Sample records for quantitative assay system

  1. Use of the MagNA Pure LC Automated Nucleic Acid Extraction System followed by Real-Time Reverse Transcription-PCR for Ultrasensitive Quantitation of Hepatitis C Virus RNA

    PubMed Central

    Cook, Linda; Ng, Ka-Wing; Bagabag, Arthur; Corey, Lawrence; Jerome, Keith R.

    2004-01-01

    Hepatitis C virus (HCV) infection is an increasing health problem worldwide. Quantitative assays for HCV viral load are valuable in predicting response to therapy and for following treatment efficacy. Unfortunately, most quantitative tests for HCV RNA are limited by poor sensitivity. We have developed a convenient, highly sensitive real-time reverse transcription-PCR assay for HCV RNA. The assay amplifies a portion of the 5′ untranslated region of HCV, which is then quantitated using the TaqMan 7700 detection system. Extraction of viral RNA for our assay is fully automated with the MagNA Pure LC extraction system (Roche). Our assay has a 100% detection rate for samples containing 50 IU of HCV RNA/ml and is linear up to viral loads of at least 109 IU/ml. The assay detects genotypes 1a, 2a, and 3a with equal efficiency. Quantitative results by our assay correlate well with HCV viral load as determined by the Bayer VERSANT HCV RNA 3.0 bDNA assay. In clinical use, our assay is highly reproducible, with high and low control specimens showing a coefficient of variation for the logarithmic result of 2.8 and 7.0%, respectively. The combination of reproducibility, extreme sensitivity, and ease of performance makes this assay an attractive option for routine HCV viral load testing. PMID:15365000

  2. Performance of the New Aptima HCV Quant Dx Assay in Comparison to the Cobas TaqMan HCV2 Test for Use with the High Pure System in Detection and Quantification of Hepatitis C Virus RNA in Plasma or Serum.

    PubMed

    Schalasta, Gunnar; Speicher, Andrea; Börner, Anna; Enders, Martin

    2016-04-01

    Quantitating the level of hepatitis C virus (HCV) RNA is the standard of care for monitoring HCV-infected patients during treatment. The performances of commercially available assays differ for precision, limit of detection, and limit of quantitation (LOQ). Here, we compare the performance of the Hologic Aptima HCV Quant Dx assay (Aptima) to that of the Roche Cobas TaqMan HCV test, version 2.0, using the High Pure system (HPS/CTM), considered a reference assay since it has been used in trials defining clinical decision points in patient care. The assays' performance characteristics were assessed using HCV RNA reference panels and plasma/serum from chronically HCV-infected patients. The agreement between the assays for the 3 reference panels was good, with a difference in quantitation values of <0.5 log. High concordance was demonstrated between the assays for 245 clinical samples (kappa = 0.80; 95% confidence interval [CI], 0.720 to 0.881); however, Aptima detected and/or quantitated 20 samples that HPS/CTM did not detect, while Aptima did not detect 1 sample that was quantitated by HPS/CTM. For the 165 samples quantitated by both assays, the values were highly correlated (R= 0.98;P< 0.0001). The linearity of quantitation from concentrations of 1.4 to 6 log was excellent for both assays for all HCV genotypes (GT) tested (GT 1a, 1b, 2b, and 3a) (R(2)> 0.99). The assays had similar levels of total and intra-assay variability across all genotypes at concentrations from 1,000 to 25 IU/ml. Aptima had a greater analytical sensitivity, quantitating more than 50% of replicates at 25-IU/ml target. Aptima showed performance characteristics comparable to those of HPS/CTM and increased sensitivity, making it suitable for use as a clinical diagnostic tool on the fully automated Panther platform. Copyright © 2016 Schalasta et al.

  3. A protocol for combined Photinus and Renilla luciferase quantification compatible with protein assays.

    PubMed

    Hampf, Mathias; Gossen, Manfred

    2006-09-01

    We established a quantitative reporter gene protocol, the P/Rluc assay system, allowing the sequential measurement of Photinus and Renilla luciferase activities from the same extract. Other than comparable commercial reporter assay systems and their noncommercial counterparts, the P/Rluc assay system was formulated under the aspect of full compatibility with standard methods for protein assays. This feature greatly expands the range of applications for assay systems quantifying the expression of multiple luciferase reporters.

  4. Quantitative Validation of the Presto Blue Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System.

    PubMed

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P; Schrooten, Jan Ir

    2015-06-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required.

  5. Quantitative Validation of the Presto Blue™ Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System

    PubMed Central

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P.

    2015-01-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue™, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required. PMID:25336207

  6. Assay Portal | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The CPTAC Assay Portal serves as a centralized public repository of "fit-for-purpose," multiplexed quantitative mass spectrometry-based proteomic targeted assays. Targeted proteomic assays eliminate issues that are commonly observed using conventional protein detection systems.

  7. Evaluation of a rapid quantitative determination method of PSA concentration with gold immunochromatographic strips.

    PubMed

    Wu, Cheng-Ching; Lin, Hung-Yu; Wang, Chao-Ping; Lu, Li-Fen; Yu, Teng-Hung; Hung, Wei-Chin; Houng, Jer-Yiing; Chung, Fu-Mei; Lee, Yau-Jiunn; Hu, Jin-Jia

    2015-11-03

    Prostate cancer remains the most common cancer in men. Qualitative or semi-quantitative immunochromatographic measurements of prostate specific antigen (PSA) have been shown to be simple, noninvasive and feasible. The aim of this study was to evaluate an optimized gold immunochromatographic strip device for the detection of PSA, in which the results can be analysed using a Chromogenic Rapid Test Reader to quantitatively assess the test results. This reader measures the reflectance of the signal line via a charge-coupled device camera. For quantitative analysis, PSA concentration was computed via a calibration equation. Capillary blood samples from 305 men were evaluated, and two independent observers interpreted the test results after 12 min. Blood samples were also collected and tested with a conventional quantitative assay. Sensitivity, specificity, positive and negative predictive values, and accuracy of the PSA rapid quantitative test system were 100, 96.6, 89.5, 100, and 97.4 %, respectively. Reproducibility of the test was 99.2, and interobserver variation was 8 % with a false positive rate of 3.4 %. The correlation coefficient between the ordinary quantitative assay and the rapid quantitative test was 0.960. The PSA rapid quantitative test system provided results quickly and was easy to use, so that tests using this system can be easily performed at outpatient clinics or elsewhere. This system may also be useful for initial cancer screening and for point-of-care testing, because results can be obtained within 12 min and at a cost lower than that of conventional quantitative assays.

  8. Quantitative Fissile Assay In Used Fuel Using LSDS System

    NASA Astrophysics Data System (ADS)

    Lee, YongDeok; Jeon, Ju Young; Park, Chang-Je

    2017-09-01

    A quantitative assay of isotopic fissile materials (U235, Pu239, Pu241) was done at Korea Atomic Energy Research Institute (KAERI), using lead slowing down spectrometer (LSDS). The optimum design of LSDS was performed based on economics, easy maintenance and assay effectiveness. LSDS system consists of spectrometer, neutron source, detection and control. LSDS system induces fissile fission and fast neutrons are collected at fission chamber. The detected signal has a direct relation to the mass of existing fissile isotopes. Many current commercial assay technologies have a limitation in direct application on isotopic fissile assay of spent fuel, except chemical analysis. In the designed system, the fissile assay model was setup and the correction factor for self-shield was obtained. The isotopic fissile content assay was performed by changing the content of Pu239. Based on the fuel rod, the isotopic content was consistent with 2% uncertainty for Pu239. By applying the covering (neutron absorber), the effective shielding was obtained and the activation was calculated on the target. From the assay evaluation, LSDS technique is very powerful and direct to analyze the isotopic fissile content. LSDS is applicable for nuclear fuel cycle and spent fuel management for safety and economics. Additionally, an accurate fissile content will contribute to the international transparency and credibility on spent fuel.

  9. Comparative Evaluation of Four Real-Time PCR Methods for the Quantitative Detection of Epstein-Barr Virus from Whole Blood Specimens.

    PubMed

    Buelow, Daelynn; Sun, Yilun; Tang, Li; Gu, Zhengming; Pounds, Stanley; Hayden, Randall

    2016-07-01

    Monitoring of Epstein-Barr virus (EBV) load in immunocompromised patients has become integral to their care. An increasing number of reagents are available for quantitative detection of EBV; however, there are little published comparative data. Four real-time PCR systems (one using laboratory-developed reagents and three using analyte-specific reagents) were compared with one another for detection of EBV from whole blood. Whole blood specimens seeded with EBV were used to determine quantitative linearity, analytical measurement range, lower limit of detection, and CV for each assay. Retrospective testing of 198 clinical samples was performed in parallel with all methods; results were compared to determine relative quantitative and qualitative performance. All assays showed similar performance. No significant difference was found in limit of detection (3.12-3.49 log10 copies/mL; P = 0.37). A strong qualitative correlation was seen with all assays that used clinical samples (positive detection rates of 89.5%-95.8%). Quantitative correlation of clinical samples across assays was also seen in pairwise regression analysis, with R(2) ranging from 0.83 to 0.95. Normalizing clinical sample results to IU/mL did not alter the quantitative correlation between assays. Quantitative EBV detection by real-time PCR can be performed over a wide linear dynamic range, using three different commercially available reagents and laboratory-developed methods. EBV was detected with comparable sensitivity and quantitative correlation for all assays. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  10. A quantitative assay for mitochondrial fusion using Renilla luciferase complementation

    PubMed Central

    Huang, Huiyan; Choi, Seok-Yong; Frohman, Michael A.

    2010-01-01

    Mitochondria continuously undergo fusion and fission, the relative rates of which define their morphology. Large mitochondria produce energy more efficiently, whereas small mitochondria translocate better to subcellular sites where local production of ATP is acutely required. Mitochondrial fusion is currently assayed by fusing together cells expressing GFP or RFP in their mitochondria and then scoring the frequency of cells with yellow mitochondria (representing fused green and red mitochondria). However, this assay is labor-intensive and only semi-quantitative. We describe here a reporter system consisting of split fragments of Renilla luciferase and YFP fused to mitochondrial matrix-targeting sequences and to leucine zippers to trigger dimerization. The assay enables fusion to be quantitated both visually for individual cells and on a population level using chemiluminescence, laying the foundation for high throughput small molecule and RNAi screens for modulators of mitochondrial fusion. We use the assay to examine cytoskeletal roles in fusion progression. PMID:20488258

  11. Comparison of quantitative cytomegalovirus (CMV) PCR in plasma and CMV antigenemia assay: clinical utility of the prototype AMPLICOR CMV MONITOR test in transplant recipients.

    PubMed

    Caliendo, A M; St George, K; Kao, S Y; Allega, J; Tan, B H; LaFontaine, R; Bui, L; Rinaldo, C R

    2000-06-01

    The correlation between the prototype AMPLICOR CMV MONITOR test (Roche Molecular Systems), a quantitative PCR assay, and the cytomegalovirus (CMV) pp65 antigenemia assay was evaluated in transplant recipients. Sequential blood specimens were collected on 29 patients (491 specimens), the leukocyte fraction was tested by CMV antigenemia, and quantitative PCR was performed on plasma specimens. None of the 15 patients (242 specimens) who were antigenemia negative were positive for CMV DNA by PCR, and none of these patients developed active CMV disease. There were 14 antigenemia-positive patients, 8 of whom developed active CMV disease. In all patients, there was a good association between the antigenemia and PCR assays. Ganciclovir-resistant virus was isolated from three patients with active CMV disease. These three patients had persistently elevated levels of antigenemia and CMV DNA by PCR when resistance to ganciclovir developed. This standardized, quantitative CMV PCR assay on plasma has clinical utility for the diagnosis of active disease and in monitoring the response to antiviral therapy in transplant recipients.

  12. Comparison of Quantitative Cytomegalovirus (CMV) PCR in Plasma and CMV Antigenemia Assay: Clinical Utility of the Prototype AMPLICOR CMV MONITOR Test in Transplant Recipients

    PubMed Central

    Caliendo, Angela M.; St. George, Kirsten; Kao, Shaw-Yi; Allega, Jessica; Tan, Ban-Hock; LaFontaine, Robert; Bui, Larry; Rinaldo, Charles R.

    2000-01-01

    The correlation between the prototype AMPLICOR CMV MONITOR test (Roche Molecular Systems), a quantitative PCR assay, and the cytomegalovirus (CMV) pp65 antigenemia assay was evaluated in transplant recipients. Sequential blood specimens were collected on 29 patients (491 specimens), the leukocyte fraction was tested by CMV antigenemia, and quantitative PCR was performed on plasma specimens. None of the 15 patients (242 specimens) who were antigenemia negative were positive for CMV DNA by PCR, and none of these patients developed active CMV disease. There were 14 antigenemia-positive patients, 8 of whom developed active CMV disease. In all patients, there was a good association between the antigenemia and PCR assays. Ganciclovir-resistant virus was isolated from three patients with active CMV disease. These three patients had persistently elevated levels of antigenemia and CMV DNA by PCR when resistance to ganciclovir developed. This standardized, quantitative CMV PCR assay on plasma has clinical utility for the diagnosis of active disease and in monitoring the response to antiviral therapy in transplant recipients. PMID:10834964

  13. Application of Real-Time Fluorescent PCR for Quantitative Assessment of Neospora caninum Infections in Organotypic Slice Cultures of Rat Central Nervous System Tissue

    PubMed Central

    Müller, Norbert; Vonlaufen, Nathalie; Gianinazzi, Christian; Leib, Stephen L.; Hemphill, Andrew

    2002-01-01

    The previously described Nc5-specific PCR test for the diagnosis of Neospora caninum infections was used to develop a quantitative PCR assay which allows the determination of infection intensities within different experimental and diagnostic sample groups. The quantitative PCR was performed by using a dual fluorescent hybridization probe system and the LightCycler Instrument for online detection of amplified DNA. This assay was successfully applied for demonstrating the parasite proliferation kinetics in organotypic slice cultures of rat brain which were infected in vitro with N. caninum tachyzoites. This PCR-based method of parasite quantitation with organotypic brain tissue samples can be regarded as a novel ex vivo approach for exploring different aspects of cerebral N. caninum infection. PMID:11773124

  14. Use of a capillary electrophoresis instrument with laser-induced fluorescence detection for DNA quantitation. Comparison of YO-PRO-1 and PicoGreen assays.

    PubMed

    Guillo, Christelle; Ferrance, Jerome P; Landers, James P

    2006-04-28

    Highly selective and sensitive assays are required for detection and quantitation of the small masses of DNA typically encountered in clinical and forensic settings. High detection sensitivity is achieved using fluorescent labeling dyes and detection techniques such as spectrofluorometers, microplate readers and cytometers. This work describes the use of a laser-induced fluorescence (LIF) detector in conjunction with a commercial capillary electrophoresis instrument for DNA quantitation. PicoGreen and YO-PRO-1, two fluorescent DNA labeling dyes, were used to assess the potential of the system for routine DNA analysis. Linearity, reproducibility, sensitivity, limits of detection and quantitation, and sample stability were examined for the two assays. The LIF detector response was found to be linear (R2 > 0.999) and reproducible (RSD < 9%) in both cases. The PicoGreen assay displayed lower limits of detection and quantitation (20 pg and 60 pg, respectively) than the YO-PRO-1 assay (60 pg and 260 pg, respectively). Although a small variation in fluorescence was observed for the DNA/dye complexes over time, quantitation was not significantly affected and the solutions were found to be relatively stable for 80 min. The advantages of the technique include a 4- to 40-fold reduction in the volume of sample required compared to traditional assays, a 2- to 20-fold reduction in the volume of reagents consumed, fast and automated analysis, and low cost (no specific instrumentation required).

  15. A Rapid and Quantitative Recombinase Activity Assay

    USDA-ARS?s Scientific Manuscript database

    We present here a comparison between the recombinase systems FLP-FRT and Cre-loxP. A transient excision based dual luciferase expression assay is used for its rapid and repeatable nature. The detection system was designed within an intron to remove the remaining recombinase recognition site and no...

  16. Simplified Quantitative Assay System for Measuring Activities of Drugs against Intracellular Legionella pneumophila

    PubMed Central

    Higa, Futoshi; Kusano, Nobuchika; Tateyama, Masao; Shinzato, Takashi; Arakaki, Noriko; Kawakami, Kazuyoshi; Saito, Atsushi

    1998-01-01

    We developed a new simple assay for the quantitation of the activities of drugs against intracellular Legionella pneumophila. The cells of a murine macrophage-like cell line (J774.1 cells) allowed the intracellular growth and replication of the bacteria, which ultimately resulted in cell death. The infected J774.1 cell monolayers in 96-well microplates were first treated with antibiotics and were further cultured for 72 h. The number of viable J774.1 cells in each well was quantified by a colorimetric assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and an enzyme-linked immunosorbent assay reader. The number of growing bacteria in each well was also determined by counting the numbers of CFU on buffered charcoal yeast extract-α agar plates. Viable J774.1 cell counts, determined by the colorimetric assay, were inversely proportional to the number of intracellular replicating bacteria. The minimum extracellular concentrations (MIECs) of 24 antibiotics causing inhibition of intracellular growth of L. pneumophila were determined by the colorimetric assay system. The MIECs of beta-lactams and aminoglycosides were markedly higher than the MICs in buffered yeast extract-α broth. The MIECs of macrolides, fluoroquinolones, rifampin, and minocycline were similar to the respective MICs. According to their intracellular activities, clarithromycin and sparfloxacin were the most potent among the macrolides or fluoroquinolones tested in this study. Our results indicated that the MTT assay system allows comparative and quantitative evaluations of the intracellular activities of antibiotics and efficient processing of a large number of samples. PMID:9574712

  17. Printing 2-dimentional droplet array for single-cell reverse transcription quantitative PCR assay with a microfluidic robot.

    PubMed

    Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo

    2015-04-01

    This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis.

  18. Printing 2-Dimentional Droplet Array for Single-Cell Reverse Transcription Quantitative PCR Assay with a Microfluidic Robot

    PubMed Central

    Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo

    2015-01-01

    This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis. PMID:25828383

  19. A quantitative assay for mitochondrial fusion using Renilla luciferase complementation.

    PubMed

    Huang, Huiyan; Choi, Seok-Yong; Frohman, Michael A

    2010-08-01

    Mitochondria continuously undergo fusion and fission, the relative rates of which define their morphology. Large mitochondria produce energy more efficiently, whereas small mitochondria translocate better to subcellular sites where local production of ATP is acutely required. Mitochondrial fusion is currently assayed by fusing together cells expressing GFP or RFP in their mitochondria and then scoring the frequency of cells with yellow mitochondria (representing fused green and red mitochondria). However, this assay is labor-intensive and only semi-quantitative. We describe here a reporter system consisting of split fragments of Renilla luciferase and YFP fused to mitochondrial matrix-targeting sequences and to leucine zippers to trigger dimerization. The assay enables fusion to be quantitated both visually for individual cells and on a population level using chemiluminescence, laying the foundation for high throughput small molecule and RNAi screens for modulators of mitochondrial fusion. We use the assay to examine cytoskeletal roles in fusion progression. (c) 2010 Mitochondria Research Society. Published by Elsevier B.V. All rights reserved.

  20. A novel duplex real time quantitative reverse transcription polymerase chain reaction for rubella virus with armored RNA as a noncompetitive internal positive control.

    PubMed

    Zhao, Lihong; Li, Ruiying; Liu, Aihua; Zhao, Shuping

    2015-07-01

    The objective of this study was to build and apply a duplex real time quantitative reverse transcription-polymerase chain reaction (RT-PCR) for rubella virus. Firstly, a 60-bp-long armored RV RNA was constructed in the laboratory. Secondly, a duplex real time RT-PCR assay was established. Thirdly, the 60-bp-long armored RV RNA was used as an internal positive control (IPC) for the duplex real time RT-PCR. And finally the duplex real time RT-PCR assay was applied to detect RV RNA in clinical specimens. The in-house assay has a high amplification efficiency (0.99), a high analytical sensitivity (200 copies/mL), and a good reproducibility. The diagnostic specificity and sensitivity of the in-house assay were both 100%, due to the monitoring of the armored RV RNA IPC. Therefore, the in-house duplex real time quantitative RT-PCR assay is a specific, sensitive, reproducible and accurate assay for quantitation of RV RNA in clinical specimens. And noncompetitive armored RV RNA IPC can monitor RT-PCR inhibition and prevent false-negative and inaccurate results in the real time detection system. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Framework for a Quantitative Systemic Toxicity Model (FutureToxII)

    EPA Science Inventory

    EPA’s ToxCast program profiles the bioactivity of chemicals in a diverse set of ~700 high throughput screening (HTS) assays. In collaboration with L’Oreal, a quantitative model of systemic toxicity was developed using no effect levels (NEL) from ToxRefDB for 633 chemicals with HT...

  2. Integrated Smartphone-App-Chip System for On-Site Parts-Per-Billion-Level Colorimetric Quantitation of Aflatoxins.

    PubMed

    Li, Xiaochun; Yang, Fan; Wong, Jessica X H; Yu, Hua-Zhong

    2017-09-05

    We demonstrate herein an integrated, smartphone-app-chip (SPAC) system for on-site quantitation of food toxins, as demonstrated with aflatoxin B1 (AFB1), at parts-per-billion (ppb) level in food products. The detection is based on an indirect competitive immunoassay fabricated on a transparent plastic chip with the assistance of a microfluidic channel plate. A 3D-printed optical accessory attached to a smartphone is adapted to align the assay chip and to provide uniform illumination for imaging, with which high-quality images of the assay chip are captured by the smartphone camera and directly processed using a custom-developed Android app. The performance of this smartphone-based detection system was tested using both spiked and moldy corn samples; consistent results with conventional enzyme-linked immunosorbent assay (ELISA) kits were obtained. The achieved detection limit (3 ± 1 ppb, equivalent to μg/kg) and dynamic response range (0.5-250 ppb) meet the requested testing standards set by authorities in China and North America. We envision that the integrated SPAC system promises to be a simple and accurate method of food toxin quantitation, bringing much benefit for rapid on-site screening.

  3. Mass spectrometric real-time monitoring of an enzymatic phosphorylation assay using internal standards and data-handling freeware.

    PubMed

    Krappmann, Michael; de Boer, Arjen R; Kool, Daniël R W; Irth, Hubertus; Letzel, Thomas

    2016-04-30

    Continuous-flow reaction detection systems (monitoring enzymatic reactions with mass spectrometry (MS)) lack quantitative values so far. Therefore, two independent internal standards (IS) are implemented in a way that the online system stability can be observed, quantitative conversion values for substrate and product can be obtained and they can be used as mass calibration standards for high MS accuracy. An application previously developed for the MS detection of peptide phosphorylation by cAMP-dependent protein kinase A (PKA) (De Boer et al., Anal. Bioanal. Chem. 2005, 381, 647-655) was transferred to a continuous-flow reaction detection system. This enzymatic reaction, involving enzyme activation as well as the transfer of a phosphate group from ATP to a peptide substrate, was used to prove the compatibility of a quantitative enzymatic assay in a continuous-flow real-time system (connected to MS). Moreover (using internal standards), the critical parameter reaction temperature (including solution density variations depending on temperature) was studied in the continuous-flow mixing system. Furthermore, two substrates (malantide and kemptide), two enzyme types (catalytic subunit of PKA and complete PKA) and one inhibitor were tested to determine system robustness and long-term availability. Even spraying solutions that contained significant amount of MS contaminants (e.g. the polluted catalytic subunit) resulted in quantifiable MS signal intensities. Subsequent recalculations using the internal standards led to results representing the power of this application. The presented methodology and the data evaluation with available Achroma freeware enable the direct coupling of biochemical assays with quantitative MS detection. Monitoring changes such as temperature, reaction time, inhibition, or compound concentrations can be observed quantitatively and thus enzymatic activity can be calculated. Copyright © 2016 John Wiley & Sons, Ltd.

  4. A quantitative image cytometry technique for time series or population analyses of signaling networks.

    PubMed

    Ozaki, Yu-ichi; Uda, Shinsuke; Saito, Takeshi H; Chung, Jaehoon; Kubota, Hiroyuki; Kuroda, Shinya

    2010-04-01

    Modeling of cellular functions on the basis of experimental observation is increasingly common in the field of cellular signaling. However, such modeling requires a large amount of quantitative data of signaling events with high spatio-temporal resolution. A novel technique which allows us to obtain such data is needed for systems biology of cellular signaling. We developed a fully automatable assay technique, termed quantitative image cytometry (QIC), which integrates a quantitative immunostaining technique and a high precision image-processing algorithm for cell identification. With the aid of an automated sample preparation system, this device can quantify protein expression, phosphorylation and localization with subcellular resolution at one-minute intervals. The signaling activities quantified by the assay system showed good correlation with, as well as comparable reproducibility to, western blot analysis. Taking advantage of the high spatio-temporal resolution, we investigated the signaling dynamics of the ERK pathway in PC12 cells. The QIC technique appears as a highly quantitative and versatile technique, which can be a convenient replacement for the most conventional techniques including western blot, flow cytometry and live cell imaging. Thus, the QIC technique can be a powerful tool for investigating the systems biology of cellular signaling.

  5. Quantitative Model of Systemic Toxicity Using ToxCast and ToxRefDB (SOT)

    EPA Science Inventory

    EPA’s ToxCast program profiles the bioactivity of chemicals in a diverse set of ~700 high throughput screening (HTS) assays. In collaboration with L’Oreal, a quantitative model of systemic toxicity was developed using no effect levels (NEL) from ToxRefDB for 633 chemicals with HT...

  6. Comparative Performance of Reagents and Platforms for Quantitation of Cytomegalovirus DNA by Digital PCR

    PubMed Central

    Gu, Z.; Sam, S. S.; Sun, Y.; Tang, L.; Pounds, S.; Caliendo, A. M.

    2016-01-01

    A potential benefit of digital PCR is a reduction in result variability across assays and platforms. Three sets of PCR reagents were tested on two digital PCR systems (Bio-Rad and RainDance), using three different sets of PCR reagents for quantitation of cytomegalovirus (CMV). Both commercial quantitative viral standards and 16 patient samples (n = 16) were tested. Quantitative accuracy (compared to nominal values) and variability were determined based on viral standard testing results. Quantitative correlation and variability were assessed with pairwise comparisons across all reagent-platform combinations for clinical plasma sample results. The three reagent sets, when used to assay quantitative standards on the Bio-Rad system, all showed a high degree of accuracy, low variability, and close agreement with one another. When used on the RainDance system, one of the three reagent sets appeared to have a much better correlation to nominal values than did the other two. Quantitative results for patient samples showed good correlation in most pairwise comparisons, with some showing poorer correlations when testing samples with low viral loads. Digital PCR is a robust method for measuring CMV viral load. Some degree of result variation may be seen, depending on platform and reagents used; this variation appears to be greater in samples with low viral load values. PMID:27535685

  7. Performance of the New Bayer VERSANT HCV RNA 3.0 assay for quantitation of hepatitis C virus RNA in plasma and serum: conversion to international units and comparison with the Roche COBAS Amplicor HCV Monitor, Version 2.0, assay.

    PubMed

    Beld, Marcel; Sentjens, Roel; Rebers, Sjoerd; Weegink, Christine; Weel, Jan; Sol, Cees; Boom, René

    2002-03-01

    We have evaluated the VERSANT HCV RNA 3.0. Assay (HCV 3.0 bDNA assay) (Bayer Diagnostics, Berkeley, Calif.), which is an improved signal amplification procedure for the HCV 2.0 bDNA assay for the quantitation of hepatitis C virus (HCV) RNA in serum or plasma of HCV-infected individuals. The HCV 3.0 bDNA assay has a linear dynamic range of 2.5 x 10(3) to 4.0 x 10(7) HCV RNA copies per ml (c/ml). The performance of the HCV 3.0 bDNA assay was evaluated using three different test panels. An overall specificity of 96.8% relative to the detection limit of the HCV 3.0 bDNA assay was found. The intra- and interrun reproducibilities for both the dilution panel and the NAP (AcroMetrix, Benicia, Calif.) panel were consistent with coefficients of variation of less than 9%. Quantitation with the HCV 3.0 bDNA assay was linear over the entire range of both panels (ranges of 4.4 x 10(3) to 3.5 x 10(6) c/ml and 5 x 10(3) to 2 x 10(6) IU/ml, respectively), with correlation coefficients of 0.999, slopes close to one, and intercepts close to zero. The regression equation indicated that 1 IU corresponded to about 4.8 copies of HCV RNA. A correlation coefficient of 0.941 was found for HCV RNA values (in international units per milliliter) obtained from the HCV 3.0 bDNA assay and the HCV Monitor version 2.0 assay (HCV Monitor 2.0 assay) (Roche Diagnostic Systems, Branchburg, N.J.). Quantitative results obtained close to the lower limit of the HCV 3.0 bDNA assay might imply that its lower limit should be reconsidered and raised, if necessary. It appeared that quantitation values obtained from the HCV Monitor 2.0 assay of between 5 x 10(2) and 10(5) IU/ml were in general higher than those obtained from the HCV 3.0 bDNA assay, whereas values obtained from the HCV Monitor 2.0 assay were underestimated for samples with HCV RNA levels above 10(5) IU/ml.

  8. Performance of the New Bayer VERSANT HCV RNA 3.0 Assay for Quantitation of Hepatitis C Virus RNA in Plasma and Serum: Conversion to International Units and Comparison with the Roche COBAS Amplicor HCV Monitor, Version 2.0, Assay

    PubMed Central

    Beld, Marcel; Sentjens, Roel; Rebers, Sjoerd; Weegink, Christine; Weel, Jan; Sol, Cees; Boom, René

    2002-01-01

    We have evaluated the VERSANT HCV RNA 3.0. Assay (HCV 3.0 bDNA assay) (Bayer Diagnostics, Berkeley, Calif.), which is an improved signal amplification procedure for the HCV 2.0 bDNA assay for the quantitation of hepatitis C virus (HCV) RNA in serum or plasma of HCV-infected individuals. The HCV 3.0 bDNA assay has a linear dynamic range of 2.5 × 103 to 4.0 × 107 HCV RNA copies per ml (c/ml). The performance of the HCV 3.0 bDNA assay was evaluated using three different test panels. An overall specificity of 96.8% relative to the detection limit of the HCV 3.0 bDNA assay was found. The intra- and interrun reproducibilities for both the dilution panel and the NAP (AcroMetrix, Benicia, Calif.) panel were consistent with coefficients of variation of less than 9%. Quantitation with the HCV 3.0 bDNA assay was linear over the entire range of both panels (ranges of 4.4 × 103 to 3.5 × 106 c/ml and 5 × 103 to 2 × 106 IU/ml, respectively), with correlation coefficients of 0.999, slopes close to one, and intercepts close to zero. The regression equation indicated that 1 IU corresponded to about 4.8 copies of HCV RNA. A correlation coefficient of 0.941 was found for HCV RNA values (in international units per milliliter) obtained from the HCV 3.0 bDNA assay and the HCV Monitor version 2.0 assay (HCV Monitor 2.0 assay) (Roche Diagnostic Systems, Branchburg, N.J.). Quantitative results obtained close to the lower limit of the HCV 3.0 bDNA assay might imply that its lower limit should be reconsidered and raised, if necessary. It appeared that quantitation values obtained from the HCV Monitor 2.0 assay of between 5 × 102 and 105 IU/ml were in general higher than those obtained from the HCV 3.0 bDNA assay, whereas values obtained from the HCV Monitor 2.0 assay were underestimated for samples with HCV RNA levels above 105 IU/ml. PMID:11880394

  9. Serum virus neutralization assay for detection and quantitation of serum neutralizing antibodies to influenza A virus in swine

    USDA-ARS?s Scientific Manuscript database

    The serum virus neutralization (SVN) assay is a serological test to detect the presence and magnitude of functional systemic antibodies that prevent infectivity of a virus. The SVN assay is a highly sensitive and specific test that may be applied to influenza A viruses (IAV) in swine to measure the ...

  10. Accelerated stability assay (ASA) for colloidal systems.

    PubMed

    Chong, Josephine Y T; Mulet, Xavier; Boyd, Ben J; Drummond, Calum J

    2014-05-12

    Assessment of the stability of colloidal systems, in particular lyotropic liquid crystalline dispersions, such as cubosomes and hexosomes, is typically performed qualitatively or with limited throughput on specialized instruments. Here, an accelerated stability assay for colloidal particles has been developed in 384-well plates with standard laboratory equipment. These protocols enable quantitative assessments of colloidal stability. To demonstrate the applicability of the assay, several steric stabilizers for cubic phase nanostructured particles (cubosomes) have been compared to the current "gold standard" Pluronic F127.

  11. Development and Evaluation of a Parallel Reaction Monitoring Strategy for Large-Scale Targeted Metabolomics Quantification.

    PubMed

    Zhou, Juntuo; Liu, Huiying; Liu, Yang; Liu, Jia; Zhao, Xuyang; Yin, Yuxin

    2016-04-19

    Recent advances in mass spectrometers which have yielded higher resolution and faster scanning speeds have expanded their application in metabolomics of diverse diseases. Using a quadrupole-Orbitrap LC-MS system, we developed an efficient large-scale quantitative method targeting 237 metabolites involved in various metabolic pathways using scheduled, parallel reaction monitoring (PRM). We assessed the dynamic range, linearity, reproducibility, and system suitability of the PRM assay by measuring concentration curves, biological samples, and clinical serum samples. The quantification performances of PRM and MS1-based assays in Q-Exactive were compared, and the MRM assay in QTRAP 6500 was also compared. The PRM assay monitoring 237 polar metabolites showed greater reproducibility and quantitative accuracy than MS1-based quantification and also showed greater flexibility in postacquisition assay refinement than the MRM assay in QTRAP 6500. We present a workflow for convenient PRM data processing using Skyline software which is free of charge. In this study we have established a reliable PRM methodology on a quadrupole-Orbitrap platform for evaluation of large-scale targeted metabolomics, which provides a new choice for basic and clinical metabolomics study.

  12. Evaluation of the Aptima HBV Quant assay vs. the COBAS TaqMan HBV test using the high pure system for the quantitation of HBV DNA in plasma and serum samples.

    PubMed

    Schalasta, Gunnar; Börner, Anna; Speicher, Andrea; Enders, Martin

    2018-03-28

    Proper management of patients with chronic hepatitis B virus (HBV) infection requires monitoring of plasma or serum HBV DNA levels using a highly sensitive nucleic acid amplification test. Because commercially available assays differ in performance, we compared herein the performance of the Hologic Aptima HBV Quant assay (Aptima) to that of the Roche Cobas TaqMan HBV test for use with the high pure system (HPS/CTM). Assay performance was assessed using HBV reference panels as well as plasma and serum samples from chronically HBV-infected patients. Method correlation, analytical sensitivity, precision/reproducibility, linearity, bias and influence of genotype were evaluated. Data analysis was performed using linear regression, Deming correlation analysis and Bland-Altman analysis. Agreement between the assays for the two reference panels was good, with a difference in assay values vs. target <0.5 log. Qualitative assay results for 159 clinical samples showed good concordance (88.1%; κ=0.75; 95% confidence interval: 0.651-0.845). For the 106 samples quantitated by both assays, viral load results were highly correlated (R=0.92) and differed on average by 0.09 log, with 95.3% of the samples being within the 95% limit of agreement of the assays. Linearity for viral loads 1-7 log was excellent for both assays (R2>0.98). The two assays had similar bias and precision across the different genotypes tested at low viral loads (25-1000 IU/mL). Aptima has a performance comparable with that of HPS/CTM, making it suitable for use for HBV infection monitoring. Aptima runs on a fully automated platform (the Panther system) and therefore offers a significantly improved workflow compared with HPS/CTM.

  13. High content screening of ToxCast compounds using Vala Sciences’ complex cell culturing systems (SOT)

    EPA Science Inventory

    US EPA’s ToxCast research program evaluates bioactivity for thousands of chemicals utilizing high-throughput screening assays to inform chemical testing decisions. Vala Sciences provides high content, multiplexed assays that utilize quantitative cell-based digital image analysis....

  14. Flow cytometric immunobead assay for quantitative detection of platelet autoantibodies in immune thrombocytopenia patients.

    PubMed

    Zhai, Juping; Ding, Mengyuan; Yang, Tianjie; Zuo, Bin; Weng, Zhen; Zhao, Yunxiao; He, Jun; Wu, Qingyu; Ruan, Changgeng; He, Yang

    2017-10-23

    Platelet autoantibody detection is critical for immune thrombocytopenia (ITP) diagnosis and prognosis. Therefore, we aimed to establish a quantitative flow cytometric immunobead assay (FCIA) for ITP platelet autoantibodies evaluation. Capture microbeads coupled with anti-GPIX, -GPIb, -GPIIb, -GPIIIa and P-selectin antibodies were used to bind the platelet-bound autoantibodies complex generated from plasma samples of 250 ITP patients, 163 non-ITP patients and 243 healthy controls, a fluorescein isothiocyanate (FITC)-conjugated secondary antibody was the detector reagent and mean fluorescence intensity (MFI) signals were recorded by flow cytometry. Intra- and inter-assay variations of the quantitative FCIA assay were assessed. Comparisons of the specificity, sensitivity and accuracy between quantitative and qualitative FCIA or monoclonal antibody immobilization of platelet antigen (MAIPA) assay were performed. Finally, treatment process was monitored by our quantitative FCIA in 8 newly diagnosed ITPs. The coefficient of variations (CV) of the quantitative FCIA assay were respectively 9.4, 3.8, 5.4, 5.1 and 5.8% for anti-GPIX, -GPIb, -GPIIIa, -GPIIb and -P-selectin autoantibodies. Elevated levels of autoantibodies against platelet glycoproteins GPIX, GPIb, GPIIIa, GPIIb and P-selectin were detected by our quantitative FCIA in ITP patients compared to non-ITP patients or healthy controls. The sensitivity, specificity and accuracy of our quantitative assay were respectively 73.13, 81.98 and 78.65% when combining all 5 autoantibodies, while the sensitivity, specificity and accuracy of MAIPA assay were respectively 41.46, 90.41 and 72.81%. A quantitative FCIA assay was established. Reduced levels of platelet autoantibodies could be confirmed by our quantitative FCIA in ITP patients after corticosteroid treatment. Our quantitative assay is not only good for ITP diagnosis but also for ITP treatment monitoring.

  15. An improved 96-well turbidity assay for T4 lysozyme activity.

    PubMed

    Toro, Tasha B; Nguyen, Thao P; Watt, Terry J

    2015-01-01

    T4 lysozyme (T4L) is an important model system for investigating the relationship between protein structure and function. Despite being extensively studied, a reliable, quantitative activity assay for T4L has not been developed. Here, we present an improved T4L turbidity assay as well as an affinity-based T4L expression and purification protocol. This assay is designed for 96-well format and utilizes conditions amenable for both T4L and other lysozymes. This protocol enables easy, efficient, and quantitative characterization of T4L variants and allows comparison between different lysozymes. Our method: •Is applicable for all lysozymes, with enhanced sensitivity for T4 lysozyme compared to other 96-well plate turbidity assays;•Utilizes standardized conditions for comparing T4 lysozyme variants and other lysozymes; and•Incorporates a simplified expression and purification protocol for T4 lysozyme.

  16. An improved 96-well turbidity assay for T4 lysozyme activity

    PubMed Central

    Toro, Tasha B.; Nguyen, Thao P.; Watt, Terry J.

    2015-01-01

    T4 lysozyme (T4L) is an important model system for investigating the relationship between protein structure and function. Despite being extensively studied, a reliable, quantitative activity assay for T4L has not been developed. Here, we present an improved T4L turbidity assay as well as an affinity-based T4L expression and purification protocol. This assay is designed for 96-well format and utilizes conditions amenable for both T4L and other lysozymes. This protocol enables easy, efficient, and quantitative characterization of T4L variants and allows comparison between different lysozymes. Our method: • Is applicable for all lysozymes, with enhanced sensitivity for T4 lysozyme compared to other 96-well plate turbidity assays; • Utilizes standardized conditions for comparing T4 lysozyme variants and other lysozymes; and • Incorporates a simplified expression and purification protocol for T4 lysozyme. PMID:26150996

  17. Optimization of a resazurin-based microplate assay for large-scale compound screenings against Klebsiella pneumoniae.

    PubMed

    Kim, Hyung Jun; Jang, Soojin

    2018-01-01

    A new resazurin-based assay was evaluated and optimized using a microplate (384-well) format for high-throughput screening of antibacterial molecules against Klebsiella pneumoniae . Growth of the bacteria in 384-well plates was more effectively measured and had a > sixfold higher signal-to-background ratio using the resazurin-based assay compared with absorbance measurements at 600 nm. Determination of minimum inhibitory concentrations of the antibiotics revealed that the optimized assay quantitatively measured antibacterial activity of various antibiotics. An edge effect observed in the initial assay was significantly reduced using a 1-h incubation of the bacteria-containing plates at room temperature. There was an approximately 10% decrease in signal variability between the edge and the middle wells along with improvement in the assay robustness ( Z ' = 0.99). This optimized resazurin-based assay is an efficient, inexpensive, and robust assay that can quantitatively measure antibacterial activity using a high-throughput screening system to assess a large number of compounds for discovery of new antibiotics against K. pneumoniae .

  18. Comparison of different approaches to quantitative adenovirus detection in stool specimens of hematopoietic stem cell transplant recipients.

    PubMed

    Kosulin, K; Dworzak, S; Lawitschka, A; Matthes-Leodolter, S; Lion, T

    2016-12-01

    Adenoviruses almost invariably proliferate in the gastrointestinal tract prior to dissemination, and critical threshold concentrations in stool correlate with the risk of viremia. Monitoring of adenovirus loads in stool may therefore be important for timely initiation of treatment in order to prevent invasive infection. Comparison of a manual DNA extraction kit in combination with a validated in-house PCR assay with automated extraction on the NucliSENS-EasyMAG device coupled with the Adenovirus R-gene kit (bioMérieux) for quantitative adenovirus analysis in stool samples. Stool specimens spiked with adenovirus concentrations in a range from 10E2-10E11 copies/g and 32 adenovirus-positive clinical stool specimens from pediatric stem cell transplant recipients were tested along with appropriate negative controls. Quantitative analysis of viral load in adenovirus-positive stool specimens revealed a median difference of 0.5 logs (range 0.1-2.2) between the detection systems tested and a difference of 0.3 logs (range 0.0-1.7) when the comparison was restricted to the PCR assays only. Spiking experiments showed a detection limit of 10 2 -10 3 adenovirus copies/g stool revealing a somewhat higher sensitivity offered by the automated extraction. The dynamic range of accurate quantitative analysis by both systems investigated was between 10 3 and 10 8 virus copies/g. The differences in quantitative analysis of adenovirus copy numbers between the systems tested were primarily attributable to the DNA extraction method used, while the qPCR assays revealed a high level of concordance. Both systems showed adequate performance for detection and monitoring of adenoviral load in stool specimens. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Large-Scale Interlaboratory Study to Develop, Analytically Validate and Apply Highly Multiplexed, Quantitative Peptide Assays to Measure Cancer-Relevant Proteins in Plasma*

    PubMed Central

    Abbatiello, Susan E.; Schilling, Birgit; Mani, D. R.; Zimmerman, Lisa J.; Hall, Steven C.; MacLean, Brendan; Albertolle, Matthew; Allen, Simon; Burgess, Michael; Cusack, Michael P.; Gosh, Mousumi; Hedrick, Victoria; Held, Jason M.; Inerowicz, H. Dorota; Jackson, Angela; Keshishian, Hasmik; Kinsinger, Christopher R.; Lyssand, John; Makowski, Lee; Mesri, Mehdi; Rodriguez, Henry; Rudnick, Paul; Sadowski, Pawel; Sedransk, Nell; Shaddox, Kent; Skates, Stephen J.; Kuhn, Eric; Smith, Derek; Whiteaker, Jeffery R.; Whitwell, Corbin; Zhang, Shucha; Borchers, Christoph H.; Fisher, Susan J.; Gibson, Bradford W.; Liebler, Daniel C.; MacCoss, Michael J.; Neubert, Thomas A.; Paulovich, Amanda G.; Regnier, Fred E.; Tempst, Paul; Carr, Steven A.

    2015-01-01

    There is an increasing need in biology and clinical medicine to robustly and reliably measure tens to hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility, and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here, we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and seven control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data, we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to subnanogram/ml sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and interlaboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy-isotope-labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an interlaboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality control measures, enables sensitive, specific, reproducible, and quantitative measurements of proteins and peptides in complex biological matrices such as plasma. PMID:25693799

  20. Virtual Liver: Quantitative Dose-Response Using Systems Biology

    EPA Science Inventory

    The U.S. EPA’s ToxCast™ program uses hundreds of high-throughput, in vitro assays to screen chemicals in order to rapidly identify signatures of toxicity. These assays measure the in vitro concentrations at which cellular pathways are perturbed by chemicals. The U.S. EPA’s Virtu...

  1. A Database of Reaction Monitoring Mass Spectrometry Assays for Elucidating Therapeutic Response in Cancer

    PubMed Central

    Remily-Wood, Elizabeth R.; Liu, Richard Z.; Xiang, Yun; Chen, Yi; Thomas, C. Eric; Rajyaguru, Neal; Kaufman, Laura M.; Ochoa, Joana E.; Hazlehurst, Lori; Pinilla-Ibarz, Javier; Lancet, Jeffrey; Zhang, Guolin; Haura, Eric; Shibata, David; Yeatman, Timothy; Smalley, Keiran S.M.; Dalton, William S.; Huang, Emina; Scott, Ed; Bloom, Gregory C.; Eschrich, Steven A.; Koomen, John M.

    2012-01-01

    Purpose The Quantitative Assay Database (QuAD), http://proteome.moffitt.org/QUAD/, facilitates widespread implementation of quantitative mass spectrometry in cancer biology and clinical research through sharing of methods and reagents for monitoring protein expression and modification. Experimental Design Liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM) assays are developed using SDS-PAGE fractionated lysates from cancer cell lines. Pathway maps created using GeneGO Metacore provide the biological relationships between proteins and illustrate concepts for multiplexed analysis; each protein can be selected to examine assay development at the protein and peptide level. Results The coupling of SDS-PAGE and LC-MRM screening has been used to detect 876 peptides from 218 cancer-related proteins in model systems including colon, lung, melanoma, leukemias, and myeloma, which has led to the development of 95 quantitative assays including stable-isotope labeled peptide standards. Methods are published online and peptide standards are made available to the research community. Protein expression measurements for heat shock proteins, including a comparison with ELISA and monitoring response to the HSP90 inhibitor, 17-DMAG, are used to illustrate the components of the QuAD and its potential utility. Conclusions and Clinical Relevance This resource enables quantitative assessment of protein components of signaling pathways and biological processes and holds promise for systematic investigation of treatment responses in cancer. PMID:21656910

  2. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  3. Development of a quantitative loop-mediated isothermal amplification assay for the field detection of Erysiphe necator.

    PubMed

    Thiessen, Lindsey D; Neill, Tara M; Mahaffee, Walter F

    2018-01-01

    Plant pathogen detection systems have been useful tools to monitor inoculum presence and initiate management schedules. More recently, a loop-mediated isothermal amplification (LAMP) assay was successfully designed for field use in the grape powdery mildew pathosystem; however, false negatives or false positives were prevalent in grower-conducted assays due to the difficulty in perceiving the magnesium pyrophosphate precipitate at low DNA concentrations. A quantitative LAMP (qLAMP) assay using a fluorescence resonance energy transfer-based probe was assessed by grape growers in the Willamette Valley of Oregon. Custom impaction spore samplers were placed at a research vineyard and six commercial vineyard locations, and were tested bi-weekly by the lab and by growers. Grower-conducted qLAMP assays used a beta-version of the Smart-DART handheld LAMP reaction devices (Diagenetix, Inc., Honolulu, HI, USA), connected to Android 4.4 enabled, Bluetooth-capable Nexus 7 tablets for output. Quantification by a quantitative PCR assay was assumed correct to compare the lab and grower qLAMP assay quantification. Growers were able to conduct and interpret qLAMP results; however, the Erysiphe necator inoculum quantification was unreliable using the beta-Smart-DART devices. The qLAMP assay developed was sensitive to one spore in early testing of the assay, but decreased to >20 spores by the end of the trial. The qLAMP assay is not likely a suitable management tool for grape powdery mildew due to losses in sensitivity and decreasing costs and portability for other, more reliable molecular tools.

  4. Improving membrane based multiplex immunoassays for semi-quantitative detection of multiple cytokines in a single sample

    PubMed Central

    2014-01-01

    Background Inflammatory mediators can serve as biomarkers for the monitoring of the disease progression or prognosis in many conditions. In the present study we introduce an adaptation of a membrane-based technique in which the level of up to 40 cytokines and chemokines can be determined in both human and rodent blood in a semi-quantitative way. The planar assay was modified using the LI-COR (R) detection system (fluorescence based) rather than chemiluminescence and semi-quantitative outcomes were achieved by normalizing the outcomes using the automated exposure settings of the Odyssey readout device. The results were compared to the gold standard assay, namely ELISA. Results The improved planar assay allowed the detection of a considerably higher number of analytes (n = 30 and n = 5 for fluorescent and chemiluminescent detection, respectively). The improved planar method showed high sensitivity up to 17 pg/ml and a linear correlation of the normalized fluorescence intensity with the results from the ELISA (r = 0.91). Conclusions The results show that the membrane-based technique is a semi-quantitative assay that correlates satisfactorily to the gold standard when enhanced by the use of fluorescence and subsequent semi-quantitative analysis. This promising technique can be used to investigate inflammatory profiles in multiple conditions, particularly in studies with constraints in sample sizes and/or budget. PMID:25022797

  5. Simultaneous Runs of the Bayer VERSANT HIV-1 Version 3.0 and HCV bDNA Version 3.0 Quantitative Assays on the System 340 Platform Provide Reliable Quantitation and Improved Work Flow

    PubMed Central

    Elbeik, Tarek; Markowitz, Norman; Nassos, Patricia; Kumar, Uday; Beringer, Scott; Haller, Barbara; Ng, Valerie

    2004-01-01

    Branched DNA (bDNA) assays to quantify human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) consist of three distinct steps, including sample processing, hybridization, and detection, and utilize the System 340 platform for plate incubation and washing. Sample processing differs: HIV-1 from 1 ml of plasma is concentrated by high-speed centrifugation, whereas HCV plasma or serum samples are used without concentration. The first step of hybridization involves viral lysis at 63°C: HIV-1 is performed in a heat block, whereas HCV is performed in System 340. The remaining hybridization and detection steps are similar for HIV-1 and HCV and executed on System 340. In the present study, the HIV-1 bDNA assay was adapted for viral lysis in the System 340 platform. The adaptation, test method 2, includes a 20-s vortex of concentrated viral pellet and lysis working solution, transfer of viral lysate to the 96-well capture plate, and transfer to System 340 programmed for HCV assay specifications. With test method 2, specificity and quantification were within assay specifications. HCV bDNA methodology remains unchanged. Hence, an HIV-1 and an HCV bDNA can be run simultaneously on System 340. With simultaneous testing, laboratories can run full plates, as well as combinations of full and partial plates. Also, simultaneous HIV-1 and HCV bDNA permits labor consolidation and improved workflow while maintaining multitasking and rapid patient result turnaround. PMID:15243070

  6. Simultaneous runs of the Bayer VERSANT HIV-1 version 3.0 and HCV bDNA version 3.0 quantitative assays on the system 340 platform provide reliable quantitation and improved work flow.

    PubMed

    Elbeik, Tarek; Markowitz, Norman; Nassos, Patricia; Kumar, Uday; Beringer, Scott; Haller, Barbara; Ng, Valerie

    2004-07-01

    Branched DNA (bDNA) assays to quantify human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) consist of three distinct steps, including sample processing, hybridization, and detection, and utilize the System 340 platform for plate incubation and washing. Sample processing differs: HIV-1 from 1 ml of plasma is concentrated by high-speed centrifugation, whereas HCV plasma or serum samples are used without concentration. The first step of hybridization involves viral lysis at 63 degrees C: HIV-1 is performed in a heat block, whereas HCV is performed in System 340. The remaining hybridization and detection steps are similar for HIV-1 and HCV and executed on System 340. In the present study, the HIV-1 bDNA assay was adapted for viral lysis in the System 340 platform. The adaptation, test method 2, includes a 20-s vortex of concentrated viral pellet and lysis working solution, transfer of viral lysate to the 96-well capture plate, and transfer to System 340 programmed for HCV assay specifications. With test method 2, specificity and quantification were within assay specifications. HCV bDNA methodology remains unchanged. Hence, an HIV-1 and an HCV bDNA can be run simultaneously on System 340. With simultaneous testing, laboratories can run full plates, as well as combinations of full and partial plates. Also, simultaneous HIV-1 and HCV bDNA permits labor consolidation and improved workflow while maintaining multitasking and rapid patient result turnaround.

  7. Solid-Phase Radioimmunoassay of Total and Influenza-Specific Immunoglobulin G

    PubMed Central

    Daugharty, Harry; Warfield, Donna T.; Davis, Marianne L.

    1972-01-01

    An antigen-antibody system of polystyrene tubes coated with immunoglobulin antibody was used for quantitating immunoglobulins. A similar radioimmunoassay method was adapted for a viral antigen-antibody system. The viral system can be used for quantitating viruses and for measuring virus-specific antibodies by reacting with 125iodine-labeled anti-immunoglobulin G (IgG). Optimal conditions for coating the solid phase, specificity of the immune reaction, and other kinetics and sensitivities of the assay method were investigated. Comparison of direct and indirect methods of assaying for immunoglobulins or viral antibody indicates that the indirect method is more sensitive and can quantitate a minimum of 0.037 μg of IgG per ml. Results of solid-phase radioimmunoassay for influenza antibody correlate well with hemagglutinin antibody titers but not with complement-fixing antibody titers. Radioimmunoassay results for influenza antibody by solid phase are likewise in agreement with results by the carrier precipitate radioimmunoassay method. The simplicity, reproducibility, and versatility of the solid-phase procedure make it diagnostically useful. PMID:5062884

  8. Development of in vitro and in vivo neutralization assays based on the pseudotyped H7N9 virus.

    PubMed

    Tian, Yabin; Zhao, Hui; Liu, Qiang; Zhang, Chuntao; Nie, Jianhui; Huang, Weijing; Li, Changgui; Li, Xuguang; Wang, Youchun

    2018-05-31

    H7N9 viral infections pose a great threat to both animal and human health. This avian virus cannot be handled in level 2 biocontainment laboratories, substantially hindering evaluation of prophylactic vaccines and therapeutic agents. Here, we report a high-titer pseudoviral system with a bioluminescent reporter gene, enabling us to visually and quantitatively conduct analyses of virus replications in both tissue cultures and animals. For evaluation of immunogenicity of H7N9 vaccines, we developed an in vitro assay for neutralizing antibody measurement based on the pseudoviral system; results generated by the in vitro assay were found to be strongly correlated with those by either hemagglutination inhibition (HI) or micro-neutralization (MN) assay. Furthermore, we injected the viruses into Balb/c mice and observed dynamic distributions of the viruses in the animals, which provides an ideal imaging model for quantitative analyses of prophylactic and therapeutic monoclonal antibodies. Taken together, the pseudoviral systems reported here could be of great value for both in vitro and in vivo evaluations of vaccines and antiviral agents without the need of wild type H7N9 virus.

  9. Analytical characteristics and comparative evaluation of Aptima HCV quant Dx assay with the Abbott RealTime HCV assay and Roche COBAS AmpliPrep/COBAS TaqMan HCV quantitative test v2.0.

    PubMed

    Worlock, A; Blair, D; Hunsicker, M; Le-Nguyen, T; Motta, C; Nguyen, C; Papachristou, E; Pham, J; Williams, A; Vi, M; Vinluan, B; Hatzakis, A

    2017-04-04

    The Aptima HCV Quant Dx assay (Aptima assay) is a fully automated quantitative assay on the Panther® system. This assay is intended for confirmation of diagnosis and monitoring of HCV RNA in plasma and serum specimens. The purpose of the testing described in this paper was to evaluate the performance of the Aptima assay. The analytical sensitivity, analytical specificity, precision, and linearity of the Aptima assay were assessed. The performance of the Aptima assay was compared to two commercially available HCV assays; the Abbott RealTime HCV assay (Abbott assay, Abbott Labs Illinois, USA) and the Roche COBAS Ampliprep/COBAS Taqman HCV Quantitative Test v2.0 (Roche Assay, Roche Molecular Systems, Pleasanton CA, USA). The 95% Lower Limit of Detection (LoD) of the assay was determined from dilutions of the 2nd HCV WHO International Standard (NIBSC 96/798 genotype 1) and HCV positive clinical specimens in HCV negative human plasma and serum. Probit analysis was performed to generate the 95% predicted detection limits. The Lower Limit of Quantitation (LLoQ) was established for each genotype by diluting clinical specimens and the 2nd HCV WHO International Standard (NIBSC 96/798 genotype 1) in HCV negative human plasma and serum. Specificity was determined using 200 fresh and 536 frozen HCV RNA negative clinical specimens including 370 plasma specimens and 366 serum specimens. Linearity for genotypes 1 to 6 was established by diluting armored RNA or HCV positive clinical specimens in HCV negative serum or plasma from 8.08 log IU/mL to below 1 log IU/mL. Precision was tested using a 10 member panel made by diluting HCV positive clinical specimens or spiking armored RNA into HCV negative plasma and serum. A method comparison was conducted against the Abbott assay using 1058 clinical specimens and against the Roche assay using 608 clinical specimens from HCV infected patients. In addition, agreement between the Roche assay and the Aptima assay using specimens with low HCV concentrations (

  10. Development of a quantitative loop-mediated isothermal amplification assay for the field detection of Erysiphe necator

    USDA-ARS?s Scientific Manuscript database

    Plant pathogen detection systems have been useful tools to monitor inoculum presence and initiate management schedules. More recently, a LAMP assay was successfully designed for field use in the grape powdery mildew pathosystem; however, false negatives or false positives were prevalent in grower-co...

  11. Antibody performance in ChIP-sequencing assays: From quality scores of public data sets to quantitative certification.

    PubMed

    Mendoza-Parra, Marco-Antonio; Saravaki, Vincent; Cholley, Pierre-Etienne; Blum, Matthias; Billoré, Benjamin; Gronemeyer, Hinrich

    2016-01-01

    We have established a certification system for antibodies to be used in chromatin immunoprecipitation assays coupled to massive parallel sequencing (ChIP-seq). This certification comprises a standardized ChIP procedure and the attribution of a numerical quality control indicator (QCi) to biological replicate experiments. The QCi computation is based on a universally applicable quality assessment that quantitates the global deviation of randomly sampled subsets of ChIP-seq dataset with the original genome-aligned sequence reads. Comparison with a QCi database for >28,000 ChIP-seq assays were used to attribute quality grades (ranging from 'AAA' to 'DDD') to a given dataset. In the present report we used the numerical QC system to assess the factors influencing the quality of ChIP-seq assays, including the nature of the target, the sequencing depth and the commercial source of the antibody.  We have used this approach specifically to certify mono and polyclonal antibodies obtained from Active Motif directed against the histone modification marks H3K4me3, H3K27ac and H3K9ac for ChIP-seq. The antibodies received the grades AAA to BBC ( www.ngs-qc.org). We propose to attribute such quantitative grading of all antibodies attributed with the label "ChIP-seq grade".

  12. Development and application of SINE multilocus and quantitative genetic markers to study oilseed rape (Brassica napus L.) crops.

    PubMed

    Allnutt, T R; Roper, K; Henry, C

    2008-01-23

    A genetic marker system based on the S1 Short Interspersed Elements (SINEs) in the important commercial crop, oilseed rape ( Brassica napus L.) has been developed. SINEs provided a successful multilocus, dominant marker system that was capable of clearly delineating winter- and spring-type crop varieties. Sixteen of 20 varieties tested showed unique profiles from the 17 polymorphic SINE markers generated. The 3' or 5' flank region of nine SINE markers were cloned, and DNA was sequenced. In addition, one putative pre-transposition SINE allele was cloned and sequenced. Two SINE flanking sequences were used to design real-time PCR assays. These quantitative SINE assays were applied to study the genetic structure of eight fields of oilseed rape crops. Studied fields were more genetically diverse than expected for the chosen loci (mean H T = 0.23). The spatial distribution of SINE marker frequencies was highly structured in some fields, suggesting locations of volunteer impurities within the crop. In one case, the assay identified a mislabeling of the crop variety. SINE markers were a useful tool for crop genetics, phylogenetics, variety identification, and purity analysis. The use and further application of quantitative, real-time PCR markers are discussed.

  13. Accurate inclusion mass screening: a bridge from unbiased discovery to targeted assay development for biomarker verification.

    PubMed

    Jaffe, Jacob D; Keshishian, Hasmik; Chang, Betty; Addona, Theresa A; Gillette, Michael A; Carr, Steven A

    2008-10-01

    Verification of candidate biomarker proteins in blood is typically done using multiple reaction monitoring (MRM) of peptides by LC-MS/MS on triple quadrupole MS systems. MRM assay development for each protein requires significant time and cost, much of which is likely to be of little value if the candidate biomarker is below the detection limit in blood or a false positive in the original discovery data. Here we present a new technology, accurate inclusion mass screening (AIMS), designed to provide a bridge from unbiased discovery to MS-based targeted assay development. Masses on the software inclusion list are monitored in each scan on the Orbitrap MS system, and MS/MS spectra for sequence confirmation are acquired only when a peptide from the list is detected with both the correct accurate mass and charge state. The AIMS experiment confirms that a given peptide (and thus the protein from which it is derived) is present in the plasma. Throughput of the method is sufficient to qualify up to a hundred proteins/week. The sensitivity of AIMS is similar to MRM on a triple quadrupole MS system using optimized sample preparation methods (low tens of ng/ml in plasma), and MS/MS data from the AIMS experiments on the Orbitrap can be directly used to configure MRM assays. The method was shown to be at least 4-fold more efficient at detecting peptides of interest than undirected LC-MS/MS experiments using the same instrumentation, and relative quantitation information can be obtained by AIMS in case versus control experiments. Detection by AIMS ensures that a quantitative MRM-based assay can be configured for that protein. The method has the potential to qualify large number of biomarker candidates based on their detection in plasma prior to committing to the time- and resource-intensive steps of establishing a quantitative assay.

  14. Evaluation of a dual-probe real time PCR system for detection of mandarin in commercial orange juice.

    PubMed

    Pardo, Miguel Angel

    2015-04-01

    A dual-probe real time PCR assay, based on the simultaneous detection of two TaqMan® probes, was evaluated for the detection of mandarin in orange juice. A single conserved polymorphism, located at the 314 position of intron belongs to chloroplast trnL gene, was confirmed by sequencing in 30 mandarin, 28 orange cultivars and 13 hybrids. The assay was also successfully evaluated in a blind trial against analysing 60 samples from different industrial processes in different countries around the world. The detection limit of the assay was established in 1% presence of mandarin detectable in processed orange juice and with a 100% precision. The quantitative application of the assay on citrus mixtures was also investigated, pointing out that the number of chloroplast DNA copies is too variable for its possible use as quantitative analysis. This assay can be employed as a routine methodology to control the accidental mixing during industrial processes and to deter intentional fraud. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    PubMed Central

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2015-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. PMID:25155200

  16. Determination of serum hCG levels by radioreactor assay in the clinical laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyko, W.L.

    1979-09-01

    The radioreceptorassay (RRA) has been used for measuring human chorionic gonadotropin (hCG) in sera from 751 individuals. The RRA is shown to be sensitive (98%) and specific (99.8%) in detecting hCG in a wide variety of conditions, including normal pregnancy and threatened or missed abortions. As a rapid qualitative or semiquantitative assay for hCG, the RRA is a valuable adjunct in the laboratory to less sensitive tests for hCG. Variation among different quantitative assays for hCG is examined, and it is concluded that the same assay system should be used for monitoring hCG levels in a single individual over amore » period of time in order to avoid inconsistent results. Application of the quantitative RRA for hCG in detecting the midcycle luteinizing hormone surge in infertillity is also presented.« less

  17. Quantitative Analysis of Food and Feed Samples with Droplet Digital PCR

    PubMed Central

    Morisset, Dany; Štebih, Dejan; Milavec, Mojca; Gruden, Kristina; Žel, Jana

    2013-01-01

    In this study, the applicability of droplet digital PCR (ddPCR) for routine analysis in food and feed samples was demonstrated with the quantification of genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of GMOs in products. However, its use is limited for detecting and quantifying very small numbers of DNA targets, as in some complex food and feed matrices. Using ddPCR duplex assay, we have measured the absolute numbers of MON810 transgene and hmg maize reference gene copies in DNA samples. Key performance parameters of the assay were determined. The ddPCR system is shown to offer precise absolute and relative quantification of targets, without the need for calibration curves. The sensitivity (five target DNA copies) of the ddPCR assay compares well with those of individual qPCR assays and of the chamber digital PCR (cdPCR) approach. It offers a dynamic range over four orders of magnitude, greater than that of cdPCR. Moreover, when compared to qPCR, the ddPCR assay showed better repeatability at low target concentrations and a greater tolerance to inhibitors. Finally, ddPCR throughput and cost are advantageous relative to those of qPCR for routine GMO quantification. It is thus concluded that ddPCR technology can be applied for routine quantification of GMOs, or any other domain where quantitative analysis of food and feed samples is needed. PMID:23658750

  18. Accuracy of Blood Loss Measurement during Cesarean Delivery.

    PubMed

    Doctorvaladan, Sahar V; Jelks, Andrea T; Hsieh, Eric W; Thurer, Robert L; Zakowski, Mark I; Lagrew, David C

    2017-04-01

    Objective  This study aims to compare the accuracy of visual, quantitative gravimetric, and colorimetric methods used to determine blood loss during cesarean delivery procedures employing a hemoglobin extraction assay as the reference standard. Study Design  In 50 patients having cesarean deliveries blood loss determined by assays of hemoglobin content on surgical sponges and in suction canisters was compared with obstetricians' visual estimates, a quantitative gravimetric method, and the blood loss determined by a novel colorimetric system. Agreement between the reference assay and other measures was evaluated by the Bland-Altman method. Results  Compared with the blood loss measured by the reference assay (470 ± 296 mL), the colorimetric system (572 ± 334 mL) was more accurate than either visual estimation (928 ± 261 mL) or gravimetric measurement (822 ± 489 mL). The correlation between the assay method and the colorimetric system was more predictive (standardized coefficient = 0.951, adjusted R 2  = 0.902) than either visual estimation (standardized coefficient = 0.700, adjusted R 2  = 00.479) or the gravimetric determination (standardized coefficient = 0.564, adjusted R 2  = 0.304). Conclusion  During cesarean delivery, measuring blood loss using colorimetric image analysis is superior to visual estimation and a gravimetric method. Implementation of colorimetric analysis may enhance the ability of management protocols to improve clinical outcomes.

  19. Accuracy of Blood Loss Measurement during Cesarean Delivery

    PubMed Central

    Doctorvaladan, Sahar V.; Jelks, Andrea T.; Hsieh, Eric W.; Thurer, Robert L.; Zakowski, Mark I.; Lagrew, David C.

    2017-01-01

    Objective This study aims to compare the accuracy of visual, quantitative gravimetric, and colorimetric methods used to determine blood loss during cesarean delivery procedures employing a hemoglobin extraction assay as the reference standard. Study Design In 50 patients having cesarean deliveries blood loss determined by assays of hemoglobin content on surgical sponges and in suction canisters was compared with obstetricians' visual estimates, a quantitative gravimetric method, and the blood loss determined by a novel colorimetric system. Agreement between the reference assay and other measures was evaluated by the Bland–Altman method. Results Compared with the blood loss measured by the reference assay (470 ± 296 mL), the colorimetric system (572 ± 334 mL) was more accurate than either visual estimation (928 ± 261 mL) or gravimetric measurement (822 ± 489 mL). The correlation between the assay method and the colorimetric system was more predictive (standardized coefficient = 0.951, adjusted R2 = 0.902) than either visual estimation (standardized coefficient = 0.700, adjusted R2 = 00.479) or the gravimetric determination (standardized coefficient = 0.564, adjusted R2 = 0.304). Conclusion During cesarean delivery, measuring blood loss using colorimetric image analysis is superior to visual estimation and a gravimetric method. Implementation of colorimetric analysis may enhance the ability of management protocols to improve clinical outcomes. PMID:28497007

  20. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites.

    PubMed

    Sakamoto, Seiichi; Putalun, Waraporn; Vimolmangkang, Sornkanok; Phoolcharoen, Waranyoo; Shoyama, Yukihiro; Tanaka, Hiroyuki; Morimoto, Satoshi

    2018-01-01

    Immunoassays are antibody-based analytical methods for quantitative/qualitative analysis. Since the principle of immunoassays is based on specific antigen-antibody reaction, the assays have been utilized worldwide for diagnosis, pharmacokinetic studies by drug monitoring, and the quality control of commercially available products. Berson and Yalow were the first to develop an immunoassay, known as radioimmunoassay (RIA), for detecting endogenous plasma insulin [1], a development for which Yalow was awarded the Nobel Prize in Physiology or Medicine in 1977. Even today, after half a century, immunoassays are widely utilized with some modifications from the originally proposed system, e.g., radioisotopes have been replaced with enzymes because of safety concerns regarding the use of radioactivity, which is referred to as enzyme immunoassay/enzyme-linked immunosorbent assay (ELISA). In addition, progress has been made in ELISA with the recent advances in recombinant DNA technology, leading to increase in the range of antibodies, probes, and even systems. This review article describes ELISA and its applications for the detection of plant secondary metabolites.

  1. The Lumipulse G HBsAg-Quant assay for screening and quantification of the hepatitis B surface antigen.

    PubMed

    Yang, Ruifeng; Song, Guangjun; Guan, Wenli; Wang, Qian; Liu, Yan; Wei, Lai

    2016-02-01

    Qualitative HBsAg assay is used to screen HBV infection for decades. The utility of quantitative assay is also rejuvenated recently. We aimed to evaluate and compare the performance of a novel ultra-sensitive and quantitative assay, the Lumipulse assay, with the Architect and Elecsys assays. As screening methods, specificity was compared using 2043 consecutive clinical routine samples. As quantitative assays, precision and accuracy were assessed. Sera from 112 treatment-naïve chronic hepatitis B patients, four patients undergoing antiviral therapy and one patient with acute infection were tested to compare the correlations. Samples with concurrent HBsAg/anti-HBs were also quantified. The Lumipulse assay precisely quantified ultra-low level of HBsAg (0.004 IU/mL). It identified additional 0.98% (20/2043) clinical samples with trance amount of HBsAg. Three assays displayed excellent linear correlations irrespective of genotypes and S-gene mutations (R(2)>0.95, P<0.0001), while minor quantitative biases existed. The Lumipulse assay did not yield higher HBsAg concentrations in samples with concomitant anti-HBs. Compared with other assays, the Lumipulse assay is sensitive and specific for detecting HBsAg. The interpretation of the extremely low-level results, however, is challenging. Quantitative HBsAg results by different assays are highly correlated, but they should be interpreted interchangeably only after conversion to eliminate the biases. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Detection of flunixin in greyhound urine by a kinetic enzyme-linked immunosorbent assay.

    PubMed

    Brady, T C; Yang, T J; Hyde, W G; Kind, A J; Hill, D W

    1997-01-01

    A two-step kinetic enzyme-linked immunosorbent assay was developed to detect the presence of flunixin in the urine of greyhound dogs. The assay system was developed using polyclonal antiflunixin antisera, a rabbit albumin-flunixin conjugate adsorbed onto polystyrene microtiter strips, and flunixin reference standards for calibration. The assay parameters were optimized and the performance characteristics were determined. The quantitative intra- and inter-run precisions (%CV) of the analysis of replicate (n = 10) flunixin-spiked urine samples were 9.9-12.5% and 10.2-13.6%, respectively. The linear dynamic range was 1-100 ng/mL, and the quantitative accuracy, as determined by calculation of percent error of measured flunixin in flunixin-spiked drug-free greyhound urine, was -16% to +14% over this range. The I50 of the ELISA was 17.3 ng/mL. The limit of detection was 25 ng/mL in greyhound urine. The reactivity in the assay system relative to flunixin (100%) was 147% for flunixin glucuronide, 25% for clonixin, and 5% for niflumic acid. The ELISA was capable of detecting total flunixin for up to 72 h in dogs administered flunixin at 0.55 mg/kg orally and up to 96 h in a dog that was administered flunixin at 1.0 mg/kg orally.

  3. Expression and immunoaffinity purification of recombinant soluble human GPR56 protein for the analysis of GPR56 receptor shedding by ELISA.

    PubMed

    Yang, Tai-Yun; Chiang, Nien-Yi; Tseng, Wen-Yi; Pan, Hsiao-Lin; Peng, Yen-Ming; Shen, Jiann-Jong; Wu, Kuo-An; Kuo, Ming-Ling; Chang, Gin-Wen; Lin, Hsi-Hsien

    2015-05-01

    GPR56 is a multi-functional adhesion-class G protein-coupled receptor involved in biological systems as diverse as brain development, male gonad development, myoblast fusion, hematopoietic stem cell maintenance, tumor growth and metastasis, and immune-regulation. Ectodomain shedding of human GPR56 receptor has been demonstrated previously, however the quantitative detection of GPR56 receptor shedding has not been investigated fully due to the lack of appropriate assays. Herein, an efficient system of expression and immune-affinity purification of the recombinant soluble extracellular domain of human GPR56 (sGPR56) protein from a stably transduced human melanoma cell line was established. The identity and functionality of the recombinant human sGPR56 protein were verified by Western blotting and mass spectrometry, and ligand-binding assays, respectively. Combined with the use of two recently generated anti-GPR56 monoclonal antibodies, a sensitive sandwich ELISA assay was successfully developed for the quantitative detection of human sGPR56 molecule. We found that GPR56 receptor shedding occurred constitutively and was further increased in activated human melanoma cells expressing endogenous GPR56. In conclusion, we report herein an efficient system for the production and purification of human sGPR56 protein for the establishment of a quantitative ELISA analysis of GPR56 receptor shedding. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Quantitative PCR for HTLV-1 provirus in adult T-cell leukemia/lymphoma using paraffin tumor sections.

    PubMed

    Kato, Junki; Masaki, Ayako; Fujii, Keiichiro; Takino, Hisashi; Murase, Takayuki; Yonekura, Kentaro; Utsunomiya, Atae; Ishida, Takashi; Iida, Shinsuke; Inagaki, Hiroshi

    2016-11-01

    Detection of HTLV-1 provirus using paraffin tumor sections may assist the diagnosis of adult T-cell leukemia/lymphoma (ATLL). For the detection, non-quantitative PCR assay has been reported, but its usefulness and limitations remain unclear. To our knowledge, quantitative PCR assay using paraffin tumor sections has not been reported. Using paraffin sections from ATLLs and non-ATLL T-cell lymphomas, we first performed non-quantitative PCR for HTLV-1 provirus. Next, we determined tumor ratios and carried out quantitative PCR to obtain provirus copy numbers. The results were analyzed with a simple regression model and a novel criterion, cut-off using 95 % rejection limits. Our quantitative PCR assay showed an excellent association between tumor ratios and the copy numbers (r = 0.89, P < 0.0001). The 95 % rejection limits provided a statistical basis for the range for the determination of HTLV-1 involvement. Its application suggested that results of non-quantitative PCR assay should be interpreted very carefully and that our quantitative PCR assay is useful to estimate the status of HTLV-1 involvement in the tumor cases. In conclusion, our quantitative PCR assay using paraffin tumor sections may be useful for the screening of ATLL cases, especially in HTLV-1 non-endemic areas where easy access to serological testing for HTLV-1 infection is limited. © 2016 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  5. Intra-laboratory validation of chronic bee paralysis virus quantitation using an accredited standardised real-time quantitative RT-PCR method.

    PubMed

    Blanchard, Philippe; Regnault, Julie; Schurr, Frank; Dubois, Eric; Ribière, Magali

    2012-03-01

    Chronic bee paralysis virus (CBPV) is responsible for chronic bee paralysis, an infectious and contagious disease in adult honey bees (Apis mellifera L.). A real-time RT-PCR assay to quantitate the CBPV load is now available. To propose this assay as a reference method, it was characterised further in an intra-laboratory study during which the reliability and the repeatability of results and the performance of the assay were confirmed. The qPCR assay alone and the whole quantitation method (from sample RNA extraction to analysis) were both assessed following the ISO/IEC 17025 standard and the recent XP U47-600 standard issued by the French Standards Institute. The performance of the qPCR assay and of the overall CBPV quantitation method were validated over a 6 log range from 10(2) to 10(8) with a detection limit of 50 and 100 CBPV RNA copies, respectively, and the protocol of the real-time RT-qPCR assay for CBPV quantitation was approved by the French Accreditation Committee. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Use of Quantitative Real-Time PCR for Direct Detection of Serratia marcescens in Marine and Other Aquatic Environments

    PubMed Central

    Joyner, Jessica; Wanless, David; Sinigalliano, Christopher D.

    2014-01-01

    Serratia marcescens is the etiological agent of acroporid serratiosis, a distinct form of white pox disease in the threatened coral Acropora palmata. The pathogen is commonly found in untreated human waste in the Florida Keys, which may contaminate both nearshore and offshore waters. Currently there is no direct method for detection of this bacterium in the aquatic or reef environment, and culture-based techniques may underestimate its abundance in marine waters. A quantitative real-time PCR assay was developed to detect S. marcescens directly from environmental samples, including marine water, coral mucus, sponge tissue, and wastewater. The assay targeted the luxS gene and was able to distinguish S. marcescens from other Serratia species with a reliable quantitative limit of detection of 10 cell equivalents (CE) per reaction. The method could routinely discern the presence of S. marcescens for as few as 3 CE per reaction, but it could not be reliably quantified at this level. The assay detected environmental S. marcescens in complex sewage influent samples at up to 761 CE ml−1 and in septic system-impacted residential canals in the Florida Keys at up to 4.1 CE ml−1. This detection assay provided rapid quantitative abilities and good sensitivity and specificity, which should offer an important tool for monitoring this ubiquitous pathogen that can potentially impact both human health and coral health. PMID:24375136

  7. Use of quantitative real-time PCR for direct detection of serratia marcescens in marine and other aquatic environments.

    PubMed

    Joyner, Jessica; Wanless, David; Sinigalliano, Christopher D; Lipp, Erin K

    2014-03-01

    Serratia marcescens is the etiological agent of acroporid serratiosis, a distinct form of white pox disease in the threatened coral Acropora palmata. The pathogen is commonly found in untreated human waste in the Florida Keys, which may contaminate both nearshore and offshore waters. Currently there is no direct method for detection of this bacterium in the aquatic or reef environment, and culture-based techniques may underestimate its abundance in marine waters. A quantitative real-time PCR assay was developed to detect S. marcescens directly from environmental samples, including marine water, coral mucus, sponge tissue, and wastewater. The assay targeted the luxS gene and was able to distinguish S. marcescens from other Serratia species with a reliable quantitative limit of detection of 10 cell equivalents (CE) per reaction. The method could routinely discern the presence of S. marcescens for as few as 3 CE per reaction, but it could not be reliably quantified at this level. The assay detected environmental S. marcescens in complex sewage influent samples at up to 761 CE ml(-1) and in septic system-impacted residential canals in the Florida Keys at up to 4.1 CE ml(-1). This detection assay provided rapid quantitative abilities and good sensitivity and specificity, which should offer an important tool for monitoring this ubiquitous pathogen that can potentially impact both human health and coral health.

  8. Utilization of a quantitative mammalian cell mutation system, CHO/HGPRT, in experimental mutagenesis and genetic toxicology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsie, A. W.; Couch, D. B.; O'Neill, J. P.

    1977-01-01

    Development of the CHO/HGPRT system is described and a host-mediated CHO/HGPRT assay is discussed. The following topics are discussed: evidence for the genetic origin of mutation induction in the CHO/HGPRT system; dose-response relationship for EMS-mediated mutation induction and cell lethality; apparent dosimetry of EMS-induced mutagenesis; structure-activity relationship of alkylating agents and ICR compounds; mutagenicity and cytotoxicity of congeners of two classes of nitrosi compounds; and preliminary validation of the CHO/HGPRT assay in predicting chemical carcinogenicity. (HLW)

  9. Optical assay for biotechnology and clinical diagnosis.

    PubMed

    Moczko, Ewa; Cauchi, Michael; Turner, Claire; Meglinski, Igor; Piletsky, Sergey

    2011-08-01

    In this paper, we present an optical diagnostic assay consisting of a mixture of environmental-sensitive fluorescent dyes combined with multivariate data analysis for quantitative and qualitative examination of biological and clinical samples. The performance of the assay is based on the analysis of spectrum of the selected fluorescent dyes with the operational principle similar to electronic nose and electronic tongue systems. This approach has been successfully applied for monitoring of growing cell cultures and identification of gastrointestinal diseases in humans.

  10. A Robotic Platform for Quantitative High-Throughput Screening

    PubMed Central

    Michael, Sam; Auld, Douglas; Klumpp, Carleen; Jadhav, Ajit; Zheng, Wei; Thorne, Natasha; Austin, Christopher P.; Inglese, James

    2008-01-01

    Abstract High-throughput screening (HTS) is increasingly being adopted in academic institutions, where the decoupling of screening and drug development has led to unique challenges, as well as novel uses of instrumentation, assay formulations, and software tools. Advances in technology have made automated unattended screening in the 1,536-well plate format broadly accessible and have further facilitated the exploration of new technologies and approaches to screening. A case in point is our recently developed quantitative HTS (qHTS) paradigm, which tests each library compound at multiple concentrations to construct concentration-response curves (CRCs) generating a comprehensive data set for each assay. The practical implementation of qHTS for cell-based and biochemical assays across libraries of > 100,000 compounds (e.g., between 700,000 and 2,000,000 sample wells tested) requires maximal efficiency and miniaturization and the ability to easily accommodate many different assay formats and screening protocols. Here, we describe the design and utilization of a fully integrated and automated screening system for qHTS at the National Institutes of Health's Chemical Genomics Center. We report system productivity, reliability, and flexibility, as well as modifications made to increase throughput, add additional capabilities, and address limitations. The combination of this system and qHTS has led to the generation of over 6 million CRCs from > 120 assays in the last 3 years and is a technology that can be widely implemented to increase efficiency of screening and lead generation. PMID:19035846

  11. Human genomic DNA quantitation system, H-Quant: development and validation for use in forensic casework.

    PubMed

    Shewale, Jaiprakash G; Schneida, Elaine; Wilson, Jonathan; Walker, Jerilyn A; Batzer, Mark A; Sinha, Sudhir K

    2007-03-01

    The human DNA quantification (H-Quant) system, developed for use in human identification, enables quantitation of human genomic DNA in biological samples. The assay is based on real-time amplification of AluYb8 insertions in hominoid primates. The relatively high copy number of subfamily-specific Alu repeats in the human genome enables quantification of very small amounts of human DNA. The oligonucleotide primers present in H-Quant are specific for human DNA and closely related great apes. During the real-time PCR, the SYBR Green I dye binds to the DNA that is synthesized by the human-specific AluYb8 oligonucleotide primers. The fluorescence of the bound SYBR Green I dye is measured at the end of each PCR cycle. The cycle at which the fluorescence crosses the chosen threshold correlates to the quantity of amplifiable DNA in that sample. The minimal sensitivity of the H-Quant system is 7.6 pg/microL of human DNA. The amplicon generated in the H-Quant assay is 216 bp, which is within the same range of the common amplifiable short tandem repeat (STR) amplicons. This size amplicon enables quantitation of amplifiable DNA as opposed to a quantitation of degraded or nonamplifiable DNA of smaller sizes. Development and validation studies were performed on the 7500 real-time PCR system following the Quality Assurance Standards for Forensic DNA Testing Laboratories.

  12. Comparative evaluation of three automated systems for DNA extraction in conjunction with three commercially available real-time PCR assays for quantitation of plasma Cytomegalovirus DNAemia in allogeneic stem cell transplant recipients.

    PubMed

    Bravo, Dayana; Clari, María Ángeles; Costa, Elisa; Muñoz-Cobo, Beatriz; Solano, Carlos; José Remigia, María; Navarro, David

    2011-08-01

    Limited data are available on the performance of different automated extraction platforms and commercially available quantitative real-time PCR (QRT-PCR) methods for the quantitation of cytomegalovirus (CMV) DNA in plasma. We compared the performance characteristics of the Abbott mSample preparation system DNA kit on the m24 SP instrument (Abbott), the High Pure viral nucleic acid kit on the COBAS AmpliPrep system (Roche), and the EZ1 Virus 2.0 kit on the BioRobot EZ1 extraction platform (Qiagen) coupled with the Abbott CMV PCR kit, the LightCycler CMV Quant kit (Roche), and the Q-CMV complete kit (Nanogen), for both plasma specimens from allogeneic stem cell transplant (Allo-SCT) recipients (n = 42) and the OptiQuant CMV DNA panel (AcroMetrix). The EZ1 system displayed the highest extraction efficiency over a wide range of CMV plasma DNA loads, followed by the m24 and the AmpliPrep methods. The Nanogen PCR assay yielded higher mean CMV plasma DNA values than the Abbott and the Roche PCR assays, regardless of the platform used for DNA extraction. Overall, the effects of the extraction method and the QRT-PCR used on CMV plasma DNA load measurements were less pronounced for specimens with high CMV DNA content (>10,000 copies/ml). The performance characteristics of the extraction methods and QRT-PCR assays evaluated herein for clinical samples were extensible at cell-based standards from AcroMetrix. In conclusion, different automated systems are not equally efficient for CMV DNA extraction from plasma specimens, and the plasma CMV DNA loads measured by commercially available QRT-PCRs can differ significantly. The above findings should be taken into consideration for the establishment of cutoff values for the initiation or cessation of preemptive antiviral therapies and for the interpretation of data from clinical studies in the Allo-SCT setting.

  13. Rapid detection of porcine circovirus type 2 using a TaqMan-based real-time PCR.

    PubMed

    Zhao, Kai; Han, Fangting; Zou, Yong; Zhu, Lianlong; Li, Chunhua; Xu, Yan; Zhang, Chunling; Tan, Furong; Wang, Jinbin; Tao, Shiru; He, Xizhong; Zhou, Zongqing; Tang, Xueming

    2010-12-31

    Porcine circovirus type 2 (PCV2) and the associated disease postweaning multisystemic wasting syndrome (PMWS) have caused heavy losses in global agriculture in recent decades. Rapid detection of PCV2 is very important for the effective prophylaxis and treatment of PMWS. To establish a sensitive, specific assay for the detection and quantitation of PCV2, we designed and synthesized specific primers and a probe in the open reading frame 2. The assay had a wide dynamic range with excellent linearity and reliable reproducibility, and detected between 102 and 1010 copies of the genomic DNA per reaction. The coefficient of variation for Ct values varied from 0.59% to 1.05% in the same assay and from 1.9% to 4.2% in 10 different assays. The assay did not cross-react with porcine circovirus type 1, porcine reproductive and respiratory, porcine epidemic diarrhea, transmissible gastroenteritis of pigs and rotavirus. The limits of detection and quantitation were 10 and 100 copies, respectively. Using the established real-time PCR system, 39 of the 40 samples we tested were detected as positive.

  14. A multiplex calibrated real-time PCR assay for quantitation of DNA of EBV-1 and 2.

    PubMed

    Gatto, Francesca; Cassina, Giulia; Broccolo, Francesco; Morreale, Giuseppe; Lanino, Edoardo; Di Marco, Eddi; Vardas, Efthiya; Bernasconi, Daniela; Buttò, Stefano; Principi, Nicola; Esposito, Susanna; Scarlatti, Gabriella; Lusso, Paolo; Malnati, Mauro S

    2011-12-01

    Accurate and highly sensitive tests for the diagnosis of active Epstein-Barr virus (EBV) infection are essential for the clinical management of individuals infected with EBV. A calibrated quantitative real-time PCR assay for the measurement of EBV DNA of both EBV-1 and 2 subtypes was developed, combining the detection of the EBV DNA and a synthetic DNA calibrator in a multiplex PCR format. The assay displays a wide dynamic range and a high degree of accuracy even in the presence of 1μg of human genomic DNA. This assay measures with the same efficiency EBV DNA from strains prevalent in different geographic areas. The clinical sensitivity and specificity of the system were evaluated by testing 181 peripheral blood mononuclear cell (PBMCs) and plasma specimens obtained from 21 patients subjected to bone marrow transplantation, 70 HIV-seropositive subjects and 23 healthy controls. Patients affected by EBV-associated post-transplant lymphoprolipherative disorders had the highest frequency of EBV detection and the highest viral load. Persons infected with HIV had higher levels of EBV DNA load in PBMCs and a higher frequency of EBV plasma viremia compared to healthy controls. In conclusion, this new assay provides a reliable high-throughput method for the quantitation of EBV DNA in clinical samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. ZyFISH: A Simple, Rapid and Reliable Zygosity Assay for Transgenic Mice

    PubMed Central

    McHugh, Donal; O’Connor, Tracy; Bremer, Juliane; Aguzzi, Adriano

    2012-01-01

    Microinjection of DNA constructs into fertilized mouse oocytes typically results in random transgene integration at a single genomic locus. The resulting transgenic founders can be used to establish hemizygous transgenic mouse lines. However, practical and experimental reasons often require that such lines be bred to homozygosity. Transgene zygosity can be determined by progeny testing assays which are expensive and time-consuming, by quantitative Southern blotting which is labor-intensive, or by quantitative PCR (qPCR) which requires transgene-specific design. Here, we describe a zygosity assessment procedure based on fluorescent in situ hybridization (zyFISH). The zyFISH protocol entails the detection of transgenic loci by FISH and the concomitant assignment of homozygosity using a concise and unbiased scoring system. The method requires small volumes of blood, is scalable to at least 40 determinations per assay, and produces results entirely consistent with the progeny testing assay. This combination of reliability, simplicity and cost-effectiveness makes zyFISH a method of choice for transgenic mouse zygosity determinations. PMID:22666404

  16. Development and application of a quantitative multiplexed small GTPase activity assay using targeted proteomics.

    PubMed

    Zhang, Cheng-Cheng; Li, Ru; Jiang, Honghui; Lin, Shujun; Rogalski, Jason C; Liu, Kate; Kast, Juergen

    2015-02-06

    Small GTPases are a family of key signaling molecules that are ubiquitously expressed in various types of cells. Their activity is often analyzed by western blot, which is limited by its multiplexing capability, the quality of isoform-specific antibodies, and the accuracy of quantification. To overcome these issues, a quantitative multiplexed small GTPase activity assay has been developed. Using four different binding domains, this assay allows the binding of up to 12 active small GTPase isoforms simultaneously in a single experiment. To accurately quantify the closely related small GTPase isoforms, a targeted proteomic approach, i.e., selected/multiple reaction monitoring, was developed, and its functionality and reproducibility were validated. This assay was successfully applied to human platelets and revealed time-resolved coactivation of multiple small GTPase isoforms in response to agonists and differential activation of these isoforms in response to inhibitor treatment. This widely applicable approach can be used for signaling pathway studies and inhibitor screening in many cellular systems.

  17. Immunoliposome-PCR: a generic ultrasensitive quantitative antigen detection system

    PubMed Central

    2012-01-01

    Background The accurate quantification of antigens at low concentrations over a wide dynamic range is needed for identifying biomarkers associated with disease and detecting protein interactions in high-throughput microarrays used in proteomics. Here we report the development of an ultrasensitive quantitative assay format called immunoliposome polymerase chain reaction (ILPCR) that fulfills these requirements. This method uses a liposome, with reporter DNA encapsulated inside and biotin-labeled polyethylene glycol (PEG) phospholipid conjugates incorporated into the outer surface of the liposome, as a detection reagent. The antigenic target is immobilized in the well of a microplate by a capture antibody and the liposome detection reagent is then coupled to a biotin-labeled second antibody through a NeutrAvidin bridge. The liposome is ruptured to release the reporter DNA, which serves as a surrogate to quantify the protein target using real-time PCR. Results A liposome detection reagent was prepared, which consisted of a population of liposomes ~120 nm in diameter with each liposome possessing ~800 accessible biotin receptors and ~220 encapsulated reporters. This liposome detection reagent was used in an assay to quantify the concentration of carcinoembryonic antigen (CEA) in human serum. This ILPCR assay exhibited a linear dose–response curve from 10-10 M to 10-16 M CEA. Within this range the assay coefficient of variance was <6 % for repeatability and <2 % for reproducibility. The assay detection limit was 13 fg/mL, which is 1,500-times more sensitive than current clinical assays for CEA. An ILPCR assay to quantify HIV-1 p24 core protein in buffer was also developed. Conclusions The ILPCR assay has several advantages over other immuno-PCR methods. The reporter DNA and biotin-labeled PEG phospholipids spontaneously incorporate into the liposomes as they form, simplifying preparation of the detection reagent. Encapsulation of the reporter inside the liposomes allows nonspecific DNA in the assay medium to be degraded with DNase I prior to quantification of the encapsulated reporter by PCR, which reduces false-positive results and improves quantitative accuracy. The ability to encapsulate multiple reporters per liposome also helps overcome the effect of polymerase inhibitors present in biological specimens. Finally, the biotin-labeled liposome detection reagent can be coupled through a NeutrAvidin bridge to a multitude of biotin-labeled probes, making ILPCR a highly generic assay system. PMID:22726242

  18. Applicability of integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) for the simultaneous detection of the four human enteric enterovirus species in disinfection studies

    EPA Science Inventory

    A newly developed integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) method and its applicability in UV disinfection studies is described. This method utilizes a singular cell culture system coupled with four RTqPCR assays to detect infectious serotypes t...

  19. sFIDA automation yields sub-femtomolar limit of detection for Aβ aggregates in body fluids.

    PubMed

    Herrmann, Yvonne; Kulawik, Andreas; Kühbach, Katja; Hülsemann, Maren; Peters, Luriano; Bujnicki, Tuyen; Kravchenko, Kateryna; Linnartz, Christina; Willbold, Johannes; Zafiu, Christian; Bannach, Oliver; Willbold, Dieter

    2017-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with yet non-existent therapeutic and limited diagnostic options. Reliable biomarker-based AD diagnostics are of utmost importance for the development and application of therapeutic substances. We have previously introduced a platform technology designated 'sFIDA' for the quantitation of amyloid β peptide (Aβ) aggregates as AD biomarker. In this study we implemented the sFIDA assay on an automated platform to enhance robustness and performance of the assay. In sFIDA (surface-based fluorescence intensity distribution analysis) Aβ species are immobilized by a capture antibody to a glass surface. Aβ aggregates are then multiply loaded with fluorescent antibodies and quantitated by high resolution fluorescence microscopy. As a model system for Aβ aggregates, we used Aβ-conjugated silica nanoparticles (Aβ-SiNaPs) diluted in PBS buffer and cerebrospinal fluid, respectively. Automation of the assay was realized on a liquid handling system in combination with a microplate washer. The automation of the sFIDA assay results in improved intra-assay precision, linearity and sensitivity in comparison to the manual application, and achieved a limit of detection in the sub-femtomolar range. Automation improves the precision and sensitivity of the sFIDA assay, which is a prerequisite for high-throughput measurements and future application of the technology in routine AD diagnostics. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  20. Sensitive and quantitative measurement of gene expression directly from a small amount of whole blood.

    PubMed

    Zheng, Zhi; Luo, Yuling; McMaster, Gary K

    2006-07-01

    Accurate and precise quantification of mRNA in whole blood is made difficult by gene expression changes during blood processing, and by variations and biases introduced by sample preparations. We sought to develop a quantitative whole-blood mRNA assay that eliminates blood purification, RNA isolation, reverse transcription, and target amplification while providing high-quality data in an easy assay format. We performed single- and multiplex gene expression analysis with multiple hybridization probes to capture mRNA directly from blood lysate and used branched DNA to amplify the signal. The 96-well plate singleplex assay uses chemiluminescence detection, and the multiplex assay combines Luminex-encoded beads with fluorescent detection. The single- and multiplex assays could quantitatively measure as few as 6000 and 24,000 mRNA target molecules (0.01 and 0.04 amoles), respectively, in up to 25 microL of whole blood. Both formats had CVs < 10% and dynamic ranges of 3-4 logs. Assay sensitivities allowed quantitative measurement of gene expression in the minority of cells in whole blood. The signals from whole-blood lysate correlated well with signals from purified RNA of the same sample, and absolute mRNA quantification results from the assay were similar to those obtained by quantitative reverse transcription-PCR. Both single- and multiplex assay formats were compatible with common anticoagulants and PAXgene-treated samples; however, PAXgene preparations induced expression of known antiapoptotic genes in whole blood. Both the singleplex and the multiplex branched DNA assays can quantitatively measure mRNA expression directly from small volumes of whole blood. The assay offers an alternative to current technologies that depend on RNA isolation and is amenable to high-throughput gene expression analysis of whole blood.

  1. Quantitative measurement of a candidate serum biomarker peptide derived from α2-HS-glycoprotein, and a preliminary trial of multidimensional peptide analysis in females with pregnancy-induced hypertension.

    PubMed

    Hamamura, Kensuke; Yanagida, Mitsuaki; Ishikawa, Hitoshi; Banzai, Michio; Yoshitake, Hiroshi; Nonaka, Daisuke; Tanaka, Kenji; Sakuraba, Mayumi; Miyakuni, Yasuka; Takamori, Kenji; Nojima, Michio; Yoshida, Koyo; Fujiwara, Hiroshi; Takeda, Satoru; Araki, Yoshihiko

    2018-03-01

    Purpose We previously attempted to develop quantitative enzyme-linked immunosorbent assay (ELISA) systems for the PDA039/044/071 peptides, potential serum disease biomarkers (DBMs) of pregnancy-induced hypertension (PIH), primarily identified by a peptidomic approach (BLOTCHIP®-mass spectrometry (MS)). However, our methodology did not extend to PDA071 (cysteinyl α2-HS-glycoprotein 341-367 ), due to difficulty to produce a specific antibody against the peptide. The aim of the present study was to establish an alternative PDA071 quantitation system using liquid chromatography-multiple reaction monitoring (LC-MRM)/MS, to explore the potential utility of PDA071 as a DBM for PIH. Methods We tested heat/acid denaturation methods in efforts to purify serum PDA071 and developed an LC-MRM/MS method allowing for specific quantitation thereof. We measured serum PDA071 concentrations, and these results were validated including by three-dimensional (3D) plotting against PDA039 (kininogen-1 439-456 )/044 (kininogen-1 438-456 ) concentrations, followed by discriminant analysis. Results PDA071 was successfully extracted from serum using a heat denaturation method. Optimum conditions for quantitation via LC-MRM/MS were developed; the assayed serum PDA071 correlated well with the BLOTCHIP® assay values. Although the PDA071 alone did not significantly differ between patients and controls, 3D plotting of PDA039/044/071 peptide concentrations and construction of a Jackknife classification matrix were satisfactory in terms of PIH diagnostic precision. Conclusions Combination analysis using both PDA071 and PDA039/044 concentrations allowed PIH diagnostic accuracy to be attained, and our method will be valuable in future pathophysiological studies of hypertensive disorders of pregnancy.

  2. DEVELOPMENT OF A QUANTITATIVE ASSAY FOR VITELLOGENIN TO MONITOR ESTROGEN-LIKE ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    Many environmental contaminants have the potential to disrupt endocrine systems of wildlife and humans resulting in impairment of reproductive and other systems. A subset of these contaminants may initiate these effects by binding to the estrogen receptor. In oviparous vertebrate...

  3. Headspace gas chromatographic method for the measurement of difluoroethane in blood.

    PubMed

    Broussard, L A; Broussard, A; Pittman, T; Lafferty, D; Presley, L

    2001-01-01

    To develop a gas chromatographic assay for the analysis of difluoroethane, a volatile substance, in blood and to determine assay characteristics including linearity, limit of quantitation, precision, and specificity. Referral toxicology laboratory Difluoroethane, a colorless, odorless, highly flammable gas used as a refrigerant blend component and aerosol propellant, may be abused via inhalation. A headspace gas chromatographic procedure for the identification and quantitation of difluoroethane in blood is presented. A methanolic stock standard prepared from pure gaseous difluoroethane was used to prepare whole blood calibrators. Quantitation of difluoroethane was performed using a six-point calibration curve and an internal standard of 1-propanol. The assay is linear from 0 to 115 mg/L including a low calibrator at 4 mg/L, the limit of quantitation. Within-run coefficients of variation at mean concentrations of 13.8 mg/L and 38.5 mg/L were 5.8% and 6.8% respectively. Between-run coefficients of variation at mean concentrations of 15.9 mg/L and 45.7 mg/L were 13.4% and 9.8% respectively. Several volatile substances were tested as potential interfering compounds with propane having a retention time identical to that of difluoroethane. This method requires minimal sample preparation, is rapid and reproducible, can be modified for the quantitation of other volatiles, and could be automated using an automatic sampler/injector system.

  4. Applicability of the chymopapain gene used as endogenous reference gene for transgenic huanong no. 1 papaya detection.

    PubMed

    Guo, Jinchao; Yang, Litao; Liu, Xin; Zhang, Haibo; Qian, Bingjun; Zhang, Dabing

    2009-08-12

    The virus-resistant papaya (Carica papaya L.), Huanong no. 1, was the genetically modified (GM) fruit approved for growing in China in 2006. To implement the labeling regulation of GM papaya and its derivates, the development of papaya endogenous reference gene is very necessary for GM papaya detection. Herein, we reported one papaya specific gene, Chymopapain (CHY), as one suitable endogenous reference gene, used for GM papaya identification. Thereafter, we established the conventional and real-time quantitative PCR assays of the CHY gene. In the CHY conventional PCR assay, the limit of detection (LOD) was 25 copies of haploid papaya genome. In the CHY real-time quantitative PCR assay, both the LOD and the limit of quantification (LOQ) were as low as 12.5 copies of haploid papaya genome. Furthermore, we revealed the construct-specific sequence of Chinese GM papaya Huanong no. 1 and developed its conventional and quantitative PCR systems employing the CHY gene as endogenous reference gene. This work is useful for papaya specific identification and GM papaya detection.

  5. A novel multi-walled carbon nanotube-based antibody conjugate for quantitative and semi-quantitative lateral flow assays.

    PubMed

    Sun, Wenjuan; Hu, Xiaolong; Liu, Jia; Zhang, Yurong; Lu, Jianzhong; Zeng, Libo

    2017-10-01

    In this study, the multi-walled carbon nanotubes (MWCNTs) were applied in lateral flow strips (LFS) for semi-quantitative and quantitative assays. Firstly, the solubility of MWCNTs was improved using various surfactants to enhance their biocompatibility for practical application. The dispersed MWCNTs were conjugated with the methamphetamine (MET) antibody in a non-covalent manner and then manufactured into the LFS for the quantitative detection of MET. The MWCNTs-based lateral flow assay (MWCNTs-LFA) exhibited an excellent linear relationship between the values of test line and MET when its concentration ranges from 62.5 to 1500 ng/mL. The sensitivity of the LFS was evaluated by conjugating MWCNTs with HCG antibody and the MWCNTs conjugated method is 10 times more sensitive than the one conjugated with classical colloidal gold nanoparticles. Taken together, our data demonstrate that MWCNTs-LFA is a more sensitive and reliable assay for semi-quantitative and quantitative detection which can be used in forensic analysis.

  6. Comparison of the COBAS TAQMAN HIV-1 HPS with VERSANT HIV-1 RNA 3.0 assay (bDNA) for plasma RNA quantitation in different HIV-1 subtypes.

    PubMed

    Gomes, Perpétua; Palma, Ana Carolina; Cabanas, Joaquim; Abecasis, Ana; Carvalho, Ana Patrícia; Ziermann, Rainer; Diogo, Isabel; Gonçalves, Fátima; Lobo, Céu Sousa; Camacho, Ricardo

    2006-08-01

    Quantitation of HIV-1 RNA levels in plasma has an undisputed prognostic value and is extremely important for evaluating response to antiretroviral therapy. The purpose of this study was to evaluate the performance of the real-time PCR COBAS TaqMan 48 analyser, comparing it to the existing VERSANT 3.0 (bDNA) for HIV-1 RNA quantitation in plasma of individuals infected with different HIV-1 subtypes (104 blood samples). A positive linear correlation between the two tests (r2 = 0.88) was found. Quantitation by the COBAS TaqMan assay was approximately 0.32log10 higher than by bDNA. The relationship between the two assays was similar within all subtypes with a Deming regression of <1 and <0 for the Bland-Altman plots. Overall, no significant differences were found in plasma viral load quantitation in different HIV-1 subtypes between both assays; therefore these assays are suitable for viral load quantitation of highly genetically diverse HIV-1 plasma samples.

  7. A new approach for quantitative analysis of L-phenylalanine using a novel semi-sandwich immunometric assay.

    PubMed

    Kubota, Kazuyuki; Mizukoshi, Toshimi; Miyano, Hiroshi

    2013-10-01

    Here, we describe a novel method for L-phenylalanine analysis using a sandwich-type immunometric assay approach for use as a new method for amino acid analysis. To overcome difficulties of the preparation of high-affinity and selectivity monoclonal antibodies against L-phenylalanine and the inability to use sandwich-type immunometric assays due to their small molecular weight, three procedures were examined. First, amino groups of L-phenylalanine were modified by "N-Fmoc-L-cysteine" (FC) residues and the derivative (FC-Phe) was used as a hapten. Immunization of mice with bovine serum albumin/FC-Phe conjugate successfully yielded specific monoclonal anti-FC-Phe antibodies. Second, a new derivatization reagent, "biotin linker conjugate of FC-Phe N-succinimidyl ester" (FC(Biotin)-NHS), was synthesized to convert L-phenylalanine to FC-(Biotin)-Phe as a hapten structure. The biotin moiety linked to the thiol group of cysteine formed a second binding site for streptavidin/horseradish peroxidase (HRP) conjugates for optical detection. Third, a new semi-sandwich-type immunometric assay was established using pre-derivatized L-phenylalanine, the monoclonal anti-FC-Phe antibody, and streptavidin/HRP conjugate (without second antibody). Using the new "semi-sandwich" immunometric assay system, a detection limit of 35 nM (60 amol per analysis) and a detection range of 0.1-20 μM were attained using a standard L-phenylalanine solution. Rat plasma samples were analyzed to test reliability. Intra-day assay precision was within 6% of the coefficient of variation; inter-day variation was 0.1%. The recovery rates were from 92.4 to 123.7%. This is the first report of the quantitative determination of L-phenylalanine using a reliable semi-sandwich immunometric assay approach and will be applicable to the quantitative determination of other amino acids.

  8. Gold Nanoparticle Labeling Based ICP-MS Detection/Measurement of Bacteria, and Their Quantitative Photothermal Destruction

    PubMed Central

    Lin, Yunfeng

    2015-01-01

    Bacteria such as Salmonella and E. coli present a great challenge in public health care in today’s society. Protection of public safety against bacterial contamination and rapid diagnosis of infection require simple and fast assays for the detection and elimination of bacterial pathogens. After utilizing Salmonella DT104 as an example bacterial strain for our investigation, we report a rapid and sensitive assay for the qualitative and quantitative detection of bacteria by using antibody affinity binding, popcorn shaped gold nanoparticle (GNPOPs) labeling, surfance enchanced Raman spectroscopy (SERS), and inductively coupled plasma mass spectrometry (ICP-MS) detection. For qualitative analysis, our assay can detect Salmonella within 10 min by Raman spectroscopy; for quantitative analysis, our assay has the ability to measure as few as 100 Salmonella DT104 in a 1 mL sample (100 CFU/mL) within 40 min. Based on the quantitative detection, we investigated the quantitative destruction of Salmonella DT104, and the assay’s photothermal efficiency in order to reduce the amount of GNPOPs in the assay to ultimately to eliminate any potential side effects/toxicity to the surrounding cells in vivo. Results suggest that our assay may serve as a promising candidate for qualitative and quantitative detection and elimination of a variety of bacterial pathogens. PMID:26417447

  9. Quantitative Analysis of Dendritic Cell Haptotaxis.

    PubMed

    Schwarz, Jan; Sixt, Michael

    2016-01-01

    Chemokines are the main guidance cues directing leukocyte migration. Opposed to early assumptions, chemokines do not necessarily act as soluble cues but are often immobilized within tissues, e.g., dendritic cell migration toward lymphatic vessels is guided by a haptotactic gradient of the chemokine CCL21. Controlled assay systems to quantitatively study haptotaxis in vitro are still missing. In this chapter, we describe an in vitro haptotaxis assay optimized for the unique properties of dendritic cells. The chemokine CCL21 is immobilized in a bioactive state, using laser-assisted protein adsorption by photobleaching. The cells follow this immobilized CCL21 gradient in a haptotaxis chamber, which provides three dimensionally confined migration conditions. © 2016 Elsevier Inc. All rights reserved.

  10. In vitro adherence of radioactively labeled Escherichia coli in normal and cystitis-prone females

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, C.L.; Anwar, H.; Stauffer, C.

    Numerous investigators report data obtained using an in vitro quantitative assay for measuring bacterial adherence to epithelial cells. In the modified assay described here, we eliminated the need for visual counting of bacteria by incorporating the use of radioactively labeled Escherichia coli. This allowed quantitation of bacterial adherence to as many as 50,000 vaginal cells, whereas the visual counting system limits the determination to perhaps 50 cells. Using the modified method, we found no statistically significant differences among values for adherence of E. coli type 04 to the vaginal cells of control and cystitis-prone women at either pH 6.4 ormore » 4.0.« less

  11. Improving validation methods for molecular diagnostics: application of Bland-Altman, Deming and simple linear regression analyses in assay comparison and evaluation for next-generation sequencing

    PubMed Central

    Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L

    2018-01-01

    Aims A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R2), using R2 as the primary metric of assay agreement. However, the use of R2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. Methods We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Results Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. Conclusions The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. PMID:28747393

  12. A reversed-phase high-performance liquid chromatography method for bovine serum albumin assay in pharmaceutical dosage forms and protein/antigen delivery systems.

    PubMed

    Hamidi, Mehrdad; Zarei, Najmeh

    2009-05-01

    Bovine serum albumin (BSA) is among the most widely used proteins in protein formulations as well as in the development of novel delivery systems as a typical model for therapeutic/diagnostic proteins and the new versions of vaccines. The development of reliable and easily available assay methods for quantitation of this protein would therefore play a crucial role in these types of studies. A simple gradient reversed-phase high-performance liquid chromatography with ultra-violet detection (HPLC-UV) method has been developed for quantitation of BSA in dosage forms and protein delivery systems. The method produced linear responses throughout the wide BSA concentration range of 1 to 100 micro g/mL. The average within-run and between-run variations of the method within the linear concentration range of BSA were 2.46% and 2.20%, respectively, with accuracies of 104.49% and 104.58% for within-run and between-run samples, respectively. The limits of detection (LOD) and quantitation (LOQ) of the method were 0.5 and 1 microg/mL, respectively. The method showed acceptable system suitability indices, which enabled us to use it successfully during our particulate vaccine delivery research project. Copyright 2009 John Wiley & Sons, Ltd.

  13. Micro-flow injection system for the urinary protein assay.

    PubMed

    Nishihama, Syouhei; Imabayashi, Hisano; Matoba, Tomoko; Toya, Chika; Watanabe, Kosuke; Yoshizuka, Kazuharu

    2008-02-15

    A urinary protein assay has been investigated, employing a micro-flow injection analysis (muFIA) combined with an adsorptive separation of protein from analyte. The adsorptive separation part of protein in the artificial urine with ceramic hydroxyapatite is integrated on the muFIA chip, since the interference of other components coexisting in urine occurs in the conventional FIA system. The typical FI peak can be obtained following the adsorption-elution process of the protein prior to the detection, and the protein concentration in artificial urine can be quantitatively determined.

  14. Comparison of Two Commercial Automated Nucleic Acid Extraction and Integrated Quantitation Real-Time PCR Platforms for the Detection of Cytomegalovirus in Plasma

    PubMed Central

    Tsai, Huey-Pin; Tsai, You-Yuan; Lin, I-Ting; Kuo, Pin-Hwa; Chen, Tsai-Yun; Chang, Kung-Chao; Wang, Jen-Ren

    2016-01-01

    Quantitation of cytomegalovirus (CMV) viral load in the transplant patients has become a standard practice for monitoring the response to antiviral therapy. The cut-off values of CMV viral load assays for preemptive therapy are different due to the various assay designs employed. To establish a sensitive and reliable diagnostic assay for preemptive therapy of CMV infection, two commercial automated platforms including m2000sp extraction system integrated the Abbott RealTime (m2000rt) and the Roche COBAS AmpliPrep for extraction integrated COBAS Taqman (CAP/CTM) were evaluated using WHO international CMV standards and 110 plasma specimens from transplant patients. The performance characteristics, correlation, and workflow of the two platforms were investigated. The Abbott RealTime assay correlated well with the Roche CAP/CTM assay (R2 = 0.9379, P<0.01). The Abbott RealTime assay exhibited higher sensitivity for the detection of CMV viral load, and viral load values measured with Abbott RealTime assay were on average 0.76 log10 IU/mL higher than those measured with the Roche CAP/CTM assay (P<0.0001). Workflow analysis on a small batch size at one time, using the Roche CAP/CTM platform had a shorter hands-on time than the Abbott RealTime platform. In conclusion, these two assays can provide reliable data for different purpose in a clinical virology laboratory setting. PMID:27494707

  15. A novel approach for evaluating the performance of real time quantitative loop-mediated isothermal amplification-based methods.

    PubMed

    Nixon, Gavin J; Svenstrup, Helle F; Donald, Carol E; Carder, Caroline; Stephenson, Judith M; Morris-Jones, Stephen; Huggett, Jim F; Foy, Carole A

    2014-12-01

    Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR). There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These 'isothermal' methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT), akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP) assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.

  16. Evaluation of Hologic Aptima HIV-1 Quant Dx Assay on the Panther System on HIV Subtypes

    PubMed Central

    Hack, Holly R.; Nair, Sangeetha V.; Worlock, Andrew; Malia, Jennifer A.; Peel, Sheila A.; Jagodzinski, Linda L.

    2016-01-01

    Quantitation of the HIV-1 viral load in plasma is the current standard of care for clinical monitoring of HIV-infected individuals undergoing antiretroviral therapy. This study evaluated the analytical and clinical performances of the Aptima HIV-1 Quant Dx assay (Hologic, San Diego, CA) for monitoring viral load by using 277 well-characterized subtype samples, including 171 cultured virus isolates and 106 plasma samples from 35 countries, representing all major HIV subtypes, recombinants, and circulating recombinant forms (CRFs) currently in circulation worldwide. Linearity of the Aptima assay was tested on each of 6 major HIV-1 subtypes (A, B, C, D, CRF01_AE, and CRF02_AG) and demonstrated an R2 value of ≥0.996. The performance of the Aptima assay was also compared to those of the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 v.2 (CAP/CTM) and Abbott m2000 RealTime HIV-1 (RealTime) assays on all subtype samples. The Aptima assay values averaged 0.21 log higher than the CAP/CTM values and 0.30 log higher than the RealTime values, and the values were >0.4 log higher than CAP/CTM values for subtypes F and G and than RealTime values for subtypes C, F, and G and CRF02_AG. Two samples demonstrated results with >1-log differences from RealTime results. When the data were adjusted by the average difference, 94.9% and 87.0% of Aptima results fell within 0.5 log of the CAP/CTM and RealTime results, respectively. The linearity and accuracy of the Aptima assay in correctly quantitating all major HIV-1 subtypes, coupled with the completely automated format and high throughput of the Panther system, make this system well suited for reliable measurement of viral load in the clinical laboratory. PMID:27510829

  17. Evaluation of Hologic Aptima HIV-1 Quant Dx Assay on the Panther System on HIV Subtypes.

    PubMed

    Manak, Mark M; Hack, Holly R; Nair, Sangeetha V; Worlock, Andrew; Malia, Jennifer A; Peel, Sheila A; Jagodzinski, Linda L

    2016-10-01

    Quantitation of the HIV-1 viral load in plasma is the current standard of care for clinical monitoring of HIV-infected individuals undergoing antiretroviral therapy. This study evaluated the analytical and clinical performances of the Aptima HIV-1 Quant Dx assay (Hologic, San Diego, CA) for monitoring viral load by using 277 well-characterized subtype samples, including 171 cultured virus isolates and 106 plasma samples from 35 countries, representing all major HIV subtypes, recombinants, and circulating recombinant forms (CRFs) currently in circulation worldwide. Linearity of the Aptima assay was tested on each of 6 major HIV-1 subtypes (A, B, C, D, CRF01_AE, and CRF02_AG) and demonstrated an R(2) value of ≥0.996. The performance of the Aptima assay was also compared to those of the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 v.2 (CAP/CTM) and Abbott m2000 RealTime HIV-1 (RealTime) assays on all subtype samples. The Aptima assay values averaged 0.21 log higher than the CAP/CTM values and 0.30 log higher than the RealTime values, and the values were >0.4 log higher than CAP/CTM values for subtypes F and G and than RealTime values for subtypes C, F, and G and CRF02_AG. Two samples demonstrated results with >1-log differences from RealTime results. When the data were adjusted by the average difference, 94.9% and 87.0% of Aptima results fell within 0.5 log of the CAP/CTM and RealTime results, respectively. The linearity and accuracy of the Aptima assay in correctly quantitating all major HIV-1 subtypes, coupled with the completely automated format and high throughput of the Panther system, make this system well suited for reliable measurement of viral load in the clinical laboratory. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Single Laboratory Comparison of Quantitative Real-time PCR Assays for the Detection of Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) assays available to detect and enumerate fecal pollution in ambient waters. Each assay employs distinct primers and probes that target different rRNA genes and microorganisms leading to potential variations in concentration es...

  19. Automation of the ELISpot assay for high-throughput detection of antigen-specific T-cell responses.

    PubMed

    Almeida, Coral-Ann M; Roberts, Steven G; Laird, Rebecca; McKinnon, Elizabeth; Ahmed, Imran; Pfafferott, Katja; Turley, Joanne; Keane, Niamh M; Lucas, Andrew; Rushton, Ben; Chopra, Abha; Mallal, Simon; John, Mina

    2009-05-15

    The enzyme linked immunospot (ELISpot) assay is a fundamental tool in cellular immunology, providing both quantitative and qualitative information on cellular cytokine responses to defined antigens. It enables the comprehensive screening of patient derived peripheral blood mononuclear cells to reveal the antigenic restriction of T-cell responses and is an emerging technique in clinical laboratory investigation of certain infectious diseases. As with all cellular-based assays, the final results of the assay are dependent on a number of technical variables that may impact precision if not highly standardised between operators. When studies that are large scale or using multiple antigens are set up manually, these assays may be labour intensive, have many manual handling steps, are subject to data and sample integrity failure and may show large inter-operator variability. Here we describe the successful automated performance of the interferon (IFN)-gamma ELISpot assay from cell counting through to electronic capture of cytokine quantitation and present the results of a comparison between automated and manual performance of the ELISpot assay. The mean number of spot forming units enumerated by both methods for limiting dilutions of CMV, EBV and influenza (CEF)-derived peptides in six healthy individuals were highly correlated (r>0.83, p<0.05). The precision results from the automated system compared favourably with the manual ELISpot and further ensured electronic tracking, increased through-put and reduced turnaround time.

  20. A Data Analysis Pipeline Accounting for Artifacts in Tox21 Quantitative High-Throughput Screening Assays

    PubMed Central

    Hsieh, Jui-Hua; Sedykh, Alexander; Huang, Ruili; Xia, Menghang; Tice, Raymond R.

    2015-01-01

    A main goal of the U.S. Tox21 program is to profile a 10K-compound library for activity against a panel of stress-related and nuclear receptor signaling pathway assays using a quantitative high-throughput screening (qHTS) approach. However, assay artifacts, including nonreproducible signals and assay interference (e.g., autofluorescence), complicate compound activity interpretation. To address these issues, we have developed a data analysis pipeline that includes an updated signal noise–filtering/curation protocol and an assay interference flagging system. To better characterize various types of signals, we adopted a weighted version of the area under the curve (wAUC) to quantify the amount of activity across the tested concentration range in combination with the assay-dependent point-of-departure (POD) concentration. Based on the 32 Tox21 qHTS assays analyzed, we demonstrate that signal profiling using wAUC affords the best reproducibility (Pearson's r = 0.91) in comparison with the POD (0.82) only or the AC50 (i.e., half-maximal activity concentration, 0.81). Among the activity artifacts characterized, cytotoxicity is the major confounding factor; on average, about 8% of Tox21 compounds are affected, whereas autofluorescence affects less than 0.5%. To facilitate data evaluation, we implemented two graphical user interface applications, allowing users to rapidly evaluate the in vitro activity of Tox21 compounds. PMID:25904095

  1. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith

    2014-11-15

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCVmore » DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.« less

  2. A Data Analysis Pipeline Accounting for Artifacts in Tox21 Quantitative High-Throughput Screening Assays.

    PubMed

    Hsieh, Jui-Hua; Sedykh, Alexander; Huang, Ruili; Xia, Menghang; Tice, Raymond R

    2015-08-01

    A main goal of the U.S. Tox21 program is to profile a 10K-compound library for activity against a panel of stress-related and nuclear receptor signaling pathway assays using a quantitative high-throughput screening (qHTS) approach. However, assay artifacts, including nonreproducible signals and assay interference (e.g., autofluorescence), complicate compound activity interpretation. To address these issues, we have developed a data analysis pipeline that includes an updated signal noise-filtering/curation protocol and an assay interference flagging system. To better characterize various types of signals, we adopted a weighted version of the area under the curve (wAUC) to quantify the amount of activity across the tested concentration range in combination with the assay-dependent point-of-departure (POD) concentration. Based on the 32 Tox21 qHTS assays analyzed, we demonstrate that signal profiling using wAUC affords the best reproducibility (Pearson's r = 0.91) in comparison with the POD (0.82) only or the AC(50) (i.e., half-maximal activity concentration, 0.81). Among the activity artifacts characterized, cytotoxicity is the major confounding factor; on average, about 8% of Tox21 compounds are affected, whereas autofluorescence affects less than 0.5%. To facilitate data evaluation, we implemented two graphical user interface applications, allowing users to rapidly evaluate the in vitro activity of Tox21 compounds. © 2015 Society for Laboratory Automation and Screening.

  3. Improving validation methods for molecular diagnostics: application of Bland-Altman, Deming and simple linear regression analyses in assay comparison and evaluation for next-generation sequencing.

    PubMed

    Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L

    2018-02-01

    A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R 2 ), using R 2 as the primary metric of assay agreement. However, the use of R 2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    PubMed

    Li, Jian-Feng; Bush, Jenifer; Xiong, Yan; Li, Lei; McCormack, Matthew

    2011-01-01

    Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  5. Quantitative real-time RT-PCR assay for research studies on enterovirus infections in the central nervous system.

    PubMed

    Volle, Romain; Nourrisson, Céline; Mirand, Audrey; Regagnon, Christel; Chambon, Martine; Henquell, Cécile; Bailly, Jean-Luc; Peigue-Lafeuille, Hélène; Archimbaud, Christine

    2012-10-01

    Human enteroviruses are the most frequent cause of aseptic meningitis and are involved in other neurological infections. Qualitative detection of enterovirus genomes in cerebrospinal fluid is a prerequisite in diagnosing neurological diseases. The pathogenesis of these infections is not well understood and research in this domain would benefit from the availability of a quantitative technique to determine viral load in clinical specimens. This study describes the development of a real-time RT-qPCR assay using hydrolysis TaqMan probe and a competitive RNA internal control. The assay has high specificity and can be used for a large sample of distinct enterovirus strains and serotypes. The reproducible limit of detection was estimated at 1875 copies/ml of quantitative standards composed of RNA transcripts obtained from a cloned echovirus 30 genome. Technical performance was unaffected by the introduction of a competitive RNA internal control before RNA extraction. The mean enterovirus RNA concentration in an evaluation series of 15 archived cerebrospinal fluid specimens was determined at 4.78 log(10)copies/ml for the overall sample. The sensitivity and reproducibility of the real time RT-qPCR assay used in combination with the internal control to monitor the overall specimen process make it a valuable tool with applied research into enterovirus infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Automation of laboratory testing for infectious diseases using the polymerase chain reaction-- our past, our present, our future.

    PubMed

    Jungkind, D

    2001-01-01

    While it is an extremely powerful and versatile assay method, polymerase chain reaction (PCR) can be a labor-intensive process. Since the advent of commercial test kits from Roche and the semi-automated microwell Amplicor system, PCR has become an increasingly useful and widespread clinical tool. However, more widespread acceptance of molecular testing will depend upon automation that allows molecular assays to enter the routine clinical laboratory. The forces driving the need for automated PCR are the requirements for diagnosis and treatment of chronic viral diseases, economic pressures to develop more automated and less expensive test procedures similar to those in the clinical chemistry laboratories, and a shortage in many areas of qualified laboratory personnel trained in the types of manual procedures used in past decades. The automated Roche COBAS AMPLICOR system has automated the amplification and detection process. Specimen preparation remains the most labor-intensive part of the PCR testing process, accounting for the majority of the hands-on-time in most of the assays. A new automated specimen preparation system, the COBAS AmpliPrep, was evaluated. The system automatically releases the target nucleic acid, captures the target with specific oligonucleotide probes, which become attached to magnetic beads via a biotin-streptavidin binding reaction. Once attached to the beads, the target is purified and concentrated automatically. Results of 298 qualitative and 57 quantitative samples representing a wide range of virus concentrations analyzed after the COBAS AmpliPrep and manual specimen preparation methods, showed that there was no significant difference in qualitative or quantitative hepatitis C virus (HCV) assay performance, respectively. The AmpliPrep instrument decreased the time required to prepare serum or plasma samples for HCV PCR to under 1 min per sample. This was a decrease of 76% compared to the manual specimen preparation method. Systems that can analyze more samples with higher throughput and that can answer more questions about the nature of the microbes that we can presently only detect and quantitate will be needed in the future.

  7. Evaluation of the Aptima HIV-1 Quant Dx Assay for HIV-1 RNA Quantitation in Different Biological Specimen Types.

    PubMed

    Yek, Christina; Massanella, Marta; Peling, Tashi; Lednovich, Kristen; Nair, Sangeetha V; Worlock, Andrew; Vargas, Milenka; Gianella, Sara; Ellis, Ronald J; Strain, Matthew C; Busch, Michael P; Nugent, C Thomas; Richman, Douglas D

    2017-08-01

    The search for a cure for HIV infection has highlighted the need for increasingly sensitive and precise assays to measure viral burden in various tissues and body fluids. We describe the application of a standardized assay for HIV-1 RNA in multiple specimen types. The fully automated Aptima HIV-1 Quant Dx assay (Aptima assay) is FDA cleared for blood plasma HIV-1 RNA quantitation. In this study, the Aptima assay was applied for the quantitation of HIV RNA in peripheral blood mononuclear cells (PBMCs; n = 72), seminal plasma ( n = 20), cerebrospinal fluid (CSF; n = 36), dried blood spots (DBS; n = 104), and dried plasma spots (DPS; n = 104). The Aptima assay was equivalent to or better than commercial assays or validated in-house assays for the quantitation of HIV RNA in CSF and seminal plasma. For PBMC specimens, the sensitivity of the Aptima assay in the detection of HIV RNA decayed as background uninfected PBMC counts increased; proteinase K treatment demonstrated some benefit in restoring signal at higher levels of background PBMCs. Finally, the Aptima assay yielded 100% detection rates of DBS in participants with plasma HIV RNA levels of ≥35 copies/ml and 100% detection rates of DPS in participants with plasma HIV RNA levels of ≥394 copies/ml. The Aptima assay can be applied to a variety of specimens from HIV-infected subjects to measure HIV RNA for studies of viral persistence and cure strategies. It can also detect HIV in dried blood and plasma specimens, which may be of benefit in resource-limited settings.

  8. An Optimized Microplate Assay System for Quantitative Evaluation of Plant Cell Wall Degrading Enzyme Activity of Fungal Culture Extracts

    USDA-ARS?s Scientific Manuscript database

    Developing enzyme cocktails for cellulosic biomass hydrolysis complementary to current cellulase systems is a critical step needed for economically viable biofuels production. Recent genomic analysis indicates that some plant pathogenic fungi are likely a largely untapped resource in which to prospe...

  9. A quantitative comet infection assay for influenza virus

    PubMed Central

    Lindsay, Stephen M.; Timm, Andrea; Yin, John

    2011-01-01

    Summary The virus comet assay is a cell-based virulence assay used to evaluate an antiviral drug or antibody against a target virus. The comet assay differs from the plaque assay in allowing spontaneous flows in 6-well plates to spread virus. When implemented quantitatively the comet assay has been shown to have an order-of-magnitude greater sensitivity to antivirals than the plaque assay. In this study, a quantitative comet assay for influenza virus is demonstrated, and is shown to have a 13-fold increase in sensitivity to ribavirin. AX4 cells (MDCK cells with increased surface concentration of α2–6 sialic acid, the influenza virus receptor) have reduced the comet size variability relative to MDCK cells, making them a better host cell for use in this assay. Because of enhanced antiviral sensitivity in flow-based assays, less drug is required, which could lead to lower reagent costs, reduced cytotoxicity, and fewer false-negative drug screen results. The comet assay also serves as a readout of flow conditions in the well. Observations from comets formed at varying humidity levels indicate a role for evaporation in the mechanism of spontaneous fluid flow in wells. PMID:22155578

  10. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes

    EPA Science Inventory

    Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...

  11. Development of an SRM method for absolute quantitation of MYDGF/C19orf10 protein.

    PubMed

    Dwivedi, Ravi C; Krokhin, Oleg V; El-Gabalawy, Hani S; Wilkins, John A

    2016-06-01

    To develop a MS-based selected reaction monitoring (SRM) assay for quantitation of myeloid-derived growth factor (MYDGF) formerly chromosome 19 open reading frame (C19orf10). Candidate reporter peptides were identified in digests of recombinant MYDGF. Isotopically labeled forms of these reporter peptides were employed as internal standards for assay development. Two reference peptides were selected SYLYFQTFFK and GAEIEYAMAYSK with respective LOQ of 42 and 380 attomole per injection. Application of the assay to human serum and synovial fluid determined that the assay sensitivity was reduced and quantitation was not achievable. However, the partial depletion of albumin and immunoglobulin from synovial fluids provided estimates of 300-650 femtomoles per injection (0.7-1.6 nanomolar (nM) fluid concentrations) in three of the six samples analyzed. A validated sensitive assay for the quantitation of MYDGF in biological fluids was developed. However, the endogenous levels of MYDGF in such fluids are at or below the current levels of quantitation. The levels of MYDGF are lower than those previously reported using an ELISA. The current results suggest that additional steps may be required to remove high abundance proteins or to enrich MYDGF for SRM-based quantitation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A low cost mobile phone dark-field microscope for nanoparticle-based quantitative studies.

    PubMed

    Sun, Dali; Hu, Tony Y

    2018-01-15

    Dark-field microscope (DFM) analysis of nanoparticle binding signal is highly useful for a variety of research and biomedical applications, but current applications for nanoparticle quantification rely on expensive DFM systems. The cost, size, limited robustness of these DFMs limits their utility for non-laboratory settings. Most nanoparticle analyses use high-magnification DFM images, which are labor intensive to acquire and subject to operator bias. Low-magnification DFM image capture is faster, but is subject to background from surface artifacts and debris, although image processing can partially compensate for background signal. We thus mated an LED light source, a dark-field condenser and a 20× objective lens with a mobile phone camera to create an inexpensive, portable and robust DFM system suitable for use in non-laboratory conditions. This proof-of-concept mobile DFM device weighs less than 400g and costs less than $2000, but analysis of images captured with this device reveal similar nanoparticle quantitation results to those acquired with a much larger and more expensive desktop DFMM system. Our results suggest that similar devices may be useful for quantification of stable, nanoparticle-based activity and quantitation assays in resource-limited areas where conventional assay approaches are not practical. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Automated reagent-dispensing system for microfluidic cell biology assays.

    PubMed

    Ly, Jimmy; Masterman-Smith, Michael; Ramakrishnan, Ravichandran; Sun, Jing; Kokubun, Brent; van Dam, R Michael

    2013-12-01

    Microscale systems that enable measurements of oncological phenomena at the single-cell level have a great capacity to improve therapeutic strategies and diagnostics. Such measurements can reveal unprecedented insights into cellular heterogeneity and its implications into the progression and treatment of complicated cellular disease processes such as those found in cancer. We describe a novel fluid-delivery platform to interface with low-cost microfluidic chips containing arrays of microchambers. Using multiple pairs of needles to aspirate and dispense reagents, the platform enables automated coating of chambers, loading of cells, and treatment with growth media or other agents (e.g., drugs, fixatives, membrane permeabilizers, washes, stains, etc.). The chips can be quantitatively assayed using standard fluorescence-based immunocytochemistry, microscopy, and image analysis tools, to determine, for example, drug response based on differences in protein expression and/or activation of cellular targets on an individual-cell level. In general, automation of fluid and cell handling increases repeatability, eliminates human error, and enables increased throughput, especially for sophisticated, multistep assays such as multiparameter quantitative immunocytochemistry. We report the design of the automated platform and compare several aspects of its performance to manually-loaded microfluidic chips.

  14. Quantitative High-Throughput Screening and Orthogonal Assays to Identify Modulators of the Vitamin D Receptor (SETAC)

    EPA Science Inventory

    The Vitamin D nuclear receptor (VDR) is a selective, ligand-inducible transcription factor involved in numerous biological processes such as cell proliferation, differentiation, detoxification, calcium homeostasis, neurodevelopment, immune system regulation, cardiovascular functi...

  15. Capillary nano-immunoassays: advancing quantitative proteomics analysis, biomarker assessment, and molecular diagnostics.

    PubMed

    Chen, Jin-Qiu; Wakefield, Lalage M; Goldstein, David J

    2015-06-06

    There is an emerging demand for the use of molecular profiling to facilitate biomarker identification and development, and to stratify patients for more efficient treatment decisions with reduced adverse effects. In the past decade, great strides have been made to advance genomic, transcriptomic and proteomic approaches to address these demands. While there has been much progress with these large scale approaches, profiling at the protein level still faces challenges due to limitations in clinical sample size, poor reproducibility, unreliable quantitation, and lack of assay robustness. A novel automated capillary nano-immunoassay (CNIA) technology has been developed. This technology offers precise and accurate measurement of proteins and their post-translational modifications using either charge-based or size-based separation formats. The system not only uses ultralow nanogram levels of protein but also allows multi-analyte analysis using a parallel single-analyte format for increased sensitivity and specificity. The high sensitivity and excellent reproducibility of this technology make it particularly powerful for analysis of clinical samples. Furthermore, the system can distinguish and detect specific protein post-translational modifications that conventional Western blot and other immunoassays cannot easily capture. This review will summarize and evaluate the latest progress to optimize the CNIA system for comprehensive, quantitative protein and signaling event characterization. It will also discuss how the technology has been successfully applied in both discovery research and clinical studies, for signaling pathway dissection, proteomic biomarker assessment, targeted treatment evaluation and quantitative proteomic analysis. Lastly, a comparison of this novel system with other conventional immuno-assay platforms is performed.

  16. Evaluation of Multiplex Type-Specific Real-Time PCR Assays Using the LightCycler and Joint Biological Agent Identification and Diagnostic System Platforms for Detection and Quantitation of Adult Human Respiratory Adenoviruses

    DTIC Science & Technology

    2010-04-01

    53592), Escherichia coli, Klebsiella pneu- moniae (ATCC 13883), Pseudomonas aeruginosa (ATCC 97), Mycoplasma pneu- moniae, and Legionella pneumophila... Legionella pneumophila. Additionally, when we tested all samples with the multiplex assays, we did not see any cross- reactivity (data not shown...Chlamydophila pneumoniae Escherichia coli Klebsiella pneumoniae Pseudomonas aeruginosa Mycoplasma pneumoniae Legionella pneumophila VOL. 48, 2010

  17. Quantitation of HBV DNA in human serum using a branched DNA (bDNA) signal amplification assay.

    PubMed

    Hendricks, D A; Stowe, B J; Hoo, B S; Kolberg, J; Irvine, B D; Neuwald, P D; Urdea, M S; Perrillo, R P

    1995-11-01

    The aim of this study was to establish the performance characteristics of a nonradioisotopic branched DNA (bDNA) signal amplification assay for quantitation of hepatitis B virus (HBV) DNA in human serum. Quantitation was determined from a standard curve and expressed as HBV DNA equivalents/mL (Eq/mL; 285,000 Eq = 1 pg of double stranded HBV DNA). The bDNA assay exhibited a nearly four log dynamic range of quantitation and an analytical detection limit of approximately 100,000 Eq/mL. To ensure a specificity of 99.7%, the quantitation limit was set at 700,000 Eq/mL. The interassay percent coefficient of variance for quantification values ranged from 10% to 15% when performed by novice users with different sets of reagents. Using the bDNA assay, HBV DNA was detected in 94% to 100% of hepatitis B e antigen-positive specimens and 27% to 31% of hepatitis B e antigen-negative specimens from chronic HBV-infected patients. The bDNA assay may be useful as a prognostic and therapy monitoring tool for the management of HBV-infected patients undergoing antiviral treatment.

  18. The use of immunohistochemistry for biomarker assessment--can it compete with other technologies?

    PubMed

    Dunstan, Robert W; Wharton, Keith A; Quigley, Catherine; Lowe, Amanda

    2011-10-01

    A morphology-based assay such as immunohistochemistry (IHC) should be a highly effective means to define the expression of a target molecule of interest, especially if the target is a protein. However, over the past decade, IHC as a platform for biomarkers has been challenged by more quantitative molecular assays with reference standards but that lack morphologic context. For IHC to be considered a "top-tier" biomarker assay, it must provide truly quantitative data on par with non-morphologic assays, which means it needs to be run with reference standards. However, creating such standards for IHC will require optimizing all aspects of tissue collection, fixation, section thickness, morphologic criteria for assessment, staining processes, digitization of images, and image analysis. This will also require anatomic pathology to evolve from a discipline that is descriptive to one that is quantitative. A major step in this transformation will be replacing traditional ocular microscopes with computer monitors and whole slide images, for without digitization, there can be no accurate quantitation; without quantitation, there can be no standardization; and without standardization, the value of morphology-based IHC assays will not be realized.

  19. Multiplexed and Microparticle-based Analyses: Quantitative Tools for the Large-Scale Analysis of Biological Systems

    PubMed Central

    Nolan, John P.; Mandy, Francis

    2008-01-01

    While the term flow cytometry refers to the measurement of cells, the approach of making sensitive multiparameter optical measurements in a flowing sample stream is a very general analytical approach. The past few years have seen an explosion in the application of flow cytometry technology for molecular analysis and measurements using micro-particles as solid supports. While microsphere-based molecular analyses using flow cytometry date back three decades, the need for highly parallel quantitative molecular measurements that has arisen from various genomic and proteomic advances has driven the development in particle encoding technology to enable highly multiplexed assays. Multiplexed particle-based immunoassays are now common place, and new assays to study genes, protein function, and molecular assembly. Numerous efforts are underway to extend the multiplexing capabilities of microparticle-based assays through new approaches to particle encoding and analyte reporting. The impact of these developments will be seen in the basic research and clinical laboratories, as well as in drug development. PMID:16604537

  20. Quantitative Assays for RAS Pathway Proteins and Phosphorylation States

    Cancer.gov

    The NCI CPTAC program is applying its expertise in quantitative proteomics to develop assays for RAS pathway proteins. Targets include key phosphopeptides that should increase our understanding of how the RAS pathway is regulated.

  1. Evaluation of the Aptima HIV-1 Quant Dx Assay for HIV-1 RNA Quantitation in Different Biological Specimen Types

    PubMed Central

    Yek, Christina; Massanella, Marta; Peling, Tashi; Lednovich, Kristen; Nair, Sangeetha V.; Worlock, Andrew; Vargas, Milenka; Gianella, Sara; Ellis, Ronald J.; Strain, Matthew C.; Busch, Michael P.; Nugent, C. Thomas

    2017-01-01

    ABSTRACT The search for a cure for HIV infection has highlighted the need for increasingly sensitive and precise assays to measure viral burden in various tissues and body fluids. We describe the application of a standardized assay for HIV-1 RNA in multiple specimen types. The fully automated Aptima HIV-1 Quant Dx assay (Aptima assay) is FDA cleared for blood plasma HIV-1 RNA quantitation. In this study, the Aptima assay was applied for the quantitation of HIV RNA in peripheral blood mononuclear cells (PBMCs; n = 72), seminal plasma (n = 20), cerebrospinal fluid (CSF; n = 36), dried blood spots (DBS; n = 104), and dried plasma spots (DPS; n = 104). The Aptima assay was equivalent to or better than commercial assays or validated in-house assays for the quantitation of HIV RNA in CSF and seminal plasma. For PBMC specimens, the sensitivity of the Aptima assay in the detection of HIV RNA decayed as background uninfected PBMC counts increased; proteinase K treatment demonstrated some benefit in restoring signal at higher levels of background PBMCs. Finally, the Aptima assay yielded 100% detection rates of DBS in participants with plasma HIV RNA levels of ≥35 copies/ml and 100% detection rates of DPS in participants with plasma HIV RNA levels of ≥394 copies/ml. The Aptima assay can be applied to a variety of specimens from HIV-infected subjects to measure HIV RNA for studies of viral persistence and cure strategies. It can also detect HIV in dried blood and plasma specimens, which may be of benefit in resource-limited settings. PMID:28592548

  2. Rapid method for protein quantitation by Bradford assay after elimination of the interference of polysorbate 80.

    PubMed

    Cheng, Yongfeng; Wei, Haiming; Sun, Rui; Tian, Zhigang; Zheng, Xiaodong

    2016-02-01

    Bradford assay is one of the most common methods for measuring protein concentrations. However, some pharmaceutical excipients, such as detergents, interfere with Bradford assay even at low concentrations. Protein precipitation can be used to overcome sample incompatibility with protein quantitation. But the rate of protein recovery caused by acetone precipitation is only about 70%. In this study, we found that sucrose not only could increase the rate of protein recovery after 1 h acetone precipitation, but also did not interfere with Bradford assay. So we developed a method for rapid protein quantitation in protein drugs even if they contained interfering substances. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Quantitative PCR assay to determine prevalence and intensity of MSX (Haplosporidium nelsoni) in North Carolina and Rhode Island oysters Crassostrea virginica.

    PubMed

    Wilbur, Ami E; Ford, Susan E; Gauthier, Julie D; Gomez-Chiarri, Marta

    2012-12-27

    The continuing challenges to the management of both wild and cultured eastern oyster Crassostrea virginica populations resulting from protozoan parasites has stimulated interest in the development of molecular assays for their detection and quantification. For Haplosporidium nelsoni, the causative agent of multinucleated sphere unknown (MSX) disease, diagnostic evaluations depend extensively on traditional but laborious histological approaches and more recently on rapid and sensitive (but not quantitative) end-point polymerase chain reaction (PCR) assays. Here, we describe the development and application of a quantitative PCR (qPCR) assay for H. nelsoni using an Applied Biosystems TaqMan® assay designed with minor groove binder (MGB) probes. The assay was highly sensitive, detecting as few as 20 copies of cloned target DNA. Histologically evaluated parasite density was significantly correlated with the quantification cycle (Cq), regardless of whether quantification was categorical (r2 = 0.696, p < 0.0001) or quantitative (r2 = 0.797, p < 0.0001). Application in field studies conducted in North Carolina, USA (7 locations), revealed widespread occurrence of the parasite with moderate to high intensities noted in some locations. In Rhode Island, USA, application of the assay on oysters from 2 locations resulted in no positives.

  4. Clinical performance of the LCx HCV RNA quantitative assay.

    PubMed

    Bertuzis, Rasa; Hardie, Alison; Hottentraeger, Barbara; Izopet, Jacques; Jilg, Wolfgang; Kaesdorf, Barbara; Leckie, Gregor; Leete, Jean; Perrin, Luc; Qiu, Chunfu; Ran, Iris; Schneider, George; Simmonds, Peter; Robinson, John

    2005-02-01

    This study was conducted to assess the performance of the Abbott laboratories LCx HCV RNA Quantitative Assay (LCx assay) in the clinical setting. Four clinical laboratories measured LCx assay precision, specificity, and linearity. In addition, a method comparison was conducted between the LCx assay and the Roche HCV Amplicor Monitor, version 2.0 (Roche Monitor 2.0) and the Bayer VERSANT HCV RNA 3.0 Assay (Bayer bDNA 3.0) quantitative assays. For precision, the observed LCx assay intra-assay standard deviation (S.D.) was 0.060-0.117 log IU/ml, the inter-assay S.D. was 0.083-0.133 log IU/ml, the inter-lot S.D. was 0.105-0.177 log IU/ml, the inter-site S.D. was 0.099-0.190 log IU/ml, and the total S.D. was 0.113-0.190 log IU/ml. The specificity of the LCx assay was 99.4% (542/545; 95% CI, 98.4-99.9%). For linearity, the mean pooled LCx assay results were linear (r=0.994) over the range of the panel (2.54-5.15 log IU/ml). A method comparison demonstrated a correlation coefficient of 0.881 between the LCx assay and Roche Monitor 2.0, 0.872 between the LCx assay and Bayer bDNA 3.0, and 0.870 between Roche Monitor 2.0 and Bayer bDNA 3.0. The mean LCx assay result was 0.04 log IU/ml (95% CI, -0.08, 0.01) lower than the mean Roche Monitor 2.0 result, but 0.57 log IU/ml (95% CI, 0.53, 0.61) higher than the mean Bayer bDNA 3.0 result. The mean Roche Monitor 2.0 result was 0.60 log IU/ml (95% CI, 0.56, 0.65) higher than the mean Bayer bDNA 3.0 result. The LCx assay quantitated genotypes 1-4 with statistical equivalency. The vast majority (98.9%, 278/281) of paired LCx assay-Roche Monitor 2.0 specimen results were within 1 log IU/ml. Similarly, 86.6% (240/277) of paired LCx assay and Bayer bDNA 3.0 specimen results were within 1 log, as were 85.6% (237/277) of paired Roche Monitor 2.0 and Bayer specimen results. These data demonstrate that the LCx assay may be used for quantitation of HCV RNA in HCV-infected individuals.

  5. Porous Silicon Antibody Microarrays for Quantitative Analysis: Measurement of Free and Total PSA in Clinical Plasma Samples

    PubMed Central

    Tojo, Axel; Malm, Johan; Marko-Varga, György; Lilja, Hans; Laurell, Thomas

    2014-01-01

    The antibody microarrays have become widespread, but their use for quantitative analyses in clinical samples has not yet been established. We investigated an immunoassay based on nanoporous silicon antibody microarrays for quantification of total prostate-specific-antigen (PSA) in 80 clinical plasma samples, and provide quantitative data from a duplex microarray assay that simultaneously quantifies free and total PSA in plasma. To further develop the assay the porous silicon chips was placed into a standard 96-well microtiter plate for higher throughput analysis. The samples analyzed by this quantitative microarray were 80 plasma samples obtained from men undergoing clinical PSA testing (dynamic range: 0.14-44ng/ml, LOD: 0.14ng/ml). The second dataset, measuring free PSA (dynamic range: 0.40-74.9ng/ml, LOD: 0.47ng/ml) and total PSA (dynamic range: 0.87-295ng/ml, LOD: 0.76ng/ml), was also obtained from the clinical routine. The reference for the quantification was a commercially available assay, the ProStatus PSA Free/Total DELFIA. In an analysis of 80 plasma samples the microarray platform performs well across the range of total PSA levels. This assay might have the potential to substitute for the large-scale microtiter plate format in diagnostic applications. The duplex assay paves the way for a future quantitative multiplex assay, which analyses several prostate cancer biomarkers simultaneously. PMID:22921878

  6. Detection of the downy mildew pathogens of spinach (Peronospora effusa) and beet (P. schachtii) using spore traps and quantitative PCR assays

    USDA-ARS?s Scientific Manuscript database

    Downy mildew of spinach, caused by Peronospora effusa, is a disease constraint on spinach production worldwide. The aim of this study was to develop a real-time quantitative PCR assay for detection of airborne inoculum of P. effusa in California. This type of assay may, in combination with disease-...

  7. Validation of the Filovirus Plaque Assay for Use in Preclinical Studies

    PubMed Central

    Shurtleff, Amy C.; Bloomfield, Holly A.; Mort, Shannon; Orr, Steven A.; Audet, Brian; Whitaker, Thomas; Richards, Michelle J.; Bavari, Sina

    2016-01-01

    A plaque assay for quantitating filoviruses in virus stocks, prepared viral challenge inocula and samples from research animals has recently been fully characterized and standardized for use across multiple institutions performing Biosafety Level 4 (BSL-4) studies. After standardization studies were completed, Good Laboratory Practices (GLP)-compliant plaque assay method validation studies to demonstrate suitability for reliable and reproducible measurement of the Marburg Virus Angola (MARV) variant and Ebola Virus Kikwit (EBOV) variant commenced at the United States Army Medical Research Institute of Infectious Diseases (USAMRIID). The validation parameters tested included accuracy, precision, linearity, robustness, stability of the virus stocks and system suitability. The MARV and EBOV assays were confirmed to be accurate to ±0.5 log10 PFU/mL. Repeatability precision, intermediate precision and reproducibility precision were sufficient to return viral titers with a coefficient of variation (%CV) of ≤30%, deemed acceptable variation for a cell-based bioassay. Intraclass correlation statistical techniques for the evaluation of the assay’s precision when the same plaques were quantitated by two analysts returned values passing the acceptance criteria, indicating high agreement between analysts. The assay was shown to be accurate and specific when run on Nonhuman Primates (NHP) serum and plasma samples diluted in plaque assay medium, with negligible matrix effects. Virus stocks demonstrated stability for freeze-thaw cycles typical of normal usage during assay retests. The results demonstrated that the EBOV and MARV plaque assays are accurate, precise and robust for filovirus titration in samples associated with the performance of GLP animal model studies. PMID:27110807

  8. Quantitative Assay of Pyrazofurin a New Antiviral, Antitumor Antibiotic1

    PubMed Central

    Westhead, J. E.; Price, H. D.

    1974-01-01

    Pyrazofurin, a carbon-linked nucleoside, has been previously reported to possess antiviral and antitumor activity. The antagonistic effect of pyrazofurin against Neurospora crassa has been utilized to develop a quantitative assay for the compound. PMID:4275616

  9. Development of an Escherichia coli K12-specific quantitative polymerase chain reaction assay and DNA isolation suited to biofilms associated with iron drinking water pipe corrosion products.

    PubMed

    Lu, Jingrang; Gerke, Tammie L; Buse, Helen Y; Ashbolt, Nicholas J

    2014-12-01

    A quantitative polymerase chain reaction assay (115 bp amplicon) specific to Escherichia coli K12 with an ABI(TM) internal control was developed based on sequence data encoding the rfb gene cluster. Assay specificity was evaluated using three E. coli K12 strains (ATCC W3110, MG1655 & DH1), 24 non-K12 E. coli and 23 bacterial genera. The biofilm detection limit was 10(3) colony-forming units (CFU) E. coli K12 mL(-1), but required a modified protocol, which included a bio-blocker Pseudomonas aeruginosa with ethylenediaminetetraacetic acid buffered to pH 5 prior to cell lysis/DNA extraction. The novel protocol yielded the same sensitivity for drinking water biofilms associated with Fe3O4 (magnetite)-coated SiO2 (quartz) grains and biofilm-surface iron corrosion products from a drinking water distribution system. The novel DNA extraction protocol and specific E. coli K12 assay are sensitive and robust enough for detection and quantification within iron drinking water pipe biofilms, and are particularly well suited for studying enteric bacterial interactions within biofilms.

  10. Self-contained microfluidic systems: a review.

    PubMed

    Boyd-Moss, Mitchell; Baratchi, Sara; Di Venere, Martina; Khoshmanesh, Khashayar

    2016-08-16

    Microfluidic systems enable rapid diagnosis, screening and monitoring of diseases and health conditions using small amounts of biological samples and reagents. Despite these remarkable features, conventional microfluidic systems rely on bulky expensive external equipment, which hinders their utility as powerful analysis tools outside of research laboratories. 'Self-contained' microfluidic systems, which contain all necessary components to facilitate a complete assay, have been developed to address this limitation. In this review, we provide an in-depth overview of self-contained microfluidic systems. We categorise these systems based on their operating mechanisms into three major groups: passive, hand-powered and active. Several examples are provided to discuss the structure, capabilities and shortcomings of each group. In particular, we discuss the self-contained microfluidic systems enabled by active mechanisms, due to their unique capability for running multi-step and highly controllable diagnostic assays. Integration of self-contained microfluidic systems with the image acquisition and processing capabilities of smartphones, especially those equipped with accessory optical components, enables highly sensitive and quantitative assays, which are discussed. Finally, the future trends and possible solutions to expand the versatility of self-contained, stand-alone microfluidic platforms are outlined.

  11. Rapid Determination of Lymphogranuloma Venereum Serovars of Chlamydia trachomatis by Quantitative High-Resolution Melt Analysis (HRMA)

    PubMed Central

    Stevens, Matthew P.; Garland, Suzanne M.; Zaia, Angelo M.; Tabrizi, Sepehr N.

    2012-01-01

    A quantitative high-resolution melt analysis assay was developed to differentiate lymphogranuloma venereum-causing serovars of Chlamydia trachomatis (L1 to L3) from other C. trachomatis serovars (D to K). The detection limit of this assay is approximately 10 copies per reaction, comparable to the limits of other quantitative-PCR-based methods. PMID:22933594

  12. A microplate assay for quantitative evaluation of plant cell wall degrading enzymes

    USDA-ARS?s Scientific Manuscript database

    Developing enzyme cocktails for cellulosic biomass hydrolysis complementary to current cellulase systems is a critical step needed for economically viable biofuels production. Plant pathogenic fungi are a largely untapped resource in which to prospect for novel hydrolytic enzymes for biomass convers...

  13. Comparative study of β-glucan induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced chemiluminescence assay in common carp (Cyprinus carpio L.).

    PubMed

    Vera-Jimenez, N I; Pietretti, D; Wiegertjes, G F; Nielsen, M E

    2013-05-01

    The respiratory burst is an important feature of the immune system. The increase in cellular oxygen uptake that marks the initiation of the respiratory burst is followed by the production of reactive oxygen species (ROS) such as superoxide anion and hydrogen peroxide which plays a role in the clearance of pathogens and tissue regeneration processes. Therefore, the respiratory burst and associated ROS constitute important indicators of fish health status. This paper compares two methods for quantitation of ROS produced during the respiratory burst in common carp: the widely used, single-point measurement based on the intracellular reduction of nitroblue tetrazolium (NBT) and a real-time luminol-enhanced assay based on the detection of native chemiluminescence. Both assays allowed for detection of dose-dependent changes in magnitude of the respiratory burst response induced by β-glucans in head kidney cells of carp. However, whereas the NBT assay was shown to detect the production of only superoxide anions, the real-time luminol-enhanced assay could detect the production of both superoxide anions and hydrogen peroxide. Only the chemiluminescence assay could reliably record the production of ROS on a real-time scale at frequent and continual time intervals for time course experiments, providing more detailed information on the respiratory burst response. The real-time chemiluminescence assay was used to measure respiratory burst activity in macrophage and neutrophilic granulocyte-enriched head kidney cell fractions and total head kidney cell suspensions and proved to be a fast, reliable, automated multiwell microplate assay to quantitate fish health status modulated by β-glucans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Detection of target staphylococcal enterotoxin B antigen in orange juice and popular carbonated beverages using antibody-dependent antigen-capture assays.

    PubMed

    Principato, MaryAnn; Njoroge, Joyce M; Perlloni, Andrei; O' Donnell, Michael; Boyle, Thomas; Jones, Robert L

    2010-10-01

    There is a critical need for qualitative and quantitative methodologies that provide the rapid and accurate detection of food contaminants in complex food matrices. However, the sensitivity of the assay can be affected when antigen-capture is applied to certain foods or beverages that are extremely acidic. This study was undertaken to assess the effects of orange juice and popular carbonated soft drink upon the fidelity of antibody-based antigen-capture assays and to develop simple approaches that could rescue assay performance without the introduction of additional or extensive extraction procedures. We examined the effects of orange juice and a variety of popular carbonated soft drink beverages upon a quantitative Interleukin-2 (IL-2) enzyme-linked immunosorbent assay (ELISA) assay system and a lateral flow device (LFD) adapted for the detection of staphylococcal enterotoxin B (SEB) in foods. Alterations in the performance and sensitivity of the assay were directly attributable to the food matrix, and alterations in pH were especially critical. The results demonstrate that approaches such as an alteration of pH and the use of milk as a blocking agent, either singly or in combination, will partially rescue ELISA performance. The same approaches permit lateral flow to efficiently detect antigen. Practical Application: The authors present ways to rescue an ELISA assay compromised by acidity in beverages and show that either the alteration of pH, or the use of milk as a blocking agent are not always capable of restoring the assay to its intended efficiency. However, the same methods, when employed with lateral flow technology, are rapid and extremely successful.

  15. High performance liquid chromatographic assay for the quantitation of total glutathione in plasma

    NASA Technical Reports Server (NTRS)

    Abukhalaf, Imad K.; Silvestrov, Natalia A.; Menter, Julian M.; von Deutsch, Daniel A.; Bayorh, Mohamed A.; Socci, Robin R.; Ganafa, Agaba A.

    2002-01-01

    A simple and widely used homocysteine HPLC procedure was applied for the HPLC identification and quantitation of glutathione in plasma. The method, which utilizes SBDF as a derivatizing agent utilizes only 50 microl of sample volume. Linear quantitative response curve was generated for glutathione over a concentration range of 0.3125-62.50 micromol/l. Linear regression analysis of the standard curve exhibited correlation coefficient of 0.999. Limit of detection (LOD) and limit of quantitation (LOQ) values were 5.0 and 15 pmol, respectively. Glutathione recovery using this method was nearly complete (above 96%). Intra-assay and inter-assay precision studies reflected a high level of reliability and reproducibility of the method. The applicability of the method for the quantitation of glutathione was demonstrated successfully using human and rat plasma samples.

  16. Battery operated preconcentration-assisted lateral flow assay.

    PubMed

    Kim, Cheonjung; Yoo, Yong Kyoung; Han, Sung Il; Lee, Junwoo; Lee, Dohwan; Lee, Kyungjae; Hwang, Kyo Seon; Lee, Kyu Hyoung; Chung, Seok; Lee, Jeong Hoon

    2017-07-11

    Paper-based analytical devices (e.g. lateral flow assays) are highly advantageous as portable diagnostic systems owing to their low costs and ease of use. Because of their low sensitivity and detection limits for biomolecules, these devices have several limitations in applications for real-field diagnosis. Here, we demonstrate a paper-based preconcentration enhanced lateral flow assay using a commercial β-hCG-based test. Utilizing a simple 9 V battery operation with a low power consumption of approximately 81 μW, we acquire a 25-fold preconcentration factor, demonstrating a clear sensitivity enhancement in the colorimetric lateral flow assay; consequently, clear colors are observed in a rapid kit test line, which cannot be monitored without preconcentration. This device can also facilitate a semi-quantitative platform using the saturation value and/or color intensity in both paper-based colorimetric assays and smartphone-based diagnostics.

  17. Development and accuracy of quantitative real-time polymerase chain reaction assays for detection and quantification of enterotoxigenic Escherichia coli (ETEC) heat labile and heat stable toxin genes in travelers' diarrhea samples.

    PubMed

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC), the leading bacterial pathogen of travelers' diarrhea, is routinely detected by an established DNA hybridization protocol that is neither sensitive nor quantitative. Quantitative real-time polymerase chain reaction (qPCR) assays that detect the ETEC toxin genes eltA, sta1, and sta2 in clinical stool samples were developed and tested using donor stool inoculated with known quantities of ETEC bacteria. The sensitivity of the qPCR assays is 89%, compared with 22% for the DNA hybridization assay, and the limits of detection are 10,000-fold lower than the DNA hybridization assays performed in parallel. Ninety-three clinical stool samples, previously characterized by DNA hybridization, were tested using the new ETEC qPCR assays. Discordant toxin profiles were observed for 22 samples, notably, four samples originally typed as ETEC negative were ETEC positive. The qPCR assays are unique in their sensitivity and ability to quantify the three toxin genes in clinical stool samples.

  18. Photometric Determination of Ammonium and Phosphate in Seawater Medium Using a Microplate Reader.

    PubMed

    Ruppersberg, Hanna S; Goebel, Maren R; Kleinert, Svea I; Wünsch, Daniel; Trautwein, Kathleen; Rabus, Ralf

    2017-01-01

    To more efficiently process the large sample numbers for quantitative determination of ammonium (NH4+) and phosphate (orthophosphate, PO43-) generated during comprehensive growth experiments with the marine Roseobacter group member Phaeobacter inhibens DSM 17395, specific colorimetric assays employing a microplate reader (MPR) were established. The NH4+ assay is based on the reaction of NH4+ with hypochlorite and salicylate, yielding a limit of detection of 14 µM, a limit of quantitation of 36 µM, and a linear range for quantitative determination up to 200 µM. The PO43-assay is based on the complex formation of PO43- with ammonium molybdate in the presence of ascorbate and zinc acetate, yielding a limit of detection of 13 µM, a limit of quantitation of 50 µM, and a linear range for quantitative determination up to 1 mM. Both MPR-based assays allowed for fast (significantly lower than 1 h) analysis of 21 samples plus standards for calibration (all measured in triplicates) and showed only low variation across a large collection of biological samples. © 2017 S. Karger AG, Basel.

  19. A probe-based quantitative PCR assay for detecting Tetracapsuloides bryosalmonae in fish tissue and environmental DNA water samples

    USGS Publications Warehouse

    Hutchins, Patrick; Sepulveda, Adam; Martin, Renee; Hopper, Lacey

    2017-01-01

    A probe-based quantitative real-time PCR assay was developed to detect Tetracapsuloides bryosalmonae, which causes proliferative kidney disease in salmonid fish, in kidney tissue and environmental DNA (eDNA) water samples. The limits of detection and quantification were 7 and 100 DNA copies for calibration standards and T. bryosalmonae was reliably detected down to 100 copies in tissue and eDNA samples. The assay presented here is a highly sensitive and quantitative tool for detecting T. bryosalmonae with potential applications for tissue diagnostics and environmental detection.

  20. Development and in-house validation of the event-specific qualitative and quantitative PCR detection methods for genetically modified cotton MON15985.

    PubMed

    Jiang, Lingxi; Yang, Litao; Rao, Jun; Guo, Jinchao; Wang, Shu; Liu, Jia; Lee, Seonghun; Zhang, Dabing

    2010-02-01

    To implement genetically modified organism (GMO) labeling regulations, an event-specific analysis method based on the junction sequence between exogenous integration and host genomic DNA has become the preferential approach for GMO identification and quantification. In this study, specific primers and TaqMan probes based on the revealed 5'-end junction sequence of GM cotton MON15985 were designed, and qualitative and quantitative polymerase chain reaction (PCR) assays were established employing the designed primers and probes. In the qualitative PCR assay, the limit of detection (LOD) was 0.5 g kg(-1) in 100 ng total cotton genomic DNA, corresponding to about 17 copies of haploid cotton genomic DNA, and the LOD and limit of quantification (LOQ) for quantitative PCR assay were 10 and 17 copies of haploid cotton genomic DNA, respectively. Furthermore, the developed quantitative PCR assays were validated in-house by five different researchers. Also, five practical samples with known GM contents were quantified using the developed PCR assay in in-house validation, and the bias between the true and quantification values ranged from 2.06% to 12.59%. This study shows that the developed qualitative and quantitative PCR methods are applicable for the identification and quantification of GM cotton MON15985 and its derivates.

  1. Examination of West Nile Virus Neuroinvasion and Neuropathogenesis in the Central Nervous System of a Murine Model.

    PubMed

    Sultana, Hameeda

    2016-01-01

    West Nile virus (WNV) is a neurotropic virus that causes inflammation and neuronal loss in the Central Nervous System leading to encephalitis and death. In this chapter, detailed methods to detect WNV in the murine brain tissue by quantitative real-time polymerase chain reaction and viral plaque assays are described. Determination of WNV neuropathogenesis by Hematoxylin and Eosin staining and immunohistochemical procedures are provided. In addition, TUNEL assays to determine neuronal loss during WNV neuropathogenesis are discussed in detail. Collectively, the methods mentioned in this chapter provide an overview to understand neuroinvasion and neuropathogenesis in a murine model of WNV infection.

  2. Utilization of computer processed high definition video imaging for measuring motility of microscopic nematode stages on a quantitative scale: "The Worminator".

    PubMed

    Storey, Bob; Marcellino, Chris; Miller, Melissa; Maclean, Mary; Mostafa, Eman; Howell, Sue; Sakanari, Judy; Wolstenholme, Adrian; Kaplan, Ray

    2014-12-01

    A major hindrance to evaluating nematode populations for anthelmintic resistance, as well as for screening existing drugs, new compounds, or bioactive plant extracts for anthelmintic properties, is the lack of an efficient, objective, and reproducible in vitro assay that is adaptable to multiple life stages and parasite genera. To address this need we have developed the "Worminator" system, which objectively and quantitatively measures the motility of microscopic stages of parasitic nematodes. The system is built around the computer application "WormAssay", developed at the Center for Discovery and Innovation in Parasitic Diseases at the University of California, San Francisco. WormAssay was designed to assess motility of macroscopic parasites for the purpose of high throughput screening of potential anthelmintic compounds, utilizing high definition video as an input to assess motion of adult stage (macroscopic) parasites (e.g. Brugia malayi). We adapted this assay for use with microscopic parasites by modifying the software to support a full frame analysis mode that applies the motion algorithm to the entire video frame. Thus, the motility of all parasites in a given well are recorded and measured simultaneously. Assays performed on third-stage larvae (L3) of the bovine intestinal nematode Cooperia spp., as well as microfilariae (mf) of the filarioid nematodes B. malayi and Dirofilaria immitis, yielded reproducible dose responses using the macrocyclic lactones ivermectin, doramectin, and moxidectin, as well as the nicotinic agonists, pyrantel, oxantel, morantel, and tribendimidine. This new computer based-assay is simple to use, requires minimal new investment in equipment, is robust across nematode genera and developmental stage, and does not require subjective scoring of motility by an observer. Thus, the "Worminator" provides a relatively low-cost platform for developing genera- and stage-specific assays with high efficiency and reproducibility, low labor input, and yields objective motility data that is not subject to scorer bias.

  3. Real-time quantitative PCR of Staphylococcus aureus and application in restaurant meals.

    PubMed

    Berrada, H; Soriano, J M; Mañes, J; Picó, Y

    2006-01-01

    Staphylococcus aureus is considered the second most common pathogen to cause outbreaks of food poisoning, exceeded only by Campylobacter. Consumption of foods containing this microorganism is often identified as the cause of illness. In this study, a rapid, reliable, and sensitive real-time quantitative PCR was developed and compared with conventional culture methods. Real-time quantitative PCR was carried out by purifying DNA extracts of S. aureus with a Staphylococcus sample preparation kit and quantifying it in the LightCycler system with hybridization probes. The assay was linear from a range of 10 to 10(6) S. aureus cells (r2 > 0.997). The PCR reaction presented an efficiency of >85%. Accuracy of the PCR-based assay, expressed as percent bias, was around 13%, and the precision, expressed as a percentage of the coefficient of variation, was 7 to 10%. Intraday and interday variability were studied at 10(2) CFU/g and was 12 and 14%, respectively. The proposed method was applied to the analysis of 77 samples of restaurant meals in Valencia (Spain). In 11.6% of samples S. aureus was detected by real-time quantitative PCR, as well as by the conventional microbiological method. An excellent correspondence between real-time quantitative PCR and microbiological numbers (CFU/g) was observed with deviations of < 28%.

  4. A comparison of sperm agglutination and immobilization assays with a quantitative ELISA for anti-sperm antibody in serum.

    PubMed

    Lynch, D M; Leali, B A; Howe, S E

    1986-08-01

    An enzyme-linked immunosorbent assay (ELISA) that quantitates antisperm antibody in serum was compared with standard sperm agglutination and immobilization assays with the use of sera from 40 normal and 292 subfertile individuals. Quantitation of the assay was accomplished by standardizing assay parameters, including the incorporation of a standard reference curve, the number of whole target sperm, the optimal dilution of serum, the selection of microtiter plate, and the time and temperatures involved in the adsorption and incubation phases. With this method, the level of antisperm antibody binding to target sperm in 40 normal fertile individuals was found to be 2.3 (+/- 1.1 standard deviation [SD]) fg immunoglobulin (Ig)/sperm. An increased mean level of 7.4 +/- 3.7 fg Ig/sperm was determined in 84 infertile patients with positive agglutination and/or immobilization tests. In 208 individuals with negative agglutination and immobilization tests the mean concentration of antisperm antibody was 2.5 +/- 1.3 fg Ig/sperm. Postvasectomy patients assayed by this method had a mean Ig binding value of 7.1 +/- 2.4 fg Ig/sperm. The infertile group with positive agglutination and/or immobilization tests had a significantly higher mean antisperm antibody level than the normal fertile group, according to the Student's t-test for independent samples (P less than 0.001). This indirect serum-based assay reproducibly quantitates antisperm antibody binding to whole target sperm, suggests the normal and abnormal levels of antisperm antibody, and correlates with standard functional assays.

  5. Quantitation of hepatitis B virus DNA in plasma using a sensitive cost-effective "in-house" real-time PCR assay.

    PubMed

    Daniel, Hubert Darius J; Fletcher, John G; Chandy, George M; Abraham, Priya

    2009-01-01

    Sensitive nucleic acid testing for the detection and accurate quantitation of hepatitis B virus (HBV) is necessary to reduce transmission through blood and blood products and for monitoring patients on antiviral therapy. The aim of this study is to standardize an "in-house" real-time HBV polymerase chain reaction (PCR) for accurate quantitation and screening of HBV. The "in-house" real-time assay was compared with a commercial assay using 30 chronically infected individuals and 70 blood donors who are negative for hepatitis B surface antigen, hepatitis C virus (HCV) antibody and human immunodeficiency virus (HIV) antibody. Further, 30 HBV-genotyped samples were tested to evaluate the "in-house" assay's capacity to detect genotypes prevalent among individuals attending this tertiary care hospital. The lower limit of detection of this "in-house" HBV real-time PCR was assessed against the WHO international standard and found to be 50 IU/mL. The interassay and intra-assay coefficient of variation (CV) of this "in-house" assay ranged from 1.4% to 9.4% and 0.0% to 2.3%, respectively. Virus loads as estimated with this "in-house" HBV real-time assay correlated well with the commercial artus HBV RG PCR assay ( r = 0.95, P < 0.0001). This assay can be used for the detection and accurate quantitation of HBV viral loads in plasma samples. This assay can be employed for the screening of blood donations and can potentially be adapted to a multiplex format for simultaneous detection of HBV, HIV and HCV to reduce the cost of testing in blood banks.

  6. Novel method for quantitative ANA measurement using near-infrared imaging.

    PubMed

    Peterson, Lisa K; Wells, Daniel; Shaw, Laura; Velez, Maria-Gabriela; Harbeck, Ronald; Dragone, Leonard L

    2009-09-30

    Antinuclear antibodies (ANA) have been detected in patients with systemic rheumatic diseases and are used in the screening and/or diagnosis of autoimmunity in patients as well as mouse models of systemic autoimmunity. Indirect immunofluorescence (IIF) on HEp-2 cells is the gold standard for ANA screening. However, its usefulness is limited in diagnosis, prognosis and monitoring of disease activity due to the lack of standardization in performing the technique, subjectivity in interpreting the results and the fact that it is only semi-quantitative. Various immunological techniques have been developed in an attempt to improve upon the method to quantify ANA, including enzyme-linked immunosorbent assays (ELISAs), line immunoassays (LIAs), multiplexed bead immunoassays and IIF on substrates other than HEp-2 cells. Yet IIF on HEp-2 cells remains the most common screening method for ANA. In this study, we describe a simple quantitative method to detect ANA which combines IIF on HEp-2 coated slides with analysis using a near-infrared imaging (NII) system. Using NII to determine ANA titer, 86.5% (32 of 37) of the titers for human patient samples were within 2 dilutions of those determined by IIF, which is the acceptable range for proficiency testing. Combining an initial screening for nuclear staining using microscopy with titration by NII resulted in 97.3% (36 of 37) of the titers detected to be within two dilutions of those determined by IIF. The NII method for quantitative ANA measurements using serum from both patients and mice with autoimmunity provides a fast, relatively simple, objective, sensitive and reproducible assay, which could easily be standardized for comparison between laboratories.

  7. Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery.

    PubMed

    Simm, Jaak; Klambauer, Günter; Arany, Adam; Steijaert, Marvin; Wegner, Jörg Kurt; Gustin, Emmanuel; Chupakhin, Vladimir; Chong, Yolanda T; Vialard, Jorge; Buijnsters, Peter; Velter, Ingrid; Vapirev, Alexander; Singh, Shantanu; Carpenter, Anne E; Wuyts, Roel; Hochreiter, Sepp; Moreau, Yves; Ceulemans, Hugo

    2018-05-17

    In both academia and the pharmaceutical industry, large-scale assays for drug discovery are expensive and often impractical, particularly for the increasingly important physiologically relevant model systems that require primary cells, organoids, whole organisms, or expensive or rare reagents. We hypothesized that data from a single high-throughput imaging assay can be repurposed to predict the biological activity of compounds in other assays, even those targeting alternate pathways or biological processes. Indeed, quantitative information extracted from a three-channel microscopy-based screen for glucocorticoid receptor translocation was able to predict assay-specific biological activity in two ongoing drug discovery projects. In these projects, repurposing increased hit rates by 50- to 250-fold over that of the initial project assays while increasing the chemical structure diversity of the hits. Our results suggest that data from high-content screens are a rich source of information that can be used to predict and replace customized biological assays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A simple competitive RT-PCR assay for quantitation of HIV-1 subtype B and non-B RNA in plasma.

    PubMed

    Hamatake, Makiko; Nishizawa, Masako; Yamamoto, Naoki; Kato, Shingo; Sugiura, Wataru

    2007-06-01

    An easy, inexpensive competitive RT-PCR assay for HIV-1 RNA quantitation was constructed. A 138-bp sequence in the HIV-1 gag p24 region was selected as the target and co-amplified with competitor RNA containing an internal 44-bp deletion. Quantitation of serial dilutions of control RNA samples prepared from the LAI isolate demonstrated a good linearity (R(2)=0.991) within the range between 10 and 250 copies/sample. The detection limit of the assay was determined to be 3.8 copies/sample by Probit analysis and corresponded to 110 copies/ml in plasma. The intra-assay CV value was 9.1%, and the inter-assay value was 25.9%. Both were comparable to those obtained with commercially available HIV-1 RNA quantitation kits. The correlation efficient for the results obtained in 47 plasma samples from HIV-1-infected individuals (subtype A in 1, subtype B in 25, subtype C in 4, subtype F in 1, and CRF01 AE in 16) with the competitive RT-PCR and Cobas Amplicor HIV-1 Monitor test v1.5 was 0.956 for subtype B and 0.947 for subtype non-B. The assay devised is a good alternative for monitoring antiretroviral therapy in resource-poor countries.

  9. Clinical performance of the novel DiaSorin LIAISON(®) XL murex: HBsAg Quant, HCV-Ab, HIV-Ab/Ag assays.

    PubMed

    Krawczyk, Adalbert; Hintze, Christian; Ackermann, Jessica; Goitowski, Birgit; Trippler, Martin; Grüner, Nico; Neumann-Fraune, Maria; Verheyen, Jens; Fiedler, Melanie

    2014-01-01

    The fully automated and closed LIAISON(®)XL platform was developed for reliable detection of infection markers like hepatitis B virus (HBV) surface antigen (HBsAg), hepatitis C virus (HCV) antibodies (Ab) or human immunodeficiency virus (HIV)-Ag/Ab. To date, less is known about the diagnostic performance of this system in direct comparison to the common Abbott ARCHITECT(®) platform. We compared the diagnostic performance and usability of the DiaSorin LIAISON(®)XL with the commonly used Abbott ARCHITECT(®) system. The qualitative performance of the above mentioned assays was compared in about 500 sera. Quantitative tests were performed for HBsAg-positive samples from patients under therapy (n=289) and in vitro expressed mutants (n=37). For HCV-Ab, a total number of 155 selected samples from patients chronically infected with different HCV genotypes were tested. The concordance between both systems was 99.4% for HBsAg, 98.81% for HCV-Ab, and 99.6% for HIV-Ab/Ag. The quantitative LIAISON(®)XL murex HBsAg assay detected all mutants in comparable amounts to the HBsAg wild type and yielded highly reliable HBsAg kinetics in patients treated with antiviral drugs. Dilution experiments using the 2nd International Standard for HBsAg (WHO) showed a high accuracy of this test. HCV-Ab from patients infected with genotypes 1-3 were equally detected in both systems. Interestingly, S/CO levels of HCV-Ab from patients infected with genotype 3 seem to be relatively low using both systems. The LIAISON(®)XL platform proved to be an excellent system for diagnostics of HBV, HCV, and HIV with equal performance compared to the ARCHITECT(®) system. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format.

    PubMed

    Huang, Dejian; Ou, Boxin; Hampsch-Woodill, Maureen; Flanagan, Judith A; Prior, Ronald L

    2002-07-31

    The oxygen radical absorbance capacity (ORAC) assay has been widely accepted as a standard tool to measure the antioxidant activity in the nutraceutical, pharmaceutical, and food industries. However, the ORAC assay has been criticized for a lack of accessibility due to the unavailability of the COBAS FARA II analyzer, an instrument discontinued by the manufacturer. In addition, the manual sample preparation is time-consuming and labor-intensive. The objective of this study was to develop a high-throughput instrument platform that can fully automate the ORAC assay procedure. The new instrument platform consists of a robotic eight-channel liquid handling system and a microplate fluorescence reader. By using the high-throughput platform, the efficiency of the assay is improved with at least a 10-fold increase in sample throughput over the current procedure. The mean of intra- and interday CVs was

  11. Rapid and specific drug quality testing assay for artemisinin and its derivatives using a luminescent reaction and novel microfluidic technology.

    PubMed

    Ho, Nga T; Desai, Darash; Zaman, Muhammad H

    2015-06-01

    Globally, it is estimated that about 10-30% of pharmaceuticals are of poor quality. Poor-quality drugs lead to long-term drug resistance, create morbidity, and strain the financial structure of the health system. The current technologies for substandard drug detection either are too expensive for low-resource regions or only provide qualitative results. To address the current limitations with point-of-care technologies, we have developed an affordable and robust assay to quantify the amount of active pharmaceutical ingredients (APIs) to test product quality. Our novel assay consists of two parts: detection reagent (probe) and a microfluidic testing platform. As antimalarials are of high importance in the global fight against malaria and are often substandard, they are chosen as the model to validate our assay. As a proof-of-concept, we have tested the assay with artesunate pure and substandard samples (Arsuamoon tablets) from Africa and compared with the conventional 96-well plate with spectrophotometer to demonstrate the quantitative efficacy and performance of our system. © The American Society of Tropical Medicine and Hygiene.

  12. Targeted Quantitation of Proteins by Mass Spectrometry

    PubMed Central

    2013-01-01

    Quantitative measurement of proteins is one of the most fundamental analytical tasks in a biochemistry laboratory, but widely used immunochemical methods often have limited specificity and high measurement variation. In this review, we discuss applications of multiple-reaction monitoring (MRM) mass spectrometry, which allows sensitive, precise quantitative analyses of peptides and the proteins from which they are derived. Systematic development of MRM assays is permitted by databases of peptide mass spectra and sequences, software tools for analysis design and data analysis, and rapid evolution of tandem mass spectrometer technology. Key advantages of MRM assays are the ability to target specific peptide sequences, including variants and modified forms, and the capacity for multiplexing that allows analysis of dozens to hundreds of peptides. Different quantitative standardization methods provide options that balance precision, sensitivity, and assay cost. Targeted protein quantitation by MRM and related mass spectrometry methods can advance biochemistry by transforming approaches to protein measurement. PMID:23517332

  13. Targeted quantitation of proteins by mass spectrometry.

    PubMed

    Liebler, Daniel C; Zimmerman, Lisa J

    2013-06-04

    Quantitative measurement of proteins is one of the most fundamental analytical tasks in a biochemistry laboratory, but widely used immunochemical methods often have limited specificity and high measurement variation. In this review, we discuss applications of multiple-reaction monitoring (MRM) mass spectrometry, which allows sensitive, precise quantitative analyses of peptides and the proteins from which they are derived. Systematic development of MRM assays is permitted by databases of peptide mass spectra and sequences, software tools for analysis design and data analysis, and rapid evolution of tandem mass spectrometer technology. Key advantages of MRM assays are the ability to target specific peptide sequences, including variants and modified forms, and the capacity for multiplexing that allows analysis of dozens to hundreds of peptides. Different quantitative standardization methods provide options that balance precision, sensitivity, and assay cost. Targeted protein quantitation by MRM and related mass spectrometry methods can advance biochemistry by transforming approaches to protein measurement.

  14. Evaluation of the Abbott RealTime HCV assay for quantitative detection of hepatitis C virus RNA.

    PubMed

    Michelin, Birgit D A; Muller, Zsofia; Stelzl, Evelyn; Marth, Egon; Kessler, Harald H

    2007-02-01

    The Abbott RealTime HCV assay for quantitative detection of HCV RNA has recently been introduced. In this study, the performance of the Abbott RealTime HCV assay was evaluated and compared to the COBAS AmpliPrep/COBAS TaqMan HCV test. Accuracy, linearity, interassay and intra-assay variations were determined, and a total of 243 routine clinical samples were investigated. When accuracy of the new assay was tested, the majority of results were found to be within +/-0.5 log(10) unit of the results obtained by reference laboratories. Determination of linearity resulted in a quasilinear curve up to 1.0 x 10(6)IU/ml. The interassay variation ranged from 15% to 32%, and the intra-assay variation ranged from 5% to 8%. When clinical samples were tested by the Abbott RealTime HCV assay and the results were compared with those obtained by the COBAS AmpliPrep/COBAS TaqMan HCV test, the results for 93% of all samples with positive results by both tests were found to be within +/-1.0 log(10) unit. The viral loads for all patients measured by the Abbott and Roche assays showed a high correlation (R(2)=0.93); quantitative results obtained by the Abbott assay were found to be lower than those obtained by the Roche assay. The Abbott RealTime HCV assay proved to be suitable for use in the routine diagnostic laboratory. The time to results was similar for both of the assays.

  15. Detection of nucleophosmin 1 mutations by quantitative real-time polymerase chain reaction versus capillary electrophoresis: a comparative study.

    PubMed

    Barakat, Fareed H; Luthra, Rajyalakshmi; Yin, C Cameron; Barkoh, Bedia A; Hai, Seema; Jamil, Waqar; Bhakta, Yaminiben I; Chen, Su; Medeiros, L Jeffrey; Zuo, Zhuang

    2011-08-01

    Nucleophosmin 1 (NPM1) is the most commonly mutated gene in acute myeloid leukemia. Detection of NPM1 mutations is useful for stratifying patients for therapy, predicting prognosis, and assessing for minimal residual disease. Several methods have been developed to rapidly detect NPM1 mutations in genomic DNA and/or messenger RNA specimens. To directly compare a quantitative real-time polymerase chain reaction (qPCR) assay with a widely used capillary electrophoresis assay for detecting NPM1 mutations. We adopted and modified a qPCR assay designed to detect the 6 most common NPM1 mutations and performed the assay in parallel with capillary electrophoresis assay in 207 bone marrow aspirate or peripheral blood samples from patients with a range of hematolymphoid neoplasms. The qPCR assay demonstrated a higher analytical sensitivity than the capillary electrophoresis 1/1000 versus 1/40, respectively. The capillary electrophoresis assay generated 10 equivocal results that needed to be repeated, whereas the qPCR assay generated only 1 equivocal result. After test conditions were optimized, the qPCR and capillary electrophoresis methods produced 100% concordant results, 85 positive and 122 negative. Given the higher analytical sensitivity and specificity of the qPCR assay, that assay is less likely to generate equivocal results than the capillary electrophoresis assay. Moreover, the qPCR assay is quantitative, faster, cheaper, less prone to contamination, and well suited for monitoring minimal residual disease.

  16. The A-Like Faker Assay for Measuring Yeast Chromosome III Stability.

    PubMed

    Novoa, Carolina A; Ang, J Sidney; Stirling, Peter C

    2018-01-01

    The ability to rapidly assess chromosome instability (CIN) has enabled profiling of most yeast genes for potential effects on genome stability. The A-like faker (ALF) assay is one of several qualitative and quantitative marker loss assays that indirectly measure loss or conversion of genetic material using a counterselection step. The ALF assay relies on the ability to count spurious mating events that occur upon loss of the MATα locus of haploid Saccharomyces cerevisiae strains. Here, we describe the deployment of the ALF assay for both rapid and simple qualitative, and more in-depth quantitative analysis allowing determination of absolute ALF frequencies.

  17. Specific and quantitative detection of human polyomaviruses BKV, JCV, and SV40 by real time PCR.

    PubMed

    McNees, Adrienne L; White, Zoe S; Zanwar, Preeti; Vilchez, Regis A; Butel, Janet S

    2005-09-01

    The polyomaviruses that infect humans, BK virus (BKV), JC virus (JCV), and simian virus 40 (SV40), typically establish subclinical persistent infections. However, reactivation of these viruses in immunocompromised hosts is associated with renal nephropathy and hemorrhagic cystitis (HC) caused by BKV and with progressive multifocal leukoencephalopathy (PML) caused by JCV. Additionally, SV40 is associated with several types of human cancers including primary brain and bone cancers, mesotheliomas, and non-Hodgkin's lymphoma. Advancements in detection of these viruses may contribute to improved diagnosis and treatment of affected patients. To develop sensitive and specific real time quantitative polymerase chain reaction (RQ-PCR) assays for the detection of T-antigen DNA sequences of the human polyomaviruses BKV, JCV, and SV40 using the ABI Prism 7000 Sequence Detection System. Assays for absolute quantification of the viral T-ag sequences were designed and the sensitivity and specificity were evaluated. A quantitative assay to measure the single copy human RNAse P gene was also developed and evaluated in order to normalize viral gene copy numbers to cell numbers. Quantification of the target genes is sensitive and specific over a 7 log dynamic range. Ten copies each of the viral and cellular genes are reproducibly and accurately detected. The sensitivity of detection of the RQ-PCR assays is increased 10- to 100-fold compared to conventional PCR and agarose gel protocols. The primers and probes used to detect the viral genes are specific for each virus and there is no cross reactivity within the dynamic range of the standard dilutions. The sensitivity of detection for these assays is not reduced in human cellular extracts; however, different DNA extraction protocols may affect quantification. These assays provide a technique for rapid and specific quantification of polyomavirus genomes per cell in human samples.

  18. Application of statistical process control to qualitative molecular diagnostic assays.

    PubMed

    O'Brien, Cathal P; Finn, Stephen P

    2014-01-01

    Modern pathology laboratories and in particular high throughput laboratories such as clinical chemistry have developed a reliable system for statistical process control (SPC). Such a system is absent from the majority of molecular laboratories and where present is confined to quantitative assays. As the inability to apply SPC to an assay is an obvious disadvantage this study aimed to solve this problem by using a frequency estimate coupled with a confidence interval calculation to detect deviations from an expected mutation frequency. The results of this study demonstrate the strengths and weaknesses of this approach and highlight minimum sample number requirements. Notably, assays with low mutation frequencies and detection of small deviations from an expected value require greater sample numbers to mitigate a protracted time to detection. Modeled laboratory data was also used to highlight how this approach might be applied in a routine molecular laboratory. This article is the first to describe the application of SPC to qualitative laboratory data.

  19. Aqueous two-phase systems enable multiplexing of homogeneous immunoassays

    PubMed Central

    Simon, Arlyne B.; Frampton, John P.; Huang, Nien-Tsu; Kurabayashi, Katsuo; Paczesny, Sophie; Takayama, Shuichi

    2014-01-01

    Quantitative measurement of protein biomarkers is critical for biomarker validation and early disease detection. Current multiplex immunoassays are time consuming costly and can suffer from low accuracy. For example, multiplex ELISAs require multiple, tedious, washing and blocking steps. Moreover, they suffer from nonspecific antibody cross-reactions, leading to high background and false-positive signals. Here, we show that co-localizing antibody-bead pairs in an aqueous two-phase system (ATPS) enables multiplexing of sensitive, no-wash, homogeneous assays, while preventing nonspecific antibody cross-reactions. Our cross-reaction-free, multiplex assay can simultaneously detect picomolar concentrations of four protein biomarkers ((C-X-C motif) ligand 10 (CXCL10), CXCL9, interleukin (IL)-8 and IL-6) in cell supernatants using a single assay well. The potential clinical utility of the assay is demonstrated by detecting diagnostic biomarkers (CXCL10 and CXCL9) in plasma from 88 patients at the onset of the clinical symptoms of chronic graft-versus-host disease (GVHD). PMID:25083509

  20. STANDARDIZATION OF A FLUORESCENT-BASED QUANTITATIVE ADHESION ASSAY TO STUDY ATTACHMENT OF Taenia solium ONCOSPHERE TO EPITHELIAL CELLS In Vitro

    PubMed Central

    Chile, Nancy; Evangelista, Julio; Gilman, Robert H.; Arana, Yanina; Palma, Sandra; Sterling, Charles R; Garcia, Hector H.; Gonzalez, Armando; Verastegui, Manuela

    2012-01-01

    To fully understand the preliminary stages of Taenia solium oncosphere attachment in the gut, adequate tools and assays are necessary to observe and quantify this event that leads to infection. A fluorescent-based quantitative adhesion assay, using biotinylated activated-oncospheres and monolayers of Chinese hamster ovary cells (CHO-K1) or human intestinal monolayer cells (INT-407, HCT-8 or HT-29), was developed to study initial events during the infection of target cells and to rapidly quantify the in vitro adhesion of T. solium oncospheres. Fluorescein streptavidin was used to identify biotinylated activated-oncospheres adhered to cells. This adherence was quantified using an automated fluorescence plate reader, and the results were expressed as fluorescence intensity values. A series of three assays were performed. The first was to identify the optimum number of biotinylated activated-oncospheres to be used in the adhesion assay. The goal of the second assay was to validate this novel method with the established oncosphere-binding system using the immunofluorescent-antibody assay (IFA) method to quantify oncosphere adhesion. A total of 10,000 biotinylated activated-oncospheres were utilized to assess the role of sera and laminin (LM) in oncosphere adherence to a CHO-K1 cell monolayer. The findings that sera and LM increase the adhesion of oncospheres to monolayer cells were similar to results that were previously obtained using the IFA method. The third assay compared the adherence of biotinylated activated-oncospheres to different types of human intestinal monolayer cells. In this case, the fluorescence intensity was greatest when using the INT-407 cell monolayer. We believe this new method of quantification offers the potential for rapid, large-scale screening to study and elucidate specific molecules and mechanisms involved in oncosphere-host cell attachment. PMID:22178422

  1. Performance Evaluation of the Bioneer AccuPower® HIV-1 Quantitative RT-PCR kit: Comparison with the Roche COBAS® AmpliPrep/COBAS TaqMan® HIV-1 Test Ver.2.0 for Quantification of HIV-1 Viral Load in Indonesia.

    PubMed

    Kosasih, Agus Susanto; Sugiarto, Christine; Hayuanta, Hubertus Hosti; Juhaendi, Runingsih; Setiawan, Lyana

    2017-08-08

    Measurement of viral load in human immunodeficiency virus type 1 (HIV-1) infected patients is essential for the establishment of a therapeutic strategy. Several assays based on qPCR are available for the measurement of viral load; they differ in sample volume, technology applied, target gene, sensitivity and dynamic range. The Bioneer AccuPower® HIV-1 Quantitative RT-PCR is a novel commercial kit that has not been evaluated for its performance. This study aimed to evaluate the performance of the Bioneer AccuPower® HIV-1 Quantitative RT-PCR kit. In total, 288 EDTA plasma samples from the Dharmais Cancer Hospital were analyzed with the Bioneer AccuPower® HIV-1 Quantitative RT-PCR kit and the Roche COBAS? AmpliPrep/COBAS® TaqMan® HIV-1 version 2.0 (CAP/CTM v2.0). The performance of the Bioneer assay was then evaluated against the Roche CAP/CTM v2.0. Overall, there was good agreement between the two assays. The Bioneer assay showed significant linear correlation with CAP/CTM v2.0 (R2=0.963, p<0.001) for all samples (N=118) which were quantified by both assays, with high agreement (94.9%, 112/118) according to the Bland-Altman model. The mean difference between the quantitative values measured by Bioneer assay and CAP/CTM v2.0 was 0.11 Log10 IU/mL (SD=0.26). Based on these results, the Bioneer assay can be used to quantify HIV-1 RNA in clinical laboratories.

  2. Development and validation of a liquid chromatography tandem mass spectrometry assay for the quantitation of a protein therapeutic in cynomolgus monkey serum.

    PubMed

    Zhao, Yue; Liu, Guowen; Angeles, Aida; Hamuro, Lora L; Trouba, Kevin J; Wang, Bonnie; Pillutla, Renuka C; DeSilva, Binodh S; Arnold, Mark E; Shen, Jim X

    2015-04-15

    We have developed and fully validated a fast and simple LC-MS/MS assay to quantitate a therapeutic protein BMS-A in cynomolgus monkey serum. Prior to trypsin digestion, a recently reported sample pretreatment method was applied to remove more than 95% of the total serum albumin and denature the proteins in the serum sample. The pretreatment procedure simplified the biological sample prior to digestion, improved digestion efficiency and reproducibility, and did not require reduction and alkylation. The denatured proteins were then digested with trypsin at 60 °C for 30 min and the tryptic peptides were chromatographically separated on an Acquity CSH column (2.1 mm × 50 mm, 1.7 μm) using gradient elution. One surrogate peptide was used for quantitation and another surrogate peptide was selected for confirmation. Two corresponding stable isotope labeled peptides were used to compensate variations during LC-MS detection. The linear analytical range of the assay was 0.50-500 μg/mL. The accuracy (%Dev) was within ± 5.4% and the total assay variation (%CV) was less than 12.0% for sample analysis. The validated method demonstrated good accuracy and precision and the application of the innovative albumin removal sample pretreatment method improved both assay sensitivity and robustness. The assay has been applied to a cynomolgus monkey toxicology study and the serum sample concentration data were in good agreement with data generated using a quantitative ligand-binding assay (LBA). The use of a confirmatory peptide, in addition to the quantitation peptide, ensured the integrity of the drug concentrations measured by the method. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Development of an image analysis screen for estrogen receptor alpha (ERα) ligands through measurement of nuclear translocation dynamics.

    PubMed

    Dull, Angie; Goncharova, Ekaterina; Hager, Gordon; McMahon, James B

    2010-11-01

    We have developed a robust high-content assay to screen for novel estrogen receptor alpha (ERα) agonists and antagonists by quantitation of cytoplasmic to nuclear translocation of an estrogen receptor chimera in 384-well plates. The screen utilizes a green fluorescent protein tagged-glucocorticoid/estrogen receptor (GFP-GRER) chimera which consisted of the N-terminus of the glucocorticoid receptor fused to the human ER ligand binding domain. The GFP-GRER exhibited cytoplasmic localization in the absence of ERα ligands, and translocated to the nucleus in response to stimulation with ERα agonists or antagonists. The BD Pathway 435 imaging system was used for image acquisition, analysis of translocation dynamics, and cytotoxicity measurements. The assay was validated with known ERα agonists and antagonists, and the Library of Pharmacologically Active Compounds (LOPAC 1280). Additionally, screening of crude natural product extracts demonstrated the robustness of the assay, and the ability to quantitate the effects of toxicity on nuclear translocation dynamics. The GFP-GRER nuclear translocation assay was very robust, with z' values >0.7, CVs <5%, and has been validated with known ER ligands, and inclusion of cytotoxicity filters will facilitate screening of natural product extracts. This assay has been developed for future primary screening of synthetic, pure natural products, and natural product extracts libraries available at the National Cancer Institute at Frederick. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. An Alu-based, MGB Eclipse real-time PCR method for quantitation of human DNA in forensic samples.

    PubMed

    Nicklas, Janice A; Buel, Eric

    2005-09-01

    The forensic community needs quick, reliable methods to quantitate human DNA in crime scene samples to replace the laborious and imprecise slot blot method. A real-time PCR based method has the possibility of allowing development of a faster and more quantitative assay. Alu sequences are primate-specific and are found in many copies in the human genome, making these sequences an excellent target or marker for human DNA. This paper describes the development of a real-time Alu sequence-based assay using MGB Eclipse primers and probes. The advantages of this assay are simplicity, speed, less hands-on-time and automated quantitation, as well as a large dynamic range (128 ng/microL to 0.5 pg/microL).

  5. Quantification of Protein-Induced Membrane Remodeling Kinetics In Vitro with Lipid Multilayer Gratings

    PubMed Central

    Lowry, Troy W.; Hariri, Hanaa; Prommapan, Plengchart; Kusi-Appiah, Aubrey; Vafai, Nicholas; Bienkiewicz, Ewa A.; Van Winkle, David H.; Stagg, Scott M.

    2016-01-01

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at micro- and nanoscopic scales. Consequently, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Here, a new nanotechnology-based method for quantitative measurements of lipid–protein interactions is presented and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1 is demonstrated. Lipid multilayer gratings are printed onto surfaces using nanointaglio and exposed to Sar1, resulting in the inflation of lipid multilayers into unilamellar structures, which can be observed in a label-free manner by monitoring the diffracted light. Local variations in lipid multilayer volume on the surface is used to vary substrate availability in a microarray format. A quantitative model is developed that allows quantification of binding affinity (KD) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1-induced inflation of single bilayers from surface supported multilayers, the semicylindrical grating lines are observed to remodel into semispherical buds when a critical radius of curvature is reached. PMID:26649649

  6. Immunohistochemical Expression of Matrix Metalloproteinase-7 in Human Colorectal Adenomas Using Specified Automated Cellular Image Analysis System: A Clinicopathological Study

    PubMed Central

    Qasim, Ban J.; Ali, Hussam H.; Hussein, Alaa G.

    2013-01-01

    Background/Aim: To evaluate the immunohistochemical expression of matrix metalloproteinase-7 (MMP-7) in colorectal adenomas, and to correlate this expression with different clinicopathological parameters. Patients and Methods: The study was retrospectively designed. Thirty three paraffin blocks from patients with colorectal adenoma and 20 samples of non-tumerous colonic tissue taken as control group were included in the study. MMP-7 expression was assessed by immunohistochemistry method. The scoring of immunohistochemical staining was conducted utilizing a specified automated cellular image analysis system (Digimizer). Results: The frequency of positive immunohistochemical expression of MMP-7 was significantly higher in adenoma than control group (45.45% versus 10%) (P value < 0.001). Strong MMP-7 staining was mainly seen in adenoma cases (30.30%) in comparison with control (0%) the difference is significant (P < 0.001). The three digital parameters of MMP-7 immunohistochemical expression (Area (A), Number of objects (N), and intensity (I)) were significantly higher in adenoma than control. Mean (A and I) of MMP-7 showed a significant correlation with large sized adenoma (≥ 1cm) (P < 0.05), also a significant positive correlation of the three digital parameters (A, N, and I) of MMP-7 expression with villous configuration and severe dysplasia in colorectal adenoma had been identified (P < 0.05). Conclusion: MMP-7 plays an important role in the growth and malignant conversion of colorectal adenomas as it is more likely to be expressed in advanced colorectal adenomatous polyps with large size, severe dysplasia and villous histology. The use of automated cellular image analysis system (Digmizer) to quantify immunohistochemical staining yields more consistent assay results, converts semi-quantitative assay to a truly quantitative assay, and improves assay objectivity and reproducibility. PMID:23319034

  7. Development of a real-time quantitative PCR assay to enumerate Yersinia pestis in fleas.

    PubMed

    Gabitzsch, Elizabeth S; Vera-Tudela, Rommelle; Eisen, Rebecca J; Bearden, Scott W; Gage, Kenneth L; Zeidner, Nordin S

    2008-07-01

    A real-time quantitative polymerase chain reaction (qPCR) assay was developed for Yersina pestis. The qPCR assay was developed utilizing a conserved region of the Y. pestis ferric iron uptake regulator gene (fur) to design primers and a fluorescent (FAM-labeled) TaqMan probe. The assay was optimized using cultured Y. pestis (UG05-0454) and was confirmed to work with strains from 3 Y. pestis biovars. The optimized assay was capable of detecting a single organism of cultured Y. pestis and as little as 300 bacteria in infected flea triturates. This qPCR assay enables rapid enumeration of Y. pestis bacterium in laboratory-infected fleas when compared with conventional serial dilution plating.

  8. Quantitative analysis of chromosome condensation in fission yeast.

    PubMed

    Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota; Haering, Christian H

    2013-03-01

    Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote.

  9. Quantitative Analysis of Chromosome Condensation in Fission Yeast

    PubMed Central

    Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota

    2013-01-01

    Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote. PMID:23263988

  10. A Liquid Phase Affinity Capture Assay Using Magnetic Beads to Study Protein-Protein Interaction: The Poliovirus-Nanobody Example

    PubMed Central

    Schotte, Lise; Rombaut, Bart; Thys, Bert

    2012-01-01

    In this article, a simple, quantitative, liquid phase affinity capture assay is presented. Provided that one protein can be tagged and another protein labeled, this method can be implemented for the investigation of protein-protein interactions. It is based on one hand on the recognition of the tagged protein by cobalt coated magnetic beads and on the other hand on the interaction between the tagged protein and a second specific protein that is labeled. First, the labeled and tagged proteins are mixed and incubated at room temperature. The magnetic beads, that recognize the tag, are added and the bound fraction of labeled protein is separated from the unbound fraction using magnets. The amount of labeled protein that is captured can be determined in an indirect way by measuring the signal of the labeled protein remained in the unbound fraction. The described liquid phase affinity assay is extremely useful when conformational conversion sensitive proteins are assayed. The development and application of the assay is demonstrated for the interaction between poliovirus and poliovirus recognizing nanobodies1. Since poliovirus is sensitive to conformational conversion2 when attached to a solid surface (unpublished results), the use of ELISA is limited and a liquid phase based system should therefore be preferred. An example of a liquid phase based system often used in polioresearch3,4 is the micro protein A-immunoprecipitation test5. Even though this test has proven its applicability, it requires an Fc-structure, which is absent in the nanobodies6,7. However, as another opportunity, these interesting and stable single-domain antibodies8 can be easily engineered with different tags. The widely used (His)6-tag shows affinity for bivalent ions such as nickel or cobalt, which can on their turn be easily coated on magnetic beads. We therefore developed this simple quantitative affinity capture assay based on cobalt coated magnetic beads. Poliovirus was labeled with 35S to enable unhindered interaction with the nanobodies and to make a quantitative detection feasible. The method is easy to perform and can be established with a low cost, which is further supported by the possibility of effectively regenerating the magnetic beads. PMID:22688388

  11. Streamlined system for purifying and quantifying a diverse library of compounds and the effect of compound concentration measurements on the accurate interpretation of biological assay results.

    PubMed

    Popa-Burke, Ioana G; Issakova, Olga; Arroway, James D; Bernasconi, Paul; Chen, Min; Coudurier, Louis; Galasinski, Scott; Jadhav, Ajit P; Janzen, William P; Lagasca, Dennis; Liu, Darren; Lewis, Roderic S; Mohney, Robert P; Sepetov, Nikolai; Sparkman, Darren A; Hodge, C Nicholas

    2004-12-15

    As part of an overall systems approach to generating highly accurate screening data across large numbers of compounds and biological targets, we have developed and implemented streamlined methods for purifying and quantitating compounds at various stages of the screening process, coupled with automated "traditional" storage methods (DMSO, -20 degrees C). Specifically, all of the compounds in our druglike library are purified by LC/MS/UV and are then controlled for identity and concentration in their respective DMSO stock solutions by chemiluminescent nitrogen detection (CLND)/evaporative light scattering detection (ELSD) and MS/UV. In addition, the compound-buffer solutions used in the various biological assays are quantitated by LC/UV/CLND to determine the concentration of compound actually present during screening. Our results show that LC/UV/CLND/ELSD/MS is a widely applicable method that can be used to purify, quantitate, and identify most small organic molecules from compound libraries. The LC/UV/CLND technique is a simple and sensitive method that can be easily and cost-effectively employed to rapidly determine the concentrations of even small amounts of any N-containing compound in aqueous solution. We present data to establish error limits for concentration determination that are well within the overall variability of the screening process. This study demonstrates that there is a significant difference between the predicted amount of soluble compound from stock DMSO solutions following dilution into assay buffer and the actual amount present in assay buffer solutions, even at the low concentrations employed for the assays. We also demonstrate that knowledge of the concentrations of compounds to which the biological target is exposed is critical for accurate potency determinations. Accurate potency values are in turn particularly important for drug discovery, for understanding structure-activity relationships, and for building useful empirical models of protein-ligand interactions. Our new understanding of relative solubility demonstrates that most, if not all, decisions that are made in early discovery are based upon missing or inaccurate information. Finally, we demonstrate that careful control of compound handling and concentration, coupled with accurate assay methods, allows the use of both positive and negative data in analyzing screening data sets for structure-activity relationships that determine potency and selectivity.

  12. Performance Characteristics of qPCR Assays Targeting Human- and Ruminant-Associated Bacteroidetes for Microbial Source Tracking across Sixteen Countries on Six Continents

    PubMed Central

    2013-01-01

    Numerous quantitative PCR assays for microbial fecal source tracking (MST) have been developed and evaluated in recent years. Widespread application has been hindered by a lack of knowledge regarding the geographical stability and hence applicability of such methods beyond the regional level. This study assessed the performance of five previously reported quantitative PCR assays targeting human-, cattle-, or ruminant-associated Bacteroidetes populations on 280 human and animal fecal samples from 16 countries across six continents. The tested cattle-associated markers were shown to be ruminant-associated. The quantitative distributions of marker concentrations in target and nontarget samples proved to be essential for the assessment of assay performance and were used to establish a new metric for quantitative source-specificity. In general, this study demonstrates that stable target populations required for marker-based MST occur around the globe. Ruminant-associated marker concentrations were strongly correlated with total intestinal Bacteroidetes populations and with each other, indicating that the detected ruminant-associated populations seem to be part of the intestinal core microbiome of ruminants worldwide. Consequently tested ruminant-targeted assays appear to be suitable quantitative MST tools beyond the regional level while the targeted human-associated populations seem to be less prevalent and stable, suggesting potential for improvements in human-targeted methods. PMID:23755882

  13. Ruggedness/robustness evaluation and system suitability test on United States Pharmacopoeia XXVI assay ginsenosides in Asian and American ginseng by high-performance liquid chromatography.

    PubMed

    Li, Yong-Guo; Chen, Ming; Chou, Gui-Xin; Wang, Zheng-Tao; Hu, Zhi-Bi

    2004-09-03

    The work of the ruggedness/robustness evaluation and system suitability tests was oriented to profound understand the practicability of using assay methods issued by United States Pharmacopoeia (USP XXVI and XXVII) for ginsenosides in Asian ginseng and American ginseng. The items chosen for the method validation included quantitative related items such as recovery of Rg(1) and Rb(1), respectively, and qualitative related items such as resolution, theoretical plate number, relative retention time of two critical-band-pairs, Rg(1)/Re and Rb(1) with its neighboring peak, respectively. Totally, 16 column types were used for comparison of different vendors, different packing materials, different size, etc. and five sets of LC systems and two laboratories were involved in comparing the data of both quantitative and qualitative items. The results showed that different packing materials of columns used might significantly alters separation. The column packing material Hypersil afforded the preferable separating for the ginsenosides. No significant difference was observed from the different instrumentations and inter-laboratories. Our results suggest a modification of the system suitability test as given in USP26-NF21 and the latest version of USP27-NF22, which was not suitable for most systems. Using resolutions of Rg(1)/Re and Rb(1) with its neighboring peak as critical parameters for the ginsenosides assay and omitting the relative retention time of both Rg(1)/Re and Rb(1) with its neighboring peak is our suggestion for a more reasonable, yet practicable system suitability. Six typical chromatograms gain from different columns were figured out as well.

  14. Programmable bio-nano-chip system for saliva diagnostics

    NASA Astrophysics Data System (ADS)

    Christodoulides, Nicolaos; De La Garza, Richard; Simmons, Glennon W.; McRae, Michael P.; Wong, Jorge; Kosten, Thomas R.; Miller, Craig S.; Ebersole, Jeffrey L.; McDevitt, John

    2014-06-01

    This manuscript describes programmable Bio-Nano-Chip (p-BNC) approach that serves as miniaturized assay platform designed for the rapid detection and quantitation of multiple analytes in biological fluids along with the specific applications in salivary diagnostics intended for the point of need (PON). Included here are oral fluid-based tests for local periodontal disease, systemic cardiac disease and multiplexed tests for drugs of abuse.

  15. Quantitative Analysis of Energy Metabolic Pathways in MCF-7 Breast Cancer Cells by Selected Reaction Monitoring Assay*

    PubMed Central

    Drabovich, Andrei P.; Pavlou, Maria P.; Dimitromanolakis, Apostolos; Diamandis, Eleftherios P.

    2012-01-01

    To investigate the quantitative response of energy metabolic pathways in human MCF-7 breast cancer cells to hypoxia, glucose deprivation, and estradiol stimulation, we developed a targeted proteomics assay for accurate quantification of protein expression in glycolysis/gluconeogenesis, TCA cycle, and pentose phosphate pathways. Cell growth conditions were selected to roughly mimic the exposure of cells in the cancer tissue to the intermittent hypoxia, glucose deprivation, and hormonal stimulation. Targeted proteomics assay allowed for reproducible quantification of 76 proteins in four different growth conditions after 24 and 48 h of perturbation. Differential expression of a number of control and metabolic pathway proteins in response to the change of growth conditions was found. Elevated expression of the majority of glycolytic enzymes was observed in hypoxia. Cancer cells, as opposed to near-normal MCF-10A cells, exhibited significantly increased expression of key energy metabolic pathway enzymes (FBP1, IDH2, and G6PD) that are known to redirect cellular metabolism and increase carbon flux through the pentose phosphate pathway. Our quantitative proteomic protocol is based on a mass spectrometry-compatible acid-labile detergent and is described in detail. Optimized parameters of a multiplex selected reaction monitoring (SRM) assay for 76 proteins, 134 proteotypic peptides, and 401 transitions are included and can be downloaded and used with any SRM-compatible mass spectrometer. The presented workflow is an integrated tool for hypothesis-driven studies of mammalian cells as well as functional studies of proteins, and can greatly complement experimental methods in systems biology, metabolic engineering, and metabolic transformation of cancer cells. PMID:22535206

  16. Quantitative serology assays for determination of antibody responses to Ebola virus glycoprotein and matrix protein in nonhuman primates and humans.

    PubMed

    Vu, Hong; Shulenin, Sergey; Grolla, Allen; Audet, Jonathan; He, Shihua; Kobinger, Gary; Unfer, Robert C; Warfield, Kelly L; Aman, M Javad; Holtsberg, Frederick W

    2016-02-01

    The West Africa Ebola virus disease (EVD) outbreak has reached unprecedented magnitude and caused worldwide concerns for the spread of this deadly virus. Recent findings in nonhuman primates (NHPs) demonstrate that antibodies can be protective against EVD. However, the role of antibody response in vaccine-mediated protection is not fully understood. To address these questions quantitative serology assays are needed for measurement of the antibody response to key Ebola virus (EBOV) proteins. Serology enzyme-linked immunosorbent assays (ELISA's), using a reference detection antibody, were developed in order to standardize the quantitation of antibody levels in vaccinated NHPs or in humans exposed to EBOV or immunized with an EBOV vaccine. Critical reagents were generated to support the development of the serology ELISAs. Recombinant EBOV matrix protein (VP40) was expressed in Escherichia coli and purified. Two variants of the glycoprotein (GP), the ectodomain lacking the transmembrane domain (GPΔTM), and an engineered GP lacking the mucin-like domain (GPΔmuc) were expressed and purified from mammalian cell systems. Using these proteins, three ELISA methods were developed and optimized for reproducibility and robustness, including stability testing of critical reagents. The assay was used to determine the antibody response against VP40, GPΔTM, and GPΔmuc in a NHP vaccine study using EBOV virus-like particles (VLP) vaccine expressing GP, VP40 and the nucleoprotein. Additionally, these ELISAs were used to successfully detect antibody responses to VP40, GPΔTM and GPΔmuc in human sera from EBOV infected individuals. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Multiplicative effects model with internal standard in mobile phase for quantitative liquid chromatography-mass spectrometry.

    PubMed

    Song, Mi; Chen, Zeng-Ping; Chen, Yao; Jin, Jing-Wen

    2014-07-01

    Liquid chromatography-mass spectrometry assays suffer from signal instability caused by the gradual fouling of the ion source, vacuum instability, aging of the ion multiplier, etc. To address this issue, in this contribution, an internal standard was added into the mobile phase. The internal standard was therefore ionized and detected together with the analytes of interest by the mass spectrometer to ensure that variations in measurement conditions and/or instrument have similar effects on the signal contributions of both the analytes of interest and the internal standard. Subsequently, based on the unique strategy of adding internal standard in mobile phase, a multiplicative effects model was developed for quantitative LC-MS assays and tested on a proof of concept model system: the determination of amino acids in water by LC-MS. The experimental results demonstrated that the proposed method could efficiently mitigate the detrimental effects of continuous signal variation, and achieved quantitative results with average relative predictive error values in the range of 8.0-15.0%, which were much more accurate than the corresponding results of conventional internal standard method based on the peak height ratio and partial least squares method (their average relative predictive error values were as high as 66.3% and 64.8%, respectively). Therefore, it is expected that the proposed method can be developed and extended in quantitative LC-MS analysis of more complex systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Modified telomeric repeat amplification protocol: a quantitative radioactive assay for telomerase without using electrophoresis.

    PubMed

    Szatmari, I; Tókés, S; Dunn, C B; Bardos, T J; Aradi, J

    2000-06-15

    A polymerase chain reaction (PCR)-based radioactive telomerase assay was developed in our laboratory which is quantitative and does not require electrophoretic evaluation (designated as TP-TRAP; it utilizes two reverse primers). The main steps of the assay include (1) extension of a 20-mer oligonucleotide substrate (MTS) by telomerase, (2) amplification of the telomerase products in the presence of [(3)H]dTTP using the substrate oligonucleotide and two reverse primers (RPC3, 38 mer; RP, 20 mer), (3) isolation of the amplified radioactive dsDNA by precipitation and filtration, (4) determination of the radioactivity of the acid-insoluble DNA. The length of the telomerase products does not increase on amplification. This valuable feature of the assay is achieved by utilization of the two reverse primers and a highly specific PCR protocol. The assay is linear, accurate, and suitable for cell-biological studies where slight quantitative differences in telomerase activity must be detected. The assay is also suitable for screening and characterization of telomerase inhibitors, as shown with a chemically modified oligonucleotide reverse transcriptase inhibitor [(s(4)dU)(35)]. Copyright 2000 Academic Press.

  19. [Development and application of CK-MB specific monoclonal antibodies].

    PubMed

    Chen, Zimin; Zhou, Guoliang; Xu, Weiling; Zheng, Xiaohong; Tong, Xunzhang; Ke, Qishen; Song, Liuwei; Ge, Shengxiang

    2017-01-25

    The aim of this study is to develop creatine kinase isoenzyme MB (CK-MB) specific monoclonal antibodies (mAb), and characterize the monoclonal antibody and further development of quantitative detection assay for CK-MB. The BALB/c mice were immunized with purchased CK-MB antigen, then monoclonal antibodies were prepared according to conventional hybridoma technique and screened by indirect and capture ELISA method. To identify the epitopes and evaluate the classification, purchased creatine kinase isoenzyme MB (CK-MM/BB/MB) antigen was used to identify the epitopes, with immunoblotting and synthetic CK-MM and CK-BB in different linear epitope. A double antibody sandwich ELISA was applied to screen the mAb pairs for CK-MB detection, and the quantitative detection assay for CK-MB was developed. We used 74 cases of clinical specimens for comparison of our assay with Roche's CK-MB assay. We successfully developed 22 strains of hybridoms against CK-MB, these mAbs can be divided into linear, partial conformational CK-MB, CK-MM or CK-BB cross monoclonal antibody and CK-MB specific reaction with partial conformational monoclonal antibody, and CK-MB quantitative detection assay was developed by using partial conformational monoclonal antibody. The correlation coefficient factor r of our reagent and Roche's was 0.930 9. This study established a screening method for CK-MB partial conformational specific monoclonal antibody, and these monoclonal antibodies were analyzed and an established quantitative detection assay was developed. The new assay had a high concordance with Roche's.

  20. Single Laboratory Comparison of Quantitative Real-Time PCR Assays for the Detection of Human Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method ...

  1. Accelerated Colorimetric Micro-assay for Screening Mold Inhibitors

    Treesearch

    Carol A. Clausen; Vina W. Yang

    2014-01-01

    Rapid quantitative laboratory test methods are needed to screen potential antifungal agents. Existing laboratory test methods are relatively time consuming, may require specialized test equipment and rely on subjective visual ratings. A quantitative, colorimetric micro-assay has been developed that uses XTT tetrazolium salt to metabolically assess mold spore...

  2. A sensitive and accurate quantification method for the detection of hepatitis B virus covalently closed circular DNA by the application of a droplet digital polymerase chain reaction amplification system.

    PubMed

    Mu, Di; Yan, Liang; Tang, Hui; Liao, Yong

    2015-10-01

    To develop a sensitive and accurate assay system for the quantification of covalently closed circular HBV DNA (cccDNA) for future clinical monitoring of cccDNA fluctuation during antiviral therapy in the liver of infected patients. A droplet digital PCR (ddPCR)-based assay system detected template DNA input at the single copy level (or ~10(-5) pg of plasmid HBV DNA) by using serially diluted plasmid HBV DNA samples. Compared with the conventional quantitative PCR assay in the detection of cccDNA, which required at least 50 ng of template DNA input, a parallel experiment applying a ddPCR system demonstrates that the lowest detection limit of cccDNA from HepG2.215 cellular DNA samples is around 1 ng, which is equivalent to 0.54 ± 0.94 copies of cccDNA. In addition, we demonstrated that the addition of cccDNA-safe exonuclease and utilization of cccDNA-specific primers in the ddPCR assay system significantly improved the detection accuracy of HBV cccDNA from HepG2.215 cellular DNA samples. The ddPCR-based cccDNA detection system is a sensitive and accurate assay for the quantification of cccDNA in HBV-transfected HepG2.215 cellular DNA samples and may represent an important method for future application in monitoring cccDNA fluctuation during antiviral therapy.

  3. Interpretation of protein quantitation using the Bradford assay: comparison with two calculation models.

    PubMed

    Ku, Hyung-Keun; Lim, Hyuk-Min; Oh, Kyong-Hwa; Yang, Hyo-Jin; Jeong, Ji-Seon; Kim, Sook-Kyung

    2013-03-01

    The Bradford assay is a simple method for protein quantitation, but variation in the results between proteins is a matter of concern. In this study, we compared and normalized quantitative values from two models for protein quantitation, where the residues in the protein that bind to anionic Coomassie Brilliant Blue G-250 comprise either Arg and Lys (Method 1, M1) or Arg, Lys, and His (Method 2, M2). Use of the M2 model yielded much more consistent quantitation values compared with use of the M1 model, which exhibited marked overestimations against protein standards. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study.

    PubMed

    Walker, Martin; Basáñez, María-Gloria; Ouédraogo, André Lin; Hermsen, Cornelus; Bousema, Teun; Churcher, Thomas S

    2015-01-16

    Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens.

  5. Advances in Developing HIV-1 Viral Load Assays for Resource-Limited Settings

    PubMed Central

    Wang, ShuQi; Xu, Feng; Demirci, Utkan

    2010-01-01

    Commercial HIV-1 RNA viral load assays have been routinely used in developed countries to monitor antiretroviral treatment (ART). However, these assays require expensive equipment and reagents, well-trained operators, and established laboratory infrastructure. These requirements restrict their use in resource-limited settings where people are most afflicted with the HIV-1 epidemic. Inexpensive alternatives such as the Ultrasensitive p24 assay, the Reverse Transcriptase (RT) assay and in-house reverse transcription quantitative polymerase chain reaction (RT-qPCR) have been developed. However, they are still time-consuming, technologically complex and inappropriate for decentralized laboratories as point-of-care (POC) tests. Recent advances in microfluidics and nanotechnology offer new strategies to develop low-cost, rapid, robust and simple HIV-1 viral load monitoring systems. We review state-of-the-art technologies used for HIV-1 viral load monitoring in both developed and developing settings. Emerging approaches based on microfluidics and nanotechnology, which have potential to be integrated into POC HIV-1 viral load assays, are also discussed. PMID:20600784

  6. Evaluation of the branched-chain DNA assay for measurement of RNA in formalin-fixed tissues.

    PubMed

    Knudsen, Beatrice S; Allen, April N; McLerran, Dale F; Vessella, Robert L; Karademos, Jonathan; Davies, Joan E; Maqsodi, Botoul; McMaster, Gary K; Kristal, Alan R

    2008-03-01

    We evaluated the branched-chain DNA (bDNA) assay QuantiGene Reagent System to measure RNA in formalin-fixed, paraffin-embedded (FFPE) tissues. The QuantiGene Reagent System does not require RNA isolation, avoids enzymatic preamplification, and has a simple workflow. Five selected genes were measured by bDNA assay; quantitative polymerase chain reaction (qPCR) was used as a reference method. Mixed-effect statistical models were used to partition the overall variance into components attributable to xenograft, sample, and assay. For FFPE tissues, the coefficients of reliability were significantly higher for the bDNA assay (93-100%) than for qPCR (82.4-95%). Correlations between qPCR(FROZEN), the gold standard, and bDNA(FFPE) ranged from 0.60 to 0.94, similar to those from qPCR(FROZEN) and qPCR(FFPE). Additionally, the sensitivity of the bDNA assay in tissue homogenates was 10-fold higher than in purified RNA. In 9- to 13-year-old blocks with poor RNA quality, the bDNA assay allowed the correct identification of the overexpression of known cancer genes. In conclusion, the QuantiGene Reagent System is considerably more reliable, reproducible, and sensitive than qPCR, providing an alternative method for the measurement of gene expression in FFPE tissues. It also appears to be well suited for the clinical analysis of FFPE tissues with diagnostic or prognostic gene expression biomarker panels for use in patient treatment and management.

  7. Evaluation of the Branched-Chain DNA Assay for Measurement of RNA in Formalin-Fixed Tissues

    PubMed Central

    Knudsen, Beatrice S.; Allen, April N.; McLerran, Dale F.; Vessella, Robert L.; Karademos, Jonathan; Davies, Joan E.; Maqsodi, Botoul; McMaster, Gary K.; Kristal, Alan R.

    2008-01-01

    We evaluated the branched-chain DNA (bDNA) assay QuantiGene Reagent System to measure RNA in formalin-fixed, paraffin-embedded (FFPE) tissues. The QuantiGene Reagent System does not require RNA isolation, avoids enzymatic preamplification, and has a simple workflow. Five selected genes were measured by bDNA assay; quantitative polymerase chain reaction (qPCR) was used as a reference method. Mixed-effect statistical models were used to partition the overall variance into components attributable to xenograft, sample, and assay. For FFPE tissues, the coefficients of reliability were significantly higher for the bDNA assay (93–100%) than for qPCR (82.4–95%). Correlations between qPCRFROZEN, the gold standard, and bDNAFFPE ranged from 0.60 to 0.94, similar to those from qPCRFROZEN and qPCRFFPE. Additionally, the sensitivity of the bDNA assay in tissue homogenates was 10-fold higher than in purified RNA. In 9- to 13-year-old blocks with poor RNA quality, the bDNA assay allowed the correct identification of the overexpression of known cancer genes. In conclusion, the QuantiGene Reagent System is considerably more reliable, reproducible, and sensitive than qPCR, providing an alternative method for the measurement of gene expression in FFPE tissues. It also appears to be well suited for the clinical analysis of FFPE tissues with diagnostic or prognostic gene expression biomarker panels for use in patient treatment and management. PMID:18276773

  8. RAD-ADAPT: Software for modelling clonogenic assay data in radiation biology.

    PubMed

    Zhang, Yaping; Hu, Kaiqiang; Beumer, Jan H; Bakkenist, Christopher J; D'Argenio, David Z

    2017-04-01

    We present a comprehensive software program, RAD-ADAPT, for the quantitative analysis of clonogenic assays in radiation biology. Two commonly used models for clonogenic assay analysis, the linear-quadratic model and single-hit multi-target model, are included in the software. RAD-ADAPT uses maximum likelihood estimation method to obtain parameter estimates with the assumption that cell colony count data follow a Poisson distribution. The program has an intuitive interface, generates model prediction plots, tabulates model parameter estimates, and allows automatic statistical comparison of parameters between different groups. The RAD-ADAPT interface is written using the statistical software R and the underlying computations are accomplished by the ADAPT software system for pharmacokinetic/pharmacodynamic systems analysis. The use of RAD-ADAPT is demonstrated using an example that examines the impact of pharmacologic ATM and ATR kinase inhibition on human lung cancer cell line A549 after ionizing radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Deep Learning in Label-free Cell Classification

    PubMed Central

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-01-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells. PMID:26975219

  10. Deep Learning in Label-free Cell Classification

    NASA Astrophysics Data System (ADS)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.

  11. Multicenter Evaluation of a Commercial Cytomegalovirus Quantitative Standard: Effects of Commutability on Interlaboratory Concordance

    PubMed Central

    Shahbazian, M. D.; Valsamakis, A.; Boonyaratanakornkit, J.; Cook, L.; Pang, X. L.; Preiksaitis, J. K.; Schönbrunner, E. R.; Caliendo, A. M.

    2013-01-01

    Commutability of quantitative reference materials has proven important for reliable and accurate results in clinical chemistry. As international reference standards and commercially produced calibration material have become available to address the variability of viral load assays, the degree to which such materials are commutable and the effect of commutability on assay concordance have been questioned. To investigate this, 60 archived clinical plasma samples, which previously tested positive for cytomegalovirus (CMV), were retested by five different laboratories, each using a different quantitative CMV PCR assay. Results from each laboratory were calibrated both with lab-specific quantitative CMV standards (“lab standards”) and with common, commercially available standards (“CMV panel”). Pairwise analyses among laboratories were performed using mean results from each clinical sample, calibrated first with lab standards and then with the CMV panel. Commutability of the CMV panel was determined based on difference plots for each laboratory pair showing plotted values of standards that were within the 95% prediction intervals for the clinical specimens. Commutability was demonstrated for 6 of 10 laboratory pairs using the CMV panel. In half of these pairs, use of the CMV panel improved quantitative agreement compared to use of lab standards. Two of four laboratory pairs for which the CMV panel was noncommutable showed reduced quantitative agreement when that panel was used as a common calibrator. Commutability of calibration material varies across different quantitative PCR methods. Use of a common, commutable quantitative standard can improve agreement across different assays; use of a noncommutable calibrator can reduce agreement among laboratories. PMID:24025907

  12. Development of a quantitative assay amenable for high-throughput screening to target the type II secretion system for new treatments against plant-pathogenic bacteria.

    PubMed

    Tran, Nini; Zielke, Ryszard A; Vining, Oliver B; Azevedo, Mark D; Armstrong, Donald J; Banowetz, Gary M; McPhail, Kerry L; Sikora, Aleksandra E

    2013-09-01

    Plant-pathogenic bacteria are the causative agents of diseases in important agricultural crops and ornamental plants. The severe economic burden of these diseases requires seeking new approaches for their control, particularly because phytopathogenic bacteria are often resistant to available treatments. The type II secretion (T2S) system is a key virulence factor used by major groups of phytopathogenic bacteria. The T2S machinery transports many hydrolytic enzymes responsible for degradation of the plant cell wall, thus enabling successful colonization and dissemination of the bacteria in the plant host. The genetic inactivation of the T2S system leads to loss of virulence, which strongly suggests that targeting the T2S could enable new treatments against plant-pathogenic bacteria. Accordingly, we have designed and optimized an assay to identify small-molecule inhibitors of the T2S system. This assay uses a double parametric output: measurement of bacterial growth and the enzymatic activity of cellulase, which is secreted via the T2S pathway in our model organism Dickeya dadantii. The assay was evaluated by screening natural extracts, culture filtrates isolated from rhizosphere bacteria, and a collection of pharmaceutically active compounds in LOPAC(1280). The calculated Z' values of 0.63, 0.63, and 0.58, respectively, strongly suggest that the assay is applicable for a high-throughput screening platform.

  13. NanoDrop Microvolume Quantitation of Nucleic Acids

    PubMed Central

    Desjardins, Philippe; Conklin, Deborah

    2010-01-01

    Biomolecular assays are continually being developed that use progressively smaller amounts of material, often precluding the use of conventional cuvette-based instruments for nucleic acid quantitation for those that can perform microvolume quantitation. The NanoDrop microvolume sample retention system (Thermo Scientific NanoDrop Products) functions by combining fiber optic technology and natural surface tension properties to capture and retain minute amounts of sample independent of traditional containment apparatus such as cuvettes or capillaries. Furthermore, the system employs shorter path lengths, which result in a broad range of nucleic acid concentration measurements, essentially eliminating the need to perform dilutions. Reducing the volume of sample required for spectroscopic analysis also facilitates the inclusion of additional quality control steps throughout many molecular workflows, increasing efficiency and ultimately leading to greater confidence in downstream results. The need for high-sensitivity fluorescent analysis of limited mass has also emerged with recent experimental advances. Using the same microvolume sample retention technology, fluorescent measurements may be performed with 2 μL of material, allowing fluorescent assays volume requirements to be significantly reduced. Such microreactions of 10 μL or less are now possible using a dedicated microvolume fluorospectrometer. Two microvolume nucleic acid quantitation protocols will be demonstrated that use integrated sample retention systems as practical alternatives to traditional cuvette-based protocols. First, a direct A260 absorbance method using a microvolume spectrophotometer is described. This is followed by a demonstration of a fluorescence-based method that enables reduced-volume fluorescence reactions with a microvolume fluorospectrometer. These novel techniques enable the assessment of nucleic acid concentrations ranging from 1 pg/ μL to 15,000 ng/ μL with minimal consumption of sample. PMID:21189466

  14. Evaluation of the mutagenicity and carcinogenicity of motor vehicle emissions in short-term bioassays.

    PubMed Central

    Lewtas, J

    1983-01-01

    Incomplete combustion of fuel in motor vehicles results in the emission of submicron carbonaceous particles which, after cooling and dilution, contain varying quantities of extractable organic constituents. These organics are mutagenic in bacteria. Confirmatory bioassays in mammalian cells provide the capability of detecting chromosomal and DNA damage in addition to gene mutations. In order to evaluate the mutagenicity of these organics in mammalian cells, extractable organics from particle emissions from several diesel and gasoline vehicles were compared in a battery of microbial, mammalian cell and in vivo bioassays. The mammalian cell mutagenicity bioassays were selected to detect gene mutations, DNA damage, and chromosomal effects. Carcinogenesis bioassays conducted included short-term assays for oncogenic transformation and skin tumorigenesis. The results in different assay systems are compared both qualitatively and quantitatively. Good quantitative correlations were observed between several mutagenesis and carcinogenesis bioassays for this series of diesel and gasoline emissions. PMID:6186475

  15. Quantitative fluorescence microscopy and image deconvolution.

    PubMed

    Swedlow, Jason R

    2013-01-01

    Quantitative imaging and image deconvolution have become standard techniques for the modern cell biologist because they can form the basis of an increasing number of assays for molecular function in a cellular context. There are two major types of deconvolution approaches--deblurring and restoration algorithms. Deblurring algorithms remove blur but treat a series of optical sections as individual two-dimensional entities and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed in this chapter. Image deconvolution in fluorescence microscopy has usually been applied to high-resolution imaging to improve contrast and thus detect small, dim objects that might otherwise be obscured. Their proper use demands some consideration of the imaging hardware, the acquisition process, fundamental aspects of photon detection, and image processing. This can prove daunting for some cell biologists, but the power of these techniques has been proven many times in the works cited in the chapter and elsewhere. Their usage is now well defined, so they can be incorporated into the capabilities of most laboratories. A major application of fluorescence microscopy is the quantitative measurement of the localization, dynamics, and interactions of cellular factors. The introduction of green fluorescent protein and its spectral variants has led to a significant increase in the use of fluorescence microscopy as a quantitative assay system. For quantitative imaging assays, it is critical to consider the nature of the image-acquisition system and to validate its response to known standards. Any image-processing algorithms used before quantitative analysis should preserve the relative signal levels in different parts of the image. A very common image-processing algorithm, image deconvolution, is used to remove blurred signal from an image. There are two major types of deconvolution approaches, deblurring and restoration algorithms. Deblurring algorithms remove blur, but treat a series of optical sections as individual two-dimensional entities, and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed. Copyright © 1998 Elsevier Inc. All rights reserved.

  16. Development and validation of a LC-MS/MS method for quantitation of fosfomycin - Application to in vitro antimicrobial resistance study using hollow-fiber infection model.

    PubMed

    Gandhi, Adarsh; Matta, Murali; Garimella, Narayana; Zere, Tesfalem; Weaver, James

    2018-06-01

    Extensive use and misuse of antibiotics over the past 50 years has contributed to the emergence and spread of antibiotic-resistant bacterial strains, rendering them as a global health concern. To address this issue, a dynamic in vitro hollow-fiber system, which mimics the in vivo environment more closely than the static model, was used to study the emergence of bacterial resistance of Escherichia coli against fosfomycin (FOS). To aid in this endeavor we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for quantitative analysis of FOS in lysogeny broth. FOS was resolved on a Kinetex HILIC (2.1 × 50 mm, 2.6 μm) column with 2 mm ammonium acetate (pH 4.76) and acetonitrile as mobile phase within 3 min. Multiple reaction monitoring was used to acquire data on a triple quadrupole mass spectrometer. The assay was linear from 1 to 1000 μg/mL. Inter- and intra-assay precision and accuracy were <15% and between ±85 and 115% respectively. No significant matrix effect was observed when corrected with the internal standard. FOS was stable for up to 24 h at room temperature, up to three freeze-thaw cycles and up to 24 h when stored at 4°C in the autosampler. In vitro experimental data were similar to the simulated plasma pharmacokinetic data, further confirming the appropriateness of the experimental design to quantitate antibiotics and study occurrence of antimicrobial resistance in real time. The validated LC-MS/MS assays for quantitative determination of FOS in lysogeny broth will help antimicrobial drug resistance studies. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  17. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity

    PubMed Central

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A.; Bradford, William D.; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S.; Li, Rong

    2015-01-01

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein−based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. PMID:25823586

  18. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity.

    PubMed

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A; Bradford, William D; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S; Li, Rong

    2015-03-30

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein-based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. Copyright © 2015 Zhu et al.

  19. PCR-free quantitative detection of genetically modified organism from raw materials – A novel electrochemiluminescence-based bio-barcode method

    PubMed Central

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R.

    2018-01-01

    Bio-barcode assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio-barcode assay requires lengthy experimental procedures including the preparation and release of barcode DNA probes from the target-nanoparticle complex, and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio-barcode assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2’2’-bipyridyl) ruthenium (TBR)-labele barcode DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products. PMID:18386909

  20. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    PubMed

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  1. A Quantitative Polymerase Chain Reaction Assay for the Detection and Quantification of Epizootic Epitheliotropic Disease Virus (EEDV; Salmonid Herpesvirus 3).

    PubMed

    Glenney, Gavin W; Barbash, Patricia A; Coll, John A

    2016-03-01

    Epizootic epitheliotropic disease virus (EEDV; salmonid herpesvirus [SalHV3]; family Alloherpesviridae) causes a systemic disease of juvenile and yearling Lake Trout Salvelinus namaycush. No cell lines are currently available for the culture and propagation of EEDV, so primary diagnosis is limited to PCR and electron microscopy. To better understand the pervasiveness of EEDV (carrier or latent state of infection) in domesticated and wild Lake Trout populations, we developed a sensitive TaqMan quantitative PCR (qPCR) assay to detect the presence of the EEDV terminase gene in Lake Trout tissues. This assay was able to detect a linear standard curve over nine logs of plasmid dilution and was sensitive enough to detect single-digit copies of EEDV. The efficiency of the PCR assay was 99.4 ± 0.06% (mean ± SD), with a 95% confidence limit of 0.0296 (R(2) = 0.994). Methods were successfully applied to collect preliminary data from a number of species and water bodies in the states of Pennsylvania, New York, and Vermont, indicating that EEDV is more common in wild fish than previously known. In addition, through the development of this qPCR assay, we detected EEDV in a new salmonid species, the Cisco Coregonus artedi. The qPCR assay was unexpectedly able to detect two additional herpesviruses, the Atlantic Salmon papillomatosis virus (ASPV; SalHV4) and the Namaycush herpesvirus (NamHV; SalHV5), which both share high sequence identity with the EEDV terminase gene. With these unexpected findings, we subsequently designed three primer sets to confirm initial TaqMan qPCR assay positives and to differentiate among EEDV, ASPV, and NamHV by detecting the glycoprotein genes via SYBR Green qPCR. Received April 20, 2015; accepted November 10, 2015.

  2. Evaluation of a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay (Keystone Sym)

    EPA Science Inventory

    Our goal is to establish an in vitro model system to evaluate chemical effects using a single stem cell culture technique that would improve throughput and provide quantitative markers of differentiation and cell number. To this end, we have used an adherent cell differentiation ...

  3. VARIATION OF THE EXPRESSION OF ENDOGENOUS "HOUSEKEEPING" GENES IN B[A]P TREATED MOUSE LUNGS MEASURED BY qRT-PCR

    EPA Science Inventory

    Quantitative RT-PCR is frequently used to analyze gene expression in different experimental systems. In this assay, housekeeping genes are frequently used to normalize for the variability between samples (relative quantification). We have examined the utility of using qRT-PCR and...

  4. Prediction of Safety Margin and Optimization of Dosing Protocol for a Novel Antibiotic using Quantitative Systems Pharmacology Modeling.

    PubMed

    Woodhead, Jeffrey L; Paech, Franziska; Maurer, Martina; Engelhardt, Marc; Schmitt-Hoffmann, Anne H; Spickermann, Jochen; Messner, Simon; Wind, Mathias; Witschi, Anne-Therese; Krähenbühl, Stephan; Siler, Scott Q; Watkins, Paul B; Howell, Brett A

    2018-06-07

    Elevations of liver enzymes have been observed in clinical trials with BAL30072, a novel antibiotic. In vitro assays have identified potential mechanisms for the observed hepatotoxicity, including electron transport chain (ETC) inhibition and reactive oxygen species (ROS) generation. DILIsym, a quantitative systems pharmacology (QSP) model of drug-induced liver injury, has been used to predict the likelihood that each mechanism explains the observed toxicity. DILIsym was also used to predict the safety margin for a novel BAL30072 dosing scheme; it was predicted to be low. DILIsym was then used to recommend potential modifications to this dosing scheme; weight-adjusted dosing and a requirement to assay plasma alanine aminotransferase (ALT) daily and stop dosing as soon as ALT increases were observed improved the predicted safety margin of BAL30072 and decreased the predicted likelihood of severe injury. This research demonstrates a potential application for QSP modeling in improving the safety profile of candidate drugs. © 2018 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  5. Monoclonal antibody passive hemagglutination and capture enzyme-linked immunosorbent assays for direct detection and quantitation of F41 and K99 fimbrial antigens in enterotoxigenic Escherichia coli.

    PubMed Central

    Raybould, T J; Crouch, C F; Acres, S D

    1987-01-01

    Production of diarrhea in neonatal calves by enterotoxigenic Escherichia coli depends on its ability to attach to the epithelial cells of the intestine via surface adhesins called pili or fimbriae and to secrete enterotoxins. The most important of these fimbriae are designated K99 and F41. We produced and characterized a murine monoclonal antibody specific to F41. This monoclonal antibody and a K99-specific monoclonal antibody were used to develop sensitive and specific passive hemagglutination and capture enzyme-linked immunosorbent assays (ELISAs) for detection and quantitation of F41 and K99 antigens in E. coli cultures and culture supernatants. The capture ELISA systems exhibited excellent sensitivity and specificity, whereas the passive hemagglutination systems appeared to be oversensitive. The ability of the capture ELISAs to detect K99 and F41 fimbrial antigens in fecal specimens from calves was evaluated. Fimbrial antigens were detected in six of six specimens from scouring calves but not in four of four specimens from nonscouring calves. PMID:2880866

  6. High-throughput quantitative luminescence assay of the growth in planta of Pseudomonas syringae chromosomally tagged with Photorhabdus luminescens luxCDABE.

    PubMed

    Fan, Jun; Crooks, Casey; Lamb, Chris

    2008-01-01

    Bioluminescent strains of the Arabidopsis thaliana pathogens Pseudomonas syringae pathovar (pv.) tomato and pv. maculicola were made by insertion of the luxCDABE operon from Photorhabdus luminescens into the P. syringae chromosome under the control of a constitutive promoter. Stable integration of luxCDABE did not affect bacterial fitness, growth in planta or disease outcome. Luminescence accurately and reliably reported bacterial growth in infected Arabidopsis leaves both with a fixed inoculum followed over time and with varying inocula assayed at a single time point. Furthermore, the bioluminescence assay could detect a small (1.3-fold) difference in bacterial growth between different plant genotypes with a precision comparable to that of the standard plate assay. Luminescence of luxCDABE-tagged P. syringae allows rapid and convenient quantification of bacterial growth without the tissue extraction, serial dilution, plating and manual scoring involved in standard assays of bacterial growth by colony formation in plate culture of samples from infected tissue. The utility of the bioluminescence assay was illustrated by surveying the 500-fold variation in growth of the universally virulent P. syringae pv. maculicola ES4326 among more than 100 Arabidopsis ecotypes and identification of two quantitative trait loci accounting for 48% and 16%, respectively, of the variance of basal resistance to P. syringae pv. tomato DC3000 in the Col-0 x Fl-1 F(2) population. Luminescence assay of bacteria chromosomally tagged with luxCDABE should greatly facilitate the genetic dissection of quantitative differences in gene-for-gene, basal and acquired disease resistance and other aspects of plant interactions with bacterial pathogens requiring high-throughput assays or large-scale quantitative screens.

  7. ELISA-BASE: An Integrated Bioinformatics Tool for Analyzing and Tracking ELISA Microarray Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Amanda M.; Collett, James L.; Seurynck-Servoss, Shannon L.

    ELISA-BASE is an open-source database for capturing, organizing and analyzing protein enzyme-linked immunosorbent assay (ELISA) microarray data. ELISA-BASE is an extension of the BioArray Soft-ware Environment (BASE) database system, which was developed for DNA microarrays. In order to make BASE suitable for protein microarray experiments, we developed several plugins for importing and analyzing quantitative ELISA microarray data. Most notably, our Protein Microarray Analysis Tool (ProMAT) for processing quantita-tive ELISA data is now available as a plugin to the database.

  8. A sensitive one-step method for quantitative detection of α-amylase in serum and urine using a personal glucose meter.

    PubMed

    Wang, Qing; Wang, Hui; Yang, Xiaohai; Wang, Kemin; Liu, Rongjuan; Li, Qing; Ou, Jinqing

    2015-02-21

    Assays of α-amylase (AMS) activity in serum and urine constitute the important indicator for the diagnosis of acute pancreatitis, mumps, renal disease and abdominal disorders. Since these diseases confer a heavy financial burden on the health care system, AMS detection in point-of-care is fundamental. Here, a one-step assay for direct determination of the AMS activity was developed using a portable personal glucose meter (PGM). In this assay, maltopentaose was used as a substrate for sensitive detection of AMS with the assistance of α-glucosidase. In the presence of AMS, maltopentaose can be readily hydrolyzed to form maltotriose and maltose quickly. With the enzymatic hydrolysis of α-glucosidase, maltotriose and maltose can be turned into glucose rapidly, which can be quantitatively measured using a portable PGM. This assay did not require any cumbersome and time consuming operations, such as surface modification, synthesis of invertase conjugate, washing and centrifugation. Detection of AMS can be achieved using only a one-step mixture, and the limit of detection was 20 U L(-1) which was lower than the clinical cutoff for AMS. More importantly, this sensitive and selective assay was also used for the detection of AMS in human serum/urine samples. The results showed that the recovery of AMS from human serum/urine samples was 91-107%. The rapid and easy-to-operate assay may have potential application in the fields of point-of-care (POC) clinical diagnosis, particularly in rural and remote areas where lab equipment may be limited.

  9. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples

    EPA Science Inventory

    Real-time quantitative PCR assays that target the human-associated HF183 bacterial cluster are considered to be some of the top performing methods for the characterization of human fecal pollution in ambient surface waters. In response, the United States Environmental Protectio...

  10. QUANTITATIVE ENZYME-LINKED IMMUNOSORBENT ASSAY FOR DETERMINATION OF POLYCHLORINATED BIPHENYLS IN ENVIRONMENTAL SOIL AND SEDIMENT SAMPLES

    EPA Science Inventory

    An enzyme-linked immunosorbent assay (ELISA) for the quantitative determination of Aroclors 1242, 1248, 1254, and 1260 in soil and sediments was developed and its performance compared with that of gas chromatography (GC). The detection limits for Aroclors 1242 and 1248 in soil ar...

  11. Single Laboratory Comparison of Quantitative Real-Time PCR Assays for the Detection of Human Fecal Pollution - Poster

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method p...

  12. Comparative Analysis of Predictive Models for Liver Toxicity Using ToxCast Assays and Quantitative Structure-Activity Relationships (MCBIOS)

    EPA Science Inventory

    Comparative Analysis of Predictive Models for Liver Toxicity Using ToxCast Assays and Quantitative Structure-Activity Relationships Jie Liu1,2, Richard Judson1, Matthew T. Martin1, Huixiao Hong3, Imran Shah1 1National Center for Computational Toxicology (NCCT), US EPA, RTP, NC...

  13. Investigation of a redox-sensitive predictive model of mouse embryonic stem cells differentiation using quantitative nuclease protection assays and glutathione redox status

    EPA Science Inventory

    Investigation of a redox-sensitive predictive model of mouse embryonic stem cell differentiation via quantitative nuclease protection assays and glutathione redox status Chandler KJ,Hansen JM, Knudsen T,and Hunter ES 1. U.S. Environmental Protection Agency, Research Triangl...

  14. The applicability of TaqMan-based quantitative real-time PCR assays for detecting and enumeratIng Cryptosporidium spp. oocysts in the environment

    EPA Science Inventory

    Molecular detection methods such as PCR have been extensively used to type Cryptosporidium oocysts detected in the environment. More recently, studies have developed quantitative real-time PCR assays for detection and quantification of microbial contaminants in water as well as ...

  15. A Direct, Competitive Enzyme-Linked Immunosorbent Assay (ELISA) as a Quantitative Technique for Small Molecules

    ERIC Educational Resources Information Center

    Powers, Jennifer L.; Rippe, Karen Duda; Imarhia, Kelly; Swift, Aileen; Scholten, Melanie; Islam, Naina

    2012-01-01

    ELISA (enzyme-linked immunosorbent assay) is a widely used technique with applications in disease diagnosis, detection of contaminated foods, and screening for drugs of abuse or environmental contaminants. However, published protocols with a focus on quantitative detection of small molecules designed for teaching laboratories are limited. A…

  16. A Multiplexed, Probe-Based Quantitative PCR Assay for DNA of Phytophthora sojae

    USDA-ARS?s Scientific Manuscript database

    Phytophthora sojae (Kaufm. & Gerd.) causes seed rot, pre- and post-emergence damping off, and sometimes foliar blight in soybean (Glycine max). Crop loss may approach 100% with susceptible cultivars. We report here the development of a unique quantitative PCR assay specific to DNA of P. sojae, and a...

  17. A rapid colorimetric assay for mold spore germination using XTT tetrazolium salt

    Treesearch

    Carol A. Clausen; Vina W. Yang

    2011-01-01

    Current laboratory test methods to measure efficacy of new mold inhibitors are time consuming, some require specialized test equipment and ratings are subjective. Rapid, simple quantitative assays to measure the efficacy of mold inhibitors are needed. A quantitative, colorimetric microassay was developed using XTT tetrazolium salt to metabolically assess mold spore...

  18. A quantitative ELISA procedure for the measurement of membrane-bound platelet-associated IgG (PAIgG).

    PubMed

    Lynch, D M; Lynch, J M; Howe, S E

    1985-03-01

    A quantitative ELISA assay for the measurement of in vivo bound platelet-associated IgG (PAIgG) using intact patient platelets is presented. The assay requires quantitation and standardization of the number of platelets bound to microtiter plate wells and an absorbance curve using quantitated IgG standards. Platelet-bound IgG was measured using an F(ab')2 peroxidase labeled anti-human IgG and o-phenylenediamine dihydrochloride (OPD) as the substrate. Using this assay, PAIgG for normal individuals was 2.8 +/- 1.6 fg/platelet (mean +/- 1 SD; n = 30). Increased levels were found in 28 of 30 patients with clinical autoimmune thrombocytopenia (ATP) with a range of 7.0-80 fg/platelet. Normal PAIgG levels were found in 26 of 30 patients with nonimmune thrombocytopenia. In the sample population studied, the PAIgG assay showed a sensitivity of 93%, specificity of 90%, a positive predictive value of 0.90, and a negative predictive value of 0.93. The procedure is highly reproducible (CV = 6.8%) and useful in evaluating patients with suspected immune mediated thrombocytopenia.

  19. A Flow Cytometry-Based Assay for Quantifying Non-Plaque Forming Strains of Yellow Fever Virus

    PubMed Central

    Hammarlund, Erika; Amanna, Ian J.; Dubois, Melissa E.; Barron, Alex; Engelmann, Flora; Messaoudi, Ilhem; Slifka, Mark K.

    2012-01-01

    Primary clinical isolates of yellow fever virus can be difficult to quantitate by standard in vitro methods because they may not form discernable plaques or induce a measurable cytopathic effect (CPE) on cell monolayers. In our hands, the Dakar strain of yellow fever virus (YFV-Dakar) could not be measured by plaque assay (PA), focus-forming assay (FFA), or by measurement of CPE. For these reasons, we developed a YFV-specific monoclonal antibody (3A8.B6) and used it to optimize a highly sensitive flow cytometry-based tissue culture limiting dilution assay (TC-LDA) to measure levels of infectious virus. The TC-LDA was performed by incubating serial dilutions of virus in replicate wells of C6/36 cells and stained intracellularly for virus with MAb 3A8.B6. Using this approach, we could reproducibly quantitate YFV-Dakar in tissue culture supernatants as well as from the serum of viremic rhesus macaques experimentally infected with YFV-Dakar. Moreover, the TC-LDA approach was >10-fold more sensitive than standard plaque assay for quantitating typical plaque-forming strains of YFV including YFV-17D and YFV-FNV (French neurotropic vaccine). Together, these results indicate that the TC-LDA technique is effective for quantitating both plaque-forming and non-plaque-forming strains of yellow fever virus, and this methodology may be readily adapted for the study and quantitation of other non-plaque-forming viruses. PMID:23028428

  20. A flow cytometry-based assay for quantifying non-plaque forming strains of yellow fever virus.

    PubMed

    Hammarlund, Erika; Amanna, Ian J; Dubois, Melissa E; Barron, Alex; Engelmann, Flora; Messaoudi, Ilhem; Slifka, Mark K

    2012-01-01

    Primary clinical isolates of yellow fever virus can be difficult to quantitate by standard in vitro methods because they may not form discernable plaques or induce a measurable cytopathic effect (CPE) on cell monolayers. In our hands, the Dakar strain of yellow fever virus (YFV-Dakar) could not be measured by plaque assay (PA), focus-forming assay (FFA), or by measurement of CPE. For these reasons, we developed a YFV-specific monoclonal antibody (3A8.B6) and used it to optimize a highly sensitive flow cytometry-based tissue culture limiting dilution assay (TC-LDA) to measure levels of infectious virus. The TC-LDA was performed by incubating serial dilutions of virus in replicate wells of C6/36 cells and stained intracellularly for virus with MAb 3A8.B6. Using this approach, we could reproducibly quantitate YFV-Dakar in tissue culture supernatants as well as from the serum of viremic rhesus macaques experimentally infected with YFV-Dakar. Moreover, the TC-LDA approach was >10-fold more sensitive than standard plaque assay for quantitating typical plaque-forming strains of YFV including YFV-17D and YFV-FNV (French neurotropic vaccine). Together, these results indicate that the TC-LDA technique is effective for quantitating both plaque-forming and non-plaque-forming strains of yellow fever virus, and this methodology may be readily adapted for the study and quantitation of other non-plaque-forming viruses.

  1. Development of an event-specific hydrolysis probe quantitative real-time polymerase chain reaction assay for Embrapa 5.1 genetically modified common bean (Phaseolus vulgaris).

    PubMed

    Treml, Diana; Venturelli, Gustavo L; Brod, Fábio C A; Faria, Josias C; Arisi, Ana C M

    2014-12-10

    A genetically modified (GM) common bean event, namely Embrapa 5.1, resistant to the bean golden mosaic virus (BGMV), was approved for commercialization in Brazil. Brazilian regulation for genetically modified organism (GMO) labeling requires that any food containing more than 1% GMO be labeled. The event-specific polymerase chain reaction (PCR) method has been the primary trend for GMO identification and quantitation because of its high specificity based on the flanking sequence. This work reports the development of an event-specific assay, named FGM, for Embrapa 5.1 detection and quantitation by use of SYBR Green or hydrolysis probe. The FGM assay specificity was tested for Embrapa 2.3 event (a noncommercial GM common bean also resistant to BGMV), 46 non-GM common bean varieties, and other crop species including maize, GM maize, soybean, and GM soybean. The FGM assay showed high specificity to detect the Embrapa 5.1 event. Standard curves for the FGM assay presented a mean efficiency of 95% and a limit of detection (LOD) of 100 genome copies in the presence of background DNA. The primers and probe developed are suitable for the detection and quantitation of Embrapa 5.1.

  2. Digital Assays Part I: Partitioning Statistics and Digital PCR.

    PubMed

    Basu, Amar S

    2017-08-01

    A digital assay is one in which the sample is partitioned into many small containers such that each partition contains a discrete number of biological entities (0, 1, 2, 3, …). A powerful technique in the biologist's toolkit, digital assays bring a new level of precision in quantifying nucleic acids, measuring proteins and their enzymatic activity, and probing single-cell genotypes and phenotypes. Part I of this review begins with the benefits and Poisson statistics of partitioning, including sources of error. The remainder focuses on digital PCR (dPCR) for quantification of nucleic acids. We discuss five commercial instruments that partition samples into physically isolated chambers (cdPCR) or droplet emulsions (ddPCR). We compare the strengths of dPCR (absolute quantitation, precision, and ability to detect rare or mutant targets) with those of its predecessor, quantitative real-time PCR (dynamic range, larger sample volumes, and throughput). Lastly, we describe several promising applications of dPCR, including copy number variation, quantitation of circulating tumor DNA and viral load, RNA/miRNA quantitation with reverse transcription dPCR, and library preparation for next-generation sequencing. This review is intended to give a broad perspective to scientists interested in adopting digital assays into their workflows. Part II focuses on digital protein and cell assays.

  3. Sensing the intruder: a quantitative threshold for recognition cues perception in honeybees

    NASA Astrophysics Data System (ADS)

    Cappa, Federico; Bruschini, Claudia; Cipollini, Maria; Pieraccini, Giuseppe; Cervo, Rita

    2014-02-01

    The ability to discriminate among nestmates and non-nestmate is essential to defend social insect colonies from intruders. Over the years, nestmate recognition has been extensively studied in the honeybee Apis mellifera; nevertheless, the quantitative perceptual aspects at the basis of the recognition system represent an unexplored subject in this species. To test the existence of a cuticular hydrocarbons' quantitative perception threshold for nestmate recognition cues, we conducted behavioural assays by presenting different amounts of a foreign forager's chemical profile to honeybees at the entrance of their colonies. We found an increase in the explorative and aggressive responses as the amount of cues increased based on a threshold mechanism, highlighting the importance of the quantitative perceptual features for the recognition processes in A. mellifera.

  4. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins

    NASA Astrophysics Data System (ADS)

    Kong, Dezhao; Liu, Liqiang; Song, Shanshan; Suryoprabowo, Steven; Li, Aike; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2016-02-01

    A semi-quantitative and quantitative multi-immunochromatographic (ICA) strip detection assay was developed for the simultaneous detection of twenty types of mycotoxins from five classes, including zearalenones (ZEAs), deoxynivalenols (DONs), T-2 toxins (T-2s), aflatoxins (AFs), and fumonisins (FBs), in cereal food samples. Sensitive and specific monoclonal antibodies were selected for this assay. The semi-quantitative results were obtained within 20 min by the naked eye, with visual limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.1-0.5, 2.5-250, 0.5-1, 0.25-1 and 2.5-10 μg kg-1, and cut-off values of 0.25-1, 5-500, 1-10, 0.5-2.5 and 5-25 μg kg-1, respectively. The quantitative results were obtained using a hand-held strip scan reader, with the calculated limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.04-0.17, 0.06-49, 0.15-0.22, 0.056-0.49 and 0.53-1.05 μg kg-1, respectively. The analytical results of spiked samples were in accordance with the accurate content in the simultaneous detection analysis. This newly developed ICA strip assay is suitable for the on-site detection and rapid initial screening of mycotoxins in cereal samples, facilitating both semi-quantitative and quantitative determination.A semi-quantitative and quantitative multi-immunochromatographic (ICA) strip detection assay was developed for the simultaneous detection of twenty types of mycotoxins from five classes, including zearalenones (ZEAs), deoxynivalenols (DONs), T-2 toxins (T-2s), aflatoxins (AFs), and fumonisins (FBs), in cereal food samples. Sensitive and specific monoclonal antibodies were selected for this assay. The semi-quantitative results were obtained within 20 min by the naked eye, with visual limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.1-0.5, 2.5-250, 0.5-1, 0.25-1 and 2.5-10 μg kg-1, and cut-off values of 0.25-1, 5-500, 1-10, 0.5-2.5 and 5-25 μg kg-1, respectively. The quantitative results were obtained using a hand-held strip scan reader, with the calculated limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.04-0.17, 0.06-49, 0.15-0.22, 0.056-0.49 and 0.53-1.05 μg kg-1, respectively. The analytical results of spiked samples were in accordance with the accurate content in the simultaneous detection analysis. This newly developed ICA strip assay is suitable for the on-site detection and rapid initial screening of mycotoxins in cereal samples, facilitating both semi-quantitative and quantitative determination. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09171c

  5. Comparative evaluation of the performance of the Abbott RealTime HIV-1 assay for measurement of HIV-1 plasma viral load on genetically diverse samples from Greece

    PubMed Central

    2011-01-01

    Background HIV-1 is characterized by increased genetic heterogeneity which tends to hinder the reliability of detection and accuracy of HIV-1 RNA quantitation assays. Methods In this study, the Abbott RealTime HIV-1 (Abbott RealTime) assay was compared to the Roche Cobas TaqMan HIV-1 (Cobas TaqMan) and the Siemens Versant HIV-1 RNA 3.0 (bDNA 3.0) assays, using clinical samples of various viral load levels and subtypes from Greece, where the recent epidemiology of HIV-1 infection has been characterized by increasing genetic diversity and a marked increase in subtype A genetic strains among newly diagnosed infections. Results A high correlation was observed between the quantitative results obtained by the Abbott RealTime and the Cobas TaqMan assays. Viral load values quantified by the Abbott RealTime were on average lower than those obtained by the Cobas TaqMan, with a mean (SD) difference of -0.206 (0.298) log10 copies/ml. The mean differences according to HIV-1 subtypes between the two techniques for samples of subtype A, B, and non-A/non-B were 0.089, -0.262, and -0.298 log10 copies/ml, respectively. Overall, differences were less than 0.5 log10 for 85% of the samples, and >1 log10 in only one subtype B sample. Similarly, Abbott RealTime and bDNA 3.0 assays yielded a very good correlation of quantitative results, whereas viral load values assessed by the Abbott RealTime were on average higher (mean (SD) difference: 0.160 (0.287) log10 copies/ml). The mean differences according to HIV-1 subtypes between the two techniques for subtype A, B and non-A/non-B samples were 0.438, 0.105 and 0.191 log10 copies/ml, respectively. Overall, the majority of samples (86%) differed by less than 0.5 log10, while none of the samples showed a deviation of more than 1.0 log10. Conclusions In an area of changing HIV-1 subtype pattern, the Abbott RealTime assay showed a high correlation and good agreement of results when compared both to the Cobas TaqMan and bDNA 3.0 assays, for all HIV-1 subtypes tested. All three assays could determine viral load from samples of different HIV-1 subtypes adequately. However, assay variation should be taken into account when viral load monitoring of the same individual is assessed by different systems. PMID:21219667

  6. [Improvement of sensitivity in the second generation HCV core antigen assay by a novel concentration method using polyethylene glycol (PEG)].

    PubMed

    Higashimoto, Makiko; Takahashi, Masahiko; Jokyu, Ritsuko; Syundou, Hiromi; Saito, Hidetsugu

    2007-11-01

    A HCV core antigen (Ag) detection assay system, Lumipulse Ortho HCV Ag has been developed and is commercially available in Japan with a lower detection level limit of 50 fmol/l, which is equivalent to 20 KIU/ml in PCR quantitative assay. HCV core Ag assay has an advantage of broader dynamic range compared with PCR assay, however the sensitivity is lower than PCR. We developed a novel HCV core Ag concentration method using polyethylene glycol (PEG), which can improve the sensitivity five times better than the original assay. The reproducibility was examined by consecutive five-time measurement of HCV patients serum, in which the results of HCV core Ag original and concentrated method were 56.8 +/- 8.1 fmol/l (mean +/- SD), CV 14.2% and 322.9 +/- 45.5 fmol/l CV 14.0%, respectively. The assay results of HCV negative samples in original HCV core Ag were all 0.1 fmol/l and the results were same even in the concentration method. The results of concentration method were 5.7 times higher than original assay, which was almost equal to theoretical rate as expected. The assay results of serially diluted samples were also as same as expected data in both original and concentration assay. We confirmed that the sensitivity of HCV core Ag concentration method had almost as same sensitivity as PCR high range assay in the competitive assay study using the serially monitored samples of five HCV patients during interferon therapy. A novel concentration method using PEG in HCV core Ag assay system seems to be useful for assessing and monitoring interferon treatment for HCV.

  7. Characterization and Comparison of Galactomannan Enzyme Immunoassay and Quantitative Real-Time PCR Assay for Detection of Aspergillus fumigatus in Bronchoalveolar Lavage Fluid from Experimental Invasive Pulmonary Aspergillosis

    PubMed Central

    Francesconi, Andrea; Kasai, Miki; Petraitiene, Ruta; Petraitis, Vidmantas; Kelaher, Amy M.; Schaufele, Robert; Hope, William W.; Shea, Yvonne R.; Bacher, John; Walsh, Thomas J.

    2006-01-01

    Bronchoalveolar lavage (BAL) is widely used for evaluation of patients with suspected invasive pulmonary aspergillosis (IPA). However, the diagnostic yield of BAL for detection of IPA by culture and direct examination is limited. Earlier diagnosis may be facilitated by assays that can detect Aspergillus galactomannan antigen or DNA in BAL fluid. We therefore characterized and compared the diagnostic yields of a galactomannan enzyme immunoassay (GM EIA), quantitative real-time PCR (qPCR), and quantitative cultures in experiments using BAL fluid from neutropenic rabbits with experimentally induced IPA defined as microbiologically and histologically evident invasion. The qPCR assay targeted the rRNA gene complex of Aspergillus fumigatus. The GM EIA and qPCR assay were characterized by receiver operator curve analysis. With an optimal cutoff of 0.75, the GM EIA had a sensitivity and specificity of 100% in untreated controls. A decline in sensitivity (92%) was observed when antifungal therapy (AFT) was administered. The optimal cutoff for qPCR was a crossover of 36 cycles, with sensitivity and specificity of 80% and 100%, respectively. The sensitivity of qPCR also decreased with AFT to 50%. Quantitative culture of BAL had a sensitivity of 46% and a specificity of 100%. The sensitivity of quantitative culture decreased with AFT to 16%. The GM EIA and qPCR assay had greater sensitivity than culture in detection of A. fumigatus in BAL fluid in experimentally induced IPA (P ± 0.04). Use of the GM EIA and qPCR assay in conjunction with culture-based diagnostic methods applied to BAL fluid could facilitate accurate diagnosis and more-timely initiation of specific therapy. PMID:16825367

  8. Detection and quantitation of HPV in genital and oral tissues and fluids by real time PCR

    PubMed Central

    2010-01-01

    Background Human papillomaviruses (HPVs) remain a serious world health problem due to their association with anogenital/oral cancers and warts. While over 100 HPV types have been identified, a subset is associated with malignancy. HPV16 and 18 are the most prevalent oncogenic types, while HPV6 and 11 are most commonly responsible for anogenital warts. While other quantitative PCR (qPCR) assays detect oncogenic HPV, there is no single tube assay distinguishing the most frequent oncogenic types and the most common types found in warts. Results A Sybr Green-based qPCR assay was developed utilizing degenerate primers to the highly conserved HPV E1 theoretically detecting any HPV type. A single tube multiplex qPCR assay was also developed using type-specific primer pairs and TaqMan probes that allowed for detection and quantitation of HPV6,11,16,18. Each HPV type was detected over a range from 2 × 101 to 2 × 106copies/reaction providing a reliable method of quantitating type-specific HPV in 140 anogenital/cutaneous/oral benign and malignant specimens. 35 oncogenic and low risk alpha genus HPV types were detected. Concordance was detected in previously typed specimens. Comparisons to the gold standard detected an overall sensitivity of 89% (95% CI: 77% - 96%) and specificity of 90% (95%CI: 52% - 98%). Conclusion There was good agreement between the ability of the qPCR assays described here to identify HPV types in malignancies previously typed using standard methods. These novel qPCR assays will allow rapid detection and quantitation of HPVs to assess their role in viral pathogenesis. PMID:20723234

  9. Quantitation of heparosan with heparin lyase III and spectrophotometry.

    PubMed

    Huang, Haichan; Zhao, Yingying; Lv, Shencong; Zhong, Weihong; Zhang, Fuming; Linhardt, Robert J

    2014-02-15

    Heparosan is Escherichia coli K5 capsule polysaccharide, which is the key precursor for preparing bioengineered heparin. A rapid and effective quantitative method for detecting heparosan is important in the large-scale production of heparosan. Heparin lyase III (Hep III) effectively catalyzes the heparosan depolymerization, forming unsaturated disaccharides that are measurable using a spectrophotometer at 232 nm. We report a new method for the quantitative detection of heparosan with heparin lyase III and spectrophotometry that is safer and more specific than the traditional carbazole assay. In an optimized detection system, heparosan at a minimum concentration of 0.60 g/L in fermentation broth can be detected. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. An exposure-response analysis based on rifampin suggests CYP3A4 induction is driven by AUC: an in vitro investigation.

    PubMed

    Chang, Cheng; Yang, Xin; Fahmi, Odette A; Riccardi, Keith A; Di, Li; Obach, R Scott

    2017-08-01

    1. Induction is an important mechanism contributing to drug-drug interactions. It is most commonly evaluated in the human hepatocyte assay over 48-h or 72-h incubation period. However, whether the overall exposure (i.e. Area Under the Curve (AUC) or C ave ) or maximum exposure (i.e. C max ) of the inducer is responsible for the magnitude of subsequent induction has not been thoroughly investigated. Additionally, in vitro induction assays are typically treated as static systems, which could lead to inaccurate induction potency estimation. Hence, European Medicines Agency (EMA) guidance now specifies quantitation of drug levels in the incubation. 2. This work treated the typical in vitro evaluation of rifampin induction as an in vivo system by generating various target engagement profiles, measuring free rifampin concentration over 3 d of incubation and evaluating the impact of these factors on final induction response. 3. This rifampin-based analysis demonstrates that the induction process is driven by time-averaged target engagement (i.e. AUC-driven). Additionally, depletion of rifampin in the incubation medium over 3 d as well as non-specific/specific binding were observed. 4. These findings should help aid the discovery of clinical candidates with minimal induction liability and further expand our knowledge in the quantitative translatability of in vitro induction assays.

  11. Sensitive detection of porcine DNA in processed animal proteins using a TaqMan real-time PCR assay.

    PubMed

    Pegels, N; González, I; Fernández, S; García, T; Martín, R

    2012-01-01

    A TaqMan real-time PCR method was developed for specific detection of porcine-prohibited material in industrial feeds. The assay combines the use of a porcine-specific primer pair, which amplifies a 79 bp fragment of the mitochondrial (mt) 12 S rRNA gene, and a locked nucleic acid (LNA) TaqMan probe complementary to a target sequence lying between the porcine-specific primers. The nuclear 18 S rRNA gene system, yielding a 77 bp amplicon, was employed as a positive amplification control to monitor the total content of amplifiable DNA in the samples. The specificity of the porcine primers-probe system was verified against different animal and plant species, including mammals, birds and fish. The applicability of the real-time PCR protocol to detect the presence of porcine mt DNA in feeds was determined through the analysis of 190 industrial feeds (19 known reference and 171 blind samples) subjected to stringent processing treatments. The performance of the method allows qualitative and highly sensitive detection of short fragments from porcine DNA in all the industrial feeds declared to contain porcine material. Although the method has quantitative potential, the real quantitative capability of the assay is limited by the existing variability in terms of composition and processing conditions of the feeds, which affect the amount and quality of amplifiable DNA.

  12. Reducing the standard deviation in multiple-assay experiments where the variation matters but the absolute value does not.

    PubMed

    Echenique-Robba, Pablo; Nelo-Bazán, María Alejandra; Carrodeguas, José A

    2013-01-01

    When the value of a quantity x for a number of systems (cells, molecules, people, chunks of metal, DNA vectors, so on) is measured and the aim is to replicate the whole set again for different trials or assays, despite the efforts for a near-equal design, scientists might often obtain quite different measurements. As a consequence, some systems' averages present standard deviations that are too large to render statistically significant results. This work presents a novel correction method of a very low mathematical and numerical complexity that can reduce the standard deviation of such results and increase their statistical significance. Two conditions are to be met: the inter-system variations of x matter while its absolute value does not, and a similar tendency in the values of x must be present in the different assays (or in other words, the results corresponding to different assays must present a high linear correlation). We demonstrate the improvements this method offers with a cell biology experiment, but it can definitely be applied to any problem that conforms to the described structure and requirements and in any quantitative scientific field that deals with data subject to uncertainty.

  13. High-Throughput Assay Optimization and Statistical Interpolation of Rubella-Specific Neutralizing Antibody Titers

    PubMed Central

    Lambert, Nathaniel D.; Pankratz, V. Shane; Larrabee, Beth R.; Ogee-Nwankwo, Adaeze; Chen, Min-hsin; Icenogle, Joseph P.

    2014-01-01

    Rubella remains a social and economic burden due to the high incidence of congenital rubella syndrome (CRS) in some countries. For this reason, an accurate and efficient high-throughput measure of antibody response to vaccination is an important tool. In order to measure rubella-specific neutralizing antibodies in a large cohort of vaccinated individuals, a high-throughput immunocolorimetric system was developed. Statistical interpolation models were applied to the resulting titers to refine quantitative estimates of neutralizing antibody titers relative to the assayed neutralizing antibody dilutions. This assay, including the statistical methods developed, can be used to assess the neutralizing humoral immune response to rubella virus and may be adaptable for assessing the response to other viral vaccines and infectious agents. PMID:24391140

  14. Single Cell Assay for Analyzing Single Cell Exosome and Endocrine Secretion and Cancer Markers

    NASA Astrophysics Data System (ADS)

    Chiu, Yu-Jui

    To understand the inhomogeneity of cells in biological systems, there is a growing demand for the capability to characterize the properties of individual single cells. Since single cell studies require continuous monitoring of the cell behaviors instead of a snapshot test at a single time point, an effective single-cell assay that can support time lapsed studies in a high throughput manner is desired. Most currently available single-cell technologies cannot provide proper environments to sustain cell growth and cannot provide, for appropriate cell types, proliferation of single cells and convenient, non-invasive tests of single cell behaviors from molecular markers. In this dissertation, I present a highly versatile single-cell assay that can accommodate different cellular types, enable easy and efficient single cell loading and culturing, and be suitable for the study of effects of in-vitro environmental factors in combination with drug screening. The salient features of the assay are the non-invasive collection and surveying of single cell secretions at different time points and massively parallel translocation of single cells by user defined criteria, producing very high compatibility to the downstream process such as single cell qPCR and sequencing. Above all, the acquired information is quantitative -- for example, one of the studies is measured by the number of exosomes each single cell secretes for a given time period. Therefore, our single-cell assay provides a convenient, low-cost, and enabling tool for quantitative, time lapsed studies of single cell properties.

  15. A Versatile Panel of Reference Gene Assays for the Measurement of Chicken mRNA by Quantitative PCR

    PubMed Central

    Maier, Helena J.; Van Borm, Steven; Young, John R.; Fife, Mark

    2016-01-01

    Quantitative real-time PCR assays are widely used for the quantification of mRNA within avian experimental samples. Multiple stably-expressed reference genes, selected for the lowest variation in representative samples, can be used to control random technical variation. Reference gene assays must be reliable, have high amplification specificity and efficiency, and not produce signals from contaminating DNA. Whilst recent research papers identify specific genes that are stable in particular tissues and experimental treatments, here we describe a panel of ten avian gene primer and probe sets that can be used to identify suitable reference genes in many experimental contexts. The panel was tested with TaqMan and SYBR Green systems in two experimental scenarios: a tissue collection and virus infection of cultured fibroblasts. GeNorm and NormFinder algorithms were able to select appropriate reference gene sets in each case. We show the effects of using the selected genes on the detection of statistically significant differences in expression. The results are compared with those obtained using 28s ribosomal RNA, the present most widely accepted reference gene in chicken work, identifying circumstances where its use might provide misleading results. Methods for eliminating DNA contamination of RNA reduced, but did not completely remove, detectable DNA. We therefore attached special importance to testing each qPCR assay for absence of signal using DNA template. The assays and analyses developed here provide a useful resource for selecting reference genes for investigations of avian biology. PMID:27537060

  16. A European multicientre study on the comparison of HIV-1 viral loads between VERIS HIV-1 Assay and Roche COBAS® TAQMAN® HIV-1 test, Abbott RealTime HIV-1 Assay, and Siemens VERSANT HIV-1 Assay.

    PubMed

    Braun, Patrick; Delgado, Rafael; Drago, Monica; Fanti, Diana; Fleury, Hervé; Hofmann, Jörg; Izopet, Jacques; Kühn, Sebastian; Lombardi, Alessandra; Mancon, Alessandro; Marcos, Mª Angeles; Mileto, Davide; Sauné, Karine; O'Shea, Siobhan; Pérez-Rivilla, Alfredo; Ramble, John; Trimoulet, Pascale; Vila, Jordi; Whittaker, Duncan; Artus, Alain; Rhodes, Daniel

    2017-07-01

    Viral load monitoring is essential for patients under treatment for HIV. Beckman Coulter has developed the VERIS HIV-1 Assay for use on the novel, automated DxN VERIS Molecular Diagnostics System. ¥ OBJECTIVES: Evaluation of the clinical performance of the new quantitative VERIS HIV-1 Assay at multiple EU laboratories. Method comparison with the VERIS HIV-1 Assay was performed with 415 specimens at 5 sites tested with COBAS ® AmpliPrep/COBAS ® TaqMan ® HIV-1 Test, v2.0, 169 specimens at 3 sites tested with RealTime HIV-1 Assay, and 202 specimens from 2 sites tested with VERSANT HIV-1 Assay. Patient monitoring sample results from 4 sites were also compared. Bland-Altman analysis showed the average bias between VERIS HIV-1 Assay and COBAS HIV-1 Test, RealTime HIV-1 Assay, and VERSANT HIV-1 Assay to be 0.28, 0.39, and 0.61 log 10 cp/mL, respectively. Bias at low end levels below 1000cp/mL showed predicted bias to be <0.3 log 10 cp/mL for VERIS HIV-1 Assay versus COBAS HIV-1 Test and RealTime HIV-1 Assay, and <0.5 log 10 cp/mL versus VERSANT HIV-1 Assay. Analysis on 174 specimens tested with the 0.175mL volume VERIS HIV-1 Assay and COBAS HIV-1 Test showed average bias of 0.39 log 10 cp/mL. Patient monitoring results using VERIS HIV-1 Assay demonstrated similar viral load trends over time to all comparators. The VERIS HIV-1 Assay for use on the DxN VERIS System demonstrated comparable clinical performance to COBAS ® HIV-1 Test, RealTime HIV-1 Assay, and VERSANT HIV-1 Assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A monoclonal antibody based elisa for quantitation of human leukaemia inhibitory factor.

    PubMed

    Taupin, J L; Gualde, N; Moreau, J F

    1997-02-01

    The authors report on the development of a new sandwich enzyme-linked immunoabsorbent assay (ELISA) for the quantitation of the human cytokine leukaemia inhibitory factor/human interleukin for DA cells (LIF/HILDA) with high accuracy and sensitivity (23 pg/ml), in less than 5 h and in various biological fluids. The antibodies used in this assay were raised against recombinant glycosylated LIF expressed in vivo following inoculation of recombinant vaccinia viruses, and screened with the biologically active cytokine in a flow cytometry assay using cells expressing a membrane-bound form of LIF. Furthermore, this home-made assay was compared with two commercially available ELISA kits. The results led to the conclusion that these three assays are far from being equivalent between each other, in terms of sensitivity towards non-glycosylated vs glycosylated LIF. Two major parameters must be incriminated: the glycosylation status of the LIF molecule used as the calibrator, and the binding characteristics of the monoclonal antibodies used to set up these assays toward LIF derived from Escherichia coli or from eukaryotic cells. This points out the importance of these parameters for the design of ELISAs meant for the quantitation of glycosylated cytokines in biological fluids.

  18. Quantitation of 47 human tear proteins using high resolution multiple reaction monitoring (HR-MRM) based-mass spectrometry.

    PubMed

    Tong, Louis; Zhou, Xi Yuan; Jylha, Antti; Aapola, Ulla; Liu, Dan Ning; Koh, Siew Kwan; Tian, Dechao; Quah, Joanne; Uusitalo, Hannu; Beuerman, Roger W; Zhou, Lei

    2015-02-06

    Tear proteins are intimately related to the pathophysiology of the ocular surface. Many recent studies have demonstrated that the tear is an accessible fluid for studying eye diseases and biomarker discovery. This study describes a high resolution multiple reaction monitoring (HR-MRM) approach for developing assays for quantification of biologically important tear proteins. Human tear samples were collected from 1000 subjects with no eye complaints (411 male, 589 female, average age: 55.5±14.5years) after obtaining informed consent. Tear samples were collected using Schirmer's strips and pooled into a single global control sample. Quantification of proteins was carried out by selecting "signature" peptides derived by trypsin digestion. A 1-h nanoLC-MS/MS run was used to quantify the tear proteins in HR-MRM mode. Good reproducibility of signal intensity (using peak areas) was demonstrated for all 47 HR-MRM assays with an average coefficient of variation (CV%) of 4.82% (range: 1.52-10.30%). All assays showed consistent retention time with a CV of less than 0.80% (average: 0.57%). HR-MRM absolute quantitation of eight tear proteins was demonstrated using stable isotope-labeled peptides. In this study, we demonstrated for the first time the technique to quantify 47 human tear proteins in HR-MRM mode using approximately 1μl of human tear sample. These multiplexed HR-MRM-based assays show great promise of further development for biomarker validation in human tear samples. Both discovery-based and targeted quantitative proteomics can be achieved in a single quadrupole time-of-flight mass spectrometer platform (TripleTOF 5600 system). Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Novel Bioluminescent Quantitative Detection of Nucleic Acid Amplification in Real-Time

    PubMed Central

    Gandelman, Olga A.; Church, Vicki L.; Moore, Cathy A.; Kiddle, Guy; Carne, Christopher A.; Parmar, Surendra; Jalal, Hamid; Tisi, Laurence C.; Murray, James A. H.

    2010-01-01

    Background The real-time monitoring of polynucleotide amplification is at the core of most molecular assays. This conventionally relies on fluorescent detection of the amplicon produced, requiring complex and costly hardware, often restricting it to specialised laboratories. Principal Findings Here we report the first real-time, closed-tube luminescent reporter system for nucleic acid amplification technologies (NAATs) enabling the progress of amplification to be continuously monitored using simple light measuring equipment. The Bioluminescent Assay in Real-Time (BART) continuously reports through bioluminescent output the exponential increase of inorganic pyrophosphate (PPi) produced during the isothermal amplification of a specific nucleic acid target. BART relies on the coupled conversion of inorganic pyrophosphate (PPi) produced stoichiometrically during nucleic acid synthesis to ATP by the enzyme ATP sulfurylase, and can therefore be coupled to a wide range of isothermal NAATs. During nucleic acid amplification, enzymatic conversion of PPi released during DNA synthesis into ATP is continuously monitored through the bioluminescence generated by thermostable firefly luciferase. The assay shows a unique kinetic signature for nucleic acid amplifications with a readily identifiable light output peak, whose timing is proportional to the concentration of original target nucleic acid. This allows qualitative and quantitative analysis of specific targets, and readily differentiates between negative and positive samples. Since quantitation in BART is based on determination of time-to-peak rather than absolute intensity of light emission, complex or highly sensitive light detectors are not required. Conclusions The combined chemistries of the BART reporter and amplification require only a constant temperature maintained by a heating block and are shown to be robust in the analysis of clinical samples. Since monitoring the BART reaction requires only a simple light detector, the iNAAT-BART combination is ideal for molecular diagnostic assays in both laboratory and low resource settings. PMID:21152399

  20. Multi-laboratory comparison of quantitative PCR assays for detection and quantification of Fusarium virguliforme from soybean roots and soil

    USDA-ARS?s Scientific Manuscript database

    Accurate identification and quantification of Fusarium virguliforme, the cause of sudden death syndrome (SDS) in soybean, within root tissue and soil are important tasks. Several quantitative PCR (qPCR) assays have been developed but there are no reports comparing their use in sensitive and specific...

  1. Development of a non invasion real-time PCR assay for the quantitation of chicken parvovirus in fecal swabs

    USDA-ARS?s Scientific Manuscript database

    The present study describes the development of a real time Taqman polymerase chain reaction (PCR) assay using a fluorescent labeled probe for the detection and quantitation of chicken parvovirus (ChPV) in feces. The primers and probes were designed based on the nucleotide sequence of the non struct...

  2. Quantitative Assessment of Commutability for Clinical Viral Load Testing Using a Digital PCR-Based Reference Standard

    PubMed Central

    Tang, L.; Sun, Y.; Buelow, D.; Gu, Z.; Caliendo, A. M.; Pounds, S.

    2016-01-01

    Given recent advances in the development of quantitative standards, particularly WHO international standards, efforts to better understand the commutability of reference materials have been made. Existing approaches in evaluating commutability include prediction intervals and correspondence analysis; however, the results obtained from existing approaches may be ambiguous. We have developed a “deviation-from-ideal” (DFI) approach to evaluate commutability of standards and applied it to the assessment of Epstein-Bar virus (EBV) load testing in four quantitative PCR assays, treating digital PCR as a reference assay. We then discuss advantages and limitations of the DFI approach as well as experimental design to best evaluate the commutability of an assay in practice. PMID:27076654

  3. Kinetics of Poliovirus Shedding following Oral Vaccination as Measured by Quantitative Reverse Transcription-PCR versus Culture

    PubMed Central

    Begum, Sharmin; Uddin, Md Jashim; Platts-Mills, James A.; Liu, Jie; Kirkpatrick, Beth D.; Chowdhury, Anwarul H.; Jamil, Khondoker M.; Haque, Rashidul; Petri, William A.; Houpt, Eric R.

    2014-01-01

    Amid polio eradication efforts, detection of oral polio vaccine (OPV) virus in stool samples can provide information about rates of mucosal immunity and allow estimation of the poliovirus reservoir. We developed a multiplex one-step quantitative reverse transcription-PCR (qRT-PCR) assay for detection of OPV Sabin strains 1, 2, and 3 directly in stool samples with an external control to normalize samples for viral quantity and compared its performance with that of viral culture. We applied the assay to samples from infants in Dhaka, Bangladesh, after the administration of trivalent OPV (tOPV) at weeks 14 and 52 of life (on days 0 [pre-OPV], +4, +11, +18, and +25 relative to vaccination). When 1,350 stool samples were tested, the sensitivity and specificity of the quantitative PCR (qPCR) assay were 89 and 91% compared with culture. A quantitative relationship between culture+/qPCR+ and culture−/qPCR+ stool samples was observed. The kinetics of shedding revealed by qPCR and culture were similar. qPCR quantitative cutoffs based on the day +11 or +18 stool samples could be used to identify the culture-positive shedders, as well as the long-duration or high-frequency shedders. Interestingly, qPCR revealed that a small minority (7%) of infants contributed the vast majority (93 to 100%) of the total estimated viral excretion across all subtypes at each time point. This qPCR assay for OPV can simply and quantitatively detect all three Sabin strains directly in stool samples to approximate shedding both qualitatively and quantitatively. PMID:25378579

  4. [Study on ethnic medicine quantitative reference herb,Tibetan medicine fruits of Capsicum frutescens as a case].

    PubMed

    Zan, Ke; Cui, Gan; Guo, Li-Nong; Ma, Shuang-Cheng; Zheng, Jian

    2018-05-01

    High price and difficult to get of reference substance have become obstacles to HPLC assay of ethnic medicine. A new method based on quantitative reference herb (QRH) was proposed. Specific chromatograms in fruits of Capsicum frutescens were employed to determine peak positions, and HPLC quantitative reference herb was prepared from fruits of C. frutescens. The content of capsaicin and dihydrocapsaicin in the quantitative control herb was determined by HPLC. Eleven batches of fruits of C. frutescens were analyzed with quantitative reference herb and reference substance respectively. The results showed no difference. The present method is feasible for quality control of ethnic medicines and quantitative reference herb is suitable to replace reference substances in assay. Copyright© by the Chinese Pharmaceutical Association.

  5. Quantitative analysis of low-density SNP data for parentage assignment and estimation of family contributions to pooled samples.

    PubMed

    Henshall, John M; Dierens, Leanne; Sellars, Melony J

    2014-09-02

    While much attention has focused on the development of high-density single nucleotide polymorphism (SNP) assays, the costs of developing and running low-density assays have fallen dramatically. This makes it feasible to develop and apply SNP assays for agricultural species beyond the major livestock species. Although low-cost low-density assays may not have the accuracy of the high-density assays widely used in human and livestock species, we show that when combined with statistical analysis approaches that use quantitative instead of discrete genotypes, their utility may be improved. The data used in this study are from a 63-SNP marker Sequenom® iPLEX Platinum panel for the Black Tiger shrimp, for which high-density SNP assays are not currently available. For quantitative genotypes that could be estimated, in 5% of cases the most likely genotype for an individual at a SNP had a probability of less than 0.99. Matrix formulations of maximum likelihood equations for parentage assignment were developed for the quantitative genotypes and also for discrete genotypes perturbed by an assumed error term. Assignment rates that were based on maximum likelihood with quantitative genotypes were similar to those based on maximum likelihood with perturbed genotypes but, for more than 50% of cases, the two methods resulted in individuals being assigned to different families. Treating genotypes as quantitative values allows the same analysis framework to be used for pooled samples of DNA from multiple individuals. Resulting correlations between allele frequency estimates from pooled DNA and individual samples were consistently greater than 0.90, and as high as 0.97 for some pools. Estimates of family contributions to the pools based on quantitative genotypes in pooled DNA had a correlation of 0.85 with estimates of contributions from DNA-derived pedigree. Even with low numbers of SNPs of variable quality, parentage testing and family assignment from pooled samples are sufficiently accurate to provide useful information for a breeding program. Treating genotypes as quantitative values is an alternative to perturbing genotypes using an assumed error distribution, but can produce very different results. An understanding of the distribution of the error is required for SNP genotyping platforms.

  6. Comparative evaluation of a laboratory developed real-time PCR assay and the RealStar® HHV-6 PCR Kit for quantitative detection of human herpesvirus 6.

    PubMed

    Yip, Cyril C Y; Sridhar, Siddharth; Cheng, Andrew K W; Fung, Ami M Y; Cheng, Vincent C C; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2017-08-01

    HHV-6 reactivation in immunocompromised patients is common and may be associated with serious morbidity and mortality; therefore, early detection and initiation of therapy might be of benefit. Real-time PCR assays allow for early identification of HHV-6 reactivation to assist in providing a timely response. Thus, we compared the performance of an in-house developed HHV-6 quantitative PCR assay with a commercially available kit, the RealStar ® HHV-6 PCR Kit. The analytical sensitivity, analytical specificity, linearity, precision and accuracy of the in-house developed HHV-6 qPCR assay were evaluated. The diagnostic performance of the in-house HHV-6 qPCR assay was compared with the RealStar ® HHV-6 PCR Kit, using 72 clinical specimens and 17 proficiency testing samples. Linear regression analysis of the quantitative results showed a dynamic range from 2 to 10 log 10 copies/ml and a coefficient of determination (R 2 ) of 0.999 for the in-house assay. A dilution series demonstrated a limit of detection and a limit of quantification of 1.7 log 10 and 2 log 10 copies/ml, respectively. The precision of the assay was highly reproducible among runs with coefficients of variance (CV) ranging from 0.27% to 4.37%. A comparison of 27 matched samples showed an excellent correlation between the quantitative viral loads measured by the in-house HHV-6 qPCR assay and the RealStar ® HHV-6 PCR Kit (R 2 =0.926; P<0.0001), with an average bias of -0.24 log 10 copies/ml. The in-house developed HHV-6 qPCR method is a sensitive and reliable assay with lower cost for the detection and quantification of HHV-6 DNA when compared to the RealStar ® HHV-6 PCR Kit. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Express immunochromatographic detection of antibodies against Brucella abortus in cattle sera based on quantitative photometric registration and modulated cut-off level.

    PubMed

    Sotnikov, Dmitriy V; Byzova, Nadezhda A; Zherdev, Anatoly V; Eskendirova, Saule Z; Baltin, Kairat K; Mukanov, Kasim K; Ramankulov, Erlan M; Sadykhov, Elchin G; Dzantiev, Boris B

    2015-01-01

    An immunochromatographic test system was developed for rapid detection of the levels of specific IgG antibodies to Brucella abortus lipopolysaccharide, as a tool for diagnosis of brucellosis in cattle. The pilot test strips were examined using blood sera from sick (78 samples) and healthy (35 samples) cows. The results obtained by immunochromatographic assay, using a portable optical densitometer for digital video detection, correlate well with the results obtained by immunoenzyme assay and are in agreement with the results of the disease diagnosis. The new test system allows detection of antibodies within 10 min and can be proposed as an alternative to the methods available for serodiagnosis of brucellosis.

  8. Computational analysis of axonal transport: a novel assessment of neurotoxicity, neuronal development and functions.

    PubMed

    Goshima, Yoshio; Hida, Tomonobu; Gotoh, Toshiyuki

    2012-01-01

    Axonal transport plays a crucial role in neuronal morphogenesis, survival and function. Despite its importance, however, the molecular mechanisms of axonal transport remain mostly unknown because a simple and quantitative assay system for monitoring this cellular process has been lacking. In order to better characterize the mechanisms involved in axonal transport, we formulate a novel computer-assisted monitoring system of axonal transport. Potential uses of this system and implications for future studies will be discussed.

  9. High-Throughput Screening of a Luciferase Reporter of Gene Silencing on the Inactive X Chromosome.

    PubMed

    Keegan, Alissa; Plath, Kathrin; Damoiseaux, Robert

    2018-01-01

    Assays of luciferase gene activity are a sensitive and quantitative reporter system suited to high-throughput screening. We adapted a luciferase assay to a screening strategy for identifying factors that reactivate epigenetically silenced genes. This epigenetic luciferase reporter is subject to endogenous gene silencing mechanisms on the inactive X chromosome (Xi) in primary mouse cells and thus captures the multilayered nature of chromatin silencing in development. Here, we describe the optimization of an Xi-linked luciferase reactivation assay in 384-well format and adaptation of the assay for high-throughput siRNA and chemical screening. Xi-luciferase reactivation screening has applications in stem cell biology and cancer therapy. We have used the approach described here to identify chromatin-modifying proteins and to identify drug combinations that enhance the gene reactivation activity of the DNA demethylating drug 5-aza-2'-deoxycytidine.

  10. Base pair mismatch recognition using plasmon resonant particle labels.

    PubMed

    Oldenburg, Steven J; Genick, Christine C; Clark, Keith A; Schultz, David A

    2002-10-01

    We demonstrate the use of silver plasmon resonant particles (PRPs), as reporter labels, in a microarray-based DNA hybridization assay in which we screen for a known polymorphic site in the breast cancer gene BRCA1. PRPs (40-100 nm in diameter) image as diffraction-limited points of colored light in a standard microscope equipped with dark-field illumination, and can be individually identified and discriminated against background scatter. Rather than overall intensity, the number of PRPs counted in a CCD image by a software algorithm serves as the signal in these assays. In a typical PRP hybridization assay, we achieve a detection sensitivity that is approximately 60 x greater than that achieved by using fluorescent labels. We conclude that single particle counting is robust, generally applicable to a wide variety of assay platforms, and can be integrated into low-cost and quantitative detection systems for single nucleotide polymorphism analysis.

  11. Electrophoretic Mobility Shift Assay (EMSA) for Detecting Protein-Nucleic Acid Interactions

    PubMed Central

    Hellman, Lance M.; Fried, Michael G.

    2009-01-01

    The gel electrophoresis mobility shift assay (EMSA) is used to detect protein complexes with nucleic acids. It is the core technology underlying a wide range of qualitative and quantitative analyses for the characterization of interacting systems. In the classical assay, solutions of protein and nucleic acid are combined and the resulting mixtures are subjected to electrophoresis under native conditions through polyacrylamide or agarose gel. After electrophoresis, the distribution of species containing nucleic acid is determined, usually by autoradiography of 32P-labeled nucleic acid. In general, protein-nucleic acid complexes migrate more slowly than the corresponding free nucleic acid. In this article, we identify the most important factors that determine the stabilities and electrophoretic mobilities of complexes under assay conditions. A representative protocol is provided and commonly used variants are discussed. Expected outcomes are briefly described. References to extensions of the method and a troubleshooting guide are provided. PMID:17703195

  12. Quantitative Nuclease Protection Assays (qNPA) as Windows into Chemical-Induced Adaptive Response in Cultures of Primary Human Hepatocytes (Concentration and Time-Response)

    EPA Science Inventory

    Cultures of primary human hepatocytes have been shown to be dynamic in vitro model systems that retain liver-like functionality (e.g. metabolism, transport, induction). We have utilized these culture models to interrogate 309 ToxCast chemicals. The study design characterized both...

  13. The new numerology of immunity mediated by virus-specific CD8(+) T cells.

    PubMed

    Doherty, P C

    1998-08-01

    Our understanding of virus-specific CD8(+) T cell responses is currently being revolutionized by peptide-based assay systems that allow flow cytometric analysis of effector and memory cytotoxic T lymphocyte populations. These techniques are, for the first time, putting the analysis of T-cell-mediated immunity on a quantitative basis.

  14. Multiplex High-Throughput Targeted Proteomic Assay To Identify Induced Pluripotent Stem Cells.

    PubMed

    Baud, Anna; Wessely, Frank; Mazzacuva, Francesca; McCormick, James; Camuzeaux, Stephane; Heywood, Wendy E; Little, Daniel; Vowles, Jane; Tuefferd, Marianne; Mosaku, Olukunbi; Lako, Majlinda; Armstrong, Lyle; Webber, Caleb; Cader, M Zameel; Peeters, Pieter; Gissen, Paul; Cowley, Sally A; Mills, Kevin

    2017-02-21

    Induced pluripotent stem cells have great potential as a human model system in regenerative medicine, disease modeling, and drug screening. However, their use in medical research is hampered by laborious reprogramming procedures that yield low numbers of induced pluripotent stem cells. For further applications in research, only the best, competent clones should be used. The standard assays for pluripotency are based on genomic approaches, which take up to 1 week to perform and incur significant cost. Therefore, there is a need for a rapid and cost-effective assay able to distinguish between pluripotent and nonpluripotent cells. Here, we describe a novel multiplexed, high-throughput, and sensitive peptide-based multiple reaction monitoring mass spectrometry assay, allowing for the identification and absolute quantitation of multiple core transcription factors and pluripotency markers. This assay provides simpler and high-throughput classification into either pluripotent or nonpluripotent cells in 7 min analysis while being more cost-effective than conventional genomic tests.

  15. Rapid screening test for detection of oxytetracycline residues in milk using lateral flow assay.

    PubMed

    Naik, Laxmana; Sharma, Rajan; Mann, Bimlesh; Lata, Kiran; Rajput, Y S; Surendra Nath, B

    2017-03-15

    A rapid, semi-quantitative lateral flow assay (LFA) was developed to screen the oxytetracycline (OTC) antibiotics residues in milk samples. In this study a competitive immuno-assay format was established. Colloidal gold nano-particles (GNP) were prepared and used as labelling material in LFA. Polyclonal antibodies were generated against OTC molecule (anti-OTC), purified and the quality was assessed by enzyme linked immuno sorbet assay. For the first time membrane components required for LFA in milk system was optimized. GNP and anti-OTC stable conjugate preparation method was standardized, and then these components were placed over the conjugate pad. OTC coupled with carrier protein was placed on test line; species specific secondary antibodies were placed on the control line of the membrane matrix. Assay was validated by spiking OTC to antibiotic free milk samples and results could be accomplished within 5min. without need of any equipment. The visual detection limit was 30ppb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Developing Xenopus Laevis as a Model to Screen Drugs for Fragile X Syndrome

    DTIC Science & Technology

    2014-06-01

    demonstrated the capacity to rescue the decreased FMRP expression by gene delivery. We characterized an innate visually-guided avoidance behavior in tadpoles ... tadpole is a unique model system that allows easy access to the nervous system at early stages of development, is amenable to in vivo gene...established quantitative in vivo imaging methods to knockdown and assay synthesis of FMRP in Xenopus tadpole brains. We also established 2 behavioral

  17. Principles of quantitation of viral loads using nucleic acid sequence-based amplification in combination with homogeneous detection using molecular beacons.

    PubMed

    Weusten, Jos J A M; Carpay, Wim M; Oosterlaken, Tom A M; van Zuijlen, Martien C A; van de Wiel, Paul A

    2002-03-15

    For quantitative NASBA-based viral load assays using homogeneous detection with molecular beacons, such as the NucliSens EasyQ HIV-1 assay, a quantitation algorithm is required. During the amplification process there is a constant growth in the concentration of amplicons to which the beacon can bind while generating a fluorescence signal. The overall fluorescence curve contains kinetic information on both amplicon formation and beacon binding, but only the former is relevant for quantitation. In the current paper, mathematical modeling of the relevant processes is used to develop an equation describing the fluorescence curve as a function of the amplification time and the relevant kinetic parameters. This equation allows reconstruction of RNA formation, which is characterized by an exponential increase in concentrations as long as the primer concentrations are not rate limiting and by linear growth over time after the primer pool is depleted. During the linear growth phase, the actual quantitation is based on assessing the amplicon formation rate from the viral RNA relative to that from a fixed amount of calibrator RNA. The quantitation procedure has been successfully applied in the NucliSens EasyQ HIV-1 assay.

  18. Quantitative mammalian cell genetic toxicology: study of the cytotoxicity and mutagenicity of 70 individual environmental agents related to energy technologies and 3 subfractions of a crude synthetic oil in the CHO/HGPRT system. [Hamsters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsie, A W; ,; Neill, J P

    1978-01-01

    Conditions necessary for quantifying mutation-induction to 6-thioguanine resistance, which selects for >98% mutants deficient in the activity of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) in a near-diploid Chinese hamster ovary (CHO) cell line, referred to as CHO/HGPRT system, have been defined. Employing this mutation assay, we have determined the mutagenicity of diversified agents including 11 direct-acting alkylating agents, 16 nitrosamines, 10 heterocyclic nitrogen mustards, 15 metallic compounds, 5 quinolines, 5 aromatic amines, 27 polycyclic hydrocarbons, 13 miscellaneous chemicals, 7 ionizing and non-ionizing physical agents. The direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine is mutagenic while its noncarcinogenic analogue N-methyl-N'-nitro-N-nitroguanidine is not. Coupled with the rat livermore » S/sub 9/-activation system, procarcinogens such as nitrosopyrrolidine, benzo(a)pyrene, and 2-acetylaminofluorene are mutagenic while their analogues 2,5-dimethylnitrosopyrrolidine, pyrene and fluorene are not. The assay appears to be applicable for monitoring the genetic toxicity of crude organic mixtures in addition to diverse individual chemical and physical agents. The quantitative nature of the assay enables a study of EMS exposure dose: the mutagenic potential of EMS can be described as 310 x 10/sup -6/ mutants (cell mg ml/sup -1/ h)./sup -1/ It is also feasible to expand the CHO/HGPRT system for quantifying cytotoxicity and mutagenicity to determination of chromosomal aberrations and sister chromatid exchanges in cells treated under identical conditions which allows a simultaneous study of these four distinctive biological effects.« less

  19. A Dual-Color Reporter Assay of Cohesin-Mediated Gene Regulation in Budding Yeast Meiosis.

    PubMed

    Fan, Jinbo; Jin, Hui; Yu, Hong-Guo

    2017-01-01

    In this chapter, we describe a quantitative fluorescence-based assay of gene expression using the ratio of the reporter green fluorescence protein (GFP) to the internal red fluorescence protein (RFP) control. With this dual-color heterologous reporter assay, we have revealed cohesin-regulated genes and discovered a cis-acting DNA element, the Ty1-LTR, which interacts with cohesin and regulates gene expression during yeast meiosis. The method described here provides an effective cytological approach for quantitative analysis of global gene expression in budding yeast meiosis.

  20. A comparison of assays measuring the viability of Legionella ...

    EPA Pesticide Factsheets

    Background: The relatively high prevalence of Legionella pneumophila in premise plumbing systems has been widely reported. Published reports indicate Legionella has a comparatively high resistance to chlorine and moreover has the ability to grow in phagocytic amoeba which could provide additional protection in chlorinated drinking water distribution systems. Copper-Silver (Cu-Ag) ionization treatment systems are commercially available for use in large building water systems to help control the risks from Legionella bacteria. The objectives of this study were to develop and optimize Legionella viability assays and use them to investigate the viability of Legionella bacteria after exposure to water treated with coppper and silver ions. Methods: Log phase L. pneumophila cells were used in all experiments and were generated by incubation at 35C for 48 hours in buffered yeast extract broth. Viability assays used included plating on buffered charcoal yeast extract agar to determine the number of culturable cells and treating cells with propidium monoazide (PMA) or ethidium monoazide (EMA) followed by quantitative PCR targeting mip gene of L. pneumophila. The qPCR viability assays were optimized using L. pneumophila inactivated by heat treatment at 65C for 60 min. The effectiveness of Cu-Ag ionization treatment was studied by inoculating L. pneumonia at 105 CFU/mL in water collected directly from a building water system that employed this technology and incubat

  1. Quantitative analysis of cytomegalovirus (CMV) viremia using the pp65 antigenemia assay and the COBAS AMPLICOR CMV MONITOR PCR test after blood and marrow allogeneic transplantation.

    PubMed

    Boivin, G; Bélanger, R; Delage, R; Béliveau, C; Demers, C; Goyette, N; Roy, J

    2000-12-01

    The performance of a commercially available qualitative PCR test for plasma (AMPLICOR CMV Test; Roche Diagnostics) and a quantitative PCR test for plasma and leukocytes (COBAS AMPLICOR CMV MONITOR Test; Roche Diagnostics) was evaluated with samples from 50 blood or marrow allogeneic transplant recipients who received short courses of sequential ganciclovir therapy (2 weeks intravenously followed by 2 weeks orally) based on a positive cytomegalovirus (CMV) pp65 antigenemia (AG) assay. The number of persons with a positive CMV test was significantly higher for leukocyte-based assays (AG, 67.5%; PCR, 62.5%) compared to both quantitative and qualitative PCR tests of plasma (42.5 and 35%, respectively). One person developed CMV disease during the study despite a negative AG assay; in this particular case, all PCR assays were found to be positive 10 days before his death. There was a trend for earlier positivity after transplantation and more rapid negativity after initiation of ganciclovir for the tests performed on leukocytes. The mean number of CMV copies as assessed by PCR was significantly higher in leukocytes than in plasma (P = 0.02). Overall, excellent agreement (kappa coefficient, >0.75) was found only between the two PCR assays (qualitative and quantitative) based on plasma. These results suggest that either the pp65 AG assay or the COBAS AMPLICOR CMV MONITOR Test using leukocytes could be used to safely monitor CMV viremia in related allogeneic blood or marrow transplant recipients. Such a strategy will result in preemptive treatment for about two-thirds of the persons with a relatively low rate (<33%) of secondary viremic episodes following short courses of ganciclovir therapy.

  2. Modification of two capripoxvirus quantitative real-time PCR assays to improve diagnostic sensitivity and include beta-actin as an internal positive control.

    PubMed

    Das, Amaresh; Deng, Ming Y; Babiuk, Shawn; McIntosh, Michael T

    2017-05-01

    Capripoxviruses (CaPVs), consisting of Sheeppox virus (SPV), Goatpox virus (GPV), and Lumpy skin disease virus (LSDV) species, cause economically significant diseases in sheep, goats, and cattle, respectively. Quantitative real-time polymerase chain reaction (qPCR) assays are routinely used for rapid detection of CaPVs in surveillance and outbreak management programs. We further modified and optimized 2 previously published CaPV qPCR assays, referred to as the Balinsky and Bowden assays, by changing commercial PCR reagents used in the tests. The modified assays displayed 100% analytical specificity and showed no apparent changes in analytical sensitivities for detection of CaPVs compared with the original assays. Diagnostic sensitivities, assessed using 50 clinical reference samples from experimentally infected sheep, goats, and cattle, improved from 82% to 92% for the modified Balinsky assay and from 58% to 82% for the modified Bowden assay. The modified qPCR assays were multiplexed for detection of beta-actin as an indicator for potential false-negative results. The multiplex modified qPCR assays exhibited the same diagnostic sensitivities as the singleplex assays suggesting their utility in the detection of CaPVs.

  3. Fully automated, internally controlled quantification of hepatitis B Virus DNA by real-time PCR by use of the MagNA Pure LC and LightCycler instruments.

    PubMed

    Leb, Victoria; Stöcher, Markus; Valentine-Thon, Elizabeth; Hölzl, Gabriele; Kessler, Harald; Stekel, Herbert; Berg, Jörg

    2004-02-01

    We report on the development of a fully automated real-time PCR assay for the quantitative detection of hepatitis B virus (HBV) DNA in plasma with EDTA (EDTA plasma). The MagNA Pure LC instrument was used for automated DNA purification and automated preparation of PCR mixtures. Real-time PCR was performed on the LightCycler instrument. An internal amplification control was devised as a PCR competitor and was introduced into the assay at the stage of DNA purification to permit monitoring for sample adequacy. The detection limit of the assay was found to be 200 HBV DNA copies/ml, with a linear dynamic range of 8 orders of magnitude. When samples from the European Union Quality Control Concerted Action HBV Proficiency Panel 1999 were examined, the results were found to be in acceptable agreement with the HBV DNA concentrations of the panel members. In a clinical laboratory evaluation of 123 EDTA plasma samples, a significant correlation was found with the results obtained by the Roche HBV Monitor test on the Cobas Amplicor analyzer within the dynamic range of that system. In conclusion, the newly developed assay has a markedly reduced hands-on time, permits monitoring for sample adequacy, and is suitable for the quantitative detection of HBV DNA in plasma in a routine clinical laboratory.

  4. Digital detection of endonuclease mediated gene disruption in the HIV provirus

    PubMed Central

    Sedlak, Ruth Hall; Liang, Shu; Niyonzima, Nixon; De Silva Feelixge, Harshana S.; Roychoudhury, Pavitra; Greninger, Alexander L.; Weber, Nicholas D.; Boissel, Sandrine; Scharenberg, Andrew M.; Cheng, Anqi; Magaret, Amalia; Bumgarner, Roger; Stone, Daniel; Jerome, Keith R.

    2016-01-01

    Genome editing by designer nucleases is a rapidly evolving technology utilized in a highly diverse set of research fields. Among all fields, the T7 endonuclease mismatch cleavage assay, or Surveyor assay, is the most commonly used tool to assess genomic editing by designer nucleases. This assay, while relatively easy to perform, provides only a semi-quantitative measure of mutation efficiency that lacks sensitivity and accuracy. We demonstrate a simple droplet digital PCR assay that quickly quantitates a range of indel mutations with detection as low as 0.02% mutant in a wild type background and precision (≤6%CV) and accuracy superior to either mismatch cleavage assay or clonal sequencing when compared to next-generation sequencing. The precision and simplicity of this assay will facilitate comparison of gene editing approaches and their optimization, accelerating progress in this rapidly-moving field. PMID:26829887

  5. Detection and quantification of serum or plasma HCV RNA: mini review of commercially available assays.

    PubMed

    Le Guillou-Guillemette, Helene; Lunel-Fabiani, Francoise

    2009-01-01

    The treatment schedule (combination of compounds, doses, and duration) and the virological follow-up for management of antiviral treatment in patients chronically infected by HCV is now well standardized, but to ensure good monitoring of the treated patients, physicians need rapid, reproducible, and sensitive molecular virological tools with a wide range of detection and quantification of HCV RNA in blood samples. Several assays for detection and/or quantification of HCV RNA are currently commercially available. Here, all these assays are detailed, and a brief description of each step of the assay is provided. They are divided into two categories by method: those based on signal amplification and those based on target amplification. These two categories are then divided into qualitative, quantitative, and quantitative detection assays. The real-time reverse-transcription polymerase chain reaction (RT-PCR)-based assays are the most promising strategy in the HCV virological area.

  6. Clinical application of real-time PCR to screening critically ill and emergency-care surgical patients for methicillin-resistant Staphylococcus aureus: a quantitative analytical study.

    PubMed

    Herdman, M Trent; Wyncoll, Duncan; Halligan, Eugene; Cliff, Penelope R; French, Gary; Edgeworth, Jonathan D

    2009-12-01

    The clinical utility of real-time PCR screening assays for methicillin (methicillin)-resistant Staphylococcus aureus (MRSA) colonization is constrained by the predictive values of their results: as MRSA prevalence falls, the assay's positive predictive value (PPV) drops, and a rising proportion of positive PCR assays will not be confirmed by culture. We provide a quantitative analysis of universal PCR screening of critical care and emergency surgical patients using the BD GeneOhm MRSA PCR system, involving 3,294 assays over six months. A total of 248 PCR assays (7.7%) were positive; however, 88 failed to be confirmed by culture, giving a PPV of 65%. Multivariate analysis was performed to compare PCR-positive culture-positive (P+C+) and PCR-positive culture-negative (P+C-) assays. P+C- results were positively associated with a history of methicillin-sensitive Staphylococcus aureus infection or colonization (odds ratio [OR], 3.15; 95% confidence interval [CI], 1.32 to 7.54) and high PCR thresholds of signal intensity, indicative of a low concentration of target DNA (OR, 1.19 per cycle; 95% CI, 1.11 to 1.26). P+C- results were negatively associated with a history of MRSA infection or colonization (OR, 0.19; 95% CI, 0.09 to 0.42) and male sex (OR, 0.40; 95% CI, 0.20 to 0.81). P+C+ patients were significantly more likely to have subsequent positive MRSA culture assays and microbiological evidence of clinical MRSA infection. The risk of subsequent MRSA infection in P+C- patients was not significantly different from that in case-matched PCR-negative controls. We conclude that, given the low PPV and poor correlation between a PCR-positive assay and the clinical outcome, it would be prudent to await culture confirmation before altering infection control measures on the basis of a positive PCR result.

  7. Development of a quantitative loop-mediated isothermal amplification (qLAMP) assay for the detection of Magnaporthe oryzae airborne inoculum in turf ecosystems

    USDA-ARS?s Scientific Manuscript database

    Grey Leaf Spot (GLS) is a detrimental disease of perennial ryegrass caused by a host-specialized form of Magnaporthe oryzae (Mot). In order to improve turf management, a quantitative loop-mediated isothermal amplification (LAMP) assay coupled with a simple spore trap is being developed to monitor GL...

  8. Coupling spore traps and quantitative PCR assays for detection of the downy mildew pathogens of spinach (Peronospora effusa) and beet (Peronospora schachtii)

    USDA-ARS?s Scientific Manuscript database

    Downy mildew of spinach (Spinacia oleracea L.), caused by Peronospora effusa, is a disease constraint on production worldwide, including in California where the majority of United States spinach is grown. The aim of this study was to develop a real-time quantitative PCR (qPCR) assay for detection o...

  9. Quantitative methylene blue decolourisation assays as rapid screening tools for assessing the efficiency of catalytic reactions.

    PubMed

    Kruid, Jan; Fogel, Ronen; Limson, Janice Leigh

    2017-05-01

    Identifying the most efficient oxidation process to achieve maximum removal of a target pollutant compound forms the subject of much research. There exists a need to develop rapid screening tools to support research in this area. In this work we report on the development of a quantitative assay as a means for identifying catalysts capable of decolourising methylene blue through the generation of oxidising species from hydrogen peroxide. Here, a previously described methylene blue test strip method was repurposed as a quantitative, aqueous-based spectrophotometric assay. From amongst a selection of metal salts and metallophthalocyanine complexes, monitoring of the decolourisation of the cationic dye methylene blue (via Fenton-like and non-Fenton oxidation reactions) by the assay identified the following to be suitable oxidation catalysts: CuSO 4 (a Fenton-like catalyst), iron(II)phthalocyanine (a non-Fenton oxidation catalyst), as well as manganese(II) phthalocyanine. The applicability of the method was examined for the removal of bisphenol A (BPA), as measured by HPLC, during parallel oxidation experiments. The order of catalytic activity was identified as FePc > MnPc > CuSO 4 for both BPA and MB. The quantitative MB decolourisation assay may offer a rapid method for screening a wide range of potential catalysts for oxidation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Optimising hydrogen peroxide measurement in exhaled breath condensate.

    PubMed

    Brooks, Wendy M; Lash, Heath; Kettle, Anthony J; Epton, Michael J

    2006-01-01

    Exhaled breath condensate (EBC) analysis has been proposed as a non-invasive method of assessing airway pathology. A number of substances, including hydrogen peroxide (H2O2), have been measured in EBC, without adequate published details of validation and optimisation. To explore factors that affect accurate quantitation of H2O2 in EBC. H2O2 was measured in EBC samples using fluorometry with 4-hydroxyphenylacetic acid. A number of factors that might alter quantitation were studied including pH and buffering conditions, reagent storage, and assay temperature. Standard curve slope was significantly altered by pH, leading to a potential difference in H2O2 quantification of up to 42%. These differences were resolved by increasing the buffering capacity of the reaction mix. H2O2 added to EBC remained stable for 1 h when stored on ice. The assay was unaffected by freezing assay reagents. The limit of detection for H2O2 ranged from 3.4 nM to 8.8 nM depending on the buffer used. The reagents required for this assay can be stored for several months allowing valuable consistency in longitudinal studies. The quantitation of H2O2 in EBC is pH-dependent but increasing assay buffering reduces this effect. Sensitive reproducible quantitation of H2O2 in EBC requires rigorous optimisation.

  11. A triplex quantitative real-time PCR assay for differential detection of human adenovirus serotypes 2, 3 and 7.

    PubMed

    Qiu, Fang-Zhou; Shen, Xin-Xin; Zhao, Meng-Chuan; Zhao, Li; Duan, Su-Xia; Chen, Chen; Qi, Ju-Ju; Li, Gui-Xia; Wang, Le; Feng, Zhi-Shan; Ma, Xue-Jun

    2018-05-02

    Human adenovirus (HAdV) serotypes 2, 3 and 7 are more prevalent than other serotypes and have been associated with severe pneumonia in pediatric children. Molecular typing of HAdV is not routinely performed in clinical diagnostic laboratories as it is time-consuming and labor-intensive. In the present study, we developed a triplex quantitative real-time PCR assay (tq-PCR) in a single closed tube for differential detection and quantitative analysis of HAdV serotypes 2, 3 and 7. The sensitivity, specificity, reproducibility and clinical performance of tq-PCR were evaluated. The analytical sensitivity of the tq-PCR was 100 copies/reaction for each of HAdV serotypes 2, 3 and 7, and no cross-reaction with other common respiratory viruses or HAdV serotypes 1,4,5,6,31,55 and 57 was observed. The coefficients of variation (CV) of intra-assay and inter-assay were between 0.6% to 3.6%. Of 138 previously-defined HAdV-positive nasopharyngeal aspirates samples tested, the detection agreement between tq-PCR and nested PCR was 96.38% (133/138). The proposed tq-PCR assay is a sensitive, specific and reproducible method and has the potential for clinical use in the rapid and differential detection and quantitation of HAdV serotypes 2, 3 and 7.

  12. MRM assay for quantitation of complement components in human blood plasma - a feasibility study on multiple sclerosis.

    PubMed

    Rezeli, Melinda; Végvári, Akos; Ottervald, Jan; Olsson, Tomas; Laurell, Thomas; Marko-Varga, György

    2011-12-10

    As a proof-of-principle study, a multiple reaction monitoring (MRM) assay was developed for quantitation of proteotypic peptides, representing seven plasma proteins associated with inflammation (complement components and C-reactive protein). The assay development and the sample analysis were performed on a linear ion trap mass spectrometer. We were able to quantify 5 of the 7 target proteins in depleted plasma digests with reasonable reproducibility over a 2 orders of magnitude linear range (RSD≤25%). The assay panel was utilized for the analysis of a small multiple sclerosis sample cohort with 10 diseased and 8 control patients. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Development of a high-throughput detection system for HIV-1 using real-time NASBA based on molecular beacons

    NASA Astrophysics Data System (ADS)

    van Beuningen, Rinie; Marras, Salvatore A.; Kramer, Fred R.; Oosterlaken, Tom; Weusten, Jos; Borst, G.; van de Wiel, Paul

    2001-04-01

    HIV-1 viral load assays require accuracy and sensitivity at low RNA levels with the capability to detect all subtypes. Furthermore, the assay should be easy to perform and fast to be useful for routine diagnostics. In order to meet these demands we have combined isothermal NASBA amplification with molecular beacon probes for real-time detection and quantitation of HIV-1 RNA. Quantitation is based on co-amplification of the HIV-1 RNA in the clinical sample and a synthetic calibrator RNA which is amplified by the same primer set but detected with a differently labeled molecular beacon. The entire procedure is simple and analysis of 48 samples requires less than 1» hours with minimal hands-on time. A fluorescent plate reader is used for real-time detection and isothermal amplification. The linearity and precision of the assay was determined with the VQC HIV-1 type B standard of the Central Laboratory of the Dutch Red Cross Blood Banks, The Netherlands. Sensitivity was shown to be 50 copies per ml (cps/ml). The average assay precision was 0,19 log10 over a range of 100-300,000 cps/ml tested at nine concentrations. The linearity of dilution series of 15 cultured HIV-1 gag clades A-H was shown. The specificity was 100% on non HIV-1 samples HIV-2, HTLV-1 and HTLV-2. The assay robustness in terms of valid results was 99%. In conclusion, the new real-time NASBA assay meets state-of-the-art HIV-1 viral load performance requirements combined with a high level of user convenience.

  14. A comparison of the analytical performance of five commercially available assays for neutrophil gelatinase-associated lipocalin using urine.

    PubMed

    Kift, Rebecca L; Messenger, Michael P; Wind, Tobias C; Hepburn, Sophie; Wilson, Michelle; Thompson, Douglas; Smith, Matthew Welberry; Sturgeon, Catharine; Lewington, Andrew J; Selby, Peter J; Banks, Rosamonde E

    2013-05-01

    Neutrophil gelatinase-associated lipocalin (NGAL) is a promising biomarker for acute kidney injury that is beginning to be used in clinical practice in addition to research studies. The current study describes an independent validation and comparison of five commercially available NGAL assays, focusing on urine samples. This is an essential step in the translation of this marker to clinical use in terms of allowing valid inter-study comparison and generation of robust results. Two CE (Conformité Européenne)-marked assays, the NGAL Test (BioPorto) on Siemens ADVIA(®) 1800 and the ARCHITECT Urine NGAL assay on i2000SR (Abbott Laboratories), and three research-use-only (RUO) ELISAs (R&D Systems, Hycult and BioPorto) were evaluated. Imprecision, parallelism, recovery, selectivity, limit of quantitation (LOQ), vulnerability to interference and hook effect were assessed and inter-assay agreement was determined using 68 urine samples from patients with various renal diseases and healthy controls. The Abbott and R&D Systems assays demonstrated satisfactory performance for all parameters tested. However for the other three assays evaluated, problems were identified with LOQ (BioPorto/ADVIA(®)), parallelism (BioPorto ELISA) or several parameters (Hycult). Between-method agreement varied with the Hycult assay in particular being markedly different and highlighting issues with standardization and form of NGAL measured. Variability exists between the five NGAL assays in terms of their performance and this should be taken into account when interpreting results from the various clinical or research studies measuring urinary NGAL.

  15. Development of a Quantitative Competitive PCR Assay for Detection and Quantification of Escherichia coli O157:H7 Cells

    PubMed Central

    Li, Wenli; Drake, Mary Anne

    2001-01-01

    A quantitative competitive PCR (QC-PCR) assay was developed to detect and quantify Escherichia coli O157:H7 cells. From 103 to 108 CFU of E. coli O157:H7 cells/ml was quantified in broth or skim milk, and cell densities predicted by QC-PCR were highly related to viable cell counts (r2 = 0.99 and 0.93, respectively). QC-PCR has potential for quantitative detection of pathogenic bacteria in foods. PMID:11425755

  16. Diagnosing acute HIV infection: The performance of quantitative HIV-1 RNA testing (viral load) in the 2014 laboratory testing algorithm.

    PubMed

    Wu, Hsiu; Cohen, Stephanie E; Westheimer, Emily; Gay, Cynthia L; Hall, Laura; Rose, Charles; Hightow-Weidman, Lisa B; Gose, Severin; Fu, Jie; Peters, Philip J

    2017-08-01

    New recommendations for laboratory diagnosis of HIV infection in the United States were published in 2014. The updated testing algorithm includes a qualitative HIV-1 RNA assay to resolve discordant immunoassay results and to identify acute HIV-1 infection (AHI). The qualitative HIV-1 RNA assay is not widely available; therefore, we evaluated the performance of a more widely available quantitative HIV-1 RNA assay, viral load, for diagnosing AHI. We determined that quantitative viral loads consistently distinguished AHI from a false-positive immunoassay result. Among 100 study participants with AHI and a viral load result, the estimated geometric mean viral load was 1,377,793copies/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Analysis of arsenical metabolites in biological samples.

    PubMed

    Hernandez-Zavala, Araceli; Drobna, Zuzana; Styblo, Miroslav; Thomas, David J

    2009-11-01

    Quantitation of iAs and its methylated metabolites in biological samples provides dosimetric information needed to understand dose-response relations. Here, methods are described for separation of inorganic and mono-, di-, and trimethylated arsenicals by thin layer chromatography. This method has been extensively used to track the metabolism of the radionuclide [(73)As] in a variety of in vitro assay systems. In addition, a hydride generation-cryotrapping-gas chromatography-atomic absorption spectrometric method is described for the quantitation of arsenicals in biological samples. This method uses pH-selective hydride generation to differentiate among arsenicals containing trivalent or pentavalent arsenic.

  18. High-Content Screening for Quantitative Cell Biology.

    PubMed

    Mattiazzi Usaj, Mojca; Styles, Erin B; Verster, Adrian J; Friesen, Helena; Boone, Charles; Andrews, Brenda J

    2016-08-01

    High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Deep Learning in Label-free Cell Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less

  20. Deep Learning in Label-free Cell Classification

    DOE PAGES

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; ...

    2016-03-15

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less

  1. Improved assay to detect Plasmodium falciparum using an uninterrupted, semi-nested PCR and quantitative lateral flow analysis

    PubMed Central

    2013-01-01

    Background A rapid, non-invasive, and inexpensive point-of-care (POC) diagnostic for malaria followed by therapeutic intervention would improve the ability to control infection in endemic areas. Methods A semi-nested PCR amplification protocol is described for quantitative detection of Plasmodium falciparum and is compared to a traditional nested PCR. The approach uses primers that target the P. falciparum dihydrofolate reductase gene. Results This study demonstrates that it is possible to perform an uninterrupted, asymmetric, semi-nested PCR assay with reduced assay time to detect P. falciparum without compromising the sensitivity and specificity of the assay using saliva as a testing matrix. Conclusions The development of this PCR allows nucleic acid amplification without the need to transfer amplicon from the first PCR step to a second reaction tube with nested primers, thus reducing both the chance of contamination and the time for analysis to < two hours. Analysis of the PCR amplicon yield was adapted to lateral flow detection using the quantitative up-converting phosphor (UCP) reporter technology. This approach provides a basis for migration of the assay to a POC microfluidic format. In addition the assay was successfully evaluated with oral samples. Oral fluid collection provides a simple non-invasive method to collect clinical samples. PMID:23433252

  2. Transitioning from Targeted to Comprehensive Mass Spectrometry Using Genetic Algorithms.

    PubMed

    Jaffe, Jacob D; Feeney, Caitlin M; Patel, Jinal; Lu, Xiaodong; Mani, D R

    2016-11-01

    Targeted proteomic assays are becoming increasingly popular because of their robust quantitative applications enabled by internal standardization, and they can be routinely executed on high performance mass spectrometry instrumentation. However, these assays are typically limited to 100s of analytes per experiment. Considerable time and effort are often expended in obtaining and preparing samples prior to targeted analyses. It would be highly desirable to detect and quantify 1000s of analytes in such samples using comprehensive mass spectrometry techniques (e.g., SWATH and DIA) while retaining a high degree of quantitative rigor for analytes with matched internal standards. Experimentally, it is facile to port a targeted assay to a comprehensive data acquisition technique. However, data analysis challenges arise from this strategy concerning agreement of results from the targeted and comprehensive approaches. Here, we present the use of genetic algorithms to overcome these challenges in order to configure hybrid targeted/comprehensive MS assays. The genetic algorithms are used to select precursor-to-fragment transitions that maximize the agreement in quantification between the targeted and the comprehensive methods. We find that the algorithm we used provided across-the-board improvement in the quantitative agreement between the targeted assay data and the hybrid comprehensive/targeted assay that we developed, as measured by parameters of linear models fitted to the results. We also found that the algorithm could perform at least as well as an independently-trained mass spectrometrist in accomplishing this task. We hope that this approach will be a useful tool in the development of quantitative approaches for comprehensive proteomics techniques. Graphical Abstract ᅟ.

  3. Improved Methods for Capture, Extraction, and Quantitative Assay of Environmental DNA from Asian Bigheaded Carp (Hypophthalmichthys spp.)

    PubMed Central

    Turner, Cameron R.; Miller, Derryl J.; Coyne, Kathryn J.; Corush, Joel

    2014-01-01

    Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species. PMID:25474207

  4. Improved methods for capture, extraction, and quantitative assay of environmental DNA from Asian bigheaded carp (Hypophthalmichthys spp.).

    PubMed

    Turner, Cameron R; Miller, Derryl J; Coyne, Kathryn J; Corush, Joel

    2014-01-01

    Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species.

  5. Transitioning from Targeted to Comprehensive Mass Spectrometry Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Jaffe, Jacob D.; Feeney, Caitlin M.; Patel, Jinal; Lu, Xiaodong; Mani, D. R.

    2016-11-01

    Targeted proteomic assays are becoming increasingly popular because of their robust quantitative applications enabled by internal standardization, and they can be routinely executed on high performance mass spectrometry instrumentation. However, these assays are typically limited to 100s of analytes per experiment. Considerable time and effort are often expended in obtaining and preparing samples prior to targeted analyses. It would be highly desirable to detect and quantify 1000s of analytes in such samples using comprehensive mass spectrometry techniques (e.g., SWATH and DIA) while retaining a high degree of quantitative rigor for analytes with matched internal standards. Experimentally, it is facile to port a targeted assay to a comprehensive data acquisition technique. However, data analysis challenges arise from this strategy concerning agreement of results from the targeted and comprehensive approaches. Here, we present the use of genetic algorithms to overcome these challenges in order to configure hybrid targeted/comprehensive MS assays. The genetic algorithms are used to select precursor-to-fragment transitions that maximize the agreement in quantification between the targeted and the comprehensive methods. We find that the algorithm we used provided across-the-board improvement in the quantitative agreement between the targeted assay data and the hybrid comprehensive/targeted assay that we developed, as measured by parameters of linear models fitted to the results. We also found that the algorithm could perform at least as well as an independently-trained mass spectrometrist in accomplishing this task. We hope that this approach will be a useful tool in the development of quantitative approaches for comprehensive proteomics techniques.

  6. Real-time quantitative PCR for retrovirus-like particle quantification in CHO cell culture.

    PubMed

    de Wit, C; Fautz, C; Xu, Y

    2000-09-01

    Chinese hamster ovary (CHO) cells have been widely used to manufacture recombinant proteins intended for human therapeutic uses. Retrovirus-like particles, which are apparently defective and non-infectious, have been detected in all CHO cells by electron microscopy (EM). To assure viral safety of CHO cell-derived biologicals, quantification of retrovirus-like particles in production cell culture and demonstration of sufficient elimination of such retrovirus-like particles by the down-stream purification process are required for product market registration worldwide. EM, with a detection limit of 1x10(6) particles/ml, is the standard retrovirus-like particle quantification method. The whole process, which requires a large amount of sample (3-6 litres), is labour intensive, time consuming, expensive, and subject to significant assay variability. In this paper, a novel real-time quantitative PCR assay (TaqMan assay) has been developed for the quantification of retrovirus-like particles. Each retrovirus particle contains two copies of the viral genomic particle RNA (pRNA) molecule. Therefore, quantification of retrovirus particles can be achieved by quantifying the pRNA copy number, i.e. every two copies of retroviral pRNA is equivalent to one retrovirus-like particle. The TaqMan assay takes advantage of the 5'-->3' exonuclease activity of Taq DNA polymerase and utilizes the PRISM 7700 Sequence Detection System of PE Applied Biosystems (Foster City, CA, U.S.A.) for automated pRNA quantification through a dual-labelled fluorogenic probe. The TaqMan quantification technique is highly comparable to the EM analysis. In addition, it offers significant advantages over the EM analysis, such as a higher sensitivity of less than 600 particles/ml, greater accuracy and reliability, higher sample throughput, more flexibility and lower cost. Therefore, the TaqMan assay should be used as a substitute for EM analysis for retrovirus-like particle quantification in CHO cell-based production system. Copyright 2000 The International Association for Biologicals.

  7. Comparison of bioluminescent kinase assays using substrate depletion and product formation.

    PubMed

    Tanega, Cordelle; Shen, Min; Mott, Bryan T; Thomas, Craig J; MacArthur, Ryan; Inglese, James; Auld, Douglas S

    2009-12-01

    Assays for ATPases have been enabled for high-throughput screening (HTS) by employing firefly luciferase to detect the remaining ATP in the assay. However, for any enzyme assay, measurement of product formation is a more sensitive assay design. Recently, technologies that allow detection of the ADP product from ATPase reactions have been described using fluorescent methods of detection. We describe here the characterization of a bioluminescent assay that employs firefly luciferase in a coupled-enzyme assay format to enable detection of ADP levels from ATPase assays (ADP-Glo, Promega Corp.). We determined the performance of the ADP-Glo assay in 1,536-well microtiter plates using the protein kinase Clk4 and a 1,352 member kinase focused combinatorial library. The ADP-Glo assay was compared to the Clk4 assay performed using a bioluminescence ATP-depletion format (Kinase-Glo, Promega Corp). We performed this analysis using quantitative HTS (qHTS) where we determined potency values for all library members and identified approximately 300 compounds with potencies ranging from as low as 50 nM to >10 microM, yielding a robust dataset for the comparison. Both assay formats showed high performance (Z'-factors approximately 0.9) and showed a similar potency distribution for the actives. We conclude that the bioluminescence ADP detection assay system is a viable generic alternative to the widely used ATP-depletion assay for ATPases and discuss the advantages and disadvantages of both approaches.

  8. Development of an integrated, unattended assay system for LWR-MOX fuel pellet trays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, J.E.; Hatcher, C.R.; Pollat, L.L.

    1994-08-01

    Four identical unattended plutonium assay systems have been developed for use at the new light-water-reactor mixed oxide (LWR-MOX) fuel fabrication facility at Hanau, Germany. The systems provide quantitative plutonium verification for all MOX pellet trays entering or leaving a large, intermediate store. Pellet-tray transport and storage systems are highly automated. Data from the ``I-Point`` (information point) assay systems will be shared by the Euratom and International Atomic Energy Agency (IAEA) Inspectorates. The I-Point system integrates, for the first time, passive neutron coincidence counting (NCC) with electro-mechanical sensing (EMS) in unattended mode. Also, provisions have been made for adding high-resolution gammamore » spectroscopy. The system accumulates data for every tray entering or leaving the store between inspector visits. During an inspection, data are analyzed and compared with operator declarations for the previous inspection period, nominally one month. Specification of the I-point system resulted from a collaboration between the IAEA, Euratom, Siemens, and Los Alamos. Hardware was developed by Siemens and Los Alamos through a bilateral agreement between the German Federal Ministry of Research and Technology (BMFT) and the US DOE. Siemens also provided the EMS subsystem, including software. Through the USSupport Program to the IAEA, Los Alamos developed the NCC software (NCC COLLECT) and also the software for merging and reviewing the EMS and NCC data (MERGE/REVIEW). This paper describes the overall I-Point system, but emphasizes the NCC subsystem, along with the NCC COLLECT and MERGE/REVIEW codes. We also summarize comprehensive testing results that define the quality of assay performance.« less

  9. Development and evaluation of a quantitative PCR assay for detection of Hepatozoon sp.

    PubMed

    Criado-Fornelio, A; Buling, A; Cunha-Filho, N A; Ruas, J L; Farias, N A R; Rey-Valeiron, C; Pingret, J L; Etievant, M; Barba-Carretero, J C

    2007-12-25

    With the aim to improve current molecular diagnostic techniques of Hepatozoon sp. in carnivore mammals, we developed a quantitative PCR (qPCR) assay with SYBR Green I((R)). The method, consisting of amplification of a 235bp fragment of the 18S rRNA gene, is able to detect at least 0.1fg of parasite DNA. Reproducible quantitative results were obtained over a range of 0.1ng-0.1fg of Hepatozoon sp. DNA. To assess the performance of the qPCR assay, DNA samples from dogs (140) and cats (50) were tested with either standard PCR or qPCR. Positive samples were always confirmed by partial sequencing of the 18S rRNA gene. Quantitative PCR was 15.8% more sensitive than standard PCR to detect H. canis in dogs. In cats, no infections were detected by standard PCR, compared to two positives by qPCR (which were infected by H. canis as shown by sequencing).

  10. Establishment of a simple and quantitative immunospot assay for detecting anti-type II collagen antibody using an infrared fluorescence imaging system (IFIS).

    PubMed

    Ota, Shusuke; Kanazawa, Satoshi; Kobayashi, Masaaki; Otsuka, Takanobu; Okamoto, Takashi

    2005-04-01

    Antibodies to type II collagen (col II) have been detected in patients with rheumatoid arthritis and in animal models of collagen induced arthritis. Here, we describe a novel method to detect anti-col II antibodies using an immunospot assay with an infrared fluorescence imaging system. This method showed very high sensitivity and specificity, and was simple, with low background levels. It also showed higher reproducibility and linearity, with a dynamic range of approximately 500-fold, than the conventional immunospot assay with enhanced chemiluminescence detection. Using this method we were able to demonstrate the antibody affinity maturation process in mice immunized with col II. In these immunized mice, although cross-reactive antibodies reacting with other collagen species were detected in earlier stages of immunization, the titers of cross-reactive antibodies rapidly diminished after the antigen boost, concomitantly with the elevation of the anti-col II antibody. The method and its possible applications are discussed.

  11. PCV2 on the spot-A new method for the detection of single porcine circovirus type 2 secreting cells.

    PubMed

    Fossum, Caroline; Hjertner, Bernt; Lövgren, Tanja; Fuxler, Lisbeth; Charerntantanakul, Wasin; Wallgren, Per

    2014-02-01

    A porcine circovirus type 2 SPOT (PCV2-SPOT) assay was established to enumerate virus-secreting lymphocytes obtained from naturally infected pigs. The assay is based on the same principle as general ELISPOT assays but instead of detecting cytokine or immunoglobulin secretion, PCV2 particles are immobilized and detected as filter spots. The method was used to evaluate the influence of various cell activators on the PCV2 secretion in vitro and was also applied to study the PCV2 secretion by lymphocytes obtained from pigs in healthy herds and in a herd afflicted by postweaning multisystemic wasting disease (PMWS). Peripheral blood mononuclear cells (PBMCs) obtained from a pig with severe PMWS produced PCV2-SPOTs spontaneously whereas PBMCs obtained from pigs infected subclinically only generated PCV2-SPOTs upon in vitro stimulation. The PCV2 secretion potential was related to the PCV2 DNA content in the PBMCs as determined by two PCV2 real-time PCR assays, developed to differentiate between Swedish PCV2 genogroups 1 (PCV2a) and 3 (PCV2b). Besides the current application these qPCRs could simplify future epidemiological studies and allow genogroup detection/quantitation in dual infection experiments and similar studies. The developed PCV2-SPOT assay offers a semi-quantitative approach to evaluate the potential of PCV2-infected porcine cells to release PCV2 viral particles as well as a system to evaluate the ability of different cell types or compounds to affect PCV2 replication and secretion. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Development and use of quantitative competitive PCR assays for relative quantifying rumen anaerobic fungal populations in both in vitro and in vivo systems.

    PubMed

    Sekhavati, Mohammad H; Mesgaran, Mohsen Danesh; Nassiri, Mohammad R; Mohammadabadi, Tahereh; Rezaii, Farkhondeh; Fani Maleki, Adham

    2009-10-01

    This paper describes the use of a quantitative competitive polymerase chain reaction (QC-PCR) assay; using PCR primers to the rRNA locus of rumen fungi and a standard-control DNA including design and validation. In order to test the efficiency of this method for quantifying anaerobic rumen fungi, it has been attempted to evaluate this method in in vitro conditions by comparing with an assay based on measuring cell wall chitin. The changes in fungal growth have been studied when they are grown in in vitro on either untreated (US) or sodium hydroxide treated wheat straw (TS). Results showed that rumen fungi growth was significantly higher in treated samples compared with untreated during the 12d incubation (P<0.05) and plotting the chitin assay's results against the competitive PCR's showed high positive correlation (R(2)> or =0.87). The low mean values of the coefficients of variance in repeatability in the QC-PCR method against the chitin assay demonstrated more reliability of this new approach. And finally, the efficiency of this method was investigated in in vivo conditions. Samples of rumen fluid were collected from four fistulated Holstein steers which were fed four different diets (basal diet, high starch, high sucrose and starch plus sucrose) in rotation. The results of QC-PCR showed that addition of these non-structural carbohydrates to the basal diets caused a significant decrease in rumen anaerobic fungi biomass. The QC-PCR method appears to be a reliable and can be used for rumen samples.

  13. A Universally Applicable and Rapid Method for Measuring the Growth of Streptomyces and Other Filamentous Microorganisms by Methylene Blue Adsorption-Desorption

    PubMed Central

    Fischer, Marco

    2013-01-01

    Quantitative assessment of growth of filamentous microorganisms, such as streptomycetes, is generally restricted to determination of dry weight. Here, we describe a straightforward methylene blue-based sorption assay to monitor microbial growth quantitatively, simply, and rapidly. The assay is equally applicable to unicellular and filamentous bacterial and eukaryotic microorganisms. PMID:23666340

  14. Factors That Contribute to Assay Variation in Quantitative Analysis of Sex Steroid Hormones Using Liquid and Gas Chromatography-Mass Spectrometry

    ERIC Educational Resources Information Center

    Xu, Xia; Veenstra, Timothy D.

    2012-01-01

    The list of physiological events in which sex steroids play a role continues to increase. To decipher the roles that sex steroids play in any condition requires high quality cohorts of samples and assays that provide highly accurate quantitative measures. Liquid and gas chromatography coupled with mass spectrometry (LC-MS and GC-MS) have…

  15. Methods in hair research: how to objectively distinguish between anagen and catagen in human hair follicle organ culture.

    PubMed

    Kloepper, Jennifer Elisabeth; Sugawara, Koji; Al-Nuaimi, Yusur; Gáspár, Erzsébet; van Beek, Nina; Paus, Ralf

    2010-03-01

    The organ culture of human scalp hair follicles (HFs) is the best currently available assay for hair research in the human system. In order to determine the hair growth-modulatory effects of agents in this assay, one critical read-out parameter is the assessment of whether the test agent has prolonged anagen duration or induced catagen in vitro. However, objective criteria to distinguish between anagen VI HFs and early catagen in human HF organ culture, two hair cycle stages with a deceptively similar morphology, remain to be established. Here, we develop, document and test an objective classification system that allows to distinguish between anagen VI and early catagen in organ-cultured human HFs, using both qualitative and quantitative parameters that can be generated by light microscopy or immunofluorescence. Seven qualitative classification criteria are defined that are based on assessing the morphology of the hair matrix, the dermal papilla and the distribution of pigmentary markers (melanin, gp100). These are complemented by ten quantitative parameters. We have tested this classification system by employing the clinically used topical hair growth inhibitor, eflornithine, and show that eflornithine indeed produces the expected premature catagen induction, as identified by the novel classification criteria reported here. Therefore, this classification system offers a standardized, objective and reproducible new experimental method to reliably distinguish between human anagen VI and early catagen HFs in organ culture.

  16. In vitro assay of Staphylococcus aureus enterotoxin A activity in food.

    PubMed Central

    Rasooly, L; Rose, N R; Shah, D B; Rasooly, A

    1997-01-01

    Staphylococcus aureus enterotoxin A (SEA) is a leading cause of food poisoning. The current test for functional activity of SEA requires monkeys or kittens. The major drawbacks of animal assays are lack of quantitation, poor reproducibility, low sensitivity, and high cost. In this report we describe and evaluate an alternative assay using T-cell proliferation to measure SEA activity in food. Human and rat lymphocytes proliferate in response to concentrations of SEA as low as 1 pg/ml, well below the pathogenic dose of 100 ng. This proliferation assay is highly sensitive, quantitative, and simple. Nonradioactive assays of T-cell proliferation were also suitable for detecting and measuring SEA, although with a 10-fold lower sensitivity. To evaluate the utility of this assay for food testing, four different food samples were mixed with SEA. In each sample, SEA was detected at a concentration of 1 ng/ml. Heat-inactivated SEA produced no detectable proliferation. These results demonstrate that an in vitro cell proliferation assay is an advantageous alternative to existing animal assays for measuring SEA activity in food. PMID:9172356

  17. A quantitative in vitro assay for the evaluation of phototoxic potential of topically applied materials.

    PubMed

    Tenenbaum, S; DiNardo, J; Morris, W E; Wolf, B A; Schnetzinger, R W

    1984-10-01

    A quantitative in vitro method for phototoxic evaluation of chemicals has been developed and validated. The assay uses Saccharomyces cerevisiae, seeded in an agar overlay on top of a plate count agar base. 8-Methoxy psoralen is used as a reference standard against which materials are measured. Activity is quantified by cytotoxicity measured as zones of inhibition. Several known phototoxins (heliotropine, lyral, phantolid, and bergamot oil) and photoallergens (6-methyl coumarin and musk ambrette) are used to validate the assay. An excellent correlation is observed between in vivo studies employing Hartley albino guinea pigs and the in vitro assay for several fragrance raw materials and other chemicals. The in vitro assay exhibits a greater sensitivity from 2-500 fold. For three fragrance oils, the in vitro assay detects low levels of photobiological activity while the in vivo assay is negative. Although the in vitro assay does not discriminate between phototoxins and photoallergens, it can be used for screening of raw materials so that reduction in animal usage can be achieved while maintaining the protection of the consumer.

  18. Quantification of HCV RNA in Liver Tissue by bDNA Assay.

    PubMed

    Dailey, P J; Collins, M L; Urdea, M S; Wilber, J C

    1999-01-01

    With this statement, Sherlock and Dooley have described two of the three major challenges involved in quantitatively measuring any analyte in tissue samples: the distribution of the analyte in the tissue; and the standard of reference, or denominator, with which to make comparisons between tissue samples. The third challenge for quantitative measurement of an analyte in tissue is to ensure reproducible and quantitative recovery of the analyte on extraction from tissue samples. This chapter describes a method that can be used to measure HCV RNA quantitatively in liver biopsy and tissue samples using the bDNA assay. All three of these challenges-distribution, denominator, and recovery-apply to the measurement of HCV RNA in liver biopsies.

  19. Distribution of tetrodotoxin in the body of the blue-ringed octopus (Hapalochlaena maculosa).

    PubMed

    Yotsu-Yamashita, Mari; Mebs, Dietrich; Flachsenberger, Wolfgang

    2007-03-01

    Tetrodotoxin (TTX) was quantitatively assayed in six specimens of semi-adult blue-ringed octopus, Hapalochlaena maculosa, by a post-column fluorescent-HPLC system. TTX was found to be present in all body parts, e.g. in high concentrations in the arms followed by the abdomen and cephalothorax. The toxin is not associated exclusively with the posterior salivary gland.

  20. Development of an Escherichia coli K12-specific quantitative polymerase chain reaction assay and DNA isolation suited to biofilms associated with iron drinking water pipe corrosion products

    EPA Science Inventory

    Escherichia coli is one of the most commonly used fecal indicator organisms for drinking water and groundwater systems. In order to understand various biogeochemical and biophysical factors affecting its interactions with biofilms, E. coli K12 was chosen as a model organism. A Ta...

  1. Development of a colloidal gold immunochromatographic strip assay for simple and fast detection of human α-lactalbumin in genetically modified cow milk.

    PubMed

    Tao, Chenyu; Zhang, Qingde; Feng, Na; Shi, Deshi; Liu, Bang

    2016-03-01

    The qualitative and quantitative declaration of food ingredients is important to consumers, especially for genetically modified food as it experiences a rapid increase in sales. In this study, we designed an accurate and rapid detection system using colloidal gold immunochromatographic strip assay (GICA) methods to detect genetically modified cow milk. First, we prepared 2 monoclonal antibodies for human α-lactalbumin (α-LA) and measured their antibody titers; the one with the higher titer was used for further experiments. Then, we found the optimal pH value and protein amount of GICA for detection of pure milk samples. The developed strips successfully detected genetically modified cow milk and non-modified cow milk. To determine the sensitivity of GICA, a quantitative ELISA system was used to determine the exact amount of α-LA, and then genetically modified milk was diluted at different rates to test the sensitivity of GICA; the sensitivity was 10 μg/mL. Our results demonstrated that the applied method was effective to detect human α-LA in cow milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Quantitative detection of pork in commercial meat products by TaqMan® real-time PCR assay targeting the mitochondrial D-loop region.

    PubMed

    Kim, Miju; Yoo, Insuk; Lee, Shin-Young; Hong, Yeun; Kim, Hae-Yeong

    2016-11-01

    The TaqMan® real-time PCR assay using the mitochondrial D-loop region was developed for the quantitative detection of pork in processed meat products. The newly designed primers and probe specifically amplified pork without any cross-reactivity with non-target animal species. The limit of detection of the real-time PCR assay was 0.1pg of heat-treated pork meat and 0.1% (w/w) pork meat in beef and chicken meat mixtures. The quantitative real-time PCR assay was applied to analyze the pork meat content in 22 commercial processed meat products including jerkies, press hams, sausages, hamburger patties and steaks, grilled short rib patties, and nuggets. The developed real-time PCR method was able to detect pork meat in various types of processed meat products that declared the use of pork meat on their label. All processed meat products that declared no use of pork meat showed a negative result in the assay. The method developed in this study showed sensitivity and specificity in the quantification of pork meat in commercial processed meat products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Impact of HIV type 1 subtype variation on viral RNA quantitation.

    PubMed

    Parekh, B; Phillips, S; Granade, T C; Baggs, J; Hu, D J; Respess, R

    1999-01-20

    We evaluated the performance of three HIV-1 RNA quantitation methods (Amplicor HIV-1 MONITOR-1.0, NASBA, and Quantiplex HIV RNA 2.0 [branched DNA (bDNA)]) using plasma specimens (N = 60) from individuals from Asia and Africa infected with one of three HIV-1 subtypes (A, Thai B [B'] or E; N = 20 each). Our results demonstrate that of the 20 subtype A specimens, 19 were quantifiable by the bDNA assay compared with 15 by the MONITOR-1.0 and 13 by NASBA. Of those quantifiable, the mean log10 difference was 0.93 between bDNA and MONITOR-1.0 and 0.46 between bDNA and NASBA. For subtype B' specimens, the correlation among methods was better with only 2 specimens missed by NASBA and 3 by the bDNA assay. However the missed specimens had viral burden near the lower limit (1000 copies/ml) for these assays. For the 20 subtype E specimens, MONITOR-1.0 and NASBA quantified RNA in 17 and 14 specimens, respectively, as compared with 19 specimens quantified by the bDNA assay. The correlation among different assays, especially between bDNA/NASBA and MONITOR-1.0/NASBA, was poor, although the mean log10 difference for subtype E specimens was 0.4 between bDNA and MONITOR-1.0 and only 0.08 between bDNA and NASBA. The addition of a new primer set, designed for non-B HIV-1 subtypes, to the existing MONITOR assay (MONITOR-1.0+) resulted in RNA detection in all 60 specimens and significantly improved the efficiency of quantitation for subtypes A and E. Our data indicate that HIV-1 subtype variation can have a major influence on viral load quantitation by different methods. Periodic evaluation and modification of these quantitative methods may be necessary to ensure reliable quantification of divergent viruses.

  4. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA.

    PubMed

    Majid, Farjana; Jahan, Munira; Lutful Moben, Ahmed; Tabassum, Shahina

    2014-01-01

    Both real-time-polymerase chain reaction (PCR) and hybrid capture 2 (HC2) assay can detect and quantify hepatitis B virus (HBV) DNA. However, real-time-PCR can detect a wide range of HBV DNA, while HC2 assay could not detect lower levels of viremia. The present study was designed to detect and quantify HBV DNA by real-time-PCR and HC2 assay and compare the quantitative data of these two assays. A cross-sectional study was conducted in between July 2010 and June 2011. A total of 66 serologically diagnosed chronic hepatitis B (CHB) patients were selected for the study. Real-time-PCR and HC2 assay was done to detect HBV DNA. Data were analyzed by statistical Package for the social sciences (SPSS). Among 66 serologically diagnosed chronic hepatitis B patients 40 (60.61%) patients had detectable and 26 (39.39%) had undetectable HBV DNA by HC2 assay. Concordant results were obtained for 40 (60.61%) out of these 66 patients by real-time-PCR and HC2 assay with mean viral load of 7.06 ± 1.13 log 10 copies/ml and 6.95 ± 1.08 log 10 copies/ml, respectively. In the remaining 26 patients, HBV DNA was detectable by real-time-PCR in 20 patients (mean HBV DNA level was 3.67 ± 0.72 log 10 copies/ml. However, HBV DNA could not be detectable in six cases by the both assays. The study showed strong correlation (r = 0.915) between real-time-PCR and HC2 assay for the detection and quantification of HBV DNA. HC2 assay may be used as an alternative to real-time-PCR for CHB patients. How to cite this article: Majid F, Jahan M, Moben AL, Tabassum S. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA. Euroasian J Hepato-Gastroenterol 2014;4(1):31-35.

  5. Discordances with HIV-1 RNA quantitative determinations by three commercial assays in Pointe Noire, Republic of Congo.

    PubMed

    Bruzzone, Bianca; Bisio, Francesca; Caligiuri, Patrizia; Mboungou, Franc A Mayinda; Nigro, Nicola; Sticchi, Laura; Ventura, Agostina; Saladini, Francesco; Zazzi, Maurizio; Icardi, Giancarlo; Viscoli, Claudio

    2014-07-01

    Accurate HIV-1 RNA quantitation is required to support the scale up of antiretroviral therapy in African countries. Extreme HIV-1 genetic variability in Africa may affect the ability of commercially available assays to detect and quantify HIV-1 RNA accurately. The aim of this study was to compare three real-time PCR assays for quantitation of plasma HIV-1 RNA levels in patients from the Republic of Congo, an area with highly diversified HIV-1 subtypes and recombinants. The Abbott RealTime HIV-1, BioMérieux HIV-1 EasyQ test 1.2 and Cobas AmpliPrep/Cobas TaqMan HIV-1 1.0 were compared for quantitation of HIV-1 RNA in 37 HIV-1 seropositive pregnant women enrolled in the Kento-Mwana project for prevention of mother-to-child transmission in Pointe-Noire, Republic of Congo. The sample panel included a variety of HIV-1 subtypes with as many as 21 (56.8%) putative unique recombinant forms. Qualitative detection of HIV-1 RNA was concordant by all three assays in 33/37 (89.2%) samples. Of the remaining 4 (10.8%) samples, all were positive by Roche, three by Abbott and none by BioMérieux. Differences exceeding 1Log in positive samples were found in 4/31 (12.9%), 10/31 (32.3%) and 5/31 (16.1%) cases between Abbott and BioMérieux, Roche and BioMérieux, and Abbott and Roche, respectively. In this sample panel representative of highly polymorphic HIV-1 in Congo, the agreement among the three assays was moderate in terms of HIV-1 RNA detectability and rather inconsistent in terms of quantitation. Copyright © 2014. Published by Elsevier B.V.

  6. REMUS100 AUV with an integrated microfluidic system for explosives detection.

    PubMed

    Adams, André A; Charles, Paul T; Veitch, Scott P; Hanson, Alfred; Deschamps, Jeffrey R; Kusterbeck, Anne W

    2013-06-01

    Quantitating explosive materials at trace concentrations in real-time on-site within the marine environment may prove critical to protecting civilians, waterways, and military personnel during this era of increased threat of widespread terroristic activity. Presented herein are results from recent field trials that demonstrate detection and quantitation of small nitroaromatic molecules using novel high-throughput microfluidic immunosensors (HTMI) to perform displacement-based immunoassays onboard a HYDROID REMUS100 autonomous underwater vehicle. Missions were conducted 2-3 m above the sea floor, and no HTMI failures were observed due to clogging from biomass infiltration. Additionally, no device leaks were observed during the trials. HTMIs maintained immunoassay functionality during 2 h deployments, while continuously sampling seawater absent without any pretreatment at a flow rate of 2 mL/min. This 20-fold increase in the nominal flow rate of the assay resulted in an order of magnitude reduction in both lag and assay times. Contaminated seawater that contained 20-175 ppb trinitrotoluene was analyzed.

  7. Determination of emamectin benzoate in medicated fish feed: a multisite study.

    PubMed

    Farer, Leslie J

    2005-01-01

    A new method was developed for the quantitation of emamectin benzoate in medicated fish feed at levels between 1 and 30 ppm. The new procedure, based on a previously reported assay, consists of a wet methanolic extraction of ground feed, followed by solid-phase extraction and injection onto a gradient liquid chromatographic system. A multisite study involving 3 laboratories (the developing laboratory and 2 independent laboratories) was performed to evaluate precision, recovery, linearity, and sensitivity. Mean recove;ries for triplicate analyses at 3 levels, performed by 2 analysts per laboratory, were between 89 and 97%, with coefficients of variation ranging from 1.6 to 8.6%. Coefficients of determination (r2) obtained from the plotted data were > or =0.993. The precision of the method, determined from 6 replicate preparations from the same batch of medicated feed assayed in 3 separate trials per laboratory, was between 0.6 and 5.8%. The quantitation limit was established at 0.5 ppm. Specificity and robustness studies were performed by the developing laboratory.

  8. Quantitation of Na+, K+-atpase Enzymatic Activity in Tissues of the Mammalian Vestibular System

    NASA Technical Reports Server (NTRS)

    Kerr, T. P.

    1985-01-01

    In order to quantify vestibular Na(+), K(+)-ATPase, a microassay technique was developed which is sufficiently sensitive to measure the enzymatic activity in tissue from a single animal. The assay was used to characterize ATPase in he vestibular apparatus of the Mongolian gerbil. The quantitative procedure employs NPP (5 mM) as synthetic enzyme substrate. The assay relies upon spectrophotometric measurement (410 nm) of nitrophenol (NP) released by enzymatic hydrolysis of the substrate. Product formation in the absence of ouabain reflects both specific (Na(+), K(+)-ATPase) and non-specific (Mg(++)-ATPase) enzymatic activity. By measuring the accumulation of reaction product (NP) at three-minute intervals during the course of incubation, it is found that the overall enzymatic reaction proceeds linearly for at least 45 minutes. It is therefore possible to determine two separate reaction rates from a single set of tissues. Initial results indicate that total activity amounts to 53.3 + or - 11.2 (S.E.M.) nmol/hr/mg dry tissue, of which approximately 20% is ouabain-sensitive.

  9. Comparison of colorimetric assays with quantitative amino acid analysis for protein quantification of Generalized Modules for Membrane Antigens (GMMA).

    PubMed

    Rossi, Omar; Maggiore, Luana; Necchi, Francesca; Koeberling, Oliver; MacLennan, Calman A; Saul, Allan; Gerke, Christiane

    2015-01-01

    Genetically induced outer membrane particles from Gram-negative bacteria, called Generalized Modules for Membrane Antigens (GMMA), are being investigated as vaccines. Rapid methods are required for estimating the protein content for in-process assays during production. Since GMMA are complex biological structures containing lipid and polysaccharide as well as protein, protein determinations are not necessarily straightforward. We compared protein quantification by Bradford, Lowry, and Non-Interfering assays using bovine serum albumin (BSA) as standard with quantitative amino acid (AA) analysis, the most accurate currently available method for protein quantification. The Lowry assay has the lowest inter- and intra-assay variation and gives the best linearity between protein amount and absorbance. In all three assays, the color yield (optical density per mass of protein) of GMMA was markedly different from that of BSA with a ratio of approximately 4 for the Bradford assay, and highly variable between different GMMA; and approximately 0.7 for the Lowry and Non-Interfering assays, highlighting the need for calibrating the standard used in the colorimetric assay against GMMA quantified by AA analysis. In terms of a combination of ease, reproducibility, and proportionality of protein measurement, and comparability between samples, the Lowry assay was superior to Bradford and Non-Interfering assays for GMMA quantification.

  10. A probe-based qRT-PCR method to profile immunological gene expression in blood of captive beluga whales (Delphinapterus leucas)

    PubMed Central

    Wang, Jiann-Hsiung; Chou, Shih-Jen; Li, Tsung-Hsien; Leu, Ming-Yih; Ho, Hsiao-Kuan

    2017-01-01

    Cytokines are fundamental for a functioning immune system, and thus potentially serve as important indicators of animal health. Quantitation of mRNA using quantitative reverse transcription polymerase chain reaction (qRT-PCR) is an established immunological technique. It is particularly suitable for detecting the expression of proteins against which monoclonal antibodies are not available. In this study, we developed a probe-based quantitative gene expression assay for immunological assessment of captive beluga whales (Delphinapterus leucas) that is one of the most common cetacean species on display in aquariums worldwide. Six immunologically relevant genes (IL-2Rα, -4, -10, -12, TNFα, and IFNγ) were selected for analysis, and two validated housekeeping genes (PGK1 and RPL4) with stable expression were used as reference genes. Sixteen blood samples were obtained from four animals with different health conditions and stored in RNAlater™ solution. These samples were used for RNA extraction followed by qRT-PCR analysis. Analysis of gene transcripts was performed by relative quantitation using the comparative Cq method with the integration of amplification efficiency and two reference genes. The expression levels of each gene in the samples from clinically healthy animals were normally distributed. Transcript outliers for IL-2Rα, IL-4, IL-12, TNFα, and IFNγ were noticed in four samples collected from two clinically unhealthy animals. This assay has the potential to identify immune system deviation from normal state, which is caused by health problems. Furthermore, knowing the immune status of captive cetaceans could help both trainers and veterinarians in implementing preventive approaches prior to disease onset. PMID:28970970

  11. A probe-based qRT-PCR method to profile immunological gene expression in blood of captive beluga whales (Delphinapterus leucas).

    PubMed

    Tsai, Ming-An; Chen, I-Hua; Wang, Jiann-Hsiung; Chou, Shih-Jen; Li, Tsung-Hsien; Leu, Ming-Yih; Ho, Hsiao-Kuan; Yang, Wei Cheng

    2017-01-01

    Cytokines are fundamental for a functioning immune system, and thus potentially serve as important indicators of animal health. Quantitation of mRNA using quantitative reverse transcription polymerase chain reaction (qRT-PCR) is an established immunological technique. It is particularly suitable for detecting the expression of proteins against which monoclonal antibodies are not available. In this study, we developed a probe-based quantitative gene expression assay for immunological assessment of captive beluga whales ( Delphinapterus leucas ) that is one of the most common cetacean species on display in aquariums worldwide. Six immunologically relevant genes (IL-2Rα, -4, -10, -12, TNFα, and IFNγ) were selected for analysis, and two validated housekeeping genes (PGK1 and RPL4) with stable expression were used as reference genes. Sixteen blood samples were obtained from four animals with different health conditions and stored in RNA later ™ solution. These samples were used for RNA extraction followed by qRT-PCR analysis. Analysis of gene transcripts was performed by relative quantitation using the comparative Cq method with the integration of amplification efficiency and two reference genes. The expression levels of each gene in the samples from clinically healthy animals were normally distributed. Transcript outliers for IL-2Rα, IL-4, IL-12, TNFα, and IFNγ were noticed in four samples collected from two clinically unhealthy animals. This assay has the potential to identify immune system deviation from normal state, which is caused by health problems. Furthermore, knowing the immune status of captive cetaceans could help both trainers and veterinarians in implementing preventive approaches prior to disease onset.

  12. Comparison of DNA fragmentation and color thresholding for objective quantitation of apoptotic cells

    NASA Technical Reports Server (NTRS)

    Plymale, D. R.; Ng Tang, D. S.; Fermin, C. D.; Lewis, D. E.; Martin, D. S.; Garry, R. F.

    1995-01-01

    Apoptosis is a process of cell death characterized by distinctive morphological changes and fragmentation of cellular DNA. Using video imaging and color thresholding techniques, we objectively quantitated the number of cultured CD4+ T-lymphoblastoid cells (HUT78 cells, RH9 subclone) displaying morphological signs of apoptosis before and after exposure to gamma-irradiation. The numbers of apoptotic cells measured by objective video imaging techniques were compared to numbers of apoptotic cells measured in the same samples by sensitive apoptotic assays that quantitate DNA fragmentation. DNA fragmentation assays gave consistently higher values compared with the video imaging assays that measured morphological changes associated with apoptosis. These results suggest that substantial DNA fragmentation can precede or occur in the absence of the morphological changes which are associated with apoptosis in gamma-irradiated RH9 cells.

  13. Quantitation of sperm bindable IgA and IgG in seminal fluid.

    PubMed

    Howe, S E; Lynch, D M

    1986-05-01

    Seminal fluid and serum from 95 infertile males were assayed for sperm bindable immunoglobulins using an indirect ELISA with whole target sperm. The ELISA method was compared to seminal fluid and serum immobilization and agglutination assays (functional assays). In this infertile group, the ELISA assay was positive in 22% of seminal fluids (greater than 1.2 fg IgA/sperm and greater than 0.3 fg IgG/sperm). The seminal fluid antibodies were IgA and had an accompanying elevated IgG component in 78% of patients. There was a 96% correlation between negative seminal fluid functional assays and negative ELISA, and a 95% correlation between positive seminal fluid functional assays and positive ELISA. Positive serum sperm antibody tests were found in 71% of the infertile males with positive seminal fluid sperm antibodies, but 29% of the infertile males with strongly positive IgA seminal fluid sperm antibodies showed normal levels of serum sperm antibodies by either ELISA or functional assays. The ELISA method gives reproducible quantitation of sperm antibodies in seminal fluid and correlates well with accepted functional assays. Comparisons with serum sperm antibody assays suggests that seminal fluid sperm antibody analysis complements the serum analysis of sperm antibodies.

  14. Comparative Performance of Three Viral Load Assays on Human Immunodeficiency Virus Type 1 (HIV-1) Isolates Representing Group M (Subtypes A to G) and Group O: LCx HIV RNA Quantitative, AMPLICOR HIV-1 MONITOR Version 1.5, and Quantiplex HIV-1 RNA Version 3.0

    PubMed Central

    Swanson, Priscilla; Soriano, Vincent; Devare, Sushil G.; Hackett, John

    2001-01-01

    The performance of the LCx HIV RNA Quantitative (LCx HIV), AMPLICOR HIV-1 MONITOR version 1.5 (MONITOR v1.5), and Quantiplex HIV-1 RNA version 3.0 (bDNA v3.0) viral load assays was evaluated with 39 viral isolates (3 A, 7 B, 6 C, 4 D, 8 E, 4 F, 1 G, 4 mosaic, and 2 group O). Quantitation across the assay dynamic ranges was assessed using serial fivefold dilutions of the viruses. In addition, sequences of gag-encoded p24 (gag p24), pol-encoded integrase, and env-encoded gp41 were analyzed to assign group and subtype and to assess nucleotide mismatches at primer and probe binding sites. For group M isolates, quantification was highly correlated among all three assays. In contrast, only the LCx HIV assay reliably quantified group O isolates. The bDNA v3.0 assay detected but consistently underquantified group O viruses, whereas the MONITOR v1.5 test failed to detect group O viruses. Analysis of target regions revealed fewer primer or probe mismatches in the LCx HIV assay than in the MONITOR v1.5 test. Consistent with the high level of nucleotide conservation is the ability of the LCx HIV assay to quantify efficiently human immunodeficiency virus type 1 group M and the genetically diverse group O. PMID:11230396

  15. Evaluation of New Quantitative Assays for Diagnosis and Monitoring of Cytomegalovirus Disease in Human Immunodeficiency Virus-Positive Patients

    PubMed Central

    Pellegrin, Isabelle; Garrigue, Isabelle; Binquet, Christine; Chene, Genevieve; Neau, Didier; Bonot, Pascal; Bonnet, Fabrice; Fleury, Herve; Pellegrin, Jean-Luc

    1999-01-01

    Cobas Amplicor CMV Monitor (CMM) and Quantiplex CMV bDNA 2.0 (CMV bDNA 2.0), two new standardized and quantitative assays for the detection of cytomegalovirus (CMV) DNA in plasma and peripheral blood leukocytes (PBLs), respectively, were compared to the CMV viremia assay, pp65 antigenemia assay, and the Amplicor CMV test (P-AMP). The CMV loads were measured in 384 samples from 58 human immunodeficiency virus (HIV) type 1-infected, CMV-seropositive subjects, including 13 with symptomatic CMV disease. The assays were highly concordant (agreement, 0.88 to 0.97) except when the CMV load was low. Quantitative results for plasma and PBLs were significantly correlated (Spearman ρ = 0.92). For PBLs, positive results were obtained 125 days before symptomatic CMV disease by CMV bDNA 2.0 and 124 days by pp65 antigenemia assay, whereas they were obtained 46 days before symptomatic CMV disease by CMM and P-AMP. At the time of CMV disease diagnosis, the sensitivity, specificity, and positive and negative predictive values of CMV bDNA 2.0 were 92.3, 97.8, 92.3, and 97.8%, respectively, whereas they were 92.3, 93.3, 80, and 97.8%, respectively, for the pp65 antigenemia assay; 84.6, 100, 100, and 95.7%, respectively, for CMM; and 76.9, 100, 100, and 93.8%, respectively, for P-AMP. Considering the entire follow-up, the sensitivity, specificity, and positive and negative predictive values of CMV bDNA 2.0 were 92.3, 73.3, 52.1, and 97.1%, respectively, whereas they were 100, 55.5, 39.4, and 100%, respectively, for the pp65 antigenemia assay; 92.3, 86.7, 66.7, and 97.5%, respectively, for CMM; and 84.6, 91.1, 73.3, and 95.3%, respectively, for P-AMP. Detection of CMV in plasma is technically easy and, despite its later positivity (i.e., later than in PBLs), can provide enough information sufficiently early so that HIV-infected patients can be effectively treated. In addition, these standardized quantitative assays accurately monitor the efficacy of anti-CMV treatment. PMID:10488165

  16. A prospective study of a quantitative PCR ELISA assay for the diagnosis of CMV pneumonia in lung and heart-transplant recipients.

    PubMed

    Barber, L; Egan, J J; Lomax, J; Haider, Y; Yonan, N; Woodcock, A A; Turner, A J; Fox, A J

    2000-08-01

    Qualitative polymerase chain reaction (PCR) for the identification of cytomegalovirus (CMV) infection has a low predictive value for the identification of CMV pneumonia. This study prospectively evaluated the application of a quantitative PCR Enzyme-Linked Immuno-Sorbent Assay (ELISA) assay in 9 lung- and 18 heart-transplant recipients who did not receive ganciclovir prophylaxis. DNA was collected from peripheral blood polymorphonuclear leucocytes (PMNL) posttransplantation. Oligonucleotide primers for the glycoprotein B gene (149 bp) were used in a PCR ELISA assay using an internal standard for quantitation. CMV disease was defined as histological evidence of end organ damage. The median level CMV genome equivalents in patients with CMV disease was 2665/2 x 10(5) PMNL (range 1,200 to 61,606) compared to 100 x 10(5) PMNL (range 20 to 855) with infection but no CMV disease (p = 0.036). All patients with CMV disease had genome equivalents levels of >1200/2 x 10(5) PMNL. A cut-off level of 1,200 PMNL had a positive predictive value for CMV disease of 100% and a negative predictive value of 100%. The first detection of levels of CMV genome equivalents above a level of 1200/2 x 10(5) PMNL was at a median of 58 days (range 47 to 147) posttransplant. Quantitative PCR assays for the diagnosis of CMV infection may predict patients at risk of CMV disease and thereby direct preemptive treatment to high-risk patients.

  17. Comparison of two ELISA versions for infliximab serum levels in patients diagnosed with ankylosing spondylitis.

    PubMed

    Hernández-Flórez, Diana; Valor, Lara; de la Torre, Inmaculada; Nieto, Juan Carlos; Martínez-Estupiñán, Lina; González, Carlos; López-Longo, Francisco Javier; Monteagudo, Indalecio; Garrido, Jesús; Naredo, Esperanza; Carreño, Luis

    2015-06-01

    There are various immunosorbent assays which can be used to determine infliximab (IFX) levels. Results vary between assays complicating reliability in everyday clinical practice. The aim of this study was to determine whether quantitative or qualitative assay data prove more accurate in the assessment of infliximab levels in AS patients. We analyzed 40 serum samples, taken prior to infusion, from AS patients who had been undergoing IFX therapy as a first-line of biological treatment for more than a year. IFX levels and IFX-anti-drug antibodies (ADA) were measured using two different ELISA assays [Promonitor IFX R1 and R2 (version 1), Promonitor IFX and anti-IFX (version 2) (Progenika Biopharma, Spain)] strictly following the manufacturer's guidelines. Cohen's unweighted kappa and the intraclass correlation coefficient determined qualitative and quantitative agreement for serum levels in version 1 and version 2. Bland-Altman plots were drawn to compare both assays. The comparison of data measuring IFX levels for version 1 and version 2 resulted in questionable quantitative agreement (ICC 0.659; 95% CI 0.317-0.830) and moderate qualitative agreement (κ 0.607; 95% CI 0.387-0.879) owing to systematically higher values in version 2 than version 1. Version 2 consistently detected higher levels of infliximab, particularly when analyzed in a quantitative context. Further research is needed to synchronize cutoff levels between essays and diseases so therapeutic drug ranges can be established.

  18. Development & validation of a quantitative anti-protective antigen IgG enzyme linked immunosorbent assay for serodiagnosis of cutaneous anthrax.

    PubMed

    Ghosh, N; Gunti, D; Lukka, H; Reddy, B R; Padmaja, Jyothi; Goel, A K

    2015-08-01

    Anthrax caused by Bacillus anthracis is primarily a disease of herbivorous animals, although several mammals are vulnerable to it. ELISA is the most widely accepted serodiagnostic assay for large scale surveillance of cutaneous anthrax. The aims of this study were to develop and evaluate a quantitative ELISA for determination of IgG antibodies against B. anthracis protective antigen (PA) in human cutaneous anthrax cases. Quantitative ELISA was developed using the recombinant PA for coating and standard reference serum AVR801 for quantification. A total of 116 human test and control serum samples were used in the study. The assay was evaluated for its precision, accuracy and linearity. The minimum detection limit and lower limit of quantification of the assay for anti-PA IgG were 3.2 and 4 µg/ml, respectively. The serum samples collected from the anthrax infected patients were found to have anti-PA IgG concentrations of 5.2 to 166.3 µg/ml. The intra-assay precision per cent CV within an assay and within an operator ranged from 0.99 to 7.4 per cent and 1.7 to 3.9 per cent, respectively. The accuracy of the assay was high with a per cent error of 6.5 - 24.1 per cent. The described assay was found to be linear between the range of 4 to 80 ng/ml (R [2] = 0.9982; slope = 0.9186; intercept = 0.1108). The results suggested that the developed assay could be a useful tool for quantification of anti-PA IgG response in human after anthrax infection or vaccination.

  19. Rapid quantification of plant-powdery mildew interactions by qPCR and conidiospore counts.

    PubMed

    Weßling, Ralf; Panstruga, Ralph

    2012-08-31

    The powdery mildew disease represents a valuable patho-system to study the interaction between plant hosts and obligate biotrophic fungal pathogens. Numerous discoveries have been made on the basis of the quantitative evaluation of plant-powdery mildew interactions, especially in the context of hyper-susceptible and/or resistant plant mutants. However, the presently available methods to score the pathogenic success of powdery mildew fungi are laborious and thus not well suited for medium- to high-throughput analysis. Here we present two new protocols that allow the rapid quantitative assessment of powdery mildew disease development. One procedure depends on quantitative polymerase chain reaction (qPCR)-based evaluation of fungal biomass, while the other relies on the quantification of fungal conidiospores. We validated both techniques using the powdery mildew pathogen Golovinomyces orontii on a set of hyper-susceptible and resistant Arabidopsis thaliana mutants and found that both cover a wide dynamic range of one to two (qPCR) and four to five (quantification of conidia) orders of magnitude, respectively. The two approaches yield reproducible results and are easy to perform without specialized equipment. The qPCR and spore count assays rapidly and reproducibly quantify powdery mildew pathogenesis. Our methods are performed at later stages of infection and discern mutant phenotypes accurately. The assays therefore complement currently used procedures of powdery mildew quantification and can overcome some of their limitations. In addition, they can easily be adapted to other plant-powdery mildew patho-systems.

  20. Small molecule antagonists of the urokinase (uPA): urokinase receptor (uPAR) interaction with high reported potencies show only weak effects in cell-based competition assays employing the native uPAR ligand.

    PubMed

    De Souza, Melissa; Matthews, Hayden; Lee, Jodi A; Ranson, Marie; Kelso, Michael J

    2011-04-15

    Binding of the urokinase-type plasminogen activator (uPA) to its cell-surface-bound receptor uPAR and upregulation of the plasminogen activation system (PAS) correlates with increased metastasis and poor prognosis in several tumour types. Disruptors of the uPA:uPAR interaction represent promising anti-tumour/metastasis agents and several approaches have been explored for this purpose, including the use of small molecule antagonists. Two highly potent non-peptidic antagonists 1 and 2 (IC(50)1=0.8 nM, IC(50)2=33 nM) from the patent literature were reportedly identified using competition assays employing radiolabelled uPAR-binding uPA fragments and appeared as useful pharmacological tools for studying the PAS. Before proceeding to such studies, confirmation was sought that 1 and 2 retained their potencies in physiologically relevant cell-based competition assays employing uPAR's native binding partner high molecular weight uPA (HMW-uPA). This study describes a new solution phase synthesis of 1, a mixed solid/solution phase synthesis of 2 and reports the activities of 1 and 2 in semi-quantitative competition flow cytometry assays and quantitative cell-based uPA activity assays that employed HMW-uPA as the competing ligand. The flow cytometry experiments revealed that high concentrations of 2 (10-100 μM) are required to compete with HMW-uPA for uPAR binding and that 1 shows no antagonist effects at 100 μM. The cell-based enzyme activity assays similarly revealed that 1 and 2 are poor inhibitors of cell surface-bound HMW-uPA activity (IC(50) >100 μM for 1 and 2). The report highlights the dangers of identifying false-positive lead uPAR antagonists from competition assays employing labelled competing ligands other than the native HMW-uPA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Leukotriene B4 catabolism: quantitation of leukotriene B4 and its omega-oxidation products by reversed-phase high-performance liquid chromatography.

    PubMed

    Shak, S

    1987-01-01

    LTB4 and its omega-oxidation products may be rapidly, sensitively, and specifically quantitated by the methods of solid-phase extraction and reversed-phase high-performance liquid chromatography (HPLC), which are described in this chapter. Although other techniques, such as radioimmunoassay or gas chromatography-mass spectrometry, may be utilized for quantitative analysis of the lipoxygenase products of arachidonic acid, only the technique of reversed-phase HPLC can quantitate as many as 10 metabolites in a single analysis, without prior derivatization. In this chapter, we also reviewed the chromatographic theory which we utilized in order to optimize reversed-phase HPLC analysis of LTB4 and its omega-oxidation products. With this information and a gradient HPLC system, it is possible for any investigator to develop a powerful assay for the potent inflammatory mediator, LTB4, or for any other lipoxygenase product of arachidonic acid.

  2. The rapid quantitation of the filamentous blue-green alga plectonema boryanum by the luciferase assay for ATP

    NASA Technical Reports Server (NTRS)

    Bush, V. N.

    1974-01-01

    Plectonema boryanum is a filamentous blue green alga. Blue green algae have a procaryotic cellular organization similar to bacteria, but are usually obligate photoautotrophs, obtaining their carbon and energy from photosynthetic mechanism similar to higher plants. This research deals with a comparison of three methods of quantitating filamentous populations: microscopic cell counts, the luciferase assay for ATP and optical density measurements.

  3. Effects of Holding Time, Storage, and the Preservation of Samples on Sample Integrity for the Detection of Fecal Indicator Bacteria by Quantitative Polymerase Chain Reaction (qPCR)-based assays.

    EPA Science Inventory

    The purpose of this project was to answer questions related to storage of samples to be analyzed by the quantitative polymerase chain reaction (qPCR)-based assays for fecal indicator bacteria. The project was divided into two parts. The first part was to determine if filters th...

  4. Hypersensitive Detection and Quantitation of BoNT/A by IgY Antibody against Substrate Linear-Peptide

    PubMed Central

    Li, Tao; Liu, Hao; Cai, Kun; Tian, Maoren; Wang, Qin; Shi, Jing; Gao, Xiang; Wang, Hui

    2013-01-01

    Botulinum neurotoxin A (BoNT/A), the most acutely poisonous substance to humans known, cleave its SNAP-25 substrate with high specificity. Based on the endopeptidase activity, different methods have been developed to detect BoNT/A, but most lack ideal reproducibility or sensitivity, or suffer from long-term or unwanted interferences. In this study, we developed a simple method to detect and quantitate trace amounts of botulinum neurotoxin A using the IgY antibody against a linear-peptide substrate. The effects of reaction buffer, time, and temperature were analyzed and optimized. When the optimized assay was used to detect BoNT/A, the limit of detection of the assay was 0.01 mouse LD50 (0.04 pg), and the limit of quantitation was 0.12 mouse LD50/ml (0.48 pg). The findings also showed favorable specificity of detecting BoNT/A. When used to detect BoNT/A in milk or human serum, the proposed assay exhibited good quantitative accuracy (88% < recovery < 111%; inter- and intra-assay CVs < 18%). This method of detection took less than 3 h to complete, indicating that it can be a valuable method of detecting BoNT/A in food or clinical diagnosis. PMID:23555605

  5. Hypersensitive detection and quantitation of BoNT/A by IgY antibody against substrate linear-peptide.

    PubMed

    Li, Tao; Liu, Hao; Cai, Kun; Tian, Maoren; Wang, Qin; Shi, Jing; Gao, Xiang; Wang, Hui

    2013-01-01

    Botulinum neurotoxin A (BoNT/A), the most acutely poisonous substance to humans known, cleave its SNAP-25 substrate with high specificity. Based on the endopeptidase activity, different methods have been developed to detect BoNT/A, but most lack ideal reproducibility or sensitivity, or suffer from long-term or unwanted interferences. In this study, we developed a simple method to detect and quantitate trace amounts of botulinum neurotoxin A using the IgY antibody against a linear-peptide substrate. The effects of reaction buffer, time, and temperature were analyzed and optimized. When the optimized assay was used to detect BoNT/A, the limit of detection of the assay was 0.01 mouse LD50 (0.04 pg), and the limit of quantitation was 0.12 mouse LD50/ml (0.48 pg). The findings also showed favorable specificity of detecting BoNT/A. When used to detect BoNT/A in milk or human serum, the proposed assay exhibited good quantitative accuracy (88% < recovery < 111%; inter- and intra-assay CVs < 18%). This method of detection took less than 3 h to complete, indicating that it can be a valuable method of detecting BoNT/A in food or clinical diagnosis.

  6. Quantification of systemic and local immune responses to individual rotavirus proteins during rotavirus infection in mice.

    PubMed Central

    Ishida, S; Feng, N; Tang, B; Gilbert, J M; Greenberg, H B

    1996-01-01

    The purpose of the present study was to develop a quantitative assay that could be used to measure the local and systemic immune responses to specific rotavirus proteins following rotavirus infection of adult mice. To measure these responses, we used an immunocytochemical staining assay of Spodoptera frugiperda (Sf-9) cells which were infected with recombinant baculovirus expressing selected rotavirus proteins. The specificity of the assay was documented by using a series of monoclonal antibodies to individual rotavirus proteins. We observed that the assay had high levels of sensitivity and specificity for a series of VP7- and VP4-specific neutralizing monoclonal antibodies which recognized conformation-dependent epitopes on their target proteins. We also studied immunoglobulin G (IgG) immune responses in serum and IgA immune responses in the stools of mice infected with wild-type murine rotavirus strain EHPw. In both sera and stools, the most immunogenic proteins were VP6 and VP4. VP2 was less immunogenic than VP6 or VP4, and the immune responses to VP7, NSP2, and NSP4 were very low in serum and undetectable in stools. PMID:8784572

  7. Quantitatively and Kinetically Identifying Binding Motifs of Amelogenin Proteins to Mineral Crystals Through Biochemical and Spectroscopic Assays

    PubMed Central

    Zhu, Li; Hwang, Peter; Witkowska, H. Ewa; Liu, Haichuan; Li, Wu

    2014-01-01

    Tooth enamel is the hardest tissue in vertebrate animals. Consisting of millions of carbonated hydroxyapatite crystals, this highly mineralized tissue develops from a protein matrix in which amelogenin is the predominant component. The enamel matrix proteins are eventually and completely degraded and removed by proteinases to form mineral-enriched tooth enamel. Identification of the apatite-binding motifs in amelogenin is critical for understanding the amelogenin–crystal interactions and amelogenin–proteinases interactions during tooth enamel biomineralization. A stepwise strategy is introduced to kinetically and quantitatively identify the crystal-binding motifs in amelogenin, including a peptide screening assay, a competitive adsorption assay, and a kinetic-binding assay using amelogenin and gene-engineered amelogenin mutants. A modified enzyme-linked immunosorbent assay on crystal surfaces is also applied to compare binding amounts of amelogenin and its mutants on different planes of apatite crystals. We describe the detailed protocols for these assays and provide the considerations for these experiments in this chapter. PMID:24188774

  8. International ring trial for the validation of an event-specific Golden Rice 2 quantitative real-time polymerase chain reaction method.

    PubMed

    Jacchia, Sara; Nardini, Elena; Bassani, Niccolò; Savini, Christian; Shim, Jung-Hyun; Trijatmiko, Kurniawan; Kreysa, Joachim; Mazzara, Marco

    2015-05-27

    This article describes the international validation of the quantitative real-time polymerase chain reaction (PCR) detection method for Golden Rice 2. The method consists of a taxon-specific assay amplifying a fragment of rice Phospholipase D α2 gene, and an event-specific assay designed on the 3' junction between transgenic insert and plant DNA. We validated the two assays independently, with absolute quantification, and in combination, with relative quantification, on DNA samples prepared in haploid genome equivalents. We assessed trueness, precision, efficiency, and linearity of the two assays, and the results demonstrate that both the assays independently assessed and the entire method fulfill European and international requirements for methods for genetically modified organism (GMO) testing, within the dynamic range tested. The homogeneity of the results of the collaborative trial between Europe and Asia is a good indicator of the robustness of the method.

  9. Sensitive Detection of Francisella tularensis Directly from Whole Blood by Use of the GeneXpert System.

    PubMed

    Banada, Padmapriya P; Deshpande, Srinidhi; Chakravorty, Soumitesh; Russo, Riccardo; Occi, James; Meister, Gabriel; Jones, Kelly J; Gelhaus, Carl H; Valderas, Michelle W; Jones, Martin; Connell, Nancy; Alland, David

    2017-01-01

    Francisella tularensis is a potential bioterrorism agent that is highly infectious at very low doses. Diagnosis of tularemia by blood culture and nucleic acid-based diagnostic tests is insufficiently sensitive. Here, we demonstrate a highly sensitive F. tularensis assay that incorporates sample processing and detection into a single cartridge suitable for point-of-care detection. The assay limit of detection (LOD) and dynamic range were determined in a filter-based cartridge run on the GeneXpert system. F. tularensis DNA in buffer or CFU of F. tularensis was spiked into human or macaque blood. To simulate detection in human disease, the assay was tested on blood drawn from macaques infected with F. tularensis Schu S4 at daily intervals. Assay detection was compared to that with a conventional quantitative PCR (qPCR) assay and blood culture. The assay LOD was 0.1 genome equivalents (GE) per reaction and 10 CFU/ml F. tularensis in both human and macaque blood. In infected macaques, the assay detected F. tularensis on days 1 to 4 postinfection in 21%, 17%, 60%, and 83% of macaques, respectively, compared to conventional qPCR positivity rates of 0%, 0%, 30%, and 100% and CFU detection of blood culture at 0%, 0%, 0%, and 10% positive, respectively. Assay specificity was 100%. The new cartridge-based assay can rapidly detect F. tularensis in bloodstream infections directly in whole blood at the early stages of infection with a sensitivity that is superior to that of other methods. The simplicity of the automated testing procedures may make this test suitable for rapid point-of-care detection. Copyright © 2016 American Society for Microbiology.

  10. A rapid fluorescence assay for danofloxacin in beef muscle: effect of muscle type on limit of quantitation.

    PubMed

    Schneider, Marilyn J

    2008-08-01

    A simple, rapid fluorescence screening assay was applied to the analysis of beef muscle for danofloxacin at the U.S. tolerance level of 200 ng/g. Muscle samples were homogenized in acetic acid-acetonitrile, the resultant mixture centrifuged, and fluorescence of the supernatants was then measured. The significant difference between the fluorescence of control muscle sample extracts and extracts of samples fortified at 200 ng/g allowed for successful discrimination between the samples. Setting a threshold level at the average 200 ng/g fortified sample extract fluorescence -3sigma allowed for identification of potentially violative samples. Successful analysis of a group of blind fortified samples over a range of concentrations was accomplished in this manner, without any false-negative results. The limits of quantitation for danofloxacin, as well as enrofloxacin, using this assay were determined in three types of beef muscle (hanging tenderloin, neck, and eye round steak), as well as in serum. Significant differences in limits of quantitation were found among the three different muscle types examined, with hanging tenderloin muscle providing the lowest value. This work not only shows the potential for use of the fluorescence screening assay as an alternative to currently used microbial or antibody-based assays for the analysis of danofloxacin in beef muscle, but also suggests that assays using beef muscle may vary in performance depending on the specific muscle selected for analysis.

  11. Highly sensitive bacterial susceptibility test against penicillin using parylene-matrix chip.

    PubMed

    Park, Jong-Min; Kim, Jo-Il; Song, Hyun-Woo; Noh, Joo-Yoon; Kang, Min-Jung; Pyun, Jae-Chul

    2015-09-15

    This work presented a highly sensitive bacterial antibiotic susceptibility test through β-lactamase assay using Parylene-matrix chip. β-lactamases (EC 3.5.2.6) are an important family of enzymes that confer resistance to β-lactam antibiotics by catalyzing the hydrolysis of these antibiotics. Here we present a highly sensitive assay to quantitate β-lactamase-mediated hydrolysis of penicillin into penicilloic acid. Typically, MALDI-TOF mass spectrometry has been used to quantitate low molecular weight analytes and to discriminate them from noise peaks of matrix fragments that occur at low m/z ratios (m/z<500). The β-lactamase assay for the Escherichia coli antibiotic susceptibility test was carried out using Parylene-matrix chip and MALDI-TOF mass spectrometry. The Parylene-matrix chip was successfully used to quantitate penicillin (m/z: [PEN+H](+)=335.1 and [PEN+Na](+)=357.8) and penicilloic acid (m/z: [PA+H](+)=353.1) in a β-lactamase assay with minimal interference of low molecular weight noise peaks. The β-lactamase assay was carried out with an antibiotic-resistant E. coli strain and an antibiotic-susceptible E. coli strain, revealing that the minimum number of E. coli cells required to screen for antibiotic resistance was 1000 cells for the MALDI-TOF mass spectrometry/Parylene-matrix chip assay. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Simultaneous quantitative analysis of main components in linderae reflexae radix with one single marker.

    PubMed

    Wang, Li-Li; Zhang, Yun-Bin; Sun, Xiao-Ya; Chen, Sui-Qing

    2016-05-08

    Establish a quantitative analysis of multi-components by the single marker (QAMS) method for quality evaluation and validate its feasibilities by the simultaneous quantitative assay of four main components in Linderae Reflexae Radix. Four main components of pinostrobin, pinosylvin, pinocembrin, and 3,5-dihydroxy-2-(1- p -mentheneyl)- trans -stilbene were selected as analytes to evaluate the quality by RP-HPLC coupled with a UV-detector. The method was evaluated by a comparison of the quantitative results between the external standard method and QAMS with a different HPLC system. The results showed that no significant differences were found in the quantitative results of the four contents of Linderae Reflexae Radix determined by the external standard method and QAMS (RSD <3%). The contents of four analytes (pinosylvin, pinocembrin, pinostrobin, and Reflexanbene I) in Linderae Reflexae Radix were determined by the single marker of pinosylvin. This fingerprint was the spectra determined by Shimadzu LC-20AT and Waters e2695 HPLC that were equipped with three different columns.

  13. Proteomics: from hypothesis to quantitative assay on a single platform. Guidelines for developing MRM assays using ion trap mass spectrometers.

    PubMed

    Han, Bomie; Higgs, Richard E

    2008-09-01

    High-throughput HPLC-mass spectrometry (HPLC-MS) is routinely used to profile biological samples for potential protein markers of disease, drug efficacy and toxicity. The discovery technology has advanced to the point where translating hypotheses from proteomic profiling studies into clinical use is the bottleneck to realizing the full potential of these approaches. The first step in this translation is the development and analytical validation of a higher throughput assay with improved sensitivity and selectivity relative to typical profiling assays. Multiple reaction monitoring (MRM) assays are an attractive approach for this stage of biomarker development given their improved sensitivity and specificity, the speed at which the assays can be developed and the quantitative nature of the assay. While the profiling assays are performed with ion trap mass spectrometers, MRM assays are traditionally developed in quadrupole-based mass spectrometers. Development of MRM assays from the same instrument used in the profiling analysis enables a seamless and rapid transition from hypothesis generation to validation. This report provides guidelines for rapidly developing an MRM assay using the same mass spectrometry platform used for profiling experiments (typically ion traps) and reviews methodological and analytical validation considerations. The analytical validation guidelines presented are drawn from existing practices on immunological assays and are applicable to any mass spectrometry platform technology.

  14. Histone deacetylase inhibitors suppress ABO transcription in vitro, leading to reduced expression of the antigens.

    PubMed

    Takahashi, Yoichiro; Kubo, Rieko; Sano, Rie; Nakajima, Tamiko; Takahashi, Keiko; Kobayashi, Momoko; Handa, Hiroshi; Tsukada, Junichi; Kominato, Yoshihiko

    2017-03-01

    The ABO system is of fundamental importance in the fields of transfusion and transplantation and has apparent associations with certain diseases, including cardiovascular disorders. ABO expression is reduced in the late phase of erythroid differentiation in vitro, whereas histone deacetylase inhibitors (HDACIs) are known to promote cell differentiation. Therefore, whether or not HDACIs could reduce the amount of ABO transcripts and A or B antigens is an intriguing issue. Quantitative polymerase chain reactions were carried out for the ABO transcripts in erythroid-lineage K562 and epithelial-lineage KATOIII cells after incubation with HDACIs, such as sodium butyrate, panobinostat, vorinostat, and sodium valproate. Flow cytometric analysis was conducted to evaluate the amounts of antigen in KATOIII cells treated with panobinostat. Quantitative chromatin immunoprecipitation (ChIP) assays and luciferase assays were performed on both cell types to examine the mechanisms of ABO suppression. HDACIs reduced the ABO transcripts in both K562 and KATOIII cells, with panobinostat exerting the most significant effect. Flow cytometric analysis demonstrated a decrease in B-antigen expression on panobinostat-treated KATOIII cells. ChIP assays indicated that panobinostat altered the modification of histones in the transcriptional regulatory regions of ABO, and luciferase assays demonstrated reduced activity of these elements. ABO transcription seems to be regulated by an epigenetic mechanism. Panobinostat appears to suppress ABO transcription, reducing the amount of antigens on the surface of cultured cells. © 2016 AABB.

  15. Screening and prevention of neonatal glucose 6-phosphate dehydrogenase deficiency in Guangzhou, China.

    PubMed

    Jiang, J; Li, B; Cao, W; Jiang, X; Jia, X; Chen, Q; Wu, J

    2014-06-09

    We aimed to summarize the results of screening protocol and prevention of neonatal glucose 6-phosphate dehydrogenase (G6PD) deficiency during a 22-year-long period to provide a basis of reference for the screening of this disease. About 1,705,569 newborn subjects in Guangzhou City were screened for this deficiency. Specimens were collected according to the conventional method of specimen acquisition for "newborn dried bloodspot screening", preserved, and inspected. The specimens were studied with fluorescent spot test and quantitative fluorescence assay. Diagnosis was performed using the modified NBTG6PD/6PGD ratio method. Bloodspot filter paper specimens were sent to the laboratory within 24 h via EMS Express, and the G6PD test was performed on the same day. The G6PD deficiency-positive rate was 4.2% in the samples screened using the fluorescent spot test, while it was 5% in case of the quantitative fluorescence assay. Neonatal screening for G6PD deficiency for 11,437 cases (6117 boys and 5320 girls) showed positive results in 481 cases. About 420 cases (318 boys and 102 girls) of G6PD deficiency were confirmed with the modified Duchenne NBT ratio method. The total detection rate was 3.7:5.2% for boys and 1.9% for girls. Quantitative fluorescence assay improved the sensitivity and detection rate. Accelerating the speed of sample delivery by using Internet network systems and ensuring online availability of screening results can aid the screening and diagnosis of this deficiency within 1 week of birth.

  16. Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate.

    PubMed

    Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine

    2016-01-01

    Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans , and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations.

  17. Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate

    PubMed Central

    Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine

    2016-01-01

    Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans, and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations. PMID:28066365

  18. A highly sensitive quantitative cytosensor technique for the identification of receptor ligands in tissue extracts.

    PubMed

    Lenkei, Z; Beaudet, A; Chartrel, N; De Mota, N; Irinopoulou, T; Braun, B; Vaudry, H; Llorens-Cortes, C

    2000-11-01

    Because G-protein-coupled receptors (GPCRs) constitute excellent putative therapeutic targets, functional characterization of orphan GPCRs through identification of their endogenous ligands has great potential for drug discovery. We propose here a novel single cell-based assay for identification of these ligands. This assay involves (a) fluorescent tagging of the GPCR, (b) expression of the tagged receptor in a heterologous expression system, (c) incubation of the transfected cells with fractions purified from tissue extracts, and (d) imaging of ligand-induced receptor internalization by confocal microscopy coupled to digital image quantification. We tested this approach in CHO cells stably expressing the NT1 neurotensin receptor fused to EGFP (enhanced green fluorescent protein), in which neurotensin promoted internalization of the NT1-EGFP receptor in a dose-dependent fashion (EC(50) = 0.98 nM). Similarly, four of 120 consecutive reversed-phase HPLC fractions of frog brain extracts promoted internalization of the NT1-EGFP receptor. The same four fractions selectively contained neurotensin, an endogenous ligand of the NT1 receptor, as detected by radioimmunoassay and inositol phosphate production. The present internalization assay provides a highly specific quantitative cytosensor technique with sensitivity in the nanomolar range that should prove useful for the identification of putative natural and synthetic ligands for GPCRs.

  19. Evaluation of the clinical sensitivity for the quantification of human immunodeficiency virus type 1 RNA in plasma: Comparison of the new COBAS TaqMan HIV-1 with three current HIV-RNA assays--LCx HIV RNA quantitative, VERSANT HIV-1 RNA 3.0 (bDNA) and COBAS AMPLICOR HIV-1 Monitor v1.5.

    PubMed

    Katsoulidou, Antigoni; Petrodaskalaki, Maria; Sypsa, Vana; Papachristou, Eleni; Anastassopoulou, Cleo G; Gargalianos, Panagiotis; Karafoulidou, Anastasia; Lazanas, Marios; Kordossis, Theodoros; Andoniadou, Anastasia; Hatzakis, Angelos

    2006-02-01

    The COBAS TaqMan HIV-1 test (Roche Diagnostics) was compared with the LCx HIV RNA quantitative assay (Abbott Laboratories), the Versant HIV-1 RNA 3.0 (bDNA) assay (Bayer) and the COBAS Amplicor HIV-1 Monitor v1.5 test (Roche Diagnostics), using plasma samples of various viral load levels from HIV-1-infected individuals. In the comparison of TaqMan with LCx, TaqMan identified as positive 77.5% of the 240 samples versus 72.1% identified by LCx assay, while their overall agreement was 94.6% and the quantitative results of samples that were positive by both methods were strongly correlated (r=0.91). Similarly, in the comparison of TaqMan with bDNA 3.0, both methods identified 76.3% of the 177 samples as positive, while their overall agreement was 95.5% and the quantitative results of samples that were positive by both methods were strongly correlated (r=0.95). Finally, in the comparison of TaqMan with Monitor v1.5, TaqMan identified 79.5% of the 156 samples as positive versus 80.1% identified by Monitor v1.5, while their overall agreement was 95.5% and the quantitative results of samples that were positive by both methods were strongly correlated (r=0.96). In conclusion, the new COBAS TaqMan HIV-1 test showed excellent agreement with other widely used commercially available tests for the quantitation of HIV-1 viral load.

  20. The agar diffusion scratch assay - A novel method to assess the bioactive and cytotoxic potential of new materials and compounds

    PubMed Central

    Pusnik, Mascha; Imeri, Minire; Deppierraz, Grégoire; Bruinink, Arie; Zinn, Manfred

    2016-01-01

    A profound in vitro evaluation not only of the cytotoxic but also of bioactive potential of a given compound or material is crucial for predicting potential effects in the in vivo situation. However, most of the current methods have weaknesses in either the quantitative or qualitative assessment of cytotoxicity and/or bioactivity of the test compound. Here we describe a novel assay combining the ISO 10993-5 agar diffusion test and the scratch also termed wound healing assay. In contrast to these original tests this assay is able to detect and distinguish between cytotoxic, cell migration modifying and cytotoxic plus cell migration modifying compounds, and this at higher sensitivity and in a quantitative way. PMID:26861591

  1. A scalable double-barcode sequencing platform for characterization of dynamic protein-protein interactions.

    PubMed

    Schlecht, Ulrich; Liu, Zhimin; Blundell, Jamie R; St Onge, Robert P; Levy, Sasha F

    2017-05-25

    Several large-scale efforts have systematically catalogued protein-protein interactions (PPIs) of a cell in a single environment. However, little is known about how the protein interactome changes across environmental perturbations. Current technologies, which assay one PPI at a time, are too low throughput to make it practical to study protein interactome dynamics. Here, we develop a highly parallel protein-protein interaction sequencing (PPiSeq) platform that uses a novel double barcoding system in conjunction with the dihydrofolate reductase protein-fragment complementation assay in Saccharomyces cerevisiae. PPiSeq detects PPIs at a rate that is on par with current assays and, in contrast with current methods, quantitatively scores PPIs with enough accuracy and sensitivity to detect changes across environments. Both PPI scoring and the bulk of strain construction can be performed with cell pools, making the assay scalable and easily reproduced across environments. PPiSeq is therefore a powerful new tool for large-scale investigations of dynamic PPIs.

  2. Qualitative and Quantitative Assays of Transposition and Homologous Recombination of the Retrotransposon Tf1 in Schizosaccharomyces pombe.

    PubMed

    Sangesland, Maya; Atwood-Moore, Angela; Rai, Sudhir K; Levin, Henry L

    2016-01-01

    Transposition and homologous recombination assays are valuable genetic tools to measure the production and integration of cDNA from the long terminal repeat (LTR) retrotransposon Tf1 in the fission yeast (Schizosaccharomyces pombe). Here we describe two genetic assays, one that measures the transposition activity of Tf1 by monitoring the mobility of a drug resistance marked Tf1 element expressed from a multi-copy plasmid and another assay that measures homologous recombination between Tf1 cDNA and the expression plasmid. While the transposition assay measures insertion of full-length Tf1 cDNA mediated by the transposon integrase, the homologous recombination assay measures levels of cDNA present in the nucleus and is independent of integrase activity. Combined, these assays can be used to systematically screen large collections of strains to identify mutations that specifically inhibit the integration step in the retroelement life cycle. Such mutations can be identified because they reduce transposition activity but nevertheless have wild-type frequencies of homologous recombination. Qualitative assays of yeast patches on agar plates detect large defects in integration and recombination, while the quantitative approach provides a precise method of determining integration and recombination frequencies.

  3. Real-time isothermal RNA amplification of toxic marine microalgae using preserved reagents on an integrated microfluidic platform.

    PubMed

    Tsaloglou, Maria-Nefeli; Laouenan, Florian; Loukas, Christos-Moritz; Monsalve, Lisandro Gabriel; Thanner, Christine; Morgan, Hywel; Ruano-López, Jesus M; Mowlem, Matthew C

    2013-01-21

    Quantitation of specific RNA sequences is a useful technique in marine biology that can elucidate cell abundance, speciation and viability, especially for early detection of harmful algal blooms. We are thus developing an integrated microfluidic system for cell concentration and lysis, RNA extraction/purification and quantitative RNA detection for environmental applications. The portable system is based on a microfluidic cartridge, or "lab-card", using a low-cost injection moulded device, with a laminated lid. Here we present real-time isothermal RNA amplification using reagent master-mixes preserved on-chip in a gel at 4 °C for up to eight months. We demonstrate quantitation by reference to an internal control in a competitive assay with 500 cell equivalents of the toxic microalga Karenia brevis. Annealing of primers, amplification at 41 °C and real-time fluorescence detection of the internal control and target using sequence-specific molecular beacons were all performed on-chip.

  4. Using multiple PCR and CE with chemiluminescence detection for simultaneous qualitative and quantitative analysis of genetically modified organism.

    PubMed

    Guo, Longhua; Qiu, Bin; Chi, Yuwu; Chen, Guonan

    2008-09-01

    In this paper, an ultrasensitive CE-CL detection system coupled with a novel double-on-column coaxial flow detection interface was developed for the detection of PCR products. A reliable procedure based on this system had been demonstrated for qualitative and quantitative analysis of genetically modified organism-the detection of Roundup Ready Soy (RRS) samples was presented as an example. The promoter, terminator, function and two reference genes of RRS were amplified with multiplex PCR simultaneously. After that, the multiplex PCR products were labeled with acridinium ester at the 5'-terminal through an amino modification and then analyzed by the proposed CE-CL system. Reproducibility of analysis times and peak heights for the CE-CL analysis were determined to be better than 0.91 and 3.07% (RSD, n=15), respectively, for three consecutive days. It was shown that this method could accurately and qualitatively detect RRS standards and the simulative samples. The evaluation in terms of quantitative analysis of RRS provided by this new method was confirmed by comparing our assay results with those of the standard real-time quantitative PCR (RT-QPCR) using SYBR Green I dyes. The results showed a good coherence between the two methods. This approach demonstrated the possibility for accurate qualitative and quantitative detection of GM plants in a single run.

  5. Evaluation of Various Campylobacter-Specific Quantitative PCR (qPCR) Assays for Detection and Enumeration of Campylobacteraceae in Irrigation Water and Wastewater via a Miniaturized Most-Probable-Number–qPCR Assay

    PubMed Central

    Banting, Graham S.; Braithwaite, Shannon; Scott, Candis; Kim, Jinyong; Jeon, Byeonghwa; Ashbolt, Nicholas; Ruecker, Norma; Tymensen, Lisa; Charest, Jollin; Pintar, Katarina; Checkley, Sylvia

    2016-01-01

    ABSTRACT Campylobacter spp. are the leading cause of bacterial gastroenteritis worldwide, and water is increasingly seen as a risk factor in transmission. Here we describe a most-probable-number (MPN)–quantitative PCR (qPCR) assay in which water samples are centrifuged and aliquoted into microtiter plates and the bacteria are enumerated by qPCR. We observed that commonly used Campylobacter molecular assays produced vastly different detection rates. In irrigation water samples, detection rates varied depending upon the PCR assay and culture method used, as follows: 0% by the de Boer Lv1-16S qPCR assay, 2.5% by the Van Dyke 16S and Jensen glyA qPCR assays, and 75% by the Linton 16S endpoint PCR when cultured at 37°C. Primer/probe specificity was the major confounder, with Arcobacter spp. routinely yielding false-positive results. The primers and PCR conditions described by Van Dyke et al. (M. I. Van Dyke, V. K. Morton, N. L. McLellan, and P. M. Huck, J Appl Microbiol 109:1053–1066, 2010, http://dx.doi.org/10.1111/j.1365-2672.2010.04730.x) proved to be the most sensitive and specific for Campylobacter detection in water. Campylobacter occurrence in irrigation water was found to be very low (<2 MPN/300 ml) when this Campylobacter-specific qPCR was used, with the most commonly detected species being C. jejuni, C. coli, and C. lari. Campylobacters in raw sewage were present at ∼102/100 ml, with incubation at 42°C required for reducing microbial growth competition from arcobacters. Overall, when Campylobacter prevalence and/or concentration in water is reported using molecular methods, considerable validation is recommended when adapting methods largely developed for clinical applications. Furthermore, combining MPN methods with molecular biology-based detection algorithms allows for the detection and quantification of Campylobacter spp. in environmental samples and is potentially suited to quantitative microbial risk assessment for improved public health disease prevention related to food and water exposures. IMPORTANCE The results of this study demonstrate the importance of assay validation upon data interpretation of environmental monitoring for Campylobacter when using molecular biology-based assays. Previous studies describing Campylobacter prevalence in Canada utilized primers that we have determined to be nonspecific due to their cross-amplification of Arcobacter spp. As such, Campylobacter prevalence may have been vastly overestimated in other studies. Additionally, the development of a quantitative assay described in this study will allow accurate determination of Campylobacter concentrations in environmental water samples, allowing more informed decisions to be made about water usage based on quantitative microbial risk assessment. PMID:27235434

  6. Simple & Safe Genomic DNA Isolation.

    ERIC Educational Resources Information Center

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A procedure for purifying DNA using either bacteria or rat liver is presented. Directions for doing a qualitative DNA assay using diphenylamine and a quantitative DNA assay using spectroscopy are included. (KR)

  7. A quantitative assay measuring the function of lipase maturation factor 1

    PubMed Central

    Yin, Fen; Doolittle, Mark H.; Péterfy, Miklós

    2009-01-01

    Newly synthesized lipoprotein lipase (LPL) and related members of the lipase gene family require an endoplasmic reticulum maturation factor for attainment of enzyme activity. This factor has been identified as lipase maturation factor 1 (Lmf1), and mutations affecting its function and/or expression result in combined lipase deficiency (cld) and hypertriglyceridemia. To assess the functional impact of Lmf1 sequence variations, both naturally occurring and induced, we report the development of a cell-based assay using LPL activity as a quantitative reporter of Lmf1 function. The assay uses a cell line homozygous for the cld mutation, which renders endogenous Lmf1 nonfunctional. LPL transfected into the mutant cld cell line fails to attain activity; however, cotransfection of LPL with wild-type Lmf1 restores its ability to support normal lipase maturation. In this report, we describe optimized conditions that ensure the detection of a complete range of Lmf1 function (full, partial, or complete loss of function) using LPL activity as the quantitative reporter. To illustrate the dynamic range of the assay, we tested several novel mutations in mouse Lmf1. Our results demonstrate the ability of the assay to detect and analyze Lmf1 mutations having a wide range of effects on Lmf1 function and protein expression. PMID:19471043

  8. Label-Free, LC-MS-Based Assays to Quantitate Small-Molecule Antagonist Binding to the Mammalian BLT1 Receptor.

    PubMed

    Chen, Xun; Stout, Steven; Mueller, Uwe; Boykow, George; Visconti, Richard; Siliphaivanh, Phieng; Spencer, Kerrie; Presland, Jeremy; Kavana, Michael; Basso, Andrea D; McLaren, David G; Myers, Robert W

    2017-08-01

    We have developed and validated label-free, liquid chromatography-mass spectrometry (LC-MS)-based equilibrium direct and competition binding assays to quantitate small-molecule antagonist binding to recombinant human and mouse BLT1 receptors expressed in HEK 293 cell membranes. Procedurally, these binding assays involve (1) equilibration of the BLT1 receptor and probe ligand, with or without a competitor; (2) vacuum filtration through cationic glass fiber filters to separate receptor-bound from free probe ligand; and (3) LC-MS analysis in selected reaction monitoring mode for bound probe ligand quantitation. Two novel, optimized probe ligands, compounds 1 and 2, were identified by screening 20 unlabeled BLT1 antagonists for direct binding. Saturation direct binding studies confirmed the high affinity, and dissociation studies established the rapid binding kinetics of probe ligands 1 and 2. Competition binding assays were established using both probe ligands, and the affinities of structurally diverse BLT1 antagonists were measured. Both binding assay formats can be executed with high specificity and sensitivity and moderate throughput (96-well plate format) using these approaches. This highly versatile, label-free method for studying ligand binding to membrane-associated receptors should find broad application as an alternative to traditional methods using labeled ligands.

  9. Etiologic Diagnosis of Lower Respiratory Tract Bacterial Infections Using Sputum Samples and Quantitative Loop-Mediated Isothermal Amplification

    PubMed Central

    Peng, Peichao; Cheng, Xiaoxing; Wang, Guoqing; Qian, Minping; Gao, Huafang; Han, Bei; Chen, Yusheng; Hu, Yinghui; Geng, Rong; Hu, Chengping; Zhang, Wei; Yang, Jingping; Wan, Huanying; Yu, Qin; Wei, Liping; Li, Jiashu; Tian, Guizhen; Wang, Qiuyue; Hu, Ke; Wang, Siqin; Wang, Ruiqin; Du, Juan; He, Bei; Ma, Jianjun; Zhong, Xiaoning; Mu, Lan; Cai, Shaoxi; Zhu, Xiangdong; Xing, Wanli; Yu, Jun; Deng, Minghua; Gao, Zhancheng

    2012-01-01

    Etiologic diagnoses of lower respiratory tract infections (LRTI) have been relying primarily on bacterial cultures that often fail to return useful results in time. Although DNA-based assays are more sensitive than bacterial cultures in detecting pathogens, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. Here we report a nationwide cohort study on 2986 suspected LRTI patients across P. R. China. We compared the performance of a DNA-based assay qLAMP (quantitative Loop-mediated isothermal AMPlification) with that of standard bacterial cultures in detecting a panel of eight common respiratory bacterial pathogens from sputum samples. Our qLAMP assay detects the panel of pathogens in 1047(69.28%) patients from 1533 qualified patients at the end. We found that the bacterial titer quantified based on qLAMP is a predictor of probability that the bacterium in the sample can be detected in culture assay. The relatedness of the two assays fits a logistic regression curve. We used a piecewise linear function to define breakpoints where latent pathogen abruptly change its competitive relationship with others in the panel. These breakpoints, where pathogens start to propagate abnormally, are used as cutoffs to eliminate the influence of contaminations from normal flora. With help of the cutoffs derived from statistical analysis, we are able to identify causative pathogens in 750 (48.92%) patients from qualified patients. In conclusion, qLAMP is a reliable method in quantifying bacterial titer. Despite the fact that there are always latent bacteria contaminated in sputum samples, we can identify causative pathogens based on cutoffs derived from statistical analysis of competitive relationship. Trial Registration ClinicalTrials.gov NCT00567827 PMID:22719933

  10. Development and evaluation of a simple and effective RT-qPCR inhibitory assay for detection of the efficacy of compounds towards HIV reverse transcriptase.

    PubMed

    Marino-Merlo, Francesca; Frezza, Caterina; Papaianni, Emanuela; Valletta, Elena; Mastino, Antonio; Macchi, Beatrice

    2017-11-01

    Assessing the actual efficacy of compounds to directly inhibit HIV reverse transcriptase (RT) activity is a main goal in preclinical antiretroviral studies. Our previous studies demonstrated that the effects of inhibitor compounds towards HIV-RT could be efficiently assessed through a simple cell-free assay based on conventional reverse transcription PCR. In the present study, we describe a modified variant of our assay, termed RT real-time quantitative PCR inhibitory assay (RT-qPCR-IA), in which the ability of compounds to restrict the complementary DNA (cDNA) generation by HIV-RT using a specific RNA template is performed by the real-time technique, in order to improve both accuracy and sensitivity of the method. As specific RNA template, RNA extracted from stable transfectants ectopically expressing the herpes simplex virus 1 glycoprotein D gene was utilized. HIV-RT, of both commercial or house-made viral lysate origin, was employed for the assay. To assess the reliability of RT-qPCR-IA, we performed a comparative, quantitative analysis of the dose-dependent effect exerted by known nucleotide and non-nucleotide reverse-transcriptase inhibitors, using the SYBR Green dye chemistry as detection system. The results obtained with RT-qPCR-IA were compared to that obtained using a one-step PicoGreen technology-based commercial kit. The outcome of our study indicates that the development of the novel RT-qPCR-IA will provide rapid and accurate evaluation of the inhibitory efficacy of compounds towards HIV-RT activity. This evaluation could be very useful for large-scale screening of potential new anti-HIV drugs.

  11. Performance evaluation of new automated hepatitis B viral markers in the clinical laboratory: two quantitative hepatitis B surface antigen assays and an HBV core-related antigen assay.

    PubMed

    Park, Yongjung; Hong, Duck Jin; Shin, Saeam; Cho, Yonggeun; Kim, Hyon-Suk

    2012-05-01

    We evaluated quantitative hepatitis B surface antigen (qHBsAg) assays and a hepatitis B virus (HBV) core-related antigen (HBcrAg) assay. A total of 529 serum samples from patients with hepatitis B were tested. HBsAg levels were determined by using the Elecsys (Roche Diagnostics, Indianapolis, IN) and Architect (Abbott Laboratories, Abbott Park, IL) qHBsAg assays. HBcrAg was measured by using Lumipulse HBcrAg assay (Fujirebio, Tokyo, Japan). Serum aminotransferases and HBV DNA were respectively quantified by using the Hitachi 7600 analyzer (Hitachi High-Technologies, Tokyo, Japan) and the Cobas AmpliPrep/Cobas TaqMan test (Roche). Precision of the qHBsAg and HBcrAg assays was assessed, and linearity of the qHBsAg assays was verified. All assays showed good precision performance with coefficients of variation between 4.5% and 5.3% except for some levels. Both qHBsAg assays showed linearity from 0.1 to 12,000.0 IU/mL and correlated well (r = 0.9934). HBsAg levels correlated with HBV DNA (r = 0.3373) and with HBcrAg (r = 0.5164), and HBcrAg also correlated with HBV DNA (r = 0.5198; P < .0001). This observation could provide impetus for further research to elucidate the clinical usefulness of the qHBsAg and HBcrAg assays.

  12. SPECIES-SPECIFIC DETECTION OF THREE HUMAN-PATHOGENIC MICROSPORIDIAL SPECIES FROM THE GENUS ENCEPHALITOZOON VIA FLUOROGENIC 5' NUCLEASE PCR ASSAYS

    EPA Science Inventory

    This describes fluorogenic 5' nuclease PCR assays suitable for rapid, sensitive, quantitative, high-throughput detection of the human-pathogenic microsporidial species Encephalitozoon hellem, E. cunicli and E. intestinalis. The assays utilize species-specific primer sets and a g...

  13. NCI Launches Proteomics Assay Portal | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In a paper recently published by the journal Nature Methods, Investigators from the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (NCI-CPTAC) announced the launch of a proteomics Assay Portal for multiple reaction monitoring-mass spectrometry (MRM-MS) assays.  This community web-based repository for well-characterized quantitative proteomic assays currently consists of 456 unique peptide assays to 282 unique proteins and ser

  14. Quantitative determination of polysulfide in albumins, plasma proteins and biological fluid samples using a novel combined assays approach.

    PubMed

    Ikeda, Mayumi; Ishima, Yu; Shibata, Akitomo; Chuang, Victor T G; Sawa, Tomohiro; Ihara, Hideshi; Watanabe, Hiroshi; Xian, Ming; Ouchi, Yuya; Shimizu, Taro; Ando, Hidenori; Ukawa, Masami; Ishida, Tatsuhiro; Akaike, Takaaki; Otagiri, Masaki; Maruyama, Toru

    2017-05-29

    Hydrogen sulfide (H 2 S) signaling involves polysulfide (RSS n SR') formation on various proteins. However, the current lack of sensitive polysulfide detection assays poses methodological challenges for understanding sulfane sulfur homeostasis and signaling. We developed a novel combined assay by modifying Sulfide Antioxidant Buffer (SAOB) to produce an "Elimination Method of Sulfide from Polysulfide" (EMSP) treatment solution that liberates sulfide, followed with methylene blue (MB) sulfide detection assay. The combined EMSP-MB sulfide detection assay performed on low molecular weight sulfur species showed that sulfide was produced from trisulfide compounds such as glutathione trisulfide and diallyl trisulfide, but not from the thiol compounds such as cysteine, cystine and glutathione. In the case of plasma proteins, this novel combined detection assay revealed that approximately 14.7, 1.7, 3.9, 3.7 sulfide mol/mol released from human serum albumin, α 1 -anti-trypsin, α 1 -acid glycoprotein and ovalbumin, respectively, suggesting that serum albumin is a major pool of polysulfide in human blood circulation. Taken together with the results of albumins of different species, the liberated sulfide has a good correlation with cysteine instead of methionine, indicating the site of incorporation of polysulfide is cysteine. With this novel sulfide detention assay, approximately 8,000, 120 and 1100 μM of polysulfide concentrations was quantitated in human healthy plasma, saliva and tear, respectively. Our promising polysulfide specific detection assay can be a very important tool because quantitative determination of polysulfide sheds light on the functional consequence of protein-bound cysteine polysulfide and expands the research area of reactive oxygen to reactive polysulfide species. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. [Quantitative fluorogenic real-time PCR assay for respiratory syncytial virus detection].

    PubMed

    Zhang, Qi-wei; You, Shang-you; Sun, Ji-min; Wu, Qi; Yu, Chun-hua; Zhang, Chu-yu

    2005-07-01

    To Establish a rapid and objective quantitative fluorogenic real-time PCR assay for early detection of human respiratory syncytial virus (hRSV). Two pairs of primers and one TaqMan Fluorogenic probe that are specific for the recognition of the most conservative N gene of hRSV for virus detection with LighCycler PCR in 93 nasopharyngeal secretion specimens collected from infants and young children. The assay was compared with virus isolation, routine PCR, nested PCR, and enzyme-linked immunosorbent assay (ELISA). This TaqMan assay had a sensitivity of 1 x 10(2) cDNA copies/microl with a dynamic range between 1 x 10(2) and 1 x 10(7) cDNA copies/microl, which was the same as that of nested PCR, but 10 times more sensitive than routine PCR. The specificity of the assay was evaluated by comparing hRSV with polivirus type 1, coxsackie virus type 2, influenza A, influenza B and adenovirus type 7. A PCR product of the expected size (195 bp) was produced and fluorescence signal detected for hRSV, but not for any of the other viruses. The results in LightCycler and Rotor-Gene instrument were consistent. Forty-four specimens (43.9%) were hRSV-positive with this assay and 4 (4/93,4.3%) were hRSV-positive with ELISA, showing rather low correlation between the two methods. No visible relation was found between the concentration of hRSV RNA and severity of the disease. This assay is rapid, sensitive, specific and quantitative, and has the potential of wide application for early diagnosis of hRSV infection and evaluation of the therapeutic effect.

  16. Quantification of Hepcidin-related Iron Accumulation in the Rat Liver.

    PubMed

    Böser, Preethne; Mordashova, Yulia; Maasland, Mark; Trommer, Isabel; Lorenz, Helga; Hafner, Mathias; Seemann, Dietmar; Mueller, Bernhard K; Popp, Andreas

    2016-02-01

    Hepcidin was originally detected as a liver peptide with antimicrobial activity and it functions as a central regulator in the systemic iron metabolism. Consequently suppression of hepcidin leads to iron accumulation in the liver. AbbVie developed a monoclonal antibody ([mAb]; repulsive guidance molecule [RGMa/c] mAb) that downregulates hepcidin expression by influencing the RGMc/bone morphogenetic protein (BMP)/neogenin receptor complex and causes iron deposition in the liver. In a dose range finding study with RGMa/c mAb, rats were treated with different dose levels for a total of 4 weekly doses. The results of this morphometric analysis in the liver showed that iron accumulation is not homogenous between liver lobes and the left lateral lobe was the most responsive lobe in the rat. Quantitative hepcidin messenger RNA analysis showed that the left lateral lobe was the most responsive lobe showing hepcidin downregulation with increasing antibody dose. In addition, the morphometric analysis had higher sensitivity than the chemical iron extraction and quantification using a colorimetric assay. In conclusion, the Prussian blue stain in combination with semi-quantitative and quantitative morphometric analysis is the most reliable method to demonstrate iron accumulation in the liver compared to direct measurement of iron in unfixed tissue using a colorimetric assay. © The Author(s) 2016.

  17. Quantitative monitoring of HCMV DNAlactia in human milk by real time PCR assay: Implementation of internal control contributes to standardization and quality control.

    PubMed

    Hartleif, Steffen; Göhring, Katharina; Goelz, Rangmar; Jahn, Gerhard; Hamprecht, Klaus

    2016-11-01

    For cytomegalovirus screening of breastfeeding mothers of preterm infants under risk, we present a rapid, quantitative real-time PCR protocol using the hybridization format of the viral gB target region. For quantification, we used an external gB fragment cloned into a vector system. For standardization, we created an internal control-plasmid by site-directed mutagenesis with an exchange of 9 nucleotides. Spiked with internal control, patient wildtype amplicons could be discriminated from internal controls by hybridization probes using two-channel fluorescence detection. Potential bias of formerly reported false nucleotide sequence data of gB-hybridization probes was excluded. Using this approach, we could demonstrate excellent analytical performance and high reproducibility of HCMV detection during lactation. This assay shows very good correlation with a commercial quantitative HCMV DNA PCR and may help to identify rapidly HCMV shedding mothers of very low birth weight preterm infants to prevent HCMV transmission. On the other hand, negative DNA amplification results allow feeding of milk samples of seropositive mothers to their preterm infants under risk (<30 weeks of gestational age, <1000g birth weight) during the onset and late stage of HCMV shedding during lactation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The Protein Disease Database of human body fluids: II. Computer methods and data issues.

    PubMed

    Lemkin, P F; Orr, G A; Goldstein, M P; Creed, G J; Myrick, J E; Merril, C R

    1995-01-01

    The Protein Disease Database (PDD) is a relational database of proteins and diseases. With this database it is possible to screen for quantitative protein abnormalities associated with disease states. These quantitative relationships use data drawn from the peer-reviewed biomedical literature. Assays may also include those observed in high-resolution electrophoretic gels that offer the potential to quantitate many proteins in a single test as well as data gathered by enzymatic or immunologic assays. We are using the Internet World Wide Web (WWW) and the Web browser paradigm as an access method for wide distribution and querying of the Protein Disease Database. The WWW hypertext transfer protocol and its Common Gateway Interface make it possible to build powerful graphical user interfaces that can support easy-to-use data retrieval using query specification forms or images. The details of these interactions are totally transparent to the users of these forms. Using a client-server SQL relational database, user query access, initial data entry and database maintenance are all performed over the Internet with a Web browser. We discuss the underlying design issues, mapping mechanisms and assumptions that we used in constructing the system, data entry, access to the database server, security, and synthesis of derived two-dimensional gel image maps and hypertext documents resulting from SQL database searches.

  19. A Multiplex Snapback Primer System for the Enrichment and Detection of JAK2 V617F and MPL W515L/K Mutations in Philadelphia-Negative Myeloproliferative Neoplasms

    PubMed Central

    Zhang, Yunqing; Zhang, Xinju; Xu, Xiao; Kang, Zhihua; Li, Shibao; Zhang, Chen; Su, Bing

    2014-01-01

    A multiplex snapback primer system was developed for the simultaneous detection of JAK2 V617F and MPL W515L/K mutations in Philadelphia chromosome- (Ph-) negative myeloproliferative neoplasms (MPNs). The multiplex system comprises two snapback versus limiting primer sets for JAK2 and MPL mutation enrichment and detection, respectively. Linear-After exponential (LATE) PCR strategy was employed for the primer design to maximize the amplification efficiency of the system. Low ionic strength buffer and rapid PCR protocol allowed for selective amplification of the mutant alleles. Amplification products were analyzed by melting curve analysis for mutation identification. The multiplex system archived 0.1% mutation load sensitivity and <5% coefficient of variation inter-/intra-assay reproducibility. 120 clinical samples were tested by the multiplex snapback primer assay, and verified with amplification refractory system (ARMS), quantitative PCR (qPCR) and Sanger sequencing method. The multiplex system, with a favored versatility, provided the molecular diagnosis of Ph-negative MPNs with a suitable implement and simplified the genetic test process. PMID:24729973

  20. Tissue plasminogen activator (tPA) as a reporter gene in transient gene expression.

    PubMed

    Cheng, S M; Lee, S G; Kalyan, N K; McCloud, S; Levner, M; Hung, P P

    1987-01-01

    Using the gene coding for tissue plasminogen activator (tPA) as a reporter gene, a transient gene expression system has been established. Vectors containing the full-length cDNA of tPA with its signal sequences were introduced into mammalian recipient cells by a modified gene transfer procedure. Thirty hours after transfection, the secreted tPA was found in serum-free medium and measured by a fibrin-agarose plate assay (FAPA). In this assay, tPA converts plasminogen into plasmin which then degrades high-Mr fibrin to produce cleared zones. The sizes of these zones correspond to quantities of tPA. The combination of transient tPA expression system and the FAPA provides a quick, sensitive, quantitative and non-destructive method to examine the strength of eukaryotic regulatory elements in tissue-culture cells.

  1. Development and Validation of Sandwich ELISA Microarrays with Minimal Assay Interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Rachel M.; Servoss, Shannon; Crowley, Sheila A.

    Sandwich enzyme-linked immunosorbent assay (ELISA) microarrays are emerging as a strong candidate platform for multiplex biomarker analysis because of the ELISA’s ability to quantitatively measure rare proteins in complex biological fluids. Advantages of this platform are high-throughput potential, assay sensitivity and stringency, and the similarity to the standard ELISA test, which facilitates assay transfer from a research setting to a clinical laboratory. However, a major concern with the multiplexing of ELISAs is maintaining high assay specificity. In this study, we systematically determine the amount of assay interference and noise contributed by individual components of the multiplexed 24-assay system. We findmore » that non-specific reagent cross-reactivity problems are relatively rare. We did identify the presence of contaminant antigens in a “purified antigen”. We tested the validated ELISA microarray chip using paired serum samples that had been collected from four women at a 6-month interval. This analysis demonstrated that protein levels typically vary much more between individuals then within an individual over time, a result which suggests that longitudinal studies may be useful in controlling for biomarker variability across a population. Overall, this research demonstrates the importance of a stringent screening protocol and the value of optimizing the antibody and antigen concentrations when designing chips for ELISA microarrays.« less

  2. Analytical and Clinical Validation of the Immulite 1000 hCG Assay for Quantitative Analysis in Urine

    PubMed Central

    Cate, Frances L.; Moffett, Courtney; Gronowski, Ann M.; Grenache, David G.; Hartmann, Katherine E.; Woodworth, Alison

    2013-01-01

    Background The Siemens Immulite hCG assay detects all major hCG variants in serum. Currently, this assay is only FDA approved for qualitative measurement of hCG in urine. Methods Complete validation of the hCG assay in urine was performed on the Siemens Immulite 1000 immunoassay platform. Reference intervals were established for females <55 y, females ≥55 y, and males 20–70 y. Results The limit of quantitation was 2.0 IU/l. The Immulite hCG assay was precise for measuring hCG in urine from pregnant patients with intra- and inter-assay imprecision of <11% CV. The assay was linear over a dynamic range of 2–2600 IU/l and 2–3500 IU/l for hCG and hCGβ respectively. The assay was non-linear for hCGβcf. No hook effect was observed at concentrations up to 1,200,000 pmol/l, for hCGβ or hCGβcf. The reference intervals were <2.0 IU/l for males, <2.2 IU/l for females <55 y, and <12.2 IU/l for females ≥55 y. Conclusion The Immulite 1000 hCG assay can accurately quantify hCG in urine. PMID:23470427

  3. Bench-top validation testing of selected immunological and molecular Renibacterium salmoninarum diagnostic assays by comparison with quantitative bacteriological culture

    USGS Publications Warehouse

    Elliott, D.G.; Applegate, L.J.; Murray, A.L.; Purcell, M.K.; McKibben, C.L.

    2013-01-01

    No gold standard assay exhibiting error-free classification of results has been identified for detection of Renibacterium salmoninarum, the causative agent of salmonid bacterial kidney disease. Validation of diagnostic assays for R. salmoninarum has been hindered by its unique characteristics and biology, and difficulties in locating suitable populations of reference test animals. Infection status of fish in test populations is often unknown, and it is commonly assumed that the assay yielding the most positive results has the highest diagnostic accuracy, without consideration of misclassification of results. In this research, quantification of R. salmoninarum in samples by bacteriological culture provided a standardized measure of viable bacteria to evaluate analytical performance characteristics (sensitivity, specificity and repeatability) of non-culture assays in three matrices (phosphate-buffered saline, ovarian fluid and kidney tissue). Non-culture assays included polyclonal enzyme-linked immunosorbent assay (ELISA), direct smear fluorescent antibody technique (FAT), membrane-filtration FAT, nested polymerase chain reaction (nested PCR) and three real-time quantitative PCR assays. Injection challenge of specific pathogen-free Chinook salmon, Oncorhynchus tshawytscha (Walbaum), with R. salmoninarum was used to estimate diagnostic sensitivity and specificity. Results did not identify a single assay demonstrating the highest analytical and diagnostic performance characteristics, but revealed strengths and weaknesses of each test.

  4. [Simultaneous quantitative analysis of five alkaloids in Sophora flavescens by multi-components assay by single marker].

    PubMed

    Chen, Jing; Wang, Shu-Mei; Meng, Jiang; Sun, Fei; Liang, Sheng-Wang

    2013-05-01

    To establish a new method for quality evaluation and validate its feasibilities by simultaneous quantitative assay of five alkaloids in Sophora flavescens. The new quality evaluation method, quantitative analysis of multi-components by single marker (QAMS), was established and validated with S. flavescens. Five main alkaloids, oxymatrine, sophocarpine, matrine, oxysophocarpine and sophoridine, were selected as analytes to evaluate the quality of rhizome of S. flavescens, and the relative correction factor has good repeatibility. Their contents in 21 batches of samples, collected from different areas, were determined by both external standard method and QAMS. The method was evaluated by comparison of the quantitative results between external standard method and QAMS. No significant differences were found in the quantitative results of five alkaloids in 21 batches of S. flavescens determined by external standard method and QAMS. It is feasible and suitable to evaluate the quality of rhizome of S. flavescens by QAMS.

  5. Smartphone-Based Dual-Modality Imaging System for Quantitative Detection of Color or Fluorescent Lateral Flow Immunochromatographic Strips

    NASA Astrophysics Data System (ADS)

    Hou, Yafei; Wang, Kan; Xiao, Kun; Qin, Weijian; Lu, Wenting; Tao, Wei; Cui, Daxiang

    2017-04-01

    Nowadays, lateral flow immunochromatographic assays are increasingly popular as a diagnostic tool for point-of-care (POC) test based on their simplicity, specificity, and sensitivity. Hence, quantitative detection and pluralistic popular application are urgently needed in medical examination. In this study, a smartphone-based dual-modality imaging system was developed for quantitative detection of color or fluorescent lateral flow test strips, which can be operated anywhere at any time. In this system, the white and ultra-violet (UV) light of optical device was designed, which was tunable with different strips, and the Sobel operator algorithm was used in the software, which could enhance the identification ability to recognize the test area from the background boundary information. Moreover, this technology based on extraction of the components from RGB format (red, green, and blue) of color strips or only red format of the fluorescent strips can obviously improve the high-signal intensity and sensitivity. Fifty samples were used to evaluate the accuracy of this system, and the ideal detection limit was calculated separately from detection of human chorionic gonadotropin (HCG) and carcinoembryonic antigen (CEA). The results indicated that smartphone-controlled dual-modality imaging system could provide various POC diagnoses, which becomes a potential technology for developing the next-generation of portable system in the near future.

  6. A novel CMOS image sensor system for quantitative loop-mediated isothermal amplification assays to detect food-borne pathogens.

    PubMed

    Wang, Tiantian; Kim, Sanghyo; An, Jeong Ho

    2017-02-01

    Loop-mediated isothermal amplification (LAMP) is considered as one of the alternatives to the conventional PCR and it is an inexpensive portable diagnostic system with minimal power consumption. The present work describes the application of LAMP in real-time photon detection and quantitative analysis of nucleic acids integrated with a disposable complementary-metal-oxide semiconductor (CMOS) image sensor. This novel system works as an amplification-coupled detection platform, relying on a CMOS image sensor, with the aid of a computerized circuitry controller for the temperature and light sources. The CMOS image sensor captures the light which is passing through the sensor surface and converts into digital units using an analog-to-digital converter (ADC). This new system monitors the real-time photon variation, caused by the color changes during amplification. Escherichia coli O157 was used as a proof-of-concept target for quantitative analysis, and compared with the results for Staphylococcus aureus and Salmonella enterica to confirm the efficiency of the system. The system detected various DNA concentrations of E. coli O157 in a short time (45min), with a detection limit of 10fg/μL. The low-cost, simple, and compact design, with low power consumption, represents a significant advance in the development of a portable, sensitive, user-friendly, real-time, and quantitative analytic tools for point-of-care diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A versatile electrowetting-based digital microfluidic platform for quantitative homogeneous and heterogeneous bio-assays

    NASA Astrophysics Data System (ADS)

    Vergauwe, Nicolas; Witters, Daan; Ceyssens, Frederik; Vermeir, Steven; Verbruggen, Bert; Puers, Robert; Lammertyn, Jeroen

    2011-05-01

    Electrowetting-on-dielectric (EWOD) lab-on-a-chip systems have already proven their potential within a broad range of bio-assays. Nevertheless, research on the analytical performance of those systems is limited, yet crucial for a further breakthrough in the diagnostic field. Therefore, this paper presents the intrinsic possibilities of an EWOD lab-on-a-chip as a versatile platform for homogeneous and heterogeneous bio-assays with high analytical performance. Both droplet dispensing and splitting cause variations in droplet size, thereby directly influencing the assay's performance. The extent to which they influence the performance is assessed by a theoretical sensitivity analysis, which allows the definition of a basic framework for the reduction of droplet size variability. Taking advantage of the optimized droplet manipulations, both homogeneous and heterogeneous bio-assays are implemented in the EWOD lab-on-a-chip to demonstrate the analytical capabilities and versatility of the device. A fully on-chip enzymatic assay is realized with high analytical performance. It demonstrates the promising capabilities of an EWOD lab-on-a-chip in food-related and medical applications, such as nutritional and blood analyses. Further, a magnetic bio-assay for IgE detection using superparamagnetic nanoparticles is presented whereby the nanoparticles are used as solid carriers during the bio-assay. Crucial elements are the precise manipulation of the superparamagnetic nanoparticles with respect to dispensing and separation. Although the principle of using nano-carriers is demonstrated for protein detection, it can be easily extended to a broader range of bio-related applications like DNA sensing. In heterogeneous bio-assays the chip surface is actively involved during the execution of the bio-assay. Through immobilization of specific biological compounds like DNA, proteins and cells a reactive chip surface is realized, which enhances the bio-assay performance. To demonstrate this potential, on-chip adhesion islands are fabricated to immobilize MCF-7 human breast cancer cells. Viability studies are performed to assess the functionalization efficiency.

  8. Computer Simulation of Embryonic Systems: What can a ...

    EPA Pesticide Factsheets

    (1) Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program (ToxCast) generated vast in vitro cellular and molecular effects data on >1858 chemicals in >600 high-throughput screening (HTS) assays. The diversity of assays has been increased for developmental toxicity with several HTS platforms, including the devTOX-quickPredict assay from Stemina Biomarker Discovery utilizing the human embryonic stem cell line (H9). Translating these HTS data into higher order-predictions of developmental toxicity is a significant challenge. Here, we address the application of computational systems models that recapitulate the kinematics of dynamical cell signaling networks (e.g., SHH, FGF, BMP, retinoids) in a CompuCell3D.org modeling environment. Examples include angiogenesis (angiodysplasia) and dysmorphogenesis. Being numerically responsive to perturbation, these models are amenable to data integration for systems Toxicology and Adverse Outcome Pathways (AOPs). The AOP simulation outputs predict potential phenotypes based on the in vitro HTS data ToxCast. A heuristic computational intelligence framework that recapitulates the kinematics of dynamical cell signaling networks in the embryo, together with the in vitro profiling data, produce quantitative pr

  9. Comparative evaluation of the Cobas Amplicor HIV-1 Monitor Ultrasensitive Test, the new Cobas AmpliPrep/Cobas Amplicor HIV-1 Monitor Ultrasensitive Test and the Versant HIV RNA 3.0 assays for quantitation of HIV-1 RNA in plasma samples.

    PubMed

    Berger, Annemarie; Scherzed, Lina; Stürmer, Martin; Preiser, Wolfgang; Doerr, Hans Wilhelm; Rabenau, Holger Felix

    2005-05-01

    There are several commercially available assays for the quantitation of HIV RNA. A new automated specimen preparation system, the Cobas AmpliPrep, was developed to automate this last part of the PCR. We compared the results obtained by the Roche Cobas Amplicor HIV-1 Monitor Ultrasensitive Test (MCA, manual sample preparation) with those by the Versant HIV-1 RNA 3.0 assay (bDNA). Secondly we compared the MCA with the new Cobas AmpliPrep/Cobas Amplicor HIV Monitor Ultrasensitive Test (CAP/CA, automated specimen preparation) by investigating clinical patient samples and a panel of HIV-1 non-B subtypes. Furthermore, we assessed the assay throughput and workflow (especially hands-on time) for all three assays. Seventy-two percent of the 140 investigated patient samples gave concordant results in the bDNA and MCA assays. The MCA values were regularly higher than the bDNA values. One sample was detected only by the MCA within the linear range of quantification. In contrast, 38 samples with results <50 copies/ml in the MCA showed in the bDNA results between 51 and 1644 copies/ml (mean value 74 copies/ml); 21 of these specimens were shown to have detectable HIV RNA < 50 copies/ml in the MCA assay. The overall agreement between the MCA and the CAP/CA was 94.3% (551/584). The quantification results showed significant correlation, although the CAP/CA generated values slightly lower than those generated by the manual procedure. We found that the CAP/CA produced comparable results with the MCA test in a panel of HIV-1 non-B subtypes. All three assays showed comparable results. The bDNA provides a high sample throughput without the need of full automation. The new CAP/CA provides reliable test results with no HIV-subtype specific influence and releases time for other works in the laboratory; thus it is suitable for routine diagnostic PCR.

  10. The iFly Tracking System for an Automated Locomotor and Behavioural Analysis of Drosophila melanogaster

    PubMed Central

    Kohlhoff, Kai J.; Jahn, Thomas R.; Lomas, David A.; Dobson, Christopher M.; Crowther, Damian C.; Vendruscolo, Michele

    2016-01-01

    The use of animal models in medical research provides insights into molecular and cellular mechanisms of human disease, and helps identify and test novel therapeutic strategies. Drosophila melanogaster – the common fruit fly – is one of the most established model organisms, as its study can be performed more readily and with far less expense than for other model animal systems, such as mice, fish, or indeed primates. In the case of fruit flies, standard assays are based on the analysis of longevity and basic locomotor functions. Here we present the iFly tracking system, which enables to increase the amount of quantitative information that can be extracted from these studies, and to reduce significantly the duration and costs associated with them. The iFly system uses a single camera to simultaneously track the trajectories of up to 20 individual flies with about 100μm spatial and 33ms temporal resolution. The statistical analysis of fly movements recorded with such accuracy makes it possible to perform a rapid and fully automated quantitative analysis of locomotor changes in response to a range of different stimuli. We anticipate that the iFly method will reduce very considerably the costs and the duration of the testing of genetic and pharmacological interventions in Drosophila models, including an earlier detection of behavioural changes and a large increase in throughput compared to current longevity and locomotor assays. PMID:21698336

  11. Image-Based Quantification of Plant Immunity and Disease.

    PubMed

    Laflamme, Bradley; Middleton, Maggie; Lo, Timothy; Desveaux, Darrell; Guttman, David S

    2016-12-01

    Measuring the extent and severity of disease is a critical component of plant pathology research and crop breeding. Unfortunately, existing visual scoring systems are qualitative, subjective, and the results are difficult to transfer between research groups, while existing quantitative methods can be quite laborious. Here, we present plant immunity and disease image-based quantification (PIDIQ), a quantitative, semi-automated system to rapidly and objectively measure disease symptoms in a biologically relevant context. PIDIQ applies an ImageJ-based macro to plant photos in order to distinguish healthy tissue from tissue that has yellowed due to disease. It can process a directory of images in an automated manner and report the relative ratios of healthy to diseased leaf area, thereby providing a quantitative measure of plant health that can be statistically compared with appropriate controls. We used the Arabidopsis thaliana-Pseudomonas syringae model system to show that PIDIQ is able to identify both enhanced plant health associated with effector-triggered immunity as well as elevated disease symptoms associated with effector-triggered susceptibility. Finally, we show that the quantitative results provided by PIDIQ correspond to those obtained via traditional in planta pathogen growth assays. PIDIQ provides a simple and effective means to nondestructively quantify disease from whole plants and we believe it will be equally effective for monitoring disease on excised leaves and stems.

  12. A Microfluidic Platform for High-Throughput Multiplexed Protein Quantitation

    PubMed Central

    Volpetti, Francesca; Garcia-Cordero, Jose; Maerkl, Sebastian J.

    2015-01-01

    We present a high-throughput microfluidic platform capable of quantitating up to 384 biomarkers in 4 distinct samples by immunoassay. The microfluidic device contains 384 unit cells, which can be individually programmed with pairs of capture and detection antibody. Samples are quantitated in each unit cell by four independent MITOMI detection areas, allowing four samples to be analyzed in parallel for a total of 1,536 assays per device. We show that the device can be pre-assembled and stored for weeks at elevated temperature and we performed proof-of-concept experiments simultaneously quantitating IL-6, IL-1β, TNF-α, PSA, and GFP. Finally, we show that the platform can be used to identify functional antibody combinations by screening 64 antibody combinations requiring up to 384 unique assays per device. PMID:25680117

  13. Rapid 2,2'-bicinchoninic-based xylanase assay compatible with high throughput screening

    Treesearch

    William R. Kenealy; Thomas W. Jeffries

    2003-01-01

    High-throughput screening requires simple assays that give reliable quantitative results. A microplate assay was developed for reducing sugar analysis that uses a 2,2'-bicinchoninic-based protein reagent. Endo-1,4-â-D-xylanase activity against oat spelt xylan was detected at activities of 0.002 to 0.011 IU ml−1. The assay is linear for sugar...

  14. Comparative evaluation of the VERSANT HCV RNA 3.0, QUANTIPLEX HCV RNA 2.0, and COBAS AMPLICOR HCV MONITOR version 2.0 Assays for quantification of hepatitis C virus RNA in serum.

    PubMed

    Germer, Jeffrey J; Heimgartner, Paul J; Ilstrup, Duane M; Harmsen, W Scott; Jenkins, Greg D; Patel, Robin

    2002-02-01

    A comparison of quantitative results expressed in hepatitis C virus (HCV) international units per milliliter, obtained from the VERSANT HCV RNA 3.0 (bDNA-3.0) assay, the QUANTIPLEX HCV RNA 2.0 (bDNA-2.0) assay, and the COBAS AMPLICOR HCV MONITOR version 2.0 (HCM-2.0) test was performed. A total of 168 patient specimens submitted to the Mayo Clinic Molecular Microbiology Laboratory for HCV quantification or HCV genotyping were studied. Of the specimens tested, 97, 88, and 79% yielded quantitative results within the dynamic range of the bDNA-3.0, bDNA-2.0, and HCM-2.0 assays, respectively. Overall, there was substantial agreement between the results generated by all three assays. A total of 15 out of 29 (52%) of the specimens determined to contain viral loads of <31,746 IU/ml by the bDNA-3.0 assay were categorized as containing viral loads within the range of 31,746 to 500,000 IU/ml by the bDNA-2.0 assay. Although substantial agreement was noted between the results generated by the bDNA-2.0 and bDNA-3.0 assays, a bias toward higher viral titer by the bDNA-2.0 assay was noted (P = 0.001). Likewise, although substantial agreement was noted between the results generated by the HCM-2.0 and bDNA-3.0 assays, a bias toward higher viral titer by the bDNA-3.0 assay was noted (P < or = 0.001). The discrepancy between the HCM-2.0 and bDNA-3.0 results was more pronounced when viral loads were >500,000 IU/ml and resulted in statistically significant differences (P < or = 0.001) in determining whether viral loads were above or below 800,000 IU/ml of HCV RNA, the proposed threshold value for tailoring the duration of combination therapy. The expression of quantitative values in HCV international units per milliliter was a strength of both the bDNA-3.0 and HCM-2.0 assays.

  15. Comparative Evaluation of the VERSANT HCV RNA 3.0, QUANTIPLEX HCV RNA 2.0, and COBAS AMPLICOR HCV MONITOR Version 2.0 Assays for Quantification of Hepatitis C Virus RNA in Serum

    PubMed Central

    Germer, Jeffrey J.; Heimgartner, Paul J.; Ilstrup, Duane M.; Harmsen, W. Scott; Jenkins, Greg D.; Patel, Robin

    2002-01-01

    A comparison of quantitative results expressed in hepatitis C virus (HCV) international units per milliliter, obtained from the VERSANT HCV RNA 3.0 (bDNA-3.0) assay, the QUANTIPLEX HCV RNA 2.0 (bDNA-2.0) assay, and the COBAS AMPLICOR HCV MONITOR version 2.0 (HCM-2.0) test was performed. A total of 168 patient specimens submitted to the Mayo Clinic Molecular Microbiology Laboratory for HCV quantification or HCV genotyping were studied. Of the specimens tested, 97, 88, and 79% yielded quantitative results within the dynamic range of the bDNA-3.0, bDNA-2.0, and HCM-2.0 assays, respectively. Overall, there was substantial agreement between the results generated by all three assays. A total of 15 out of 29 (52%) of the specimens determined to contain viral loads of <31,746 IU/ml by the bDNA-3.0 assay were categorized as containing viral loads within the range of 31,746 to 500,000 IU/ml by the bDNA-2.0 assay. Although substantial agreement was noted between the results generated by the bDNA-2.0 and bDNA-3.0 assays, a bias toward higher viral titer by the bDNA-2.0 assay was noted (P = 0.001). Likewise, although substantial agreement was noted between the results generated by the HCM-2.0 and bDNA-3.0 assays, a bias toward higher viral titer by the bDNA-3.0 assay was noted (P ≤ 0.001). The discrepancy between the HCM-2.0 and bDNA-3.0 results was more pronounced when viral loads were >500,000 IU/ml and resulted in statistically significant differences (P ≤ 0.001) in determining whether viral loads were above or below 800,000 IU/ml of HCV RNA, the proposed threshold value for tailoring the duration of combination therapy. The expression of quantitative values in HCV international units per milliliter was a strength of both the bDNA-3.0 and HCM-2.0 assays. PMID:11825962

  16. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA

    PubMed Central

    Jahan, Munira; Lutful Moben, Ahmed; Tabassum, Shahina

    2014-01-01

    ABSTRACT Background Both real-time-polymerase chain reaction (PCR) and hybrid capture 2 (HC2) assay can detect and quantify hepatitis B virus (HBV) DNA. However, real-time-PCR can detect a wide range of HBV DNA, while HC2 assay could not detect lower levels of viremia. The present study was designed to detect and quantify HBV DNA by real-time-PCR and HC2 assay and compare the quantitative data of these two assays. Materials and methods A cross-sectional study was conducted in between July 2010 and June 2011. A total of 66 serologically diagnosed chronic hepatitis B (CHB) patients were selected for the study. Real-time-PCR and HC2 assay was done to detect HBV DNA. Data were analyzed by statistical Package for the social sciences (SPSS). Results Among 66 serologically diagnosed chronic hepatitis B patients 40 (60.61%) patients had detectable and 26 (39.39%) had undetectable HBV DNA by HC2 assay. Concordant results were obtained for 40 (60.61%) out of these 66 patients by real-time-PCR and HC2 assay with mean viral load of 7.06 ± 1.13 log10 copies/ml and 6.95 ± 1.08 log10 copies/ml, respectively. In the remaining 26 patients, HBV DNA was detectable by real-time-PCR in 20 patients (mean HBV DNA level was 3.67 ± 0.72 log10 copies/ml. However, HBV DNA could not be detectable in six cases by the both assays. The study showed strong correlation (r = 0.915) between real-time-PCR and HC2 assay for the detection and quantification of HBV DNA. Conclusion HC2 assay may be used as an alternative to real-time-PCR for CHB patients. How to cite this article: Majid F, Jahan M, Moben AL, Tabassum S. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA. Euroasian J Hepato-Gastroenterol 2014;4(1):31-35. PMID:29264316

  17. Quantitative PCR for human herpesviruses 6 and 7.

    PubMed Central

    Secchiero, P; Zella, D; Crowley, R W; Gallo, R C; Lusso, P

    1995-01-01

    A quantitative PCR assay for the detection of human herpesvirus 6 (HHV-6) (variants A and B) and HHV-7 DNAs in clinical samples was developed. The assay uses a nonhomologous internal standard (IS) for each virus that is coamplified with the wild-type target sequence in the same vial and with the same pair of primers. This method allows for a correction of the variability of efficiency of the PCR technique. A standard curve is constructed for each experiment by coamplification of known quantities of the cloned HHV-6 or HHV-7 target templates with the respective IS. Absolute quantitation of the test samples is then achieved by determining the viral target/IS ratio of the hybridization signals of the amplification products and plotting this value against the standard curve. Using this assay, we quantitated the amount of HHV-6 or HHV-7 DNA in infected cell cultures and demonstrated an inhibitory effect of phosphonoformic acid on the replication of HHV-6 and HHV-7 in vitro. As the first clinical application of this procedure, we performed preliminary measurements of the loads of HHV-6 and HHV-7 in lymph nodes from patients with Hodgkin's disease and AIDS. Application of this quantitative PCR method should be helpful for elucidating the pathogenic roles of HHV-6 and HHV-7. PMID:7559960

  18. Identification and quantification of three genetically modified insect resistant cotton lines using conventional and TaqMan real-time polymerase chain reaction methods.

    PubMed

    Yang, Litao; Pan, Aihu; Zhang, Kewei; Guo, Jinchao; Yin, Changsong; Chen, Jianxiu; Huang, Cheng; Zhang, Dabing

    2005-08-10

    As the genetically modified organisms (GMOs) labeling policies are issued in many countries, qualitative and quantitative polymerase chain reaction (PCR) techniques are increasingly used for the detection of genetically modified (GM) crops in foods. Qualitative PCR and TaqMan real-time quantitative PCR methods to detect and identify three varieties of insect resistant cotton, i.e., Mon531 cotton (Monsanto Co.) and GK19 and SGK321 cottons (Chinese Academy of Agricultural Sciences), which were approved for commercialization in China, were developed in this paper. Primer pairs specific to inserted DNAs, such as Cowpea trypsin inhibitor (CpTI) gene of SGK321 cotton and the specific junction DNA sequences containing partial Cry1A(c) gene and NOS terminator of Mon531, GK19, and SGK321 cotton varieties were designed to conduct the identified PCR assays. In conventional specific identified PCR assays, the limit of detection (LOD) was 0.05% for Mon531, GK19, or SGK321 in 100 ng of cotton genomic DNA for one reaction. Also, the multiplex PCR method for screening the three GM cottons was also established, which could save time and cost in practical detection. Furthermore, a real-time quantitative PCR assay based on TaqMan chemistry for detection of insect resistant gene, Cry1A(c), was developed. This assay also featured the use of a standard plasmid as a reference molecule, which contained both a specific region of the transgene Cry1A(c) and an endogenous stearoyl-acyl carrier protein desaturase (Sad1) gene of the cotton. In quantitative PCR assay, the quantification range was from 0.01 to 100% in 100 ng of the genome DNA template, and in the detection of 1.0, 3.0, and 5.0% levels of three insect resistant cotton lines, respectively, all of the relative standard deviations (RSDs) were less than 8.2% except for the GM cotton samples with 1.0% Mon531 or GK19, which meant that our real-time PCR assays involving the use of reference molecule were reliable and practical for GM insect resistant cottons quantification. All of these results indicated that our established conventional and TaqMan real-time PCR assays were applicable to detect the three insect resistant cottons qualitatively and quantitatively.

  19. HPLC-high-resolution mass spectrometry with polarity switching for increasing throughput of human in vitro cocktail drug-drug interaction assay.

    PubMed

    Ramanathan, Ragu; Ghosal, Anima; Ramanathan, Lakshmi; Comstock, Kate; Shen, Helen; Ramanathan, Dil

    2018-05-01

    Evaluation of HPLC-high-resolution mass spectrometry (HPLC-HRMS) full scan with polarity switching for increasing throughput of human in vitro cocktail drug-drug interaction assay. Microsomal incubates were analyzed using a high resolution and high mass accuracy Q-Exactive mass spectrometer to collect integrated qualitative and quantitative (qual/quant) data. Within assay, positive-to-negative polarity switching HPLC-HRMS method allowed quantification of eight and two probe compounds in the positive and negative ionization modes, respectively, while monitoring for LOR and its metabolites. LOR-inhibited CYP2C19 and showed higher activity for CYP2D6, CYP2E1 and CYP3A4. Overall, LC-HRMS-based nontargeted full scan quantitation allowed to improve the throughput of the in vitro cocktail drug-drug interaction assay.

  20. Development and evaluation of reverse transcription loop-mediated isothermal amplification assay for the detection of the fathead minnow nidovirus.

    PubMed

    Zhang, Qingli; Standish, Isaac; Winters, Andrew D; Puzach, Corey; Ulferts, Rachel; Ziebuhr, John; Faisal, Mohamed

    2014-06-01

    Fathead minnow nidovirus (FHMNV) is a serious baitfish-pathogenic virus in North America. Studies to trace the spread of the virus and determine its host range are hampered by the absence of reliable diagnostic assays. In this study, a one-step, reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed that targets a region in the FHMNV spike protein gene. The assay was optimized, and the best results were obtained at 8 mM of Mg(2+) with an incubation time of 40 min at 63 °C in the presence of calcein. The analytical sensitivity of the RT-LAMP method was estimated to be as low as 5 viral copies and was 1000-fold more sensitive than the conventional reverse transcription polymerase chain reaction (RT-PCR) method. The diagnostic sensitivity and specificity of the developed RT-LAMP assay versus the RT-PCR assay was 100% and 95.7%, respectively. A quantitative RT-LAMP of FHMNV with a high correlation coefficient (r(2)=0.9926) was also developed and the result of quantitation of viral copies in tissue samples of infected fish showed that the viral loads of the infected fish tissue samples reached up to 4.7×10(10) copies per mg. It is anticipated that the developed RT-LAMP and quantitative RT-LAMP methods will be instrumental for diagnosis and surveillance of FHMNV. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis

    PubMed Central

    Te, Shu Harn; Chen, Enid Yingru

    2015-01-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. PMID:26025892

  2. Smart point-of-care systems for molecular diagnostics based on nanotechnology: whole blood glucose analysis

    NASA Astrophysics Data System (ADS)

    Devadhasan, Jasmine P.; Kim, Sanghyo

    2015-07-01

    Complementary metal oxide semiconductor (CMOS) image sensors are received great attention for their high efficiency in biological applications. The present work describes a CMOS image sensor-based whole blood glucose monitoring system through a point-of-care (POC) approach. A simple poly-ethylene terephthalate (PET) film chip was developed to carry out the enzyme kinetic reaction at various concentrations of blood glucose. In this technique, assay reagent was adsorbed onto amine functionalized silica (AFSiO2) nanoparticles in order to achieve glucose oxidation on the PET film chip. The AFSiO2 nanoparticles can immobilize the assay reagent with an electrostatic attraction and eased to develop the opaque platform which was technically suitable chip to analyze by the camera module. The oxidized glucose then produces a green color according to the glucose concentration and is analyzed by the camera module as a photon detection technique. The photon number decreases with increasing glucose concentration. The simple sensing approach, utilizing enzyme immobilized AFSiO2 nanoparticle chip and assay detection method was developed for quantitative glucose measurement.

  3. High frequency lateral flow affinity assay using superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lago-Cachón, D.; Rivas, M.; Martínez-García, J. C.; Oliveira-Rodríguez, M.; Blanco-López, M. C.; García, J. A.

    2017-02-01

    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies.

  4. Autoregulation and Virulence Control by the Toxin-Antitoxin System SavRS in Staphylococcus aureus

    PubMed Central

    Wen, Wen; Liu, Banghui; Xue, Lu; Zhu, Zhongliang; Niu, Liwen

    2018-01-01

    ABSTRACT Toxin-antitoxin (TA) systems play diverse physiological roles, such as plasmid maintenance, growth control, and persister cell formation, but their involvement in bacterial pathogenicity remains largely unknown. Here, we have identified a novel type II toxin-antitoxin system, SavRS, and revealed the molecular mechanisms of its autoregulation and virulence control in Staphylococcus aureus. Electrophoretic mobility shift assay and isothermal titration calorimetry data indicated that the antitoxin SavR acted as the primary repressor bound to its own promoter, while the toxin SavS formed a complex with SavR to enhance the ability to bind to the operator site. DNase I footprinting assay identified the SavRS-binding site containing a short and long palindrome in the promoter region. Further, mutation and DNase I footprinting assay demonstrated that the two palindromes were crucial for DNA binding and transcriptional repression. More interestingly, genetic deletion of the savRS system led to the increased hemolytic activity and pathogenicity in a mouse subcutaneous abscess model. We further identified two virulence genes, hla and efb, by real-time quantitative reverse transcription-PCR and demonstrated that SavR and SavRS could directly bind to their promoter regions to repress virulence gene expression. PMID:29440365

  5. Confirmatory and quantitative analysis of beta-lactam antibiotics in bovine kidney tissue by dispersive solid-phase extraction and liquid chromatography-tandem mass spectrometry.

    PubMed

    Fagerquist, Clifton K; Lightfield, Alan R; Lehotay, Steven J

    2005-03-01

    A simple, rapid, rugged, sensitive, and specific method for the confirmation and quantitation of 10 beta-lactam antibiotics in fortified and incurred bovine kidney tissue has been developed. The method uses a simple solvent extraction, dispersive solid-phase extraction (dispersive-SPE) cleanup, and liquid chromatography-tandem mass spectrometry (LC/MS/MS) for confirmation and quantitation. Dispersive-SPE greatly simplifies and accelerates sample cleanup and improves overall recoveries compared with conventional SPE cleanup. The beta-lactam antibiotics tested were as follows: deacetylcephapirin (an antimicrobial metabolite of cephapirin), amoxicillin, desfuroylceftiofur cysteine disulfide (DCCD, an antimicrobial metabolite of ceftiofur), ampicillin, cefazolin, penicillin G, oxacillin, cloxacillin, naficillin, and dicloxacillin. Average recoveries of fortified samples were 70% or better for all beta-lactams except DCCD, which had an average recovery of 58%. The LC/MS/MS method was able to demonstrate quantitative recoveries at established tolerance levels and provide confirmatory data for unambiguous analyte identification. The method was also tested on 30 incurred bovine kidney samples obtained from the USDA Food Safety and Inspection Service, which had previously tested the samples using the approved semiquantitative microbial assay. The results from the quantitative LC/MS/MS analysis were in general agreement with the microbial assay for 23 samples although the LC/MS/MS method was superior in that it could specifically identify which beta-lactam was present and quantitate its concentration, whereas the microbial assay could only identify the type of beta-lactam present and report a concentration with respect to the microbial inhibition of a penicillin G standard. In addition, for 6 of the 23 samples, LC/MS/MS analysis detected a penicillin and a cephalosporin beta-lactam, whereas the microbial assay detected only a penicillin beta-lactam. For samples that do not fall into the "general agreement" category, the most serious discrepancy involves two samples where the LC/MS/MS method detected a violative level of a cephalosporin beta-lactam (deacetylcephapirin) in the first sample and a possibly violative level of desfuroylceftiofur in the second, whereas the microbial assay identified the two samples as having only violative levels of a penicillin beta-lactam.

  6. Colorimetric micro-assay for accelerated screening of mould inhibitors

    Treesearch

    Carol A. Clausen; Vina W. Yang

    2013-01-01

    Since current standard laboratory methods are time-consuming macro-assays that rely on subjective visual ratings of mould growth, rapid and quantitative laboratory methods are needed to screen potential mould inhibitors for use in and on cellulose-based products. A colorimetric micro-assay has been developed that uses XTT tetrazolium salt to enzymatically assess...

  7. Determining UV Inactivation of Toxoplasma gondii Oocysts by Using Cell Culture and a Mouse Bioassay

    EPA Science Inventory

    The effect of UV exposure on Toxoplasma gondii oocysts has not been completely defined for use in water disinfection. This study evaluated UV irradiated oocysts by three assays: a SCID mouse bioassay, an in vitro T. gondii oocyst plaque assay (TOP-assay), and a quantitative reve...

  8. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    PubMed

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples. © 2014 John Wiley & Sons Ltd.

  9. Development of a Quantitative Recombinase Polymerase Amplification Assay with an Internal Positive Control

    PubMed Central

    Richards-Kortum, Rebecca

    2015-01-01

    It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest. PMID:25867513

  10. Development of a quantitative recombinase polymerase amplification assay with an internal positive control.

    PubMed

    Crannell, Zachary A; Rohrman, Brittany; Richards-Kortum, Rebecca

    2015-03-30

    It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest.

  11. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. cubense tropical race 4 in soil.

    PubMed

    Zhang, Xin; Zhang, He; Pu, Jinji; Qi, Yanxiang; Yu, Qunfang; Xie, Yixian; Peng, Jun

    2013-01-01

    Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt (Panama disease), is one of the most devastating diseases of banana (Musa spp.). The Foc tropical race 4 (TR4) is currently known as a major concern in global banana production. No effective resistance is known in Musa to Foc, and no effective measures for controlling Foc once banana plants have been infected in place. Early and accurate detection of Foc TR4 is essential to protect banana industry and guide banana planting. A real-time fluorescence loop-mediated isothermal amplification assay (RealAmp) was developed for the rapid and quantitative detection of Foc TR4 in soil. The detection limit of the RealAmp assay was approximately 0.4 pg/µl plasmid DNA when mixed with extracted soil DNA or 10(3) spores/g of artificial infested soil, and no cross-reaction with other relative pathogens were observed. The RealAmp assay for quantifying genomic DNA of TR4 was confirmed by testing both artificially and naturally infested samples. Quantification of the soil-borne pathogen DNA of Foc TR4 in naturally infested samples was no significant difference compared to classic real-time PCR (P>0.05). Additionally, RealAmp assay was visual with an improved closed-tube visual detection system by adding SYBR Green I fluorescent dye to the inside of the lid prior to amplification, which avoided the inhibitory effects of the stain on DNA amplification and makes the assay more convenient in the field and could thus become a simple, rapid and effective technique that has potential as an alternative tool for the detection and monitoring of Foc TR4 in field, which would be a routine DNA-based testing service for the soil-borne pathogen in South China.

  12. A low cost and high throughput magnetic bead-based immuno-agglutination assay in confined droplets.

    PubMed

    Teste, Bruno; Ali-Cherif, Anaïs; Viovy, Jean Louis; Malaquin, Laurent

    2013-06-21

    Although passive immuno-agglutination assays consist of one step and simple procedures, they are usually not adapted for high throughput analyses and they require expensive and bulky equipment for quantitation steps. Here we demonstrate a low cost, multimodal and high throughput immuno-agglutination assay that relies on a combination of magnetic beads (MBs), droplets microfluidics and magnetic tweezers. Antibody coated MBs were used as a capture support in the homogeneous phase. Following the immune interaction, water in oil droplets containing MBs and analytes were generated and transported in Teflon tubing. When passing in between magnetic tweezers, the MBs contained in the droplets were magnetically confined in order to enhance the agglutination rate and kinetics. When releasing the magnetic field, the internal recirculation flows in the droplet induce shear forces that favor MBs redispersion. In the presence of the analyte, the system preserves specific interactions and MBs stay in the aggregated state while in the case of a non-specific analyte, redispersion of particles occurs. The analyte quantitation procedure relies on the MBs redispersion rate within the droplet. The influence of different parameters such as magnetic field intensity, flow rate and MBs concentration on the agglutination performances have been investigated and optimized. Although the immuno-agglutination assay described in this work may not compete with enzyme linked immunosorbent assay (ELISA) in terms of sensitivity, it offers major advantages regarding the reagents consumption (analysis is performed in sub microliter droplet) and the platform cost that yields to very cheap analyses. Moreover the fully automated analysis procedure provides reproducible analyses with throughput well above those of existing technologies. We demonstrated the detection of biotinylated phosphatase alkaline in 100 nL sample volumes with an analysis rate of 300 assays per hour and a limit of detection of 100 pM.

  13. Quantitative polymerase chain reaction (PCR) for detection of aquatic animal pathogens in a diagnostic laboratory setting

    USGS Publications Warehouse

    Purcell, Maureen K.; Getchell, Rodman G.; McClure, Carol A.; Weber, S.E.; Garver, Kyle A.

    2011-01-01

    Real-time, or quantitative, polymerase chain reaction (qPCR) is quickly supplanting other molecular methods for detecting the nucleic acids of human and other animal pathogens owing to the speed and robustness of the technology. As the aquatic animal health community moves toward implementing national diagnostic testing schemes, it will need to evaluate how qPCR technology should be employed. This review outlines the basic principles of qPCR technology, considerations for assay development, standards and controls, assay performance, diagnostic validation, implementation in the diagnostic laboratory, and quality assurance and control measures. These factors are fundamental for ensuring the validity of qPCR assay results obtained in the diagnostic laboratory setting.

  14. Stereospecific analysis of sakuranetin by high-performance liquid chromatography: pharmacokinetic and botanical applications.

    PubMed

    Takemoto, Jody K; Remsberg, Connie M; Yáñez, Jaime A; Vega-Villa, Karina R; Davies, Neal M

    2008-11-01

    A stereospecific method for analysis of sakuranetin was developed. Separation was accomplished using a Chiralpak AD-RH column with UV (ultraviolet) detection at 288 nm. The stereospecific linear calibration curves ranged from 0.5 to 100 microg/mL. The mean extraction efficiency was >98%. Precision of the assay was <12% (relative standard deviation (R.S.D.)%), and within 10% at the limit of quantitation (0.5 microg/mL). Bias of the assay was lower than 10%, and within 5% at the limit of quantitation. The assay was applied successfully to pharmacokinetic quantification in rats, and the stereospecific quantification in oranges, grapefruit juice, and matico (Piper aduncum L.).

  15. A multiplex branched DNA assay for parallel quantitative gene expression profiling.

    PubMed

    Flagella, Michael; Bui, Son; Zheng, Zhi; Nguyen, Cung Tuong; Zhang, Aiguo; Pastor, Larry; Ma, Yunqing; Yang, Wen; Crawford, Kimberly L; McMaster, Gary K; Witney, Frank; Luo, Yuling

    2006-05-01

    We describe a novel method to quantitatively measure messenger RNA (mRNA) expression of multiple genes directly from crude cell lysates and tissue homogenates without the need for RNA purification or target amplification. The multiplex branched DNA (bDNA) assay adapts the bDNA technology to the Luminex fluorescent bead-based platform through the use of cooperative hybridization, which ensures an exceptionally high degree of assay specificity. Using in vitro transcribed RNA as reference standards, we demonstrated that the assay is highly specific, with cross-reactivity less than 0.2%. We also determined that the assay detection sensitivity is 25,000 RNA transcripts with intra- and interplate coefficients of variance of less than 10% and less than 15%, respectively. Using three 10-gene panels designed to measure proinflammatory and apoptosis responses, we demonstrated sensitive and specific multiplex gene expression profiling directly from cell lysates. The gene expression change data demonstrate a high correlation coefficient (R(2)=0.94) compared with measurements obtained using the single-plex bDNA assay. Thus, the multiplex bDNA assay provides a powerful means to quantify the gene expression profile of a defined set of target genes in large sample populations.

  16. Development and validation of a quantitative PCR for rapid and specific detection of California sea lion adenovirus 1 and prevalence in wild and managed populations.

    PubMed

    Cortés-Hinojosa, Galaxia; Gulland, Frances M D; Goldstein, Tracey; Venn-Watson, Stephanie; Rivera, Rebecca; Archer, Linda L; Waltzek, Thomas B; Gray, Gregory C; Wellehan, James F X

    2017-03-01

    California sea lion adenovirus 1 (CSLAdV-1) has been associated with hepatitis and enteritis in several wild and captive populations of diverse pinniped species. Currently available tests have been limited to pan-adenoviral polymerase chain reaction (PCR) followed by sequencing. We present the development of a quantitative probe-hybridization PCR (qPCR) assay for rapid, sensitive, and specific detection of this virus in California sea lions ( Zalophus californianus) and other pinnipeds. This assay did not amplify other mammalian adenoviruses and is able to detect consistently down to 10 viral copies per well. Compared with the gold standard conventional pan-adenovirus PCR/sequencing assay, diagnostic sensitivity and specificity of 100% and 88.2% were found, respectively. The lower diagnostic specificity of this qPCR assay may be the result of the lower limit of detection of this assay compared with the gold standard rather than the result of detection of true false-positives.

  17. A highly reproducible quantitative viral outgrowth assay for the measurement of the replication-competent latent HIV-1 reservoir.

    PubMed

    Fun, Axel; Mok, Hoi Ping; Wills, Mark R; Lever, Andrew M

    2017-02-24

    Cure of Human Immunodeficiency Virus (HIV) infection remains elusive due to the persistence of HIV in a latent reservoir. Strategies to eradicate latent infection can only be evaluated with robust, sensitive and specific assays to quantitate reactivatable latent virus. We have taken the standard peripheral blood mononuclear cell (PBMC) based viral outgrowth methodology and from it created a logistically simpler and more highly reproducible assay to quantify replication-competent latent HIV in resting CD4 + T cells, both increasing accuracy and decreasing cost and labour. Purification of resting CD4 + T cells from whole PBMC is expedited and achieved in 3 hours, less than half the time of conventional protocols. Our indicator cell line, SupT1-CCR5 cells (a clonal cell line expressing CD4, CXCR4 and CCR5) provides a readily available standardised readout. Reproducibility compares favourably to other published assays but with reduced cost, labour and assay heterogeneity without compromising sensitivity.

  18. Development of a fluorescent quantitative real-time polymerase chain reaction assay for the detection of Goose parvovirus in vivo

    PubMed Central

    Yang, Jin-Long; Cheng, An-Chun; Wang, Ming-Shu; Pan, Kang-Cheng; Li, Min; Guo, Yu-Fei; Li, Chuan-Feng; Zhu, De-Kang; Chen, Xiao-Yue

    2009-01-01

    Background Goose parvovirus (GPV) is a Dependovirus associated with latent infection and mortality in geese. Currently, it severely affects geese production worldwide. The objective of this study was to develop a fluorescent quantitative real-time polymerase chain reaction (PCR) (FQ-PCR) assay for fast and accurate quantification of GPV DNA in infected goslings, which can aid in the understanding of the regular distribution pattern and the nosogenesis of GPV in vivo. Results The detection limit of the assay was 2.8 × 101 standard DNA copies, with a sensitivity of 3 logs higher than that of the conventional gel-based PCR assay targeting the same gene. The real-time PCR was reproducible, as shown by satisfactory low intraassay and interassay coefficients of variation. Conclusion The high sensitivity, specificity, simplicity, and reproducibility of the GPV fluorogenic PCR assay, combined with a high throughput, make this method suitable for a broad spectrum of GPV etiology-related applications. PMID:19754946

  19. Performance of NucliSens HIV-1 EasyQ Version 2.0 compared with six commercially available quantitative nucleic acid assays for detection of HIV-1 in China.

    PubMed

    Xu, Sihong; Song, Aijing; Nie, Jianhui; Li, Xiuhua; Wang, Youchun

    2010-10-01

    Six HIV-1 viral load assays have been widely used in China. These include the Cobas Amplicor HIV-1 Monitor Version 1.5 ('Amplicor'), Cobas AmpliPrep/Cobas TaqMan HIV-1 test Version 1.0 ('CAP/CTM'), Versant HIV-1 RNA Version 3.0 (branched DNA [bDNA]-based assay; 'Versant bDNA'), Abbott RealTime HIV-1 assay ('Abbott RealTime'), NucliSens HIV-1 QT (nucleic acid sequence-based amplification assay; 'NucliSens NASBA'), and NucliSens EasyQ HIV-1 Version 1.1 ('EasyQ V1.1'). Recently, an updated version of EasyQ V1.1, NucliSens EasyQ HIV-1 Version 2.0 ('EasyQ V2.0') was introduced into China. It is important to evaluate the impact of HIV-1 genotypes on the updated assay compared with the other commercial available assays in China. A total of 175 plasma samples with different HIV-1 clades prevalent in China were collected from treatment-naïve patients. The viral loads of those samples were determined with the seven HIV-1 viral load assays, and the quantitative differences between them were evaluated. Overall, EasyQ V2.0 exhibited a significant correlation (R = 0.769-0.850, p ≤ 0.001) and high agreement (94.77-97.13%, using the Bland-Altman model) with the other six assays. Although no significant differences between EasyQ V2.0 and the other six assays were observed when quantifying clade B' samples, there were statistically significant differences between EasyQ V2.0 and the Amplicor, Versant bDNA, and Abbott RealTime assays when quantifying clade BC samples, and between EasyQ V2.0 and the Versant bDNA and Abbott RealTime assays when quantifying clade AE samples. For clade BC samples, the quantitative differences between EasyQ V2.0 and the Amplicor, Versant bDNA, and Abbott RealTime assays exceeded 0.5 log(10) IU/mL in approximately 50% of samples and exceeded 1 log(10) IU/mL in approximately 15% of samples. For clade AE samples, the quantitative differences between EasyQ V2.0 and the CAP/CTM, Versant bDNA, and Abbott RealTime assays exceeded 0.5 log(10) IU/mL in approximately 50% of samples, and the differences between EasyQ V2.0 and CAP/CTM exceeded 1 log(10) IU/mL in approximately 15% of samples. Genotypes may affect the quantification of HIV-1 RNA, especially in clade BC samples with respect to EasyQ V2.0 and the Amplicor, Versant bDNA, or Abbott RealTime assays, and in clade AE samples with respect to EasyQ V2.0 and the Versant bDNA or Abbott RealTime assays. It is therefore strongly suggested that, where possible, the HIV-1 viral load in infected patients be quantified at follow-up by the same version of the same assay that was used initially.

  20. Evaluation of a Multidrug Assay for Monitoring Adherence to a Regimen for HIV Preexposure Prophylaxis in a Clinical Study, HIV Prevention Trials Network 073.

    PubMed

    Zhang, Yinfeng; Clarke, William; Marzinke, Mark A; Piwowar-Manning, Estelle; Beauchamp, Geetha; Breaud, Autumn; Hendrix, Craig W; Cloherty, Gavin A; Emel, Lynda; Rose, Scott; Hightow-Weidman, Lisa; Siegel, Marc; Shoptaw, Steven; Fields, Sheldon D; Wheeler, Darrell; Eshleman, Susan H

    2017-07-01

    Daily oral tenofovir disoproxil fumarate (TDF)-emtricitabine (FTC) is a safe and effective intervention for HIV preexposure prophylaxis (PrEP). We evaluated the performance of a qualitative assay that detects 20 antiretroviral (ARV) drugs (multidrug assay) in assessing recent PrEP exposure (detection limit, 2 to 20 ng/ml). Samples were obtained from 216 Black men who have sex with men (208 HIV-uninfected men and 8 seroconverters) who were enrolled in a study in the United States evaluating the acceptability of TDF-FTC PrEP (165 of the uninfected men and 5 of the seroconverters accepted PrEP). Samples from 163 of the 165 HIV-uninfected men who accepted PrEP and samples from all 8 seroconverters were also tested for tenofovir (TFV) and FTC using a quantitative assay (detection limit for both drugs, 0.31 ng/ml). HIV drug resistance was assessed in seroconverter samples. The multidrug assay detected TFV and/or FTC in 3 (1.4%) of the 208 uninfected men at enrollment, 84 (40.4%) of the 208 uninfected men at the last study visit, and 1 (12.5%) of the 8 seroconverters. No other ARV drugs were detected. The quantitative assay confirmed all positive results from the multidrug assay and detected TFV and/or FTC in 9 additional samples (TFV range, 0.65 to 16.5 ng/ml; FTC range, 0.33 to 14.6 ng/ml). Resistance mutations were detected in 4 of the 8 seroconverter samples. The multidrug assay had 100% sensitivity and specificity for detecting TFV and FTC at drug concentrations consistent with daily PrEP use. The quantitative assay detected TFV and FTC at lower levels, which also might have provided protection against HIV infection. Copyright © 2017 American Society for Microbiology.

  1. Detection of minute virus of mice using real time quantitative PCR in assessment of virus clearance during the purification of Mammalian cell substrate derived biotherapeutics.

    PubMed

    Zhan, Dejin; Roy, Margaret R; Valera, Christine; Cardenas, Jesse; Vennari, Joann C; Chen, Janice W; Liu, Shengjiang

    2002-12-01

    A real time quantitative PCR assay has been developed for detecting minute virus of mice (MVM). This assay directly quantifies PCR product by monitoring the increase of fluorescence intensity emitted during enzymatic hydrolysis of an oligonucleotide probe labelled covalently with fluorescent reporting and quenching dyes via Taq polymerase 5'-->3' exonuclease activity. The quantity of MVM DNA molecules in the samples was determined using a known amount of MVM standard control DNA fragment cloned into a plasmid (pCR-MVM). We have demonstrated that MVM TaqMan PCR assay is approximately 1000-fold more sensitive than the microplate infectivity assay with the lowest detection limit of approximately one particle per reaction. The reliable detection range is within 100 to 10(9) molecules per reaction with high reproducibility. The intra assay variation is <2.5%, and the inter assays variation is <6.5% when samples contain >100 particles/assay. When we applied the TaqMan PCR to MVM clearance studies done by column chromatography or normal flow viral filtration, we found that the virus removal factors were similar to that of virus infectivity assay. It takes about a day to complete entire assay processes, thus, the TaqMan PCR assay is at least 10-fold faster than the infectivity assay. Therefore, we concluded that this fast, specific, sensitive, and robust assay could replace the infectivity assay for virus clearance evaluation. Copyright 2002 The International Association for Biologicals. Published by Elsevier Science Ltd. All rights reserved.

  2. Rapid detection and quantification of Ebola Zaire virus by one-step real-time quantitative reverse transcription-polymerase chain reaction.

    PubMed

    Ro, Young-Tae; Ticer, Anysha; Carrion, Ricardo; Patterson, Jean L

    2017-04-01

    Given that Ebola virus causes severe hemorrhagic fever in humans with mortality rates as high as 90%, rapid and accurate detection of this virus is essential both for controlling infection and preventing further transmission. Here, a one-step qRT-PCR assay for rapid and quantitative detection of an Ebola Zaire strain using GP, VP24 or VP40 genes as a target is introduced. Routine assay conditions for hydrolysis probe detection were established from the manufacturer's protocol used in the assays. The analytical specificity and sensitivity of each assay was evaluated using in vitro synthesized viral RNA transcripts. The assays were highly specific for the RNA transcripts, no cross-reactivity being observed among them. The limits of detection of the assays ranged from 10 2 to 10 3 copies per reaction. The assays were also evaluated using viral RNAs extracted from cell culture-propagated viruses (Ebola Zaire, Sudan and Reston strains), confirming that they are gene- and strain-specific. The RT-PCR assays detected viral RNAs in blood samples from virus-infected animal, suggesting that they can be also a useful method for identifying Ebola virus in clinical samples. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  3. Multicolor Bioluminescence Boosts Malaria Research: Quantitative Dual-Color Assay and Single-Cell Imaging in Plasmodium falciparum Parasites

    PubMed Central

    2015-01-01

    New reliable and cost-effective antimalarial drug screening assays are urgently needed to identify drugs acting on different stages of the parasite Plasmodium falciparum, and particularly those responsible for human-to-mosquito transmission, that is, the P. falciparum gametocytes. Low Z′ factors, narrow dynamic ranges, and/or extended assay times are commonly reported in current gametocyte assays measuring gametocyte-expressed fluorescent or luciferase reporters, endogenous ATP levels, activity of gametocyte enzymes, or redox-dependent dye fluorescence. We hereby report on a dual-luciferase gametocyte assay with immature and mature P. falciparum gametocyte stages expressing red and green-emitting luciferases from Pyrophorus plagiophthalamus under the control of the parasite sexual stage-specific pfs16 gene promoter. The assay was validated with reference antimalarial drugs and allowed to quantitatively and simultaneously measure stage-specific drug effects on parasites at different developmental stages. The optimized assay, requiring only 48 h incubation with drugs and using a cost-effective luminogenic substrate, significantly reduces assay cost and time in comparison to state-of-the-art analogous assays. The assay had a Z′ factor of 0.71 ± 0.03, and it is suitable for implementation in 96- and 384-well microplate formats. Moreover, the use of a nonlysing d-luciferin substrate significantly improved the reliability of the assay and allowed one to perform, for the first time, P. falciparum bioluminescence imaging at single-cell level. PMID:25102353

  4. A quantitative real-time RT-PCR assay to measure TGF-beta mRNA and its correlation with hematologic, plasma chemistry and organo-somatic indices responses in triamcinolone-treated Atlantic menhaden, Brevoortia tyrannus.

    PubMed

    Johnson, A K; Harms, C A; Levine, J F; Law, J McHugh

    2006-01-01

    A quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) assay was developed to measure transforming growth factor-beta (TGF-beta) in Atlantic menhaden (Brevoortia tyrannus), an estuarine-dependent species plagued by ulcerative skin lesions in the estuaries along the eastern United States. Atlantic menhaden were acclimated in a closed system for two weeks prior to initiation of the study. The synthetic glucocorticoid, triamcinolone acetonide (10mg/kg body weight) was administered by intracoelomic injection and its effect on the splenic mononuclear cell TGF-beta mRNA transcription, liver-somatic index, spleno-somatic index, hematology, and plasma chemistry were compared to untreated fish at 48 and 96h post-treatment. Triamcinolone-treated Atlantic menhaden showed suppression of TGF-beta mRNA production, neutrophilia, monocytosis, lymphopenia, and an increase in blood glucose concentrations. The health indices used in this study may help us interpret some of the changes observed during the development of ulcerative skin lesions in wild-caught menhaden.

  5. Real-time quantitative reverse transcription-PCR assay for renal cell carcinoma-associated antigen G250.

    PubMed

    Chuanzhong, Ye; Ming, Guan; Fanglin, Zhang; Haijiao, Chen; Zhen, Lin; Shiping, Chen; YongKang, Zhang

    2002-04-01

    Gene amplification/expression of G250 is a major event in human renal tumorigenesis. G250-based therapeutic agents and G250-specific gene therapy are under development. These new perspectives call for a sensitive and accurate method to screen G250 alterations in renal cell cancer (RCC) patients and investigate the relationship between G250 mRNA expression and RCC. We developed a quantitative RT-PCR assay for the measurement of G250 mRNA expression using a real-time procedure based on the use of fluorogenic probes and the ABI PRISM 7700 Sequence Detector System. The method has been applied to the measurement of quantitative mRNA level of G250 in 31 cases RCC and 6 normal renal tissues. The dynamic range was 10(3)-10(8). The relationship between Ct and log starting concentration was linear (r=0.99). G250 expression was present in all RCCs with G250 amplification but was absent in normal ones. G250 mRNA expression ranged from 2.9 x 10(3) to 6.5 x 10(7) copy/microg RNA, with a mean value of 3.5 x 10(6) copy/microg RNA. The expression of G250 revealed an inverse correlation to tumor grade. G250 mRNA level did not correlate with the cell types and clinical stages (P>0.05). G250 has the potential to be used as a marker of diagnosis and increasing proliferation in RCC. This new simple, rapid, semi-automated assay was a major alternative to competitive PCR and Northern blot analysis for gene alteration analysis in human tumors and might be a powerful tool for large randomized, prospective cooperative group trials and supporting future G250-based biological and gene therapy approaches.

  6. An Optimized Transient Dual Luciferase Assay for Quantifying MicroRNA Directed Repression of Targeted Sequences

    PubMed Central

    Moyle, Richard L.; Carvalhais, Lilia C.; Pretorius, Lara-Simone; Nowak, Ekaterina; Subramaniam, Gayathery; Dalton-Morgan, Jessica; Schenk, Peer M.

    2017-01-01

    Studies investigating the action of small RNAs on computationally predicted target genes require some form of experimental validation. Classical molecular methods of validating microRNA action on target genes are laborious, while approaches that tag predicted target sequences to qualitative reporter genes encounter technical limitations. The aim of this study was to address the challenge of experimentally validating large numbers of computationally predicted microRNA-target transcript interactions using an optimized, quantitative, cost-effective, and scalable approach. The presented method combines transient expression via agroinfiltration of Nicotiana benthamiana leaves with a quantitative dual luciferase reporter system, where firefly luciferase is used to report the microRNA-target sequence interaction and Renilla luciferase is used as an internal standard to normalize expression between replicates. We report the appropriate concentration of N. benthamiana leaf extracts and dilution factor to apply in order to avoid inhibition of firefly LUC activity. Furthermore, the optimal ratio of microRNA precursor expression construct to reporter construct and duration of the incubation period post-agroinfiltration were determined. The optimized dual luciferase assay provides an efficient, repeatable and scalable method to validate and quantify microRNA action on predicted target sequences. The optimized assay was used to validate five predicted targets of rice microRNA miR529b, with as few as six technical replicates. The assay can be extended to assess other small RNA-target sequence interactions, including assessing the functionality of an artificial miRNA or an RNAi construct on a targeted sequence. PMID:28979287

  7. A multiplexed droplet digital PCR assay performs better than qPCR on inhibition prone samples.

    PubMed

    Sedlak, Ruth Hall; Kuypers, Jane; Jerome, Keith R

    2014-12-01

    We demonstrate the development of a multiplex droplet digital PCR assay for human cytomegalovirus (CMV), human adenovirus species F, and an internal plasmid control that may be useful for PCR inhibition-prone clinical samples. This assay performs better on inhibition-prone stool samples than a quantitative PCR assay for CMV and is the first published clinical virology droplet digital PCR assay to incorporate an internal control. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. How to Combine ChIP with qPCR.

    PubMed

    Asp, Patrik

    2018-01-01

    Chromatin immunoprecipitation (ChIP) coupled with quantitative PCR (qPCR) has in the last 15 years become a basic mainstream tool in genomic research. Numerous commercially available ChIP kits, qPCR kits, and real-time PCR systems allow for quick and easy analysis of virtually anything chromatin-related as long as there is an available antibody. However, the highly accurate quantitative dimension added by using qPCR to analyze ChIP samples significantly raises the bar in terms of experimental accuracy, appropriate controls, data analysis, and data presentation. This chapter will address these potential pitfalls by providing protocols and procedures that address the difficulties inherent in ChIP-qPCR assays.

  9. Multiplexed MRM-based assays for the quantitation of proteins in mouse plasma and heart tissue.

    PubMed

    Percy, Andrew J; Michaud, Sarah A; Jardim, Armando; Sinclair, Nicholas J; Zhang, Suping; Mohammed, Yassene; Palmer, Andrea L; Hardie, Darryl B; Yang, Juncong; LeBlanc, Andre M; Borchers, Christoph H

    2017-04-01

    The mouse is the most commonly used laboratory animal, with more than 14 million mice being used for research each year in North America alone. The number and diversity of mouse models is increasing rapidly through genetic engineering strategies, but detailed characterization of these models is still challenging because most phenotypic information is derived from time-consuming histological and biochemical analyses. To expand the biochemists' toolkit, we generated a set of targeted proteomic assays for mouse plasma and heart tissue, utilizing bottom-up LC/MRM-MS with isotope-labeled peptides as internal standards. Protein quantitation was performed using reverse standard curves, with LC-MS platform and curve performance evaluated by quality control standards. The assays comprising the final panel (101 peptides for 81 proteins in plasma; 227 peptides for 159 proteins in heart tissue) have been rigorously developed under a fit-for-purpose approach and utilize stable-isotope labeled peptides for every analyte to provide high-quality, precise relative quantitation. In addition, the peptides have been tested to be interference-free and the assay is highly multiplexed, with reproducibly determined protein concentrations spanning >4 orders of magnitude. The developed assays have been used in a small pilot study to demonstrate their application to molecular phenotyping or biomarker discovery/verification studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Qualitative and Quantitative Detection of Botulinum Neurotoxins from Complex Matrices: Results of the First International Proficiency Test

    PubMed Central

    Worbs, Sylvia; Fiebig, Uwe; Zeleny, Reinhard; Schimmel, Heinz; Rummel, Andreas; Luginbühl, Werner; Dorner, Brigitte G.

    2015-01-01

    In the framework of the EU project EQuATox, a first international proficiency test (PT) on the detection and quantification of botulinum neurotoxins (BoNT) was conducted. Sample materials included BoNT serotypes A, B and E spiked into buffer, milk, meat extract and serum. Different methods were applied by the participants combining different principles of detection, identification and quantification. Based on qualitative assays, 95% of all results reported were correct. Successful strategies for BoNT detection were based on a combination of complementary immunological, MS-based and functional methods or on suitable functional in vivo/in vitro approaches (mouse bioassay, hemidiaphragm assay and Endopep-MS assay). Quantification of BoNT/A, BoNT/B and BoNT/E was performed by 48% of participating laboratories. It turned out that precise quantification of BoNT was difficult, resulting in a substantial scatter of quantitative data. This was especially true for results obtained by the mouse bioassay which is currently considered as “gold standard” for BoNT detection. The results clearly demonstrate the urgent need for certified BoNT reference materials and the development of methods replacing animal testing. In this context, the BoNT PT provided the valuable information that both the Endopep-MS assay and the hemidiaphragm assay delivered quantitative results superior to the mouse bioassay. PMID:26703724

  11. Commutability of the First World Health Organization International Standard for Human Cytomegalovirus

    PubMed Central

    Preiksaitis, J.; Tong, Y.; Pang, X.; Sun, Y.; Tang, L.; Cook, L.; Pounds, S.; Fryer, J.; Caliendo, A. M.

    2015-01-01

    Quantitative detection of cytomegalovirus (CMV) DNA has become a standard part of care for many groups of immunocompromised patients; recent development of the first WHO international standard for human CMV DNA has raised hopes of reducing interlaboratory variability of results. Commutability of reference material has been shown to be necessary if such material is to reduce variability among laboratories. Here we evaluated the commutability of the WHO standard using 10 different real-time quantitative CMV PCR assays run by eight different laboratories. Test panels, including aliquots of 50 patient samples (40 positive samples and 10 negative samples) and lyophilized CMV standard, were run, with each testing center using its own quantitative calibrators, reagents, and nucleic acid extraction methods. Commutability was assessed both on a pairwise basis and over the entire group of assays, using linear regression and correspondence analyses. Commutability of the WHO material differed among the tests that were evaluated, and these differences appeared to vary depending on the method of statistical analysis used and the cohort of assays included in the analysis. Depending on the methodology used, the WHO material showed poor or absent commutability with up to 50% of assays. Determination of commutability may require a multifaceted approach; the lack of commutability seen when using the WHO standard with several of the assays here suggests that further work is needed to bring us toward true consensus. PMID:26269622

  12. The Relevance of a Novel Quantitative Assay to Detect up to 40 Major Streptococcus pneumoniae Serotypes Directly in Clinical Nasopharyngeal and Blood Specimens

    PubMed Central

    Albrich, Werner C.; van der Linden, Mark P. G.; Bénet, Thomas; Chou, Monidarin; Sylla, Mariam; Barreto Costa, Patricia; Richard, Nathalie; Klugman, Keith P.; Endtz, Hubert P.; Paranhos-Baccalà, Gláucia; Telles, Jean-Noël

    2016-01-01

    For epidemiological and surveillance purposes, it is relevant to monitor the distribution and dynamics of Streptococcus pneumoniae serotypes. Conventional serotyping methods do not provide rapid or quantitative information on serotype loads. Quantitative serotyping may enable prediction of the invasiveness of a specific serotype compared to other serotypes carried. Here, we describe a novel, rapid multiplex real-time PCR assay for identification and quantification of the 40 most prevalent pneumococcal serotypes and the assay impacts in pneumonia specimens from emerging and developing countries. Eleven multiplex PCR to detect 40 serotypes or serogroups were optimized. Quantification was enabled by reference to standard dilutions of known bacterial load. Performance of the assay was evaluated to specifically type and quantify S. pneumoniae in nasopharyngeal and blood samples from adult and pediatric patients hospitalized with pneumonia (n = 664) from five different countries. Serogroup 6 was widely represented in nasopharyngeal specimens from all five cohorts. The most frequent serotypes in the French, South African, and Brazilian cohorts were 1 and 7A/F, 3 and 19F, and 14, respectively. When both samples were available, the serotype in blood was always present as carriage with other serotypes in the nasopharynx. Moreover, the ability of a serotype to invade the bloodstream may be linked to its nasopharyngeal load. The mean nasopharyngeal concentration of the serotypes that moved to the blood was 3 log-fold higher than the ones only found in the nasopharynx. This novel, rapid, quantitative assay may potentially predict some of the S. pneumoniae serotypes invasiveness and assessment of pneumococcal serotype distribution. PMID:26986831

  13. A Novel Quantitative Hemolytic Assay Coupled with Restriction Fragment Length Polymorphisms Analysis Enabled Early Diagnosis of Atypical Hemolytic Uremic Syndrome and Identified Unique Predisposing Mutations in Japan

    PubMed Central

    Yoshida, Yoko; Miyata, Toshiyuki; Matsumoto, Masanori; Shirotani-Ikejima, Hiroko; Uchida, Yumiko; Ohyama, Yoshifumi; Kokubo, Tetsuro; Fujimura, Yoshihiro

    2015-01-01

    For thrombotic microangiopathies (TMAs), the diagnosis of atypical hemolytic uremic syndrome (aHUS) is made by ruling out Shiga toxin-producing Escherichia coli (STEC)-associated HUS and ADAMTS13 activity-deficient thrombotic thrombocytopenic purpura (TTP), often using the exclusion criteria for secondary TMAs. Nowadays, assays for ADAMTS13 activity and evaluation for STEC infection can be performed within a few hours. However, a confident diagnosis of aHUS often requires comprehensive gene analysis of the alternative complement activation pathway, which usually takes at least several weeks. However, predisposing genetic abnormalities are only identified in approximately 70% of aHUS. To facilitate the diagnosis of complement-mediated aHUS, we describe a quantitative hemolytic assay using sheep red blood cells (RBCs) and human citrated plasma, spiked with or without a novel inhibitory anti-complement factor H (CFH) monoclonal antibody. Among 45 aHUS patients in Japan, 24% (11/45) had moderate-to-severe (≥50%) hemolysis, whereas the remaining 76% (34/45) patients had mild or no hemolysis (<50%). The former group is largely attributed to CFH-related abnormalities, and the latter group has C3-p.I1157T mutations (16/34), which were identified by restriction fragment length polymorphism (RFLP) analysis. Thus, a quantitative hemolytic assay coupled with RFLP analysis enabled the early diagnosis of complement-mediated aHUS in 60% (27/45) of patients in Japan within a week of presentation. We hypothesize that this novel quantitative hemolytic assay would be more useful in a Caucasian population, who may have a higher proportion of CFH mutations than Japanese patients. PMID:25951460

  14. Validation of a method for quantitation of the clopidogrel active metabolite, clopidogrel, clopidogrel carboxylic acid, and 2-oxo-clopidogrel in feline plasma.

    PubMed

    Lyngby, Janne G; Court, Michael H; Lee, Pamela M

    2017-08-01

    The clopidogrel active metabolite (CAM) is unstable and challenging to quantitate. The objective was to validate a new method for stabilization and quantitation of CAM, clopidogrel, and the inactive metabolites clopidogrel carboxylic acid and 2-oxo-clopiodgrel in feline plasma. Two healthy cats administered clopidogrel to demonstrate assay in vivo utility. Stabilization of CAM was achieved by adding 2-bromo-3'methoxyacetophenone to blood tubes to form a derivatized CAM (CAM-D). Method validation included evaluation of calibration curve linearity, accuracy, and precision; within and between assay precision and accuracy; and compound stability using spiked blank feline plasma. Analytes were measured by high performance liquid chromatography with tandem mass spectrometry. In vivo utility was demonstrated by a pharmacokinetic study of cats given a single oral dose of 18.75mg clopidogrel. The 2-oxo-clopidogrel metabolite was unstable. Clopidogrel, CAM-D, and clopidogrel carboxylic acid appear stable for 1 week at room temperature and 9 months at -80°C. Standard curves showed linearity for CAM-D, clopidogrel, and clopidogrel carboxylic acid (r > 0.99). Between assay accuracy and precision was ≤2.6% and ≤7.1% for CAM-D and ≤17.9% and ≤11.3% for clopidogrel and clopidogrel carboxylic acid. Within assay precision for all three compounds was ≤7%. All three compounds were detected in plasma from healthy cats receiving clopidogrel. This methodology is accurate and precise for simultaneous quantitation of CAM-D, clopidogrel, and clopidogrel carboxylic acid in feline plasma but not 2-oxo-clopidogrel. Validation of this assay is the first step to more fully understanding the use of clopidogrel in cats. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Performance Assessment of Human and Cattle Associated Quantitative Real-time PCR Assays - slides

    EPA Science Inventory

    The presentation overview is (1) Single laboratory performance assessment of human- and cattle associated PCR assays and (2) A Field Study: Evaluation of two human fecal waste management practices in Ohio watershed.

  16. Quantitative phenotyping via deep barcode sequencing.

    PubMed

    Smith, Andrew M; Heisler, Lawrence E; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J; Chee, Mark; Roth, Frederick P; Giaever, Guri; Nislow, Corey

    2009-10-01

    Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or "Bar-seq," outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that approximately 20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene-environment interactions on a genome-wide scale.

  17. Quantitative Detection of Pork Contamination in Cooked Meat Products by ELISA.

    PubMed

    Thienes, Cortlandt P; Masiri, Jongkit; Benoit, Lora A; Barrios-Lopez, Brianda; Samuel, Santosh A; Cox, David P; Dobritsa, Anatoly P; Nadala, Cesar; Samadpour, Mansour

    2018-05-01

    Recent news of many cases of adulteration of meats with pork has bolstered the need for a way to detect and quantify the unwanted contamination of pork in other meats. To address this need, Microbiologique, Inc. has produced a sandwich ELISA assay that can rapidly quantify the presence of pork in cooked horse, beef, chicken, goat, and lamb meats. We carried out a validation study and showed that this assay has an analytical sensitivity of 0.00014 and 0.00040% (w/v) for cooked and autoclaved pork, respectively, and an analytical range of quantitation of 0.05-3.2% (w/v) in the absence of other meats. The assay can measure pork contamination down to 0.1% (w/w) in the presence of cooked horse, beef, chicken, goat, and lamb meats. The assay is quick and can be completed in 1 h and 10 min.

  18. Evaluation and Validation of a Real-Time PCR Assay for Detection and Quantitation of Human Adenovirus 14 from Clinical Samples

    DTIC Science & Technology

    2009-09-01

    Legionella Pneumophila (ATCC 33152) were acquired from the American Type Culture Collection (ATCC; Manassas, VA, USA). Conventional PCR testing The primers... Legionella Pneumophila – One nanogram of genomic DNA was used as a DNA template in each assay. Assays were performed in triplicate. Samples were negative at

  19. Determining Resistance of Toxoplasma gondii Oocysts to UV Disinfection Using Cell Culture and a Mouse Bioassay

    USDA-ARS?s Scientific Manuscript database

    The effect of UV exposure on Toxoplasma gondii oocysts has not been completely defined for use in water disinfection. This study evaluated irradiated oocysts by three assays: a SCID mouse biassay, an in vitro T. gondii oocyst plaque assay (TOP-assay), and a quantitative reverse-transcriptase real-t...

  20. An environmental DNA assay for detecting Arctic grayling in the upper Missouri River basin, North America

    Treesearch

    K. J. Carim; J. C. S. Dysthe; Michael Young; Kevin McKelvey; Michael Schwartz

    2016-01-01

    The upper Missouri River basin in the northwestern US contains disjunct Arctic grayling (Thymallus arcticus) populations of conservation concern. To assist efforts aimed at understanding Artic grayling distribution, we developed a quantitative PCR assay to detect the presence of Arctic grayling DNA in environmental samples. The assay amplified low...

  1. Development and evaluation of ELISA and qRT-PCR for identification of Squash vein yellowing virus in cucurbits

    USDA-ARS?s Scientific Manuscript database

    Enzyme linked-immunosorbent assay (ELISA) and quantitative reverse transcription-PCR (qRT-PCR) assays were developed for identification of Squash vein yellowing virus (SqVYV), the cause of viral watermelon vine decline. Both assays were capable of detecting SqVYV in a wide range of cucurbit hosts. ...

  2. Comparison of quantitative and qualitative tests for glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    LaRue, Nicole; Kahn, Maria; Murray, Marjorie; Leader, Brandon T; Bansil, Pooja; McGray, Sarah; Kalnoky, Michael; Zhang, Hao; Huang, Huiqiang; Jiang, Hui; Domingo, Gonzalo J

    2014-10-01

    A barrier to eliminating Plasmodium vivax malaria is inadequate treatment of infected patients. 8-Aminoquinoline-based drugs clear the parasite; however, people with glucose-6-phosphate dehydrogenase (G6PD) deficiency are at risk for hemolysis from these drugs. Understanding the performance of G6PD deficiency tests is critical for patient safety. Two quantitative assays and two qualitative tests were evaluated. The comparison of quantitative assays gave a Pearson correlation coefficient of 0.7585 with significant difference in mean G6PD activity, highlighting the need to adhere to a single reference assay. Both qualitative tests had high sensitivity and negative predictive value at a cutoff G6PD value of 40% of normal activity if interpreted conservatively and performed under laboratory conditions. The performance of both tests dropped at a cutoff level of 45%. Cytochemical staining of specimens confirmed that heterozygous females with > 50% G6PD-deficient cells can seem normal by phenotypic tests. © The American Society of Tropical Medicine and Hygiene.

  3. Comparison of Versant HBV DNA 3.0 and COBAS AmpliPrep-COBAS TaqMan assays for hepatitis B DNA quantitation: Possible clinical implications.

    PubMed

    Garbuglia, A R; Angeletti, C; Lauria, F N; Zaccaro, P; Cocca, A M; Pisciotta, M; Solmone, M; Capobianchi, M R

    2007-12-01

    We compared two commercial assays for HBV DNA quantitation, Versant HBV 3.0, System 340 (bDNA; Bayer Diagnostics) and COBAS AmpliPrep-COBAS TaqMan HBV Test (TaqMan; Roche Diagnostics). Analytical sensitivity, calculated on WHO International Standard, predicted 95% detection rate at 11.4 and 520.2IU/ml for TaqMan and bDNA, respectively. Specificity, established on 50 blood donor samples, was 100% and 84% for TaqMan and bDNA, respectively. When using clinical samples, HBV DNA was detected by TaqMan in 21/55 samples negative to bDNA. Mean values of HBV DNA obtained with bDNA were higher than those obtained with TaqMan (4.09log(10)+/-1.90 versus 3.39log(10)+/-2.41, p<0.001), and 24.4% of samples showed differences in viral load values >0.5log(10), without association with HBV genotype. There was a good correlation for HBV DNA concentrations measured by the two assays (r=0.94; p<0.001) within the overlapping range, and the distribution of results with respect to relevant clinical threshold recently confirmed (20,000 and 2000IU/ml) was similar. Approximately 50% of samples with low HBV DNA, appreciated by TaqMan but not by bDNA, were successfully sequenced in pol region, where drug resistance mutations are located.

  4. Detection of Ochratoxin a Using Molecular Beacons and Real-Time PCR Thermal Cycler

    PubMed Central

    Sanzani, Simona Marianna; Reverberi, Massimo; Fanelli, Corrado; Ippolito, Antonio

    2015-01-01

    We developed a simple and cheap assay for quantitatively detecting ochratoxin A (OTA) in wine. A DNA aptamer available in literature was used as recognition probe in its molecular beacon form, i.e., with a fluorescence-quenching pair at the stem ends. Our aptabeacon could adopt a conformation allowing OTA binding, causing a fluorescence rise due to the increased distance between fluorophore and quencher. We used real-time PCR equipment for capturing the signal. With this assay, under optimized conditions, the entire process can be completed within 1 h. In addition, the proposed system exhibited a good selectivity for OTA against other mycotoxins (ochratoxin B and aflatoxin M1) and limited interference from aflatoxin B1 and patulin. A wide linear detection range (0.2–2000 µM) was achieved, with LOD = 13 nM, r = 0.9952, and R2 = 0.9904. The aptabeacon was also applied to detect OTA in red wine spiked with the same dilution series. A linear correlation with a LOD = 19 nM, r = 0.9843, and R2 = 0.9708 was observed, with recoveries in the range 63%–105%. Intra- and inter-day assays confirmed its reproducibility. The proposed biosensor, although still being finalized, might significantly facilitate the quantitative detection of OTA in wine samples, thus improving their quality control from a food safety perspective. PMID:25760080

  5. Clinical Comparison of an Enhanced-Sensitivity Branched-DNA Assay and Reverse Transcription-PCR for Quantitation of Human Immunodeficiency Virus Type 1 RNA in Plasma

    PubMed Central

    Nolte, Frederick S.; Boysza, Jodi; Thurmond, Cathy; Clark, W. Scott; Lennox, Jeffrey L.

    1998-01-01

    The performance characteristics of an enhanced-sensitivity branched-DNA assay (bDNA) (Quantiplex HIV-1 version 2.0; Chiron Corp., Emeryville, Calif.) and a reverse transcription (RT)-PCR assay (AMPLICOR HIV-1 Monitor; Roche Diagnostic Systems, Inc., Branchburg, N.J.) were compared in a molecular diagnostic laboratory. Samples used in this evaluation included linearity and reproducibility panels made by dilution of a human immunodeficiency virus type 1 (HIV-1) stock culture of known virus particle count in HIV-1-negative plasma, a subtype panel consisting of HIV-1 subtypes A through F at a standardized level, and 64 baseline plasma specimens from HIV-1-infected individuals. Plots of log10 HIV RNA copies per milliliter versus log10 nominal virus particles per milliliter demonstrated that both assays were linear over the stated dynamic ranges (bDNA, r = 0.98; RT-PCR, r = 0.99), but comparison of the slopes of the regression lines (bDNA, m = 0.96; RT-PCR, m = 0.83) suggested that RT-PCR had greater proportional systematic error. The between-run coefficients of variation for bDNA and RT-PCR were 24.3 and 34.3%, respectively, for a sample containing 1,650 nominal virus particles/ml and 44.0 and 42.7%, respectively, for a sample containing 165 nominal virus particles/ml. Subtypes B, C, and D were quantitated with similar efficiencies by bDNA and RT-PCR; however, RT-PCR was less efficient in quantitating subtypes A, E, and F. One non-B subtype was recognized in our clinical specimens based on the ratio of values obtained with the two methods. HIV-1 RNA was quantitated in 53 (83%) baseline plasma specimens by bDNA and in 55 (86%) specimens by RT-PCR. RT-PCR values were consistently greater than bDNA values, with population means of 142,419 and 67,580 copies/ml, respectively (P < 0.01). The results were highly correlated (r = 0.91), but the agreement was poor (mean difference in log10 copies per milliliter ± 2 standard deviations, 0.45 ± 0.61) for the 50 clinical specimens that gave discrete values with both methods. PMID:9508301

  6. Different Approaches for Assaying Melanosome Transfer

    PubMed Central

    Berens, Werner; Van Den Bossche, Karolien; Yoon, Tae-Jin; Westbroek, Wendy; Valencia, Julio C.; Out, Coby J.; Naeyaert, Jean Marie; Hearing, Vincent J.; Lambert, Jo

    2006-01-01

    Summary Many approaches have been tried to establish assays for melanosome transfer to keratinocytes. In this report we describe and summarize various novel attempts to label melanosomes in search of a reliable, specific, reproducible and quantitative assay system. We tried to fluorescently label melanosomes by transfection of GFP-labeled melanosomal proteins and by incubation of melanocytes with fluorescent melanin intermediates or homologues. In most cases a weak cytoplasmic fluorescence was perceived, which was probably due to incorrect sorting or deficient incorporation of the fluorescent protein and different localisation. We were able to label melanosomes via incorporation of 14C-thiouracil into melanin. Consequently, we tried to develop an assay to separate keratinocytes with transferred radioactivity from melanocytes after co-culture. Differential trypsination and different magnetic bead separation techniques were tested with unsatisfactory results. An attempt was also made to incorporate fluorescent thiouracil, since this would allow cells to be separated by FACS. In conclusion, different methods to measure pigment transfer between donor melanocytes and acceptor keratinocytes were thoroughly examined. This information could give other researchers a head start in the search for a melanosome transfer assay with said qualities to better understand pigment transfer. PMID:16162177

  7. Assay to mechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage

    PubMed Central

    Little, William C.; Smith, Michael L.; Ebneter, Urs; Vogel, Viola

    2013-01-01

    In response to growing needs for quantitative biochemical and cellular assays that address whether the extracellular matrix (ECM) acts as a mechanochemical signal converter to co-regulate cellular mechanotransduction processes, a new assay is presented where plasma fibronectin fibers are manually deposited onto elastic sheets, while force-induced changes in protein conformation are monitored by fluorescence resonance energy transfer (FRET). Fully relaxed assay fibers can be stretched at least 5–6 fold, which involves Fn domain unfolding, before the fibers break. In native fibroblast ECM, this full range of stretch-regulated conformations coexists in every field of view confirming that the assay fibers are physiologically relevant model systems. Since alterations of protein function will directly correlate with their extension in response to force, the FRET vs. strain curves presented herein enable the mapping of fibronectin strain distributions in 2D and 3D cell cultures with high spatial resolution. Finally, cryptic sites for fibronectin’s N-terminal 70-kD fragment were found to be exposed at relatively low strain, demonstrating the assay’s potential to analyze stretch-regulated protein-rotein interactions. PMID:18417335

  8. Single-cell quantitative HER2 measurement identifies heterogeneity and distinct subgroups within traditionally defined HER2-positive patients.

    PubMed

    Onsum, Matthew D; Geretti, Elena; Paragas, Violette; Kudla, Arthur J; Moulis, Sharon P; Luus, Lia; Wickham, Thomas J; McDonagh, Charlotte F; MacBeath, Gavin; Hendriks, Bart S

    2013-11-01

    Human epidermal growth factor receptor 2 (HER2) is an important biomarker for breast and gastric cancer prognosis and patient treatment decisions. HER2 positivity, as defined by IHC or fluorescent in situ hybridization testing, remains an imprecise predictor of patient response to HER2-targeted therapies. Challenges to correct HER2 assessment and patient stratification include intratumoral heterogeneity, lack of quantitative and/or objective assays, and differences between measuring HER2 amplification at the protein versus gene level. We developed a novel immunofluorescence method for quantitation of HER2 protein expression at the single-cell level on FFPE patient samples. Our assay uses automated image analysis to identify and classify tumor versus non-tumor cells, as well as quantitate the HER2 staining for each tumor cell. The HER2 staining level is converted to HER2 protein expression using a standard cell pellet array stained in parallel with the tissue sample. This approach allows assessment of HER2 expression and heterogeneity within a tissue section at the single-cell level. By using this assay, we identified distinct subgroups of HER2 heterogeneity within traditional definitions of HER2 positivity in both breast and gastric cancers. Quantitative assessment of intratumoral HER2 heterogeneity may offer an opportunity to improve the identification of patients likely to respond to HER2-targeted therapies. The broad applicability of the assay was demonstrated by measuring HER2 expression profiles on multiple tumor types, and on normal and diseased heart tissues. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Validation of the Pockit Dengue Virus Reagent Set for Rapid Detection of Dengue Virus in Human Serum on a Field-Deployable PCR System.

    PubMed

    Tsai, Jih-Jin; Liu, Li-Teh; Lin, Ping-Chang; Tsai, Ching-Yi; Chou, Pin-Hsing; Tsai, Yun-Long; Chang, Hsiao-Fen Grace; Lee, Pei-Yu Alison

    2018-05-01

    Dengue virus (DENV) infection, a mosquito-borne disease, is a major public health problem in tropical countries. Point-of-care DENV detection with good sensitivity and specificity enables timely early diagnosis of DENV infection, facilitating effective disease management and control, particularly in regions of low resources. The Pockit dengue virus reagent set (GeneReach Biotech), a reverse transcription insulated isothermal PCR (RT-iiPCR), is available to detect all four serotypes of DENV on the field-deployable Pockit system, which is ready for on-site applications. In this study, analytical and clinical performances of the assay were evaluated. The index assay did not react with 14 non-DENV human viruses, indicating good specificity. Compared to the U.S. CDC DENV-1-4 real-time quantitative RT-PCR (qRT-PCR) assay, testing with serial dilutions of virus-spiked human sera demonstrated that the index assay had detection endpoints that were separately comparable with the 4 serotypes. Excellent reproducibility was observed among repeat tests done by six operators at three sites. In clinical performance, 195 clinical sera collected around Kaohsiung city in 2012 and 21 DENV-4-spiked sera were tested with the RT-iiPCR and qRT-PCR assays in parallel. The 121 (11 DENV-1, 78 DENV-2, 11 DENV-3, and 21 DENV-4) qRT-PCR-positive and 95 qRT-PCR-negative samples were all positive and negative by the RT-iiPCR reagent results, respectively, demonstrating high (100%) interrater agreement (95% confidence interval [CI 95% ], ∼98.81% to 100%; κ = 1). With analytical and clinical performance equivalent to those of the reference qRT-PCR assay, the index PCR assay on the field-deployable system can serve as a highly sensitive and specific on-site tool for DENV detection. Copyright © 2018 American Society for Microbiology.

  10. SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries.

    PubMed

    Wu, Jemma X; Song, Xiaomin; Pascovici, Dana; Zaw, Thiri; Care, Natasha; Krisp, Christoph; Molloy, Mark P

    2016-07-01

    The use of data-independent acquisition methods such as SWATH for mass spectrometry based proteomics is usually performed with peptide MS/MS assay libraries which enable identification and quantitation of peptide peak areas. Reference assay libraries can be generated locally through information dependent acquisition, or obtained from community data repositories for commonly studied organisms. However, there have been no studies performed to systematically evaluate how locally generated or repository-based assay libraries affect SWATH performance for proteomic studies. To undertake this analysis, we developed a software workflow, SwathXtend, which generates extended peptide assay libraries by integration with a local seed library and delivers statistical analysis of SWATH-quantitative comparisons. We designed test samples using peptides from a yeast extract spiked into peptides from human K562 cell lysates at three different ratios to simulate protein abundance change comparisons. SWATH-MS performance was assessed using local and external assay libraries of varying complexities and proteome compositions. These experiments demonstrated that local seed libraries integrated with external assay libraries achieve better performance than local assay libraries alone, in terms of the number of identified peptides and proteins and the specificity to detect differentially abundant proteins. Our findings show that the performance of extended assay libraries is influenced by the MS/MS feature similarity of the seed and external libraries, while statistical analysis using multiple testing corrections increases the statistical rigor needed when searching against large extended assay libraries. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries*

    PubMed Central

    Wu, Jemma X.; Song, Xiaomin; Pascovici, Dana; Zaw, Thiri; Care, Natasha; Krisp, Christoph; Molloy, Mark P.

    2016-01-01

    The use of data-independent acquisition methods such as SWATH for mass spectrometry based proteomics is usually performed with peptide MS/MS assay libraries which enable identification and quantitation of peptide peak areas. Reference assay libraries can be generated locally through information dependent acquisition, or obtained from community data repositories for commonly studied organisms. However, there have been no studies performed to systematically evaluate how locally generated or repository-based assay libraries affect SWATH performance for proteomic studies. To undertake this analysis, we developed a software workflow, SwathXtend, which generates extended peptide assay libraries by integration with a local seed library and delivers statistical analysis of SWATH-quantitative comparisons. We designed test samples using peptides from a yeast extract spiked into peptides from human K562 cell lysates at three different ratios to simulate protein abundance change comparisons. SWATH-MS performance was assessed using local and external assay libraries of varying complexities and proteome compositions. These experiments demonstrated that local seed libraries integrated with external assay libraries achieve better performance than local assay libraries alone, in terms of the number of identified peptides and proteins and the specificity to detect differentially abundant proteins. Our findings show that the performance of extended assay libraries is influenced by the MS/MS feature similarity of the seed and external libraries, while statistical analysis using multiple testing corrections increases the statistical rigor needed when searching against large extended assay libraries. PMID:27161445

  12. A quantitative and high-throughput assay of human papillomavirus DNA replication.

    PubMed

    Gagnon, David; Fradet-Turcotte, Amélie; Archambault, Jacques

    2015-01-01

    Replication of the human papillomavirus (HPV) double-stranded DNA genome is accomplished by the two viral proteins E1 and E2 in concert with host DNA replication factors. HPV DNA replication is an established model of eukaryotic DNA replication and a potential target for antiviral therapy. Assays to measure the transient replication of HPV DNA in transfected cells have been developed, which rely on a plasmid carrying the viral origin of DNA replication (ori) together with expression vectors for E1 and E2. Replication of the ori-plasmid is typically measured by Southern blotting or PCR analysis of newly replicated DNA (i.e., DpnI digested DNA) several days post-transfection. Although extremely valuable, these assays have been difficult to perform in a high-throughput and quantitative manner. Here, we describe a modified version of the transient DNA replication assay that circumvents these limitations by incorporating a firefly luciferase expression cassette in cis of the ori. Replication of this ori-plasmid by E1 and E2 results in increased levels of firefly luciferase activity that can be accurately quantified and normalized to those of Renilla luciferase expressed from a control plasmid, thus obviating the need for DNA extraction, digestion, and analysis. We provide a detailed protocol for performing the HPV type 31 DNA replication assay in a 96-well plate format suitable for small-molecule screening and EC50 determinations. The quantitative and high-throughput nature of the assay should greatly facilitate the study of HPV DNA replication and the identification of inhibitors thereof.

  13. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis.

    PubMed

    Te, Shu Harn; Chen, Enid Yingru; Gin, Karina Yew-Hoong

    2015-08-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques-qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Development and Validation of a Quantitative PCR Assay Using Multiplexed Hydrolysis Probes for Detection and Quantification of Theileria orientalis Isolates and Differentiation of Clinically Relevant Subtypes

    PubMed Central

    Bogema, D. R.; Deutscher, A. T.; Fell, S.; Collins, D.; Eamens, G. J.

    2015-01-01

    Theileria orientalis is an emerging pathogen of cattle in Asia, Australia, and New Zealand. This organism is a vector-borne hemoprotozoan that causes clinical disease characterized by anemia, abortion, and death, as well as persistent subclinical infections. Molecular methods of diagnosis are preferred due to their sensitivity and utility in differentiating between pathogenic and apathogenic genotypes. Conventional PCR (cPCR) assays for T. orientalis detection and typing are laborious and do not provide an estimate of parasite load. Current real-time PCR assays cannot differentiate between clinically relevant and benign genotypes or are only semiquantitative without a defined clinical threshold. Here, we developed and validated a hydrolysis probe quantitative PCR (qPCR) assay which universally detects and quantifies T. orientalis and identifies the clinically associated Ikeda and Chitose genotypes (UIC assay). Comparison of the UIC assay results with previously validated universal and genotype-specific cPCR results demonstrated that qPCR detects and differentiates T. orientalis with high sensitivity and specificiy. Comparison of quantitative results based on percent parasitemia, determined via blood film analysis and packed cell volume (PCV) revealed significant positive and negative correlations, respectively. One-way analysis of variance (ANOVA) indicated that blood samples from animals with clinical signs of disease contained statistically higher concentrations of T. orientalis DNA than animals with subclinical infections. We propose clinical thresholds to assist in classifying high-, moderate-, and low-level infections and describe how parasite load and the presence of the Ikeda and Chitose genotypes relate to disease. PMID:25588653

  15. Pentobarbital quantitation using EMIT serum barbiturate assay reagents: application to monitoring of high-dose pentobarbital therapy.

    PubMed

    Pape, B E; Cary, P L; Clay, L C; Godolphin, W

    1983-01-01

    Pentobarbital serum concentrations associated with a high-dose therapeutic regimen were determined using EMIT immunoassay reagents. Replicate analyses of serum controls resulted in a within-assay coefficient of variation of 5.0% and a between-assay coefficient of variation of 10%. Regression analysis of 44 serum samples analyzed by this technique (y) and a reference procedure (x) were y = 0.98x + 3.6 (r = 0.98; x = ultraviolet spectroscopy) and y = 1.04x + 2.4 (r = 0.96; x = high-performance liquid chromatography). Clinical evaluation of the results indicates the immunoassay is sufficiently sensitive and selective for pentobarbital to allow accurate quantitation within the therapeutic range associated with high-dose therapy.

  16. Non-animal sensitization testing: state-of-the-art.

    PubMed

    Vandebriel, Rob J; van Loveren, Henk

    2010-05-01

    Predictive tests to identify the sensitizing properties of chemicals are carried out using animals. In the European Union timelines for phasing out many standard animal tests were established for cosmetics. Following this policy, the new European Chemicals Legislation (REACH) favors alternative methods, if validated and appropriate. In this review the authors aim to provide a state-of-the art overview of alternative methods (in silico, in chemico, and in vitro) to identify contact and respiratory sensitizing capacity and in some occasions give a measure of potency. The past few years have seen major advances in QSAR (quantitative structure-activity relationship) models where especially mechanism-based models have great potential, peptide reactivity assays where multiple parameters can be measured simultaneously, providing a more complete reactivity profile, and cell-based assays. Several cell-based assays are in development, not only using different cell types, but also several specifically developed assays such as three-dimenionally (3D)-reconstituted skin models, an antioxidant response reporter assay, determination of signaling pathways, and gene profiling. Some of these assays show relatively high sensitivity and specificity for a large number of sensitizers and should enter validation (or are indeed entering this process). Integrating multiple assays in a decision tree or integrated testing system is a next step, but has yet to be developed. Adequate risk assessment, however, is likely to require significantly more time and efforts.

  17. Establishment and Application of a Loop-Mediated Isothermal Amplification Method for Simple, Specific, Sensitive and Rapid Detection of Toxoplasma gondii

    PubMed Central

    CAO, Lili; CHENG, Ronghua; YAO, Lin; YUAN, Shuxian; YAO, Xinhua

    2013-01-01

    ABSTRACT The Loop-mediated isothermal amplification (LAMP) method amplifies DNA with high simply, specificity, sensitivity and rapidity. In this study, A LAMP assay with 6 primers targeting a highly conserved region of the GRA1 gene was developed to diagnose Toxoplasma gondii. The reaction time of the LAMP assay was shortened to 30 min after optimizing the reaction system. The LAMP assay was found to be highly specific and stable. The detection limit of the LAMP assay was 10 copies, the same as that of the conventional PCR. We used the LAMP assay to develop a real-time fluorogenic protocol to quantitate T. gondii DNA and generated a log-linear regression plot by plotting the time-to-threshold values against genomic equivalent copies. Furthermore, the LAMP assay was applied to detect T. gondii DNA in 423 blood samples and 380 lymph node samples from 10 pig farms, and positive results were obtained for 7.8% and 8.2% of samples, respectively. The results showed that the LAMP method is slightly more sensitive than conventional PCR (6.1% and 7.6%). Positive samples obtained from 6 pig farms. The LAMP assay established in this study resulted in simple, specific, sensitive and rapid detection of T. gondii DNA and is expected to play an important role in clinical detection of T. gondii. PMID:23965849

  18. Overproduction and characterization of a lytic polysaccharide monooxygenase in Bacillus subtilis using an assay based on ascorbate consumption.

    PubMed

    Yu, Mi-Ji; Yoon, Sun-Hee; Kim, Young-Wan

    2016-11-01

    Lytic polysaccharide monooxygenases (LPMOs) are copper ion-containing enzymes that degrade crystalline polysaccharides, such as cellulose or chitin, through an oxidative mechanism. To the best of our knowledge, there are no assay methods for the direct characterization of LPMOs that degrade substrates without coupled enzymes. As such, in this study, a coupled enzyme-free assay method for LPMOs was developed, which is based on measuring the consumption of ascorbic acid used as an external electron donor for LPMOs. To establish this new assay method, a chitin-active LPMO from Bacillus atrophaeus (BatLPMO10) was cloned as a model enzyme. An expression system using B. subtilis as the host cell yielded a simple purification process without complicated periplasmic fractionation, as well as improved productivity by 3.7-fold higher than that of Escherichia coli BL21(DE3). At the optimum pH determined using a newly developed assay, BatLPMO10 showed the highest activity in terms of promoting chitin degradation by a chitinase. In addition, the assay method indicated that BatLPMO10 was inhibited by sodium ions, and BatLPMO10 and a chitinase mutually enhanced each other's activities upon degrading chitin as the substrate. In conclusion, this hydrolase-free ascorbate assay allows quantitative analysis of BatLPMO10 without a coupled enzyme. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Performance of transport and selective media for swine Bordetella bronchiseptica recovery and it comparison to polymerase chain reaction detection

    PubMed Central

    Coutinho, Tania Alen; Bernardi, Mari Lourdes; de Itapema Cardoso, Marisa Ribeiro; Borowski, Sandra Maria; Moreno, Andrea Micke; de Barcellos, David Emilio Santos Neves

    2009-01-01

    Three comparative assays were performed seeking to improve the sensitivity of the diagnosis of Bordetella bronchiseptica infection analyzing swine nasal swabs. An initial assay compared the recovery of B. bronchiseptica from swabs simultaneously inoculated with B. bronchiseptica and some interfering bacteria, immersed into three transport formulations (Amies with charcoal, trypticase soy broth and phosphate buffer according to Soerensen supplemented with 5% of bovine fetal serum) and submitted to different temperatures (10°C and 27°C) and periods of incubation (24, 72 and 120 hours). A subsequent assay compared three selective media (MacConkey agar, modified selective medium G20G and a ceftiofur medium) for their recovery capabilities from clinical specimens. One last assay compared the polymerase chain reaction to the three selective media. In the first assay, the recovery of B. bronchiseptica from transport systems was better at 27°C and the three formulations had good performances at this temperature, but the collection of qualitative and quantitative analysis indicated the advantage of Amies medium for nasal swabs transportation. The second assay indicated that MacConkey agar and modified G20G had similar results and were superior to the ceftiofur medium. In the final assay, polymerase chain reaction presented superior capability of B. bronchiseptica detection to culture procedures. PMID:24031390

  20. Rapid, quantitative determination of bacteria in water. [adenosine triphosphate

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Thomas, R. R.; Jeffers, E. L.; Deming, J. W. (Inventor)

    1978-01-01

    A bioluminescent assay for ATP in water borne bacteria is made by adding nitric acid to a water sample with concentrated bacteria to rupture the bacterial cells. The sample is diluted with sterile, deionized water, then mixed with a luciferase-luciferin mixture and the resulting light output of the bioluminescent reaction is measured and correlated with bacteria present. A standard and a blank also are presented so that the light output can be correlated to bacteria in the sample and system noise can be substracted from the readings. A chemiluminescent assay for iron porphyrins in water borne bacteria is made by adding luminol reagent to a water sample with concentrated bacteria and measuring the resulting light output of the chemiluminescent reaction.

  1. A versatile quantitation platform based on platinum nanoparticles incorporated volumetric bar-chart chip for highly sensitive assays.

    PubMed

    Wang, Yuzhen; Zhu, Guixian; Qi, Wenjin; Li, Ying; Song, Yujun

    2016-11-15

    Platinum nanoparticles incorporated volumetric bar-chart chip (PtNPs-V-Chip) is able to be used for point-of-care tests by providing quantitative and visualized readout without any assistance from instruments, data processing, or graphic plotting. To improve the sensitivity of PtNPs-V-Chip, hybridization chain reaction was employed in this quantitation platform for highly sensitive assays that can detect as low as 16 pM Ebola Virus DNA, 0.01ng/mL carcinoembryonic antigen (CEA), and the 10 HER2-expressing cancer cells. Based on this amplified strategy, a 100-fold decrease of detection limit was achieved for DNA by improving the number of platinum nanoparticle catalyst for the captured analyte. This quantitation platform can also distinguish single base mismatch of DNA hybridization and observe the concentration threshold of CEA. The new strategy lays the foundation for this quantitation platform to be applied in forensic analysis, biothreat detection, clinical diagnostics and drug screening. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Characterization of vaginal Lactobacillus species by rplK -based multiplex qPCR in Russian women.

    PubMed

    Demkin, Vladimir V; Koshechkin, Stanislav I

    2017-10-01

    We describe a multiplex qPCR assay for identification and quantitative assessment of a set of vaginal Lactobacillus species, including L. acidophilus, L. crispatus, L. gasseri, L. helveticus, L. iners, and L. jensenii. The assay extends the previously developed qPCR method for Lactobacillus detection and total quantification based on targeting the rplK gene. Both assays use only single pair of primers and a set of probes combined in three reactions, comprising a vaginal Lactobacillus diagnostic assay panel. The utility of the diagnostic panel was evaluated by analyzing of vaginal swab specimens from 145 patients with different status of vaginal health. Most frequently, only one Lactobacillus species was dominant (68,9%), mostly L. crispatus (18,6%) or L. iners (33,1%), but two or three Lactobacillus species were also being simultaneously detected (24,9%). The diagnostic panel will facilitate investigations of the role of Lactobacillus species in the health of the female reproductive system and promote studies of variability of the vaginal microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Development of a novel HAC-based "gain of signal" quantitative assay for measuring chromosome instability (CIN) in cancer cells.

    PubMed

    Kim, Jung-Hyun; Lee, Hee-Sheung; Lee, Nicholas C O; Goncharov, Nikolay V; Kumeiko, Vadim; Masumoto, Hiroshi; Earnshaw, William C; Kouprina, Natalay; Larionov, Vladimir

    2016-03-22

    Accumulating data indicates that chromosome instability (CIN) common to cancer cells can be used as a target for cancer therapy. At present the rate of chromosome mis-segregation is quantified by laborious techniques such as coupling clonal cell analysis with karyotyping or fluorescence in situ hybridization (FISH). Recently, a novel assay was developed based on the loss of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene ("loss of signal" assay). Using this system, anticancer drugs can be easily ranked on by their effect on HAC loss. However, it is problematic to covert this "loss of signal" assay into a high-throughput screen to identify drugs and mutations that increase CIN levels. To address this point, we re-designed the HAC-based assay. In this new system, the HAC carries a constitutively expressed shRNA against the EGFP transgene integrated into human genome. Thus, cells that inherit the HAC display no green fluorescence, while cells lacking the HAC do. We verified the accuracy of this "gain of signal" assay by measuring the level of CIN induced by known antimitotic drugs and added to the list of previously ranked CIN inducing compounds, two newly characterized inhibitors of the centromere-associated protein CENP-E, PF-2771 and GSK923295 that exhibit the highest effect on chromosome instability measured to date. The "gain of signal" assay was also sensitive enough to detect increase of CIN after siRNA depletion of known genes controlling mitotic progression through distinct mechanisms. Hence this assay can be utilized in future experiments to uncover novel human CIN genes, which will provide novel insight into the pathogenesis of cancer. Also described is the possible conversion of this new assay into a high-throughput screen using a fluorescence microplate reader to characterize chemical libraries and identify new conditions that modulate CIN level.

  4. Development and Validation of a Laboratory-Developed Multiplex Real-Time PCR Assay on the BD Max System for Detection of Herpes Simplex Virus and Varicella-Zoster Virus DNA in Various Clinical Specimens.

    PubMed

    Pillet, Sylvie; Verhoeven, Paul O; Epercieux, Amélie; Bourlet, Thomas; Pozzetto, Bruno

    2015-06-01

    A multiplex real-time PCR (quantitative PCR [qPCR]) assay detecting herpes simplex virus (HSV) and varicella-zoster virus (VZV) DNA together with an internal control was developed on the BD Max platform combining automated DNA extraction and an open amplification procedure. Its performance was compared to those of PCR assays routinely used in the laboratory, namely, a laboratory-developed test for HSV DNA on the LightCycler instrument and a test using a commercial master mix for VZV DNA on the ABI7500fast system. Using a pool of negative cerebrospinal fluid (CSF) samples spiked with either calibrated controls for HSV-1 and VZV or dilutions of a clinical strain that was previously quantified for HSV-2, the empirical limit of detection of the BD Max assay was 195.65, 91.80, and 414.07 copies/ml for HSV-1, HSV-2, and VZV, respectively. All the samples from HSV and VZV DNA quality control panels (Quality Control for Molecular Diagnostics [QCMD], 2013, Glasgow, United Kingdom) were correctly identified by the BD Max assay. From 180 clinical specimens of various origins, 2 CSF samples were found invalid by the BD Max assay due to the absence of detection of the internal control; a concordance of 100% was observed between the BD Max assay and the corresponding routine tests. The BD Max assay detected the PCR signal 3 to 4 cycles earlier than did the routine methods. With results available within 2 h on a wide range of specimens, this sensitive and fully automated PCR assay exhibited the qualities required for detecting simultaneously HSV and VZV DNA on a routine basis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Development of a novel HAC-based “gain of signal” quantitative assay for measuring chromosome instability (CIN) in cancer cells

    PubMed Central

    Kim, Jung-Hyun; Lee, Hee-Sheung; Lee, Nicholas C. O.; Goncharov, Nikolay V.; Kumeiko, Vadim; Masumoto, Hiroshi; Earnshaw, William C.; Kouprina, Natalay; Larionov, Vladimir

    2016-01-01

    Accumulating data indicates that chromosome instability (CIN) common to cancer cells can be used as a target for cancer therapy. At present the rate of chromosome mis-segregation is quantified by laborious techniques such as coupling clonal cell analysis with karyotyping or fluorescence in situ hybridization (FISH). Recently, a novel assay was developed based on the loss of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene (“loss of signal” assay). Using this system, anticancer drugs can be easily ranked on by their effect on HAC loss. However, it is problematic to covert this “loss of signal” assay into a high-throughput screen to identify drugs and mutations that increase CIN levels. To address this point, we re-designed the HAC-based assay. In this new system, the HAC carries a constitutively expressed shRNA against the EGFP transgene integrated into human genome. Thus, cells that inherit the HAC display no green fluorescence, while cells lacking the HAC do. We verified the accuracy of this “gain of signal” assay by measuring the level of CIN induced by known antimitotic drugs and added to the list of previously ranked CIN inducing compounds, two newly characterized inhibitors of the centromere-associated protein CENP-E, PF-2771 and GSK923295 that exhibit the highest effect on chromosome instability measured to date. The “gain of signal” assay was also sensitive enough to detect increase of CIN after siRNA depletion of known genes controlling mitotic progression through distinct mechanisms. Hence this assay can be utilized in future experiments to uncover novel human CIN genes, which will provide novel insight into the pathogenesis of cancer. Also described is the possible conversion of this new assay into a high-throughput screen using a fluorescence microplate reader to characterize chemical libraries and identify new conditions that modulate CIN level. PMID:26943579

  6. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    PubMed

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-06-17

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically.

  7. Multidimensional analysis of the frequencies and rates of cytokine secretion from single cells by quantitative microengraving.

    PubMed

    Han, Qing; Bradshaw, Elizabeth M; Nilsson, Björn; Hafler, David A; Love, J Christopher

    2010-06-07

    The large diversity of cells that comprise the human immune system requires methods that can resolve the individual contributions of specific subsets to an immunological response. Microengraving is process that uses a dense, elastomeric array of microwells to generate microarrays of proteins secreted from large numbers of individual live cells (approximately 10(4)-10(5) cells/assay). In this paper, we describe an approach based on this technology to quantify the rates of secretion from single immune cells. Numerical simulations of the microengraving process indicated an operating regime between 30 min-4 h that permits quantitative analysis of the rates of secretion. Through experimental validation, we demonstrate that microengraving can provide quantitative measurements of both the frequencies and the distribution in rates of secretion for up to four cytokines simultaneously released from individual viable primary immune cells. The experimental limits of detection ranged from 0.5 to 4 molecules/s for IL-6, IL-17, IFNgamma, IL-2, and TNFalpha. These multidimensional measures resolve the number and intensities of responses by cells exposed to stimuli with greater sensitivity than single-parameter assays for cytokine release. We show that cells from different donors exhibit distinct responses based on both the frequency and magnitude of cytokine secretion when stimulated under different activating conditions. Primary T cells with specific profiles of secretion can also be recovered after microengraving for subsequent expansion in vitro. These examples demonstrate the utility of quantitative, multidimensional profiles of single cells for analyzing the diversity and dynamics of immune responses in vitro and for identifying rare cells from clinical samples.

  8. Quantitative assessment of hematopoietic chimerism by quantitative real-time polymerase chain reaction of sequence polymorphism systems after hematopoietic stem cell transplantation.

    PubMed

    Qin, Xiao-ying; Li, Guo-xuan; Qin, Ya-zhen; Wang, Yu; Wang, Feng-rong; Liu, Dai-hong; Xu, Lan-ping; Chen, Huan; Han, Wei; Wang, Jing-zhi; Zhang, Xiao-hui; Li, Jin-lan; Li, Ling-di; Liu, Kai-yan; Huang, Xiao-jun

    2011-08-01

    Analysis of changes in recipient and donor hematopoietic cell origin is extremely useful to monitor the effect of hematopoietic stem cell transplantation (HSCT) and sequential adoptive immunotherapy by donor lymphocyte infusions. We developed a sensitive, reliable and rapid real-time PCR method based on sequence polymorphism systems to quantitatively assess the hematopoietic chimerism after HSCT. A panel of 29 selected sequence polymorphism (SP) markers was screened by real-time PCR in 101 HSCT patients with leukemia and other hematological diseases. The chimerism kinetics of bone marrow samples of 8 HSCT patients in remission and relapse situations were followed longitudinally. Recipient genotype discrimination was possible in 97.0% (98 of 101) with a mean number of 2.5 (1-7) informative markers per recipient/donor pair. Using serial dilutions of plasmids containing specific SP markers, the linear correlation (r) of 0.99, the slope between -3.2 and -3.7 and the sensitivity of 0.1% were proved reproducible. By this method, it was possible to very accurately detect autologous signals in the range from 0.1% to 30%. The accuracy of the method in the very important range of autologous signals below 5% was extraordinarily high (standard deviation <1.85%), which might significantly improve detection accuracy of changes in autologous signals early in the post-transplantation course of follow-up. The main advantage of the real-time PCR method over short tandem repeat PCR chimerism assays is the absence of PCR competition and plateau biases, with demonstrated greater sensitivity and linearity. Finally, we prospectively analyzed bone marrow samples of 8 patients who received allografts and presented the chimerism kinetics of remission and relapse situations that illustrated the sensitivity level and the promising clinical application of this method. This SP-based real-time PCR assay provides a rapid, sensitive, and accurate quantitative assessment of mixed chimerism that can be useful in predicting graft rejection and early relapse.

  9. Single-Tube Multiplexed Molecular Detection of Endemic Porcine Viruses in Combination with Background Screening for Transboundary Diseases

    PubMed Central

    Wernike, Kerstin; Hoffmann, Bernd

    2013-01-01

    Detection of several pathogens with multiplexed real-time quantitative PCR (qPCR) assays in a one-step setup allows the simultaneous detection of two endemic porcine and four different selected transboundary viruses. Reverse transcription (RT)-qPCR systems for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2), two of the most economically important pathogens of swine worldwide, were combined with a screening system for diseases notifiable to the World Organization of Animal Health, namely, classical and African swine fever, foot-and-mouth disease, and Aujeszky's disease. Background screening was implemented using the identical fluorophore for all four different RT-qPCR assays. The novel multiplex RT-qPCR system was validated with a large panel of different body fluids and tissues from pigs and other animal species. Both reference samples and clinical specimens were used for a complete evaluation. It could be demonstrated that a highly sensitive and specific parallel detection of the different viruses was possible. The assays for the notifiable diseases were even not affected by the simultaneous amplification of very high loads of PRRSV- and PCV2-specific sequences. The novel broad-spectrum multiplex assay allows in a unique form the routine investigation for endemic porcine pathogens with exclusion diagnostics of the most important transboundary diseases in samples from pigs with unspecific clinical signs, such as fever or hemorrhages. The new system could significantly improve early detection of the most important notifiable diseases of swine and could lead to a new approach in syndromic surveillance. PMID:23303496

  10. The development of quick, robust, quantitative phenotypic assays for describing the host–nonhost landscape to stripe rust

    PubMed Central

    Dawson, Andrew M.; Bettgenhaeuser, Jan; Gardiner, Matthew; Green, Phon; Hernández-Pinzón, Inmaculada; Hubbard, Amelia; Moscou, Matthew J.

    2015-01-01

    Nonhost resistance is often conceptualized as a qualitative separation from host resistance. Classification into these two states is generally facile, as they fail to fully describe the range of states that exist in the transition from host to nonhost. This poses a problem when studying pathosystems that cannot be classified as either host or nonhost due to their intermediate status relative to these two extremes. In this study, we investigate the efficacy of the Poaceae-stripe rust (Puccinia striiformis Westend.) interaction for describing the host–nonhost landscape. First, using barley (Hordeum vulgare L.) and Brachypodium distachyon (L.) P. Beauv. We observed that macroscopic symptoms of chlorosis and leaf browning were associated with hyphal colonization by P. striiformis f. sp. tritici, respectively. This prompted us to adapt a protocol for visualizing fungal structures into a phenotypic assay that estimates the percent of leaf colonized. Use of this assay in intermediate host and intermediate nonhost systems found the frequency of infection decreases with evolutionary divergence from the host species. Similarly, we observed that the pathogen’s ability to complete its life cycle decreased faster than its ability to colonize leaf tissue, with no incidence of pustules observed in the intermediate nonhost system and significantly reduced pustule formation in the intermediate host system as compared to the host system, barley-P. striiformis f. sp. hordei. By leveraging the stripe rust pathosystem in conjunction with macroscopic and microscopic phenotypic assays, we now hope to dissect the genetic architecture of intermediate host and intermediate nonhost resistance using structured populations in barley and B. distachyon. PMID:26579142

  11. Co-Regulation of Cell Polarization and Migration by Caveolar Proteins PTRF/Cavin-1 and Caveolin-1

    PubMed Central

    Hill, Michelle M.; Daud, Noor Huda; Aung, Cho Sanda; Loo, Dorothy; Martin, Sally; Murphy, Samantha; Black, Debra M.; Barry, Rachael; Simpson, Fiona; Liu, Libin; Pilch, Paul F.; Hancock, John F.; Parat, Marie-Odile; Parton, Robert G.

    2012-01-01

    Caveolin-1 and caveolae are differentially polarized in migrating cells in various models, and caveolin-1 expression has been shown to quantitatively modulate cell migration. PTRF/cavin-1 is a cytoplasmic protein now established to be also necessary for caveola formation. Here we tested the effect of PTRF expression on cell migration. Using fluorescence imaging, quantitative proteomics, and cell migration assays we show that PTRF/cavin-1 modulates cellular polarization, and the subcellular localization of Rac1 and caveolin-1 in migrating cells as well as PKCα caveola recruitment. PTRF/cavin-1 quantitatively reduced cell migration, and induced mesenchymal epithelial reversion. Similar to caveolin-1, the polarization of PTRF/cavin-1 was dependent on the migration mode. By selectively manipulating PTRF/cavin-1 and caveolin-1 expression (and therefore caveola formation) in multiple cell systems, we unveil caveola-independent functions for both proteins in cell migration. PMID:22912783

  12. Development of microLIPS (Luciferase Immunoprecipitation Systems): a novel microfluidic assay for rapid serum antibody detection

    NASA Astrophysics Data System (ADS)

    Chandrangsu, Matt; Burbelo, Peter D.; Iadarola, Michael J.; Smith, Paul D.; Morgan, Nicole Y.

    2012-06-01

    There is considerable interest in the development of rapid, point-of-care antibody detection for the diagnosis of infectious and auto-immune diseases. In this paper, we present work on the development of a self-contained microfluidic format for the Luciferase Immunoprecipitation Systems (LIPS) assay. Whereas the majority of immunoassays for antigen-specific antibodies employ either bacteria- or yeast-expressed proteins and require the use of secondary antibodies, the LIPS technique uses a fusion protein comprised of a Renilla luciferase reporter and the antigen of interest produced via mammalian cell culture, ensuring the addition of mammalian post-translational modifications. Patient serum is mixed with the fusion protein and passed over immobilized Protein A/G; after washing, the only remaining luciferase-tagged antigens are those retained by specific antibodies. These can be quantitatively measured using chemiluminescence upon the introduction of coelenterazine. The assay has been successfully employed for a wide variety of diseases in a microwell format. We report on a recent demonstration of rapid HSV-2 diagnosis with the LIPS assay in a microfluidic format, using one microliter of serum and obtaining results in under ten minutes. We will also discuss recent progress on two fronts, both aimed at the deployment of this technology in the field: first, simplifying assay operation through the automation of flow control using power-free means; and second, efforts to increase signal levels, primarily through strategies to increase antibody binding capacity, in order to move towards portable battery powered electronics.

  13. Quantitative determination and validation of octreotide acetate using 1 H-NMR spectroscopy with internal standard method.

    PubMed

    Yu, Chen; Zhang, Qian; Xu, Peng-Yao; Bai, Yin; Shen, Wen-Bin; Di, Bin; Su, Meng-Xiang

    2018-01-01

    Quantitative nuclear magnetic resonance (qNMR) is a well-established technique in quantitative analysis. We presented a validated 1 H-qNMR method for assay of octreotide acetate, a kind of cyclic octopeptide. Deuterium oxide was used to remove the undesired exchangeable peaks, which was referred to as proton exchange, in order to make the quantitative signals isolated in the crowded spectrum of the peptide and ensure precise quantitative analysis. Gemcitabine hydrochloride was chosen as the suitable internal standard. Experimental conditions, including relaxation delay time, the numbers of scans, and pulse angle, were optimized first. Then method validation was carried out in terms of selectivity, stability, linearity, precision, and robustness. The assay result was compared with that by means of high performance liquid chromatography, which is provided by Chinese Pharmacopoeia. The statistical F test, Student's t test, and nonparametric test at 95% confidence level indicate that there was no significant difference between these two methods. qNMR is a simple and accurate quantitative tool with no need for specific corresponding reference standards. It has the potential of the quantitative analysis of other peptide drugs and standardization of the corresponding reference standards. Copyright © 2017 John Wiley & Sons, Ltd.

  14. The analytical validation of the Oncotype DX Recurrence Score assay

    PubMed Central

    Baehner, Frederick L

    2016-01-01

    In vitro diagnostic multivariate index assays are highly complex molecular assays that can provide clinically actionable information regarding the underlying tumour biology and facilitate personalised treatment. These assays are only useful in clinical practice if all of the following are established: analytical validation (i.e., how accurately/reliably the assay measures the molecular characteristics), clinical validation (i.e., how consistently/accurately the test detects/predicts the outcomes of interest), and clinical utility (i.e., how likely the test is to significantly improve patient outcomes). In considering the use of these assays, clinicians often focus primarily on the clinical validity/utility; however, the analytical validity of an assay (e.g., its accuracy, reproducibility, and standardisation) should also be evaluated and carefully considered. This review focuses on the rigorous analytical validation and performance of the Oncotype DX® Breast Cancer Assay, which is performed at the Central Clinical Reference Laboratory of Genomic Health, Inc. The assay process includes tumour tissue enrichment (if needed), RNA extraction, gene expression quantitation (using a gene panel consisting of 16 cancer genes plus 5 reference genes and quantitative real-time RT-PCR), and an automated computer algorithm to produce a Recurrence Score® result (scale: 0–100). This review presents evidence showing that the Recurrence Score result reported for each patient falls within a tight clinically relevant confidence interval. Specifically, the review discusses how the development of the assay was designed to optimise assay performance, presents data supporting its analytical validity, and describes the quality control and assurance programmes that ensure optimal test performance over time. PMID:27729940

  15. The analytical validation of the Oncotype DX Recurrence Score assay.

    PubMed

    Baehner, Frederick L

    2016-01-01

    In vitro diagnostic multivariate index assays are highly complex molecular assays that can provide clinically actionable information regarding the underlying tumour biology and facilitate personalised treatment. These assays are only useful in clinical practice if all of the following are established: analytical validation (i.e., how accurately/reliably the assay measures the molecular characteristics), clinical validation (i.e., how consistently/accurately the test detects/predicts the outcomes of interest), and clinical utility (i.e., how likely the test is to significantly improve patient outcomes). In considering the use of these assays, clinicians often focus primarily on the clinical validity/utility; however, the analytical validity of an assay (e.g., its accuracy, reproducibility, and standardisation) should also be evaluated and carefully considered. This review focuses on the rigorous analytical validation and performance of the Oncotype DX ® Breast Cancer Assay, which is performed at the Central Clinical Reference Laboratory of Genomic Health, Inc. The assay process includes tumour tissue enrichment (if needed), RNA extraction, gene expression quantitation (using a gene panel consisting of 16 cancer genes plus 5 reference genes and quantitative real-time RT-PCR), and an automated computer algorithm to produce a Recurrence Score ® result (scale: 0-100). This review presents evidence showing that the Recurrence Score result reported for each patient falls within a tight clinically relevant confidence interval. Specifically, the review discusses how the development of the assay was designed to optimise assay performance, presents data supporting its analytical validity, and describes the quality control and assurance programmes that ensure optimal test performance over time.

  16. Validation of a LC/MS method for the determination of gemfibrozil in human plasma and its application to a pharmacokinetic study

    PubMed Central

    Rower, Joseph E.; Bushman, Lane R.; Hammond, Kyle P.; Kadam, Rajendra S.; Aquilante, Christina L.

    2011-01-01

    Gemfibrozil, a fibric acid hypolipidemic agent, is increasingly being used in clinical drug-drug interaction studies as an inhibitor of drug metabolizing enzymes and drug transporters. The validation of a fast, accurate, and precise LC/MS method is described for the quantitative determination of gemfibrozil in an EDTA-anticoagulated human plasma matrix. Briefly, gemfibrozil was extracted from human plasma by an acetonitrile protein precipitation method. The assay was reproducible with intra-assay precision between 1.6% and 10.7%, and inter-assay precision ranging from 4.4% to 7.8%. The assay also showed good accuracy, with intra-assay concentrations within 85.6% and 108.7% of the expected value, and inter-assay concentrations within 89.4 to 104.0% of the expected value. The linear concentration range was between 0.5 and 50 μg/mL with a lower limit of quantitation of 0.5 μg/mL when 125 μL of plasma were extracted. This LC/MS method yielded a quick, simple, and reliable protocol for determining gemfibrozil concentrations in plasma and is applicable to clinical pharmacokinetic studies. PMID:21077249

  17. Validation of an LC/MS method for the determination of gemfibrozil in human plasma and its application to a pharmacokinetic study.

    PubMed

    Rower, Joseph E; Bushman, Lane R; Hammond, Kyle P; Kadam, Rajendra S; Aquilante, Christina L

    2010-12-01

    Gemfibrozil, a fibric acid hypolipidemic agent, is increasingly being used in clinical drug-drug interaction studies as an inhibitor of drug metabolizing enzymes and drug transporters. The validation of a fast, accurate and precise LC/MS method is described for the quantitative determination of gemfibrozil in an EDTA-anticoagulated human plasma matrix. Briefly, gemfibrozil was extracted from human plasma by an acetonitrile protein precipitation method. The assay was reproducible with intra-assay precision between 1.6 and 10.7%, and inter-assay precision ranging from 4.4 to 7.8%. The assay also showed good accuracy, with intra-assay concentrations within 85.6-108.7% of the expected value, and inter-assay concentrations within 89.4-104.0% of the expected value. The linear concentration range was between 0.5 and 50 µg/mL with a lower limit of quantitation of 0.5 µg/mL when 125 µL of plasma were extracted. This LC/MS method yielded a quick, simple and reliable protocol for determining gemfibrozil concentrations in plasma and is applicable to clinical pharmacokinetic studies. Copyright © 2010 John Wiley & Sons, Ltd.

  18. Comparison of central HER2 testing with quantitative total HER2 expression and HER2 homodimer measurements using a novel proximity-based assay.

    PubMed

    Huang, Weidong; Reinholz, Monica; Weidler, Jodi; Yolanda, Lie; Paquet, Agnes; Whitcomb, Jeannette; Lingle, Wilma; Jenkins, Robert B; Chen, Beiyun; Larson, Jeffrey S; Tan, Yuping; Sherwood, Thomas; Bates, Michael; Perez, Edith A

    2010-08-01

    The accuracy and reliability of immunohistochemical analysis and in situ hybridization for the assessment of HER2 status remains a subject of debate. We developed a novel assay (HERmark Breast Cancer Assay, Monogram Biosciences, South San Francisco, CA) that provides precise quantification of total HER2 protein expression (H2T) and HER2 homodimers (H2D) in formalin-fixed, paraffin-embedded tissue specimens. H2T and H2D results of 237 breast cancers were compared with those of immunohistochemical studies and fluorescence in situ hybridization (FISH) centrally performed at the Mayo Clinic, Rochester, MN. H2T described a continuum across a wide dynamic range ( approximately 2.5 log). Excluding the equivocal cases, HERmark showed 98% concordance with immunohistochemical studies for positive and negative assay values. For the 94 immunohistochemically equivocal cases, 67% and 39% concordance values were observed between HERmark and FISH for positive and negative assay values, respectively. Polysomy 17 in the absence of HER2 gene amplification did not result in HER2 overexpression as evaluated quantitatively using the HERmark assay.

  19. Production and certification of NIST Standard Reference Material 2372 Human DNA Quantitation Standard.

    PubMed

    Kline, Margaret C; Duewer, David L; Travis, John C; Smith, Melody V; Redman, Janette W; Vallone, Peter M; Decker, Amy E; Butler, John M

    2009-06-01

    Modern highly multiplexed short tandem repeat (STR) assays used by the forensic human-identity community require tight control of the initial amount of sample DNA amplified in the polymerase chain reaction (PCR) process. This, in turn, requires the ability to reproducibly measure the concentration of human DNA, [DNA], in a sample extract. Quantitative PCR (qPCR) techniques can determine the number of intact stretches of DNA of specified nucleotide sequence in an extremely small sample; however, these assays must be calibrated with DNA extracts of well-characterized and stable composition. By 2004, studies coordinated by or reported to the National Institute of Standards and Technology (NIST) indicated that a well-characterized, stable human DNA quantitation certified reference material (CRM) could help the forensic community reduce within- and among-laboratory quantitation variability. To ensure that the stability of such a quantitation standard can be monitored and that, if and when required, equivalent replacement materials can be prepared, a measurement of some stable quantity directly related to [DNA] is required. Using a long-established conventional relationship linking optical density (properly designated as decadic attenuance) at 260 nm with [DNA] in aqueous solution, NIST Standard Reference Material (SRM) 2372 Human DNA Quantitation Standard was issued in October 2007. This SRM consists of three quite different DNA extracts: a single-source male, a multiple-source female, and a mixture of male and female sources. All three SRM components have very similar optical densities, and thus very similar conventional [DNA]. The materials perform very similarly in several widely used gender-neutral assays, demonstrating that the combination of appropriate preparation methods and metrologically sound spectrophotometric measurements enables the preparation and certification of quantitation [DNA] standards that are both maintainable and of practical utility.

  20. Detection of Goss's Wilt Pathogen Clavibacter michiganensis subsp. nebraskensis in Maize by Loop-Mediated Amplification.

    PubMed

    Yasuhara-Bell, Jarred; de Silva, Asoka; Heuchelin, Scott A; Chaky, Jennifer L; Alvarez, Anne M

    2016-03-01

    The Goss's wilt pathogen, Clavibacter michiganensis subsp. nebraskensis, can cause considerable losses in maize (Zea mays) production. Diagnosis of Goss's wilt currently is based on symptomology and identification of C. michiganensis subsp. nebraskensis, following isolation on a semiselective medium and/or serological testing. In an effort to provide a more efficient identification method, a loop-mediated amplification (LAMP) assay was developed to detect the tripartite ATP-independent periplasmic (TRAP)-type C4-dicarboxylate transport system large permease component and tested using strains of C. michiganensis subsp. nebraskensis, all other C. michiganensis subspecies and several genera of nontarget bacteria. Only strains of C. michiganensis subsp. nebraskensis reacted positively with the LAMP assay. The LAMP assay was then used to identify bacterial isolates from diseased maize. 16S rDNA and dnaA sequence analyses were used to confirm the identity of the maize isolates and validate assay specificity. The Cmm ImmunoStrip assay was included as a presumptive identification test of C. michiganensis subsp. nebraskensis at the species level. The Cmn-LAMP assay was further tested using symptomatic leaf tissue. The Cmn-LAMP assay was run in a hand-held real-time monitoring device (SMART-DART) and performed equally to in-lab quantitative polymerase chain reaction equipment. The Cmn-LAMP assay accurately identified C. michiganensis subsp. nebraskensis and has potential as a field test. The targeted sequence also has potential application in other molecular detection platforms.

  1. Implementation of standardization in clinical practice: not always an easy task.

    PubMed

    Panteghini, Mauro

    2012-02-29

    As soon as a new reference measurement system is adopted, clinical validation of correctly calibrated commercial methods should take place. Tracing back the calibration of routine assays to a reference system can actually modify the relation of analyte results to existing reference intervals and decision limits and this may invalidate some of the clinical decision-making criteria currently used. To maintain the accumulated clinical experience, the quantitative relationship to the previous calibration system should be established and, if necessary, the clinical decision-making criteria should be adjusted accordingly. The implementation of standardization should take place in a concerted action of laboratorians, manufacturers, external quality assessment scheme organizers and clinicians. Dedicated meetings with manufacturers should be organized to discuss the process of assay recalibration and studies should be performed to obtain convincing evidence that the standardization works, improving result comparability. Another important issue relates to the surveillance of the performance of standardized assays through the organization of appropriate analytical internal and external quality controls. Last but not least, uncertainty of measurement that fits for this purpose must be defined across the entire traceability chain, starting with the available reference materials, extending through the manufacturers and their processes for assignment of calibrator values and ultimately to the final result reported to clinicians by laboratories.

  2. Duplex Quantitative PCR Assay for Detection of Haemophilus influenzae That Distinguishes Fucose- and Protein D-Negative Strains

    PubMed Central

    de Gier, Camilla; Pickering, Janessa L.; Richmond, Peter C.; Thornton, Ruth B.

    2016-01-01

    We have developed a specific Haemophilus influenzae quantitative PCR (qPCR) that also identifies fucose-negative and protein D-negative strains. Analysis of 100 H. influenzae isolates, 28 Haemophilus haemolyticus isolates, and 14 other bacterial species revealed 100% sensitivity (95% confidence interval [CI], 96% to 100%) and 100% specificity (95% CI, 92% to 100%) for this assay. The evaluation of 80 clinical specimens demonstrated a strong correlation between semiquantitative culture and the qPCR (P < 0.001). PMID:27335148

  3. CPTAC Assay Portal: a repository of targeted proteomic assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteaker, Jeffrey R.; Halusa, Goran; Hoofnagle, Andrew N.

    2014-06-27

    To address these issues, the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI) has launched an Assay Portal (http://assays.cancer.gov) to serve as a public repository of well-characterized quantitative, MS-based, targeted proteomic assays. The purpose of the CPTAC Assay Portal is to facilitate widespread adoption of targeted MS assays by disseminating SOPs, reagents, and assay characterization data for highly characterized assays. A primary aim of the NCI-supported portal is to bring together clinicians or biologists and analytical chemists to answer hypothesis-driven questions using targeted, MS-based assays. Assay content is easily accessed through queries and filters, enabling investigatorsmore » to find assays to proteins relevant to their areas of interest. Detailed characterization data are available for each assay, enabling researchers to evaluate assay performance prior to launching the assay in their own laboratory.« less

  4. Development of an in vitro model system for studying the interaction of Equus caballus IgE with its high-affinity receptor FcεRI.

    PubMed

    Sabban, Sari; Ye, Hongtu; Helm, Birgit

    2014-11-01

    The interaction of IgE with its high-affinity Fc receptor (FcεRI) followed by an antigenic challenge is the principal pathway in IgE mediated allergic reactions. As a consequence of the high affinity binding between IgE and FcεRI, along with the continuous production of IgE by B cells, allergies usually persist throughout life, with currently no permanent cure available. Horses, especially race horses, which are commonly inbred, are a species of mammals that are very prone to the development of hypersensitivity responses, which can seriously affect their performance. Physiological responses to allergic sensitization in horses mirror that observed in humans and dogs. In this paper we describe the development of an in situ assay system for the quantitative assessment of the release of mediators of the allergic response pertaining to the equine system. To this end, the gene encoding equine FcεRIα was transfected into and expressed onto the surface of parental Rat Basophil Leukemia (RBL-2H3.1) cells. The gene product of the transfected equine α-chain formed a functional receptor complex with the endogenous rat β- and γ-chains. The resultant assay system facilitated an assessment of the quantity of mediator secreted from equine FcεRIα transfected RBL-2H3.1 cells following sensitization with equine IgE and antigenic challenge using β-hexosaminidase release as a readout. Mediator release peaked at 36.68% ± 4.88% at 100 ng ml(-1) of antigen. This assay was modified from previous assays used to study human and canine allergic responses. We have also shown that this type of assay system has multiple applications for the development of diagnostic tools and the safety assessment of potential therapeutic intervention strategies in allergic disease.

  5. Development of an in vitro model system for studying the interaction of Equus caballus IgE with its high-affinity receptor FcεRI

    PubMed Central

    Sabban, Sari; Ye, Hongtu; Helm, Birgit

    2014-01-01

    The interaction of IgE with its high-affinity Fc receptor (FcεRI) followed by an antigenic challenge is the principal pathway in IgE mediated allergic reactions. As a consequence of the high affinity binding between IgE and FcεRI, along with the continuous production of IgE by B cells, allergies usually persist throughout life, with currently no permanent cure available. Horses, especially race horses, which are commonly inbred, are a species of mammals that are very prone to the development of hypersensitivity responses, which can seriously affect their performance. Physiological responses to allergic sensitization in horses mirror that observed in humans and dogs. In this paper we describe the development of an in situ assay system for the quantitative assessment of the release of mediators of the allergic response pertaining to the equine system. To this end, the gene encoding equine FcεRIα was transfected into and expressed onto the surface of parental Rat Basophil Leukemia (RBL-2H3.1) cells. The gene product of the transfected equine α-chain formed a functional receptor complex with the endogenous rat β- and γ-chains 1. The resultant assay system facilitated an assessment of the quantity of mediator secreted from equine FcεRIα transfected RBL-2H3.1 cells following sensitization with equine IgE and antigenic challenge using β-hexosaminidase release as a readout 2, 3. Mediator release peaked at 36.68% ± 4.88% at 100 ng ml-1 of antigen. This assay was modified from previous assays used to study human and canine allergic responses 4, 5. We have also shown that this type of assay system has multiple applications for the development of diagnostic tools and the safety assessment of potential therapeutic intervention strategies in allergic disease 6, 2, 3. PMID:25406512

  6. Biochemical analysis with microfluidic systems.

    PubMed

    Bilitewski, Ursula; Genrich, Meike; Kadow, Sabine; Mersal, Gaber

    2003-10-01

    Microfluidic systems are capillary networks of varying complexity fabricated originally in silicon, but nowadays in glass and polymeric substrates. Flow of liquid is mainly controlled by use of electroosmotic effects, i.e. application of electric fields, in addition to pressurized flow, i.e. application of pressure or vacuum. Because electroosmotic flow rates depend on the charge densities on the walls of capillaries, they are influenced by substrate material, fabrication processes, surface pretreatment procedures, and buffer additives. Microfluidic systems combine the properties of capillary electrophoretic systems and flow-through analytical systems, and thus biochemical analytical assays have been developed utilizing and integrating both aspects. Proteins, peptides, and nucleic acids can be separated because of their different electrophoretic mobility; detection is achieved with fluorescence detectors. For protein analysis, in particular, interfaces between microfluidic chips and mass spectrometers were developed. Further levels of integration of required sample-treatment steps were achieved by integration of protein digestion by immobilized trypsin and amplification of nucleic acids by the polymerase chain reaction. Kinetic constants of enzyme reactions were determined by adjusting different degrees of dilution of enzyme substrates or inhibitors within a single chip utilizing mainly the properties of controlled dosing and mixing liquids within a chip. For analysis of kinase reactions, however, a combination of a reaction step (enzyme with substrate and inhibitor) and a separation step (enzyme substrate and reaction product) was required. Microfluidic chips also enable separation of analytes from sample matrix constituents, which can interfere with quantitative determination, if they have different electrophoretic mobilities. In addition to analysis of nucleic acids and enzymes, immunoassays are the third group of analytical assays performed in microfluidic chips. They utilize either affinity capillary electrophoresis as a homogeneous assay format, or immobilized antigens or antibodies in heterogeneous assays with serial supply of reagents and washing solutions.

  7. Quantification of measles, mumps and rubella viruses using real-time quantitative TaqMan-based RT-PCR assay.

    PubMed

    Ammour, Y; Faizuloev, E; Borisova, T; Nikonova, A; Dmitriev, G; Lobodanov, S; Zverev, V

    2013-01-01

    In this study, a rapid quantitative method using TaqMan-based real-time reverse transcription-polymerase chain reaction (qPCR-RT) has been developed for estimating the titers of measles, mumps and rubella (MMR) viruses in infected cell culture supernatants. The qPCR-RT assay was demonstrated to be a specific, sensitive, efficient and reproducible method. For MMR viral samples obtained during MMR viral propagations in Vero cells at a different multiplicity of infection, titers determined by the qPCR-RT assay have been compared with estimates of infectious virus obtained by a traditional commonly used method for MMR viruses - 50% cell culture infective dose (CCID(50)) assay, in paired samples. Pearson analysis evidenced a significant correlation between both methods for a certain period after viral inoculation. Furthermore, the established qPCR-RT assay was faster and less-laborious. The developed method could be used as an alternative method or a supplementary tool for the routine titer estimation during MMR vaccine production. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Comparison of a direct and indirect ELISA for quantitating antisperm antibody in semen.

    PubMed

    Lynch, D M; Howe, S E

    1987-01-01

    A direct and an indirect quantitative ELISA for antisperm antibody were compared using the spermatozoa and cell-free seminal fluid of 66 infertile males. The normal concentration of sperm binding immunoglobulin was less than or equal to 1.5 fg Ig per spermatozoon for the indirect seminal plasma assay and less than or equal to 1.5 fg Ig per spermatozoon by the direct assay. Of the 66 infertile males, 21% (14/66) had elevated levels of antisperm antibody in their seminal plasma and 26% (17/66) had elevated levels bound directly to their spermatozoa. The direct correlation between the results of these assays was 94%. A simple linear regression analysis between the indirect and direct measurements of antisperm antibody resulted in a correlation coefficient of r = 0.907. There was no statistically significant difference between results from the direct and indirect methods of the patients as a group. However, there was evidence of autospecificity in a small percentage of males who had elevated levels of antisperm antibody by the direct assay that was not detected by the indirect assay using pooled donor spermatozoa.

  9. External quality assurance of malaria nucleic acid testing for clinical trials and eradication surveillance.

    PubMed

    Murphy, Sean C; Hermsen, Cornelus C; Douglas, Alexander D; Edwards, Nick J; Petersen, Ines; Fahle, Gary A; Adams, Matthew; Berry, Andrea A; Billman, Zachary P; Gilbert, Sarah C; Laurens, Matthew B; Leroy, Odile; Lyke, Kristen E; Plowe, Christopher V; Seilie, Annette M; Strauss, Kathleen A; Teelen, Karina; Hill, Adrian V S; Sauerwein, Robert W

    2014-01-01

    Nucleic acid testing (NAT) for malaria parasites is an increasingly recommended diagnostic endpoint in clinical trials of vaccine and drug candidates and is also important in surveillance of malaria control and elimination efforts. A variety of reported NAT assays have been described, yet no formal external quality assurance (EQA) program provides validation for the assays in use. Here, we report results of an EQA exercise for malaria NAT assays. Among five centers conducting controlled human malaria infection trials, all centers achieved 100% specificity and demonstrated limits of detection consistent with each laboratory's pre-stated expectations. Quantitative bias of reported results compared to expected results was generally <0.5 log10 parasites/mL except for one laboratory where the EQA effort identified likely reasons for a general quantitative shift. The within-laboratory variation for all assays was low at <10% coefficient of variation across a range of parasite densities. Based on this study, we propose to create a Molecular Malaria Quality Assessment program that fulfills the need for EQA of malaria NAT assays worldwide.

  10. Biotin Switch Assays for Quantitation of Reversible Cysteine Oxidation.

    PubMed

    Li, R; Kast, J

    2017-01-01

    Thiol groups in protein cysteine residues can be subjected to different oxidative modifications by reactive oxygen/nitrogen species. Reversible cysteine oxidation, including S-nitrosylation, S-sulfenylation, S-glutathionylation, and disulfide formation, modulate multiple biological functions, such as enzyme catalysis, antioxidant, and other signaling pathways. However, the biological relevance of reversible cysteine oxidation is typically underestimated, in part due to the low abundance and high reactivity of some of these modifications, and the lack of methods to enrich and quantify them. To facilitate future research efforts, this chapter describes detailed procedures to target the different modifications using mass spectrometry-based biotin switch assays. By switching the modification of interest to a biotin moiety, these assays leverage the high affinity between biotin and avidin to enrich the modification. The use of stable isotope labeling and a range of selective reducing agents facilitate the quantitation of individual as well as total reversible cysteine oxidation. The biotin switch assay has been widely applied to the quantitative analysis of S-nitrosylation in different disease models and is now also emerging as a valuable research tool for other oxidative cysteine modifications, highlighting its relevance as a versatile, robust strategy for carrying out in-depth studies in redox proteomics. © 2017 Elsevier Inc. All rights reserved.

  11. Development of an enzyme-linked immunosorbent assay for the detection of dicamba.

    PubMed

    Clegg, B S; Stephenson, G R; Hall, J C

    2001-05-01

    A competitive indirect enzyme-linked immunosorbent assay (CI-ELISA) was developed to quantitate the herbicide dicamba (3,6-dichloro-2-methoxybenzoic acid) in water. The CI-ELISA has a detection limit of 2.3 microg L(-1) and a linear working range of 10--10000 microg L(-1) with an IC(50) value of 195 microg L(-1). The dicamba polyclonal antisera did not cross-react with a number of other herbicides tested but did cross-react with a dicamba metabolite, 5-hydroxydicamba, and structurally related chlorobenzoic acids. The assay was used to estimate quantitatively dicamba concentrations in water samples. Water samples were analyzed directly, and no sample preparation was required. To improve detection limits, a C(18) (reversed phase) column concentration step was devised prior to analysis, and the detection limits were increased by at least by 10-fold. After the sample preconcentration, the detection limit, IC(50), and linear working range were 0.23, 19.5, and 5-200 microg L(-1), respectively. The CI-ELISA estimations in water correlated well with those from gas chromatography-mass spectrometry (GC-MS) analysis (r(2) = 0.9991). This assay contributes to reducing laboratory costs associated with the conventional GC-MS residue analysis techniques for the quantitation of dicamba in water.

  12. Quantitation of 87 Proteins by nLC-MRM/MS in Human Plasma: Workflow for Large-Scale Analysis of Biobank Samples.

    PubMed

    Rezeli, Melinda; Sjödin, Karin; Lindberg, Henrik; Gidlöf, Olof; Lindahl, Bertil; Jernberg, Tomas; Spaak, Jonas; Erlinge, David; Marko-Varga, György

    2017-09-01

    A multiple reaction monitoring (MRM) assay was developed for precise quantitation of 87 plasma proteins including the three isoforms of apolipoprotein E (APOE) associated with cardiovascular diseases using nanoscale liquid chromatography separation and stable isotope dilution strategy. The analytical performance of the assay was evaluated and we found an average technical variation of 4.7% in 4-5 orders of magnitude dynamic range (≈0.2 mg/L to 4.5 g/L) from whole plasma digest. Here, we report a complete workflow, including sample processing adapted to 96-well plate format and normalization strategy for large-scale studies. To further investigate the MS-based quantitation the amount of six selected proteins was measured by routinely used clinical chemistry assays as well and the two methods showed excellent correlation with high significance (p-value < 10e-5) for the six proteins, in addition for the cardiovascular predictor factor, APOB: APOA1 ratio (r = 0.969, p-value < 10e-5). Moreover, we utilized the developed assay for screening of biobank samples from patients with myocardial infarction and performed the comparative analysis of patient groups with STEMI (ST- segment elevation myocardial infarction), NSTEMI (non ST- segment elevation myocardial infarction) and type-2 AMI (type-2 myocardial infarction) patients.

  13. Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution

    PubMed Central

    Ludlow, Andrew T.; Robin, Jerome D.; Sayed, Mohammed; Litterst, Claudia M.; Shelton, Dawne N.; Shay, Jerry W.; Wright, Woodring E.

    2014-01-01

    The telomere repeat amplification protocol (TRAP) for the human reverse transcriptase, telomerase, is a PCR-based assay developed two decades ago and is still used for routine determination of telomerase activity. The TRAP assay can only reproducibly detect ∼2-fold differences and is only quantitative when compared to internal standards and reference cell lines. The method generally involves laborious radioactive gel electrophoresis and is not conducive to high-throughput analyzes. Recently droplet digital PCR (ddPCR) technologies have become available that allow for absolute quantification of input deoxyribonucleic acid molecules following PCR. We describe the reproducibility and provide several examples of a droplet digital TRAP (ddTRAP) assay for telomerase activity, including quantitation of telomerase activity in single cells, telomerase activity across several common telomerase positive cancer cells lines and in human primary peripheral blood mononuclear cells following mitogen stimulation. Adaptation of the TRAP assay to digital format allows accurate and reproducible quantification of the number of telomerase-extended products (i.e. telomerase activity; 57.8 ± 7.5) in a single HeLa cell. The tools developed in this study allow changes in telomerase enzyme activity to be monitored on a single cell basis and may have utility in designing novel therapeutic approaches that target telomerase. PMID:24861623

  14. Analysis of cytomegalovirus (CMV) viremia using the pp65 antigenemia assay, the amplicor CMV test, and a semi-quantitative polymerase chain reaction test after allogeneic marrow transplantation.

    PubMed

    Ksouri, H; Eljed, H; Greco, A; Lakhal, A; Torjman, L; Abdelkefi, A; Ben Othmen, T; Ladeb, S; Slim, A; Zouari, B; Abdeladhim, A; Ben Hassen, A

    2007-03-01

    A pp65 antigenemia assay for polymorphonuclear leukocytes (PMNLs) (CINAkit Rapid Antigenemia), and a qualitative polymerase chain reaction (PCR) test for plasma 'PCR-P qual' (Amplicor cytomegalovirus [CMV] test) were performed for 126 samples (blood and plasma) obtained from 18 bone marrow transplant patients, over a 9-month surveillance period. Among those samples, 92 were assayed with a semi-quantitative PCR test for PMNLs 'PCR-L quant.' The number of samples with a positive CMV test for antigenemia and PCR-P qual assays was 20.63% and 12.7%, respectively, whereas the PCR-L quant assay was positive in 48 of the 92 samples assayed (52.17%). The rates of concordance of the results of PCR-P qual and antigenemia, PCR-P qual and PCR-L quant, antigenemia and PCR-L quant were 92%, 65.2% and 66.8%, respectively. The analysis of the results for the 92 specimens tested by all 3 methods showed a rate of concordance of 63% among all methods. Good agreement (kappa=0.72) was found only between pp65 Ag and PCR-P qual assays. Clinical disease correlates with an antigenemia high viral load. Three patients had CMV disease despite preemptive therapy, and all of them had graft-versus-host-disease (GVHD). PMNLs-based assays are more efficient in monitoring CMV reactivation, but for high-risk patients with GVHD, more sensitive assays (real-time PCR) must be done.

  15. Development and validation of a real-time PCR assay for specific and sensitive detection of canid herpesvirus 1.

    PubMed

    Decaro, Nicola; Amorisco, Francesca; Desario, Costantina; Lorusso, Eleonora; Camero, Michele; Bellacicco, Anna Lucia; Sciarretta, Rossana; Lucente, Maria Stella; Martella, Vito; Buonavoglia, Canio

    2010-10-01

    A TaqMan-based real-time PCR assay targeting the glycoprotein B-encoding gene was developed for diagnosis of canid herpesvirus 1 (CHV-1) infection. The established assay was highly specific, since no cross-reactions were observed with other canine DNA viruses, including canine parvovirus type 2, canine minute virus, or canine adenovirus types 1 and 2. The detection limit was 10(1) and 1.20 x 10(1) DNA copies per 10 microl(-1) of template for standard DNA and a CHV-1-positive kidney sample, respectively: about 1-log higher than a gel-based PCR assay targeting the thymidine kinase gene. The assay was also reproducible, as shown by satisfactory low intra-assay and inter-assay coefficients of variation. CHV-1 isolates of different geographical origins were recognised by the TaqMan assay. Tissues and clinical samples collected from three pups which died of CHV-1 neonatal infection were also tested, displaying a wide distribution of CHV-l DNA in their organs. Unlike other CHV-1-specific diagnostic methods, this quantitative assay permits simultaneous detection and quantitation of CHV-1 DNA in a wide range of canine tissues and body fluids, thus providing a useful tool for confirmation of a clinical diagnosis, for the study of viral pathogenesis and for evaluation of the efficacy of vaccines and antiviral drugs. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Development of a quantitative real-time PCR assay for sapovirus in children under 5-years-old in Regina Margherita Hospital of Turin, Italy.

    PubMed

    Bergallo, Massimiliano; Galliano, Ilaria; Montanari, Paola; Brusin, Martina Rosa; Finotti, Serena; Paderi, Giulia; Gabiano, Clara

    2017-04-01

    Gastroenteritis is a common disease in children. It is characterized by diarrhea, vomiting, abdominal pain, and fever. Sapovirus (SaV) is a causative agent of acute gastroenteritis, but it causes milder illness than do rotavirus and norovirus. There is high variability in the analytical performance of quantitative PCR-based assays among clinical laboratories. This study developed a reverse transcription real-time PCR method to detect SaV in fecal specimens collected from children under 5-years-old with acute gastroenteritis. Of 137 episodes of acute gastroenteritis, 15 (10.9%) were associated with SaV genomic detection, with a median viral load of 6.6(log 10 ) ± 7.1(log 10 ) genomes/mg fecal specimens. There was a significant difference in detection rate between males and females (9.48% (13/15) vs. 1.46% (2/15), p = 0.0232). Among the 15 SaV-positive cases, 6 were also positive for rotavirus. Viral RNA recovery rate ranged from 46% to 77% in the manual RNAzol protocol and from 31% to 90% in the automated Maxwell protocol. We also studied whether human genomic DNA influences the sensitivity of the assay: its presence caused a decrease in PCR sensitivity. The development of a laboratory-designed real-time PCR TaqMan assay for quantitative detection of SaV and the optimization and standardization of this assay, using stools of children with acute gastroenteritis, are described.

  17. An assay for lateral line regeneration in adult zebrafish.

    PubMed

    Pisano, Gina C; Mason, Samantha M; Dhliwayo, Nyembezi; Intine, Robert V; Sarras, Michael P

    2014-04-08

    Due to the clinical importance of hearing and balance disorders in man, model organisms such as the zebrafish have been used to study lateral line development and regeneration. The zebrafish is particularly attractive for such studies because of its rapid development time and its high regenerative capacity. To date, zebrafish studies of lateral line regeneration have mainly utilized fish of the embryonic and larval stages because of the lower number of neuromasts at these stages. This has made quantitative analysis of lateral line regeneration/and or development easier in the earlier developmental stages. Because many zebrafish models of neurological and non-neurological diseases are studied in the adult fish and not in the embryo/larvae, we focused on developing a quantitative lateral line regenerative assay in adult zebrafish so that an assay was available that could be applied to current adult zebrafish disease models. Building on previous studies by Van Trump et al. that described procedures for ablation of hair cells in adult Mexican blind cave fish and zebrafish (Danio rerio), our assay was designed to allow quantitative comparison between control and experimental groups. This was accomplished by developing a regenerative neuromast standard curve based on the percent of neuromast reappearance over a 24 hr time period following gentamicin-induced necrosis of hair cells in a defined region of the lateral line. The assay was also designed to allow extension of the analysis to the individual hair cell level when a higher level of resolution is required.

  18. Clinical Usefulness of a One-Tube Nested Reverse Transcription Quantitative Polymerase Chain Reaction Assay for Evaluating Human Epidermal Growth Factor Receptor 2 mRNA Overexpression in Formalin-Fixed and Paraffin-Embedded Breast Cancer Tissue Samples.

    PubMed

    Wang, Hye-Young; Ahn, Sungwoo; Park, Sunyoung; Kim, SeungIl; Lee, Hyeyoung

    2017-01-01

    Currently, the two main methods used to analyze human epidermal growth factor receptor 2 (HER2) amplification or overexpression have a limited accuracy and high costs. These limitations can be overcome by the development of complementary quantitative methods. In this study, we analyzed HER2 mRNA expression in clinical formalin-fixed and paraffin-embedded (FFPE) samples using a one-tube nested reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay. We measured expression relative to 3 reference genes and compared the results to those obtained by conventional immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) assays with 226 FFPE breast cancer tissue samples. The one-tube nested RT-qPCR assay proved to be highly sensitive and specific based on comparisons with IHC (96.9 and 97.7%, respectively) and FISH (92.4 and 92.9%, respectively) obtained with the validation set. Comparisons with clinicopathological data revealed significant associations between HER2 overexpression and TNM stage (p < 0.01), histological type (p < 0.01), ER status (p < 0.001), PR status (p < 0.05), HER2 status (p < 0.001), and molecular subtypes (p < 0.001). Based on these findings, our one-tube nested RT-qPCR assay is a potentially useful and complementary screening tool for the detection of HER2 mRNA overexpression. © 2016 S. Karger AG, Basel.

  19. In-vitro analysis of early calcification in aortic valvular interstitial cells using Laser-Induced Breakdown Spectroscopy (LIBS).

    PubMed

    Davari, Seyyed Ali; Masjedi, Shirin; Ferdous, Zannatul; Mukherjee, Dibyendu

    2018-01-01

    Calcific aortic valve disease (CAVD) is a major cardiovascular disorder caused by osteogenic differentiation of valvular interstitial cells (VICs) within aortic valves. Conventional methods like colorimetric assays and histology fail to detect small calcium depositions during in-vitro VIC cultures. Laser-induced breakdown spectroscopy (LIBS) is a robust analytical tool used for inorganic materials characterizations, but relatively new to biomedical applications. We employ LIBS, for the first time, for quantitative in-vitro detection of calcium depositions in VICs at various osteogenic differentiation stages. VICs isolated from porcine aortic valves were cultured in osteogenic media over various days. Colorimetric calcium assays based on arsenazo dye and Von Kossa staining measured the calcium depositions within VICs. Simultaneously, LIBS signatures for Ca I (422.67 nm) atomic emission lines were collected for estimating calcium depositions in lyophilized VIC samples. Our results indicate excellent linear correlation between the calcium assay and our LIBS measurements. Furthermore, unlike the assay results, the LIBS results could resolve calcium signals from cell samples with as early as 2 days of osteogenic culture. Quantitatively, the LIBS measurements establish the limit of detection for calcium content in VICs to be ∼0.17±0.04 μg which indicates a 5-fold improvement over calcium assay. Picture: Quantitative LIBS enables in-vitro analysis for early stage detection of calcium deposition within aortic valvular interstitial cells (VICs). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Development and application of a real-time PCR assay for the detection and quantitation of lymphocystis disease virus.

    PubMed

    Ciulli, Sara; Pinheiro, Ana Cristina de Aguiar Saldana; Volpe, Enrico; Moscato, Michele; Jung, Tae Sung; Galeotti, Marco; Stellino, Sabrina; Farneti, Riccardo; Prosperi, Santino

    2015-03-01

    Lymphocystis disease virus (LCDV) is responsible for a chronic self-limiting disease that affects more than 125 teleosts. Viral isolation of LCDV is difficult, time-consuming and often ineffective; the development of a rapid and specific tool to detect and quantify LCDV is desirable for both diagnosis and pathogenic studies. In this study, a quantitative real-time PCR (qPCR) assay was developed using a Sybr-Green-based assay targeting a highly conserved region of the MCP gene. Primers were designed on a multiple alignment that included all known LCDV genotypes. The viral DNA segment was cloned within a plasmid to generate a standard curve. The limit of detection was as low as 2.6DNA copies/μl of plasmid and the qPCR was able to detect viral DNA from cell culture lysates and tissues at levels ten-times lower than conventional PCR. Both gilthead seabream and olive flounder LCDV has been amplified, and an in silico assay showed that LCDV of all genotypes can be amplified. LCDV was detected in target and non-target tissues of both diseased and asymptomatic fish. The LCDV qPCR assay developed in this study is highly sensitive, specific, reproducible and versatile for the detection and quantitation of Lymphocystivirus, and may also be used for asymptomatic carrier detection or pathogenesis studies of different LCDV strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Quantifying spontaneous metastasis in a syngeneic mouse melanoma model using real time PCR.

    PubMed

    Deng, Wentao; McLaughlin, Sarah L; Klinke, David J

    2017-08-07

    Modeling metastasis in vivo with animals is a priority for both revealing mechanisms of tumor dissemination and developing therapeutic methods. While conventional intravenous injection of tumor cells provides an efficient and consistent system for studying tumor cell extravasation and colonization, studying spontaneous metastasis derived from orthotopic tumor sites has the advantage of modeling more aspects of the metastatic cascade, but is challenging as it is difficult to detect small numbers of metastatic cells. In this work, we developed an approach for quantifying spontaneous metastasis in the syngeneic mouse B16 system using real time PCR. We first transduced B16 cells with lentivirus expressing firefly luciferase Luc2 gene for bioluminescence imaging. Next, we developed a real time quantitative PCR (qPCR) method for the detection of luciferase-expressing, metastatic tumor cells in mouse lungs and other organs. To illustrate the approach, we quantified lung metastasis in both spontaneous and experimental scenarios using B16F0 and B16F10 cells in C57BL/6Ncrl and NOD-Scid Gamma (NSG) mice. We tracked B16 melanoma metastasis with both bioluminescence imaging and qPCR, which were found to be self-consistent. Using this assay, we can quantitatively detect one Luc2 positive tumor cell out of 10 4 tissue cells, which corresponds to a metastatic burden of 1.8 × 10 4 metastatic cells per whole mouse lung. More importantly, the qPCR method was at least a factor of 10 more sensitive in detecting metastatic cell dissemination and should be combined with bioluminescence imaging as a high-resolution, end-point method for final metastatic cell quantitation. Given the rapid growth of primary tumors in many mouse models, assays with improved sensitivity can provide better insight into biological mechanisms that underpin tumor metastasis.

  2. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence.

    PubMed

    Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing

    2005-11-30

    Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.

  3. A bioluminescent caspase-1 activity assay rapidly monitors inflammasome activation in cells.

    PubMed

    O'Brien, Martha; Moehring, Danielle; Muñoz-Planillo, Raúl; Núñez, Gabriel; Callaway, Justin; Ting, Jenny; Scurria, Mike; Ugo, Tim; Bernad, Laurent; Cali, James; Lazar, Dan

    2017-08-01

    Inflammasomes are protein complexes induced by diverse inflammatory stimuli that activate caspase-1, resulting in the processing and release of cytokines, IL-1β and IL-18, and pyroptosis, an immunogenic form of cell death. To provide a homogeneous method for detecting caspase-1 activity, we developed a bioluminescent, plate-based assay that combines a substrate, Z-WEHD-aminoluciferin, with a thermostable luciferase in an optimized lytic reagent added directly to cultured cells. Assay specificity for caspase-1 is conferred by inclusion of a proteasome inhibitor in the lytic reagent and by use of a caspase-1 inhibitor to confirm activity. This approach enables a specific and rapid determination of caspase-1 activation. Caspase-1 activity is stable in the reagent thereby providing assay convenience and flexibility. Using this assay system, caspase-1 activation has been determined in THP-1 cells following treatment with α-hemolysin, LPS, nigericin, gramicidin, MSU, R848, Pam3CSK4, and flagellin. Caspase-1 activation has also been demonstrated in treated J774A.1 mouse macrophages, bone marrow-derived macrophages (BMDMs) from mice, as well as in human primary monocytes. Caspase-1 activity was not detected in treated BMDMs derived from Casp1 -/- mice, further confirming the specificity of the assay. Caspase-1 activity can be measured directly in cultured cells using the lytic reagent, or caspase-1 activity released into medium can be monitored by assay of transferred supernatant. The caspase-1 assay can be multiplexed with other assays to monitor additional parameters from the same cells, such as IL-1β release or cell death. The caspase-1 assay in combination with a sensitive real-time monitor of cell death allows one to accurately establish pyroptosis. This assay system provides a rapid, convenient, and flexible method to specifically and quantitatively monitor caspase-1 activation in cells in a plate-based format. This will allow a more efficient and effective assessment of inflammasome activation as well as enable high-throughput screening for inflammasome modulators. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. A quantitative systems approach to identify paracrine mechanisms that locally suppress immune response to Interleukin-12 in the B16 melanoma model

    PubMed Central

    Kulkarni, Yogesh M.; Chambers, Emily; McGray, A. J. Robert; Ware, Jason S.; Bramson, Jonathan L.

    2012-01-01

    Interleukin-12 (IL12) enhances anti-tumor immunity when delivered to the tumor microenvironment. However, local immunoregulatory elements dampen the efficacy of IL12. The identity of these local mechanisms used by tumors to suppress immunosurveillance represents a key knowledge gap for improving tumor immunotherapy. From a systems perspective, local suppression of anti-tumor immunity is a closed-loop system - where system response is determined by an unknown combination of external inputs and local cellular cross-talk. Here, we recreated this closed-loop system in vitro and combined quantitative high content assays, in silico model-based inference, and a proteomic workflow to identify the biochemical cues responsible for immunosuppression. Following an induction period, the B16 melanoma cell model, a transplantable model for spontaneous malignant melanoma, inhibited the response of a T helper cell model to IL12. This paracrine effect was not explained by induction of apoptosis or creation of a cytokine sink, despite both mechanisms present within the co-culture assay. Tumor-derived Wnt-inducible signaling protein-1 (WISP-1) was identified to exert paracrine action on immune cells by inhibiting their response to IL12. Moreover, WISP-1 was expressed in vivo following intradermal challenge with B16F10 cells and was inferred to be expressed at the tumor periphery. Collectively, the data suggest that (1) biochemical cues associated with epithelial-to-mesenchymal transition can shape anti-tumor immunity through paracrine action and (2) remnants of the immunoselective pressure associated with evolution in cancer include both sculpting of tumor antigens and expression of proteins that proactively shape anti-tumor immunity. PMID:22777646

  5. Quantitative PCR for Genetic Markers of Human Fecal Pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantificationapproach. We report the development of quantitative PCR assays for quantification of two recently described human-...

  6. 2,2-Diphenyl-1-picrylhydrazyl as a screening tool for recombinant monoterpene biosynthesis.

    PubMed

    Behrendorff, James Byh; Vickers, Claudia E; Chrysanthopoulos, Panagiotis; Nielsen, Lars K

    2013-08-23

    Monoterpenes are a class of natural C10 compounds with a range of potential applications including use as fuel additives, fragrances, and chemical feedstocks. Biosynthesis of monoterpenes in heterologous systems is yet to reach commercially-viable levels, and therefore is the subject of strain engineering and fermentation optimization studies. Detection of monoterpenes typically relies on gas chromatography/mass spectrometry; this represents a significant analytical bottleneck which limits the potential to analyse combinatorial sets of conditions. To address this, we developed a high-throughput method for pre-screening monoterpene biosynthesis. An optimised DPPH assay was developed for detecting monoterpenes from two-phase microbial cultures using dodecane as the extraction solvent. The assay was useful for reproducible qualitative ranking of monoterpene concentrations, and detected standard preparations of myrcene and γ-terpinene dissolved in dodecane at concentrations as low as 10 and 15 μM, respectively, and limonene as low as 200 μM. The assay could not be used quantitatively due to technical difficulties in capturing the initial reaction rate in a multi-well plate and the presence of minor DPPH-reactive contaminants. Initially, limonene biosynthesis in Saccharomyces cerevisiae was tested using two different limonene synthase enzymes and three medium compositions. The assay indicated that limonene biosynthesis was enhanced in a supplemented YP medium and that the Citrus limon limonene synthase (CLLS) was more effective than the Mentha spicata limonene synthase (MSLS). GC-MS analysis revealed that the DPPH assay had correctly identified the best limonene synthase (CLLS) and culture medium (supplemented YP medium). Because only traces of limonene were detected in SD medium, we subsequently identified medium components that improved limonene production and developed a defined medium based on these findings. The best limonene titres obtained were 1.48 ± 0.22 mg limonene per L in supplemented YP medium and 0.9 ± 0.15 mg limonene per L in a pH-adjusted supplemented SD medium. The DPPH assay is useful for detecting biosynthesis of limonene. Although the assay cannot be used quantitatively, it proved successful in ranking limonene production conditions qualitatively and thus is suitable as a first-tier screen. The DPPH assay will likely be applicable in detecting biosynthesis of several other monoterpenes and for screening libraries of monoterpene-producing strains.

  7. 2,2-Diphenyl-1-picrylhydrazyl as a screening tool for recombinant monoterpene biosynthesis

    PubMed Central

    2013-01-01

    Background Monoterpenes are a class of natural C10 compounds with a range of potential applications including use as fuel additives, fragrances, and chemical feedstocks. Biosynthesis of monoterpenes in heterologous systems is yet to reach commercially-viable levels, and therefore is the subject of strain engineering and fermentation optimization studies. Detection of monoterpenes typically relies on gas chromatography/mass spectrometry; this represents a significant analytical bottleneck which limits the potential to analyse combinatorial sets of conditions. To address this, we developed a high-throughput method for pre-screening monoterpene biosynthesis. Results An optimised DPPH assay was developed for detecting monoterpenes from two-phase microbial cultures using dodecane as the extraction solvent. The assay was useful for reproducible qualitative ranking of monoterpene concentrations, and detected standard preparations of myrcene and γ-terpinene dissolved in dodecane at concentrations as low as 10 and 15 μM, respectively, and limonene as low as 200 μM. The assay could not be used quantitatively due to technical difficulties in capturing the initial reaction rate in a multi-well plate and the presence of minor DPPH-reactive contaminants. Initially, limonene biosynthesis in Saccharomyces cerevisiae was tested using two different limonene synthase enzymes and three medium compositions. The assay indicated that limonene biosynthesis was enhanced in a supplemented YP medium and that the Citrus limon limonene synthase (CLLS) was more effective than the Mentha spicata limonene synthase (MSLS). GC-MS analysis revealed that the DPPH assay had correctly identified the best limonene synthase (CLLS) and culture medium (supplemented YP medium). Because only traces of limonene were detected in SD medium, we subsequently identified medium components that improved limonene production and developed a defined medium based on these findings. The best limonene titres obtained were 1.48 ± 0.22 mg limonene per L in supplemented YP medium and 0.9 ± 0.15 mg limonene per L in a pH-adjusted supplemented SD medium. Conclusions The DPPH assay is useful for detecting biosynthesis of limonene. Although the assay cannot be used quantitatively, it proved successful in ranking limonene production conditions qualitatively and thus is suitable as a first-tier screen. The DPPH assay will likely be applicable in detecting biosynthesis of several other monoterpenes and for screening libraries of monoterpene-producing strains. PMID:23968454

  8. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of Streptococcus mutans

    PubMed Central

    Wang, Yufei; Wang, Xiuqing; Jiang, Wentao; Wang, Kun; Luo, Junyuan; Li, Wei; Zhou, Xuedong; Zhang, Linglin

    2018-01-01

    ABSTRACT Cariogenic virulence factors of Streptococcus mutans include acidogenicity, aciduricity, and extracellular polysaccharides (EPS) synthesis. The de novo designed antimicrobial peptide GH12 has shown bactericidal effects on S. mutans, but its interaction with virulence and regulatory systems of S. mutans remains to be elucidated. The objectives were to investigate the effects of GH12 on virulence factors of S. mutans, and further explore the function mechanisms at enzymatic and transcriptional levels. To avoid decrease in bacterial viability, we limited GH12 to subinhibitory levels. We evaluated effects of GH12 on acidogenicity of S. mutans by pH drop, lactic acid measurement and lactate dehydrogenase (LDH) assay, on aciduricity through survival rate at pH 5.0 and F1F0-ATPase assay, and on EPS synthesis using quantitative measurement, morphology observation, vertical distribution analyses and biomass calculation. Afterwards, we conducted quantitative real-time PCR to acquire the expression profile of related genes. GH12 at 1/2 MIC (4 mg/L) inhibited acid production, survival rate, EPS synthesis, and biofilm formation. The enzymatic activity of LDH and F1F0-ATPase was inhibited, and ldh, gtfBCD, vicR, liaR, and comDE genes were significantly downregulated. In conclusion, GH12 inhibited virulence factors of S. mutans, through reducing the activity of related enzymes, downregulating virulence genes, and inactivating specific regulatory systems. PMID:29503706

  9. A novel quantitative high-throughput screen identifies drugs that both activate SUMO conjugation via the inhibition of microRNAs 182 and 183 and facilitate neuroprotection in a model of oxygen and glucose deprivation

    PubMed Central

    Bernstock, Joshua D; Lee, Yang-ja; Peruzzotti-Jametti, Luca; Southall, Noel; Johnson, Kory R; Maric, Dragan; Volpe, Giulio; Kouznetsova, Jennifer; Zheng, Wei; Pluchino, Stefano

    2015-01-01

    The conjugation/de-conjugation of Small Ubiquitin-like Modifier (SUMO) has been shown to be associated with a diverse set of physiologic/pathologic conditions. The clinical significance and ostensible therapeutic utility offered via the selective control of the global SUMOylation process has become readily apparent in ischemic pathophysiology. Herein, we describe the development of a novel quantitative high-throughput screening (qHTS) system designed to identify small molecules capable of increasing SUMOylation via the regulation/inhibition of members of the microRNA (miRNA)-182 family. This assay employs a SHSY5Y human neuroblastoma cell line stably transfected with a dual firefly-Renilla luciferase reporter system for identification of specific inhibitors of either miR-182 or miR-183. In this study, we have identified small molecules capable of inducing increased global conjugation of SUMO in both SHSY5Y cells and rat E18-derived primary cortical neurons. The protective effects of a number of the identified compounds were confirmed via an in vitro ischemic model (oxygen/glucose deprivation). Of note, this assay can be easily repurposed to allow high-throughput analyses of the potential drugability of other relevant miRNA(s) in ischemic pathobiology. PMID:26661196

  10. Analysis of Gold Ores by Fire Assay

    ERIC Educational Resources Information Center

    Blyth, Kristy M.; Phillips, David N.; van Bronswijk, Wilhelm

    2004-01-01

    Students of an Applied Chemistry degree course carried out a fire-assay exercise. The analysis showed that the technique was a worthwhile quantitative analytical technique and covered interesting theory including acid-base and redox chemistry and other concepts such as inquarting and cupelling.

  11. Quantitative analysis of serotonin secreted by human embryonic stem cells-derived serotonergic neurons via pH-mediated online stacking-CE-ESI-MRM.

    PubMed

    Zhong, Xuefei; Hao, Ling; Lu, Jianfeng; Ye, Hui; Zhang, Su-Chun; Li, Lingjun

    2016-04-01

    A CE-ESI-MRM-based assay was developed for targeted analysis of serotonin released by human embryonic stem cells-derived serotonergic neurons in a chemically defined environment. A discontinuous electrolyte system was optimized for pH-mediated online stacking of serotonin. Combining with a liquid-liquid extraction procedure, LOD of serotonin in the Krebs'-Ringer's solution by CE-ESI-MS/MS on a 3D ion trap MS was0.15 ng/mL. The quantitative results confirmed the serotonergic identity of the in vitro developed neurons and the capacity of these neurons to release serotonin in response to stimulus. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Simplified and Efficient Quantification of Low-abundance Proteins at Very High Multiplex via Targeted Mass Spectrometry*

    PubMed Central

    Burgess, Michael W.; Keshishian, Hasmik; Mani, D. R.; Gillette, Michael A.; Carr, Steven A.

    2014-01-01

    Liquid chromatography–multiple reaction monitoring mass spectrometry (LC-MRM-MS) of plasma that has been depleted of abundant proteins and fractionated at the peptide level into six to eight fractions is a proven method for quantifying proteins present at low nanogram-per-milliliter levels. A drawback of fraction-MRM is the increased analysis time due to the generation of multiple fractions per biological sample. We now report that the use of heated, long, fused silica columns (>30 cm) packed with 1.9 μm of packing material can reduce or eliminate the need for fractionation prior to LC-MRM-MS without a significant loss of sensitivity or precision relative to fraction-MRM. We empirically determined the optimal column length, temperature, gradient duration, and sample load for such assays and used these conditions to study detection sensitivity and assay precision. In addition to increased peak capacity, longer columns packed with smaller beads tolerated a 4- to 6-fold increase in analyte load without a loss of robustness or reproducibility. The longer columns also provided a 4-fold improvement in median limit-of-quantitation values with increased assay precision relative to the standard 12 cm columns packed with 3 μm material. Overall, the optimized chromatography provided an approximately 3-fold increase in analysis throughput with excellent robustness and less than a 2-fold reduction in quantitative sensitivity relative to fraction-MRM. The value of the system for increased multiplexing was demonstrated by the ability to configure an 800-plex MRM-MS assay, run in a single analysis, comprising 2400 transitions with retention time scheduling to monitor 400 unlabeled and heavy labeled peptide pairs. PMID:24522978

  13. A simple and widely applicable hit validation strategy for protein-protein interaction inhibitors based on a quantitative ligand displacement assay.

    PubMed

    Sameshima, Tomoya; Miyahisa, Ikuo; Homma, Misaki; Aikawa, Katsuji; Hixon, Mark S; Matsui, Junji

    2014-12-15

    Identification of inhibitors for protein-protein interactions (PPIs) from high-throughput screening (HTS) is challenging due to the weak affinity of primary hits. We present a hit validation strategy of PPI inhibitors using quantitative ligand displacement assay. From an HTS for Bcl-xL/Mcl-1 inhibitors, we obtained a hit candidate, I1, which potentially forms a reactive Michael acceptor, I2, inhibiting Bcl-xL/Mcl-1 through covalent modification. We confirmed rapid reversible and competitive binding of I1 with a probe peptide, suggesting non-covalent binding. The advantages of our approach over biophysical assays include; simplicity, higher throughput, low protein consumption and universal application to PPIs including insoluble membrane proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Computational Modeling and Simulation of Developmental ...

    EPA Pesticide Factsheets

    Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program (ToxCast) generated vast in vitro cellular and molecular effects data on >1858 chemicals in >600 high-throughput screening (HTS) assays. The diversity of assays has been increased for developmental toxicity with several HTS platforms, including the devTOX-quickPredict assay from Stemina Biomarker Discovery utilizing the human embryonic stem cell line (H9). Translating these HTS data into higher order-predictions of developmental toxicity is a significant challenge. Here, we address the application of computational systems models that recapitulate the kinematics of dynamical cell signaling networks (e.g., SHH, FGF, BMP, retinoids) in a CompuCell3D.org modeling environment. Examples include angiogenesis (angiodysplasia) and dysmorphogenesis. Being numerically responsive to perturbation, these models are amenable to data integration for systems Toxicology and Adverse Outcome Pathways (AOPs). The AOP simulation outputs predict potential phenotypes based on the in vitro HTS data ToxCast. A heuristic computational intelligence framework that recapitulates the kinematics of dynamical cell signaling networks in the embryo, together with the in vitro profiling data, produce quantitative predic

  15. Harnessing the glucosyltransferase activities of Clostridium difficile for functional studies of toxins A and B.

    PubMed

    Darkoh, Charles; Kaplan, Heidi B; Dupont, Herbert L

    2011-08-01

    The incidence of Clostridium difficile infection (CDI) has been increasing within the last decade. Pathogenic strains of C. difficile produce toxin A and/or toxin B, which are important virulence factors in the pathogenesis of this bacterium. Current methods for diagnosing CDI are mostly qualitative tests that detect either the bacterium or the toxins. We have developed an assay (Cdifftox activity assay) to detect C. difficile toxin A and B activities that is quantitative and cost-efficient and utilizes a substrate that is stereochemically similar to the native substrate of the toxins (UDP-glucose). To characterize toxin activity, toxins A and B were purified from culture supernatants by ammonium sulfate precipitation and chromatography through DEAE-Sepharose and gel filtration columns. The activities of the final fractions were quantitated using the Cdifftox activity assay and compared to the results of a toxin A- and B-specific enzyme-linked immunosorbent assay (ELISA). The affinity for the substrate was >4-fold higher for toxin B than for toxin A. Moreover, the rate of cleavage of the substrate was 4.3-fold higher for toxin B than for toxin A. The optimum temperature for both toxins ranged from 35 to 40°C at pH 8. Culture supernatants from clinical isolates obtained from the stools of patients suspected to be suffering from CDI were tested using the Cdifftox activity assay, and the results were compared to those of ELISA and PCR amplification of the toxin genes. Our results demonstrate that this new assay is comparable to the current commercial ELISA for detecting the toxins in the samples tested and has the added advantage of quantitating toxin activity.

  16. A Simple Method to Quantitate IP-10 in Dried Blood and Plasma Spots

    PubMed Central

    Aabye, Martine G.; Eugen-Olsen, Jesper; Werlinrud, Anne Marie; Holm, Line Lindebo; Tuuminen, Tamara; Ravn, Pernille; Ruhwald, Morten

    2012-01-01

    Background Antigen specific release of IP-10 is an established marker for infection with M.tuberculosis. Compared to IFN-γ, IP-10 is released in 100-fold higher concentrations enabling the development of novel assays for detection. Dried blood spots are a convenient sample for high throughput newborn screening. Aim To develop a robust and sensitive ELISA-based assay for IP-10 detection in plasma, dried blood spots (DBS) and dried plasma spots (DPS); to validate the ELISA in clinically relevant samples; and to assess the performance of the assay for detection of Cytomegalovirus (CMV) and M.tuberculosis specific immune responses. Method We raised mice and rat monoclonal antibodies against human IP-10 and developed an ELISA. The assay was validated and applied to the detection of CMV and M.tuberculosis specific responses in 18 patients with immune reactivity towards M.tuberculosis and 32 healthy controls of which 22 had immune reactivity towards CMV and none towards M.tuberculosis. We compared the performance of this new assay to IFN-γ. Results The ELISA was reliable for IP-10 detection in both plasma and filter paper samples. The linear range of the ELISA was 2.5–600 pg/ml. IFN-γ was not readily detectable in DPS samples. IP-10 was stabile in filter paper samples for at least 4 weeks at 37°C. The correlation between IP-10 detected in plasma, DPS and DBS samples was excellent (r2>0.97). Conclusions This newly developed assay is reliable for IP-10 quantification in plasma, DBS and DPS samples from antigen stimulated and non-stimulated whole blood. The filter paper assays enable easy sample acquisition and transport at ambient temperature e.g. via the postal system. The system can potentially simplify diagnostic assays for M.tuberculosis and CMV infection. PMID:22761744

  17. Development of an integrated laboratory system for the monitoring of cyanotoxins in surface and drinking waters.

    PubMed

    Triantis, Theodoros; Tsimeli, Katerina; Kaloudis, Triantafyllos; Thanassoulias, Nicholas; Lytras, Efthymios; Hiskia, Anastasia

    2010-05-01

    A system of analytical processes has been developed in order to serve as a cost-effective scheme for the monitoring of cyanobacterial toxins on a quantitative basis, in surface and drinking waters. Five cyclic peptide hepatotoxins, microcystin-LR, -RR, -YR, -LA and nodularin were chosen as the target compounds. Two different enzyme-linked immunosorbent assays (ELISA) were validated in order to serve as primary quantitative screening tools. Validation results showed that the ELISA methods are sufficiently specific and sensitive with limits of detection (LODs) around 0.1 microg/L, however, matrix effects should be considered, especially with surface water samples or bacterial mass methanolic extracts. A colorimetric protein phosphatase inhibition assay (PPIA) utilizing protein phosphatase 2A and p-nitrophenyl phosphate as substrate, was applied in microplate format in order to serve as a quantitative screening method for the detection of the toxic activity associated with cyclic peptide hepatotoxins, at concentration levels >0.2 microg/L of MC-LR equivalents. A fast HPLC/PDA method has been developed for the determination of microcystins, by using a short, 50mm C18 column, with 1.8 microm particle size. Using this method a 10-fold reduction of sample run time was achieved and sufficient separation of microcystins was accomplished in less than 3 min. Finally, the analytical system includes an LC/MS/MS method that was developed for the determination of the 5 target compounds after SPE extraction. The method achieves extremely low limits of detection (<0.02 microg/L), in both surface and drinking waters and it is used for identification and verification purposes as well as for determinations at the ppt level. An analytical protocol that includes the above methods has been designed and validated through the analysis of a number of real samples. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Quantitative PCR for genetic markers of human fecal pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantification approach. We report the development of quantitative PCR assays for enumeration of two recently described hum...

  19. Quantitative multiplex detection of pathogen biomarkers

    DOEpatents

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I.; Martinez, Jennifer; Grace, Wynne K.

    2016-02-09

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  20. Quantitative multiplex detection of pathogen biomarkers

    DOEpatents

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K

    2014-10-14

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

Top