Secondly, MRI is an in vivo method aimed to manage repeated measures in the same cohort of subjects allowing to study the impact of aging and the development on the anatomical organisation of the PAG. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. MRI analysis of tibial PCL attachment in a large population of adult patients: reference data for anatomic PCL reconstruction.

    PubMed

    Teng, Yuanjun; Guo, Laiwei; Wu, Meng; Xu, Tianen; Zhao, Lianggong; Jiang, Jin; Sheng, Xiaoyun; Xu, Lihu; Zhang, Bo; Ding, Ning; Xia, Yayi

    2016-09-05

    Consistent reference data used for anatomic posterior cruciate ligament (PCL) reconstruction is not well defined. Quantitative guidelines defining the location of PCL attachment would aid in performing anatomic PCL reconstruction. The purpose was to characterize anatomic parameters of the PCL tibial attachment based on magnetic resonance imaging (MRI) in a large population of adult knees. The PCL tibial attachment site was examined in 736 adult knees with an intact PCL using 3.0-T proton density-weighted sagittal MRI. The outcomes measured were the anterior-posterior diameter (APD) of the tibial plateau; angle between the tibial plateau and the posterior tibial 'shelf' (the slope where the PCL tibial attachment site was) (PTS); length of the PTS; proximal, central, and distal PCL attachment positions as well as the width of the PCL attachment site; and vertical dimension of the PCL attachment site inferior from the tibial plateau. The average APD of the tibia plateau was 33.6 ± 3.5 mm, yielding significant differences between males (35.5 ± 3.0 mm) and females (31.6 ± 2.7 mm), P <.05, and there was a significantly decreasing trend with increasing age in males (P <.05). Mean angle between the tibial plateau and the PTS was 122.4° ± 8.1°, and subgroup analysis showed that the young group had a differently smaller angle (120.9° ± 7.5°) than the middle-aged (123.7° ± 8.2°) and the old (123.4° ± 7.7°) in males population, while there were no significant differences between sexes (P >.05). The proximal, central positions and width of the PCL attachment site were 13.4 ± 3.0 mm, 17.8 ± 3.0 mm and 9.6 ± 2.4 mm along the PTS, with significant differences between males and females (P <.05), and accounted for 60.0 % ± 9.1 %, 80.0 % ± 4.6 % and 43.3 % ± 9.7 % of the PTS respectively, with no significant differences between sexes and among age groups (all P >.05). This study provides reference data of the tibial PCL attachment based on MRI in the sagittal orientation. In analysis of retrospective data from a large population of adult patients, the quantitative values can be used as references to define the inserted angle and depth of the drill guide, and the exact position and size of the tibial PCL tunnel for performing arthroscopic anatomic PCL reconstruction.

  12. An investigation of the vegetative anatomy of Piper sarmentosum, and a comparison with the anatomy of Piper betle (Piperaceae)

    USDA-ARS?s Scientific Manuscript database

    Piper sarmentosum Roxb. (synonym, P. lolot C.DC.) is a southeast Asian medicinal plant valued for its medicinal and culinary uses. Hand-sections of the vegetative parts of P. sarmentosum were prepared and the anatomical features were studied by light microscopy and scanning electron microscopy. Th...

  13. VISIBILITY OF STRUCTURES OF RELEVANCE FOR PATIENTS WITH CYSTIC FIBROSIS IN CHEST TOMOSYNTHESIS: INFLUENCE OF ANATOMICAL LOCATION AND OBSERVER EXPERIENCE.

    PubMed

    Meltzer, Carin; Båth, Magnus; Kheddache, Susanne; Ásgeirsdóttir, Helga; Gilljam, Marita; Johnsson, Åse Allansdotter

    2016-06-01

    The aims of this study were to assess the visibility of pulmonary structures in patients with cystic fibrosis (CF) in digital tomosynthesis (DTS) using computed tomography (CT) as reference and to investigate the dependency on anatomical location and observer experience. Anatomical structures in predefined regions of CT images from 21 patients were identified. Three observers with different levels of experience rated the visibility of the structures in DTS by performing a head-to-head comparison with visibility in CT. Visibility of the structures in DTS was reported as equal to CT in 34 %, inferior in 52 % and superior in 14 % of the ratings. Central and peripheral lateral structures received higher visibility ratings compared with peripheral structures anteriorly, posteriorly and surrounding the diaphragm (p ≤ 0.001). Reported visibility was significantly higher for the most experienced observer (p ≤ 0.01). The results indicate that minor pathology can be difficult to visualise with DTS depending on location and observer experience. Central and peripheral lateral structures are generally well depicted. © The Author 2016. Published by Oxford University Press.

  14. Intensity-based hierarchical clustering in CT-scans: application to interactive segmentation in cardiology

    NASA Astrophysics Data System (ADS)

    Hadida, Jonathan; Desrosiers, Christian; Duong, Luc

    2011-03-01

    The segmentation of anatomical structures in Computed Tomography Angiography (CTA) is a pre-operative task useful in image guided surgery. Even though very robust and precise methods have been developed to help achieving a reliable segmentation (level sets, active contours, etc), it remains very time consuming both in terms of manual interactions and in terms of computation time. The goal of this study is to present a fast method to find coarse anatomical structures in CTA with few parameters, based on hierarchical clustering. The algorithm is organized as follows: first, a fast non-parametric histogram clustering method is proposed to compute a piecewise constant mask. A second step then indexes all the space-connected regions in the piecewise constant mask. Finally, a hierarchical clustering is achieved to build a graph representing the connections between the various regions in the piecewise constant mask. This step builds up a structural knowledge about the image. Several interactive features for segmentation are presented, for instance association or disassociation of anatomical structures. A comparison with the Mean-Shift algorithm is presented.

  15. Mechanical stability of custom-made implants: Numerical study of anatomical device and low elastic Young's modulus alloy.

    PubMed

    Didier, P; Piotrowski, B; Fischer, M; Laheurte, P

    2017-05-01

    The advent of new manufacturing technologies such as additive manufacturing deeply impacts the approach for the design of medical devices. It is now possible to design custom-made implants based on medical imaging, with complex anatomic shape, and to manufacture them. In this study, two geometrical configurations of implant devices are studied, standard and anatomical. The comparison highlights the drawbacks of the standard configuration, which requires specific forming by plastic strain in order to be adapted to the patient's morphology and induces stress field in bones without mechanical load in the implant. The influence of low elastic modulus of the materials on stress distribution is investigated. Two biocompatible alloys having the ability to be used with SLM additive manufacturing are considered, commercial Ti-6Al-4V and Ti-26Nb. It is shown that beyond the geometrical aspect, mechanical compatibility between implants and bones can be significantly improved with the modulus of Ti-26Nb implants compared with the Ti-6Al-4V. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. VISIBILITY OF STRUCTURES OF RELEVANCE FOR PATIENTS WITH CYSTIC FIBROSIS IN CHEST TOMOSYNTHESIS: INFLUENCE OF ANATOMICAL LOCATION AND OBSERVER EXPERIENCE

    PubMed Central

    Meltzer, Carin; Båth, Magnus; Kheddache, Susanne; Ásgeirsdóttir, Helga; Gilljam, Marita; Johnsson, Åse Allansdotter

    2016-01-01

    The aims of this study were to assess the visibility of pulmonary structures in patients with cystic fibrosis (CF) in digital tomosynthesis (DTS) using computed tomography (CT) as reference and to investigate the dependency on anatomical location and observer experience. Anatomical structures in predefined regions of CT images from 21 patients were identified. Three observers with different levels of experience rated the visibility of the structures in DTS by performing a head-to-head comparison with visibility in CT. Visibility of the structures in DTS was reported as equal to CT in 34 %, inferior in 52 % and superior in 14 % of the ratings. Central and peripheral lateral structures received higher visibility ratings compared with peripheral structures anteriorly, posteriorly and surrounding the diaphragm (p ≤ 0.001). Reported visibility was significantly higher for the most experienced observer (p ≤ 0.01). The results indicate that minor pathology can be difficult to visualise with DTS depending on location and observer experience. Central and peripheral lateral structures are generally well depicted. PMID:26842827

  17. Comparisons of Computed Mobile Phone Induced SAR in the SAM Phantom to That in Anatomically Correct Models of the Human Head

    PubMed Central

    Beard, Brian B.; Kainz, Wolfgang; Onishi, Teruo; Iyama, Takahiro; Watanabe, Soichi; Fujiwara, Osamu; Wang, Jianqing; Bit-Babik, Giorgi; Faraone, Antonio; Wiart, Joe; Christ, Andreas; Kuster, Niels; Lee, Ae-Kyoung; Kroeze, Hugo; Siegbahn, Martin; Keshvari, Jafar; Abrishamkar, Houman; Simon, Winfried; Manteuffel, Dirk; Nikoloski, Neviana

    2018-01-01

    The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position. PMID:29515260

  18. Buntaro Adachi (1865-1945): Japanese master of human anatomic variation.

    PubMed

    Watanabe, Koichi; Shoja, Mohammadali M; Loukas, Marios; Tubbs, R Shane

    2012-11-01

    Buntaro Adachi (1865-1945) was a Japanese physician, anatomist, and anthropologist and is most remembered for his study on human anatomic variation. At the end of 19th Century, one of the main focuses in anthropology was the comparison between the races. In Japan, anthropological studies of the origin of the modern Japanese race were carried out by Adachi and others. Adachi believed that differences went beyond the bones that were commonly studied in his day and, therefore, investigated soft tissues of the body. Two products of his intense study of variation of human anatomy were Das Arteriensystem der Japaner (The Arterial System of the Japanese) published in 1928 and Das Venensystem der Japaner (The Venous System of the Japanese) published in 1933 and 1940. These books received much attention and were praised by anatomists and anthropologists around the world. Even now, these books are invaluable as references for human anatomic variation. Herein, we provide an overview of the life and achievements of Buntaro Adachi and to our knowledge, this is the first such review in the English language. Copyright © 2012 Wiley Periodicals, Inc.

  19. Ultrasonographic anatomy of the dorsal and abaxial aspects of the equine fetlock.

    PubMed

    Denoix, J M; Jacot, S; Bousseau, B; Perrot, P

    1996-01-01

    This paper describes normal ultrasound images of the soft tissues of the dorsal and abaxial aspects of the equine fetlock. The palmar aspect of the fetlock is not discussed because it is related to the suspensory apparatus and flexor tendon anatomy which has been previously described. Ultrasound scanning was performed with 7.5 MHz linear or 10 MHz sector probes and recorded on 7.5 cm U-matic videocassettes allowing further retrospective data analysis, computer manipulation and good image reproducibility. Sagittal, parasagittal, frontal and transverse ultrasound scans of 13 lameness free mature horses were compared to anatomically dissected leg specimens, anatomical sections and Magnetic Resonance Imaging scans of isolated limbs. The results are focused on the comparison between anatomical sections and ultrasonograms performed on the legs of nonlame horses. Ultrasonography was demonstrated to be a very accurate imaging procedure for soft tissue structures at the dorsal and abaxial aspects of the equine fetlock. Under clinical conditions, a thorough knowledge of normal ultrasonographic anatomy is critical for an accurate diagnosis of fetlock soft tissue injury.

  20. Applied anatomy of a new approach of endoscopic technique in thyroid gland surgery.

    PubMed

    Liu, Hong; Xie, Yong-jun; Xu, Yi-quan; Li, Chao; Liu, Xing-guo

    2012-10-01

    To explore the feasibility and safety of transtracheal assisted sublingual approach to totally endoscopic thyroidectomy by studying the anatomical approach and adjacent structures. A total of 5 embalmed adult cadavers from Chengdu Medical College were dissected layer by layer in the cervical region, pharyngeal region, and mandible region, according to transtracheal assisted sublingual approach that was verified from the anatomical approach and planes. A total of 15 embalmed adult cadavers were dissected by arterial vascular casting technique, imaging scanning technique, and thin layer cryotomy. Then the vessel and anatomical structures of thyroid surgical region were analyzed qualitatively and quantitatively. Three-dimensional visualization of larynx artery was reconstructed by Autodesk 3ds Max 2010(32). Transtracheal assisted sublingual approach for totally endoscopic thyroidectomy was simulated on 5 embalmed adult cadavers. The sublingual observed access was located in the middle of sublingual region. The geniohyoid muscle, mylohyoid seam, and submental triangle were divided in turn in the middle to reach the plane under the plastima muscles. Superficial cervical fascia, anterior body of hyoid bone, and infrahyoid muscles were passed in sequence to reach thyroid gland surgical region. The transtracheal operational access was placed from the cavitas oris propria, isthmus faucium, subepiglottic region, laryngeal pharynx, and intermediate laryngeal cavit, and then passed from the top down in order to reach pars cervicalis tracheae where a sagittal incision was made in the anterior wall of cartilagines tracheales to reach a ascertained surgical region. Transtracheal assisted sublingual approach to totally endoscopic thyroidectomy is anatomically feasible and safe and can be useful in thyroid gland surgery.

  1. Interpolation of diffusion weighted imaging datasets.

    PubMed

    Dyrby, Tim B; Lundell, Henrik; Burke, Mark W; Reislev, Nina L; Paulson, Olaf B; Ptito, Maurice; Siebner, Hartwig R

    2014-12-01

    Diffusion weighted imaging (DWI) is used to study white-matter fibre organisation, orientation and structural connectivity by means of fibre reconstruction algorithms and tractography. For clinical settings, limited scan time compromises the possibilities to achieve high image resolution for finer anatomical details and signal-to-noise-ratio for reliable fibre reconstruction. We assessed the potential benefits of interpolating DWI datasets to a higher image resolution before fibre reconstruction using a diffusion tensor model. Simulations of straight and curved crossing tracts smaller than or equal to the voxel size showed that conventional higher-order interpolation methods improved the geometrical representation of white-matter tracts with reduced partial-volume-effect (PVE), except at tract boundaries. Simulations and interpolation of ex-vivo monkey brain DWI datasets revealed that conventional interpolation methods fail to disentangle fine anatomical details if PVE is too pronounced in the original data. As for validation we used ex-vivo DWI datasets acquired at various image resolutions as well as Nissl-stained sections. Increasing the image resolution by a factor of eight yielded finer geometrical resolution and more anatomical details in complex regions such as tract boundaries and cortical layers, which are normally only visualized at higher image resolutions. Similar results were found with typical clinical human DWI dataset. However, a possible bias in quantitative values imposed by the interpolation method used should be considered. The results indicate that conventional interpolation methods can be successfully applied to DWI datasets for mining anatomical details that are normally seen only at higher resolutions, which will aid in tractography and microstructural mapping of tissue compartments. Copyright © 2014. Published by Elsevier Inc.

  2. Quantitative evaluation of anatomical noise in chest digital tomosynthesis, digital radiography, and computed tomography

    NASA Astrophysics Data System (ADS)

    Lee, D.; Choi, S.; Lee, H.; Kim, D.; Choi, S.; Kim, H.-J.

    2017-04-01

    Lung cancer is currently the worldwide leading cause of death from cancer. Thus, detection of lung cancer at its early stages is critical for improving the survival rate of patients. Chest digital tomosynthesis (CDT) is a recently developed imaging modality, combining many advantages of digital radiography (DR) and computed tomography (CT). This method has the potential to be widely used in the clinical setting. In this study, we introduce a developed CDT R/F system and compare its image quality with those of DR and CT, especially with respect to anatomical noise and lung nodule conspicuity, for LUNGMAN phantoms. The developed CDT R/F system consists of a CsI scintillator flat panel detector, X-ray tube, and tomosynthesis data acquisition geometry. For CDT R/F imaging, 41 projections were acquired at different angles, over the ± 20° angular range, in a linear translation geometry. To evaluate the clinical effectiveness of the CDT R/F system, the acquired images were compared with CT (Philips brilliance CT 64, Philips healthcare, U.S.) and DR (ADR-M, LISTEM, Korea) phantom images in terms of the anatomical noise power spectrum (aNPS). DR images exhibited low conspicuity for a small-size lung nodule, while CDT R/F and CT exhibited relatively high sensitivity for all lung nodule sizes. The aNPS of the CDT R/F system was better than that of DR, by resolving anatomical overlapping problems. In conclusion, the developed CDT R/F system is likely to contribute to early diagnosis of lung cancer, while requiring a relatively low patient dose, compared with CT.

  3. Assistance to neurosurgical planning: using a fuzzy spatial graph model of the brain for locating anatomical targets in MRI

    NASA Astrophysics Data System (ADS)

    Villéger, Alice; Ouchchane, Lemlih; Lemaire, Jean-Jacques; Boire, Jean-Yves

    2007-03-01

    Symptoms of neurodegenerative pathologies such as Parkinson's disease can be relieved through Deep Brain Stimulation. This neurosurgical technique relies on high precision positioning of electrodes in specific areas of the basal ganglia and the thalamus. These subcortical anatomical targets must be located at pre-operative stage, from a set of MRI acquired under stereotactic conditions. In order to assist surgical planning, we designed a semi-automated image analysis process for extracting anatomical areas of interest. Complementary information, provided by both patient's data and expert knowledge, is represented as fuzzy membership maps, which are then fused by means of suitable possibilistic operators in order to achieve the segmentation of targets. More specifically, theoretical prior knowledge on brain anatomy is modelled within a 'virtual atlas' organised as a spatial graph: a list of vertices linked by edges, where each vertex represents an anatomical structure of interest and contains relevant information such as tissue composition, whereas each edge represents a spatial relationship between two structures, such as their relative directions. The model is built using heterogeneous sources of information such as qualitative descriptions from the expert, or quantitative information from prelabelled images. For each patient, tissue membership maps are extracted from MR data through a classification step. Prior model and patient's data are then matched by using a research algorithm (or 'strategy') which simultaneously computes an estimation of the location of every structures. The method was tested on 10 clinical images, with promising results. Location and segmentation results were statistically assessed, opening perspectives for enhancements.

  4. A Reinforcement-Based Learning Paradigm Increases Anatomical Learning and Retention—A Neuroeducation Study

    PubMed Central

    Anderson, Sarah J.; Hecker, Kent G.; Krigolson, Olave E.; Jamniczky, Heather A.

    2018-01-01

    In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT) methods incorporate pre-class exercises (typically online) meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG) as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP) components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise. PMID:29467638

  5. A Reinforcement-Based Learning Paradigm Increases Anatomical Learning and Retention-A Neuroeducation Study.

    PubMed

    Anderson, Sarah J; Hecker, Kent G; Krigolson, Olave E; Jamniczky, Heather A

    2018-01-01

    In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT) methods incorporate pre-class exercises (typically online) meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG) as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP) components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise.

  6. Can forest dieback and tree death be predicted by prior changes in wood anatomy?

    NASA Astrophysics Data System (ADS)

    Colangelo, Michele; Julio Camarero, Jesus; De Micco, Veronica; Borghetti, Marco; Gentilesca, Tiziana; Sanchez-Salguero, Raul; Ripullone, Francesco

    2017-04-01

    Climate warming is expected to amplify drought stress resulting in more intense and widespread dieback episodes and increasing mortality rates. Studies on quantitative wood anatomy and dendrochronology have demonstrated their potential to supply useful information on the causes of tree decline, although this approach is basically observational and retrospective. Moreover, the long-term reconstruction of wood anatomical features, strictly linked to the evolution of xylem anatomy plasticity through time, allow investigating hydraulic adjustments of trees. In this study, we analyzed wood-anatomical variables in two Italian oak forests where recent episodes of dieback and mortality have been reported. We analyzed in coexisting now-dead and living trees the following wood-anatomical variables: annual tree-ring area, earlywood (EW) and latewood (LW) areas, absolute and relative (%) areas occupied by vessels in the EW and LW, EW and LW vessel areas, EW and LW vessel density and vessel diameter classification. We also calculated the hydraulic diameter (Dh) for all vessels measured within each ring by weighting individual conduit diameters to correspond to the average Hagen-Poiseuille lumen theoretical hydraulic conductivity for a vessel size. Wood-anatomical analyses showed that declining and dead trees were more sensitive to drought stress compared to non declining trees, indicating different susceptibility to water shortage between trees. Dead trees did not form earlywood vessels with smaller lumen diameter than surviving trees but tended to form wider latewood vessels with a higher percentage of vessel area. We discuss the results and implications focusing on those proved more sensitive to the phenomena of decline and mortality.

  7. Generation of synthetic CT data using patient specific daily MR image data and image registration

    NASA Astrophysics Data System (ADS)

    Melanie Kraus, Kim; Jäkel, Oliver; Niebuhr, Nina I.; Pfaffenberger, Asja

    2017-02-01

    To fully exploit the advantages of magnetic resonance imaging (MRI) for radiotherapy (RT) treatment planning, a method is required to overcome the problem of lacking electron density information. We aim to establish and evaluate a new method for computed tomography (CT) data generation based on MRI and image registration. The thereby generated CT data is used for dose accumulation. We developed a process flow based on an initial pair of rigidly co-registered CT and T2-weighted MR image representing the same anatomical situation. Deformable image registration using anatomical landmarks is performed between the initial MRI data and daily MR images. The resulting transformation is applied to the initial CT, thus fractional CT data is generated. Furthermore, the dose for a photon intensity modulated RT (IMRT) or intensity modulated proton therapy (IMPT) plan is calculated on the generated fractional CT and accumulated on the initial CT via inverse transformation. The method is evaluated by the use of phantom CT and MRI data. Quantitative validation is performed by evaluation of the mean absolute error (MAE) between the measured and the generated CT. The effect on dose accumulation is examined by means of dose-volume parameters. One patient case is presented to demonstrate the applicability of the method introduced here. Overall, CT data derivation lead to MAEs with a median of 37.0 HU ranging from 29.9 to 66.6 HU for all investigated tissues. The accuracy of image registration showed to be limited in the case of unexpected air cavities and at tissue boundaries. The comparisons of dose distributions based on measured and generated CT data agree well with the published literature. Differences in dose volume parameters kept within 1.6% and 3.2% for photon and proton RT, respectively. The method presented here is particularly suited for application in adaptive RT in current clinical routine, since only minor additional technical equipment is required.

  8. Elimination of motion and pulsation artifacts using BLADE sequences in knee MR imaging.

    PubMed

    Lavdas, Eleftherios; Mavroidis, Panayiotis; Hatzigeorgiou, Vasiliki; Roka, Violeta; Arikidis, Nikos; Oikonomou, Georgia; Andrianopoulos, Konstantinos; Notaras, Ioannis

    2012-10-01

    The purpose of this study is to evaluate the ability of proton density (PD)-BLADE sequences in reducing or even eliminating motion and pulsatile flow artifacts in knee magnetic resonance imaging examinations. Eighty consecutive patients, who had been routinely scanned for knee examination, participated in the study. The following pairs of sequences with and without BLADE were compared: (a) PD turbo spin echo (TSE) sagittal (SAG) fat saturation (FS) in 35 patients, (b) PD TSE coronal (COR) FS in 19 patients, (c) T2 TSE axial in 13 patients and (d) PD TSE SAG in 13 patients. Both qualitative and quantitative analyses were performed based on the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures of normal anatomic structures. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion and pulsation artifacts was evaluated. Based on the results of the SNR, CRN and ReCon for the different sequences and anatomical structures, the BLADE sequences were significantly superior in 19 cases, whereas the corresponding conventional sequences were significantly superior in only 6 cases. BLADE sequences eliminated motion artifacts in all the cases. However, motion artifacts were shown in (a) six PD TSE SAG FS, (b) three PD TSE COR FS, (c) three PD TSE SAG and (d) two T2 TSE axial conventional sequences. In our results, it was found that, in PD FS sequences (sagittal and coronal), the differences between the BLADE and conventional sequences regarding the elimination of motion and pulsatile flow artifacts were statistically significant. In all the comparisons, the PD FS BLADE sequences (coronal and sagittal) were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable to potentially eliminate motion and pulsatile flow artifacts in MR images. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Morphological Pulmonary Diffusion Capacity for Oxygen of Burmese Pythons (Python molurus): a Comparison of Animals in Healthy Condition and with Different Pulmonary Infections.

    PubMed

    Starck, J M; Weimer, I; Aupperle, H; Müller, K; Marschang, R E; Kiefer, I; Pees, M

    2015-11-01

    A qualitative and quantitative morphological study of the pulmonary exchange capacity of healthy and diseased Burmese pythons (Python molurus) was carried out in order to test the hypothesis that the high morphological excess capacity for oxygen exchange in the lungs of these snakes is one of the reasons why pathological processes extend throughout the lung parenchyma and impair major parts of the lungs before clinical signs of respiratory disease become apparent. Twenty-four Burmese pythons (12 healthy and 12 diseased) were included in the study. A stereology-based approach was used to quantify the lung parenchyma using computed tomography. Light microscopy was used to quantify tissue compartments and the respiratory exchange surface, and transmission electron microscopy was used to measure the thickness of the diffusion barrier. The morphological diffusion capacity for oxygen of the lungs and the anatomical diffusion factor were calculated. The calculated anatomical diffusion capacity was compared with published values for oxygen consumption of healthy snakes, and the degree to which the exchange capacity can be obstructed before normal physiological function is impaired was estimated. Heterogeneous pulmonary infections result in graded morphological transformations of pulmonary parenchyma involving lymphocyte migration into the connective tissue and thickening of the septal connective tissue, increasing thickness of the diffusion barrier and increasing transformation of the pulmonary epithelium into a columnar pseudostratified or stratified epithelium. The transformed epithelium developed by hyperplasia of ciliated cells arising from the tip of the faveolar septa and by hyperplasia of type II pneumocytes. These results support the idea that the lungs have a remarkable overcapacity for oxygen consumption and that the development of pulmonary disease continuously reduces the capacity for oxygen consumption. However, due to the overcapacity of the lungs, this reduction does not result in clinical signs and disease can progress unrecognized for an extended period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Relationship between Cough-Associated Changes in CSF Flow and Disease Severity in Chiari I Malformation: An Exploratory Study Using Real-Time MRI.

    PubMed

    Bezuidenhout, A F; Khatami, D; Heilman, C B; Kasper, E M; Patz, S; Madan, N; Zhao, Y; Bhadelia, R A

    2018-05-10

    Currently no quantitative objective test exists to determine disease severity in a patient with Chiari I malformation. Our aim was to correlate disease severity in symptomatic patients with Chiari I malformation with cough-associated changes in CSF flow as measured with real-time MR imaging. Thirteen symptomatic patients with Chiari I malformation (tonsillar herniation of ≥5 mm) were prospectively studied. A real-time, flow-sensitized pencil-beam MR imaging scan was used to measure CSF stroke volume during rest and immediately following coughing and relaxation periods (total scan time, 90 seconds). Multiple posterior fossa and craniocervical anatomic measurements were also obtained. Patients were classified into 2 groups by neurosurgeons blinded to MR imaging measurements: 1) nonspecific Chiari I malformation (5/13)-Chiari I malformation with nonspecific symptoms like non-cough-related or mild occasional cough-related headache, neck pain, dizziness, paresthesias, and/or trouble swallowing; 2) specific Chiari I malformation (8/13)-patients with Chiari I malformation with specific symptoms and/or objective findings like severe cough-related headache, myelopathy, syringomyelia, and muscle atrophy. The Spearman correlation was used to determine correlations between MR imaging measurements and disease severity, and both groups were also compared using a Mann-Whitney U test. There was a significant negative correlation between the percentage change in CSF stroke volume (resting to postcoughing) and Chiari I malformation disease severity ( R = 0.59; P = .03). Mann-Whitney comparisons showed the percentage change in CSF stroke volume (resting to postcoughing) to be significantly different between patient groups ( P = .04). No other CSF flow measurement or anatomic measure was significantly different between the groups. Our exploratory study suggests that assessment of CSF flow response to a coughing challenge has the potential to become a valuable objective noninvasive test for clinical assessment of disease severity in patients with Chiari I malformation. © 2018 by American Journal of Neuroradiology.

  11. Comparison of Arterial Spin-labeling Perfusion Images at Different Spatial Normalization Methods Based on Voxel-based Statistical Analysis.

    PubMed

    Tani, Kazuki; Mio, Motohira; Toyofuku, Tatsuo; Kato, Shinichi; Masumoto, Tomoya; Ijichi, Tetsuya; Matsushima, Masatoshi; Morimoto, Shoichi; Hirata, Takumi

    2017-01-01

    Spatial normalization is a significant image pre-processing operation in statistical parametric mapping (SPM) analysis. The purpose of this study was to clarify the optimal method of spatial normalization for improving diagnostic accuracy in SPM analysis of arterial spin-labeling (ASL) perfusion images. We evaluated the SPM results of five spatial normalization methods obtained by comparing patients with Alzheimer's disease or normal pressure hydrocephalus complicated with dementia and cognitively healthy subjects. We used the following methods: 3DT1-conventional based on spatial normalization using anatomical images; 3DT1-DARTEL based on spatial normalization with DARTEL using anatomical images; 3DT1-conventional template and 3DT1-DARTEL template, created by averaging cognitively healthy subjects spatially normalized using the above methods; and ASL-DARTEL template created by averaging cognitively healthy subjects spatially normalized with DARTEL using ASL images only. Our results showed that ASL-DARTEL template was small compared with the other two templates. Our SPM results obtained with ASL-DARTEL template method were inaccurate. Also, there were no significant differences between 3DT1-conventional and 3DT1-DARTEL template methods. In contrast, the 3DT1-DARTEL method showed higher detection sensitivity, and precise anatomical location. Our SPM results suggest that we should perform spatial normalization with DARTEL using anatomical images.

  12. A review of the anatomy of the hip abductor muscles, gluteus medius, gluteus minimus, and tensor fascia lata.

    PubMed

    Flack, Natasha Amy May Sparks; Nicholson, Helen D; Woodley, Stephanie Jane

    2012-09-01

    The hip abductor muscles have the capability to contribute to numerous actions, including pelvic stabilization during gait, and abduction and rotation at the hip joint. To fully understand the role of these muscles, as well as their involvement in hip joint dysfunction, knowledge of their anatomical structure is essential. The clinical literature suggests anatomical diversity within these muscles, and that gluteus medius (GMed) and gluteus minimus (GMin), in particular, may be comprised of compartments. This systematic review of the English literature focuses on the gross anatomy of GMed, GMin, and tensor fascia lata (TFL) muscles. Although studies of this muscle group have generated useful descriptions, comparison of results is hindered by methodological limitations. Furthermore, there is no single comprehensive anatomical investigation of all three muscles. Several aspects of the morphology of attachment sites are unknown or unclear. There is little data on fascicle orientation, the interface between fascicles and tendons, and the specific patterning of the superior gluteal nerve. Consequently, the existence of anatomical compartmentalization within the hip abductor muscles is difficult to assess. Further research of the architecture and innervation of the hip abductor muscle group is required; a better understanding of the precise anatomy of these muscles should improve our understanding of their specific functions and their contribution to the pathogenesis of disorders affecting the hip joint. Copyright © 2011 Wiley Periodicals, Inc.

  13. Long-Term Outcomes of Cultivated Limbal Epithelial Transplantation: Evaluation and Comparison of Results in Children and Adults

    PubMed Central

    Ganger, Anita; Vanathi, M.; Mohanty, Sujata; Tandon, Radhika

    2015-01-01

    Purpose. To compare the long-term clinical outcomes of cultivated limbal epithelial transplantation (CLET) in children and adults with limbal stem cell deficiency. Design. Retrospective case series. Methods. Case records of patients with limbal stem cell deficiency (LSCD) who underwent CLET from April 2004 to December 2014 were studied. Outcome measures were compared in terms of anatomical success and visual improvement. Parameters for total anatomical success were avascular, epithelized, and clinically stable corneal surface without conjunctivalization, whereas partial anatomical success was considered when mild vascularization (sparing centre of cornea) and mild conjunctivalization were noted along with complete epithelization. Results. A total of 62 cases underwent the CLET procedure: 38 (61.3%) were children and 24 (38.7%) were adults. Patients with unilateral LSCD (33 children and 21 adults) had autografts and those with bilateral LSCD (5 children and 3 adults) had allografts. Amongst the 54 autografts partial and total anatomical success were noted in 21.2% and 66.6% children, respectively, and 19.0% and 80.9% in adults, respectively (p value 0.23). Visual improvement of 1 line and ≥2 lines was seen in 57.5% and 21.2% children, respectively, and 38% and 38% in adults, respectively (p value 0.31). Conclusion. Cultivated limbal epithelial transplantation gives good long-term results in patients with LSCD and the outcomes are comparable in children and adults. PMID:26770973

  14. Reliability of intracerebral hemorrhage classification systems: A systematic review.

    PubMed

    Rannikmäe, Kristiina; Woodfield, Rebecca; Anderson, Craig S; Charidimou, Andreas; Chiewvit, Pipat; Greenberg, Steven M; Jeng, Jiann-Shing; Meretoja, Atte; Palm, Frederic; Putaala, Jukka; Rinkel, Gabriel Je; Rosand, Jonathan; Rost, Natalia S; Strbian, Daniel; Tatlisumak, Turgut; Tsai, Chung-Fen; Wermer, Marieke Jh; Werring, David; Yeh, Shin-Joe; Al-Shahi Salman, Rustam; Sudlow, Cathie Lm

    2016-08-01

    Accurately distinguishing non-traumatic intracerebral hemorrhage (ICH) subtypes is important since they may have different risk factors, causal pathways, management, and prognosis. We systematically assessed the inter- and intra-rater reliability of ICH classification systems. We sought all available reliability assessments of anatomical and mechanistic ICH classification systems from electronic databases and personal contacts until October 2014. We assessed included studies' characteristics, reporting quality and potential for bias; summarized reliability with kappa value forest plots; and performed meta-analyses of the proportion of cases classified into each subtype. We included 8 of 2152 studies identified. Inter- and intra-rater reliabilities were substantial to perfect for anatomical and mechanistic systems (inter-rater kappa values: anatomical 0.78-0.97 [six studies, 518 cases], mechanistic 0.89-0.93 [three studies, 510 cases]; intra-rater kappas: anatomical 0.80-1 [three studies, 137 cases], mechanistic 0.92-0.93 [two studies, 368 cases]). Reporting quality varied but no study fulfilled all criteria and none was free from potential bias. All reliability studies were performed with experienced raters in specialist centers. Proportions of ICH subtypes were largely consistent with previous reports suggesting that included studies are appropriately representative. Reliability of existing classification systems appears excellent but is unknown outside specialist centers with experienced raters. Future reliability comparisons should be facilitated by studies following recently published reporting guidelines. © 2016 World Stroke Organization.

  15. TU-AB-303-02: A Novel Surrogate to Identify Anatomical Changes During Radiotherapy of Head and Neck Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gros, S; Roeske, J; Surucu, M

    Purpose: To develop a novel method to monitor external anatomical changes in head and neck cancer patients in order to help guide adaptive radiotherapy decisions. Methods: The method, developed in MATLAB, reveals internal anatomical changes based on variations observed in external anatomy. Weekly kV-CBCT scans from 11 Head and neck patients were retrospectively analyzed. The pre-processing step first corrects each CBCT for artifacts and removes pixels from the immobilization mask to produce an accurate external contour of the patient’s skin. After registering the CBCTs to the initial planning CT, the external contours from each CBCT (CBCTn) are transferred to themore » first week — reference — CBCT{sub 1}. Contour radii, defined as the distances between an external contour and the central pixel of each CBCT slice, are calculated for each scan at angular increments of 1 degree. The changes in external anatomy are then quantified by the difference in radial distance between the external contours of CBCT1 and CBCTn. The radial difference is finally displayed on a 2D intensity map (angle vs radial distance difference) in order to highlight regions of interests with significant changes. Results: The 2D radial difference maps provided qualitative and quantitative information, such as the location and the magnitude of external contour divergences and the rate at which these deviations occur. With this method, anatomical changes due to tumor volume shrinkage and patient weight loss were clearly identified and could be correlated with the under-dosage of targets or over-dosage of OARs. Conclusion: This novel method provides an efficient tool to visualize 3D external anatomical modification on a single 2D map. It quickly pinpoints the location of differences in anatomy during the course of radiotherapy, which can help determine if a treatment plan needs to be adapted.« less

  16. The natural history and patterns of metastases from mucosal melanoma: an analysis of 706 prospectively-followed patients.

    PubMed

    Lian, B; Cui, C L; Zhou, L; Song, X; Zhang, X S; Wu, D; Si, L; Chi, Z H; Sheng, X N; Mao, L L; Wang, X; Tang, B X; Yan, X Q; Kong, Y; Dai, J; Li, S M; Bai, X; Zheng, N; Balch, C M; Guo, J

    2017-04-01

    We examined whether mucosal melanomas are different in their clinical course and patterns of metastases when arising from different anatomic sites. Our hypothesis was that metastatic behavior would differ from primary mucosal melanomas at different anatomical sites. Clinical and pathological data from 706 patients were compared for their stage distribution, patterns of metastases, CKIT/BRAF mutation status, and overall survival for different anatomical sites. The anatomic sites of the primary mucosal melanomas were from the lower GI tract (26.5%), nasal cavity and paranasal sinuses (23%), gynecological sites (22.5%), oral cavity (15%), urological sites (5%), upper GI tract (5%), and other sites (3.0%). At initial diagnosis, 14.5% were stage I disease, 41% Stage II, 21.5% Stage III, and 23.0% stage IV. Predominant metastatic sites were regional lymph nodes (21.5%), lung (21%), liver (18.5%), and distant nodes (9%). Oral cavity mucosal melanoma had a higher incidence of regional nodal metastases (31.7% versus 19.8%, P = 0.009), and a higher incidence of lung metastases (32.5% versus 18.5%, P = 0.007) compared to other primary mucosal melanomas. There was a 10% incidence of CKIT mutation and 12% BRAF mutation. Mucosal melanomas from nasal pharyngeal and oral, gastrointestinal, gynecological, and urological had a similar survival with a 1-year survival rate (88%, 83%, 86%), 2-year survival rate (66%, 57%, 61%), 5-year survival rate (27%, 16%, 20%), respectively. The largest sample size allows, for the first time, a comparison of primary melanoma stage and patterns of metastases across anatomical sites. With few exceptions, the presenting stages, incidence of nodal and distant metastases, the site of predilection of distant metastases, or overall survival were similar despite different primary anatomic sites. These findings suggest that clinical trials involving mucosal melanomas and the administration of systemic therapy can be applied equally to mucosal melanomas regardless of their primary anatomic site. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Anatomical robust optimization to account for nasal cavity filling variation during intensity-modulated proton therapy: a comparison with conventional and adaptive planning strategies

    NASA Astrophysics Data System (ADS)

    van de Water, Steven; Albertini, Francesca; Weber, Damien C.; Heijmen, Ben J. M.; Hoogeman, Mischa S.; Lomax, Antony J.

    2018-01-01

    The aim of this study is to develop an anatomical robust optimization method for intensity-modulated proton therapy (IMPT) that accounts for interfraction variations in nasal cavity filling, and to compare it with conventional single-field uniform dose (SFUD) optimization and online plan adaptation. We included CT data of five patients with tumors in the sinonasal region. Using the planning CT, we generated for each patient 25 ‘synthetic’ CTs with varying nasal cavity filling. The robust optimization method available in our treatment planning system ‘Erasmus-iCycle’ was extended to also account for anatomical uncertainties by including (synthetic) CTs with varying patient anatomy as error scenarios in the inverse optimization. For each patient, we generated treatment plans using anatomical robust optimization and, for benchmarking, using SFUD optimization and online plan adaptation. Clinical target volume (CTV) and organ-at-risk (OAR) doses were assessed by recalculating the treatment plans on the synthetic CTs, evaluating dose distributions individually and accumulated over an entire fractionated 50 GyRBE treatment, assuming each synthetic CT to correspond to a 2 GyRBE fraction. Treatment plans were also evaluated using actual repeat CTs. Anatomical robust optimization resulted in adequate CTV doses (V95%  ⩾  98% and V107%  ⩽  2%) if at least three synthetic CTs were included in addition to the planning CT. These CTV requirements were also fulfilled for online plan adaptation, but not for the SFUD approach, even when applying a margin of 5 mm. Compared with anatomical robust optimization, OAR dose parameters for the accumulated dose distributions were on average 5.9 GyRBE (20%) higher when using SFUD optimization and on average 3.6 GyRBE (18%) lower for online plan adaptation. In conclusion, anatomical robust optimization effectively accounted for changes in nasal cavity filling during IMPT, providing substantially improved CTV and OAR doses compared with conventional SFUD optimization. OAR doses can be further reduced by using online plan adaptation.

  18. Drift mobility of photo-electrons in organic molecular crystals: Quantitative comparison between theory and experiment

    NASA Astrophysics Data System (ADS)

    Reineker, P.; Kenkre, V. M.; Kühne, R.

    1981-08-01

    A quantitative comparison of a simple theoretical prediction for the drift mobility of photo-electrons in organic molecular crystals, calculated within the model of the coupled band-like and hopping motion, with experiments in napthalene of Schein et al. and Karl et al. is given.

  19. Spatiotemporal alignment of in utero BOLD-MRI series.

    PubMed

    Turk, Esra Abaci; Luo, Jie; Gagoski, Borjan; Pascau, Javier; Bibbo, Carolina; Robinson, Julian N; Grant, P Ellen; Adalsteinsson, Elfar; Golland, Polina; Malpica, Norberto

    2017-08-01

    To present a method for spatiotemporal alignment of in-utero magnetic resonance imaging (MRI) time series acquired during maternal hyperoxia for enabling improved quantitative tracking of blood oxygen level-dependent (BOLD) signal changes that characterize oxygen transport through the placenta to fetal organs. The proposed pipeline for spatiotemporal alignment of images acquired with a single-shot gradient echo echo-planar imaging includes 1) signal nonuniformity correction, 2) intravolume motion correction based on nonrigid registration, 3) correction of motion and nonrigid deformations across volumes, and 4) detection of the outlier volumes to be discarded from subsequent analysis. BOLD MRI time series collected from 10 pregnant women during 3T scans were analyzed using this pipeline. To assess pipeline performance, signal fluctuations between consecutive timepoints were examined. In addition, volume overlap and distance between manual region of interest (ROI) delineations in a subset of frames and the delineations obtained through propagation of the ROIs from the reference frame were used to quantify alignment accuracy. A previously demonstrated rigid registration approach was used for comparison. The proposed pipeline improved anatomical alignment of placenta and fetal organs over the state-of-the-art rigid motion correction methods. In particular, unexpected temporal signal fluctuations during the first normoxia period were significantly decreased (P < 0.01) and volume overlap and distance between region boundaries measures were significantly improved (P < 0.01). The proposed approach to align MRI time series enables more accurate quantitative studies of placental function by improving spatiotemporal alignment across placenta and fetal organs. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:403-412. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Comparison of in situ forces and knee kinematics in anteromedial and high anteromedial bundle augmentation for partially ruptured anterior cruciate ligament.

    PubMed

    Xu, Yan; Liu, Jianyu; Kramer, Scott; Martins, Cesar; Kato, Yuki; Linde-Rosen, Monica; Smolinski, Patrick; Fu, Freddie H

    2011-02-01

    High tunnel placement is common in single- and double-bundle anterior cruciate ligament (ACL) reconstructions. Similar nonanatomic tunnel placement may also occur in ACL augmentation surgery. In this study, in situ forces and knee kinematics were compared between nonanatomic high anteromedial (AM) and anatomic AM augmentation in a knee with isolated AM bundle injury. Controlled laboratory study. Seven fresh-frozen cadaver knees were used (age, 48 ± 12.5 years). First, intact knee kinematics was tested with a robotic-universal force sensor testing system under 2 loading conditions. An 89-N anterior load was applied, and an anterior tibial translation was measured at knee flexion angles of 0°, 30°, 60°, and 90°. Then, combined rotatory loads of 7-N·m valgus and 5-N·m internal tibial rotation were applied at 15° and 30° of knee flexion angles, which mimic the pivot shift. Afterward, only the AM bundle of the ACL was cut arthroscopically, keeping the posterolateral bundle intact. The knee was again tested using the intact knee kinematics to measure the in situ force of the AM bundle. Then, arthroscopic anatomic AM bundle reconstruction was performed with an allograft, and the knee was tested to give the in situ force of the reconstructed AM bundle. Knee kinematics under the 3 conditions (intact, anatomic AM augmentation, and nonanatomic high AM augmentation) and the in situ force were compared and analyzed. The high AM graft had significantly lower in situ force than the intact and anatomic reconstructed AM bundle at 0° of knee flexion (P < .05) and the intact AM bundle at 30° of knee flexion under anterior tibial loading. There were no differences between anatomic graft and intact AM bundle. The high AM graft also had a significantly lower in situ force than the intact and anatomic reconstructed AM with simulated pivot-shift loading at 15° and 30° of flexion (P < .05). Under anterior tibial and rotatory loading, there was a difference in tibial displacement between anatomic and high AM reconstructions and between the high AM graft and intact ACL under rotational loading with the knee at 15° of flexion. Anatomic AM augmentation can lead to biomechanical advantages at time zero when compared with the nonanatomic (high AM) augmentation. Anatomic AM augmentation better restores the knee kinematics to the intact ACL state.

  1. A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging

    PubMed Central

    Louapre, Céline; Govindarajan, Sindhuja T.; Giannì, Costanza; Nielsen, A. Scott; Cohen-Adad, Julien; Sloane, Jacob; Kinkel, Revere P.

    2015-01-01

    We used a surface-based analysis of T2* relaxation rates at 7 T magnetic resonance imaging, which allows sampling quantitative T2* throughout the cortical width, to map in vivo the spatial distribution of intracortical pathology in multiple sclerosis. Ultra-high resolution quantitative T2* maps were obtained in 10 subjects with clinically isolated syndrome/early multiple sclerosis (≤3 years disease duration), 18 subjects with relapsing-remitting multiple sclerosis (≥4 years disease duration), 13 subjects with secondary progressive multiple sclerosis, and in 17 age-matched healthy controls. Quantitative T2* maps were registered to anatomical cortical surfaces for sampling T2* at 25%, 50% and 75% depth from the pial surface. Differences in laminar quantitative T2* between each patient group and controls were assessed using general linear model (P < 0.05 corrected for multiple comparisons). In all 41 multiple sclerosis cases, we tested for associations between laminar quantitative T2*, neurological disability, Multiple Sclerosis Severity Score, cortical thickness, and white matter lesions. In patients, we measured, T2* in intracortical lesions and in the intracortical portion of leukocortical lesions visually detected on 7 T scans. Cortical lesional T2* was compared with patients’ normal-appearing cortical grey matter T2* (paired t-test) and with mean cortical T2* in controls (linear regression using age as nuisance factor). Subjects with multiple sclerosis exhibited relative to controls, independent from cortical thickness, significantly increased T2*, consistent with cortical myelin and iron loss. In early disease, T2* changes were focal and mainly confined at 25% depth, and in cortical sulci. In later disease stages T2* changes involved deeper cortical laminae, multiple cortical areas and gyri. In patients, T2* in intracortical and leukocortical lesions was increased compared with normal-appearing cortical grey matter (P < 10−10 and P < 10−7), and mean cortical T2* in controls (P < 10−5 and P < 10−6). In secondary progressive multiple sclerosis, T2* in normal-appearing cortical grey matter was significantly increased relative to controls (P < 0.001). Laminar T2* changes may, thus, result from cortical pathology within and outside focal cortical lesions. Neurological disability and Multiple Sclerosis Severity Score correlated each with the degree of laminar quantitative T2* changes, independently from white matter lesions, the greatest association being at 25% depth, while they did not correlate with cortical thickness and volume. These findings demonstrate a gradient in the expression of cortical pathology throughout stages of multiple sclerosis, which was associated with worse disability and provides in vivo evidence for the existence of a cortical pathological process driven from the pial surface. PMID:25681411

  2. A Partnership Training Program in Breast Cancer Research Using Molecular Imaging Techniques

    DTIC Science & Technology

    2008-07-01

    PubMed) 2. Berlier J.E., Rothe A., Buller G., Bradford J., Gray D.R., Filanoski B.J., Telford W.G., Yue S., Liu J., Cheung C.Y., et al. Quantitative...3 3 cm3 voxel within the gray matter of the occipitoparietal lobe was established using anatomic landmarks. Pulse Sequences All experiments were...software (SAS Institute, Cary, NC, USA). RESULTS Figure 1 shows a PRESS spectrum recorded from the occipitoparietal gray matter region of a 25-year-old sub

  3. Subjective and objective comparisons of image quality between ultra-high-resolution CT and conventional area detector CT in phantoms and cadaveric human lungs.

    PubMed

    Yanagawa, Masahiro; Hata, Akinori; Honda, Osamu; Kikuchi, Noriko; Miyata, Tomo; Uranishi, Ayumi; Tsukagoshi, Shinsuke; Tomiyama, Noriyuki

    2018-05-29

    To compare the image quality of the lungs between ultra-high-resolution CT (U-HRCT) and conventional area detector CT (AD-CT) images. Image data of slit phantoms (0.35, 0.30, and 0.15 mm) and 11 cadaveric human lungs were acquired by both U-HRCT and AD-CT devices. U-HRCT images were obtained with three acquisition modes: normal mode (U-HRCT N : 896 channels, 0.5 mm × 80 rows; 512 matrix), super-high-resolution mode (U-HRCT SHR : 1792 channels, 0.25 mm × 160 rows; 1024 matrix), and volume mode (U-HRCT SHR-VOL : non-helical acquisition with U-HRCT SHR ). AD-CT images were obtained with the same conditions as U-HRCT N . Three independent observers scored normal anatomical structures (vessels and bronchi), abnormal CT findings (faint nodules, solid nodules, ground-glass opacity, consolidation, emphysema, interlobular septal thickening, intralobular reticular opacities, bronchovascular bundle thickening, bronchiectasis, and honeycombing), noise, artifacts, and overall image quality on a 3-point scale (1 = worst, 2 = equal, 3 = best) compared with U-HRCT N . Noise values were calculated quantitatively. U-HRCT could depict a 0.15-mm slit. Both U-HRCT SHR and U-HRCT SHR-VOL significantly improved visualization of normal anatomical structures and abnormal CT findings, except for intralobular reticular opacities and reduced artifacts, compared with AD-CT (p < 0.014). Visually, U-HRCT SHR-VOL has less noise than U-HRCT SHR and AD-CT (p < 0.00001). Quantitative noise values were significantly higher in the following order: U-HRCT SHR (mean, 30.41), U-HRCT SHR-VOL (26.84), AD-CT (16.03), and U-HRCT N (15.14) (p < 0.0001). U-HRCT SHR and U-HRCT SHR-VOL resulted in significantly higher overall image quality than AD-CT and were almost equal to U-HRCT N (p < 0.0001). Both U-HRCT SHR and U-HRCT SHR-VOL can provide higher image quality than AD-CT, while U-HRCT SHR-VOL was less noisy than U-HRCT SHR . • Ultra-high-resolution CT (U-HRCT) can improve spatial resolution. • U-HRCT can reduce streak and dark band artifacts. • U-HRCT can provide higher image quality than conventional area detector CT. • In U-HRCT, the volume mode is less noisy than the super-high-resolution mode. • U-HRCT may provide more detailed information about the lung anatomy and pathology.

  4. Anatomy in Cologne--Institutional development and body supply from the Weimar Republic to the early post-war period.

    PubMed

    Kaiser, Stephanie; Gross, Dominik

    2015-07-01

    The Anatomical Institute of the University of Cologne was founded in 1925. This paper highlights its institutional development and the sources from which it procured bodies for dissection. A comparison is drawn between the first years of the institute's existence during the Weimar Republic (1925-1932) and its rebuilding after war damage in the early post-war period (1947-1954). The institute and its procurement of bodies have not previously been investigated for these two time periods. The Third Reich, for which a detailed study already exists, will be mentioned as well to allow better evaluation of the periods before and after National Socialism. Based on newly evaluated archival material and body journals which will be examined both quantitatively and qualitatively, it becomes apparent that the Cologne institute experienced a chronic shortage of bodies both during the Weimar Republic and the first post-war decade (even though the delivery facilities were mostly the same). However, the situation of the institute in terms of structure, organization and personnel as well as body supply in the aftermath of World War II proved much more challenging than during the time of the Weimar Republic. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Fecal blood loss in patients with colonic polyps: a comparison of measurements with 51chromium-labeled erythrocytes and with the Haemoccult test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herzog, P.; Holtermueller, K.H.; Preiss, J.

    1982-11-01

    The quantitative determinations of fecal daily blood loss after intravenous administration of /sup 51/Cr-labeled erythrocytes in 44 patients with colonic polyps and in 11 controls were compared with the results of the daily performed Haemoccult test without dietary restrictions. A total of 642 stool specimens was analyzed for /sup 51/Cr loss and the Haemoccult test. The mean fecal daily blood loss in the 34 patients with adenomatous polyps of the descending colon and rectosigmoid was 1.36 +/- 0.14 ml/day (mean +/- SEM), in the 10 patients with polyps of the ascending and transverse colon it was 1.28 +/- 0.31 ml/day,more » and in the 11 controls 0.62 +/- 0.07 ml/day. There was no positive Haemoccult test in the controls. In fecal specimens from patients with polyps in the descending colon and rectosigmoid containing 2.0-3.99 ml blood/day, the Haemoccult-test was positive in 86%. Fecal specimens from patients with polyps in the ascending colon and transverse colon containing equal blood loss yielded a positive Haemoccult test result in 26%. Thus, the positivity of the Haemoccult test is determined by the fecal daily blood loss and the anatomic location of colonic bleeding sites.« less

  6. The partial volume effect in the quantification of 1H magnetic resonance spectroscopy in Alzheimer's disease and aging.

    PubMed

    Mato Abad, Virginia; Quirós, Alicia; García-Álvarez, Roberto; Loureiro, Javier Pereira; Alvarez-Linera, Juan; Frank, Ana; Hernández-Tamames, Juan Antonio

    2014-01-01

    1H-MRS variability increases due to normal aging and also as a result of atrophy in grey and white matter caused by neurodegeneration. In this work, an automatic process was developed to integrate data from spectra and high-resolution anatomical images to quantify metabolites, taking into account tissue partial volumes within the voxel of interest avoiding additional spectra acquisitions required for partial volume correction. To evaluate this method, we use a cohort of 135 subjects (47 male and 88 female, aged between 57 and 99 years) classified into 4 groups: 38 healthy participants, 20 amnesic mild cognitive impairment patients, 22 multi-domain mild cognitive impairment patients, and 55 Alzheimer's disease patients. Our findings suggest that knowing the voxel composition of white and grey matter and cerebrospinal fluid is necessary to avoid partial volume variations in a single-voxel study and to decrease part of the variability found in metabolites quantification, particularly in those studies involving elder patients and neurodegenerative diseases. The proposed method facilitates the use of 1H-MRS techniques in statistical studies in Alzheimer's disease, because it provides more accurate quantitative measurements, reduces the inter-subject variability, and improves statistical results when performing group comparisons.

  7. Portable Wideband Microwave Imaging System for Intracranial Hemorrhage Detection Using Improved Back-projection Algorithm with Model of Effective Head Permittivity

    PubMed Central

    Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.

    2016-01-01

    Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials. PMID:26842761

  8. The emerging potential of magnetic resonance imaging in personalizing radiotherapy for head and neck cancer: an oncologist's perspective.

    PubMed

    Wong, Kee H; Panek, Rafal; Bhide, Shreerang A; Nutting, Christopher M; Harrington, Kevin J; Newbold, Katie L

    2017-03-01

    Head and neck cancer (HNC) is a challenging tumour site for radiotherapy delivery owing to its complex anatomy and proximity to organs at risk (OARs) such as the spinal cord and optic apparatus. Despite significant advances in radiotherapy planning techniques, radiation-induced morbidities remain substantial. Further improvement would require high-quality imaging and tailored radiotherapy based on intratreatment response. For these reasons, the use of MRI in radiotherapy planning for HNC is rapidly gaining popularity. MRI provides superior soft-tissue contrast in comparison with CT, allowing better definition of the tumour and OARs. The lack of additional radiation exposure is another attractive feature for intratreatment monitoring. In addition, advanced MRI techniques such as diffusion-weighted, dynamic contrast-enhanced and intrinsic susceptibility-weighted MRI techniques are capable of characterizing tumour biology further by providing quantitative functional parameters such as tissue cellularity, vascular permeability/perfusion and hypoxia. These functional parameters are known to have radiobiological relevance, which potentially could guide treatment adaptation based on their changes prior to or during radiotherapy. In this article, we first present an overview of the applications of anatomical MRI sequences in head and neck radiotherapy, followed by the potentials and limitations of functional MRI sequences in personalizing therapy.

  9. Numerical dosimetry of transcranial magnetic stimulation coils

    NASA Astrophysics Data System (ADS)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique capable of stimulating neurons by means of electromagnetic induction. TMS can be used to map brain function and shows promise for the diagnosis and treatment of neurological and psychiatric disorders. Calculation of fields induced in the brain are necessary to accurately identify stimulated neural tissue during TMS. This allows the development of novel TMS coil designs capable of stimulating deeper brain regions and increasing the localization of stimulation that can be achieved. We have performed numerical calculations of magnetic and electric field with high-resolution anatomically realistic human head models to find these stimulated brain regions for a variety of proposed TMS coil designs. The realistic head models contain heterogeneous tissue structures and electrical conductivities, yielding superior results to those obtained from the simplified homogeneous head models that are commonly employed. The attenuation of electric field as a function of depth in the brain and the localization of stimulating field have been methodically investigated. In addition to providing a quantitative comparison of different TMS coil designs the variation of induced field between subjects has been investigated. We also show the differences in induced fields between adult, adolescent and child head models to preemptively identify potential safety issues in the application of pediatric TMS.

  10. The Creation and Statistical Evaluation of a Deterministic Model of the Human Bronchial Tree from HRCT Images.

    PubMed

    Montesantos, Spyridon; Katz, Ira; Pichelin, Marine; Caillibotte, Georges

    2016-01-01

    A quantitative description of the morphology of lung structure is essential prior to any form of predictive modeling of ventilation or aerosol deposition implemented within the lung. The human lung is a very complex organ, with airway structures that span two orders of magnitude and having a multitude of interfaces between air, tissue and blood. As such, current medical imaging protocols cannot provide medical practitioners and researchers with in-vivo knowledge of deeper lung structures. In this work a detailed algorithm for the generation of an individualized 3D deterministic model of the conducting part of the human tracheo-bronchial tree is described. Distinct initial conditions were obtained from the high-resolution computed tomography (HRCT) images of seven healthy volunteers. The algorithm developed is fractal in nature and is implemented as a self-similar space sub-division procedure. The expansion process utilizes physiologically realistic relationships and thresholds to produce an anatomically consistent human airway tree. The model was validated through extensive statistical analysis of the results and comparison of the most common morphological features with previously published morphometric studies and other equivalent models. The resulting trees were shown to be in good agreement with published human lung geometric characteristics and can be used to study, among other things, structure-function relationships in simulation studies.

  11. Portable Wideband Microwave Imaging System for Intracranial Hemorrhage Detection Using Improved Back-projection Algorithm with Model of Effective Head Permittivity

    NASA Astrophysics Data System (ADS)

    Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.

    2016-02-01

    Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials.

  12. Comparison between isotropic linear-elastic law and isotropic hyperelastic law in the finite element modeling of the brachial plexus.

    PubMed

    Perruisseau-Carrier, A; Bahlouli, N; Bierry, G; Vernet, P; Facca, S; Liverneaux, P

    2017-12-01

    Augmented reality could help the identification of nerve structures in brachial plexus surgery. The goal of this study was to determine which law of mechanical behavior was more adapted by comparing the results of Hooke's isotropic linear elastic law to those of Ogden's isotropic hyperelastic law, applied to a biomechanical model of the brachial plexus. A model of finite elements was created using the ABAQUS ® from a 3D model of the brachial plexus acquired by segmentation and meshing of MRI images at 0°, 45° and 135° of shoulder abduction of a healthy subject. The offset between the reconstructed model and the deformed model was evaluated quantitatively by the Hausdorff distance and qualitatively by the identification of 3 anatomical landmarks. In every case the Hausdorff distance was shorter with Ogden's law compared to Hooke's law. On a qualitative aspect, the model deformed by Ogden's law followed the concavity of the reconstructed model whereas the model deformed by Hooke's law remained convex. In conclusion, the results of this study demonstrate that the behavior of Ogden's isotropic hyperelastic mechanical model was more adapted to the modeling of the deformations of the brachial plexus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. The emerging potential of magnetic resonance imaging in personalizing radiotherapy for head and neck cancer: an oncologist's perspective

    PubMed Central

    Panek, Rafal; Bhide, Shreerang A; Nutting, Christopher M; Harrington, Kevin J; Newbold, Katie L

    2017-01-01

    Head and neck cancer (HNC) is a challenging tumour site for radiotherapy delivery owing to its complex anatomy and proximity to organs at risk (OARs) such as the spinal cord and optic apparatus. Despite significant advances in radiotherapy planning techniques, radiation-induced morbidities remain substantial. Further improvement would require high-quality imaging and tailored radiotherapy based on intratreatment response. For these reasons, the use of MRI in radiotherapy planning for HNC is rapidly gaining popularity. MRI provides superior soft-tissue contrast in comparison with CT, allowing better definition of the tumour and OARs. The lack of additional radiation exposure is another attractive feature for intratreatment monitoring. In addition, advanced MRI techniques such as diffusion-weighted, dynamic contrast-enhanced and intrinsic susceptibility-weighted MRI techniques are capable of characterizing tumour biology further by providing quantitative functional parameters such as tissue cellularity, vascular permeability/perfusion and hypoxia. These functional parameters are known to have radiobiological relevance, which potentially could guide treatment adaptation based on their changes prior to or during radiotherapy. In this article, we first present an overview of the applications of anatomical MRI sequences in head and neck radiotherapy, followed by the potentials and limitations of functional MRI sequences in personalizing therapy. PMID:28256151

  14. Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement.

    PubMed

    Ortmaier, T; Weiss, H; Döbele, S; Schreiber, U

    2006-12-01

    This article presents experimental results for robot-assisted navigated drilling and milling for pedicle screw placement. The preliminary study was carried out in order to gain first insights into positioning accuracies and machining forces during hands-on robotic spine surgery. Additionally, the results formed the basis for the development of a new robot for surgery. A simplified anatomical model is used to derive the accuracy requirements. The experimental set-up consists of a navigation system and an impedance-controlled light-weight robot holding the surgical instrument. The navigation system is used to position the surgical instrument and to compensate for pose errors during machining. Holes are drilled in artificial bone and bovine spine. A quantitative comparison of the drill-hole diameters was achieved using a computer. The interaction forces and pose errors are discussed with respect to the chosen machining technology and control parameters. Within the technological boundaries of the experimental set-up, it is shown that the accuracy requirements can be met and that milling is superior to drilling. It is expected that robot assisted navigated surgery helps to improve the reliability of surgical procedures. Further experiments are necessary to take the whole workflow into account. Copyright 2006 John Wiley & Sons, Ltd.

  15. Radiation dose and image conspicuity comparison between conventional 120 kVp and 150 kVp with spectral beam shaping for temporal bone CT.

    PubMed

    Kim, Chang Rae; Jeon, Ji Young

    2018-05-01

    The purpose of this article is to compare radiation doses and conspicuity of anatomic landmarks of the temporal bone between the CT technique using spectral beam shaping at 150 kVp with a dedicated tin filter (150 kVp-Sn) and the conventional protocol at 120 kVp. 25 patients (mean age, 46.8 ± 21.2 years) were examined using the 150-kVp Sn protocol (200 reference mAs using automated tube current modulation, 64 × 0.6 mm collimation, 0.6 mm slice thickness, pitch 0.8), whereas 30 patients (mean age, 54.5 ± 17.8 years) underwent the 120-kVp protocol (180 mAs, 128 × 0.6 mm collimation, 0.6 mm slice thickness, pitch 0.8). Radiation doses were compared between the two acquisition techniques, and dosimetric data from the literature were reviewed for comparison of radiation dose reduction. Subjective conspicuity of 23 anatomic landmarks of the temporal bone, expressed by 5-point rating scale and objective conspicuity by signal-to-noise ratio (SNR) which measured in 4 different regions of interest (ROI), were compared between 150-kVp Sn and 120-kVp acquisitions. The mean dose-length-product (DLP) and effective dose were significantly lower for the 150-kVp Sn scans (0.26 ± 0.26 mSv) compared with the 120-kVp scans (0.92 ± 0.10 mSv, p < 0.001). The lowest effective dose from the literature-based protocols was 0.31 ± 0.12 mSv, which proposed as a low-dose protocol in the setting of spiral multislice temporal bone CT. SNR was slightly superior for 120-kVp images, however analyzability of the 23 anatomic structures did not differ significantly between 150-kVp Sn and 120-kVp scans. Temporal bone CT performed at 150 kVp with an additional tin filter for spectral shaping markedly reduced radiation exposure when compared with conventional temporal bone CT at 120 kVp while maintaining anatomic conspicuity. The decreased radiation dose of the 150-kVp Sn was also lower in comparison to the previous literature-based low-dose temporal bone CT protocol. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Quantitative nuclear magnetic resonance imaging: characterisation of experimental cerebral oedema.

    PubMed Central

    Barnes, D; McDonald, W I; Johnson, G; Tofts, P S; Landon, D N

    1987-01-01

    Magnetic resonance imaging (MRI) has been used quantitatively to define the characteristics of two different models of experimental cerebral oedema in cats: vasogenic oedema produced by cortical freezing and cytotoxic oedema induced by triethyl tin. The MRI results have been correlated with the ultrastructural changes. The images accurately delineated the anatomical extent of the oedema in the two lesions, but did not otherwise discriminate between them. The patterns of measured increase in T1' and T2' were, however, characteristic for each type of oedema, and reflected the protein content. The magnetisation decay characteristics of both normal and oedematous white matter were monoexponential for T1 but biexponential for T2 decay. The relative sizes of the two component exponentials of the latter corresponded with the physical sizes of the major tissue water compartments. Quantitative MRI data can provide reliable information about the physico-chemical environment of tissue water in normal and oedematous cerebral tissue, and are useful for distinguishing between acute and chronic lesions in multiple sclerosis. Images PMID:3572428

  17. The integration of quantitative genetics, paleontology, and neontology reveals genetic underpinnings of primate dental evolution.

    PubMed

    Hlusko, Leslea J; Schmitt, Christopher A; Monson, Tesla A; Brasil, Marianne F; Mahaney, Michael C

    2016-08-16

    Developmental genetics research on mice provides a relatively sound understanding of the genes necessary and sufficient to make mammalian teeth. However, mouse dentitions are highly derived compared with human dentitions, complicating the application of these insights to human biology. We used quantitative genetic analyses of data from living nonhuman primates and extensive osteological and paleontological collections to refine our assessment of dental phenotypes so that they better represent how the underlying genetic mechanisms actually influence anatomical variation. We identify ratios that better characterize the output of two dental genetic patterning mechanisms for primate dentitions. These two newly defined phenotypes are heritable with no measurable pleiotropic effects. When we consider how these two phenotypes vary across neontological and paleontological datasets, we find that the major Middle Miocene taxonomic shift in primate diversity is characterized by a shift in these two genetic outputs. Our results build on the mouse model by combining quantitative genetics and paleontology, and thereby elucidate how genetic mechanisms likely underlie major events in primate evolution.

  18. Bayesian denoising in digital radiography: a comparison in the dental field.

    PubMed

    Frosio, I; Olivieri, C; Lucchese, M; Borghese, N A; Boccacci, P

    2013-01-01

    We compared two Bayesian denoising algorithms for digital radiographs, based on Total Variation regularization and wavelet decomposition. The comparison was performed on simulated radiographs with different photon counts and frequency content and on real dental radiographs. Four different quality indices were considered to quantify the quality of the filtered radiographs. The experimental results suggested that Total Variation is more suited to preserve fine anatomical details, whereas wavelets produce images of higher quality at global scale; they also highlighted the need for more reliable image quality indices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Optimized functional femoral rotation in navigated total knee arthroplasty considering ligament tension.

    PubMed

    Walde, T A; Bussert, J; Sehmisch, S; Balcarek, P; Stürmer, K M; Walde, H J; Frosch, K H

    2010-12-01

    Femoral malrotation in total knee arthroplasty is correlated to an increased number of revisions. Anatomic landmarks such as Whiteside line, posterior condyle axis and transepicondylar axis are used for determining femoral component rotation. The femoral rotation achieved with the anatomical landmarks is compared to the femoral rotation achieved by a navigated ligament tension-based tibia-first technique. Ninety-three consecutive patients with gonarthritis were prospectively enrolled. Intraoperatively the anatomical landmarks for femoral rotation and the achieved femoral rotation using a navigated tension-based tibia-first technique were determined and stored for further comparison. A pre- and postoperative functional diagram displaying the extension and flexion and varus or valgus positions was also part of the evaluation. Using anatomical landmarks the rotational errors ranged from 12.2° of internal rotation to 15.5° of external rotation from parallel to the tibial resection surface at 90° flexion. A statistical significant improved femoral rotation was achieved using the ligament tension-based method with a rotational error ranged from 3.0° of internal rotation to 2.4° of external rotation. The functional analyses demonstrated statistical significant lower varus/valgus deviations within the flexion range and an improved maximum varus deviation at 90° flexion using the ligament tension-based method. Compared to the anatomical landmarks a balanced, almost parallel flexion gap was achieved using a navigation technique taking the ligament tension of the knee joint into account. As a result the improved femoral rotation was demonstrated by the functional evaluation. Unilateral overloading of the polyethylene inlay and unilateral instability can thus be avoided. Copyright © 2009 Elsevier B.V. All rights reserved.

  20. Prevalence and anatomical location of muscle tenderness in adults with nonspecific neck/shoulder pain

    PubMed Central

    2011-01-01

    Background Many adults experience bothersome neck/shoulder pain. While research and treatment strategies often focus on the upper trapezius, other neck/shoulder muscles may be affected as well. The aim of the present study is to evaluate the prevalence and anatomical location of muscle tenderness in adults with nonspecific neck/shoulder pain. Methods Clinical neck/shoulder examination at two large office workplaces in Copenhagen, Denmark. 174 women and 24 men (aged 25-65 years) with nonspecific neck/shoulder pain for a duration of at least 30 days during the previous year and a pain intensity of at least 2 on a modified VAS-scale of 0-10 participated. Exclusion criteria were traumatic injuries or other serious chronic disease. Using a standardized finger pressure of 2 kg, palpable tenderness were performed of eight anatomical neck/shoulder locations in the left and right side on a scale of 'no tenderness', 'some tenderness' and 'severe tenderness'. Results In women, the levator scapulae, neck extensors and infraspinatus showed the highest prevalence of severe tenderness (18-30%). In comparison, the prevalence of severe tenderness in the upper trapezius, occipital border and supraspinatus was 13-19%. Severe tenderness of the medial deltoid was least prevalent (0-1%). In men, the prevalence of severe tenderness in the levator scapulae was 13-21%, and ranged between 0-8% in the remainder of the examined anatomical locations. Conclusions A high prevalence of tenderness exists in several anatomical locations of the neck/shoulder complex among adults with nonspecific neck/shoulder pain. Future research should focus on several neck/shoulder muscles, including the levator scapulae, neck extensors and infraspinatus, and not only the upper trapezius. Trial Registration ISRCTN60264809 PMID:21777478

  1. Prevalence and anatomical location of muscle tenderness in adults with nonspecific neck/shoulder pain.

    PubMed

    Andersen, Lars L; Hansen, Klaus; Mortensen, Ole S; Zebis, Mette K

    2011-07-22

    Many adults experience bothersome neck/shoulder pain. While research and treatment strategies often focus on the upper trapezius, other neck/shoulder muscles may be affected as well. The aim of the present study is to evaluate the prevalence and anatomical location of muscle tenderness in adults with nonspecific neck/shoulder pain. Clinical neck/shoulder examination at two large office workplaces in Copenhagen, Denmark. 174 women and 24 men (aged 25-65 years) with nonspecific neck/shoulder pain for a duration of at least 30 days during the previous year and a pain intensity of at least 2 on a modified VAS-scale of 0-10 participated. Exclusion criteria were traumatic injuries or other serious chronic disease. Using a standardized finger pressure of 2 kg, palpable tenderness were performed of eight anatomical neck/shoulder locations in the left and right side on a scale of 'no tenderness', 'some tenderness' and 'severe tenderness'. In women, the levator scapulae, neck extensors and infraspinatus showed the highest prevalence of severe tenderness (18-30%). In comparison, the prevalence of severe tenderness in the upper trapezius, occipital border and supraspinatus was 13-19%. Severe tenderness of the medial deltoid was least prevalent (0-1%). In men, the prevalence of severe tenderness in the levator scapulae was 13-21%, and ranged between 0-8% in the remainder of the examined anatomical locations. A high prevalence of tenderness exists in several anatomical locations of the neck/shoulder complex among adults with nonspecific neck/shoulder pain. Future research should focus on several neck/shoulder muscles, including the levator scapulae, neck extensors and infraspinatus, and not only the upper trapezius. ISRCTN60264809.

  2. Clinical comparison of CR and screen film for imaging the critically ill neonate

    NASA Astrophysics Data System (ADS)

    Andriole, Katherine P.; Brasch, Robert C.; Gooding, Charles A.; Gould, Robert G.; Cohen, Pierre A.; Rencken, Ingo R.; Huang, H. K.

    1996-05-01

    A clinical comparison of computed radiography (CR) versus screen-film for imaging the critically-ill neonate is performed, utilizing a modified (hybrid) film cassette containing a CR (standard ST-V) imaging plate, a conventional screen and film, allowing simultaneous acquisition of perfectly matched CR and plain film images. For 100 portable neonatal chest and abdominal projection radiographs, plain film was subjectively compared to CR hardcopy. Three pediatric radiologists graded overall image quality on a scale of one (poor) to five (excellent), as well as visualization of various anatomic structures (i.e., lung parenchyma, pulmonary vasculature, tubes/lines) and pathological findings (i.e., pulmonary interstitial emphysema, pleural effusion, pneumothorax). Results analyzed using a combined kappa statistic of the differences between scores from each matched set, combined over the three readers showed no statistically significant difference in overall image quality between screen- film and CR (p equals 0.19). Similarly, no statistically significant difference was seen between screen-film and CR for anatomic structure visualization and for visualization of pathological findings. These results indicate that the image quality of CR is comparable to plain film, and that CR may be a suitable alternative to screen-film imaging for portable neonatal chest and abdominal examinations.

  3. The natural armors of fish: A comparison of the lamination pattern and structure of scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murcia, Sandra; Lavoie, Ellen; Linley, Tim

    Fish scales exhibit a unique balance of flexibility, strength and toughness, which is essential to provide protection without encumbering locomotion. Although the mechanical behavior and structure of this natural armor are of recent interest, a comparison of these qualities from scales of different fish species has not been reported. In this investigation the armor of fish with different locomotion, size and protection needs were analyzed. Scales from the Arapaima gigas, the tarpon (Megalops atlanticus) and the carp (Cyprinus carpio) were compared in terms of the stacking sequence of individual plies and their microstructure. The scales were also compared with respectmore » to anatomical position to distinguish site-specific functional differences. Results show that the lamination sequence of plies for the carp and tarpon exhibit a Bouligand structure with relative rotation of 75° between consecutive plies. The arapaima scales exhibit a cross-ply structure, with 90° rotation between adjacent plies. In addition, results indicate that the volume fraction of reinforcement, the number of plies and the variations in thickness with anatomical position are unique amongst the three fish. These characteristics should be considered in evaluations focused on the mechanical behavior.« less

  4. Clinical and post mortem analysis of combat neck injury used to inform a novel coverage of armour tool.

    PubMed

    Breeze, J; Fryer, R; Hare, J; Delaney, R; Hunt, N C; Lewis, E A; Clasper, J C

    2015-04-01

    There is a requirement in the Ministry of Defence for an objective method of comparing the area of coverage of different body armour designs for future applications. Existing comparisons derived from surface wound mapping are limited in that they can only demonstrate the skin entry wound location. The Coverage of Armour Tool (COAT) is a novel three-dimensional model capable of comparing the coverage provided by body armour designs, but limited information exists as to which anatomical structures require inclusion. The aim of this study was to assess the utility of COAT, in the assessment of neck protection, using clinically relevant injury data. Hospital notes and post mortem records of all UK soldiers injured by an explosive fragment to the neck between 01 Jan 2006 and 31 December 2012 from Iraq and Afghanistan were analysed to determine which anatomical structures were responsible for death or functional disability at one year post injury. Using COAT a comparison of three ballistic neck collar designs was undertaken with reference to the percentage of these anatomical structures left exposed. 13/81 (16%) survivors demonstrated complications at one year, most commonly upper limb weakness from brachial plexus injury or a weak voice from laryngeal trauma. In 14/94 (15%) soldiers the neck wound was believed to have been the sole cause of death, primarily from carotid artery damage, spinal cord transection or rupture of the larynx. COAT objectively demonstrated that despite the larger OSPREY collar having almost double the surface area than the two-piece prototype collar, the percentage area of vulnerable cervical structures left exposed only reduced from 16.3% to 14.4%. COAT demonstrated its ability to objectively quantify the potential effectiveness of different body armour designs in providing coverage of vulnerable anatomical structures from different shot line orientations. To improve its utility, it is recommended that COAT be further developed to enable weapon and tissue specific information to be modelled, and that clinically significant injuries to other body regions are also incorporated. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  5. Flat-panel-detector chest radiography: effect of tube voltage on image quality.

    PubMed

    Uffmann, Martin; Neitzel, Ulrich; Prokop, Mathias; Kabalan, Nahla; Weber, Michael; Herold, Christian J; Schaefer-Prokop, Cornelia

    2005-05-01

    To compare the visibility of anatomic structures in direct-detector chest radiographs acquired with different tube voltages at equal effective doses to the patient. The study protocol was approved by the institutional internal review board, and written informed consent was obtained from all patients. Posteroanterior chest radiographs of 48 consecutively selected patients were obtained at 90, 121, and 150 kVp by using a flat-panel-detector unit that was based on cesium iodide technology and automated exposure control. Monte Carlo simulations were used to verify that the effective dose for all kilovoltage settings was equal. Five radiologists subjectively and independently rated the delineation of anatomic structures on hard-copy images by using a five-point scale. They also ranked image quality in a blinded side-by-side comparison. Average ranking scores were compared by using one-way analysis of variance with repeated measures. Data were analyzed for the entire patient group and for two patient subgroups that were formed according to body mass index (BMI). The visibility scores of most anatomic structures were significantly superior with the 90-kVp images (mean score, 3.11), followed by the 121-kVp (mean score, 2.95) and 150-kVp images (mean score, 2.80). Differences did not reach significance (P > .05) only for the delineation of the peripheral vessels, the heart contours, and the carina. This was also true for the subgroup of patients (n = 24) with a BMI greater than and the subgroup of patients (n = 24) with a BMI less than the mean BMI (26.9 kg/m(2)). At side-by-side comparison, the readers rated 90-kVp images as having superior image quality in the majority of image triplets; the percentage of 90-kVp images rated as "first choice" ranged from 60% (29 of 48 patients) to 90% (43 of 48 patients), with a median of 88% (42 of 48 patients), among the readers. Delineation of most anatomic structures and overall image quality were ranked superior in digital radiographs acquired with lower kilovoltage at a constant effective patient dose. (c) RSNA, 2005.

  6. Statistical Comparison of Spike Responses to Natural Stimuli in Monkey Area V1 With Simulated Responses of a Detailed Laminar Network Model for a Patch of V1

    PubMed Central

    Schuch, Klaus; Logothetis, Nikos K.; Maass, Wolfgang

    2011-01-01

    A major goal of computational neuroscience is the creation of computer models for cortical areas whose response to sensory stimuli resembles that of cortical areas in vivo in important aspects. It is seldom considered whether the simulated spiking activity is realistic (in a statistical sense) in response to natural stimuli. Because certain statistical properties of spike responses were suggested to facilitate computations in the cortex, acquiring a realistic firing regimen in cortical network models might be a prerequisite for analyzing their computational functions. We present a characterization and comparison of the statistical response properties of the primary visual cortex (V1) in vivo and in silico in response to natural stimuli. We recorded from multiple electrodes in area V1 of 4 macaque monkeys and developed a large state-of-the-art network model for a 5 × 5-mm patch of V1 composed of 35,000 neurons and 3.9 million synapses that integrates previously published anatomical and physiological details. By quantitative comparison of the model response to the “statistical fingerprint” of responses in vivo, we find that our model for a patch of V1 responds to the same movie in a way which matches the statistical structure of the recorded data surprisingly well. The deviation between the firing regimen of the model and the in vivo data are on the same level as deviations among monkeys and sessions. This suggests that, despite strong simplifications and abstractions of cortical network models, they are nevertheless capable of generating realistic spiking activity. To reach a realistic firing state, it was not only necessary to include both N-methyl-d-aspartate and GABAB synaptic conductances in our model, but also to markedly increase the strength of excitatory synapses onto inhibitory neurons (>2-fold) in comparison to literature values, hinting at the importance to carefully adjust the effect of inhibition for achieving realistic dynamics in current network models. PMID:21106898

  7. Neuropathology of alcoholism.

    PubMed

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    Chronic alcohol consumption results in structural changes to the brain. In alcoholics without coexisting thiamine deficiency or liver disease this is largely restricted to a loss of white-matter volume. When it occurs, neuronal loss is limited in anatomic distribution and only detected with quantitative techniques. This relative paucity of neurodegeneration is reflected in studies of gene and protein expression in postmortem brain where findings are subtle and discordant between studies. In alcoholics with coexisting pathologies, neuronal loss is more marked and affects a wider range of anatomic regions, especially subcortical nuclei. Although this more widespread damage may reflect a more severe drinking history, there is evidence linking thiamine deficiency and the consequences of liver disease to the pathogenesis of alcohol-related brain damage. Furthermore, a range of other factors, such as cigarette smoking and mood disorders, that are common in alcoholics, have the potential to influence studies of brain pathology and should be considered in further studies of the neuropathology of alcoholism. © 2014 Elsevier B.V. All rights reserved.

  8. Data representation for joint kinematics simulation of the lower limb within an educational context.

    PubMed

    Van Sint Jan, Serge; Hilal, Isam; Salvia, Patrick; Sholukha, Victor; Poulet, Pascal; Kirokoya, Ibrahim; Rooze, Marcel

    2003-04-01

    Three-dimensional (3D) visualization is becoming increasingly frequent in both qualitative and quantitative biomechanical studies of anatomical structures involving multiple data sources (e.g. morphological data and kinematics data). For many years, this kind of experiment was limited to the use of bi-dimensional images due to a lack of accurate 3D data. However, recent progress in medical imaging and computer graphics has forged new perspectives. Indeed, new techniques allow the development of an interactive interface for the simulation of human motions combining data from both medical imaging (i.e., morphology) and biomechanical studies (i.e., kinematics). Fields of application include medical education, biomechanical research and clinical research. This paper presents an experimental protocol for the development of anatomically realistic joint simulation within a pedagogical context. Results are shown for the lower limb. Extension to other joints is straightforward. This work is part of the Virtual Animation of the Kinematics of the Human project (VAKHUM) (http://www.ulb.ac.be/project/vakhum).

  9. MR Guided PET Image Reconstruction

    PubMed Central

    Bai, Bing; Li, Quanzheng; Leahy, Richard M.

    2013-01-01

    The resolution of PET images is limited by the physics of positron-electron annihilation and instrumentation for photon coincidence detection. Model based methods that incorporate accurate physical and statistical models have produced significant improvements in reconstructed image quality when compared to filtered backprojection reconstruction methods. However, it has often been suggested that by incorporating anatomical information, the resolution and noise properties of PET images could be improved, leading to better quantitation or lesion detection. With the recent development of combined MR-PET scanners, it is possible to collect intrinsically co-registered MR images. It is therefore now possible to routinely make use of anatomical information in PET reconstruction, provided appropriate methods are available. In this paper we review research efforts over the past 20 years to develop these methods. We discuss approaches based on the use of both Markov random field priors and joint information or entropy measures. The general framework for these methods is described and their performance and longer term potential and limitations discussed. PMID:23178087

  10. The impact of smart metal artefact reduction algorithm for use in radiotherapy treatment planning.

    PubMed

    Guilfoile, Connor; Rampant, Peter; House, Michael

    2017-06-01

    The presence of metal artefacts in computed tomography (CT) create issues in radiation oncology. The loss of anatomical information and incorrect Hounsfield unit (HU) values produce inaccuracies in dose calculations, providing suboptimal patient treatment. Metal artefact reduction (MAR) algorithms were developed to combat these problems. This study provides a qualitative and quantitative analysis of the "Smart MAR" software (General Electric Healthcare, Chicago, IL, USA), determining its usefulness in a clinical setting. A detailed analysis was conducted using both patient and phantom data, noting any improvements in HU values and dosimetry with the GE-MAR enabled. This study indicates qualitative improvements in severity of the streak artefacts produced by metals, allowing for easier patient contouring. Furthermore, the GE-MAR managed to recover previously lost anatomical information. Additionally, phantom data showed an improvement in HU value with GE-MAR correction, producing more accurate point dose calculations in the treatment planning system. Overall, the GE-MAR is a useful tool and is suitable for clinical environments.

  11. The End of the Cold Loneliness: 3D Comparison between Doto antarctica and a New Sympatric Species of Doto (Heterobranchia: Nudibranchia).

    PubMed

    Moles, Juan; Wägele, Heike; Ballesteros, Manuel; Pujals, Álvaro; Uhl, Gabriele; Avila, Conxita

    2016-01-01

    Although several studies are devoted to determining the diversity of Antarctic heterobranch sea slugs, new species are still being discovered. Among nudibranchs, Doto antarctica Eliot, 1907 is the single species of this genus described from Antarctica hitherto, the type locality being the Ross Sea. Doto antarctica was described mainly using external features. During our Antarctic research on marine benthic invertebrates, we found D. antarctica in the Weddell Sea and Bouvet Island, suggesting a circumpolar distribution. Species affiliation is herein supported by molecular analyses using cytochrome c oxidase subunit I, 16S rRNA, and histone H3 markers. We redescribe D. antarctica using histology, micro-computed tomography (micro-CT), and 3D-reconstruction of the internal organs. Moreover, we describe a new, sympatric species, namely D. carinova Moles, Avila & Wägele n. sp., and provide an anatomical comparison between the two Antarctic Doto species. Egg masses in both species are also described here for the first time. We demonstrate that micro-CT is a useful tool for non-destructive anatomical description of valuable specimens. Furthermore, our high resolution micro-CT data reveal that the central nervous system of both Doto species possesses numerous accessory giant cells, suggested to be neurons herein. In addition, the phylogenetic tree of all Doto species sequenced to date suggests a scenario for the evolution of the reproductive system in this genus: bursa copulatrix seems to have been reduced and the acquisition of a distal connection of the oviduct to the nidamental glands is a synapomorphy of the Antarctic Doto species. Overall, the combination of thorough morphological and anatomical description and molecular analyses provides a comprehensive means to characterize and delineate species, thus suggesting evolutionary scenarios.

  12. The End of the Cold Loneliness: 3D Comparison between Doto antarctica and a New Sympatric Species of Doto (Heterobranchia: Nudibranchia)

    PubMed Central

    Wägele, Heike; Ballesteros, Manuel; Pujals, Álvaro; Uhl, Gabriele; Avila, Conxita

    2016-01-01

    Although several studies are devoted to determining the diversity of Antarctic heterobranch sea slugs, new species are still being discovered. Among nudibranchs, Doto antarctica Eliot, 1907 is the single species of this genus described from Antarctica hitherto, the type locality being the Ross Sea. Doto antarctica was described mainly using external features. During our Antarctic research on marine benthic invertebrates, we found D. antarctica in the Weddell Sea and Bouvet Island, suggesting a circumpolar distribution. Species affiliation is herein supported by molecular analyses using cytochrome c oxidase subunit I, 16S rRNA, and histone H3 markers. We redescribe D. antarctica using histology, micro-computed tomography (micro-CT), and 3D-reconstruction of the internal organs. Moreover, we describe a new, sympatric species, namely D. carinova Moles, Avila & Wägele n. sp., and provide an anatomical comparison between the two Antarctic Doto species. Egg masses in both species are also described here for the first time. We demonstrate that micro-CT is a useful tool for non-destructive anatomical description of valuable specimens. Furthermore, our high resolution micro-CT data reveal that the central nervous system of both Doto species possesses numerous accessory giant cells, suggested to be neurons herein. In addition, the phylogenetic tree of all Doto species sequenced to date suggests a scenario for the evolution of the reproductive system in this genus: bursa copulatrix seems to have been reduced and the acquisition of a distal connection of the oviduct to the nidamental glands is a synapomorphy of the Antarctic Doto species. Overall, the combination of thorough morphological and anatomical description and molecular analyses provides a comprehensive means to characterize and delineate species, thus suggesting evolutionary scenarios. PMID:27411060

  13. Relevant Anatomic and Morphological Measurements of the Rat Spine: Considerations for Rodent Models of Human Spine Trauma.

    PubMed

    Jaumard, Nicolas V; Leung, Jennifer; Gokhale, Akhilesh J; Guarino, Benjamin B; Welch, William C; Winkelstein, Beth A

    2015-10-15

    Basic science study measuring anatomical features of the cervical and lumbar spine in rat with normalized comparison with the human. The goal of this study is to comprehensively compare the rat and human cervical and lumbar spines to investigate whether the rat is an appropriate model for spine biomechanics investigations. Animal models have been used for a long time to investigate the effects of trauma, degenerative changes, and mechanical loading on the structure and function of the spine. Comparative studies have reported some mechanical properties and/or anatomical dimensions of the spine to be similar between various species. However, those studies are largely limited to the lumbar spine, and a comprehensive comparison of the rat and human spines is lacking. Spines were harvested from male Holtzman rats (n = 5) and were scanned using micro- computed tomography and digitally rendered in 3 dimensions to quantify the spinal bony anatomy, including the lateral width and anteroposterior depth of the vertebra, vertebral body, and spinal canal, as well as the vertebral body and intervertebral disc heights. Normalized measurements of the vertebra, vertebral body, and spinal canal of the rat were computed and compared with corresponding measurements from the literature for the human in the cervical and lumbar spinal regions. The vertebral dimensions of the rat spine vary more between spinal levels than in humans. Rat vertebrae are more slender than human vertebrae, but the width-to-depth axial aspect ratios are very similar in both species in both the cervical and lumbar regions, especially for the spinal canal. The similar spinal morphology in the axial plane between rats and humans supports using the rat spine as an appropriate surrogate for modeling axial and shear loading of the human spine.

  14. The comparative osteology of the petrotympanic complex (ear region) of extant baleen whales (Cetacea: Mysticeti).

    PubMed

    Ekdale, Eric G; Berta, Annalisa; Deméré, Thomas A

    2011-01-01

    Anatomical comparisons of the ear region of baleen whales (Mysticeti) are provided through detailed osteological descriptions and high-resolution photographs of the petrotympanic complex (tympanic bulla and petrosal bone) of all extant species of mysticete cetaceans. Salient morphological features are illustrated and identified, including overall shape of the bulla, size of the conical process of the bulla, morphology of the promontorium, and the size and shape of the anterior process of the petrosal. We place our comparative osteological observations into a phylogenetic context in order to initiate an exploration into petrotympanic evolution within Mysticeti. The morphology of the petrotympanic complex is diagnostic for individual species of baleen whale (e.g., sigmoid and conical processes positioned at midline of bulla in Balaenoptera musculus; confluence of fenestra cochleae and perilymphatic foramen in Eschrichtius robustus), and several mysticete clades are united by derived characteristics. Balaenids and neobalaenids share derived features of the bulla, such as a rhomboid shape and a reduced anterior lobe (swelling) in ventral aspect, and eschrichtiids share derived morphologies of the petrosal with balaenopterids, including loss of a medial promontory groove and dorsomedial elongation of the promontorium. Monophyly of Balaenoidea (Balaenidae and Neobalaenidae) and Balaenopteroidea (Balaenopteridae and Eschrichtiidae) was recovered in phylogenetic analyses utilizing data exclusively from the petrotympanic complex. This study fills a major gap in our knowledge of the complex structures of the mysticete petrotympanic complex, which is an important anatomical region for the interpretation of the evolutionary history of mammals. In addition, we introduce a novel body of phylogenetically informative characters from the ear region of mysticetes. Our detailed anatomical descriptions, illustrations, and comparisons provide valuable data for current and future studies on the phylogenetic relationships, evolution, and auditory physiology of mysticetes and other cetaceans throughout Earth's history.

  15. Principal component analysis-based anatomical motion models for use in adaptive radiation therapy of head and neck cancer patients

    NASA Astrophysics Data System (ADS)

    Chetvertkov, Mikhail A.

    Purpose: To develop standard and regularized principal component analysis (PCA) models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients, assess their potential use in adaptive radiation therapy (ART), and to extract quantitative information for treatment response assessment. Methods: Planning CT (pCT) images of H&N patients were artificially deformed to create "digital phantom" images, which modeled systematic anatomical changes during Radiation Therapy (RT). Artificial deformations closely mirrored patients' actual deformations, and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic CBCTs (i.e., digital phantoms), and between pCT and clinical CBCTs. Patient-specific standard PCA (SPCA) and regularized PCA (RPCA) models were built from these synthetic and clinical DVF sets. Eigenvectors, or eigenDVFs (EDVFs), having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Modeled anatomies were used to assess the dose deviations with respect to the planned dose distribution. Results: PCA models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade SPCA's ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes, and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. For dose assessment it has been shown that the modeled dose distribution was different from the planned dose for the parotid glands due to their shrinkage and shift into the higher dose volumes during the radiotherapy course. Modeled DVHs still underestimated the effect of parotid shrinkage due to the large compression factor (CF) used to acquire DVFs. Conclusion: Leading EDVFs from both PCA approaches have the potential to capture systematic anatomical changes during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more reliable than SPCA at capturing systematic changes, enabling dosimetric consequences to be projected to the future treatment fractions based on trends established early in a treatment course, or, potentially, based on population models. This work showed that PCA has a potential in identifying the major mode of anatomical changes during the radiotherapy course and subsequent use of this information in future dose predictions is feasible. Use of smaller CF values for DVFs is preferred, otherwise anatomical motion will be underestimated.

  16. Quantitative Imaging in Cancer Clinical Trials

    PubMed Central

    Yankeelov, Thomas E.; Mankoff, David A.; Schwartz, Lawrence H.; Lieberman, Frank S.; Buatti, John M.; Mountz, James M.; Erickson, Bradley J.; Fennessy, Fiona M.M.; Huang, Wei; Kalpathy-Cramer, Jayashree; Wahl, Richard L.; Linden, Hannah M.; Kinahan, Paul; Zhao, Binsheng; Hylton, Nola M.; Gillies, Robert J.; Clarke, Laurence; Nordstrom, Robert; Rubin, Daniel L.

    2015-01-01

    As anti-cancer therapies designed to target specific molecular pathways have been developed, it has become critical to develop methods to assess the response induced by such agents. While traditional, anatomic CT and MRI exams are useful in many settings, there is increasing evidence that these methods cannot answer the fundamental biological and physiological questions essential for assessment and, eventually, prediction of treatment response in the clinical trial setting, especially in the critical period soon after treatment is initiated. To optimally apply advances in quantitative imaging methods to trials of targeted cancer therapy, new infrastructure improvements are needed that incorporate these emerging techniques into the settings where they are most likely to have impact. In this review, we first elucidate the needs for therapeutic response assessment in the era of molecularly targeted therapy and describe how quantitative imaging can most effectively provide scientifically and clinically relevant data. We then describe the tools and methods required to apply quantitative imaging and provide concrete examples of work making these advances practically available for routine application in clinical trials. We conclude by proposing strategies to surmount barriers to wider incorporation of these quantitative imaging methods into clinical trials and, eventually, clinical practice. Our goal is to encourage and guide the oncology community to deploy standardized quantitative imaging techniques in clinical trials to further personalize care for cancer patients, and to provide a more efficient path for the development of improved targeted therapies. PMID:26773162

  17. A whole brain atlas with sub-parcellation of cortical gyri using resting fMRI

    NASA Astrophysics Data System (ADS)

    Joshi, Anand A.; Choi, Soyoung; Sonkar, Gaurav; Chong, Minqi; Gonzalez-Martinez, Jorge; Nair, Dileep; Shattuck, David W.; Damasio, Hanna; Leahy, Richard M.

    2017-02-01

    The new hybrid-BCI-DNI atlas is a high-resolution MPRAGE, single-subject atlas, constructed using both anatomical and functional information to guide the parcellation of the cerebral cortex. Anatomical labeling was performed manually on coronal single-slice images guided by sulcal and gyral landmarks to generate the original (non-hybrid) BCI-DNI atlas. Functional sub-parcellations of the gyral ROIs were then generated from 40 minimally preprocessed resting fMRI datasets from the HCP database. Gyral ROIs were transferred from the BCI-DNI atlas to the 40 subjects using the HCP grayordinate space as a reference. For each subject, each gyral ROI was subdivided using the fMRI data by applying spectral clustering to a similarity matrix computed from the fMRI time-series correlations between each vertex pair. The sub-parcellations were then transferred back to the original cortical mesh to create the subparcellated hBCI-DNI atlas with a total of 67 cortical regions per hemisphere. To assess the stability of the gyral subdivisons, a separate set of 60 HCP datasets were processed as follows: 1) coregistration of the structural scans to the hBCI-DNI atlas; 2) coregistration of the anatomical BCI-DNI atlas without functional subdivisions, followed by sub-parcellation of each subject's resting fMRI data as described above. We then computed consistency between the anatomically-driven delineation of each gyral subdivision and that obtained per subject using individual fMRI data. The gyral sub-parcellations generated by atlas-based registration show variable but generally good overlap of the confidence intervals with the resting fMRI-based subdivisions. These consistency measures will provide a quantitative measure of reliability of each subdivision to users of the atlas.

  18. Using ventricular modeling to robustly probe significant deep gray matter pathologies: Application to cerebral palsy.

    PubMed

    Pagnozzi, Alex M; Shen, Kaikai; Doecke, James D; Boyd, Roslyn N; Bradley, Andrew P; Rose, Stephen; Dowson, Nicholas

    2016-11-01

    Understanding the relationships between the structure and function of the brain largely relies on the qualitative assessment of Magnetic Resonance Images (MRIs) by expert clinicians. Automated analysis systems can support these assessments by providing quantitative measures of brain injury. However, the assessment of deep gray matter structures, which are critical to motor and executive function, remains difficult as a result of large anatomical injuries commonly observed in children with Cerebral Palsy (CP). Hence, this article proposes a robust surrogate marker of the extent of deep gray matter injury based on impingement due to local ventricular enlargement on surrounding anatomy. Local enlargement was computed using a statistical shape model of the lateral ventricles constructed from 44 healthy subjects. Measures of injury on 95 age-matched CP patients were used to train a regression model to predict six clinical measures of function. The robustness of identifying ventricular enlargement was demonstrated by an area under the curve of 0.91 when tested against a dichotomised expert clinical assessment. The measures also showed strong and significant relationships for multiple clinical scores, including: motor function (r 2  = 0.62, P < 0.005), executive function (r 2  = 0.55, P < 0.005), and communication (r 2  = 0.50, P < 0.005), especially compared to using volumes obtained from standard anatomical segmentation approaches. The lack of reliance on accurate anatomical segmentations and its resulting robustness to large anatomical variations is a key feature of the proposed automated approach. This coupled with its strong correlation with clinically meaningful scores, signifies the potential utility to repeatedly assess MRIs for clinicians diagnosing children with CP. Hum Brain Mapp 37:3795-3809, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Validation of Simple Quantification Methods for (18)F-FP-CIT PET Using Automatic Delineation of Volumes of Interest Based on Statistical Probabilistic Anatomical Mapping and Isocontour Margin Setting.

    PubMed

    Kim, Yong-Il; Im, Hyung-Jun; Paeng, Jin Chul; Lee, Jae Sung; Eo, Jae Seon; Kim, Dong Hyun; Kim, Euishin E; Kang, Keon Wook; Chung, June-Key; Lee, Dong Soo

    2012-12-01

    (18)F-FP-CIT positron emission tomography (PET) is an effective imaging for dopamine transporters. In usual clinical practice, (18)F-FP-CIT PET is analyzed visually or quantified using manual delineation of a volume of interest (VOI) for the striatum. In this study, we suggested and validated two simple quantitative methods based on automatic VOI delineation using statistical probabilistic anatomical mapping (SPAM) and isocontour margin setting. Seventy-five (18)F-FP-CIT PET images acquired in routine clinical practice were used for this study. A study-specific image template was made and the subject images were normalized to the template. Afterwards, uptakes in the striatal regions and cerebellum were quantified using probabilistic VOI based on SPAM. A quantitative parameter, QSPAM, was calculated to simulate binding potential. Additionally, the functional volume of each striatal region and its uptake were measured in automatically delineated VOI using isocontour margin setting. Uptake-volume product (QUVP) was calculated for each striatal region. QSPAM and QUVP were compared with visual grading and the influence of cerebral atrophy on the measurements was tested. Image analyses were successful in all the cases. Both the QSPAM and QUVP were significantly different according to visual grading (P < 0.001). The agreements of QUVP or QSPAM with visual grading were slight to fair for the caudate nucleus (κ = 0.421 and 0.291, respectively) and good to perfect to the putamen (κ = 0.663 and 0.607, respectively). Also, QSPAM and QUVP had a significant correlation with each other (P < 0.001). Cerebral atrophy made a significant difference in QSPAM and QUVP of the caudate nuclei regions with decreased (18)F-FP-CIT uptake. Simple quantitative measurements of QSPAM and QUVP showed acceptable agreement with visual grading. Although QSPAM in some group may be influenced by cerebral atrophy, these simple methods are expected to be effective in the quantitative analysis of (18)F-FP-CIT PET in usual clinical practice.

  20. Abdo-Man: a 3D-printed anthropomorphic phantom for validating quantitative SIRT.

    PubMed

    Gear, Jonathan I; Cummings, Craig; Craig, Allison J; Divoli, Antigoni; Long, Clive D C; Tapner, Michael; Flux, Glenn D

    2016-12-01

    The use of selective internal radiation therapy (SIRT) is rapidly increasing, and the need for quantification and dosimetry is becoming more widespread to facilitate treatment planning and verification. The aim of this project was to develop an anthropomorphic phantom that can be used as a validation tool for post-SIRT imaging and its application to dosimetry. The phantom design was based on anatomical data obtained from a T1-weighted volume-interpolated breath-hold examination (VIBE) on a Siemens Aera 1.5 T MRI scanner. The liver, lungs and abdominal trunk were segmented using the Hermes image processing workstation. Organ volumes were then uploaded to the Delft Visualization and Image processing Development Environment for smoothing and surface rendering. Triangular meshes defining the iso-surfaces were saved as stereo lithography (STL) files and imported into the Autodesk® Meshmixer software. Organ volumes were subtracted from the abdomen and a removable base designed to allow access to the liver cavity. Connection points for placing lesion inserts and filling holes were also included. The phantom was manufactured using a Stratasys Connex3 PolyJet 3D printer. The printer uses stereolithography technology combined with ink jet printing. Print material is a solid acrylic plastic, with similar properties to polymethylmethacrylate (PMMA). Measured Hounsfield units and calculated attenuation coefficients of the material were shown to also be similar to PMMA. Total print time for the phantom was approximately 5 days. Initial scans of the phantom have been performed with Y-90 bremsstrahlung SPECT/CT, Y-90 PET/CT and Tc-99m SPECT/CT. The CT component of these images compared well with the original anatomical reference, and measurements of volume agreed to within 9 %. Quantitative analysis of the phantom was performed using all three imaging techniques. Lesion and normal liver absorbed doses were calculated from the quantitative images in three dimensions using the local deposition method. 3D printing is a flexible and cost-efficient technology for manufacture of anthropomorphic phantom. Application of such phantoms will enable quantitative imaging and dosimetry methodologies to be evaluated, which with optimisation could help improve outcome for patients.

  1. Ultrasound guided fluorescence molecular tomography with improved quantification by an attenuation compensated born-normalization and in vivo preclinical study of cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Baoqiang; Berti, Romain; Abran, Maxime

    2014-05-15

    Ultrasound imaging, having the advantages of low-cost and non-invasiveness over MRI and X-ray CT, was reported by several studies as an adequate complement to fluorescence molecular tomography with the perspective of improving localization and quantification of fluorescent molecular targets in vivo. Based on the previous work, an improved dual-modality Fluorescence-Ultrasound imaging system was developed and then validated in imaging study with preclinical tumor model. Ultrasound imaging and a profilometer were used to obtain the anatomical prior information and 3D surface, separately, to precisely extract the tissue boundary on both sides of sample in order to achieve improved fluorescence reconstruction. Furthermore,more » a pattern-based fluorescence reconstruction on the detection side was incorporated to enable dimensional reduction of the dataset while keeping the useful information for reconstruction. Due to its putative role in the current imaging geometry and the chosen reconstruction technique, we developed an attenuation compensated Born-normalization method to reduce the attenuation effects and cancel off experimental factors when collecting quantitative fluorescence datasets over large area. Results of both simulation and phantom study demonstrated that fluorescent targets could be recovered accurately and quantitatively using this reconstruction mechanism. Finally, in vivo experiment confirms that the imaging system associated with the proposed image reconstruction approach was able to extract both functional and anatomical information, thereby improving quantification and localization of molecular targets.« less

  2. A Fully-Automated Subcortical and Ventricular Shape Generation Pipeline Preserving Smoothness and Anatomical Topology

    PubMed Central

    Tang, Xiaoying; Luo, Yuan; Chen, Zhibin; Huang, Nianwei; Johnson, Hans J.; Paulsen, Jane S.; Miller, Michael I.

    2018-01-01

    In this paper, we present a fully-automated subcortical and ventricular shape generation pipeline that acts on structural magnetic resonance images (MRIs) of the human brain. Principally, the proposed pipeline consists of three steps: (1) automated structure segmentation using the diffeomorphic multi-atlas likelihood-fusion algorithm; (2) study-specific shape template creation based on the Delaunay triangulation; (3) deformation-based shape filtering using the large deformation diffeomorphic metric mapping for surfaces. The proposed pipeline is shown to provide high accuracy, sufficient smoothness, and accurate anatomical topology. Two datasets focused upon Huntington's disease (HD) were used for evaluating the performance of the proposed pipeline. The first of these contains a total of 16 MRI scans, each with a gold standard available, on which the proposed pipeline's outputs were observed to be highly accurate and smooth when compared with the gold standard. Visual examinations and outlier analyses on the second dataset, which contains a total of 1,445 MRI scans, revealed 100% success rates for the putamen, the thalamus, the globus pallidus, the amygdala, and the lateral ventricle in both hemispheres and rates no smaller than 97% for the bilateral hippocampus and caudate. Another independent dataset, consisting of 15 atlas images and 20 testing images, was also used to quantitatively evaluate the proposed pipeline, with high accuracy having been obtained. In short, the proposed pipeline is herein demonstrated to be effective, both quantitatively and qualitatively, using a large collection of MRI scans. PMID:29867332

  3. The neural optimal control hierarchy for motor control

    NASA Astrophysics Data System (ADS)

    DeWolf, T.; Eliasmith, C.

    2011-10-01

    Our empirical, neuroscientific understanding of biological motor systems has been rapidly growing in recent years. However, this understanding has not been systematically mapped to a quantitative characterization of motor control based in control theory. Here, we attempt to bridge this gap by describing the neural optimal control hierarchy (NOCH), which can serve as a foundation for biologically plausible models of neural motor control. The NOCH has been constructed by taking recent control theoretic models of motor control, analyzing the required processes, generating neurally plausible equivalent calculations and mapping them on to the neural structures that have been empirically identified to form the anatomical basis of motor control. We demonstrate the utility of the NOCH by constructing a simple model based on the identified principles and testing it in two ways. First, we perturb specific anatomical elements of the model and compare the resulting motor behavior with clinical data in which the corresponding area of the brain has been damaged. We show that damaging the assigned functions of the basal ganglia and cerebellum can cause the movement deficiencies seen in patients with Huntington's disease and cerebellar lesions. Second, we demonstrate that single spiking neuron data from our model's motor cortical areas explain major features of single-cell responses recorded from the same primate areas. We suggest that together these results show how NOCH-based models can be used to unify a broad range of data relevant to biological motor control in a quantitative, control theoretic framework.

  4. Bone mineral content measurement in small infants by single-photon absorptiometry: current methodologic issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steichen, J.J.; Asch, P.A.; Tsang, R.C.

    1988-07-01

    Single-photon absorptiometry (SPA), developed in 1963 and adapted for infants by Steichen et al. in 1976, is an important tool to quantitate bone mineralization in infants. Studies of infants in which SPA was used include studies of fetal bone mineralization and postnatal bone mineralization in very low birth weight infants. The SPA technique has also been used as a research tool to investigate longitudinal bone mineralization and to study the effect of nutrition and disease processes such as rickets or osteopenia of prematurity. At present, it has little direct clinical application for diagnosing bone disease in single patients. The bonesmore » most often used to measure bone mineral content (BMC) are the radius, the ulna, and, less often, the humerus. The radius appears to be preferred as a suitable bone to measure BMC in infants. It is easily accessible; anatomic reference points are easily palpated and have a constant relationship to the radial mid-shaft site; soft tissue does not affect either palpation of anatomic reference points or BMC quantitation in vivo. The peripheral location of the radius minimizes body radiation exposure. Trabecular and cortical bone can be measured separately. Extensive background studies exist on radial BMC in small infants. Most important, the radius has a relatively long zone of constant BMC. Finally, SPA for BMC in the radius has a high degree of precision and accuracy. 61 references.« less

  5. A Fully-Automated Subcortical and Ventricular Shape Generation Pipeline Preserving Smoothness and Anatomical Topology.

    PubMed

    Tang, Xiaoying; Luo, Yuan; Chen, Zhibin; Huang, Nianwei; Johnson, Hans J; Paulsen, Jane S; Miller, Michael I

    2018-01-01

    In this paper, we present a fully-automated subcortical and ventricular shape generation pipeline that acts on structural magnetic resonance images (MRIs) of the human brain. Principally, the proposed pipeline consists of three steps: (1) automated structure segmentation using the diffeomorphic multi-atlas likelihood-fusion algorithm; (2) study-specific shape template creation based on the Delaunay triangulation; (3) deformation-based shape filtering using the large deformation diffeomorphic metric mapping for surfaces. The proposed pipeline is shown to provide high accuracy, sufficient smoothness, and accurate anatomical topology. Two datasets focused upon Huntington's disease (HD) were used for evaluating the performance of the proposed pipeline. The first of these contains a total of 16 MRI scans, each with a gold standard available, on which the proposed pipeline's outputs were observed to be highly accurate and smooth when compared with the gold standard. Visual examinations and outlier analyses on the second dataset, which contains a total of 1,445 MRI scans, revealed 100% success rates for the putamen, the thalamus, the globus pallidus, the amygdala, and the lateral ventricle in both hemispheres and rates no smaller than 97% for the bilateral hippocampus and caudate. Another independent dataset, consisting of 15 atlas images and 20 testing images, was also used to quantitatively evaluate the proposed pipeline, with high accuracy having been obtained. In short, the proposed pipeline is herein demonstrated to be effective, both quantitatively and qualitatively, using a large collection of MRI scans.

  6. Application of microscopy in authentication of traditional Tibetan medicinal plants of five Rhodiola (Crassulaceae) alpine species by comparative anatomy and micromorphology.

    PubMed

    Li, Tao; Zhang, Hao

    2008-06-01

    A comparative analysis was undertaken to conduct an anatomical and micromorphological study of five species of Rhodiola-R. kirilowii, R. yunnanensis, R. crenulata, R. fastigata, and R. quadrifida-collected from the western Sichuan province plateau of China. Rhodiola plants are a popularly used ethnodrug from the Qinghai-Tibetan plateau of China. Modern studies have shown that the plants of Rhodiola possess different pharmacological activities, chemical constituents, and efficiencies in clinical application. To distinguish five main species of Rhodiola and ensure their safety and efficacy, microscopic characteristics of roots, rhizomes, and stems, including transverse sections, stem and foliar epidermis, as well as the crude drug powder, were observed. The fixed, sectioned, and stained plant materials, as well as the crude powder, were studied using a light microscope according to the usual microscopic techniques. The results of the microscopic features were systematically and comparatively described and illustrated. The five species have distinct microscopic characteristic differences, thus allowing us to distinguish between the species. Also, semi-quantitative and quantitative micrographic parameter tables were simultaneously presented. Further, a key to the five species and a comparative chart of the key authentication parameters based on these anatomic characteristics analyzed was drawn up and is presented for the Rhodiola species studied. The study indicated that light microscopy and related techniques provide a method that is convenient, feasible, and can be unambiguously applied to the authentication of species of Rhodiola. (c) 2008 Wiley-Liss, Inc.

  7. Identification of common coexpression modules based on quantitative network comparison.

    PubMed

    Jo, Yousang; Kim, Sanghyeon; Lee, Doheon

    2018-06-13

    Finding common molecular interactions from different samples is essential work to understanding diseases and other biological processes. Coexpression networks and their modules directly reflect sample-specific interactions among genes. Therefore, identification of common coexpression network or modules may reveal the molecular mechanism of complex disease or the relationship between biological processes. However, there has been no quantitative network comparison method for coexpression networks and we examined previous methods for other networks that cannot be applied to coexpression network. Therefore, we aimed to propose quantitative comparison methods for coexpression networks and to find common biological mechanisms between Huntington's disease and brain aging by the new method. We proposed two similarity measures for quantitative comparison of coexpression networks. Then, we performed experiments using known coexpression networks. We showed the validity of two measures and evaluated threshold values for similar coexpression network pairs from experiments. Using these similarity measures and thresholds, we quantitatively measured the similarity between disease-specific and aging-related coexpression modules and found similar Huntington's disease-aging coexpression module pairs. We identified similar Huntington's disease-aging coexpression module pairs and found that these modules are related to brain development, cell death, and immune response. It suggests that up-regulated cell signalling related cell death and immune/ inflammation response may be the common molecular mechanisms in the pathophysiology of HD and normal brain aging in the frontal cortex.

  8. Automated detection of arterial input function in DSC perfusion MRI in a stroke rat model

    NASA Astrophysics Data System (ADS)

    Yeh, M.-Y.; Lee, T.-H.; Yang, S.-T.; Kuo, H.-H.; Chyi, T.-K.; Liu, H.-L.

    2009-05-01

    Quantitative cerebral blood flow (CBF) estimation requires deconvolution of the tissue concentration time curves with an arterial input function (AIF). However, image-based determination of AIF in rodent is challenged due to limited spatial resolution. We evaluated the feasibility of quantitative analysis using automated AIF detection and compared the results with commonly applied semi-quantitative analysis. Permanent occlusion of bilateral or unilateral common carotid artery was used to induce cerebral ischemia in rats. The image using dynamic susceptibility contrast method was performed on a 3-T magnetic resonance scanner with a spin-echo echo-planar-image sequence (TR/TE = 700/80 ms, FOV = 41 mm, matrix = 64, 3 slices, SW = 2 mm), starting from 7 s prior to contrast injection (1.2 ml/kg) at four different time points. For quantitative analysis, CBF was calculated by the AIF which was obtained from 10 voxels with greatest contrast enhancement after deconvolution. For semi-quantitative analysis, relative CBF was estimated by the integral divided by the first moment of the relaxivity time curves. We observed if the AIFs obtained in the three different ROIs (whole brain, hemisphere without lesion and hemisphere with lesion) were similar, the CBF ratios (lesion/normal) between quantitative and semi-quantitative analyses might have a similar trend at different operative time points. If the AIFs were different, the CBF ratios might be different. We concluded that using local maximum one can define proper AIF without knowing the anatomical location of arteries in a stroke rat model.

  9. Investigating Children's Abilities to Count and Make Quantitative Comparisons

    ERIC Educational Resources Information Center

    Lee, Joohi; Md-Yunus, Sham'ah

    2016-01-01

    This study was designed to investigate children's abilities to count and make quantitative comparisons. In addition, this study utilized reasoning questions (i.e., how did you know?). Thirty-four preschoolers, mean age 4.5 years old, participated in the study. According to the results, 89% of the children (n = 30) were able to do rote counting and…

  10. Quantitative comparison of 3D third harmonic generation and fluorescence microscopy images.

    PubMed

    Zhang, Zhiqing; Kuzmin, Nikolay V; Groot, Marie Louise; de Munck, Jan C

    2018-01-01

    Third harmonic generation (THG) microscopy is a label-free imaging technique that shows great potential for rapid pathology of brain tissue during brain tumor surgery. However, the interpretation of THG brain images should be quantitatively linked to images of more standard imaging techniques, which so far has been done qualitatively only. We establish here such a quantitative link between THG images of mouse brain tissue and all-nuclei-highlighted fluorescence images, acquired simultaneously from the same tissue area. For quantitative comparison of a substantial pair of images, we present here a segmentation workflow that is applicable for both THG and fluorescence images, with a precision of 91.3 % and 95.8 % achieved respectively. We find that the correspondence between the main features of the two imaging modalities amounts to 88.9 %, providing quantitative evidence of the interpretation of dark holes as brain cells. Moreover, 80 % bright objects in THG images overlap with nuclei highlighted in the fluorescence images, and they are 2 times smaller than the dark holes, showing that cells of different morphologies can be recognized in THG images. We expect that the described quantitative comparison is applicable to other types of brain tissue and with more specific staining experiments for cell type identification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Motion representation of the long fingers: a proposal for the definitions of new anatomical frames.

    PubMed

    Coupier, Jérôme; Moiseev, Fédor; Feipel, Véronique; Rooze, Marcel; Van Sint Jan, Serge

    2014-04-11

    Despite the availability of the International Society of Biomechanics (ISB) recommendations for the orientation of anatomical frames, no consensus exists about motion representations related to finger kinematics. This paper proposes novel anatomical frames for motion representation of the phalangeal segments of the long fingers. A three-dimensional model of a human forefinger was acquired from a non-pathological fresh-frozen hand. Medical imaging was used to collect phalangeal discrete positions. Data processing was performed using a customized software interface ("lhpFusionBox") to create a specimen-specific model and to reconstruct the discrete motion path. Five examiners virtually palpated two sets of landmarks. These markers were then used to build anatomical frames following two methods: a reference method following ISB recommendations and a newly-developed method based on the mean helical axis (HA). Motion representations were obtained and compared between examiners. Virtual palpation precision was around 1mm, which is comparable to results from the literature. The comparison of the two methods showed that the helical axis method seemed more reproducible between examiners especially for secondary, or accessory, motions. Computed Root Mean Square distances comparing methods showed that the ISB method displayed a variability 10 times higher than the HA method. The HA method seems to be suitable for finger motion representation using discrete positions from medical imaging. Further investigations are required before being able to use the methodology with continuous tracking of markers set on the subject's hand. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Correlation among ultrasound, cross-sectional anatomy, and histology of the sciatic nerve: a review.

    PubMed

    Moayeri, Nizar; van Geffen, Geert J; Bruhn, Jörgen; Chan, Vincent W; Groen, Gerbrand J

    2010-01-01

    Efficient identification of the sciatic nerve (SN) requires a thorough knowledge of its topography in relation to the surrounding structures. Anatomic cross sections in similar oblique planes as observed during SN ultrasonography are lacking. A survey of sonoanatomy matched with ultrasound views of the major SN block sites will be helpful in pattern recognition, especially when combined with images that show the internal architecture of the nerve. From 1 cadaver, consecutive parts of the upper leg corresponding to the 4 major blocks sites were sectioned and deeply frozen. Using cryomicrotomy, consecutive transverse sections were acquired and photographed at 78-microm intervals, along with histologic sections at 5-mm intervals. Multiplanar reformatting was done to reconstruct the optimal planes for an accurate comparison of ultrasonography and gross anatomy. The anatomic and histologic images were matched with ultrasound images that were obtained from 2 healthy volunteers. By simulating the exact position and angulation as in the ultrasonographic images, detailed anatomic overviews of SN and adjacent structures were reconstructed in the gluteal, subgluteal, midfemoral, and popliteal regions. Throughout its trajectory, SN contains numerous fascicles with connective and adipose tissues. In this study, we provide an optimal matching between histology, anatomic cross sections, and short-axis ultrasound images of SN. Reconstructing ultrasonographic planes with this high-resolution digitized anatomy not only enables an overview but also shows detailed views of the architecture of internal SN. The undulating course of the nerve fascicles within SN may explain its varying echogenic appearance during probe manipulation.

  13. A retrospective study of 51,781 adult oral and maxillofacial biopsies.

    PubMed

    Dovigi, Edwin A; Kwok, Elaine Y L; Eversole, Lewis R; Dovigi, Allan J

    2016-03-01

    Few studies have compared patient and anatomic characteristics across the broad scope of oral and maxillofacial disease seen in dental clinics. The authors conducted a study to make these comparisons by surveying a large sample of histologically diagnosed oral and maxillofacial lesions in a US adult population. A total of 51,781 specimens biopsied from 51,781 adult patients were received by an oral pathology service over 13 years (2001-2015) and analyzed. A description of patients' sex and age at diagnosis, as well as the anatomic site of biopsy was given for diagnoses of 10 oral disease types, including malignant neoplasm, benign neoplasm, infectious, reactive, potentially malignant, developmental, healthy tissue, immune dysfunction, physical trauma, and other. The authors reported reactive lesions were the most prevalent disease type found in the sample (74.9%). Malignant diagnoses comprised 1.97% of all biopsies. The 3 most prevalent diagnoses in this study included benign keratosis, chronic apical periodontitis, and radicular cyst. Different anatomic sites, patient age groups, and sexes show different distributions of disease. Certain disease types and diagnoses were found to have a higher prevalence by sex, among particular age groups, and in certain anatomic sites. This information provides clinicians with a detailed and broad scope of the variety of oral and maxillofacial lesions processed at an oral pathology service and may assist practitioners in forming clinical impressions and differential diagnoses. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  14. Use of the rectus abdominis muscle for abdominal stoma sphincter construction: an anatomical feasibility study.

    PubMed

    Bardoel, J W; Stadelmann, W K; Tobin, G R; Werker, P M; Stremel, R W; Kon, M; Barker, J H

    2000-02-01

    Permanent fecal abdominal stomas significantly decrease quality of life. Previous attempts to create continent stomas by using dynamic myoplasty procedures have resulted in disappointing outcomes, primarily owing to denervation atrophy of the muscle flap that was used in the creation of the sphincter and because of muscle fatigue resulting from continuous electrical stimulation that is received by the flap to force contraction. On the basis of these problems, we designed two separate studies: an anatomical study addressing flap denervation and a functional study addressing muscle fatigue. The present study addresses the first topic and was designed to develop a rectus abdominis muscle flap into a sphincter that was anatomically situated to create a stoma while preserving as much innervation as possible. In 24 rectus abdominis muscles of human cadavers, the neurovascular anatomy was defined, then the anatomical feasibility of two different muscle flap configurations was considered. The flaps investigated were the peninsula flap and island flap designs, with both using the most caudal segment of the rectus abdominis muscle in construction of the sphincter. Neither flap design required the killing of a nerve for stoma sphincter creation, resulting in minimal muscle denervation. The conclusion of our comparison was that the above, in conjunction with other features of the island flap design, such as muscle overlap after sphincter formation and abdominal wall positioning of the sphincter, made the island flap design better suited to stoma sphincter construction.

  15. A population MRI brain template and analysis tools for the macaque.

    PubMed

    Seidlitz, Jakob; Sponheim, Caleb; Glen, Daniel; Ye, Frank Q; Saleem, Kadharbatcha S; Leopold, David A; Ungerleider, Leslie; Messinger, Adam

    2018-04-15

    The use of standard anatomical templates is common in human neuroimaging, as it facilitates data analysis and comparison across subjects and studies. For non-human primates, previous in vivo templates have lacked sufficient contrast to reliably validate known anatomical brain regions and have not provided tools for automated single-subject processing. Here we present the "National Institute of Mental Health Macaque Template", or NMT for short. The NMT is a high-resolution in vivo MRI template of the average macaque brain generated from 31 subjects, as well as a neuroimaging tool for improved data analysis and visualization. From the NMT volume, we generated maps of tissue segmentation and cortical thickness. Surface reconstructions and transformations to previously published digital brain atlases are also provided. We further provide an analysis pipeline using the NMT that automates and standardizes the time-consuming processes of brain extraction, tissue segmentation, and morphometric feature estimation for anatomical scans of individual subjects. The NMT and associated tools thus provide a common platform for precise single-subject data analysis and for characterizations of neuroimaging results across subjects and studies. Copyright © 2017 ElsevierCompany. All rights reserved.

  16. Generation of an Atlas of the Proximal Femur and Its Application to Trabecular Bone Analysis

    PubMed Central

    Carballido-Gamio, Julio; Folkesson, Jenny; Karampinos, Dimitrios C.; Baum, Thomas; Link, Thomas M.; Majumdar, Sharmila; Krug, Roland

    2013-01-01

    Automatic placement of anatomically corresponding volumes of interest and comparison of parameters against a standard of reference are essential components in studies of trabecular bone. Only recently, in vivo MR images of the proximal femur, an important fracture site, could be acquired with high-spatial resolution. The purpose of this MRI trabecular bone study was two-fold: (1) to generate an atlas of the proximal femur to automatically place anatomically corresponding volumes of interest in a population study and (2) to demonstrate how mean models of geodesic topological analysis parameters can be generated to be used as potential standard of reference. Ten females were used to generate the atlas and geodesic topological analysis models, and 10 females were used to demonstrate the atlas-based trabecular bone analysis. All alignments were based on three-dimensional (3D) multiresolution affine transformations followed by 3D multiresolution free-form deformations. Mean distances less than 1 mm between aligned femora, and sharp edges in the atlas and in fused gray-level images of registered femora indicated that the anatomical variability was well accommodated and explained by the free-form deformations. PMID:21432904

  17. Comparison of endoscopic-assisted and temporary keratoprosthesis-assisted vitrectomy in combat ocular trauma: experience at a tertiary eye center in Turkey.

    PubMed

    Ayyildiz, Onder; Hakan Durukan, Ali

    2018-01-01

    Objective This study was performed to compare the functional and anatomical results of endoscopic-assisted and temporary keratoprosthesis (TKP)-assisted vitrectomy in patients with combat ocular trauma (COT). Methods The medical records of 14 severely injured eyes of 12 patients who underwent endoscopy or TKP implantation in combination with vitreoretinal surgery from 2007 to 2015 were retrospectively evaluated. The patients' ocular history and functional and anatomic anterior and posterior segment results were analyzed. Results Eight eyes (57%) underwent TKP-assisted vitrectomy and six eyes (43%) underwent endoscopic vitrectomy. The most common cause of COT was detonation of improvised explosive devices (72%), and the most common type of injury was an intraocular foreign body (50%). The median time from trauma to surgery and the median surgical time were significantly shorter in the endoscopy than TKP group. The postoperative functional and anatomical results were not significantly different between the two groups. Conclusions TKP-assisted vitrectomy should be performed in eyes requiring extensive bimanual surgery. In such cases, a corneal graft must be preserved for the TKP at the end of the surgery. Endoscopy shortens the surgical time and can reduce the complication rate.

  18. Comparison of mechanical energy profiles of passive and active below-knee prostheses: a case study.

    PubMed

    Takahashi, Kota Z; Horne, John R; Stanhope, Steven J

    2015-04-01

    With the recent technological advancements of prosthetic lower limbs, there is currently a great desire to objectively evaluate existing prostheses. Using a novel biomechanical analysis, the purpose of this case study was to compare the mechanical energy profiles of anatomical and two disparate prostheses: a passive prosthesis and an active prosthesis. An individual with a transtibial amputation who customarily wears a passive prosthesis (Elation, Össur) and an active prosthesis (BiOM, iWalk, Inc.) and 11 healthy subjects participated in an instrumented gait analysis. The total mechanical power and work of below-knee structures during stance were quantified using a unified deformable segment power analysis. Active prosthesis generated greater peak power and total positive work than passive prosthesis and healthy anatomical limbs. The case study will enhance future efforts to objectively evaluate prosthetic functions during gait in individuals with transtibial amputations. A prosthetic limb should closely replicate the mechanical energy profiles of anatomical limbs. The unified deformable (UD) analysis may be valuable to facilitate future clinical prescription and guide fine adjustments of prosthetic componentry to optimize gait outcomes. © The International Society for Prosthetics and Orthotics 2014.

  19. Optimal parameters for near infrared fluorescence imaging of amyloid plaques in Alzheimer’s disease mouse models

    PubMed Central

    Raymond, S B; Kumar, A T N; Boas, D A; Bacskai, B J

    2012-01-01

    Amyloid-β plaques are an Alzheimer’s disease biomarker which present unique challenges for near-infrared fluorescence tomography because of size (<50 μm diameter) and distribution. We used high-resolution simulations of fluorescence in a digital Alzheimer’s disease mouse model to investigate the optimal fluorophore and imaging parameters for near-infrared fluorescence tomography of amyloid plaques. Fluorescence was simulated for amyloid-targeted probes with emission at 630 and 800 nm, plaque-to-background ratios from 1–1000, amyloid burden from 0–10%, and for transmission and reflection measurement geometries. Fluorophores with high plaque-to-background contrast ratios and 800 nm emission performed significantly better than current amyloid imaging probes. We tested idealized fluorophores in transmission and full-angle tomographic measurement schemes (900 source–detector pairs), with and without anatomical priors. Transmission reconstructions demonstrated strong linear correlation with increasing amyloid burden, but underestimated fluorescence yield and suffered from localization artifacts. Full-angle measurements did not improve upon the transmission reconstruction qualitatively or in semi-quantitative measures of accuracy; anatomical and initial-value priors did improve reconstruction localization and accuracy for both transmission and full-angle schemes. Region-based reconstructions, in which the unknowns were reduced to a few distinct anatomical regions, produced highly accurate yield estimates for cortex, hippocampus and brain regions, even with a reduced number of measurements (144 source–detector pairs). PMID:19794239

  20. Educational software usability: Artifact or Design?

    PubMed

    Van Nuland, Sonya E; Eagleson, Roy; Rogers, Kem A

    2017-03-01

    Online educational technologies and e-learning tools are providing new opportunities for students to learn worldwide, and they continue to play an important role in anatomical sciences education. Yet, as we shift to teaching online, particularly within the anatomical sciences, it has become apparent that e-learning tool success is based on more than just user satisfaction and preliminary learning outcomes-rather it is a multidimensional construct that should be addressed from an integrated perspective. The efficiency, effectiveness and satisfaction with which a user can navigate an e-learning tool is known as usability, and represents a construct which we propose can be used to quantitatively evaluate e-learning tool success. To assess the usability of an e-learning tool, usability testing should be employed during the design and development phases (i.e., prior to its release to users) as well as during its delivery (i.e., following its release to users). However, both the commercial educational software industry and individual academic developers in the anatomical sciences have overlooked the added value of additional usability testing. Reducing learner frustration and anxiety during e-learning tool use is essential in ensuring e-learning tool success, and will require a commitment on the part of the developers to engage in usability testing during all stages of an e-learning tool's life cycle. Anat Sci Educ 10: 190-199. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  1. Three-dimensional study of pelvic asymmetry on anatomical specimens and its clinical perspectives.

    PubMed

    Boulay, Christophe; Tardieu, Christine; Bénaim, Charles; Hecquet, Jérome; Marty, Catherine; Prat-Pradal, Dominique; Legaye, Jean; Duval-Beaupère, Ginette; Pélissier, Jacques

    2006-01-01

    The aim of this study was to assess pelvic asymmetry (i.e. to determine whether the right iliac bone and the right part of the sacrum are mirror images of the left), both quantitatively and qualitatively, using three-dimensional measurements. Pelvic symmetry was described osteologically using a common reference coordinate system for a large sample of pelvises. Landmarks were established on 12 anatomical specimens with an electromagnetic Fastrak system. Seventy-one paired variables were tested with a paired t-test and a non-parametric test (Wilcoxon). A Pearson correlation matrix between the right and left values of the same variable was applied exclusively to values that were significantly asymmetric in order to calculate a dimensionless asymmetry index, ABGi, for each variable. Fifteen variables were significantly asymmetric and correlated with the right vs. left sides for the following anatomical regions: sacrum, iliac blades, iliac width, acetabulum and the superior lunate surface of the acetabulum. ABGi values above a threshold of +/- 4.8% were considered significantly asymmetric in seven variables of the pelvic area. Total asymmetry involving the right and the left pelvis seems to follow a spiral path in the pelvis; in the upper part, the iliac blades rotate clockwise, and in the lower part, the pubic symphysis rotates anticlockwise. Thus, pelvic asymmetry may be evaluated in clinical examinations by measuring iliac crest orientation.

  2. Three-dimensional study of pelvic asymmetry on anatomical specimens and its clinical perspectives

    PubMed Central

    Boulay, Christophe; Tardieu, Christine; Bénaim, Charles; Hecquet, Jérome; Marty, Catherine; Prat-Pradal, Dominique; Legaye, Jean; Duval-Beaupère, Ginette; Pélissier, Jacques

    2006-01-01

    The aim of this study was to assess pelvic asymmetry (i.e. to determine whether the right iliac bone and the right part of the sacrum are mirror images of the left), both quantitatively and qualitatively, using three-dimensional measurements. Pelvic symmetry was described osteologically using a common reference coordinate system for a large sample of pelvises. Landmarks were established on 12 anatomical specimens with an electromagnetic Fastrak system. Seventy-one paired variables were tested with a paired t-test and a non-parametric test (Wilcoxon). A Pearson correlation matrix between the right and left values of the same variable was applied exclusively to values that were significantly asymmetric in order to calculate a dimensionless asymmetry index, ABGi, for each variable. Fifteen variables were significantly asymmetric and correlated with the right vs. left sides for the following anatomical regions: sacrum, iliac blades, iliac width, acetabulum and the superior lunate surface of the acetabulum. ABGi values above a threshold of ± 4.8% were considered significantly asymmetric in seven variables of the pelvic area. Total asymmetry involving the right and the left pelvis seems to follow a spiral path in the pelvis; in the upper part, the iliac blades rotate clockwise, and in the lower part, the pubic symphysis rotates anticlockwise. Thus, pelvic asymmetry may be evaluated in clinical examinations by measuring iliac crest orientation. PMID:16420376

  3. Dietary Inflammatory Index and Risk of Colorectal Cancer: A Case-Control Study in Korea.

    PubMed

    Cho, Young Ae; Lee, Jeonghee; Oh, Jae Hwan; Shin, Aesun; Kim, Jeongseon

    2016-07-30

    The role of diet-associated inflammation in colorectal cancer is of interest. Accordingly, we aimed to examine whether the dietary inflammatory index (DII) was associated with the risk of colorectal cancer in a case-control study conducted in Korea. The DII was based on dietary intake, which was determined by a 106-item semi-quantitative food frequency questionnaire completed by 923 colorectal cancer cases and 1846 controls. Logistic regression was used to estimate odd ratios (ORs) and 95% confidence intervals (CIs). Subgroup analyses were conducted by the anatomical site of the cancer, sex, and other risk factors. Higher DII scores were associated with an increased incidence of colorectal cancer (OR (95% CI) = 2.16 (1.71, 2.73) for highest vs. lowest tertile). The magnitude differed by anatomical site and sex. This association was slightly weaker in subjects with proximal colon cancer (1.68 (1.08, 2.61)) and was stronger in women (2.50 (1.64, 3.82)). Additionally, stronger associations were observed in subjects who were older than 50 years (p for interaction = 0.004) and engaged in physical activity (p for interaction < 0.001). Results from this study suggest that diet-associated inflammation may increase the risk of colorectal cancer, and this effect may differ by certain factors, such as anatomical site, age, sex, and lifestyle.

  4. Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex.

    PubMed

    Arslan, Salim; Ktena, Sofia Ira; Makropoulos, Antonios; Robinson, Emma C; Rueckert, Daniel; Parisot, Sarah

    2018-04-15

    The macro-connectome elucidates the pathways through which brain regions are structurally connected or functionally coupled to perform a specific cognitive task. It embodies the notion of representing and understanding all connections within the brain as a network, while the subdivision of the brain into interacting functional units is inherent in its architecture. As a result, the definition of network nodes is one of the most critical steps in connectivity network analysis. Although brain atlases obtained from cytoarchitecture or anatomy have long been used for this task, connectivity-driven methods have arisen only recently, aiming to delineate more homogeneous and functionally coherent regions. This study provides a systematic comparison between anatomical, connectivity-driven and random parcellation methods proposed in the thriving field of brain parcellation. Using resting-state functional MRI data from the Human Connectome Project and a plethora of quantitative evaluation techniques investigated in the literature, we evaluate 10 subject-level and 24 groupwise parcellation methods at different resolutions. We assess the accuracy of parcellations from four different aspects: (1) reproducibility across different acquisitions and groups, (2) fidelity to the underlying connectivity data, (3) agreement with fMRI task activation, myelin maps, and cytoarchitectural areas, and (4) network analysis. This extensive evaluation of different parcellations generated at the subject and group level highlights the strengths and shortcomings of the various methods and aims to provide a guideline for the choice of parcellation technique and resolution according to the task at hand. The results obtained in this study suggest that there is no optimal method able to address all the challenges faced in this endeavour simultaneously. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Quantitative IR microscopy and spectromics open the way to 3D digital pathology.

    PubMed

    Bobroff, Vladimir; Chen, Hsiang-Hsin; Delugin, Maylis; Javerzat, Sophie; Petibois, Cyril

    2017-04-01

    Currently, only mass-spectrometry (MS) microscopy brings a quantitative analysis of chemical contents of tissue samples in 3D. Here, the reconstruction of a 3D quantitative chemical images of a biological tissue by FTIR spectro-microscopy is reported. An automated curve-fitting method is developed to extract all intense absorption bands constituting IR spectra. This innovation benefits from three critical features: (1) the correction of raw IR spectra to make them quantitatively comparable; (2) the automated and iterative data treatment allowing to transfer the IR-absorption spectrum into a IR-band spectrum; (3) the reconstruction of an 3D IR-band matrix (x, y, z for voxel position and a 4 th dimension with all IR-band parameters). Spectromics, which is a new method for exploiting spectral data for tissue metadata reconstruction, is proposed to further translate the related chemical information in 3D, as biochemical and anatomical tissue parameters. An example is given with oxidative stress distribution and the reconstruction of blood vessels in tissues. The requirements of IR microscopy instrumentation to propose 3D digital histology as a clinical routine technology is briefly discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Molecular relationships between closely related strains and species of nematodes

    NASA Technical Reports Server (NTRS)

    Butler, M. H.; Wall, S. M.; Luehrsen, K. R.; Fox, G. E.; Hecht, R. M.

    1981-01-01

    Electrophoretic comparisons have been made for 24 enzymes in the Bergerac and Bristol strains of Caenorhabditis elegans and the related species, Caenorhabditis briggsae. No variation was detected between the two strains of C. elegans. In contrast, the two species, C. elegans and C. briggsae exhibited electrophoretic differences in 22 of 24 enzymes. A consensus 5S rRNA sequence was determined for C. elegans and found to be identical to that from C. briggsae. By analogy with other species with relatively well established fossil records it can be inferred that the time of divergence between the two nematode species is probably in the tens of millions of years. The limited anatomical evolution during a time period in which proteins undergo extensive changes supports the hypothesis that anatomical evolution is not dependent on overall protein changes.

  7. Intraosseous Infusion Rates under High Pressure: A Cadaveric Comparison of Anatomic Sites

    DTIC Science & Technology

    2014-01-01

    compartment syndrome, growth plate disruption, hematoma formation, fat embolization , and tissue necrosis [34-37]. These complications can not only be... fat embolism . Pediatr Crit Care Med 2001; 2(2):133-8. 37. Simmons CM, Johnson NE, Perkin RM, van Stralen D. Intraosseous extravasation complication...myeloproliferative malignancy, fracture of targeted bone, previous orthopedic procedures near insertion site, recent IO placement, prosthetic limb or

  8. Wood density and anatomical properties in suppressed-growth trees : comparison of two methods

    Treesearch

    David W. Vahey; J. Y. Zhu; C. Tim Scott

    2007-01-01

    Interest in the commercial value of small-diameter timber has led to testing core samples with SilviScan to characterize density and transverse fiber dimensions. Data showed that latewood density and tracheid diameter in suppressed-growth material can vary spatially on a scale comparable to the 50-_m resolution of the instrument used in our testing. An optical imaging...

  9. The Local Geometry of Multiattribute Tradeoff Preferences

    PubMed Central

    McGeachie, Michael; Doyle, Jon

    2011-01-01

    Existing representations for multiattribute ceteris paribus preference statements have provided useful treatments and clear semantics for qualitative comparisons, but have not provided similarly clear representations or semantics for comparisons involving quantitative tradeoffs. We use directional derivatives and other concepts from elementary differential geometry to interpret conditional multiattribute ceteris paribus preference comparisons that state bounds on quantitative tradeoff ratios. This semantics extends the familiar economic notion of marginal rate of substitution to multiple continuous or discrete attributes. The same geometric concepts also provide means for interpreting statements about the relative importance of different attributes. PMID:21528018

  10. Improving thoracic four-dimensional cone-beam CT reconstruction with anatomical-adaptive image regularization (AAIR)

    PubMed Central

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T; Cooper, Benjamin J; Kuncic, Zdenka; Keall, Paul J

    2015-01-01

    Total-variation (TV) minimization reconstructions can significantly reduce noise and streaks in thoracic four-dimensional cone-beam computed tomography (4D CBCT) images compared to the Feldkamp-Davis-Kress (FDK) algorithm currently used in practice. TV minimization reconstructions are, however, prone to over-smoothing anatomical details and are also computationally inefficient. The aim of this study is to demonstrate a proof of concept that these disadvantages can be overcome by incorporating the general knowledge of the thoracic anatomy via anatomy segmentation into the reconstruction. The proposed method, referred as the anatomical-adaptive image regularization (AAIR) method, utilizes the adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS) framework, but introduces an additional anatomy segmentation step in every iteration. The anatomy segmentation information is implemented in the reconstruction using a heuristic approach to adaptively suppress over-smoothing at anatomical structures of interest. The performance of AAIR depends on parameters describing the weighting of the anatomy segmentation prior and segmentation threshold values. A sensitivity study revealed that the reconstruction outcome is not sensitive to these parameters as long as they are chosen within a suitable range. AAIR was validated using a digital phantom and a patient scan, and was compared to FDK, ASD-POCS, and the prior image constrained compressed sensing (PICCS) method. For the phantom case, AAIR reconstruction was quantitatively shown to be the most accurate as indicated by the mean absolute difference and the structural similarity index. For the patient case, AAIR resulted in the highest signal-to-noise ratio (i.e. the lowest level of noise and streaking) and the highest contrast-to-noise ratios for the tumor and the bony anatomy (i.e. the best visibility of anatomical details). Overall, AAIR was much less prone to over-smoothing anatomical details compared to ASD-POCS, and did not suffer from residual noise/streaking and motion blur migrated from the prior image as in PICCS. AAIR was also found to be more computationally efficient than both ASD-POCS and PICCS, with a reduction in computation time of over 50% compared to ASD-POCS. The use of anatomy segmentation was, for the first time, demonstrated to significantly improve image quality and computational efficiency for thoracic 4D CBCT reconstruction. Further developments are required to facilitate AAIR for practical use. PMID:25565244

  11. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions.

    PubMed

    Akkus, Zeynettin; Galimzianova, Alfiia; Hoogi, Assaf; Rubin, Daniel L; Erickson, Bradley J

    2017-08-01

    Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.

  12. Deep Learning for Magnetic Resonance Fingerprinting: A New Approach for Predicting Quantitative Parameter Values from Time Series.

    PubMed

    Hoppe, Elisabeth; Körzdörfer, Gregor; Würfl, Tobias; Wetzl, Jens; Lugauer, Felix; Pfeuffer, Josef; Maier, Andreas

    2017-01-01

    The purpose of this work is to evaluate methods from deep learning for application to Magnetic Resonance Fingerprinting (MRF). MRF is a recently proposed measurement technique for generating quantitative parameter maps. In MRF a non-steady state signal is generated by a pseudo-random excitation pattern. A comparison of the measured signal in each voxel with the physical model yields quantitative parameter maps. Currently, the comparison is done by matching a dictionary of simulated signals to the acquired signals. To accelerate the computation of quantitative maps we train a Convolutional Neural Network (CNN) on simulated dictionary data. As a proof of principle we show that the neural network implicitly encodes the dictionary and can replace the matching process.

  13. Surgical anatomy of the sternoclavicular joint: a qualitative and quantitative anatomical study.

    PubMed

    Lee, Jared T; Campbell, Kevin J; Michalski, Max P; Wilson, Katharine J; Spiegl, Ulrich J A; Wijdicks, Coen A; Millett, Peter J

    2014-10-01

    The quantitative anatomical relationships of the main ligamentous, tendinous, and osseous structures of the sternoclavicular joint have not been widely investigated. The purpose of this study was to provide a quantitative description of the sternoclavicular joint in relation to relevant surgical landmarks. We dissected eleven nonpaired, fresh-frozen cadaveric sternoclavicular joints from four men and seven women (mean age at death, fifty-three years; range, thirty-three to sixty-four years) and measured the ligaments, musculature, and osseous landmarks with use of a three-dimensional coordinate-measuring device. The clavicular pectoralis ridge, located at the 9:30 clock-face position on a right clavicle, served as a reliable osseous landmark for reference to the soft-tissue attachments around the sternoclavicular joint. The costoclavicular ligament was the largest ligament of the sternoclavicular joint, with 80% greater footprint area than that of the posterior sternoclavicular ligament. Articular cartilage covered 67% of the medial end of the clavicle and was located anteroinferiorly. The sternohyoid muscle inserted directly over the posterior sternoclavicular joint and the medial end of the clavicle, whereas the sternothyroid muscle inserted 9.5 mm inferior to the posterior-superior articular margin of the manubrium and coursed 19.8 mm laterally along the first rib. An avascular plane that can serve as a "safe zone" for posterior dissection was observed in each specimen, posterior to the sternoclavicular joint and anterior to the sternohyoid and sternothyroid muscles. The clavicular pectoralis ridge can be used as an intraoperative guide for clavicle orientation and tunnel placement in sternoclavicular ligament reconstruction. Sternoclavicular joint resection arthroplasty should avoid injuring the costoclavicular ligament, which is the largest sternoclavicular joint ligament. Resection of only the anteroinferior aspect of the medial end of the clavicle may provide adequate decompression while preserving the stability of the clavicle. The location of the sternohyoid and sternothyroid musculotendinous insertions appear to provide a "safe zone" for posterior clavicle and manubrial dissection. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.

  14. Virtual reality haptic dissection.

    PubMed

    Erolin, Caroline; Wilkinson, Caroline; Soames, Roger

    2011-12-01

    This project aims to create a three-dimensional digital model of the human hand and wrist which can be virtually 'dissected' through a haptic interface. Tissue properties will be added to the various anatomical structures to replicate a realistic look and feel. The project will explore the role of the medical artist, and investigate cross-discipline collaborations in the field of virtual anatomy. The software will be used to train anatomy students in dissection skills, before experience on a real cadaver. The effectiveness of the software will be evaluated and assessed both quantitatively as well as qualitatively.

  15. Quantitative Computed Tomography (QCT) derived Bone Mineral Density (BMD) in finite element studies: a review of the literature.

    PubMed

    Knowles, Nikolas K; Reeves, Jacob M; Ferreira, Louis M

    2016-12-01

    Finite element modeling of human bone provides a powerful tool to evaluate a wide variety of outcomes in a highly repeatable and parametric manner. These models are most often derived from computed tomography data, with mechanical properties related to bone mineral density (BMD) from the x-ray energy attenuation provided from this data. To increase accuracy, many researchers report the use of quantitative computed tomography (QCT), in which a calibration phantom is used during image acquisition to improve the estimation of BMD. Since model accuracy is dependent on the methods used in the calculation of BMD and density-mechanical property relationships, it is important to use relationships developed for the same anatomical location and using the same scanner settings, as these may impact model accuracy. The purpose of this literature review is to report the relationships used in the conversion of QCT equivalent density measures to ash, apparent, and/or tissue densities in recent finite element (FE) studies used in common density-modulus relationships. For studies reporting experimental validation, the validation metrics and results are presented. Of the studies reviewed, 29% reported the use of a dipotassium phosphate (K 2 HPO 4 ) phantom, 47% a hydroxyapatite (HA) phantom, 13% did not report phantom type, 7% reported use of both K 2 HPO 4 and HA phantoms, and 4% alternate phantom types. Scanner type and/or settings were omitted or partially reported in 31% of studies. The majority of studies used densitometric and/or density-modulus relationships derived from different anatomical locations scanned in different scanners with different scanner settings. The methods used to derive various densitometric relationships are reported and recommendations are provided toward the standardization of reporting metrics. This review assessed the current state of QCT-based FE modeling with use of clinical scanners. It was found that previously developed densitometric relationships vary by anatomical location, scanner type and settings. Reporting of all parameters used when referring to previously developed relationships, or in the development of new relationships, may increase the accuracy and repeatability of future FE models.

  16. A novel approach for evaluating the performance of real time quantitative loop-mediated isothermal amplification-based methods.

    PubMed

    Nixon, Gavin J; Svenstrup, Helle F; Donald, Carol E; Carder, Caroline; Stephenson, Judith M; Morris-Jones, Stephen; Huggett, Jim F; Foy, Carole A

    2014-12-01

    Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR). There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These 'isothermal' methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT), akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP) assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.

  17. Evaluation of the clinical sensitivity for the quantification of human immunodeficiency virus type 1 RNA in plasma: Comparison of the new COBAS TaqMan HIV-1 with three current HIV-RNA assays--LCx HIV RNA quantitative, VERSANT HIV-1 RNA 3.0 (bDNA) and COBAS AMPLICOR HIV-1 Monitor v1.5.

    PubMed

    Katsoulidou, Antigoni; Petrodaskalaki, Maria; Sypsa, Vana; Papachristou, Eleni; Anastassopoulou, Cleo G; Gargalianos, Panagiotis; Karafoulidou, Anastasia; Lazanas, Marios; Kordossis, Theodoros; Andoniadou, Anastasia; Hatzakis, Angelos

    2006-02-01

    The COBAS TaqMan HIV-1 test (Roche Diagnostics) was compared with the LCx HIV RNA quantitative assay (Abbott Laboratories), the Versant HIV-1 RNA 3.0 (bDNA) assay (Bayer) and the COBAS Amplicor HIV-1 Monitor v1.5 test (Roche Diagnostics), using plasma samples of various viral load levels from HIV-1-infected individuals. In the comparison of TaqMan with LCx, TaqMan identified as positive 77.5% of the 240 samples versus 72.1% identified by LCx assay, while their overall agreement was 94.6% and the quantitative results of samples that were positive by both methods were strongly correlated (r=0.91). Similarly, in the comparison of TaqMan with bDNA 3.0, both methods identified 76.3% of the 177 samples as positive, while their overall agreement was 95.5% and the quantitative results of samples that were positive by both methods were strongly correlated (r=0.95). Finally, in the comparison of TaqMan with Monitor v1.5, TaqMan identified 79.5% of the 156 samples as positive versus 80.1% identified by Monitor v1.5, while their overall agreement was 95.5% and the quantitative results of samples that were positive by both methods were strongly correlated (r=0.96). In conclusion, the new COBAS TaqMan HIV-1 test showed excellent agreement with other widely used commercially available tests for the quantitation of HIV-1 viral load.

  18. COMPARISON OF GENETIC METHODS TO OPTICAL METHODS IN THE IDENTIFICATION AND ASSESSMENT OF MOLD IN THE BUILT ENVIRONMENT -- COMPARISON OF TAQMAN AND MICROSCOPIC ANALYSIS OF CLADOSPORIUM SPORES RETRIEVED FROM ZEFON AIR-O-CELL TRACES

    EPA Science Inventory

    Recent advances in the sequencing of relevant water intrusion fungi by the EPA, combined with the development of probes and primers have allowed for the unequivocal quantitative and qualitative identification of fungi in selected matrices.

    In this pilot study, quantitative...

  19. The Comparison of Self-Efficacy Belief Levels on Anatomy Education between the Undergraduate Students from Physical Therapy and Rehabilitation Department and the Associate Students from Vocational School of Health Services in Western Black Sea Region

    ERIC Educational Resources Information Center

    Acar, Derya; Colak, Tuncay; Colak, Serap; Gungor, Tugba; Yener, Deniz M.; Aksu, Elif; Guzelordu, Dilsat; Sivri, Ismail; Colak, Enis; Ors, Abdullah

    2017-01-01

    Physical Therapy and Rehabilitation (PTR) undergraduate degree departments and Vocational School of Health Services (VSHS) associate degree departments train healthcare professionals, which is important for both continuance of human health and treatment of various illnesses. Anatomic structures underlie the illnesses that these departments treat…

  20. The utilization of a commercial gloss spray in stabilization of incinerated dental structures.

    PubMed

    Berketa, John; Fauzi, Ahmad; James, Helen; Lake, Anthony; Langlois, Neil

    2015-07-01

    Incinerated human remains may require dental comparison to establish identity. The remains are often fragile and minor forces can damage teeth and facial bones, disrupting anatomical relationships, and impairing the ability to compare with antemortem records. This study evaluated the ability of a commercially available gloss spray to stabilize teeth in incinerated remains. Lower anterior teeth of scavenged sheep mandibles were incinerated in a furnace at a temperature of 500 °C for 35 min. Before a series of vibration tests, the left side of each sample was treated with the spray, with the right side acting as a control. Significant retention of dental data was achieved utilizing the spray in comparison to the non-stabilized sides. This study showed that a commercial clear gloss spray did not affect the ability to document or perform radiographic assessment of restorations, and statistically improved the stability and anatomical relationships of incinerated dental remains in scavenged sheep mandibles. Commercial products, such as the one tested in this study, are readily available and could be deployed at a mass disaster situation. However, the spray should not be used if there is any suspicion that accelerants might be involved at the scene. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  1. Detecting corpus callosum abnormalities in autism based on anatomical landmarks

    PubMed Central

    He, Qing; Duan, Ye; Karsch, Kevin; Miles, Judith

    2010-01-01

    Autism is a severe developmental disorder whose neurological basis is largely unknown. Autism is a subtype of autism that displays more homogeneous features within group. The aim of this study was to identify the shape differences of the corpus callosum between patients with autism and the controls. Anatomical landmarks were collected from mid-sagittal MRI of 25 patients and 18 controls. Euclidean distance matrix analysis and thin-plate spline were used to analyze the landmark forms. Point-by-point shape comparison was performed both globally and locally. A new local shape comparison scheme was proposed which compared each part of the shape in its local coordinate system. Point correspondence was established among individual shapes based on the inherent landmark correspondence. No significant difference was found in the landmark form between patients and controls, but the distance between interior genu and posterior most was found significantly shorter in patients. Thin-plate spline analysis showed significant group difference between the landmark configurations in terms of the deformation from the overall mean configuration. Significant global shape differences were found in the anterior lower body and posterior bottom, and local shape difference existed in the anterior bottom. This study can serve as both clinical reference and a detailed procedure guideline for similar studies in the future. PMID:20620032

  2. Evaluation of Dosimetry Check software for IMRT patient-specific quality assurance.

    PubMed

    Narayanasamy, Ganesh; Zalman, Travis; Ha, Chul S; Papanikolaou, Niko; Stathakis, Sotirios

    2015-05-08

    The purpose of this study is to evaluate the use of the Dosimetry Check system for patient-specific IMRT QA. Typical QA methods measure the dose in an array dosimeter surrounded by homogenous medium for which the treatment plan has been recomputed. With the Dosimetry Check system, fluence measurements acquired on a portal dosimeter is applied to the patient's CT scans. Instead of making dose comparisons in a plane, Dosimetry Check system produces isodose lines and dose-volume histograms based on the planning CT images. By exporting the dose distribution from the treatment planning system into the Dosimetry Check system, one is able to make a direct comparison between the calculated dose and the planned dose. The versatility of the software is evaluated with respect to the two IMRT techniques - step and shoot and volumetric arc therapy. The system analyzed measurements made using EPID, PTW seven29, and IBA MatriXX, and an intercomparison study was performed. Plans from patients previously treated at our institution with treated anatomical site on brain, head & neck, liver, lung, and prostate were analyzed using Dosimetry Check system for any anatomical site dependence. We have recommendations and possible precautions that may be necessary to ensure proper QA with the Dosimetry Check system.

  3. Virtual single source CT using dual source acquisition: Clinical applicability in run-off CT-angiography for intra-individual comparison of different scan protocols.

    PubMed

    Werncke, T; Hinrichs, J B; Alikhani, B; Maschke, S; Wacker, F K; Meyer, B C

    2018-04-01

    Virtual single source computed tomography (VSS-CT) acquisition on a dual source CT (DSCT) has been demonstrated to allow for dose-neutral intra-individual comparison of three acquisition protocols at different radiation dose levels (RDL) within one acquisition in a phantom. The purpose of this study was twofold: first to evaluate the applicability of VSS-CT in patients and second to optimize the task-dependent trade-off between radiation dose and image quality of lower extremity CT angiography (run-off CTA). In this IRB-approved prospective study 52 patients underwent run-off CTA between 06/2012 and 06/2013. VSS-CT acquisition was conducted using a first generation DSCT applying equal X-ray tube settings (120 kVp), collimation (2 × 32 × 0.6 mm), and slice thickness (1.0 mm) but different effective tube current-time products (tube A: 80 mAs, tube B: 40 mAs). Three different image datasets representing three different radiation dose levels (RDL40, RDL80, RDL120) were reconstructed using a soft kernel from the raw data of tube B, tube A or both tubes combined. Dose length products (DLP) of each raw data set were documented. Quantitative image quality (IQ) was assessed for five anatomical levels using image noise and contrast-to-noise ratio (CNR). To investigate dose efficiency of each acquisition, the dose-weighted CNR (CNRD) was determined. Qualitative IQ was evaluated by two blinded readers in consensus using a 5-point Likert scale and compared with a Friedman- and posthoc Wilcoxon test. Mean DLP was 200 ± 40, 400 ± 90 and 600 ± 130 mGy·cm for the RDL40, RDL80 and RDL120, respectively. Image noise and CNR were best for RDL120 and decreased significantly for RDL80 and RDL40, independent of the anatomic level (p < 0.001). CNRD showed no significant differences at the abdominal and pelvic level between the investigated radiation dose levels. However, for thigh to foot level a significant increase of CNRD was noted between RDL120, RDL80 and RDL40. Significant differences of qualitative IQ were observed between RDL120 and RDL40 from the abdominal to the foot level, whereas no difference was seen for the other dose levels. Radiation dose splitting with VSS-CT can be applied to run-off CTA facilitating intra-individual comparison of different acquisition protocols without additional radiation exposure. Furthermore, a radiation dose reduction potential for run-off CTA of approximately 1/3 as compared to the acquisition protocol recommended by the manufacturer could be identified in this study. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Applying Knowledge of Quantitative Design and Analysis

    ERIC Educational Resources Information Center

    Baskas, Richard S.

    2011-01-01

    This study compared and contrasted two quantitative scholarly articles in relation to their research designs. Their designs were analyzed by the comparison of research references and research specific vocabulary to describe how various research methods were used. When researching and analyzing quantitative scholarly articles, it is imperative to…

  5. Vascular Corrosion Casting: Review of Advantages and Limitations in the Application of Some Simple Quantitative Methods.

    PubMed

    Hossler, Fred E.; Douglas, John E.

    2001-05-01

    Vascular corrosion casting has been used for about 40 years to produce replicas of normal and abnormal vasculature and microvasculature of various tissues and organs that could be viewed at the ultrastructural level. In combination with scanning electron microscopy (SEM), the primary application of corrosion casting has been to describe the morphology and anatomical distribution of blood vessels in these tissues. However, such replicas should also contain quantitative information about that vasculature. This report summarizes some simple quantitative applications of vascular corrosion casting. Casts were prepared by infusing Mercox resin or diluted Mercox resin into the vasculature. Surrounding tissues were removed with KOH, hot water, and formic acid, and the resulting dried casts were observed with routine SEM. The orientation, size, and frequency of vascular endothelial cells were determined from endothelial nuclear imprints on various cast surfaces. Vascular volumes of heart, lung, and avian salt gland were calculated using tissue and resin densities, and weights. Changes in vascular volume and functional capillary density in an experimentally induced emphysema model were estimated from confocal images of casts. Clearly, corrosion casts lend themselves to quantitative analysis. However, because blood vessels differ in their compliances, in their responses to the toxicity of casting resins, and in their response to varying conditions of corrosion casting procedures, it is prudent to use care in interpreting this quantitative data. Some of the applications and limitations of quantitative methodology with corrosion casts are reviewed here.

  6. Why are there race/ethnic differences in adult body mass index–adiposity relationships? A quantitative critical review

    PubMed Central

    Heymsfield, S. B.; Peterson, C. M.; Thomas, D. M.; Heo, M.; Schuna, J. M.

    2016-01-01

    Summary Body mass index (BMI) is now the most widely used measure of adiposity on a global scale. Nevertheless, intense discussion centers on the appropriateness of BMI as a phenotypic marker of adiposity across populations differing in race and ethnicity. BMI-adiposity relations appear to vary significantly across race/ethnic groups, but a collective critical analysis of these effects establishing their magnitude and underlying body shape/composition basis is lacking. Accordingly, we systematically review the magnitude of these race-ethnic differences across non-Hispanic (NH) white, NH black and Mexican American adults, their anatomic body composition basis and potential biologically linked mechanisms, using both earlier publications and new analyses from the US National Health and Nutrition Examination Survey. Our collective observations provide a new framework for critically evaluating the quantitative relations between BMI and adiposity across groups differing in race and ethnicity; reveal new insights into BMI as a measure of adiposity across the adult age-span; identify knowledge gaps that can form the basis of future research and create a quantitative foundation for developing BMI-related public health recommendations. PMID:26663309

  7. [Instability of the distal radioulnar joint: Treatment options for ulnar lesions of the triangular fibrocartilage complex].

    PubMed

    Spies, C K; Prommersberger, K J; Langer, M; Müller, L P; Hahn, P; Unglaub, F

    2015-08-01

    Injuries of the triangular fibrocartilage complex (TFCC) may be fatal to the distal radioulnar joint (DRUJ). This structure is one of the crucial stabilizers and guarantees unrestricted pronosupination of the forearm. A systematic examination is mandatory to diagnose DRUJ instability reliably. A clinical examination in comparison to the contralateral side is obligatory. Plain radiographs are required to exclude osseous lesions or deformities. Computed tomography of both wrists in neutral, pronation and supination is necessary to verify DRUJ instability in ambiguous situations. Based on a systematic examination wrist and DRUJ arthroscopy identify lesions clearly. Injuries of the radioulnar ligaments which entail DRUJ instability, should be reconstructed preferably anatomically. Ulnar-sided TFCC lesions may often cause DRUJ instability. Osseous ligament avulsions are mostly treated osteosynthetically. Ligament tears may be refixated using anchor or transosseous sutures. Tendon transplants are necessary for an anatomical reconstruction in cases of irreparable ruptures.

  8. Did pterosaurs feed by skimming? Physical modelling and anatomical evaluation of an unusual feeding method.

    PubMed

    Humphries, Stuart; Bonser, Richard H C; Witton, Mark P; Martill, David M

    2007-08-01

    Similarities between the anatomies of living organisms are often used to draw conclusions regarding the ecology and behaviour of extinct animals. Several pterosaur taxa are postulated to have been skim-feeders based largely on supposed convergences of their jaw anatomy with that of the modern skimming bird, Rynchops spp. Using physical and mathematical models of Rynchops bills and pterosaur jaws, we show that skimming is considerably more energetically costly than previously thought for Rynchops and that pterosaurs weighing more than one kilogram would not have been able to skim at all. Furthermore, anatomical comparisons between the highly specialised skull of Rynchops and those of postulated skimming pterosaurs suggest that even smaller forms were poorly adapted for skim-feeding. Our results refute the hypothesis that some pterosaurs commonly used skimming as a foraging method and illustrate the pitfalls involved in extrapolating from limited morphological convergence.

  9. Corticolimbic anatomical characteristics predetermine risk for chronic pain

    PubMed Central

    Vachon-Presseau, Etienne; Tétreault, Pascal; Petre, Bogdan; Huang, Lejian; Berger, Sara E.; Torbey, Souraya; Baria, Alexis T.; Mansour, Ali R.; Hashmi, Javeria A.; Griffith, James W.; Comasco, Erika; Schnitzer, Thomas J.

    2016-01-01

    See Tracey (doi:10.1093/brain/aww147) for a scientific commentary on this article. Mechanisms of chronic pain remain poorly understood. We tracked brain properties in subacute back pain patients longitudinally for 3 years as they either recovered from or transitioned to chronic pain. Whole-brain comparisons indicated corticolimbic, but not pain-related circuitry, white matter connections predisposed patients to chronic pain. Intra-corticolimbic white matter connectivity analysis identified three segregated communities: dorsal medial prefrontal cortex–amygdala–accumbens, ventral medial prefrontal cortex–amygdala, and orbitofrontal cortex–amygdala–hippocampus. Higher incidence of white matter and functional connections within the dorsal medial prefrontal cortex–amygdala–accumbens circuit, as well as smaller amygdala volume, represented independent risk factors, together accounting for 60% of the variance for pain persistence. Opioid gene polymorphisms and negative mood contributed indirectly through corticolimbic anatomical factors, to risk for chronic pain. Our results imply that persistence of chronic pain is predetermined by corticolimbic neuroanatomical factors. PMID:27190016

  10. Comparison of Blood Loss in Laser Lipolysis vs Traditional Liposuction.

    PubMed

    Abdelaal, Mohammed Mahmoud; Aboelatta, Yasser Abdallah

    2014-08-01

    Laser-assisted liposuction has been associated with reduced blood loss. However, this clinical finding has not been evaluated objectively. In this study, the authors objectively estimated the blood loss volume associated with laser lipolysis vs traditional liposuction in various anatomic regions. In this prospective study, 56 patients underwent equal amounts of traditional and laser-assisted liposuction at 2 contralateral anatomic sites. Blood loss volumes were calculated from the lipoaspirates by measuring hemoglobin and red blood cell content. The data were analyzed statistically with repeated-measures analysis of variance and the Mann-Whitney U test. Laser lipolysis can reduce blood loss by more than 50% compared with traditional liposuction. Laser lipolysis resulted in significant reductions in mean blood loss volumes in the abdomen, flanks, back, and breast. The authors provide objective evidence that laser lipolysis significantly reduces blood loss compared with traditional liposuction. 3. © 2014 The American Society for Aesthetic Plastic Surgery, Inc.

  11. Two-Phase and Graph-Based Clustering Methods for Accurate and Efficient Segmentation of Large Mass Spectrometry Images.

    PubMed

    Dexter, Alex; Race, Alan M; Steven, Rory T; Barnes, Jennifer R; Hulme, Heather; Goodwin, Richard J A; Styles, Iain B; Bunch, Josephine

    2017-11-07

    Clustering is widely used in MSI to segment anatomical features and differentiate tissue types, but existing approaches are both CPU and memory-intensive, limiting their application to small, single data sets. We propose a new approach that uses a graph-based algorithm with a two-phase sampling method that overcomes this limitation. We demonstrate the algorithm on a range of sample types and show that it can segment anatomical features that are not identified using commonly employed algorithms in MSI, and we validate our results on synthetic MSI data. We show that the algorithm is robust to fluctuations in data quality by successfully clustering data with a designed-in variance using data acquired with varying laser fluence. Finally, we show that this method is capable of generating accurate segmentations of large MSI data sets acquired on the newest generation of MSI instruments and evaluate these results by comparison with histopathology.

  12. Squamous cell carcinoma – similarities and differences among anatomical sites

    PubMed Central

    Yan, Wusheng; Wistuba, Ignacio I; Emmert-Buck, Michael R; Erickson, Heidi S

    2011-01-01

    Squamous cell carcinoma (SCC) is an epithelial malignancy involving many anatomical sites and is the most common cancer capable of metastatic spread. Development of early diagnosis methods and novel therapeutics are important for prevention and mortality reduction. In this effort, numerous molecular alterations have been described in SCCs. SCCs share many phenotypic and molecular characteristics, but they have not been extensively compared. This article reviews SCC as a disease, including: epidemiology, pathology, risk factors, molecular characteristics, prognostic markers, targeted therapy, and a new approach to studying SCCs. Through this comparison, several themes are apparent. For example, HPV infection is a common risk factor among the four major SCCs (NMSC, HNSC, ESCC, and NSCLC) and molecular abnormalities in cell-cycle regulation and signal transduction predominate. These data reveal that the molecular insights, new markers, and drug targets discovered in individual SCCs may shed light on this type of cancer as a whole. PMID:21938273

  13. [Overdenture supported by natural teeth: analysis of clinical advantages].

    PubMed

    Scotti, R; Melilli, D; Pizzo, G

    2003-05-01

    Hybrid prosthesis supported by natural teeth (overdenture) is widely used in clinical practice and should be executed whenever the clinical conditions suggest it. Through a critical review of the literature, the anatomical, functional, psychological and clinical advantages are emphasized. Among the first ones, the prophylaxis of residual anatomical components, due to the limitation of bone resorption, and the preservation of sensorial proprioception are relevant. Important advantages are also represented by a better crown-root ratio of residual teeth supporting overdenture, with the consequent improvement of the longitudinal prognosis of such teeth. The greater retention and stability of overdenture in comparison with complete denture greatly improve the masticatory efficacy. The psychological advantages resulting from the dental anchorage, which allows the patient to be more confident in social life, are also relevant. Finally, when the dental support is lost, converting overdenture into complete denture is simple and quick, and makes easier the longitudinal clinical maintenance of the denture.

  14. Did Pterosaurs Feed by Skimming? Physical Modelling and Anatomical Evaluation of an Unusual Feeding Method

    PubMed Central

    Humphries, Stuart; Bonser, Richard H. C; Witton, Mark P; Martill, David M

    2007-01-01

    Similarities between the anatomies of living organisms are often used to draw conclusions regarding the ecology and behaviour of extinct animals. Several pterosaur taxa are postulated to have been skim-feeders based largely on supposed convergences of their jaw anatomy with that of the modern skimming bird, Rynchops spp. Using physical and mathematical models of Rynchops bills and pterosaur jaws, we show that skimming is considerably more energetically costly than previously thought for Rynchops and that pterosaurs weighing more than one kilogram would not have been able to skim at all. Furthermore, anatomical comparisons between the highly specialised skull of Rynchops and those of postulated skimming pterosaurs suggest that even smaller forms were poorly adapted for skim-feeding. Our results refute the hypothesis that some pterosaurs commonly used skimming as a foraging method and illustrate the pitfalls involved in extrapolating from limited morphological convergence. PMID:17676976

  15. Core components of a comprehensive quality assurance program in anatomic pathology.

    PubMed

    Nakhleh, Raouf E

    2009-11-01

    In this article the core components of a comprehensive quality assurance and improvement plan are outlined. Quality anatomic pathology work comes with focus on accurate, timely, and complete reports. A commitment to continuous quality improvement and a systems approach with a persistent effort helps to achieve this end. Departments should have a quality assurance and improvement plan that includes a risk assessment of real and potential problems facing the laboratory. The plan should also list the individuals responsible for carrying out the program with adequate resources, a defined timetable, and annual assessment for progress and future directions. Quality assurance monitors should address regulatory requirements and be organized by laboratory division (surgical pathology, cytology, etc) as well as 5 segments (preanalytic, analytic, postanalytic phases of the test cycle, turn-around-time, and customer satisfaction). Quality assurance data can also be used to evaluate individual pathologists using multiple parameters with peer group comparison.

  16. Comparison of the current AJCC-TNM numeric-based with a new anatomical location-based lymph node staging system for gastric cancer: A western experience.

    PubMed

    Galizia, Gennaro; Lieto, Eva; Auricchio, Annamaria; Cardella, Francesca; Mabilia, Andrea; Diana, Anna; Castellano, Paolo; De Vita, Ferdinando; Orditura, Michele

    2017-01-01

    In gastric cancer, the current AJCC numeric-based lymph node staging does not provide information on the anatomical extent of the disease and lymphadenectomy. A new anatomical location-based node staging, proposed by Choi, has shown better prognostic performance, thus soliciting Western world validation. Data from 284 gastric cancers undergoing radical surgery at the Second University of Naples from 2000 to 2014 were reviewed. The lymph nodes were reclassified into three groups (lesser and greater curvature, and extraperigastric nodes); presence of any metastatic lymph node in a given group was considered positive, prompting a new N and TNM stage classification. Receiver-operating-characteristic (ROC) curves for censored survival data and bootstrap methods were used to compare the capability of the two models to predict tumor recurrence. More than one third of node positive patients were reclassified into different N and TNM stages by the new system. Compared to the current staging system, the new classification significantly correlated with tumor recurrence rates and displayed improved indices of prognostic performance, such as the Bayesian information criterion and the Harrell C-index. Higher values at survival ROC analysis demonstrated a significantly better stratification of patients by the new system, mostly in the early phase of the follow-up, with a worse prognosis in more advanced new N stages, despite the same current N stage. This study suggests that the anatomical location-based classification of lymph node metastasis may be an important tool for gastric cancer prognosis and should be considered for future revision of the TNM staging system.

  17. Patterns of multisite pain and associations with risk factors

    PubMed Central

    Coggon, David; Ntani, Georgia; Palmer, Keith T.; Felli, Vanda E.; Harari, Raul; Barrero, Lope H.; Felknor, Sarah A.; Gimeno, David; Cattrell, Anna; Vargas-Prada, Sergio; Bonzini, Matteo; Solidaki, Eleni; Merisalu, Eda; Habib, Rima R.; Sadeghian, Farideh; Masood Kadir, M.; Warnakulasuriya, Sudath S.P.; Matsudaira, Ko; Nyantumbu, Busisiwe; Sim, Malcolm R.; Harcombe, Helen; Cox, Ken; Marziale, Maria H.; Sarquis, Leila M.; Harari, Florencia; Freire, Rocio; Harari, Natalia; Monroy, Magda V.; Quintana, Leonardo A.; Rojas, Marianela; Salazar Vega, Eduardo J.; Harris, E. Clare; Serra, Consol; Martinez, J. Miguel; Delclos, George; Benavides, Fernando G.; Carugno, Michele; Ferrario, Marco M.; Pesatori, Angela C.; Chatzi, Leda; Bitsios, Panos; Kogevinas, Manolis; Oha, Kristel; Sirk, Tuuli; Sadeghian, Ali; Peiris-John, Roshini J.; Sathiakumar, Nalini; Wickremasinghe, A. Rajitha; Yoshimura, Noriko; Kelsall, Helen L.; Hoe, Victor C.W; Urquhart, Donna M.; Derrett, Sarah; McBride, David; Herbison, Peter; Gray, Andrew

    2013-01-01

    To explore definitions for multisite pain, and compare associations with risk factors for different patterns of musculoskeletal pain, we analysed cross-sectional data from the Cultural and Psychosocial Influences on Disability (CUPID) study. The study sample comprised 12,410 adults aged 20–59 years from 47 occupational groups in 18 countries. A standardised questionnaire was used to collect information about pain in the past month at each of 10 anatomical sites, and about potential risk factors. Associations with pain outcomes were assessed by Poisson regression, and characterised by prevalence rate ratios (PRRs). Extensive pain, affecting 6–10 anatomical sites, was reported much more frequently than would be expected if the occurrence of pain at each site were independent (674 participants vs 41.9 expected). In comparison with pain involving only 1–3 sites, it showed much stronger associations (relative to no pain) with risk factors such as female sex (PRR 1.6 vs 1.1), older age (PRR 2.6 vs 1.1), somatising tendency (PRR 4.6 vs 1.3), and exposure to multiple physically stressing occupational activities (PRR 5.0 vs 1.4). After adjustment for number of sites with pain, these risk factors showed no additional association with a distribution of pain that was widespread according to the frequently used American College of Rheumatology criteria. Our analysis supports the classification of pain at multiple anatomical sites simply by the number of sites affected, and suggests that extensive pain differs importantly in its associations with risk factors from pain that is limited to only a small number of anatomical sites. PMID:23727463

  18. Internal Limiting Membrane Flap Techniques for the Repair of Large Macular Holes: a Short-Term Follow-up of Anatomical and Functional Outcomes.

    PubMed

    Guber, J; Lang, C; Valmaggia, C

    2017-04-01

    Background To evaluate the technique of inverted internal limiting membrane (ILM) flaps for the management of large macular holes and autologous ILM free flaps for non-closing macular holes. Patients and methods All macular holes were treated with pars plana vitrectomy and dual blue assisted ILM flap technique. The inverted ILM flap was created as a primary procedure for large macular holes (diameter > 400 µm). On the other hand, the free ILM flap technique was used as a secondary procedure for non-closing macular holes after failed initial standard procedure. SD-OCT images were taken to assess the anatomical outcome of surgery, while best corrected visual acuity (BCVA) was used to evaluate the functional outcome during a 2-month follow-up. Results All patients underwent successful planned manipulation of the ILM flap. In seven patients/eyes, an inverted ILM flap was created, in three patients/eyes a free ILM flap translocation was performed. All patients achieved complete anatomical closure. Partial microstructural reconstruction, demonstrated on SD-OCT as restoration of the external limiting membrane and the ellipsoid zone, was observed in some cases as early as one month after surgery. Functionally, in comparison to baseline, most of the patients showed improvements in BCVA of 1 to 2 lines at the first postoperative follow-up visit. Conclusions Inverted ILM flaps for large macular holes and free flaps for non-closing macular holes appear to be a safe and effective approach, with favourable short-term anatomical and functional results. Georg Thieme Verlag KG Stuttgart · New York.

  19. Comparison of long-term results between osteo-odonto-keratoprosthesis and tibial bone keratoprosthesis.

    PubMed

    Charoenrook, Victor; Michael, Ralph; de la Paz, Maria Fideliz; Temprano, José; Barraquer, Rafael I

    2018-04-01

    To compare the anatomical and the functional results between osteo-odonto-keratoprosthesis (OOKP) and keratoprosthesis using tibial bone autograft (Tibial bone KPro). We reviewed the charts of 258 patients; 145 had OOKP whereas 113 had Tibial bone KPro implanted. Functional success was defined as best corrected visual acuity ≥0.05 on decimal scale and anatomical success as retention of the keratoprosthesis lamina. Kaplan-Meier survival curves were calculated for anatomical and functional survival as well as to estimate the probability of post-op complications. The anatomical survival for both KPro groups was not significantly different and was estimated as 67% for OOKP and 54% for Tibial bone KPro at 10 years after surgery. There was also no difference found after subdividing for primary diagnosis groups such as chemical injury, thermal burn, trachoma and all autoimmune cases combined. Estimated functional survival at 10 years post-surgery was 49% for OOKP and 25% for Tibial bone KPro, which was significantly different. The probability of patients with Tibial bone KPro developing one or more post-operative complications at 10 years after surgery (65%) was significantly higher than those with OOKP (40%). Mucous membrane necrosis and retroprosthetic membrane formation were more common in Tibial bone KPro than OOKP. Both types of autologous biological KPro, OOKP and Tibial bone KPro, had statistically similar rate of keratoprosthesis extrusion. Although functional success rate was significantly higher in OOKP, it may have been influenced by a better visual potential in the patients in this group. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Surgical treatment of acute type V acromioclavicular joint dislocations in professional athletes: an anatomic ligament reconstruction with synthetic implant augmentation.

    PubMed

    Triantafyllopoulos, Ioannis K; Lampropoulou-Adamidou, Kalliopi; Schizas, Nikitas P; Karadimas, Eleftherios V

    2017-12-01

    Most acromioclavicular (AC) joint injuries occur in men in their third decade of life during high-speed or high-impact body contact sports. The management of acute complete AC joint dislocation is surgical. Current surgical techniques include anatomic reconstruction of the main restraints of the AC joint and aim to improve functional outcomes and to reduce the complication rate. We present 10 cases of acute type V AC joint dislocation in professional athletes treated surgically with anatomic reconstruction of the coracoclavicular and AC ligaments and augmentation with the use of a synthetic polyester tape. The minimum follow-up of the patients was 2 years (mean, 48 months; range, 24-86 months). The postoperative functional outcome was assessed at 1 year and 2 years using the Constant-Murley, American Shoulder and Elbow Surgeons, and modified University of California-Los Angeles scoring systems. In all cases, the postoperative scores were significantly improved (P < .005 in all comparisons with the preoperative scores), and all patients returned to their preinjury high level of activity 6 months postoperatively. Radiographs at 1 month and 6 months revealed the maintenance of reduction. There were no complications. According to the results of our series of patients, demanding cases of acute AC joint dislocation Rockwood type V, in professional athletes, require anatomic fixation of both coracoclavicular and AC ligaments for return to sports as soon as possible and at the preinjury level of performance. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  1. Congruent climate-related genecological responses from molecular markers and quantitative traits for western white pine (Pinus monticola)

    Treesearch

    Bryce A. Richardson; Gerald E. Rehfeldt; Mee-Sook Kim

    2009-01-01

    Analyses of molecular and quantitative genetic data demonstrate the existence of congruent climate-related patterns in western white pine (Pinus monticola). Two independent studies allowed comparisons of amplified fragment length polymorphism (AFLP) markers with quantitative variation in adaptive traits. Principal component analyses...

  2. Linking contemporary high resolution magnetic resonance imaging to the von Economo legacy: A study on the comparison of MRI cortical thickness and histological measurements of cortical structure.

    PubMed

    Scholtens, Lianne H; de Reus, Marcel A; van den Heuvel, Martijn P

    2015-08-01

    The cerebral cortex is a distinctive part of the mammalian nervous system, displaying a spatial variety in cyto-, chemico-, and myelinoarchitecture. As part of a rich history of histological findings, pioneering anatomists von Economo and Koskinas provided detailed mappings on the cellular structure of the human cortex, reporting on quantitative aspects of cytoarchitecture of cortical areas. Current day investigations into the structure of human cortex have embraced technological advances in Magnetic Resonance Imaging (MRI) to assess macroscale thickness and organization of the cortical mantle in vivo. However, direct comparisons between current day MRI estimates and the quantitative measurements of early anatomists have been limited. Here, we report on a simple, but nevertheless important cross-analysis between the histological reports of von Economo and Koskinas on variation in thickness of the cortical mantle and MRI derived measurements of cortical thickness. We translated the von Economo cortical atlas to a subdivision of the commonly used Desikan-Killiany atlas (as part of the FreeSurfer Software package and a commonly used parcellation atlas in studies examining MRI cortical thickness). Next, values of "width of the cortical mantle" as provided by the measurements of von Economo and Koskinas were correlated to cortical thickness measurements derived from high-resolution anatomical MRI T1 data of 200+ subjects of the Human Connectome Project (HCP). Cross-correlation revealed a significant association between group-averaged MRI measurements of cortical thickness and histological recordings (r = 0.54, P < 0.001). Further validating such a correlation, we manually segmented the von Economo parcellation atlas on the standardized Colin27 brain dataset and applied the obtained three-dimensional von Economo segmentation atlas to the T1 data of each of the HCP subjects. Highly consistent with our findings for the mapping to the Desikan-Killiany regions, cross-correlation between in vivo MRI cortical thickness and von Economo histology-derived values of cortical mantle width revealed a strong positive association (r = 0.62, P < 0.001). Linking today's state-of-the-art T1-weighted imaging to early histological examinations our findings indicate that MRI technology is a valid method for in vivo assessment of thickness of human cortex. © 2015 Wiley Periodicals, Inc.

  3. LipidQC: Method Validation Tool for Visual Comparison to SRM 1950 Using NIST Interlaboratory Comparison Exercise Lipid Consensus Mean Estimate Values.

    PubMed

    Ulmer, Candice Z; Ragland, Jared M; Koelmel, Jeremy P; Heckert, Alan; Jones, Christina M; Garrett, Timothy J; Yost, Richard A; Bowden, John A

    2017-12-19

    As advances in analytical separation techniques, mass spectrometry instrumentation, and data processing platforms continue to spur growth in the lipidomics field, more structurally unique lipid species are detected and annotated. The lipidomics community is in need of benchmark reference values to assess the validity of various lipidomics workflows in providing accurate quantitative measurements across the diverse lipidome. LipidQC addresses the harmonization challenge in lipid quantitation by providing a semiautomated process, independent of analytical platform, for visual comparison of experimental results of National Institute of Standards and Technology Standard Reference Material (SRM) 1950, "Metabolites in Frozen Human Plasma", against benchmark consensus mean concentrations derived from the NIST Lipidomics Interlaboratory Comparison Exercise.

  4. Quantitative anatomical analysis of facial expression using a 3D motion capture system: Application to cosmetic surgery and facial recognition technology.

    PubMed

    Lee, Jae-Gi; Jung, Su-Jin; Lee, Hyung-Jin; Seo, Jung-Hyuk; Choi, You-Jin; Bae, Hyun-Sook; Park, Jong-Tae; Kim, Hee-Jin

    2015-09-01

    The topography of the facial muscles differs between males and females and among individuals of the same gender. To explain the unique expressions that people can make, it is important to define the shapes of the muscle, their associations with the skin, and their relative functions. Three-dimensional (3D) motion-capture analysis, often used to study facial expression, was used in this study to identify characteristic skin movements in males and females when they made six representative basic expressions. The movements of 44 reflective markers (RMs) positioned on anatomical landmarks were measured. Their mean displacement was large in males [ranging from 14.31 mm (fear) to 41.15 mm (anger)], and 3.35-4.76 mm smaller in females [ranging from 9.55 mm (fear) to 37.80 mm (anger)]. The percentages of RMs involved in the ten highest mean maximum displacement values in making at least one expression were 47.6% in males and 61.9% in females. The movements of the RMs were larger in males than females but were more limited. Expanding our understanding of facial expression requires morphological studies of facial muscles and studies of related complex functionality. Conducting these together with quantitative analyses, as in the present study, will yield data valuable for medicine, dentistry, and engineering, for example, for surgical operations on facial regions, software for predicting changes in facial features and expressions after corrective surgery, and the development of face-mimicking robots. © 2015 Wiley Periodicals, Inc.

  5. Interactive 3D-PDF Presentations for the Simulation and Quantification of Extended Endoscopic Endonasal Surgical Approaches.

    PubMed

    Mavar-Haramija, Marija; Prats-Galino, Alberto; Méndez, Juan A Juanes; Puigdelívoll-Sánchez, Anna; de Notaris, Matteo

    2015-10-01

    A three-dimensional (3D) model of the skull base was reconstructed from the pre- and post-dissection head CT images and embedded in a Portable Document Format (PDF) file, which can be opened by freely available software and used offline. The CT images were segmented using a specific 3D software platform for biomedical data, and the resulting 3D geometrical models of anatomical structures were used for dual purpose: to simulate the extended endoscopic endonasal transsphenoidal approaches and to perform the quantitative analysis of the procedures. The analysis consisted of bone removal quantification and the calculation of quantitative parameters (surgical freedom and exposure area) of each procedure. The results are presented in three PDF documents containing JavaScript-based functions. The 3D-PDF files include reconstructions of the nasal structures (nasal septum, vomer, middle turbinates), the bony structures of the anterior skull base and maxillofacial region and partial reconstructions of the optic nerve, the hypoglossal and vidian canals and the internal carotid arteries. Alongside the anatomical model, axial, sagittal and coronal CT images are shown. Interactive 3D presentations were created to explain the surgery and the associated quantification methods step-by-step. The resulting 3D-PDF files allow the user to interact with the model through easily available software, free of charge and in an intuitive manner. The files are available for offline use on a personal computer and no previous specialized knowledge in informatics is required. The documents can be downloaded at http://hdl.handle.net/2445/55224 .

  6. Quantitative Segmentation of Fluorescence Microscopy Images of Heterogeneous Tissue: Application to the Detection of Residual Disease in Tumor Margins

    PubMed Central

    Mueller, Jenna L.; Harmany, Zachary T.; Mito, Jeffrey K.; Kennedy, Stephanie A.; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G.; Willett, Rebecca M.; Brown, J. Quincy; Ramanujam, Nimmi

    2013-01-01

    Purpose To develop a robust tool for quantitative in situ pathology that allows visualization of heterogeneous tissue morphology and segmentation and quantification of image features. Materials and Methods Tissue excised from a genetically engineered mouse model of sarcoma was imaged using a subcellular resolution microendoscope after topical application of a fluorescent anatomical contrast agent: acriflavine. An algorithm based on sparse component analysis (SCA) and the circle transform (CT) was developed for image segmentation and quantification of distinct tissue types. The accuracy of our approach was quantified through simulations of tumor and muscle images. Specifically, tumor, muscle, and tumor+muscle tissue images were simulated because these tissue types were most commonly observed in sarcoma margins. Simulations were based on tissue characteristics observed in pathology slides. The potential clinical utility of our approach was evaluated by imaging excised margins and the tumor bed in a cohort of mice after surgical resection of sarcoma. Results Simulation experiments revealed that SCA+CT achieved the lowest errors for larger nuclear sizes and for higher contrast ratios (nuclei intensity/background intensity). For imaging of tumor margins, SCA+CT effectively isolated nuclei from tumor, muscle, adipose, and tumor+muscle tissue types. Differences in density were correctly identified with SCA+CT in a cohort of ex vivo and in vivo images, thus illustrating the diagnostic potential of our approach. Conclusion The combination of a subcellular-resolution microendoscope, acriflavine staining, and SCA+CT can be used to accurately isolate nuclei and quantify their density in anatomical images of heterogeneous tissue. PMID:23824589

  7. Renal artery anatomy assessed by quantitative analysis of selective renal angiography in 1,000 patients with hypertension.

    PubMed

    Lauder, Lucas; Ewen, Sebastian; Tzafriri, Abraham Rami; Edelman, Elazer Reuven; Lüscher, Thomas Felix; Blankenstijn, Peter J; Dörr, Oliver; Schlaich, Markus; Sharif, Faisal; Voskuil, Michiel; Zeller, Thomas; Ukena, Christian; Scheller, Bruno; Böhm, Michael; Mahfoud, Felix

    2018-05-20

    With increasing attention to renovascular causes and targets for hypertension there arises a critical need for more detailed knowledge of renal arterial anatomy. However, a standardised nomenclature is lacking. The present study sought to develop a standardised nomenclature for renal anatomy considering the complexity and variation of the renal arterial tree and to assess the applicability of the nomenclature. One thousand hypertensive patients underwent invasive selective renal artery angiography in nine centres. Further, renovasography was performed in 249 healthy swine as a surrogate for normotensive anatomy. Anatomical parameters were assessed by quantitative vascular analysis. Patients' mean blood pressure was 168/90±26/17 mmHg. The right main renal artery was longer than the left (41±15 mm vs. 35±13 mm, p<0.001), but the left had a greater diameter (5.4±1.2 vs. 5.2±1.2 mm, p<0.001). Accessory renal arteries and renal artery disease were documented in 22% and 9% of the patients, respectively. Other than exhibiting a longer left main renal artery in uncontrolled hypertensives (+2.7 mm, p=0.034) there was no anatomical difference between patients with controlled and uncontrolled hypertension. Main renal artery mean diameter was smaller in patients with impaired kidney function (GFR <90 ml/min, left -0.5 mm, right -0.4 mm, both p<0.001). Renal arterial anatomy differs between sides but shows no difference between patients with and without blood pressure control. Impaired GFR was associated with small main renal artery diameter.

  8. Methods and theory in bone modeling drift: comparing spatial analyses of primary bone distributions in the human humerus.

    PubMed

    Maggiano, Corey M; Maggiano, Isabel S; Tiesler, Vera G; Chi-Keb, Julio R; Stout, Sam D

    2016-01-01

    This study compares two novel methods quantifying bone shaft tissue distributions, and relates observations on human humeral growth patterns for applications in anthropological and anatomical research. Microstructural variation in compact bone occurs due to developmental and mechanically adaptive circumstances that are 'recorded' by forming bone and are important for interpretations of growth, health, physical activity, adaptation, and identity in the past and present. Those interpretations hinge on a detailed understanding of the modeling process by which bones achieve their diametric shape, diaphyseal curvature, and general position relative to other elements. Bone modeling is a complex aspect of growth, potentially causing the shaft to drift transversely through formation and resorption on opposing cortices. Unfortunately, the specifics of modeling drift are largely unknown for most skeletal elements. Moreover, bone modeling has seen little quantitative methodological development compared with secondary bone processes, such as intracortical remodeling. The techniques proposed here, starburst point-count and 45° cross-polarization hand-drawn histomorphometry, permit the statistical and populational analysis of human primary tissue distributions and provide similar results despite being suitable for different applications. This analysis of a pooled archaeological and modern skeletal sample confirms the importance of extreme asymmetry in bone modeling as a major determinant of microstructural variation in diaphyses. Specifically, humeral drift is posteromedial in the human humerus, accompanied by a significant rotational trend. In general, results encourage the usage of endocortical primary bone distributions as an indicator and summary of bone modeling drift, enabling quantitative analysis by direction and proportion in other elements and populations. © 2015 Anatomical Society.

  9. Quantitative Segmentation of Fluorescence Microscopy Images of Heterogeneous Tissue: Application to the Detection of Residual Disease in Tumor Margins.

    PubMed

    Mueller, Jenna L; Harmany, Zachary T; Mito, Jeffrey K; Kennedy, Stephanie A; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G; Willett, Rebecca M; Brown, J Quincy; Ramanujam, Nimmi

    2013-01-01

    To develop a robust tool for quantitative in situ pathology that allows visualization of heterogeneous tissue morphology and segmentation and quantification of image features. TISSUE EXCISED FROM A GENETICALLY ENGINEERED MOUSE MODEL OF SARCOMA WAS IMAGED USING A SUBCELLULAR RESOLUTION MICROENDOSCOPE AFTER TOPICAL APPLICATION OF A FLUORESCENT ANATOMICAL CONTRAST AGENT: acriflavine. An algorithm based on sparse component analysis (SCA) and the circle transform (CT) was developed for image segmentation and quantification of distinct tissue types. The accuracy of our approach was quantified through simulations of tumor and muscle images. Specifically, tumor, muscle, and tumor+muscle tissue images were simulated because these tissue types were most commonly observed in sarcoma margins. Simulations were based on tissue characteristics observed in pathology slides. The potential clinical utility of our approach was evaluated by imaging excised margins and the tumor bed in a cohort of mice after surgical resection of sarcoma. Simulation experiments revealed that SCA+CT achieved the lowest errors for larger nuclear sizes and for higher contrast ratios (nuclei intensity/background intensity). For imaging of tumor margins, SCA+CT effectively isolated nuclei from tumor, muscle, adipose, and tumor+muscle tissue types. Differences in density were correctly identified with SCA+CT in a cohort of ex vivo and in vivo images, thus illustrating the diagnostic potential of our approach. The combination of a subcellular-resolution microendoscope, acriflavine staining, and SCA+CT can be used to accurately isolate nuclei and quantify their density in anatomical images of heterogeneous tissue.

  10. Patient-specific dosimetry calculations using mathematic models of different anatomic sizes during therapy with 111In-DTPA-D-Phe1-octreotide infusions after catheterization of the hepatic artery.

    PubMed

    Kontogeorgakos, Dimitrios K; Dimitriou, Panagiotis A; Limouris, Georgios S; Vlahos, Lambros J

    2006-09-01

    The aim of the study was to provide dosimetric data on intrahepatic (111)In-diethylenetriaminepentaacetic acid (DTPA)-D-Phe(1)-octreotide therapy for neuroendocrine tumors with overexpression of somatostatin receptors. A dosimetric protocol was designed to estimate the absorbed dose to the tumor and healthy tissue in a course of 48 treatments for 12 patients, who received a mean activity of 5.4 +/- 1.7 GBq per session. The patient-specific dosimetry calculations, based on quantitative biplanar whole-body scintigrams, were performed using a Monte Carlo simulation program for 3 male and 3 female mathematic models of different anatomic sizes. Thirty minutes and 2, 6, 24, and 48 h after the radionuclide infusion, blood-sample data were collected for estimation of the red marrow radiation burden. The mean absorbed doses per administered activity (mGy/MBq) by the critical organs liver, spleen, kidneys, bladder wall, and bone marrow were 0.14 +/- 0.04, 1.4 +/- 0.6, 0.41 +/- 0.08, 0.094 +/- 0.013, and (3.5 +/- 0.8) x 10(-3), respectively; the tumor absorbed dose ranged from 2.2 to 19.6 mGy/MBq, strongly depending on the lesion size and tissue type. The results of the present study quantitatively confirm the therapeutic efficacy of transhepatic administration; the tumor-to-healthy-tissue uptake ratio was enhanced, compared with the results after antecubital infusions. Planning of treatment was also optimized by use of the patient-specific dosimetric protocol.

  11. Determining absolute protein numbers by quantitative fluorescence microscopy.

    PubMed

    Verdaasdonk, Jolien Suzanne; Lawrimore, Josh; Bloom, Kerry

    2014-01-01

    Biological questions are increasingly being addressed using a wide range of quantitative analytical tools to examine protein complex composition. Knowledge of the absolute number of proteins present provides insights into organization, function, and maintenance and is used in mathematical modeling of complex cellular dynamics. In this chapter, we outline and describe three microscopy-based methods for determining absolute protein numbers--fluorescence correlation spectroscopy, stepwise photobleaching, and ratiometric comparison of fluorescence intensity to known standards. In addition, we discuss the various fluorescently labeled proteins that have been used as standards for both stepwise photobleaching and ratiometric comparison analysis. A detailed procedure for determining absolute protein number by ratiometric comparison is outlined in the second half of this chapter. Counting proteins by quantitative microscopy is a relatively simple yet very powerful analytical tool that will increase our understanding of protein complex composition. © 2014 Elsevier Inc. All rights reserved.

  12. A morphometric analysis of maxillary molar crowns of Middle-Late Pleistocene hominins.

    PubMed

    Bailey, Shara E

    2004-09-01

    This study explores the significance of shape differences in the maxillary first molar crowns of Neandertals and anatomically modern humans. It uses morphometric analysis to quantify these differences and to investigate how the orientation of major cusps, relative cusp base areas and occlusal polygon area influence crown shape. The aims of this study were to 1) quantify these data to test whether the tooth shapes of Neandertals and anatomically modern humans differ significantly and 2) to explore if either of the shapes is derived relative to earlier fossil hominins. Data were collected from digital occlusal photographs using image-processing software. Cusp angles, relative cusp base areas and occlusal polygon areas were measured on Neandertals (n=15), contemporary modern humans (n=62), Upper Paleolithic humans (n=6), early anatomically modern humans (n=3) and Homo erectus (n=3). Univariate and multivariate statistical tests were used to evaluate the differences between contemporary modern humans and Neandertals, while the much sparser data sets from the other fossil samples were included primarily for comparison. Statistically significant differences reflecting overall crown shape and internal placement of the crown apices were found. Neandertals are distinguished from contemporary humans by possessing maxillary first molars that 1) are markedly skewed; 2) possess a narrower distal segment of the occlusal polygon compared to the mesial segment; 3) possess a significantly smaller metacone and a significantly larger hypocone; and 4) possess a significantly smaller relative occlusal polygon area reflecting internally placed cusps. Differences in relative cusp base areas of the hypocone and metacone may contribute to the shape differences observed in Neandertals. However, early anatomically modern humans possessing a pattern of relative cusp base areas similar to Neandertals lack their unusual shape. That the morphology observed in non-Neandertal fossil hominins is more anatomically modern human-like than Neandertal-like, suggests that this distinctive morphology may be derived in Neandertals.

  13. Investigation in clinical potential of polarization sensitive optical coherence tomography in laryngeal tumor model study

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Oak, Chulho; Ahn, Yeh-Chan; Kim, Sung Won; Tang, Shuo

    2018-02-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is capable of measuring tissue birefringence. It has been widely applied to access the birefringence in tissues such as skin and cartilage. The vocal cord tissue consists of three anatomical layers from the surface to deep inside, the epithelium that contains almost no collagen, the lamina propria that is composed with abundant collagen, and the vocalis muscle layer. Due to the variation in the organization of collagen fibers, the different tissue layers show different tissue birefringence, which can be evaluated by PS-OCT phase retardation measurement. Furthermore, collagen fibers in healthy connective tissues are usually well organized, which provides relatively high birefringence. When the collagen organization is destroyed by diseases such as tumor, the birefringence of the tissue will decrease. In this study, a rabbit laryngeal tumor model with different stages of tumor progression is investigated ex-vivo by PS-OCT. The PS-OCT images show a gradual decrease in birefringence from normal tissue to severe tumor tissue. A phase retardation slope-based analysis is conducted to distinguish the epithelium, lamina propria, and muscle layers, respectively. The phase retardation slope quantifies the birefringence in different layers. The quantitative study provides a more detailed comparison among different stages of the rabbit laryngeal tumor model. The PS-OCT result is validated by the corresponding histology images of the same samples.

  14. A shape prior-based MRF model for 3D masseter muscle segmentation

    NASA Astrophysics Data System (ADS)

    Majeed, Tahir; Fundana, Ketut; Lüthi, Marcel; Beinemann, Jörg; Cattin, Philippe

    2012-02-01

    Medical image segmentation is generally an ill-posed problem that can only be solved by incorporating prior knowledge. The ambiguities arise due to the presence of noise, weak edges, imaging artifacts, inhomogeneous interior and adjacent anatomical structures having similar intensity profile as the target structure. In this paper we propose a novel approach to segment the masseter muscle using the graph-cut incorporating additional 3D shape priors in CT datasets, which is robust to noise; artifacts; and shape deformations. The main contribution of this paper is in translating the 3D shape knowledge into both unary and pairwise potentials of the Markov Random Field (MRF). The segmentation task is casted as a Maximum-A-Posteriori (MAP) estimation of the MRF. Graph-cut is then used to obtain the global minimum which results in the segmentation of the masseter muscle. The method is tested on 21 CT datasets of the masseter muscle, which are noisy with almost all possessing mild to severe imaging artifacts such as high-density artifacts caused by e.g. the very common dental fillings and dental implants. We show that the proposed technique produces clinically acceptable results to the challenging problem of muscle segmentation, and further provide a quantitative and qualitative comparison with other methods. We statistically show that adding additional shape prior into both unary and pairwise potentials can increase the robustness of the proposed method in noisy datasets.

  15. The effectiveness of physical models in teaching anatomy: a meta-analysis of comparative studies.

    PubMed

    Yammine, Kaissar; Violato, Claudio

    2016-10-01

    There are various educational methods used in anatomy teaching. While three dimensional (3D) visualization technologies are gaining ground due to their ever-increasing realism, reports investigating physical models as a low-cost 3D traditional method are still the subject of considerable interest. The aim of this meta-analysis is to quantitatively assess the effectiveness of such models based on comparative studies. Eight studies (7 randomized trials; 1 quasi-experimental) including 16 comparison arms and 820 learners met the inclusion criteria. Primary outcomes were defined as factual, spatial and overall percentage scores. The meta-analytical results are: educational methods using physical models yielded significantly better results when compared to all other educational methods for the overall knowledge outcome (p < 0.001) and for spatial knowledge acquisition (p < 0.001). Significantly better results were also found with regard to the long-retention knowledge outcome (p < 0.01). No significance was found for the factual knowledge acquisition outcome. The evidence in the present systematic review was found to have high internal validity and at least an acceptable strength. In conclusion, physical anatomical models offer a promising tool for teaching gross anatomy in 3D representation due to their easy accessibility and educational effectiveness. Such models could be a practical tool to bring up the learners' level of gross anatomy knowledge at low cost.

  16. Variation of quantitative emphysema measurements from CT scans

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Henschke, Claudia I.; Barr, R. Graham; Yankelevitz, David F.

    2008-03-01

    Emphysema is a lung disease characterized by destruction of the alveolar air sacs and is associated with long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema, and several measures have been introduced for the quantification of the extent of disease. In this paper we compare these measures for repeatability over time. The measures of interest in this study are emphysema index, mean lung density, histogram percentile, and the fractal dimension. To allow for direct comparisons, the measures were normalized to a 0-100 scale. These measures have been computed for a set of 2,027 scan pairs in which the mean interval between scans was 1.15 years (σ: 93 days). These independent pairs were considered with respect to three different scanning conditions (a) 223 pairs where both were scanned with a 5 mm slice thickness protocol, (b) 695 with the first scanned with the 5 mm protocol and the second with a 1.25 mm protocol, and (c) 1109 pairs scanned both times using a 1.25 mm protocol. We found that average normalized emphysema index and histogram percentiles scores increased by 5.9 and 11 points respectively, while the fractal dimension showed stability with a mean difference of 1.2. We also found, a 7 point bias introduced for emphysema index under condition (b), and that the fractal dimension measure is least affected by scanner parameter changes.

  17. Open-source image registration for MRI-TRUS fusion-guided prostate interventions.

    PubMed

    Fedorov, Andriy; Khallaghi, Siavash; Sánchez, C Antonio; Lasso, Andras; Fels, Sidney; Tuncali, Kemal; Sugar, Emily Neubauer; Kapur, Tina; Zhang, Chenxi; Wells, William; Nguyen, Paul L; Abolmaesumi, Purang; Tempany, Clare

    2015-06-01

    We propose two software tools for non-rigid registration of MRI and transrectal ultrasound (TRUS) images of the prostate. Our ultimate goal is to develop an open-source solution to support MRI-TRUS fusion image guidance of prostate interventions, such as targeted biopsy for prostate cancer detection and focal therapy. It is widely hypothesized that image registration is an essential component in such systems. The two non-rigid registration methods are: (1) a deformable registration of the prostate segmentation distance maps with B-spline regularization and (2) a finite element-based deformable registration of the segmentation surfaces in the presence of partial data. We evaluate the methods retrospectively using clinical patient image data collected during standard clinical procedures. Computation time and Target Registration Error (TRE) calculated at the expert-identified anatomical landmarks were used as quantitative measures for the evaluation. The presented image registration tools were capable of completing deformable registration computation within 5 min. Average TRE was approximately 3 mm for both methods, which is comparable with the slice thickness in our MRI data. Both tools are available under nonrestrictive open-source license. We release open-source tools that may be used for registration during MRI-TRUS-guided prostate interventions. Our tools implement novel registration approaches and produce acceptable registration results. We believe these tools will lower the barriers in development and deployment of interventional research solutions and facilitate comparison with similar tools.

  18. Segmentation of the hippocampus by transferring algorithmic knowledge for large cohort processing.

    PubMed

    Thyreau, Benjamin; Sato, Kazunori; Fukuda, Hiroshi; Taki, Yasuyuki

    2018-01-01

    The hippocampus is a particularly interesting target for neuroscience research studies due to its essential role within the human brain. In large human cohort studies, bilateral hippocampal structures are frequently identified and measured to gain insight into human behaviour or genomic variability in neuropsychiatric disorders of interest. Automatic segmentation is performed using various algorithms, with FreeSurfer being a popular option. In this manuscript, we present a method to segment the bilateral hippocampus using a deep-learned appearance model. Deep convolutional neural networks (ConvNets) have shown great success in recent years, due to their ability to learn meaningful features from a mass of training data. Our method relies on the following key novelties: (i) we use a wide and variable training set coming from multiple cohorts (ii) our training labels come in part from the output of the FreeSurfer algorithm, and (iii) we include synthetic data and use a powerful data augmentation scheme. Our method proves to be robust, and it has fast inference (<30s total per subject), with trained model available online (https://github.com/bthyreau/hippodeep). We depict illustrative results and show extensive qualitative and quantitative cohort-wide comparisons with FreeSurfer. Our work demonstrates that deep neural-network methods can easily encode, and even improve, existing anatomical knowledge, even when this knowledge exists in algorithmic form. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Variation compensation and analysis on diaphragm curvature analysis for emphysema quantification on whole lung CT scans

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Barr, R. Graham; Yankelevitz, David F.; Henschke, Claudia I.

    2010-03-01

    CT scans allow for the quantitative evaluation of the anatomical bases of emphysema. Recently, a non-density based geometric measurement of lung diagphragm curvature has been proposed as a method for the quantification of emphysema from CT. This work analyzes variability of diaphragm curvature and evaluates the effectiveness of a compensation methodology for the reduction of this variability as compared to emphysema index. Using a dataset of 43 scan-pairs with less than a 100 day time-interval between scans, we find that the diaphragm curvature had a trend towards lower overall variability over emphysema index (95% CI:-9.7 to + 14.7 vs. -15.8 to +12.0), and that the variation of both measures was reduced after compensation. We conclude that the variation of the new measure can be considered comparable to the established measure and the compensation can reduce the apparent variation of quantitative measures successfully.

  20. The principles and technical aspects of diuresis renography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, J.J.

    1989-12-01

    It is intuitive that dilation of the urinary tract is most likely caused by obstruction. However, the opposite is more often true. That is, dilation is not associated with obstruction, especially in children. The most common causes for hydronephrosis and hydroureter include infection, vesicoureteral reflux, congenital megacalyces and megaureter, previous obstruction, and bladder noncompliance. Theoretically, one can consider obstruction on the basis of its significance, which is that there may be a loss of renal function with time. Techniques such as intravenous pyelography and ultrasonography, which anatomically document the degree of dilation of the urinary tract, cannot quantitatively determine themore » presence of obstruction or its significance. Radionuclide renography more readily quantifies abnormal renal function. Serial renographic studies with furosemide can document renal function loss and, thus, determine the significance of the obstruction. Diuresis renography with furosemide provides an objective quantitative means for determining the renal function changes over time.« less

  1. Fuzzy object modeling

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Odhner, Dewey; Falcao, Alexandre X.; Ciesielski, Krzysztof C.; Miranda, Paulo A. V.; Vaideeswaran, Pavithra; Mishra, Shipra; Grevera, George J.; Saboury, Babak; Torigian, Drew A.

    2011-03-01

    To make Quantitative Radiology (QR) a reality in routine clinical practice, computerized automatic anatomy recognition (AAR) becomes essential. As part of this larger goal, we present in this paper a novel fuzzy strategy for building bodywide group-wise anatomic models. They have the potential to handle uncertainties and variability in anatomy naturally and to be integrated with the fuzzy connectedness framework for image segmentation. Our approach is to build a family of models, called the Virtual Quantitative Human, representing normal adult subjects at a chosen resolution of the population variables (gender, age). Models are represented hierarchically, the descendents representing organs contained in parent organs. Based on an index of fuzziness of the models, 32 thorax data sets, and 10 organs defined in them, we found that the hierarchical approach to modeling can effectively handle the non-linear relationships in position, scale, and orientation that exist among organs in different patients.

  2. 75 FR 68468 - List of Fisheries for 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ...-existent; therefore, quantitative data on the frequency of incidental mortality and serious injury is... currently available for most of these marine mammals on the high seas, and quantitative comparison of...

  3. How useful is YouTube in learning heart anatomy?

    PubMed

    Raikos, Athanasios; Waidyasekara, Pasan

    2014-01-01

    Nowadays more and more modern medical degree programs focus on self-directed and problem-based learning. That requires students to search for high quality and easy to retrieve online resources. YouTube is an emerging platform for learning human anatomy due to easy access and being a free service. The purpose of this study is to make a quantitative and qualitative analysis of the available human heart anatomy videos on YouTube. Using the search engine of the platform we searched for relevant videos using various keywords. Videos with irrelevant content, animal tissue, non-English language, no sound, duplicates, and physiology focused were excluded from further elaboration. The initial search retrieved 55,525 videos, whereas only 294 qualified for further analysis. A unique scoring system was used to assess the anatomical quality and details, general quality, and the general data for each video. Our results indicate that the human heart anatomy videos available on YouTube conveyed our anatomical criteria poorly, whereas the general quality scoring found borderline. Students should be selective when looking up on public video databases as it can prove challenging, time consuming, and the anatomical information may be misleading due to absence of content review. Anatomists and institutions are encouraged to prepare and endorse good quality material and make them available online for the students. The scoring rubric used in the study comprises a valuable tool to faculty members for quality evaluation of heart anatomy videos available on social media platforms. Copyright © 2013 American Association of Anatomists.

  4. Deviations of Mesial Root Canals of Mandibular First Molar Teeth at the Apical Third: A Micro-computed Tomographic Study.

    PubMed

    Keles, Ali; Keskin, Cangül

    2018-06-01

    The present study aimed to quantitatively analyze apical foramen deviations of mesial root canals of mandibular first molar teeth by means of micro-computed tomographic (micro-CT) imaging. Micro-CT images of the mesial roots of 109 mandibular first molar teeth with independent mesiobuccal (MB) and mesiolingual (ML) root canals were analyzed. The deviations of the apical foramina of the MB, ML, and middle mesial root canals from the anatomic apex were measured. The vertical distance between the apical foramina of each mesial root canal in relation to each other was also calculated. The distances from the apical foramina of the MB, ML, and middle mesial root canals to the anatomic apex of the mesial root were up to 2.51 mm, 3.21 mm, and 5.67 mm, respectively. There was no significant difference between the deviations of MB and ML root canals from each other (P > .05). The middle mesial root canal showed the greatest deviation compared with the MB and ML canals (P < .05). The apical foramina of mesial root canals of mandibular first molar teeth showed greater variations from each other and anatomic apices than previously reported. Clinically, the use of electronic apex locators for the detection of minor apical foramen of each mesial root canal is of the utmost important. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Rank-sparsity constrained atlas construction and phenotyping

    NASA Astrophysics Data System (ADS)

    Clark, D. P.; Badea, C. T.

    2015-03-01

    Atlas construction is of great interest in the medical imaging community as a tool to visually and quantitatively characterize anatomic variability within a population. Because such atlases generally exhibit superior data fidelity relative to the individual data sets from which they are constructed, they have also proven invaluable in numerous informatics applications such as automated segmentation and classification, regularization of individual-specific reconstructions from undersampled data, and for characterizing physiologically relevant functional metrics. Perhaps the most valuable role of an anatomic atlas is not to define what is "normal," but, in fact, to recognize what is "abnormal." Here, we propose and demonstrate a novel anatomic atlas construction strategy that simultaneously recovers the average anatomy and the deviation from average in a visually meaningful way. The proposed approach treats the problem of atlas construction within the context of robust principal component analysis (RPCA) in which the redundant portion of the data (i.e. the low rank atlas) is separated from the spatially and gradient sparse portion of the data unique to each individual (i.e. the sparse variation). In this paper, we demonstrate the application of RPCA to the Shepp-Logan phantom, including several forms of variability encountered with in vivo data: population variability, class variability, contrast variability, and individual variability. We then present preliminary results produced by applying the proposed approach to in vivo, murine cardiac micro-CT data acquired in a model of right ventricle hypertrophy induced by pulmonary arteriole hypertension.

  6. Overlapping reactivations of herpes simplex virus type 2 in the genital and perianal mucosa.

    PubMed

    Tata, Sunitha; Johnston, Christine; Huang, Meei-Li; Selke, Stacy; Magaret, Amalia; Corey, Lawrence; Wald, Anna

    2010-02-15

    Genital shedding of herpes simplex virus (HSV) type 2 occurs frequently. Anatomic patterns of genital HSV-2 reactivation have not been intensively studied. Four HSV-2-seropositive women with symptomatic genital herpes attended a clinic daily during a 30-day period. Daily samples were collected from 7 separate genital sites. Swab samples were assayed for HSV DNA by quantitative polymerase chain reaction. Anatomic sites of clinical HSV-2 recurrences were recorded. HSV was detected on 44 (37%) of 120 days and from 136 (16%) of 840 swab samples. Lesions were documented on 35 (29%) of 120 days. HSV was detected at >1 anatomic site on 25 (57%) of 44 days with HSV shedding (median, 2 sites; range, 1-7), with HSV detected bilaterally on 20 (80%) of the 25 days. The presence of a lesion was significantly associated with detectable HSV from any genital site (incident rate ratio [IRR], 5.41; 95% confidence interval [CI], 1.24-23.50; P= .02) and with the number of positive sites (IRR, 1.19; 95% CI, 1. 01-1.40; P=.03). The maximum HSV copy number detected was associated with the number of positive sites (IRR, 1.62; 95% CI, 1.44-1.82; P<.001). HSV-2 reactivation occurs frequently at widely spaced regions throughout the genital tract. To prevent HSV-2 reactivation, suppressive HSV-2 therapy must control simultaneous viral reactivations from multiple sacral ganglia.

  7. Integration of 3D 1H-magnetic resonance spectroscopy data into neuronavigation systems for tumor biopsies

    NASA Astrophysics Data System (ADS)

    Kanberoglu, Berkay; Moore, Nina Z.; Frakes, David; Karam, Lina J.; Debbins, Josef P.; Preul, Mark C.

    2013-03-01

    Many important applications in clinical medicine can benefit from the fusion of spectroscopy data with anatomical images. For example, the correlation of metabolite profiles with specific regions of interest in anatomical tumor images can be useful in characterizing and treating heterogeneous tumors that appear structurally homogeneous. Such applications can build on the correlation of data from in-vivo Proton Magnetic Resonance Spectroscopy Imaging (1HMRSI) with data from genetic and ex-vivo Nuclear Magnetic Resonance spectroscopy. To establish that correlation, tissue samples must be neurosurgically extracted from specifically identified locations with high accuracy. Toward that end, this paper presents new neuronavigation technology that enhances current clinical capabilities in the context of neurosurgical planning and execution. The proposed methods improve upon the current state-of-the-art in neuronavigation through the use of detailed three dimensional (3D) 1H-MRSI data. MRSI spectra are processed and analyzed, and specific voxels are selected based on their chemical contents. 3D neuronavigation overlays are then generated and applied to anatomical image data in the operating room. Without such technology, neurosurgeons must rely on memory and other qualitative resources alone for guidance in accessing specific MRSI-identified voxels. In contrast, MRSI-based overlays provide quantitative visual cues and location information during neurosurgery. The proposed methods enable a progressive new form of online MRSI-guided neuronavigation that we demonstrate in this study through phantom validation and clinical application.

  8. Multiple brain atlas database and atlas-based neuroimaging system.

    PubMed

    Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A

    1997-01-01

    For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies.

  9. Numeric and symbolic knowledge representation of cerebral cortex anatomy: methods and preliminary results.

    PubMed

    Dameron, O; Gibaud, B; Morandi, X

    2004-06-01

    The human cerebral cortex anatomy describes the brain organization at the scale of gyri and sulci. It is used as landmarks for neurosurgery as well as localization support for functional data analysis or inter-subject data comparison. Existing models of the cortex anatomy either rely on image labeling but fail to represent variability and structural properties or rely on a conceptual model but miss the inner 3D nature and relations of anatomical structures. This study was therefore conducted to propose a model of sulco-gyral anatomy for the healthy human brain. We hypothesized that both numeric knowledge (i.e., image-based) and symbolic knowledge (i.e., concept-based) have to be represented and coordinated. In addition, the representation of this knowledge should be application-independent in order to be usable in various contexts. Therefore, we devised a symbolic model describing specialization, composition and spatial organization of cortical anatomical structures. We also collected numeric knowledge such as 3D models of shape and shape variation about cortical anatomical structures. For each numeric piece of knowledge, a companion file describes the concept it refers to and the nature of the relationship. Demonstration software performs a mapping between the numeric and the symbolic aspects for browsing the knowledge base.

  10. Fronto-Parietal Brain Responses to Visuotactile Congruence in an Anatomical Reference Frame

    PubMed Central

    Limanowski, Jakub; Blankenburg, Felix

    2018-01-01

    Spatially and temporally congruent visuotactile stimulation of a fake hand together with one’s real hand may result in an illusory self-attribution of the fake hand. Although this illusion relies on a representation of the two touched body parts in external space, there is tentative evidence that, for the illusion to occur, the seen and felt touches also need to be congruent in an anatomical reference frame. We used functional magnetic resonance imaging and a somatotopical, virtual reality-based setup to isolate the neuronal basis of such a comparison. Participants’ index or little finger was synchronously touched with the index or little finger of a virtual hand, under congruent or incongruent orientations of the real and virtual hands. The left ventral premotor cortex responded significantly more strongly to visuotactile co-stimulation of the same versus different fingers of the virtual and real hand. Conversely, the left anterior intraparietal sulcus responded significantly more strongly to co-stimulation of different versus same fingers. Both responses were independent of hand orientation congruence and of spatial congruence of the visuotactile stimuli. Our results suggest that fronto-parietal areas previously associated with multisensory processing within peripersonal space and with tactile remapping evaluate the congruence of visuotactile stimulation on the body according to an anatomical reference frame. PMID:29556183

  11. Fractional flow reserve based on computed tomography: an overview.

    PubMed

    Secchi, Francesco; Alì, Marco; Faggiano, Elena; Cannaò, Paola Maria; Fedele, Marco; Tresoldi, Silvia; Di Leo, Giovanni; Auricchio, Ferdinando; Sardanelli, Francesco

    2016-04-28

    Computed tomography coronary angiography (CTCA) is a technique proved to provide high sensitivity and negative predictive value for the identification of anatomically significant coronary artery disease (CAD) when compared with invasive X-ray coronary angiography. While the CTCA limitation of a ionizing radiation dose delivered to patients is substantially overcome by recent technical innovations, a relevant limitation remains the only anatomical assessment of coronary stenoses in the absence of evaluation of their functional haemodynamic significance. This limitation is highly important for those stenosis graded as intermediate at the anatomical assessment. Recently, non-invasive methods based on computational fluid dynamics were developed to calculate vessel-specific fractional flow reserve (FFR) using data routinely acquired by CTCA [computed tomographic fractional flow reserve (CT-FFR)]. Here we summarize methods for CT-FFR and review the evidence available in the literature up to June 26, 2016, including 16 original articles and one meta-analysis. The perspective of CT-FFR may greatly impact on CAD diagnosis, prognostic evaluation, and treatment decision-making. The aim of this review is to describe technical characteristics and clinical applications of CT-FFR, also in comparison with catheter-based invasive FFR, in order to make a cost-benefit balance in terms of clinical management and patient's health.

  12. Anatomical study of the auditory region of Arctotherium tarijense (Ursidae, Tremarctinae), an extinct short-faced bear from the Pleistocene of South America.

    PubMed

    Arnaudo, Maria Eugenia; Bona, Paula; Soibelzon, Leopoldo Hector; Schubert, Blaine W

    2016-12-01

    Here we present the most detailed morphological study of the auditory region of a tremarctinae bear, Arctotherium tarijense Ameghino. In addition, we provide new anatomical information of the Tremarctinae inner ear, such as coplanarity and deviation from orthogonality of the semicircular canals, as an approach to infer the head movements which encountered the extinct forms in locomotion. Based on morphological comparisons, A. tarijense exhibits the following particular features: the cavum tympani presents the highest relative volume compared with other ursids; the processus paraoccipitalis has a foramen that is absent in other tremarctines; there is only one (ventral) recess in the anterior region of the cavum tympani; and the recessus epytimpanicus is the smallest for all ursids studied. In relation to the inner ear, A. tarijense shows the lowest values of orthogonality deviation and highest scores of locomotor agility. Based on this, is possible to make a preliminary proposal that this species had a relative high vestibular sensibility and therefore a better ability to explore different kind of habitats. However, this hypothesis might be contrasted among bears taking into account the orientation of each semicircular canal in a phylogenetic framework. © 2016 Anatomical Society.

  13. Evaluation of Aesthetic and Quality-of-Life Results after Immediate Breast Reconstruction with Definitive Form-Stable Anatomical Implants.

    PubMed

    Kuroda, Flavia; Urban, Cicero; Zucca-Matthes, Gustavo; de Oliveira, Vilmar Marques; Arana, Gabriel Hubner; Iera, Marco; Rietjens, Mario; Santos, Gabriela; Spagnol, Caroline; de Lima, Rubens Silveira

    2016-02-01

    Although there are many reports on different techniques in breast reconstruction, there are few data regarding immediate breast reconstruction with definitive form-stable anatomical implants in terms of aesthetics and quality-of-life outcomes. Ninety-four patients underwent mastectomy with immediate breast reconstruction using anatomical implants and contralateral symmetrization. Aesthetic results were evaluated by three different methods: the patient's self-report, the assessment of four independent specialists (two breast surgeons and two plastic surgeons from different institutions), and the BCCT.core software. Quality of life was evaluated by means of the BREAST-Q instrument. Average age ± SD was 52.1 ± 11.6 years. Most of patients had medium size breasts and T1 tumors. Patients had evaluated their aesthetic results better than did software and specialists. There was no significant difference in the comparison between software and specialist's evaluation. Multifactorial analysis showed that age older than 70 years and radiotherapy were significant risk factors for poor aesthetic outcomes after immediate breast reconstruction with implants. Considering quality of life, most of the patients were satisfied with their outcome and psychosocial and sexual well-being. Immediate breast reconstruction with implants and contralateral symmetrization had a positive impact on the quality of life and showed satisfactory outcomes when evaluated by subjective and objective methods.

  14. Fronto-Parietal Brain Responses to Visuotactile Congruence in an Anatomical Reference Frame.

    PubMed

    Limanowski, Jakub; Blankenburg, Felix

    2018-01-01

    Spatially and temporally congruent visuotactile stimulation of a fake hand together with one's real hand may result in an illusory self-attribution of the fake hand. Although this illusion relies on a representation of the two touched body parts in external space, there is tentative evidence that, for the illusion to occur, the seen and felt touches also need to be congruent in an anatomical reference frame. We used functional magnetic resonance imaging and a somatotopical, virtual reality-based setup to isolate the neuronal basis of such a comparison. Participants' index or little finger was synchronously touched with the index or little finger of a virtual hand, under congruent or incongruent orientations of the real and virtual hands. The left ventral premotor cortex responded significantly more strongly to visuotactile co-stimulation of the same versus different fingers of the virtual and real hand. Conversely, the left anterior intraparietal sulcus responded significantly more strongly to co-stimulation of different versus same fingers. Both responses were independent of hand orientation congruence and of spatial congruence of the visuotactile stimuli. Our results suggest that fronto-parietal areas previously associated with multisensory processing within peripersonal space and with tactile remapping evaluate the congruence of visuotactile stimulation on the body according to an anatomical reference frame.

  15. Fixation Strategies For Retinal Immunohistochemistry

    PubMed Central

    Stradleigh, Tyler W.; Ishida, Andrew T.

    2015-01-01

    Immunohistochemical and ex vivo anatomical studies have provided many glimpses of the variety, distribution, and signaling components of vertebrate retinal neurons. The beauty of numerous images published to date, and the qualitative and quantitative information they provide, indicate that these approaches are fundamentally useful. However, obtaining these images entailed tissue handling and exposure to chemical solutions that differ from normal extracellular fluid in composition, temperature, and osmolarity. Because the differences are large enough to alter intercellular and intracellular signaling in neurons, and because retinae are susceptible to crush, shear, and fray, it is natural to wonder if immunohistochemical and anatomical methods disturb or damage the cells they are designed to examine. Tissue fixation is typically incorporated to guard against this damage and is therefore critically important to the quality and significance of the harvested data. Here, we describe mechanisms of fixation; advantages and disadvantages of using formaldehyde and glutaraldehyde as fixatives during immunohistochemistry; and modifications of widely used protocols that have recently been found to improve cell shape preservation and immunostaining patterns, especially in proximal retinal neurons. PMID:25892361

  16. Tissue Equivalent Phantom Design for Characterization of a Coherent Scatter X-ray Imaging System

    NASA Astrophysics Data System (ADS)

    Albanese, Kathryn Elizabeth

    Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung. The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future testing. Our imaging system has been able to define the location and composition of the various materials in the phantom. These phantoms were used to characterize the CACSSI system in terms of beam width and imaging technique. The result of this work showed accurate modeling and characterization of the phantoms through comparison of the tissue-equivalent form factors to those from literature. The physical construction of the phantoms, based on actual patient anatomy, was validated using mammography and computed tomography to visually compare the clinical images to those of actual patient anatomy.

  17. Microvascular Physiologic and Anatomic Responses of the Guinea Pig to Experimental Arenavirus Infection

    DTIC Science & Technology

    1991-03-31

    mnxeiators such as prostaglandins, leukotrienes, 10 thromboxanes, free radicals, interleukin-l, tim=r necrosis factor, interferon, lysosoail enzymes ...blood enzymes levels in comparison to the control group (Table (c)2). Although the small animals showed a signifi- cant elevation in blood enzyme leiels...large animals showed a nearly five-fold 19 higher level of most enzymes in corparison to the snall animal group. Blood triglyceride levels were

  18. 3D patient-specific models for left atrium characterization to support ablation in atrial fibrillation patients.

    PubMed

    Valinoti, Maddalena; Fabbri, Claudio; Turco, Dario; Mantovan, Roberto; Pasini, Antonio; Corsi, Cristiana

    2018-01-01

    Radiofrequency ablation (RFA) is an important and promising therapy for atrial fibrillation (AF) patients. Optimization of patient selection and the availability of an accurate anatomical guide could improve RFA success rate. In this study we propose a unified, fully automated approach to build a 3D patient-specific left atrium (LA) model including pulmonary veins (PVs) in order to provide an accurate anatomical guide during RFA and without PVs in order to characterize LA volumetry and support patient selection for AF ablation. Magnetic resonance data from twenty-six patients referred for AF RFA were processed applying an edge-based level set approach guided by a phase-based edge detector to obtain the 3D LA model with PVs. An automated technique based on the shape diameter function was designed and applied to remove PVs and compute LA volume. 3D LA models were qualitatively compared with 3D LA surfaces acquired during the ablation procedure. An expert radiologist manually traced the LA on MR images twice. LA surfaces from the automatic approach and manual tracing were compared by mean surface-to-surface distance. In addition, LA volumes were compared with volumes from manual segmentation by linear and Bland-Altman analyses. Qualitative comparison of 3D LA models showed several inaccuracies, in particular PVs reconstruction was not accurate and left atrial appendage was missing in the model obtained during RFA procedure. LA surfaces were very similar (mean surface-to-surface distance: 2.3±0.7mm). LA volumes were in excellent agreement (y=1.03x-1.4, r=0.99, bias=-1.37ml (-1.43%) SD=2.16ml (2.3%), mean percentage difference=1.3%±2.1%). Results showed the proposed 3D patient-specific LA model with PVs is able to better describe LA anatomy compared to models derived from the navigation system, thus potentially improving electrograms and voltage information location and reducing fluoroscopic time during RFA. Quantitative assessment of LA volume derived from our 3D LA model without PVs is also accurate and may provide important information for patient selection for RFA. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The Relationship between Anterior Chamber Depth, Axial Length and Intraocular Lens Power among Candidates for Cataract Surgery.

    PubMed

    Sedaghat, Mohammad Reza; Azimi, Ali; Arasteh, Peyman; Tehranian, Naghmeh; Bamdad, Shahram

    2016-10-01

    Basic anatomical parameters in ophthalmology are variable in different countries according to ethnic groups, genetics and some environmental factors. The aim of this study was to determine the relationship between axial length (AL), anterior chamber depth (ACD) and intraocular lens power (IOL) in a referral center from eastern Iran among patients who had cataract surgery, in comparison to studies from other regions of the world. In a cross-sectional retrospective study from 2011 to 2013, the records of 698 cataract patients referring to Khatam Al Anbia general hospital in Mashhad, Iran were evaluated. We divided patients, based on their AL and ACD, into three separate groups and compared their results. The SPSS software was used for data analysis. The Chi-Square test and the Independent-samples t-test were used to compare qualitative and quantitative data between two groups, respectively. The Kendall and the Pearson product-moment correlation tests were used to assess the relationship between AL and ACD. The linear Regression model was used to obtain a mathematical model to estimate ACD, using AL, age and sex. Among individuals who had normal AL (between 22-24.5mm), there was a positive correlation between AL and ACD (p<0.001, r=0.17), however, among individuals with short (AL<22mm) or long sightedness (AL>24.5mm), no significant correlation was detected. We also found that older people have shorter AL (p=0.001 and r=-0.287). Men have an average longer AL (23.7±2.4mm vs. 22.9±2.1mm; p<0.001) and deeper ACD compared to women (2.93±0.45mm vs. 2.82±0.42mm, p=0.002). Our findings were mostly similar to previous literature from other regions of the world and although some anatomical variations may exist regarding ophthalmic anatomy, factors like race and geographical area have little effect on the relationship between ACD, AL and IOL power calculation, furthermore our results support the use of third and fourth generation formulas for IOL power calculation.

  20. Identification of plant megafossils in Pennsylvanian-age coal

    USGS Publications Warehouse

    Winston, R.B.

    1989-01-01

    Criteria are provided for identification of certain Pennsylvanian-age plant megafossils directly from coal based on their characteristic anatomical structures as documented from etched polished coal surfaces in comparison with other modes of preservation. Lepidophloios hallii periderm, Diaphorodendron periderm, an Alethopteris pinnule, and a Cordaites leaf were studied in material in continuity with adjacent permineralized peat (carbonate coal-ballas). Calamites wood in attachment to a pitch cast and a Psaronius stem in coal in attachment to a fusinitized Psaronius inner root mantle were studied. Sigillaria was identified in coal by comparison to its structure in permineralized peat. Other plant tissues with characteristic structures were found but could not be attributed to specific plants. ?? 1989.

  1. Virtual reality haptic human dissection.

    PubMed

    Needham, Caroline; Wilkinson, Caroline; Soames, Roger

    2011-01-01

    This project aims to create a three-dimensional digital model of the human hand and wrist which can be virtually 'dissected' through a haptic interface. Tissue properties will be added to the various anatomical structures to replicate a realistic look and feel. The project will explore the role of the medical artist and investigate the cross-discipline collaborations required in the field of virtual anatomy. The software will be used to train anatomy students in dissection skills before experience on a real cadaver. The effectiveness of the software will be evaluated and assessed both quantitatively as well as qualitatively.

  2. The Comparative Osteology of the Petrotympanic Complex (Ear Region) of Extant Baleen Whales (Cetacea: Mysticeti)

    PubMed Central

    Ekdale, Eric G.; Berta, Annalisa; Deméré, Thomas A.

    2011-01-01

    Background Anatomical comparisons of the ear region of baleen whales (Mysticeti) are provided through detailed osteological descriptions and high-resolution photographs of the petrotympanic complex (tympanic bulla and petrosal bone) of all extant species of mysticete cetaceans. Salient morphological features are illustrated and identified, including overall shape of the bulla, size of the conical process of the bulla, morphology of the promontorium, and the size and shape of the anterior process of the petrosal. We place our comparative osteological observations into a phylogenetic context in order to initiate an exploration into petrotympanic evolution within Mysticeti. Principal Findings The morphology of the petrotympanic complex is diagnostic for individual species of baleen whale (e.g., sigmoid and conical processes positioned at midline of bulla in Balaenoptera musculus; confluence of fenestra cochleae and perilymphatic foramen in Eschrichtius robustus), and several mysticete clades are united by derived characteristics. Balaenids and neobalaenids share derived features of the bulla, such as a rhomboid shape and a reduced anterior lobe (swelling) in ventral aspect, and eschrichtiids share derived morphologies of the petrosal with balaenopterids, including loss of a medial promontory groove and dorsomedial elongation of the promontorium. Monophyly of Balaenoidea (Balaenidae and Neobalaenidae) and Balaenopteroidea (Balaenopteridae and Eschrichtiidae) was recovered in phylogenetic analyses utilizing data exclusively from the petrotympanic complex. Significance This study fills a major gap in our knowledge of the complex structures of the mysticete petrotympanic complex, which is an important anatomical region for the interpretation of the evolutionary history of mammals. In addition, we introduce a novel body of phylogenetically informative characters from the ear region of mysticetes. Our detailed anatomical descriptions, illustrations, and comparisons provide valuable data for current and future studies on the phylogenetic relationships, evolution, and auditory physiology of mysticetes and other cetaceans throughout Earth's history. PMID:21731700

  3. Live Donor Renal Anatomic Asymmetry and Post-Transplant Renal Function

    PubMed Central

    Tanriover, Bekir; Fernandez, Sonalis; Campenot, Eric S.; Newhouse, Jeffrey H.; Oyfe, Irina; Mohan, Prince; Sandikci, Burhaneddin; Radhakrishnan, Jai; Wexler, Jennifer J.; Carroll, Maureen A.; Sharif, Sairah; Cohen, David J.; Ratner, Lloyd E.; Hardy, Mark A.

    2014-01-01

    Background Relationship between live donor renal anatomic asymmetry and post-transplant recipient function has not been studied extensively. Methods We analyzed 96 live-kidney donors, who had anatomical asymmetry (>10% renal length and/or volume difference calculated from CT angiograms) and their matching recipients. Split function differences (SFD) were quantified with 99mTc-DMSA renography. Implantation biopsies at time-zero were semi-quantitatively scored. A comprehensive model utilizing donor renal volume adjusted to recipient weight (Vol/Wgt), SFD, and biopsy score was used to predict recipient estimated glomerular filtration rate (eGFR) at one-year. Primary analysis consisted of a logistic regression model of outcome (odds of developing eGFR>60ml/min/1.73 m2 at one-year), a linear regression model of outcome (predicting recipient eGFR at one-year, using the CKD-EPI formula), and a Monte Carlo simulation based on the linear regression model (N=10,000 iterations). Results In the study cohort, the mean Vol/Wgt and eGFR at one-year were 2.04 ml/kg and 60.4 ml/min/1.73m2, respectively. Volume and split ratios between two donor kidneys were strongly correlated (r=0.79, p-value<0.001). The biopsy scores among SFD categories (<5%, 5–10%, >10%) were not different (p=0.190). On multivariate models, only Vol/Wgt was significantly associated with higher odds of having eGFR>60ml/min/1.73 m2 (OR=8.94, 95% CI 2.47–32.25, p=0.001) and had a strong discriminatory power in predicting the risk of eGFR<60ml/min/1.73m2 at one-year (ROC curve=0.78, 95% CI 0.68–0.89). Conclusion In the presence of donor renal anatomic asymmetry, Vol/Wgt appears to be a major determinant of recipient renal function at one-year post-transplantation. Renography can be replaced with CT volume calculation in estimating split renal function. PMID:25719258

  4. SU-F-R-41: Regularized PCA Can Model Treatment-Related Changes in Head and Neck Patients Using Daily CBCTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetvertkov, M; Henry Ford Health System, Detroit, MI; Siddiqui, F

    2016-06-15

    Purpose: To use daily cone beam CTs (CBCTs) to develop regularized principal component analysis (PCA) models of anatomical changes in head and neck (H&N) patients, to guide replanning decisions in adaptive radiation therapy (ART). Methods: Known deformations were applied to planning CT (pCT) images of 10 H&N patients to model several different systematic anatomical changes. A Pinnacle plugin was used to interpolate systematic changes over 35 fractions, generating a set of 35 synthetic CTs for each patient. Deformation vector fields (DVFs) were acquired between the pCT and synthetic CTs and random fraction-to-fraction changes were superimposed on the DVFs. Standard non-regularizedmore » and regularized patient-specific PCA models were built using the DVFs. The ability of PCA to extract the known deformations was quantified. PCA models were also generated from clinical CBCTs, for which the deformations and DVFs were not known. It was hypothesized that resulting eigenvectors/eigenfunctions with largest eigenvalues represent the major anatomical deformations during the course of treatment. Results: As demonstrated with quantitative results in the supporting document regularized PCA is more successful than standard PCA at capturing systematic changes early in the treatment. Regularized PCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes. To be successful at guiding ART, regularized PCA should be coupled with models of when anatomical changes occur: early, late or throughout the treatment course. Conclusion: The leading eigenvector/eigenfunction from the both PCA approaches can tentatively be identified as a major systematic change during radiotherapy course when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the regularized PCA approach appears to be more reliable at capturing systematic changes, enabling dosimetric consequences to be projected once trends are established early in the treatment course. This work is supported in part by a grant from Varian Medical Systems, Palo Alto, CA.« less

  5. Assessment of the 18-month permanence of onlay tip cartilage grafts following rhinoplasty.

    PubMed

    Persichetti, Paolo; Simone, Pierfranco; Carusi, Carlo

    2013-09-01

    Augmentation rhinoplasty requires addition of materials of various natures to reshape the nasal pyramid. Onlay tip grafts are single or multilayered grafts placed horizontally over the alar domes. The aim of the present study was to assess the 18-month permanence of onlay septal cartilage grafts. Twenty-eight patients underwent rhinoplasty with onlay tip cartilage graft, between June 2008 and November 2008 at the Campus Bio-Medico University in Rome, Italy. They were reviewed and photographed 6 months and 18 months postoperatively. Comparison of 6-month and 18-month postoperative pictures was performed with Adobe Photoshop CS. Measurements on pictures were taken with AutoCAD. Comparison of photographs showed no visible difference in nasal tip projection. Comparison of the measurements of tip projection showed a mean reduction of 0.06 mm (0.19%). Considerable stability of nasal tip projection after rhinoplasty with onlay tip grafts was observed postoperatively. Comparison of standardised digital photographs is a valid procedure to assess contour alterations of various anatomical structures after plastic surgery.

  6. Generation of intra-oral-like images from cone beam computed tomography volumes for dental forensic image comparison.

    PubMed

    Trochesset, Denise A; Serchuk, Richard B; Colosi, Dan C

    2014-03-01

    Identification of unknown individuals using dental comparison is well established in the forensic setting. The identification technique can be time and resource consuming if many individuals need to be identified at once. Medical CT (MDCT) for dental profiling has had limited success, mostly due to artifact from metal-containing dental restorations and implants. The authors describe a CBCT reformatting technique that creates images, which closely approximate conventional dental images. Using a i-CAT Platinum CBCT unit and standard issue i-CAT Vision software, a protocol is developed to reproducibly and reliably reformat CBCT volumes. The reformatted images are presented with conventional digital images from the same anatomic area for comparison. The authors conclude that images derived from CBCT volumes following this protocol are similar enough to conventional dental radiographs to allow for dental forensic comparison/identification and that CBCT offers a superior option over MDCT for this purpose. © 2013 American Academy of Forensic Sciences.

  7. Assessing Lower Limb Alignment: Comparison of Standard Knee Xray vs Long Leg View.

    PubMed

    Zampogna, Biagio; Vasta, Sebastiano; Amendola, Annunziato; Uribe-Echevarria Marbach, Bastian; Gao, Yubo; Papalia, Rocco; Denaro, Vincenzo

    2015-01-01

    High tibial osteotomy (HTO) is a well-established and commonly utilized technique in medial knee osteoarthritis secondary to varus malalignment. Accurate measurement of the preoperative limb alignment, and the amount of correction required are essential when planning limb realignment surgery. The hip-knee-ankle angle (HKA) measured on a full length weightbearing (FLWB) X-ray in the standing position is considered the gold standard, since it allows for reliable and accurate measurement of the mechanical axis of the whole lower extremity. In general practice, alignment is often evaluated on standard anteroposterior weightbearing (APWB) X-rays, as the angle between the femur and tibial anatomic axis (TFa). It is, therefore, of value to establish if measuring the anatomical axis from limited APWB is an effective measure of knee alignment especially in patients undergoing osteotomy about the knee. Three independent observers measured preoperative and postoperative FTa with standard method (FTa1) and with circles method (FTa2) on APWB X-ray and the HKA on FLWB X-ray at three different time-points separated by a two-week period. Intra-observer and inter-observer reliabilities and the comparison and relationship between anatomical and mechanical alignment were calculated. Intra- and interclass coefficients for all the three methods indicated excellent reliability, having all the values above 0.80. Using the mean of paired t-student test, the comparison of HKA versus TFa1 and TFa2 showed a statistically significant difference (p<.0001) both for the pre-operative and post-operative sets of values. The correlation between the HKA and FTal was found poor for the preoperative set (R=0.26) and fair for the postoperative one (R=0.53), while the new circles method showed a higher correlation in both the preoperative (R=0.71) and postoperative sets (R=0.79). Intra-observer reliability was high for HKA, FTal and FTa2 on APWB x-rays in the pre- and post-operative setting. Inter-rater reliability was higher for HKA and TFa2 compared to FTal. The femoro-tibial angle as measured on APWB with the traditional method (FTal) has a weak correlation with the HKA, and based on these findings, should not be used in everyday practice. The FTa2 showed better correlation with the HKA, although not excellent. Level III, Retrospective study.

  8. Assessing Lower Limb Alignment: Comparison of Standard Knee Xray vs Long Leg View

    PubMed Central

    Zampogna, Biagio; Vasta, Sebastiano; Amendola, Annunziato; Uribe-Echevarria Marbach, Bastian; Gao, Yubo; Papalia, Rocco; Denaro, Vincenzo

    2015-01-01

    Background High tibial osteotomy (HTO) is a well-established and commonly utilized technique in medial knee osteoarthritis secondary to varus malalignment. Accurate measurement of the preoperative limb alignment, and the amount of correction required are essential when planning limb realignment surgery. The hip-knee-ankle angle (HKA) measured on a full length weightbearing (FLWB) X-ray in the standing position is considered the gold standard, since it allows for reliable and accurate measurement of the mechanical axis of the whole lower extremity. In general practice, alignment is often evaluated on standard anteroposterior weightbearing (APWB) X-rays, as the angle between the femur and tibial anatomic axis (TFa). It is, therefore, of value to establish if measuring the anatomical axis from limited APWB is an effective measure of knee alignment especially in patients undergoing osteotomy about the knee. Methods Three independent observers measured preoperative and postoperative FTa with standard method (FTa1) and with circles method (FTa2) on APWB X-ray and the HKA on FLWB X-ray at three different time-points separated by a two-week period. Intra-observer and inter-observer reliabilities and the comparison and relationship between anatomical and mechanical alignment were calculated. Results Intra- and interclass coefficients for all the three methods indicated excellent reliability, having all the values above 0.80. Using the mean of paired t-student test, the comparison of HKA versus TFa1 and TFa2 showed a statistically significant difference (p<.0001) both for the pre-operative and post-operative sets of values. The correlation between the HKA and FTal was found poor for the preoperative set (R=0.26) and fair for the postoperative one (R=0.53), while the new circles method showed a higher correlation in both the preoperative (R=0.71) and postoperative sets (R=0.79). Conclusions Intra-observer reliability was high for HKA, FTal and FTa2 on APWB x-rays in the pre- and post-operative setting. Inter-rater reliability was higher for HKA and TFa2 compared to FTal. The femoro-tibial angle as measured on APWB with the traditional method (FTal) has a weak correlation with the HKA, and based on these findings, should not be used in everyday practice. The FTa2 showed better correlation with the HKA, although not excellent Level of Evidence Level III, Retrospective study. PMID:26361444

  9. Standardizing Quality Assessment of Fused Remotely Sensed Images

    NASA Astrophysics Data System (ADS)

    Pohl, C.; Moellmann, J.; Fries, K.

    2017-09-01

    The multitude of available operational remote sensing satellites led to the development of many image fusion techniques to provide high spatial, spectral and temporal resolution images. The comparison of different techniques is necessary to obtain an optimized image for the different applications of remote sensing. There are two approaches in assessing image quality: 1. Quantitatively by visual interpretation and 2. Quantitatively using image quality indices. However an objective comparison is difficult due to the fact that a visual assessment is always subject and a quantitative assessment is done by different criteria. Depending on the criteria and indices the result varies. Therefore it is necessary to standardize both processes (qualitative and quantitative assessment) in order to allow an objective image fusion quality evaluation. Various studies have been conducted at the University of Osnabrueck (UOS) to establish a standardized process to objectively compare fused image quality. First established image fusion quality assessment protocols, i.e. Quality with No Reference (QNR) and Khan's protocol, were compared on varies fusion experiments. Second the process of visual quality assessment was structured and standardized with the aim to provide an evaluation protocol. This manuscript reports on the results of the comparison and provides recommendations for future research.

  10. Assessment and Evaluation of Anatomic Variations of Retromolar Pad: A Cross Sectional Study

    PubMed Central

    Deep, Anchal; Siwach, Amit; Singh, Manas; Bhargava, Akshay; Siwach, Reenu

    2016-01-01

    Introduction The retromolar pad also called piriformis papilla is a mucosal elevation located in the retromolar area covering the retromolar triangle. After molar loss, the bony alveolar process and surrounding soft periodontal tissue remodel, mainly resorb and blend with retromolar pad. It is a key intraoral landmark in prosthodontics. Aim The aim of this in-vitro study was to analyze the various anatomical shapes and sizes of retromolar pad in 150 completely edentulous patients between 55 to 70 years of age group. Materials and Methods The study was conducted on 150 completely edentulous patients. The shapes of retromolar pad on the left and right side were seen and divided into pear, triangular and round shape. The comparison of the mean longitudinal diameter and transverse diameter on the right and left sides was done. The data was evaluated statistically. The chi-square test was used for the comparison between the proportions with the help of standard deviation, t-test was used for comparison between the left and the right side and ANOVA test was used for comparison between the various shapes of the retromolar pads. Results The result showed that there was statistically significant difference among different shapes of retromolar pad and there was significant difference in mean transverse and longitudinal diameter on right and left side, the mean value of the longitudinal diameter on left and right side was 8.81 and 8.69 whereas the mean value of the transverse diameter on left and right side was 6.79 and 6.82 respectively and p-value obtained for both was 0.550 and 0.814 respectively. Conclusion The study conclude that there are three different shapes of retromolar pad among which pear and triangular shaped retomolar pad provides more stability in lower denture because of increase surface area. PMID:27437350

  11. Comparison between low (3:1) and high (6:1) pitch for routine abdominal/pelvic imaging with multislice computed tomography.

    PubMed

    Sahani, Dushyant; Saini, Sanjay; D'Souza, Roy V; O'Neill, Mary Jane; Prasad, Srinivasa R; Kalra, Mannudeep K; Halpern, Elkan F; Mueller, Peter

    2003-01-01

    The purpose of this study was to compare the performance of low helical pitch acquisition (3:1) and high helical pitch acquisition (6:1) for routine abdominal/pelvic imaging with multislice computed tomography (CT). Three hundred eighty-four patients referred for abdominal/pelvic CT were examined in a breath-hold on a multislice CT scanner (LightSpeed QX/I; General Electric Medical Systems, Milwaukee, WI). Patients were randomized and scanned with pitch of 3:1 or 6:1 using a constant 140 peak kV and 280-300 mA. Images were reconstructed at a 3.75-mm slice thickness. Direct comparison between the two pitches was possible in a subset of 40 patients who had a follow-up scan performed with the second pitch used in each patient. A comparison was also performed between standard dose CT using a pitch of 6:1 and 20% reduced radiation dose CT using a pitch of 3:1. Two readers performed a blind evaluation using a three-point scale for image quality, anatomic details, and motion artifacts. Statistical analysis was performed using a rank sum test and the Wilcoxon signed rank test. Overall image quality mean scores were 2.5 and 2.3 for a pitch of 3:1 and a pitch of 6:1, respectively (P = 0.134). Likewise, mean anatomic detail and motion artifact scores were 2.5 and 2.6 for a 3:1 pitch and 2.3 and 2.5 for a 6:1 pitch, respectively (P > 0.05). In patients with a direct comparison of the two pitches (with the standard radiation dose as well as with a 20% reduction in milliamperes), no statistically significant difference in the performance of the two pitches was observed (P > 0.05). Image quality with a high pitch (6:1) is acceptable for routine abdominal/pelvic CT.

  12. High pressure rinsing system comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Sertore; M. Fusetti; P. Michelato

    2007-06-01

    High pressure rinsing (HPR) is a key process for the surface preparation of high field superconducting cavities. A portable apparatus for the water jet characterization, based on the transferred momentum between the water jet and a load cell, has been used in different laboratories. This apparatus allows to collected quantitative parameters that characterize the HPR water jet. In this paper, we present a quantitative comparison of the different water jet produced by various nozzles routinely used in different laboratories for the HPR process

  13. Field Demonstration Report Applied Innovative Technologies for Characterization of Nitrocellulose- and Nitroglycerine Contaminated Buildings and Soils, Rev 1

    DTIC Science & Technology

    2007-01-05

    positive / false negatives. The quantitative on-site methods were evaluated using linear regression analysis and relative percent difference (RPD) comparison...Conclusion ...............................................................................................3-9 3.2 Quantitative Analysis Using CRREL...3-37 3.3 Quantitative Analysis for NG by GC/TID.........................................................3-38 3.3.1 Introduction

  14. Release of Cell-free MicroRNA Tumor Biomarkers into the Blood Circulation with Pulsed Focused Ultrasound: A Noninvasive, Anatomically Localized, Molecular Liquid Biopsy

    PubMed Central

    Chevillet, John R.; Khokhlova, Tatiana D.; Giraldez, Maria D.; Schade, George R.; Starr, Frank; Wang, Yak-Nam; Gallichotte, Emily N.; Wang, Kai; Hwang, Joo Ha

    2017-01-01

    Purpose To compare the abilities of three pulsed focused ultrasound regimes (that cause tissue liquefaction, permeabilization, or mild heating) to release tumor-derived microRNA into the circulation in vivo and to evaluate release dynamics. Materials and Methods All rat experiments were approved by the University of Washington Institutional Animal Care and Use Committee. Reverse-transcription quantitative polymerase chain reaction array profiling was used to identify candidate microRNA biomarkers in a rat solid tumor cell line. Rats subcutaneously grafted with these cells were randomly assigned among three pulsed focused ultrasound treatment groups: (a) local tissue liquefaction via boiling histotripsy, (b) tissue permeabilization via inertial cavitation, and (c) mild (<10°C) heating of tissue, as well as a sham-treated control group. Blood specimens were drawn immediately prior to treatment and serially over 24 hours afterward. Plasma microRNA was quantified with reverse-transcription quantitative polymerase chain reaction, and statistical significance was determined with one-way analysis of variance (Kruskal-Wallis and Friedman tests), followed by the Dunn multiple-comparisons test. Results After tissue liquefaction and cavitation treatments (but not mild heating), plasma quantities of candidate biomarkers increased significantly (P value range, <.0001 to .04) relative to sham-treated controls. A threefold to 32-fold increase occurred within 15 minutes after initiation of pulsed focused ultrasound tumor treatment, and these increases persisted for 3 hours. Histologic examination confirmed complete liquefaction of the targeted tumor area with boiling histotripsy, in addition to areas of petechial hemorrhage and tissue disruption by means of cavitation-based treatment. Conclusion Mechanical tumor tissue disruption with pulsed focused ultrasound–induced bubble activity significantly increases the plasma abundance of tumor-derived microRNA rapidly after treatment. © RSNA, 2016 Online supplemental material is available for this article. PMID:27802108

  15. Quantification of disc displacement in internal derangement of the temporomandibular joint using magnetic resonance imaging.

    PubMed

    Arayasantiparb, Raweewan; Tsuchimochi, Makoto

    2010-02-01

    Many measures have been developed to determine the extent of disc displacement in internal derangements of the temporomandibular joint (TMJ) using magnetic resonance imaging. The purpose of this study was to develop a quantitative method of analyzing disc position and to evaluate the positions of the disc in internal derangements of the TMJ (group 1, with reduction; group 2, without reduction). Magnetic resonance images of 150 TMJs in 20 healthy volunteers and 55 patients with internal derangements were evaluated. The anatomical points of interest of the TMJ, including the anterior (DA) and posterior (DP) points of the disc, were marked on parasagittal magnetic resonance images of the TMJ disc taken in both the closed- and the open-mouth positions. All points were recorded using an x-y coordinate system, with reference to a referral line. In the closed-mouth position, the DP in patients in group 1 was situated in a more-anterior direction than the DP in volunteers. The DP in group 2 was located further anterior and inferior than the DP in group 1. However, the position of the DA did not differ between group 1 and group 2. In the open-mouth position, the DP was displaced anteroinferiorly to a greater extent in group 2 than in group 1 (one-way ANOVA, followed by Scheffe's test; P < 0.0001). The distance between the disc points in the closed- and open-mouth positions was also evaluated. Comparison of the disc point position in the closed- and open-mouth positions in symptomatic and asymptomatic displaced TMJ discs revealed no significant difference. In conclusion, most of our results quantitatively support previously reported findings in imaging, surgical, and histopathological studies of TMJ internal derangement. We suggest that our measure of disc position of the TMJ would be useful to assess the status and response to treatment of internal derangements of the TMJ.

  16. Comparison of the current AJCC-TNM numeric-based with a new anatomical location-based lymph node staging system for gastric cancer: A western experience

    PubMed Central

    Auricchio, Annamaria; Cardella, Francesca; Mabilia, Andrea; Diana, Anna; Castellano, Paolo; De Vita, Ferdinando; Orditura, Michele

    2017-01-01

    Background In gastric cancer, the current AJCC numeric-based lymph node staging does not provide information on the anatomical extent of the disease and lymphadenectomy. A new anatomical location-based node staging, proposed by Choi, has shown better prognostic performance, thus soliciting Western world validation. Study design Data from 284 gastric cancers undergoing radical surgery at the Second University of Naples from 2000 to 2014 were reviewed. The lymph nodes were reclassified into three groups (lesser and greater curvature, and extraperigastric nodes); presence of any metastatic lymph node in a given group was considered positive, prompting a new N and TNM stage classification. Receiver-operating-characteristic (ROC) curves for censored survival data and bootstrap methods were used to compare the capability of the two models to predict tumor recurrence. Results More than one third of node positive patients were reclassified into different N and TNM stages by the new system. Compared to the current staging system, the new classification significantly correlated with tumor recurrence rates and displayed improved indices of prognostic performance, such as the Bayesian information criterion and the Harrell C-index. Higher values at survival ROC analysis demonstrated a significantly better stratification of patients by the new system, mostly in the early phase of the follow-up, with a worse prognosis in more advanced new N stages, despite the same current N stage. Conclusions This study suggests that the anatomical location-based classification of lymph node metastasis may be an important tool for gastric cancer prognosis and should be considered for future revision of the TNM staging system. PMID:28380037

  17. Autoradiographic distribution of 5-HT7 receptors in the human brain using [3H]mesulergine: comparison to other mammalian species

    PubMed Central

    Martín-Cora, Francisco J; Pazos, Angel

    2003-01-01

    The main aim of this investigation was to delineate the distribution of the 5-HT7 receptor in human brain. Autoradiographic studies in guinea-pig and rat brain were also carried out in order to revisit and compare the anatomical distribution of 5-HT7 receptors in different mammalian species.Binding studies were performed in rat frontal cortex membranes using 10 nM [3H]mesulergine in the presence of raclopride (10 μM) and DOI (0.8 μM). Under these conditions, a binding site with pharmacological characteristics consistent with those of the 5-HT7 receptors was identified (rank order of binding affinity values: 5-CT>5-HT>5-MeOT>mesulergine ≈methiothepin>8-OH-DPAT=spiperone ≈(+)-butaclamol≫imipramine ≈(±)-pindolol≫ondansetron ≈clonidine ≈prazosin).The autoradiographic studies revealed that the anatomical distribution of 5-HT7 receptors throughout the human brain was heterogenous. High densities were found over the caudate and putamen nuclei, the pyramidal layer of the CA2 field of the hippocampus, the centromedial thalamic nucleus, and the dorsal raphe nucleus. The inner layer of the frontal cortex, the dentate gyrus of the hippocampus, the subthalamic nucleus and superior colliculus, among others, presented intermediate concentrations of 5-HT7 receptors. A similar brain anatomical distribution of 5-HT7 receptors was observed in all three mammalian species studied.By using [3H]mesulergine, we have mapped for the first time the anatomical distribution of 5-HT7 receptors in the human brain, overcoming the limitations previously found in radiometric studies with other radioligands, and also revisiting the distribution in guinea-pig and rat brain. PMID:14656806

  18. Anatomical masking of pressure footprints based on the Oxford Foot Model: validation and clinical relevance.

    PubMed

    Giacomozzi, Claudia; Stebbins, Julie A

    2017-03-01

    Plantar pressure analysis is widely used in the assessment of foot function. In order to assess regional loading, a mask is applied to the footprint to sub-divide it into regions of interest (ROIs). The most common masking method is based on geometric features of the footprint (GM). Footprint masking based on anatomical landmarks of the foot has been implemented more recently, and involves the integration of a 3D motion capture system, plantar pressure measurement device, and a multi-segment foot model. However, thorough validation of anatomical masking (AM) using pathological footprints has not yet been presented. In the present study, an AM method based on the Oxford Foot Model (OFM) was compared to an equivalent GM. Pressure footprints from 20 young healthy subjects (HG) and 20 patients with clubfoot (CF) were anatomically divided into 5 ROIs using a subset of the OFM markers. The same foot regions were also identified by using a standard GM method. Comparisons of intra-subject coefficient of variation (CV) showed that the OFM-based AM was at least as reliable as the GM for all investigated pressure parameters in all foot regions. Clinical relevance of AM was investigated by comparing footprints from HG and CF groups. Contact time, maximum force, force-time integral and contact area proved to be sensitive parameters that were able to distinguish HG and CF groups, using both AM and GM methods However, the AM method revealed statistically significant differences between groups in 75% of measured variables, compared to 62% using a standard GM method, indicating that the AM method is more sensitive for revealing differences between groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Principal Component Analysis of Cerebellar Shape on MRI Separates SCA Types 2 and 6 into Two Archetypal Modes of Degeneration

    PubMed Central

    Jung, Brian C.; Choi, Soo I.; Du, Annie X.; Cuzzocreo, Jennifer L.; Geng, Zhuo Z.; Ying, Howard S.; Perlman, Susan L.; Toga, Arthur W.; Prince, Jerry L.

    2014-01-01

    Although “cerebellar ataxia” is often used in reference to a disease process, presumably there are different underlying pathogenetic mechanisms for different subtypes. Indeed, spinocerebellar ataxia (SCA) types 2 and 6 demonstrate complementary phenotypes, thus predicting a different anatomic pattern of degeneration. Here, we show that an unsupervised classification method, based on principal component analysis (PCA) of cerebellar shape characteristics, can be used to separate SCA2 and SCA6 into two classes, which may represent disease-specific archetypes. Patients with SCA2 (n=11) and SCA6 (n=7) were compared against controls (n=15) using PCA to classify cerebellar anatomic shape characteristics. Within the first three principal components, SCA2 and SCA6 differed from controls and from each other. In a secondary analysis, we studied five additional subjects and found that these patients were consistent with the previously defined archetypal clusters of clinical and anatomical characteristics. Secondary analysis of five subjects with related diagnoses showed that disease groups that were clinically and pathophysiologically similar also shared similar anatomic characteristics. Specifically, Archetype #1 consisted of SCA3 (n=1) and SCA2, suggesting that cerebellar syndromes accompanied by atrophy of the pons may be associated with a characteristic pattern of cerebellar neurodegeneration. In comparison, Archetype #2 was comprised of disease groups with pure cerebellar atrophy (episodic ataxia type 2 (n=1), idiopathic late-onset cerebellar ataxias (n=3), and SCA6). This suggests that cerebellar shape analysis could aid in discriminating between different pathologies. Our findings further suggest that magnetic resonance imaging is a promising imaging biomarker that could aid in the diagnosis and therapeutic management in patients with cerebellar syndromes. PMID:22258915

  20. An arthroscopic evaluation of the anatomical "critical zone".

    PubMed

    Naidoo, N; Lazarus, L; Osman, S A; Satyapal, K S

    2017-01-01

    The "critical zone", a region of speculated vascularity, is situated approximately 10 mm proximal to the insertion of the supraspinatus tendon. Despite its obvious role as an anatomical landmark demarcator, its patho-anatomic nature has been identified as the source of rotator cuff pathology. Although many studies have attempted to evaluate the vascularity of this region, the architecture regarding the exact length, width and shape of the critical zone, remains unreported. This study aimed to determine the shape and morphometry of the "critical zone" arthroscopically. The sample series, which was comprised of 38 cases (n = 38) specific to pathological types, employed an anatomical investigation of the critical zone during routine real-time arthroscopy. Demographic representation: i) sex: 19 males, 19 females; ii) age range: 18-76 years; iii) race: white (n = 29), Indian (n = 7) and coloured (n = 2). The incidence of shape and the mean lengths and widths of the critical zone were determined in accordance with the relevant demographic factors and patient history. Although the cresenteric shape was predominant, hemispheric and sail-shaped critical zones were also identified. The lengths and widths of the critical zone appeared markedly increased in male individuals. While the increase in age may account for the increased incidence of rotator cuff degeneration due to poor end-vascular supply, the additional factors of height and weight presented as major determinants of the increase in size of the critical zone. In addition, the comparisons of length and width with each other and shape yielded levels of significant difference, therefore indicating a directly proportional relationship between the length and width of the critical zone. This detailed understanding of the critical zone may prove beneficial for the success of post-operative rotator cuff healing.

  1. Chilling-induced physiological, anatomical and biochemical responses in the leaves of Miscanthus × giganteus and maize (Zea mays L.).

    PubMed

    Bilska-Kos, Anna; Panek, Piotr; Szulc-Głaz, Anna; Ochodzki, Piotr; Cisło, Aneta; Zebrowski, Jacek

    2018-06-08

    Miscanthus × giganteus and Zea mays, closely-related C 4 grasses, originated from warm climates react differently to low temperature. To investigate the response to cold (12-14 °C) in these species, the photosynthetic and anatomical parameters as well as biochemical properties of the cell wall were studied. The research was performed using M. giganteus (MG) and two Z. mays lines differentiated for chilling-sensitivity: chilling-tolerant (Zm-T) and chilling-sensitive (Zm-S). The chilled plants of Zm-S line demonstrated strong inhibition of net CO 2 assimilation and a clear decrease in F' v /F' m , F v /F m and ɸ PSII, while in MG and Zm-T plants these parameters were almost unchanged. The anatomical studies revealed that MG plants had thinner leaves, epidermis and mesophyll cell layer as well as thicker cell walls in the comparison to both maize lines. Cold led to an increase in leaf thickness and mesophyll cell layer thickness in the Zm-T maize line, while the opposite response was observed in Zm-S. In turn, in chilled plants of MG and Zm-T lines, some anatomical parameters associated with bundle sheath cells were higher. In addition, Zm-S line showed the strong increase in the cell wall thickness at cold for mesophyll and bundle sheath cells. Chilling-treatment induced the changes in the cell wall biochemistry of tested species, mainly in the content of glucuronoarabinoxylan, uronic acid, β-glucan and phenolic compounds. This work presents a new approach in searching of mechanism(s) of tolerance/sensitivity to low temperature in two thermophilic plants: Miscanthus and maize. Copyright © 2018 Elsevier GmbH. All rights reserved.

  2. Comparison of the pre-shaped anatomical locking plate of 3.5 mm versus 4.5 mm for the treatment of tibial plateau fractures.

    PubMed

    Ehlinger, Matthieu; Adamczewski, Benjamin; Rahmé, Michel; Adam, Philippe; Bonnomet, Francois

    2015-12-01

    Treatment of tibial plateau fractures is discussed. A retrospective comparative study of fractures treated with an anatomical locking plate of 4.5 mm or 3.5 mm. Our hypothesis is that the 3.5 mm plates give an equivalent hold of fractures with comparable results and better clinical tolerance. From May 2010 to October 2011, 18 patients were operated on using a 4.5-mm LCP™ anatomical plate (group A) and 20 patients received a3.5-mm LCP™ anatomical plate (group B). Groups were comparable. One fracture was open. For the Group A, 14 patients had a follow up of 35.3 months and for the Group B, 16 patients had a follow up of 27 months. Mobility was comparable in both groups. The Hospital for Special Surgery (HSS) score was 86.4 versus 80.6, the Lysholm score was 83.6 versus 77 for groups A and B respectively. Consolidation was 3.25 months versus 3.35 months and mean axis was 183.1° versus 181.6° for groups A and B. Mechanical axes during revision were statistically different to the controlateral axes. One secondary displacement was noted in group A and one secondary displacement in group B. Group A had eight patients reporting discomfort with the material versus three in group B (p < 0.05). The hypothesis is proven. In regards to the results, there is no significant difference between the two groups but the clinical tolerance was better in group B. More time is needed in the long term to better evaluate these severe fractures.

  3. Anatomical evidence for low frequency sensitivity in an archaeocete whale: comparison of the inner ear of Zygorhiza kochii with that of crown Mysticeti.

    PubMed

    Ekdale, Eric G; Racicot, Rachel A

    2015-01-01

    The evolution of hearing in cetaceans is a matter of current interest given that odontocetes (toothed whales) are sensitive to high frequency sounds and mysticetes (baleen whales) are sensitive to low and potentially infrasonic noises. Earlier diverging stem cetaceans (archaeocetes) were hypothesized to have had either low or high frequency sensitivity. Through CT scanning, the morphology of the bony labyrinth of the basilosaurid archaeocete Zygorhiza kochii is described and compared to novel information from the inner ears of mysticetes, which are less known than the inner ears of odontocetes. Further comparisons are made with published information for other cetaceans. The anatomy of the cochlea of Zygorhiza is in line with mysticetes and supports the hypothesis that Zygorhiza was sensitive to low frequency noises. Morphological features that support the low frequency hypothesis and are shared by Zygorhiza and mysticetes include a long cochlear canal with a high number of turns, steeply graded curvature of the cochlear spiral in which the apical turn is coiled tighter than the basal turn, thin walls separating successive turns that overlap in vestibular view, and reduction of the secondary bony lamina. Additional morphology of the vestibular system indicates that Zygorhiza was more sensitive to head rotations than extant mysticetes are, which likely indicates higher agility in the ancestral taxon. © 2014 Anatomical Society.

  4. Accelerating Pathology Image Data Cross-Comparison on CPU-GPU Hybrid Systems

    PubMed Central

    Wang, Kaibo; Huai, Yin; Lee, Rubao; Wang, Fusheng; Zhang, Xiaodong; Saltz, Joel H.

    2012-01-01

    As an important application of spatial databases in pathology imaging analysis, cross-comparing the spatial boundaries of a huge amount of segmented micro-anatomic objects demands extremely data- and compute-intensive operations, requiring high throughput at an affordable cost. However, the performance of spatial database systems has not been satisfactory since their implementations of spatial operations cannot fully utilize the power of modern parallel hardware. In this paper, we provide a customized software solution that exploits GPUs and multi-core CPUs to accelerate spatial cross-comparison in a cost-effective way. Our solution consists of an efficient GPU algorithm and a pipelined system framework with task migration support. Extensive experiments with real-world data sets demonstrate the effectiveness of our solution, which improves the performance of spatial cross-comparison by over 18 times compared with a parallelized spatial database approach. PMID:23355955

  5. Quantitative Imaging Biomarkers: A Review of Statistical Methods for Computer Algorithm Comparisons

    PubMed Central

    2014-01-01

    Quantitative biomarkers from medical images are becoming important tools for clinical diagnosis, staging, monitoring, treatment planning, and development of new therapies. While there is a rich history of the development of quantitative imaging biomarker (QIB) techniques, little attention has been paid to the validation and comparison of the computer algorithms that implement the QIB measurements. In this paper we provide a framework for QIB algorithm comparisons. We first review and compare various study designs, including designs with the true value (e.g. phantoms, digital reference images, and zero-change studies), designs with a reference standard (e.g. studies testing equivalence with a reference standard), and designs without a reference standard (e.g. agreement studies and studies of algorithm precision). The statistical methods for comparing QIB algorithms are then presented for various study types using both aggregate and disaggregate approaches. We propose a series of steps for establishing the performance of a QIB algorithm, identify limitations in the current statistical literature, and suggest future directions for research. PMID:24919829

  6. Using Inequality Measures to Incorporate Environmental Justice into Regulatory Analyses

    EPA Science Inventory

    Abstract: Formally evaluating how specific policy measures influence environmental justice is challenging, especially in the context of regulatory analyses in which quantitative comparisons are the norm. However, there is a large literature on developing and applying quantitative...

  7. A retrospective cross-sectional quantitative molecular approach in biological samples from patients with syphilis.

    PubMed

    Pinto, Miguel; Antelo, Minia; Ferreira, Rita; Azevedo, Jacinta; Santo, Irene; Borrego, Maria José; Gomes, João Paulo

    2017-03-01

    Syphilis is the sexually transmitted disease caused by Treponema pallidum, a pathogen highly adapted to the human host. As a multistage disease, syphilis presents distinct clinical manifestations that pose different implications for diagnosis. Nevertheless, the inherent factors leading to diverse disease progressions are still unknown. We aimed to assess the association between treponemal loads and dissimilar disease outcomes, to better understand syphilis. We retrospectively analyzed 309 DNA samples distinct anatomic sites associated with particular syphilis manifestations. All samples had previously tested positive by a PCR-based diagnostic kit. An absolute quantitative real-time PCR procedure was used to precisely quantify the number of treponemal and human cells to determine T. pallidum loads in each sample. In general, lesion exudates presented the highest T. pallidum loads in contrast with blood-derived samples. Within the latter, a higher dispersion of T. pallidum quantities was observed for secondary syphilis. T. pallidum was detected in substantial amounts in 37 samples of seronegative individuals and in 13 cases considered as syphilis-treated. No association was found between treponemal loads and serological results or HIV status. This study suggests a scenario where syphilis may be characterized by: i) heterogeneous and high treponemal loads in primary syphilis, regardless of the anatomic site, reflecting dissimilar duration of chancres development and resolution; ii) high dispersion of bacterial concentrations in secondary syphilis, potentially suggesting replication capability of T. pallidum while in the bloodstream; and iii) bacterial evasiveness, either to the host immune system or antibiotic treatment, while remaining hidden in privileged niches. This work highlights the importance of using molecular approaches to study uncultivable human pathogens, such as T. pallidum, in the infection process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Speckle-reduction algorithm for ultrasound images in complex wavelet domain using genetic algorithm-based mixture model.

    PubMed

    Uddin, Muhammad Shahin; Tahtali, Murat; Lambert, Andrew J; Pickering, Mark R; Marchese, Margaret; Stuart, Iain

    2016-05-20

    Compared with other medical-imaging modalities, ultrasound (US) imaging is a valuable way to examine the body's internal organs, and two-dimensional (2D) imaging is currently the most common technique used in clinical diagnoses. Conventional 2D US imaging systems are highly flexible cost-effective imaging tools that permit operators to observe and record images of a large variety of thin anatomical sections in real time. Recently, 3D US imaging has also been gaining popularity due to its considerable advantages over 2D US imaging. It reduces dependency on the operator and provides better qualitative and quantitative information for an effective diagnosis. Furthermore, it provides a 3D view, which allows the observation of volume information. The major shortcoming of any type of US imaging is the presence of speckle noise. Hence, speckle reduction is vital in providing a better clinical diagnosis. The key objective of any speckle-reduction algorithm is to attain a speckle-free image while preserving the important anatomical features. In this paper we introduce a nonlinear multi-scale complex wavelet-diffusion based algorithm for speckle reduction and sharp-edge preservation of 2D and 3D US images. In the proposed method we use a Rayleigh and Maxwell-mixture model for 2D and 3D US images, respectively, where a genetic algorithm is used in combination with an expectation maximization method to estimate mixture parameters. Experimental results using both 2D and 3D synthetic, physical phantom, and clinical data demonstrate that our proposed algorithm significantly reduces speckle noise while preserving sharp edges without discernible distortions. The proposed approach performs better than the state-of-the-art approaches in both qualitative and quantitative measures.

  9. Quantitative assessment of paravalvular leakage after transcatheter aortic valve replacement using a patient-specific pulsatile flow model.

    PubMed

    Tanaka, Yutaka; Saito, Shigeru; Sasuga, Saeko; Takahashi, Azuma; Aoyama, Yusuke; Obama, Kazuto; Umezu, Mitsuo; Iwasaki, Kiyotaka

    2018-05-01

    Quantitative assessment of post-transcatheter aortic valve replacement (TAVR) aortic regurgitation (AR) remains challenging. We developed patient-specific anatomical models with pulsatile flow circuit and investigated factors associated with AR after TAVR. Based on pre-procedural computed tomography (CT) data of the six patients who underwent transfemoral TAVR using a 23-mm SAPIEN XT, anatomically and mechanically equivalent aortic valve models were developed. Forward flow and heart rate of each patient in two days after TAVR were duplicated under mean aortic pressure of 80mmHg. Paravalvular leakage (PVL) volume in basal and additional conditions was measured for each model using an electromagnetic flow sensor. Incompletely apposed tract between the transcatheter and aortic valves was examined using a micro-CT. PVL volume in each patient-specific model was consistent with each patient's PVL grade, and was affected by hemodynamic conditions. PVL and total regurgitation volume increased with the mean aortic pressure, whereas closing volume did not change. In contrast, closing volume increased proportionately with heart rate, but PVL did not change. The minimal cross-sectional gap had a positive correlation with the PVL volumes (r=0.89, P=0.02). The gap areas typically occurred in the vicinity of the bulky calcified nodules under the native commissure. PVL volume, which could be affected by hemodynamic conditions, was significantly associated with the minimal cross-sectional gap area between the aortic annulus and the stent frame. These data may improve our understanding of the mechanism of the occurrence of post-TAVR PVL. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Exploring the relationship between white matter and gray matter damage in early primary progressive multiple sclerosis: an in vivo study with TBSS and VBM.

    PubMed

    Bodini, Benedetta; Khaleeli, Zhaleh; Cercignani, Mara; Miller, David H; Thompson, Alan J; Ciccarelli, Olga

    2009-09-01

    We investigated the relationship between the damage occurring in the brain normal-appearing white matter (NAWM) and in the gray matter (GM) in patients with early Primary Progressive multiple sclerosis (PPMS), using Tract-Based Spatial Statistics (TBSS) and an optimized voxel-based morphometry (VBM) approach. Thirty-five patients with early PPMS underwent diffusion tensor and conventional imaging and were clinically assessed. TBSS and VBM were employed to localize regions of lower fractional anisotropy (FA) and lower GM volume in patients compared with controls. Areas of anatomical and quantitative correlation between NAWM and GM damage were detected. Multiple regression analyses were performed to investigate whether NAWM FA or GM volume of regions correlated with clinical scores independently from the other and from age and gender. In patients, we found 11 brain regions that showed an anatomical correspondence between reduced NAWM FA and GM atrophy; of these, four showed a quantitative correlation (i.e., the right sensory motor region with the adjacent corticospinal tract, the left and right thalamus with the corresponding thalamic radiations and the left insula with the adjacent WM). Either the NAWM FA or the GM volume in each of these regions correlated with disability. These results demonstrate a link between the pathological processes occurring in the NAWM and in the GM in PPMS in specific, clinically relevant brain areas. Longitudinal studies will determine whether the GM atrophy precedes or follows the NAWM damage. The methodology that we described may be useful to investigate other neurological disorders affecting both the WM and the GM. 2009 Wiley-Liss, Inc.

  11. Comparative Performance of Reagents and Platforms for Quantitation of Cytomegalovirus DNA by Digital PCR

    PubMed Central

    Gu, Z.; Sam, S. S.; Sun, Y.; Tang, L.; Pounds, S.; Caliendo, A. M.

    2016-01-01

    A potential benefit of digital PCR is a reduction in result variability across assays and platforms. Three sets of PCR reagents were tested on two digital PCR systems (Bio-Rad and RainDance), using three different sets of PCR reagents for quantitation of cytomegalovirus (CMV). Both commercial quantitative viral standards and 16 patient samples (n = 16) were tested. Quantitative accuracy (compared to nominal values) and variability were determined based on viral standard testing results. Quantitative correlation and variability were assessed with pairwise comparisons across all reagent-platform combinations for clinical plasma sample results. The three reagent sets, when used to assay quantitative standards on the Bio-Rad system, all showed a high degree of accuracy, low variability, and close agreement with one another. When used on the RainDance system, one of the three reagent sets appeared to have a much better correlation to nominal values than did the other two. Quantitative results for patient samples showed good correlation in most pairwise comparisons, with some showing poorer correlations when testing samples with low viral loads. Digital PCR is a robust method for measuring CMV viral load. Some degree of result variation may be seen, depending on platform and reagents used; this variation appears to be greater in samples with low viral load values. PMID:27535685

  12. Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica.

    PubMed

    Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang

    2015-04-01

    To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5-S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3-S1 nerve roots. ROC analysis was performed for FA values. The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Semi-quantitative assessment of pulmonary perfusion in children using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Thong, William E.; Ou, Phalla

    2013-03-01

    This paper addresses the study of semi-quantitative assessment of pulmonary perfusion acquired from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in a study population mainly composed of children with pulmonary malformations. The automatic analysis approach proposed is based on the indicator-dilution theory introduced in 1954. First, a robust method is developed to segment the pulmonary artery and the lungs from anatomical MRI data, exploiting 2D and 3D mathematical morphology operators. Second, the time-dependent contrast signal of the lung regions is deconvolved by the arterial input function for the assessment of the local hemodynamic system parameters, ie. mean transit time, pulmonary blood volume and pulmonary blood flow. The discrete deconvolution method implements here a truncated singular value decomposition (tSVD) method. Parametric images for the entire lungs are generated as additional elements for diagnosis and quantitative follow-up. The preliminary results attest the feasibility of perfusion quantification in pulmonary DCE-MRI and open an interesting alternative to scintigraphy for this type of evaluation, to be considered at least as a preliminary decision in the diagnostic due to the large availability of the technique and to the non-invasive aspects.

  14. Why are there race/ethnic differences in adult body mass index-adiposity relationships? A quantitative critical review.

    PubMed

    Heymsfield, S B; Peterson, C M; Thomas, D M; Heo, M; Schuna, J M

    2016-03-01

    Body mass index (BMI) is now the most widely used measure of adiposity on a global scale. Nevertheless, intense discussion centers on the appropriateness of BMI as a phenotypic marker of adiposity across populations differing in race and ethnicity. BMI-adiposity relations appear to vary significantly across race/ethnic groups, but a collective critical analysis of these effects establishing their magnitude and underlying body shape/composition basis is lacking. Accordingly, we systematically review the magnitude of these race-ethnic differences across non-Hispanic (NH) white, NH black and Mexican American adults, their anatomic body composition basis and potential biologically linked mechanisms, using both earlier publications and new analyses from the US National Health and Nutrition Examination Survey. Our collective observations provide a new framework for critically evaluating the quantitative relations between BMI and adiposity across groups differing in race and ethnicity; reveal new insights into BMI as a measure of adiposity across the adult age-span; identify knowledge gaps that can form the basis of future research and create a quantitative foundation for developing BMI-related public health recommendations. © 2015 World Obesity.

  15. Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging.

    PubMed

    Callaghan, Martina F; Freund, Patrick; Draganski, Bogdan; Anderson, Elaine; Cappelletti, Marinella; Chowdhury, Rumana; Diedrichsen, Joern; Fitzgerald, Thomas H B; Smittenaar, Peter; Helms, Gunther; Lutti, Antoine; Weiskopf, Nikolaus

    2014-08-01

    A pressing need exists to disentangle age-related changes from pathologic neurodegeneration. This study aims to characterize the spatial pattern and age-related differences of biologically relevant measures in vivo over the course of normal aging. Quantitative multiparameter maps that provide neuroimaging biomarkers for myelination and iron levels, parameters sensitive to aging, were acquired from 138 healthy volunteers (age range: 19-75 years). Whole-brain voxel-wise analysis revealed a global pattern of age-related degeneration. Significant demyelination occurred principally in the white matter. The observed age-related differences in myelination were anatomically specific. In line with invasive histologic reports, higher age-related differences were seen in the genu of the corpus callosum than the splenium. Iron levels were significantly increased in the basal ganglia, red nucleus, and extensive cortical regions but decreased along the superior occipitofrontal fascicle and optic radiation. This whole-brain pattern of age-associated microstructural differences in the asymptomatic population provides insight into the neurobiology of aging. The results help build a quantitative baseline from which to examine and draw a dividing line between healthy aging and pathologic neurodegeneration. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging☆

    PubMed Central

    Callaghan, Martina F.; Freund, Patrick; Draganski, Bogdan; Anderson, Elaine; Cappelletti, Marinella; Chowdhury, Rumana; Diedrichsen, Joern; FitzGerald, Thomas H.B.; Smittenaar, Peter; Helms, Gunther; Lutti, Antoine; Weiskopf, Nikolaus

    2014-01-01

    A pressing need exists to disentangle age-related changes from pathologic neurodegeneration. This study aims to characterize the spatial pattern and age-related differences of biologically relevant measures in vivo over the course of normal aging. Quantitative multiparameter maps that provide neuroimaging biomarkers for myelination and iron levels, parameters sensitive to aging, were acquired from 138 healthy volunteers (age range: 19–75 years). Whole-brain voxel-wise analysis revealed a global pattern of age-related degeneration. Significant demyelination occurred principally in the white matter. The observed age-related differences in myelination were anatomically specific. In line with invasive histologic reports, higher age-related differences were seen in the genu of the corpus callosum than the splenium. Iron levels were significantly increased in the basal ganglia, red nucleus, and extensive cortical regions but decreased along the superior occipitofrontal fascicle and optic radiation. This whole-brain pattern of age-associated microstructural differences in the asymptomatic population provides insight into the neurobiology of aging. The results help build a quantitative baseline from which to examine and draw a dividing line between healthy aging and pathologic neurodegeneration. PMID:24656835

  17. Correlation of quantitative computed tomographic subchondral bone density and ash density in horses.

    PubMed

    Drum, M G; Les, C M; Park, R D; Norrdin, R W; McIlwraith, C W; Kawcak, C E

    2009-02-01

    The purpose of this study was to compare subchondral bone density obtained using quantitative computed tomography with ash density values from intact equine joints, and to determine if there are measurable anatomic variations in mean subchondral bone density. Five adult equine metacarpophalangeal joints were scanned with computed tomography (CT), disarticulated, and four 1-cm(3) regions of interest (ROI) cut from the distal third metacarpal bone. Bone cubes were ashed, and percent mineralization and ash density were recorded. Three-dimensional models were created of the distal third metacarpal bone from CT images. Four ROIs were measured on the distal aspect of the third metacarpal bone at axial and abaxial sites of the medial and lateral condyles for correlation with ash samples. Overall correlations of mean quantitative CT (QCT) density with ash density (r=0.82) and percent mineralization (r=0.93) were strong. There were significant differences between abaxial and axial ROIs for mean QCT density, percent bone mineralization and ash density (p<0.05). QCT appears to be a good measure of bone density in equine subchondral bone. Additionally, differences existed between axial and abaxial subchondral bone density in the equine distal third metacarpal bone.

  18. Carotid lesion characterization by synthetic-aperture-imaging techniques with multioffset ultrasonic probes

    NASA Astrophysics Data System (ADS)

    Capineri, Lorenzo; Castellini, Guido; Masotti, Leonardo F.; Rocchi, Santina

    1992-06-01

    This paper explores the applications of a high-resolution imaging technique to vascular ultrasound diagnosis, with emphasis on investigation of the carotid vessel. With the present diagnostic systems, it is difficult to measure quantitatively the extension of the lesions and to characterize the tissue; quantitative images require enough spatial resolution and dynamic to reveal fine high-risk pathologies. A broadband synthetic aperture technique with multi-offset probes is developed to improve the lesion characterization by the evaluation of local scattering parameters. This technique works with weak scatterers embedded in a constant velocity medium, large aperture, and isotropic sources and receivers. The features of this technique are: axial and lateral spatial resolution of the order of the wavelength, high dynamic range, quantitative measurements of the size and scattering intensity of the inhomogeneities, and capabilities of investigation of inclined layer. The evaluation of the performances in real condition is carried out by a software simulator in which different experimental situations can be reproduced. Images of simulated anatomic test-objects are presented. The images are obtained with an inversion process of the synthesized ultrasonic signals, collected on the linear aperture by a limited number of finite size transducers.

  19. Comparison of propidium monoazide-quantitative PCR and reverse transcription quantitative PCR for viability detection of fresh Cryptosporidium oocysts following disinfection and after long-term storage in water samples

    EPA Science Inventory

    Purified oocysts of Cryptosporidium parvum were used to evaluate applicability of two quantitative PCR (qPCR) viability detection methods in raw surface water and disinfection treated water. Propidium monoazide-qPCR targeting hsp70 gene was compared to reverse transcription (RT)-...

  20. Consensus Guidelines for Practical Competencies in Anatomic Pathology and Laboratory Medicine for the Undifferentiated Graduating Medical Student

    PubMed Central

    Shah, Darshana T.; Cambor, Carolyn L.; Conran, Richard M.; Lin, Amy Y.; Peerschke, Ellinor I.B.; Pessin, Melissa S.; Harris, Ilene B.

    2015-01-01

    The practice of pathology is not generally addressed in the undergraduate medical school curriculum. It is desirable to develop practical pathology competencies in the fields of anatomic pathology and laboratory medicine for every graduating medical student to facilitate (1) instruction in effective utilization of these services for optimal patient care, (2) recognition of the role of pathologists and laboratory scientists as consultants, and (3) exposure to the field of pathology as a possible career choice. A national committee was formed, including experts in anatomic pathology and/or laboratory medicine and in medical education. Suggested practical pathology competencies were developed in 9 subspecialty domains based on literature review and committee deliberations. The competencies were distributed in the form of a survey in late 2012 through the first half of 2013 to the medical education community for feedback, which was subjected to quantitative and qualitative analysis. An approval rate of ≥80% constituted consensus for adoption of a competency, with additional inclusions/modifications considered following committee review of comments. The survey included 79 proposed competencies. There were 265 respondents, the majority being pathologists. Seventy-two percent (57 of 79) of the competencies were approved by ≥80% of respondents. Numerous comments (N = 503) provided a robust resource for qualitative analysis. Following committee review, 71 competencies (including 27 modified and 3 new competencies) were considered to be essential for undifferentiated graduating medical students. Guidelines for practical pathology competencies have been developed, with the hope that they will be implemented in undergraduate medical school curricula. PMID:28725750

Top