Sample records for quantitative binding studies

  1. Label-Free, LC-MS-Based Assays to Quantitate Small-Molecule Antagonist Binding to the Mammalian BLT1 Receptor.

    PubMed

    Chen, Xun; Stout, Steven; Mueller, Uwe; Boykow, George; Visconti, Richard; Siliphaivanh, Phieng; Spencer, Kerrie; Presland, Jeremy; Kavana, Michael; Basso, Andrea D; McLaren, David G; Myers, Robert W

    2017-08-01

    We have developed and validated label-free, liquid chromatography-mass spectrometry (LC-MS)-based equilibrium direct and competition binding assays to quantitate small-molecule antagonist binding to recombinant human and mouse BLT1 receptors expressed in HEK 293 cell membranes. Procedurally, these binding assays involve (1) equilibration of the BLT1 receptor and probe ligand, with or without a competitor; (2) vacuum filtration through cationic glass fiber filters to separate receptor-bound from free probe ligand; and (3) LC-MS analysis in selected reaction monitoring mode for bound probe ligand quantitation. Two novel, optimized probe ligands, compounds 1 and 2, were identified by screening 20 unlabeled BLT1 antagonists for direct binding. Saturation direct binding studies confirmed the high affinity, and dissociation studies established the rapid binding kinetics of probe ligands 1 and 2. Competition binding assays were established using both probe ligands, and the affinities of structurally diverse BLT1 antagonists were measured. Both binding assay formats can be executed with high specificity and sensitivity and moderate throughput (96-well plate format) using these approaches. This highly versatile, label-free method for studying ligand binding to membrane-associated receptors should find broad application as an alternative to traditional methods using labeled ligands.

  2. Rate Constants and Mechanisms of Protein–Ligand Binding

    PubMed Central

    Pang, Xiaodong; Zhou, Huan-Xiang

    2017-01-01

    Whereas protein–ligand binding affinities have long-established prominence, binding rate constants and binding mechanisms have gained increasing attention in recent years. Both new computational methods and new experimental techniques have been developed to characterize the latter properties. It is now realized that binding mechanisms, like binding rate constants, can and should be quantitatively determined. In this review, we summarize studies and synthesize ideas on several topics in the hope of providing a coherent picture of and physical insight into binding kinetics. The topics include microscopic formulation of the kinetic problem and its reduction to simple rate equations; computation of binding rate constants; quantitative determination of binding mechanisms; and elucidation of physical factors that control binding rate constants and mechanisms. PMID:28375732

  3. NMR diffusion and relaxation studies of 2-nitroimidazole and albumin interactions

    NASA Astrophysics Data System (ADS)

    Wijesekera, Dj; Willis, Scott A.; Gupta, Abhishek; Torres, Allan M.; Zheng, Gang; Price, William S.

    2018-03-01

    Nitroimidazole derivatives are of current interest in the development of hypoxia targeting agents and show potential in the establishment of quantitative measures of tumor hypoxia. In this study, the binding of 2-nitroimidazole to albumin was probed using NMR diffusion and relaxation measurements. Binding studies were conducted at three different protein concentrations (0.23, 0.30 and 0.38 mM) with drug concentrations ranging from 0.005-0.16 M at 298 K. Quantitative assessments of the binding model were made by evaluating the number of binding sites, n, and association constant, K. These were determined to be 21 ± 3 and 53 ± 4 M- 1, respectively.

  4. Quantitation of benzodiazepine receptor binding with PET [11C]iomazenil and SPECT [123I]iomazenil: preliminary results of a direct comparison in healthy human subjects.

    PubMed

    Bremner, J D; Baldwin, R; Horti, A; Staib, L H; Ng, C K; Tan, P Z; Zea-Ponce, Y; Zoghbi, S; Seibyl, J P; Soufer, R; Charney, D S; Innis, R B

    1999-08-31

    Although positron emission tomography (PET) and single photon emission computed tomography (SPECT) are increasingly used for quantitation of neuroreceptor binding, almost no studies to date have involved a direct comparison of the two. One study found a high level of agreement between the two techniques, although there was a systematic 30% increase in measures of benzodiazepine receptor binding in SPECT compared with PET. The purpose of the current study was to directly compare quantitation of benzodiazepine receptor binding in the same human subjects using PET and SPECT with high specific activity [11C]iomazenil and [123I]iomazenil, respectively. All subjects were administered a single bolus of high specific activity iomazenil labeled with 11C or 123I followed by dynamic PET or SPECT imaging of the brain. Arterial blood samples were obtained for measurement of metabolite-corrected radioligand in plasma. Compartmental modeling was used to fit values for kinetic rate constants of transfer of radioligand between plasma and brain compartments. These values were used for calculation of binding potential (BP = Bmax/Kd) and product of BP and the fraction of free non-protein-bound parent compound (V3'). Mean values for V3' in PET and SPECT were as follows: temporal cortex 23+/-5 and 22+/-3 ml/g, frontal cortex23+/-6 and 22+/-3 ml/g, occipital cortex 28+/-3 and 31+/-5 ml/g, and striatum 4+/-4 and 7+/-4 ml/g. These preliminary findings indicate that PET and SPECT provide comparable results in quantitation of neuroreceptor binding in the human brain.

  5. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand–protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency

    PubMed Central

    Delius, Judith; Frank, Oliver

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is well-established in assessing the binding affinity between low molecular weight ligands and proteins. However, conventional NMR-based binding assays are often limited to small proteins of high purity and may require elaborate isotopic labeling of one of the potential binding partners. As protein–polyphenol complexation is assumed to be a key event in polyphenol-mediated oral astringency, here we introduce a label-free, ligand-focused 1H NMR titration assay to estimate binding affinities and characterize soluble complex formation between proteins and low molecular weight polyphenols. The method makes use of the effects of NMR line broadening due to protein–ligand interactions and quantitation of the non-bound ligand at varying protein concentrations by quantitative 1H NMR spectroscopy (qHNMR) using electronic reference to access in vivo concentration (ERETIC 2). This technique is applied to assess the interaction kinetics of selected astringent tasting polyphenols and purified mucin, a major lubricating glycoprotein of human saliva, as well as human whole saliva. The protein affinity values (BC50) obtained are subsequently correlated with the intrinsic mouth-puckering, astringent oral sensation imparted by these compounds. The quantitative NMR method is further exploited to study the effect of carboxymethyl cellulose, a candidate “anti-astringent” protein binding antagonist, on the polyphenol–protein interaction. Consequently, the NMR approach presented here proves to be a versatile tool to study the interactions between proteins and low-affinity ligands in solution and may find promising applications in the discovery of bioactives. PMID:28886151

  6. Characterization of [3H] oxymorphone binding sites in mouse brain: Quantitative autoradiography in opioid receptor knockout mice.

    PubMed

    Yoo, Ji Hoon; Borsodi, Anna; Tóth, Géza; Benyhe, Sándor; Gaspar, Robert; Matifas, Audrey; Kieffer, Brigitte L; Metaxas, Athanasios; Kitchen, Ian; Bailey, Alexis

    2017-03-16

    Oxymorphone, one of oxycodone's metabolic products, is a potent opioid receptor agonist which is thought to contribute to the analgesic effect of its parent compound and may have high potential abuse liability. Nonetheless, the in vivo pharmacological binding profile of this drug is still unclear. This study uses mice lacking mu (MOP), kappa (KOP) or delta (DOP) opioid receptors as well as mice lacking all three opioid receptors to provide full characterisation of oxymorphone binding sites in the brain. Saturation binding studies using [ 3 H]oxymorphone revealed high affinity binding sites in mouse brain displaying Kd of 1.7nM and Bmax of 147fmol/mg. Furthermore, we performed quantitative autoradiography binding studies using [ 3 H]oxymorphone in mouse brain. The distribution of [ 3 H]oxymorphone binding sites was found to be similar to the selective MOP agonist [ 3 H]DAMGO in the mouse brain. [ 3 H]Oxymorphone binding was completely abolished across the majority of the brain regions in mice lacking MOP as well as in mice lacking all three opioid receptors. DOP and KOP knockout mice retained [ 3 H]oxymorphone binding sites suggesting oxymorphone may not target DOP or KOP. These results confirm that the MOP, and not the DOP or the KOP is the main high affinity binding target for oxymorphone. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Muscarinic cholinergic receptor binding: in vivo depiction using single photon emission computed tomography and radioiodinated quinuclidinyl benzilate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drayer, B.; Jaszczak, R.; Coleman, E.

    1982-06-01

    An attempt was made to characterize, in vivo, specific binding to the muscarinic cholinergic receptor in the calf using the radioiodinated ligand quinuclidinyl benzilate (/sup 123/I-OH-QNB) and single photon detection emission computed tomography (SPECT). The supratentorial brain activity was significantly increased after the intravenous infusion of /sup 123/I-OH-QNB as compared to free /sup 123/I. Scopolamine, a muscarinic cholinergic receptor antagonist, decreased the measured brain activity when infused prior to /sup 123/I-OH-QNB consistent with pharmacologic blockade of specific receptor binding. Quantitative in vitro tissue distribution studies obtained following SPECT imaging were consistent with regionally distinct specific receptor binding in the striatummore » and cortical gray matter, nonspecific binding in the cerebellum, and pharmacologic blockade of specific binding sites with scopolamine. Although /sup 123/I-OH-QNB is not the ideal radioligand, our limited success will hopefully encourage the development of improved binding probes for SPECT imaging and quantitation.« less

  8. Quantitative monitoring of two simultaneously binding species using Label-Enhanced surface plasmon resonance.

    PubMed

    Eng, Lars; Garcia, Brandon L; Geisbrecht, Brian V; Hanning, Anders

    2018-02-26

    Surface plasmon resonance (SPR) is a well-established method for biomolecular interaction studies. SPR monitors the binding of molecules to a solid surface, embodied as refractive index changes close to the surface. One limitation of conventional SPR is the universal nature of the detection that results in an inability to qualitatively discriminate between different binding species. Furthermore, it is impossible to directly discriminate two species simultaneously binding to different sites on a protein, which limits the utility of SPR, for example, in the study of allosteric binders or bi-specific molecules. It is also impossible in principle to discriminate protein conformation changes from actual binding events. Here we demonstrate how Label-Enhanced SPR can be utilized to discriminate and quantitatively monitor the simultaneous binding of two different species - one dye-labeled and one unlabeled - on a standard, single-wavelength SPR instrument. This new technique increases the versatility of SPR technology by opening up application areas where the usefulness of the approach has previously been limited. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Gamma-Aminobutyric acid and benzodiazepine receptors in the kindling model of epilepsy: a quantitative radiohistochemical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, C.; Pedersen, H.B.; McNamara, J.O.

    1985-10-01

    Quantitative radiohistochemistry was utilized to study alterations of gamma-aminobutyric acid (GABA) and benzodiazepine receptors in the kindling model of epilepsy. The radioligands used for GABA and benzodiazepine receptors were (TH) muscimol and (TH)flunitrazepam, respectively. GABA receptor binding was increased by 22% in fascia dentata of the hippocampal formation but not in neocortex or substantia nigra of kindled rats. Within fascia dentata, GABA receptor binding was increased to an equivalent extent in stratum granulosum and throughout stratum moleculare; no increase was found in dentate hilus or stratum lacunosummoleculare or stratum radiatum of CA1. The increased binding was present at 24 hrmore » but not at 28 days after the last kindled seizure. The direction, anatomic distribution, and time course of the increased GABA receptor binding were paralleled by increased benzodiazepine receptor binding. The anatomic distribution of the increased GABA receptor binding is consistent with a localization to somata and dendritic trees of dentate granule cells. The authors suggest that increased GABA and benzodiazepine receptor binding may contribute to enhanced inhibition of dentate granule cells demonstrated electrophysiologically in kindled animals.« less

  10. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific bindingmore » of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.« less

  11. Parallel factor ChIP provides essential internal control for quantitative differential ChIP-seq.

    PubMed

    Guertin, Michael J; Cullen, Amy E; Markowetz, Florian; Holding, Andrew N

    2018-04-17

    A key challenge in quantitative ChIP combined with high-throughput sequencing (ChIP-seq) is the normalization of data in the presence of genome-wide changes in occupancy. Analysis-based normalization methods were developed for transcriptomic data and these are dependent on the underlying assumption that total transcription does not change between conditions. For genome-wide changes in transcription factor (TF) binding, these assumptions do not hold true. The challenges in normalization are confounded by experimental variability during sample preparation, processing and recovery. We present a novel normalization strategy utilizing an internal standard of unchanged peaks for reference. Our method can be readily applied to monitor genome-wide changes by ChIP-seq that are otherwise lost or misrepresented through analytical normalization. We compare our approach to normalization by total read depth and two alternative methods that utilize external experimental controls to study TF binding. We successfully resolve the key challenges in quantitative ChIP-seq analysis and demonstrate its application by monitoring the loss of Estrogen Receptor-alpha (ER) binding upon fulvestrant treatment, ER binding in response to estrodiol, ER mediated change in H4K12 acetylation and profiling ER binding in patient-derived xenographs. This is supported by an adaptable pipeline to normalize and quantify differential TF binding genome-wide and generate metrics for differential binding at individual sites.

  12. Peptide-binding motifs of two common equine class I MHC molecules in Thoroughbred horses.

    PubMed

    Bergmann, Tobias; Lindvall, Mikaela; Moore, Erin; Moore, Eugene; Sidney, John; Miller, Donald; Tallmadge, Rebecca L; Myers, Paisley T; Malaker, Stacy A; Shabanowitz, Jeffrey; Osterrieder, Nikolaus; Peters, Bjoern; Hunt, Donald F; Antczak, Douglas F; Sette, Alessandro

    2017-05-01

    Quantitative peptide-binding motifs of MHC class I alleles provide a valuable tool to efficiently identify putative T cell epitopes. Detailed information on equine MHC class I alleles is still very limited, and to date, only a single equine MHC class I allele, Eqca-1*00101 (ELA-A3 haplotype), has been characterized. The present study extends the number of characterized ELA class I specificities in two additional haplotypes found commonly in the Thoroughbred breed. Accordingly, we here report quantitative binding motifs for the ELA-A2 allele Eqca-16*00101 and the ELA-A9 allele Eqca-1*00201. Utilizing analyses of endogenously bound and eluted ligands and the screening of positional scanning combinatorial libraries, detailed and quantitative peptide-binding motifs were derived for both alleles. Eqca-16*00101 preferentially binds peptides with aliphatic/hydrophobic residues in position 2 and at the C-terminus, and Eqca-1*00201 has a preference for peptides with arginine in position 2 and hydrophobic/aliphatic residues at the C-terminus. Interestingly, the Eqca-16*00101 motif resembles that of the human HLA A02-supertype, while the Eqca-1*00201 motif resembles that of the HLA B27-supertype and two macaque class I alleles. It is expected that the identified motifs will facilitate the selection of candidate epitopes for the study of immune responses in horses.

  13. Molecular determinants of ligand binding modes in the histamine H(4) receptor: linking ligand-based three-dimensional quantitative structure-activity relationship (3D-QSAR) models to in silico guided receptor mutagenesis studies.

    PubMed

    Istyastono, Enade P; Nijmeijer, Saskia; Lim, Herman D; van de Stolpe, Andrea; Roumen, Luc; Kooistra, Albert J; Vischer, Henry F; de Esch, Iwan J P; Leurs, Rob; de Graaf, Chris

    2011-12-08

    The histamine H(4) receptor (H(4)R) is a G protein-coupled receptor (GPCR) that plays an important role in inflammation. Similar to the homologous histamine H(3) receptor (H(3)R), two acidic residues in the H(4)R binding pocket, D(3.32) and E(5.46), act as essential hydrogen bond acceptors of positively ionizable hydrogen bond donors in H(4)R ligands. Given the symmetric distribution of these complementary pharmacophore features in H(4)R and its ligands, different alternative ligand binding mode hypotheses have been proposed. The current study focuses on the elucidation of the molecular determinants of H(4)R-ligand binding modes by combining (3D) quantitative structure-activity relationship (QSAR), protein homology modeling, molecular dynamics simulations, and site-directed mutagenesis studies. We have designed and synthesized a series of clobenpropit (N-(4-chlorobenzyl)-S-[3-(4(5)-imidazolyl)propyl]isothiourea) derivatives to investigate H(4)R-ligand interactions and ligand binding orientations. Interestingly, our studies indicate that clobenpropit (2) itself can bind to H(4)R in two distinct binding modes, while the addition of a cyclohexyl group to the clobenpropit isothiourea moiety allows VUF5228 (5) to adopt only one specific binding mode in the H(4)R binding pocket. Our ligand-steered, experimentally supported protein modeling method gives new insights into ligand recognition by H(4)R and can be used as a general approach to elucidate the structure of protein-ligand complexes.

  14. Structural Determinants for Naturally Evolving H5N1 Hemagglutinin to Switch its Receptor Specificity

    PubMed Central

    Tharakaraman, Kannan; Raman, Rahul; Viswanathan, Karthik; Stebbins, Nathan W.; Jayaraman, Akila; Krishnan, Arvind; Sasisekharan, V.; Sasisekharan, Ram

    2013-01-01

    SUMMARY Of the factors governing human-to-human transmission of the highly pathogenic avian-adapted H5N1 virus, the most critical is the acquisition of mutations on the viral hemagglutinin (HA) to “quantitatively switch” its binding from avian to human glycan receptors. Herein, we describe a structural framework that outlines a necessary set of H5 HA receptor binding site (RBS) features required for the H5 HA to quantitatively switch its preference to human receptors. We show here that the same RBS HA mutations that lead to aerosol transmission of A/Vietnam/1203/04 and A/Indonesia/5/05 viruses, when introduced in currently circulating H5N1, do not lead to quantitative switch in receptor preference. We demonstrate that HAs from circulating clades require as few as a single base-pair mutation to quantitatively switch their binding to human receptors. The mutations identified by this study can be used to monitor the emergence of strains having human-to-human transmission potential. PMID:23746829

  15. Revisiting the arthritogenic peptide theory: quantitative not qualitative changes in the peptide repertoire of HLA-B27 allotypes.

    PubMed

    Schittenhelm, Ralf B; Sian, Terry C C Lim Kam; Wilmann, Pascal G; Dudek, Nadine L; Purcell, Anthony W

    2015-03-01

    The association of HLA-B27 with spondyloarthropathy is one of the strongest documented for any autoimmune disease. A common hypothesis for this association is the arthritogenic peptide concept. This dictates that differences in the peptide binding preferences of disease-associated and non-disease-associated HLA-B27 allotypes underlie the presentation of bacterial and self-peptides, leading to cross-reactive T cell immunity and subsequent autoimmune attack of affected tissues. The aim of this study was to analyze and compare self-peptides from 8 HLA-B27 allotypes, to increase existing data sets of HLA-B27 ligands, to refine and compare their consensus-binding motifs, and to reveal similarities and differences in the peptide repertoire of the HLA-B27 subtypes. Qualitative differences in the peptides bound to the 8 most frequent HLA-B27 subtypes were determined by tandem mass spectrometry, and quantitative changes in allelic binding specificities were determined by highly sensitive and targeted multiple reaction monitoring mass spectrometry. We identified >7,500 major histocompatibility complex class I peptides derived from the 8 most common HLA-B27 allotypes (HLA-B*27:02 to HLA-B*27:09). We describe individual binding motifs for these alleles for the 9-12-mer ligands. The peptide repertoires of these closely related alleles showed significant overlap. Allelic polymorphisms resulting in changes in the amino acid composition of the antigen-binding cleft manifested largely as quantitative changes in the peptide cargo of these molecules. Absolute binding preferences of HLA-B27 allotypes do not explain disease association. The arthritogenic peptide theory needs to be reassessed in terms of quantitative changes in self-peptide presentation, T cell selection, and altered conformation of bound peptides. Copyright © 2015 by the American College of Rheumatology.

  16. Binding Site Turnover Produces Pervasive Quantitative Changes in Transcription Factor Binding between Closely Related Drosophila Species

    PubMed Central

    Trapnell, Cole; Davidson, Stuart; Pachter, Lior; Chu, Hou Cheng; Tonkin, Leath A.; Biggin, Mark D.; Eisen, Michael B.

    2010-01-01

    Changes in gene expression play an important role in evolution, yet the molecular mechanisms underlying regulatory evolution are poorly understood. Here we compare genome-wide binding of the six transcription factors that initiate segmentation along the anterior-posterior axis in embryos of two closely related species: Drosophila melanogaster and Drosophila yakuba. Where we observe binding by a factor in one species, we almost always observe binding by that factor to the orthologous sequence in the other species. Levels of binding, however, vary considerably. The magnitude and direction of the interspecies differences in binding levels of all six factors are strongly correlated, suggesting a role for chromatin or other factor-independent forces in mediating the divergence of transcription factor binding. Nonetheless, factor-specific quantitative variation in binding is common, and we show that it is driven to a large extent by the gain and loss of cognate recognition sequences for the given factor. We find only a weak correlation between binding variation and regulatory function. These data provide the first genome-wide picture of how modest levels of sequence divergence between highly morphologically similar species affect a system of coordinately acting transcription factors during animal development, and highlight the dominant role of quantitative variation in transcription factor binding over short evolutionary distances. PMID:20351773

  17. Diurnal rhythm of melatonin binding in the rat suprachiasmatic nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laitinen, J.T.; Castren, E.; Vakkuri, O.

    1989-03-01

    We used quantitative in vitro autoradiography to localize and characterize 2-/sup 125/I-melatonin binding sites in the rat suprachiasmatic nuclei in relation to pineal melatonin production. In a light:dark cycle of 12:12 h, binding density exhibited significant diurnal variation with a peak at the dark-light transition and a trough 12 hours later. Saturation studies suggested that the decreased binding at light-dark transition might be due to a shift of the putative melatonin receptor to a low affinity state.

  18. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costantini, Lindsey M.; Irvin, Susan C.; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFPmore » enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells.« less

  19. Dimensionality of Motion and Binding Valency Govern Receptor-Ligand Kinetics As Revealed by Agent-Based Modeling.

    PubMed

    Lehnert, Teresa; Figge, Marc Thilo

    2017-01-01

    Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor-ligand binding in the context of antibody-antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors-such as their dimensionality of motion, morphology, and binding valency-on the receptor-ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors.

  20. Quantitative relation between intermolecular and intramolecular binding of pro-rich peptides to SH3 domains.

    PubMed

    Zhou, Huan-Xiang

    2006-11-01

    Flexible linkers are often found to tether binding sequence motifs or connect protein domains. Here we analyze three usages of flexible linkers: 1), intramolecular binding of proline-rich peptides (PRPs) to SH3 domains for kinase regulation; 2), intramolecular binding of PRP for increasing the folding stability of SH3 domains; and 3), covalent linking of PRPs and other ligands for high-affinity bivalent binding. The basis of these analyses is a quantitative relation between intermolecular and intramolecular binding constants. This relation has the form K(i) = K(e0)p for intramolecular binding and K(e) = K(e01)K(e02)p for bivalent binding. The effective concentration p depends on the length of the linker and the distance between the linker attachment points in the bound state. Several applications illustrate the usefulness of the quantitative relation. These include intramolecular binding to the Itk SH3 domain by an internal PRP and to a circular permutant of the alpha-spectrin SH3 domain by a designed PRP, and bivalent binding to the two SH3 domains of Grb2 by two linked PRPs. These and other examples suggest that flexible linkers and sequence motifs tethered to them, like folded protein domains, are also subject to tight control during evolution.

  1. Dimensionality of Motion and Binding Valency Govern Receptor–Ligand Kinetics As Revealed by Agent-Based Modeling

    PubMed Central

    Lehnert, Teresa; Figge, Marc Thilo

    2017-01-01

    Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor–ligand binding in the context of antibody–antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors—such as their dimensionality of motion, morphology, and binding valency—on the receptor–ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors. PMID:29250071

  2. Quantitative pharmacological analysis of antagonist binding kinetics at CRF1 receptors in vitro and in vivo

    PubMed Central

    Ramsey, Simeon J; Attkins, Neil J; Fish, Rebecca; van der Graaf, Piet H

    2011-01-01

    BACKGROUND AND PURPOSE A series of novel non-peptide corticotropin releasing factor type-1 receptor (CRF1) antagonists were found to display varying degrees of insurmountable and non-competitive behaviour in functional in vitro assays. We describe how we attempted to relate this behaviour to ligand receptor-binding kinetics in a quantitative manner and how this resulted in the development and implementation of an efficient pharmacological screening method based on principles described by Motulsky and Mahan. EXPERIMENTAL APPROACH A non-equilibrium binding kinetic assay was developed to determine the receptor binding kinetics of non-peptide CRF1 antagonists. Nonlinear, mixed-effects modelling was used to obtain estimates of the compounds association and dissociation rates. We present an integrated pharmacokinetic–pharmacodynamic (PKPD) approach, whereby the time course of in vivo CRF1 receptor binding of novel compounds can be predicted on the basis of in vitro assays. KEY RESULTS The non-competitive antagonist behaviour appeared to be correlated to the CRF1 receptor off-rate kinetics. The integrated PKPD model suggested that, at least in a qualitative manner, the in vitro assay can be used to triage and select compounds for further in vivo investigations. CONCLUSIONS AND IMPLICATIONS This study provides evidence for a link between ligand offset kinetics and insurmountable/non-competitive antagonism at the CRF1 receptor. The exact molecular pharmacological nature of this association remains to be determined. In addition, we have developed a quantitative framework to study and integrate in vitro and in vivo receptor binding kinetic behaviour of CRF1 receptor antagonists in an efficient manner in a drug discovery setting. PMID:21449919

  3. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model.

    PubMed

    Tian, Lei; Shi, Zhenqing; Lu, Yang; Dohnalkova, Alice C; Lin, Zhang; Dang, Zhi

    2017-09-19

    Quantitative understanding the kinetics of toxic ion reactions with various heterogeneous ferrihydrite binding sites is crucial for accurately predicting the dynamic behavior of contaminants in environment. In this study, kinetics of As(V), Cr(VI), Cu(II), and Pb(II) adsorption and desorption on ferrihydrite was studied using a stirred-flow method, which showed that metal adsorption/desorption kinetics was highly dependent on the reaction conditions and varied significantly among four metals. High resolution scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed that all four metals were distributed within the ferrihydrite aggregates homogeneously after adsorption reactions. Based on the equilibrium model CD-MUSIC, we developed a novel unified kinetics model applicable for both cation and oxyanion adsorption and desorption on ferrihydrite, which is able to account for the heterogeneity of ferrihydrite binding sites, different binding properties of cations and oxyanions, and variations of solution chemistry. The model described the kinetic results well. We quantitatively elucidated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites and the formation of various surface complexes controlled the adsorption and desorption kinetics at different reaction conditions and time scales. Our study provided a unified modeling method for the kinetics of ion adsorption/desorption on ferrihydrite.

  4. Quantitative characterization of conformational-specific protein-DNA binding using a dual-spectral interferometric imaging biosensor.

    PubMed

    Zhang, Xirui; Daaboul, George G; Spuhler, Philipp S; Dröge, Peter; Ünlü, M Selim

    2016-03-14

    DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions.

  5. Quantitative characterization of conformational-specific protein-DNA binding using a dual-spectral interferometric imaging biosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Xirui; Daaboul, George G.; Spuhler, Philipp S.; Dröge, Peter; Ünlü, M. Selim

    2016-03-01

    DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions.DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions. Electronic supplementary information (ESI) available: DNA sequences and nomenclature (Table 1S); SDS-PAGE assay of IHF stock solution (Fig. 1S); determination of the concentration of IHF stock solution by Bradford assay (Fig. 2S); equilibrium binding isotherm fitting results of other DNA sequences (Table 2S); calculation of dissociation constants (Fig. 3S, 4S; Table 2S); geometric model for quantitation of DNA bending angle induced by specific IHF binding (Fig. 4S); customized flow cell assembly (Fig. 5S); real-time measurement of average fluorophore height change by SSFM (Fig. 6S); summary of binding parameters obtained from additive isotherm model fitting (Table 3S); average surface densities of 10 dsDNA spots and bound IHF at equilibrium (Table 4S); effects of surface densities on the binding and bending of dsDNA (Tables 5S, 6S and Fig. 7S-10S). See DOI: 10.1039/c5nr06785e

  6. Specificity and non-specificity in RNA–protein interactions

    PubMed Central

    Jankowsky, Eckhard; Harris, Michael E.

    2016-01-01

    Gene expression is regulated by complex networks of interactions between RNAs and proteins. Proteins that interact with RNA have been traditionally viewed as either specific or non-specific; specific proteins interact preferentially with defined RNA sequence or structure motifs, whereas non-specific proteins interact with RNA sites devoid of such characteristics. Recent studies indicate that the binary “specific vs. non-specific” classification is insufficient to describe the full spectrum of RNA–protein interactions. Here, we review new methods that enable quantitative measurements of protein binding to large numbers of RNA variants, and the concepts aimed as describing resulting binding spectra: affinity distributions, comprehensive binding models and free energy landscapes. We discuss how these new methodologies and associated concepts enable work towards inclusive, quantitative models for specific and non-specific RNA–protein interactions. PMID:26285679

  7. Toxicity challenges in environmental chemicals: Prediction of human plasma protein binding through quantitative structure-activity relationship (QSAR) models

    EPA Science Inventory

    The present study explores the merit of utilizing available pharmaceutical data to construct a quantitative structure-activity relationship (QSAR) for prediction of the fraction of a chemical unbound to plasma protein (Fub) in environmentally relevant compounds. Independent model...

  8. Nerves and Tissue Repair.

    DTIC Science & Technology

    1992-05-21

    complete dependence on nerves. Organ culture of sciatic nerves, combined with an assay for axolotl transferrin developed earlier, allows quantitative study...axonal release of various unknown proteins. Combining this approach with the ELISA for quantitative measurement of axolotl transferrin developed with...light microscope autoradiographic analysis following binding of radiolabelled Tf. Studies of Tf synthesis will employ cDNA probes for axolotl Tf mRNA

  9. Localization and characterization of (/sup 3/H)desmethylimipramine binding sites in rat brain by quantitative autoradiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biegon, A.; Rainbow, T.C.

    1983-05-01

    The high affinity binding sites for the antidepressant desmethlyimipramine (DMI) have been localized in rat brain by quantitative autoradiography. There are high concentrations of binding sites in the locus ceruleus, the anterior ventral thalamus, the ventral portion of the bed nucleus of the stria terminalis, the paraventricular and the dorsomedial nuclei of the hypothalamus. The distribution of DMI binding sites is in striking accord with the distribution of norepinephrine terminals. Pretreatment of rats with the neurotoxin 6-hydroxydopamine, which causes a selective degeneration of catecholamine terminals, results in 60 to 90% decrease in DMI binding. These data support the idea thatmore » high affinity binding sites for DMI are located on presynaptic noradrenergic terminals.« less

  10. Use of entrapment and high-performance affinity chromatography to compare the binding of drugs and site-specific probes with normal and glycated human serum albumin

    PubMed Central

    Jackson, Abby J.; Anguizola, Jeanethe; Pfaunmiller, Erika L.; Hage, David S.

    2013-01-01

    Protein entrapment and high-performance affinity chromatography were used with zonal elution to examine the changes in binding that occurred for site-specific probes and various sulfonylurea drugs with normal and glycated forms of human serum albumin (HSA). Samples of this protein in a soluble form were physically entrapped within porous silica particles by using glycogen-capped hydrazide-activated silica; these supports were then placed into 1.0 cm × 2.1 mm inner diameter columns. Initial zonal elution studies were performed using (R)-warfarin and L-tryptophan as probes for Sudlow sites I and II (i.e., the major drug binding sites of HSA), giving quantitative measures of binding affinities in good agreement with literature values. It was also found for solutes with multisite binding to the same proteins, such as many sulfonylurea drugs, that this method could be used to estimate the global affinity of the solute for the entrapped protein. This entrapment and zonal approach provided retention information with precisions of ±0.1–3.3% (± one standard deviation) and elution within 0.50–3.00 min for solutes with binding affinities of 1 × 104–3 × 105 M−1. Each entrapped-protein column was used for many binding studies, which decreased the cost and amount of protein needed per injection (e.g., the equivalent of only 125–145 pmol of immobilized HSA or glycated HSA per injection over 60 sample application cycles). This method can be adapted for use with other proteins and solutes and should be valuable in high-throughput screening or quantitative studies of drug–protein binding or related biointeractions. PMID:23657448

  11. Self-Assembly of Coordinative Supramolecular Polygons with Open Binding Sites

    PubMed Central

    Zheng, Yao-Rong; Wang, Ming; Kobayashi, Shiho; Stang, Peter J.

    2011-01-01

    The design and synthesis of coordinative supramolecular polygons with open binding sites is described. Coordination-driven self-assembly of 2,6-bis(pyridin-4-ylethynyl)pyridine with 60° and 120° organoplatinum acceptors results in quantitative formation of a supramolecular rhomboid and hexagon, respectively, both bearing open pyridyl binding sites. The structures were determined by multinuclear (31P and 1H) NMR spectroscopy and electrospray ionization (ESI) mass spectrometry, along with a computational study. PMID:21516167

  12. Self-Assembly of Coordinative Supramolecular Polygons with Open Binding Sites.

    PubMed

    Zheng, Yao-Rong; Wang, Ming; Kobayashi, Shiho; Stang, Peter J

    2011-04-27

    The design and synthesis of coordinative supramolecular polygons with open binding sites is described. Coordination-driven self-assembly of 2,6-bis(pyridin-4-ylethynyl)pyridine with 60° and 120° organoplatinum acceptors results in quantitative formation of a supramolecular rhomboid and hexagon, respectively, both bearing open pyridyl binding sites. The structures were determined by multinuclear ((31)P and (1)H) NMR spectroscopy and electrospray ionization (ESI) mass spectrometry, along with a computational study.

  13. Carbohydrate binding properties of the stinging nettle (Urtica dioica) rhizome lectin.

    PubMed

    Shibuya, N; Goldstein, I J; Shafer, J A; Peumans, W J; Broekaert, W F

    1986-08-15

    The interaction of the stinging nettle rhizome lectin (UDA) with carbohydrates was studied by using the techniques of quantitative precipitation, hapten inhibition, equilibrium dialysis, and uv difference spectroscopy. The Carbohydrate binding site of UDA was determined to be complementary to an N,N',N"-triacetylchitotriose unit and proposed to consist of three subsites, each of which has a slightly different binding specificity. UDA also has a hydrophobic interacting region adjacent to the carbohydrate binding site. Equilibrium dialysis and uv difference spectroscopy revealed that UDA has two carbohydrate binding sites per molecule consisting of a single polypeptide chain. These binding sites either have intrinsically different affinities for ligand molecules, or they may display negative cooperativity toward ligand binding.

  14. Structural changes in calcium-binding allergens: use of circular dichroism to study binding characteristics.

    PubMed

    Hebenstreit, D; Ferreira, F

    2005-09-01

    Several studies showed that calcium-binding proteins have a fixed place in the spectrum of allergenic substances. Often the binding of a calcium ion induces conformational changes and affects immunoglobulin E-binding to the allergen. Hence, the quantitative characterization of the binding to calcium is of importance to understand both the biologic and allergenic activity of these proteins. In the present study we describe a procedure for determining the stoichiometry and dissociation constant (K(D)) of calcium-binding allergens using circular dichroism (CD) techniques. For the experiments, we used recombinant Bet v 4, a two EF-hand allergen from birch pollen. Solutions of Bet v 4 were titrated with calcium and the change in molar ellipticity at 222 nm was monitored with a CD spectropolarimeter. The determination of the binding stoichiometry as well as of the K(D) for one EF-hand (4 microM) demonstrated the applicability of the method. CD-monitored calcium-titration of protein solutions represents a fast and easy method for determining the binding characteristics of calcium-binding allergens.

  15. Models of metal binding structures in fulvic acid from the Suwannee River, Georgia

    USGS Publications Warehouse

    Leenheer, J.A.; Brown, G.K.; MacCarthy, P.; Cabaniss, S.E.

    1998-01-01

    Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The 'metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-1R spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short- chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The `metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-IR spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.

  16. Computational modeling approaches to quantitative structure-binding kinetics relationships in drug discovery.

    PubMed

    De Benedetti, Pier G; Fanelli, Francesca

    2018-03-21

    Simple comparative correlation analyses and quantitative structure-kinetics relationship (QSKR) models highlight the interplay of kinetic rates and binding affinity as an essential feature in drug design and discovery. The choice of the molecular series, and their structural variations, used in QSKR modeling is fundamental to understanding the mechanistic implications of ligand and/or drug-target binding and/or unbinding processes. Here, we discuss the implications of linear correlations between kinetic rates and binding affinity constants and the relevance of the computational approaches to QSKR modeling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. [11C]Flumazenil PET in patients with epilepsy with dual pathology.

    PubMed

    Juhász, C; Nagy, F; Muzik, O; Watson, C; Shah, J; Chugani, H T

    1999-05-01

    Coexistence of hippocampal sclerosis and a potentially epileptogenic cortical lesion is referred to as dual pathology and can be responsible for poor surgical outcome in patients with medically intractable partial epilepsy. [11C]Flumazenil (FMZ) positron emission tomography (PET) is a sensitive method for visualizing epileptogenic foci. In this study of 12 patients with dual pathology, we addressed the sensitivity of FMZ PET to detect hippocampal abnormalities and compared magnetic resonance imaging (MRI) with visual as well as quantitative FMZ PET findings. All patients underwent volumetric MRI, prolonged video-EEG monitoring, and glucose metabolism PET before the FMZ PET. MRI-coregistered partial volume-corrected PET images were used to measure FMZ-binding asymmetries by using asymmetry indices (AIs) in the whole hippocampus and in three (anterior, middle, and posterior) hippocampal subregions. Cortical sites of decreased FMZ binding also were evaluated by using AIs for regions with MRI-verified cortical lesions as well as for non-lesional areas with visually detected asymmetry. Abnormally decreased FMZ binding could be detected by quantitative analysis in the atrophic hippocampus of all 12 patients, including three patients with discordant or inconclusive EEG findings. Decreased FMZ binding was restricted to only one subregion of the hippocampus in three patients. Areas of decreased cortical FMZ binding were obvious visually in all patients. Decreased FMZ binding was detected visually in nonlesional cortical areas in four patients. The AIs for these nonlesional regions with visual asymmetry were significantly lower than those for regions showing MRI lesions (paired t test, p = 0.0075). Visual as well as quantitative analyses of FMZ-binding asymmetry are sensitive methods to detect decreased benzodiazepine-receptor binding in the hippocampus and neocortex of patients with dual pathology. MRI-defined hippocampal atrophy is always associated with decreased FMZ binding, although the latter may be localized to only one sub-region within the hippocampus. FMZ PET abnormalities can occur in areas with normal appearance on MRI, but FMZ-binding asymmetry of these regions is lower when compared with that of lesional areas. FMZ PET can be especially helpful when MRI and EEG findings of patients with intractable epilepsy are discordant.

  18. Effect of solid surface charge on the binding behaviour of a metal-binding peptide

    PubMed Central

    Donatan, Senem; Sarikaya, Mehmet; Tamerler, Candan; Urgen, Mustafa

    2012-01-01

    Over the last decade, solid-binding peptides have been increasingly used as molecular building blocks coupling bio- and nanotechnology. Despite considerable research being invested in this field, the effects of many surface-related parameters that define the binding of peptide to solids are still unknown. In the quest to control biological molecules at solid interfaces and, thereby, tailoring the binding characteristics of the peptides, the use of surface charge of the solid surface may probably play an important role, which then can be used as a potential tuning parameter of peptide adsorption. Here, we report quantitative investigation on the viscoelastic properties and binding kinetics of an engineered gold-binding peptide, 3RGBP1, adsorbed onto the gold surface at different surface charge densities. The experiments were performed in aqueous solutions using an electrochemical dissipative quartz crystal microbalance system. Hydrodynamic mass, hydration state and surface coverage of the adsorbed peptide films were determined as a function of surface charge density of the gold metal substrate. Under each charged condition, binding of 3rGBP1 displayed quantitative differences in terms of adsorbed peptide amount, surface coverage ratio and hydration state. Based on the intrinsically disordered structure of the peptide, we propose a possible mechanism for binding of the peptide that can be used for tuning surface adsorption in further studies. Controlled alteration of peptide binding on solid surfaces, as shown here, may provide novel methods for surface functionalization used for bioenabled processing and fabrication of future micro- and nanodevices. PMID:22491974

  19. Affibody Molecules for In vivo Characterization of HER2-Positive Tumors by Near-Infrared Imaging

    PubMed Central

    Lee, Sang Bong; Hassan, Moinuddin; Fisher, Robert; Chertov, Oleg; Chernomordik, Victor; Kramer-Marek, Gabriela; Gandjbakhche, Amir; Capala, Jacek

    2012-01-01

    Purpose HER2 overexpression has been associated with a poor prognosis and resistance to therapy in breast cancer patients. We are developing molecular probes for in vivo quantitative imaging of HER2 receptors using near-infrared optical imaging. The goal is to provide probes that will minimally interfere with the studied system, i.e., whose binding does not interfere with the binding of the therapeutic agents, and whose effect on the target cells is minimal. Experimental Design We used three different types of HER2-specific Affibody molecules [monomer ZHER2:342, dimer (ZHER2:477)2, and albumin-binding domain-fused-(ZHER2:342)2] as targeting agents, and labeled them with Alexa Fluor dyes. Trastuzumab was also conjugated, using commercially available kits, as a standard control. The resulting conjugates were characterized in vitro by toxicity assays, Biacore affinity measurements, flow cytometry, and confocal microscopy. Semi-uantitative in vivo near-infrared optical imaging studies were carried out using mice with subcutaneous xenografts of HER2-positive tumors. Results The HER2-specific Affibody molecules were not toxic to HER2-overexpressing cells and their binding to HER2 did interfere with neither binding nor effectives of trastuzumab. The binding affinities and specificities of the Affibody-Alexa Fluor fluorescent conjugates to HER2 were unchanged or minimally affected by the modifications. Pharmacokinetics and biodistribution studies showed the albumin-binding domain-fused-(ZHER2:342)2-Alexa Fluor 750 conjugate to be an optimal probe for optical imaging of HER2 in vivo. Conclusion Our results suggest that Affibody-Alexa Fluor conjugates may be used as a specific near-infrared probe for the non-invasive semi-quantitative imaging of HER2 expression in vivo. PMID:18559604

  20. Kinetic method for the large-scale analysis of the binding mechanism of histone deacetylase inhibitors.

    PubMed

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-09-01

    Performing kinetic studies on protein ligand interactions provides important information on complex formation and dissociation. Beside kinetic parameters such as association rates and residence times, kinetic experiments also reveal insights into reaction mechanisms. Exploiting intrinsic tryptophan fluorescence a parallelized high-throughput Förster resonance energy transfer (FRET)-based reporter displacement assay with very low protein consumption was developed to enable the large-scale kinetic characterization of the binding of ligands to recombinant human histone deacetylases (HDACs) and a bacterial histone deacetylase-like amidohydrolase (HDAH) from Bordetella/Alcaligenes. For the binding of trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA), and two other SAHA derivatives to HDAH, two different modes of action, simple one-step binding and a two-step mechanism comprising initial binding and induced fit, were verified. In contrast to HDAH, all compounds bound to human HDAC1, HDAC6, and HDAC8 through a two-step mechanism. A quantitative view on the inhibitor-HDAC systems revealed two types of interaction, fast binding and slow dissociation. We provide arguments for the thesis that the relationship between quantitative kinetic and mechanistic information and chemical structures of compounds will serve as a valuable tool for drug optimization. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Spectroscopic analysis of the interaction between thiazolo[2,3-b]pyrimidine analogues and bovine serum albumin.

    PubMed

    Yu, Xianyong; Yang, Ying; Yao, Qing; Tao, Hongwen; Lu, Shiyu; Xie, Jian; Zhou, Hu; Yi, Pinggui

    2012-10-01

    The interaction between thiazolo[2,3-b]pyrimidine (TZPM) analogues and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy and UV-Vis spectroscopy at two different temperatures (299 and 307K) under imitated physiological conditions. The results indicate that both static quenching and dynamic quenching contribute to the fluorescence quenching of BSA by TZPM. The binding constant (K(a)) and binding sites (n) were calculated from the obtained spectra. Based on the Förster non-radiation energy transfer theory, the average binding distance between BSA and TZPM was estimated. The synchronous fluorescence spectra indicate that the conformation of BSA has been changed. The comparison of binding potency of TZPM and BSA suggests that the substituents on the benzene ring enhance the binding affinity of TZPM and BSA. We investigated the possible sub-domains on BSA that bind TZPM by displacement experiments. Furthermore, to explore the effect of molecular structure on the binding, a study on quantitative structure-property relationship (QSPR) was performed, the quantitative relationship equation of R(0), r and K(a) were obtained. We observed that R(0), r and K(a) between BSA and TZPM is connected with the margin of the highest and the lowest occupied orbital energy (ΔE), dipole moment (μ), Molar Volume (V(m)), Mole Mass (M). Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics

    PubMed Central

    Bennett, Eric J.; Rush, John; Gygi, Steven P.; Harper, J. Wade

    2010-01-01

    Dynamic reorganization of signaling systems frequently accompany pathway perturbations, yet quantitative studies of network remodeling by pathway stimuli are lacking. Here, we report the development of a quantitative proteomics platform centered on multiplex Absolute Quantification (AQUA) technology to elucidate the architecture of the cullin-RING ubiquitin ligase (CRL) network and to evaluate current models of dynamic CRL remodeling. Current models suggest that CRL complexes are controlled by cycles of CRL deneddylation and CAND1 binding. Contrary to expectations, acute CRL inhibition with MLN4924, an inhibitor of the NEDD8-activating enzyme, does not result in a global reorganization of the CRL network. Examination of CRL complex stoichiometry reveals that, independent of cullin neddylation, a large fraction of cullins are assembled with adaptor modules while only a small fraction are associated with CAND1. These studies suggest an alternative model of CRL dynamicity where the abundance of adaptor modules, rather than cycles of neddylation and CAND1 binding, drives CRL network organization. PMID:21145461

  3. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics.

    PubMed

    Bennett, Eric J; Rush, John; Gygi, Steven P; Harper, J Wade

    2010-12-10

    Dynamic reorganization of signaling systems frequently accompanies pathway perturbations, yet quantitative studies of network remodeling by pathway stimuli are lacking. Here, we report the development of a quantitative proteomics platform centered on multiplex absolute quantification (AQUA) technology to elucidate the architecture of the cullin-RING ubiquitin ligase (CRL) network and to evaluate current models of dynamic CRL remodeling. Current models suggest that CRL complexes are controlled by cycles of CRL deneddylation and CAND1 binding. Contrary to expectations, acute CRL inhibition with MLN4924, an inhibitor of the NEDD8-activating enzyme, does not result in a global reorganization of the CRL network. Examination of CRL complex stoichiometry reveals that, independent of cullin neddylation, a large fraction of cullins are assembled with adaptor modules, whereas only a small fraction are associated with CAND1. These studies suggest an alternative model of CRL dynamicity where the abundance of adaptor modules, rather than cycles of neddylation and CAND1 binding, drives CRL network organization. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Quantitative PET studies of the serotonin transporter in MDMA users and controls using [11C]McN5652 and [11C]DASB.

    PubMed

    McCann, Una D; Szabo, Zsolt; Seckin, Esen; Rosenblatt, Peter; Mathews, William B; Ravert, Hayden T; Dannals, Robert F; Ricaurte, George A

    2005-09-01

    (+/-)3,4-Methylenedioxymethamphetamine (MDMA, 'Ecstasy') is a widely used illicit drug that produces toxic effects on brain serotonin axons and axon terminals in animals. The results of clinical studies addressing MDMA's serotonin neurotoxic potential in humans have been inconclusive. In the present study, 23 abstinent MDMA users and 19 non-MDMA controls underwent quantitative positron emission tomography (PET) studies using [11C]McN5652 and [11C]DASB, first- and second-generation serotonin transporter (SERT) ligands previously validated in baboons for detecting MDMA-induced brain serotonin neurotoxicity. Global and regional distribution volumes (DVs) and two additional SERT-binding parameters (DV(spec) and DVR) were compared in the two subject populations using parametric statistical analyses. Data from PET studies revealed excellent correlations between the various binding parameters of [11C]McN5652 and [11C]DASB, both in individual brain regions and individual subjects. Global SERT reductions were found in MDMA users with both PET ligands, using all three of the above-mentioned SERT-binding parameters. Preplanned comparisons in 15 regions of interest demonstrated reductions in selected cortical and subcortical structures. Exploratory correlational analyses suggested that SERT measures recover with time, and that loss of the SERT is directly associated with MDMA use intensity. These quantitative PET data, obtained using validated first- and second-generation SERT PET ligands, provide strong evidence of reduced SERT density in some recreational MDMA users.

  5. Biophysics and bioinformatics of transcription regulation in bacteria and bacteriophages

    NASA Astrophysics Data System (ADS)

    Djordjevic, Marko

    2005-11-01

    Due to rapid accumulation of biological data, bioinformatics has become a very important branch of biological research. In this thesis, we develop novel bioinformatic approaches and aid design of biological experiments by using ideas and methods from statistical physics. Identification of transcription factor binding sites within the regulatory segments of genomic DNA is an important step towards understanding of the regulatory circuits that control expression of genes. We propose a novel, biophysics based algorithm, for the supervised detection of transcription factor (TF) binding sites. The method classifies potential binding sites by explicitly estimating the sequence-specific binding energy and the chemical potential of a given TF. In contrast with the widely used information theory based weight matrix method, our approach correctly incorporates saturation in the transcription factor/DNA binding probability. This results in a significant reduction in the number of expected false positives, and in the explicit appearance---and determination---of a binding threshold. The new method was used to identify likely genomic binding sites for the Escherichia coli TFs, and to examine the relationship between TF binding specificity and degree of pleiotropy (number of regulatory targets). We next address how parameters of protein-DNA interactions can be obtained from data on protein binding to random oligos under controlled conditions (SELEX experiment data). We show that 'robust' generation of an appropriate data set is achieved by a suitable modification of the standard SELEX procedure, and propose a novel bioinformatic algorithm for analysis of such data. Finally, we use quantitative data analysis, bioinformatic methods and kinetic modeling to analyze gene expression strategies of bacterial viruses. We study bacteriophage Xp10 that infects rice pathogen Xanthomonas oryzae. Xp10 is an unusual bacteriophage, which has morphology and genome organization that most closely resembles temperate phages, such as lambda. It, however, encodes its own T7-like RNA polymerase (characteristic of virulent phages), whose role in gene expression was unclear. Our analysis resulted in quantitative understanding of the role of both host and phage RNA polymerase, and in the identification of the previously unknown promoter sequence for Xp10 RNA polymerase. More generally, an increasing number of phage genomes are being sequenced every year, and we expect that methods of quantitative data analysis that we introduced will provide an efficient way to study gene expression strategies of novel bacterial viruses.

  6. Thermodynamic and structural insights into CSL-DNA complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedmann, David R.; Kovall, Rhett A.

    The Notch pathway is an intercellular signaling mechanism that plays important roles in cell fates decisions throughout the developing and adult organism. Extracellular complexation of Notch receptors with ligands ultimately results in changes in gene expression, which is regulated by the nuclear effector of the pathway, CSL (C-promoter binding factor 1 (CBF-1), suppressor of hairless (Su(H)), lin-12 and glp-1 (Lag-1)). CSL is a DNA binding protein that is involved in both repression and activation of transcription from genes that are responsive to Notch signaling. One well-characterized Notch target gene is hairy and enhancer of split-1 (HES-1), which is regulated bymore » a promoter element consisting of two CSL binding sites oriented in a head-to-head arrangement. Although previous studies have identified in vivo and consensus binding sites for CSL, and crystal structures of these complexes have been determined, to date, a quantitative description of the energetics that underlie CSL-DNA binding is unknown. Here, we provide a thermodynamic and structural analysis of the interaction between CSL and the two individual sites that comprise the HES-1 promoter element. Our comprehensive studies that analyze binding as a function of temperature, salt, and pH reveal moderate, but distinct, differences in the affinities of CSL for the two HES-1 binding sites. Similarly, our structural results indicate that overall CSL binds both DNA sites in a similar manner; however, minor changes are observed in both the conformation of CSL and DNA. Taken together, our results provide a quantitative and biophysical basis for understanding how CSL interacts with DNA sites in vivo.« less

  7. Quantitative autoradiography of muscarinic and benzodiazepine receptors in the forebrain of the turtle, Pseudemys scripta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlegel, J.R.; Kriegstein, A.R.

    1987-11-22

    The distribution of muscarinic and benzodiazepine receptors was investigated in the turtle forebrain by the technique of in vitro receptor autoradiography. Muscarinic binding sites were labeled with 1 nM /sup 3/H-quinuclidinyl benzilate (/sup 3/H-QNB), and benzodiazepine sites were demonstrated with the aid of 1 nM /sup 3/H-flunitrazepam (/sup 3/H-FLU). Autoradiograms generated on /sup 3/H-Ultrofilm apposed to tissue slices revealed regionally specific distributions of muscarinic and benzodiazepine binding sites that are comparable with those for mammalian brain. Dense benzodiazepine binding was found in the anterior olfactory nucleus, the lateral and dorsal cortices, and the dorsal ventricular ridge (DVR), a structure withmore » no clear mammalian homologue. Muscarinic binding sites were most dense in the striatum, accumbens, DVR, lateral geniculate, and the anterior olfactory nucleus. Cortical binding sites were studied in greater detail by quantitative analysis of autoradiograms generated by using emulsion-coated coverslips. Laminar gradients of binding were observed that were specific for each radioligand; /sup 3/H-QNB sites were most dense in the inner molecular layer in all cortical regions, whereas /sup 3/H-FLU binding was generally most concentrated in the outer molecular layer and was least dense through all layers in the dorsomedial cortex. Because pyramidal cells are arranged in register in turtle cortex, the laminar patterns of receptor binding may reflect different receptor density gradients along pyramidal cell dendrites.« less

  8. Context influences on TALE–DNA binding revealed by quantitative profiling

    PubMed Central

    Rogers, Julia M.; Barrera, Luis A.; Reyon, Deepak; Sander, Jeffry D.; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L.

    2015-01-01

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE–DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000–20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE–DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design. PMID:26067805

  9. Context influences on TALE-DNA binding revealed by quantitative profiling.

    PubMed

    Rogers, Julia M; Barrera, Luis A; Reyon, Deepak; Sander, Jeffry D; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L

    2015-06-11

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE-DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000-20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE-DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design.

  10. Quantitative Confocal Microscopy Analysis as a Basis for Search and Study of Potassium Kv1.x Channel Blockers

    NASA Astrophysics Data System (ADS)

    Feofanov, Alexey V.; Kudryashova, Kseniya S.; Nekrasova, Oksana V.; Vassilevski, Alexander A.; Kuzmenkov, Alexey I.; Korolkova, Yuliya V.; Grishin, Eugene V.; Kirpichnikov, Mikhail P.

    Artificial KcsA-Kv1.x (x = 1, 3) receptors were recently designed by transferring the ligand-binding site from human Kv1.x voltage-gated potassium channels into corresponding domain of the bacterial KscA channel. We found that KcsA-Kv1.x receptors expressed in E. coli cells are embedded into cell membrane and bind ligands when the cells are transformed to spheroplasts. We supposed that E. coli spheroplasts with membrane-embedded KcsA-Kv1.x and fluorescently labeled ligand agitoxin-2 (R-AgTx2) can be used as elements of an advanced analytical system for search and study of Kv1-channel blockers. To realize this idea, special procedures were developed for measurement and quantitative treatment of fluorescence signals obtained from spheroplast membrane using confocal laser scanning microscopy (CLSM). The worked out analytical "mix and read" systems supported by quantitative CLSM analysis were demonstrated to be reliable alternative to radioligand and electrophysiology techniques in the search and study of selective Kv1.x channel blockers of high scientific and medical importance.

  11. Quantitative analysis of small molecule-nucleic acid interactions with a biosensor surface and surface plasmon resonance detection.

    PubMed

    Liu, Yang; Wilson, W David

    2010-01-01

    Surface plasmon resonance (SPR) technology with biosensor surfaces has become a widely-used tool for the study of nucleic acid interactions without any labeling requirements. The method provides simultaneous kinetic and equilibrium characterization of the interactions of biomolecules as well as small molecule-biopolymer binding. SPR monitors molecular interactions in real time and provides significant advantages over optical or calorimetic methods for systems with strong binding coupled to small spectroscopic signals and/or reaction heats. A detailed and practical guide for nucleic acid interaction analysis using SPR-biosensor methods is presented. Details of the SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips, and samples, as well as extensive information on experimental design, quantitative and qualitative data analysis and presentation. A specific example of the interaction of a minor-groove-binding agent with DNA is evaluated by both kinetic and steady-state SPR methods to illustrate the technique. Since the molecules that bind cooperatively to specific DNA sequences are attractive for many applications, a cooperative small molecule-DNA interaction is also presented.

  12. Interpretation of protein quantitation using the Bradford assay: comparison with two calculation models.

    PubMed

    Ku, Hyung-Keun; Lim, Hyuk-Min; Oh, Kyong-Hwa; Yang, Hyo-Jin; Jeong, Ji-Seon; Kim, Sook-Kyung

    2013-03-01

    The Bradford assay is a simple method for protein quantitation, but variation in the results between proteins is a matter of concern. In this study, we compared and normalized quantitative values from two models for protein quantitation, where the residues in the protein that bind to anionic Coomassie Brilliant Blue G-250 comprise either Arg and Lys (Method 1, M1) or Arg, Lys, and His (Method 2, M2). Use of the M2 model yielded much more consistent quantitation values compared with use of the M1 model, which exhibited marked overestimations against protein standards. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches

    PubMed Central

    Guedich, Sondés; Puffer-Enders, Barbara; Baltzinger, Mireille; Hoffmann, Guillaume; Da Veiga, Cyrielle; Jossinet, Fabrice; Thore, Stéphane; Bec, Guillaume; Ennifar, Eric; Burnouf, Dominique; Dumas, Philippe

    2016-01-01

    ABSTRACT Riboswitches are non-coding elements upstream or downstream of mRNAs that, upon binding of a specific ligand, regulate transcription and/or translation initiation in bacteria, or alternative splicing in plants and fungi. We have studied thiamine pyrophosphate (TPP) riboswitches regulating translation of thiM operon and transcription and translation of thiC operon in E. coli, and that of THIC in the plant A. thaliana. For all, we ascertained an induced-fit mechanism involving initial binding of the TPP followed by a conformational change leading to a higher-affinity complex. The experimental values obtained for all kinetic and thermodynamic parameters of TPP binding imply that the regulation by A. thaliana riboswitch is governed by mass-action law, whereas it is of kinetic nature for the two bacterial riboswitches. Kinetic regulation requires that the RNA polymerase pauses after synthesis of each riboswitch aptamer to leave time for TPP binding, but only when its concentration is sufficient. A quantitative model of regulation highlighted how the pausing time has to be linked to the kinetic rates of initial TPP binding to obtain an ON/OFF switch in the correct concentration range of TPP. We verified the existence of these pauses and the model prediction on their duration. Our analysis also led to quantitative estimates of the respective efficiency of kinetic and thermodynamic regulations, which shows that kinetically regulated riboswitches react more sharply to concentration variation of their ligand than thermodynamically regulated riboswitches. This rationalizes the interest of kinetic regulation and confirms empirical observations that were obtained by numerical simulations. PMID:26932506

  14. Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches.

    PubMed

    Guedich, Sondés; Puffer-Enders, Barbara; Baltzinger, Mireille; Hoffmann, Guillaume; Da Veiga, Cyrielle; Jossinet, Fabrice; Thore, Stéphane; Bec, Guillaume; Ennifar, Eric; Burnouf, Dominique; Dumas, Philippe

    2016-01-01

    Riboswitches are non-coding elements upstream or downstream of mRNAs that, upon binding of a specific ligand, regulate transcription and/or translation initiation in bacteria, or alternative splicing in plants and fungi. We have studied thiamine pyrophosphate (TPP) riboswitches regulating translation of thiM operon and transcription and translation of thiC operon in E. coli, and that of THIC in the plant A. thaliana. For all, we ascertained an induced-fit mechanism involving initial binding of the TPP followed by a conformational change leading to a higher-affinity complex. The experimental values obtained for all kinetic and thermodynamic parameters of TPP binding imply that the regulation by A. thaliana riboswitch is governed by mass-action law, whereas it is of kinetic nature for the two bacterial riboswitches. Kinetic regulation requires that the RNA polymerase pauses after synthesis of each riboswitch aptamer to leave time for TPP binding, but only when its concentration is sufficient. A quantitative model of regulation highlighted how the pausing time has to be linked to the kinetic rates of initial TPP binding to obtain an ON/OFF switch in the correct concentration range of TPP. We verified the existence of these pauses and the model prediction on their duration. Our analysis also led to quantitative estimates of the respective efficiency of kinetic and thermodynamic regulations, which shows that kinetically regulated riboswitches react more sharply to concentration variation of their ligand than thermodynamically regulated riboswitches. This rationalizes the interest of kinetic regulation and confirms empirical observations that were obtained by numerical simulations.

  15. RNA-binding Protein Immunoprecipitation (RIP) to Examine AUF1 Binding to Senescence-Associated Secretory Phenotype (SASP) Factor mRNA

    PubMed Central

    Alspach, Elise; Stewart, Sheila A.

    2016-01-01

    Immunoprecipitation and subsequent isolation of nucleic acids allows for the investigation of protein:nucleic acid interactions. RNA-binding protein immunoprecipitation (RIP) is used for the analysis of protein interactions with mRNA. Combining RIP with quantitative real-time PCR (qRT-PCR) further enhances the RIP technique by allowing for the quantitative assessment of RNA-binding protein interactions with their target mRNAs, and how these interactions change in different cellular settings. Here, we describe the immunoprecipitation of the RNA-binding protein AUF1 with several different factors associated with the senescence-associated secretory phenotype (SASP) (Alspach and Stewart, 2013), specifically IL6 and IL8. This protocol was originally published in Alspach et al. (2014). PMID:27453911

  16. Specificity of the weak binding between the phage SPO1 transcription-inhibitory protein, TF1, and SPO1 DNA.

    PubMed

    Johnson, G G; Geiduschek, E P

    1977-04-05

    The interaction of the phage SPO1 protein transcription factor 1 (TF1), with DNA has been analyzed by membrane filter binding and by sedimentation methods. Substantially specific binding of TF1 to helical SPO1 DNA can be demonstrated by nitrocellulose filter-binding assays at relatively low ionic strength (0.08). However, TF1-DNA complexes dissociate and reequilibrate relatively rapidly and this makes filter-binding assays unsuitable for quantitative measurements of binding equilibra. Accordingly, the sedimentation properties of TF1-DNA complexes have been explored and a short-column centrifugation assay has been elaborated for quantitative measurements. Preferential binding of TF1 to the hydroxymethyluracil-containing SPO1 DNA has also been demonstrated by short-column centrifugation. TF1 binds relatively weakly and somewhat cooperatively to SPO1 DNA at many sites; TF1-DNA complexes dissociate and reequilibrate rapidly. At 20 degrees C in 0.01 M phosphate, pH 7.5, 0.15 KC1, one molecule of TF1 can bind to approximately every 60 nucleotide pairs of SPO1 DNA.

  17. Three-dimensional quantitative structure-activity relationship modeling of cocaine binding by a novel human monoclonal antibody.

    PubMed

    Paula, Stefan; Tabet, Michael R; Farr, Carol D; Norman, Andrew B; Ball, W James

    2004-01-01

    Human monoclonal antibodies (mAbs) designed for immunotherapy have a high potential for avoiding the complications that may result from human immune system responses to the introduction of nonhuman mAbs into patients. This study presents a characterization of cocaine/antibody interactions that determine the binding properties of the novel human sequence mAb 2E2 using three-dimensional quantitative structure-activity relationship (3D-QSAR) methodology. We have experimentally determined the binding affinities of mAb 2E2 for cocaine and 38 cocaine analogues. The K(d) of mAb 2E2 for cocaine was 4 nM, indicating a high affinity. Also, mAb 2E2 displayed good cocaine specificity, as reflected in its 10-, 1500-, and 25000-fold lower binding affinities for the three physiologically relevant cocaine metabolites benzoylecgonine, ecgonine methyl ester, and ecgonine, respectively. 3D-QSAR models of cocaine binding were developed by comparative molecular similarity index analysis (CoMSIA). A model of high statistical quality was generated showing that cocaine binds to mAb 2E2 in a sterically restricted binding site that leaves the methyl group attached to the ring nitrogen of cocaine solvent-exposed. The methyl ester group of cocaine appears to engage in attractive van der Waals interactions with mAb 2E2, whereas the phenyl group contributes to the binding primarily via hydrophobic interactions. The model further indicated that an increase in partial positive charge near the nitrogen proton and methyl ester carbonyl group enhances binding affinity and that the ester oxygen likely forms an intermolecular hydrogen bond with mAb 2E2. Overall, the cocaine binding properties of mAb 2E2 support its clinical potential for development as a treatment of cocaine overdose and addiction.

  18. Specificity and Affinity Quantification of Flexible Recognition from Underlying Energy Landscape Topography

    PubMed Central

    Chu, Xiakun; Wang, Jin

    2014-01-01

    Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition. PMID:25144525

  19. Specificity and affinity quantification of flexible recognition from underlying energy landscape topography.

    PubMed

    Chu, Xiakun; Wang, Jin

    2014-08-01

    Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition.

  20. Increased lectin binding capacity of trophoblastic cells of late day 5 rat blastocysts.

    PubMed Central

    Stein, B A; Shaw, T J; Turner, V F; Murphy, C R

    1994-01-01

    The binding of lectins to the trophoblast of rat blastocysts has been studied using quantitative ultrastructural cytochemistry. Rat blastocysts from early, mid and late d 5 of gestation were stained using biotinylated lectins (Phytolacca americana [Phy am], fucose binding protein [FBP] and soybean agglutinin [SBA]) and a sensitive avidin-ferritin cytochemical method. Electron micrographs of ferritin particles along the membrane were processed to produce images for which grey scale levels could be established and the ferritin particles automatically counted. The ferritin:membrane ratio was then calculated. Increased binding with Phy am (which detects short chain oligosaccharides) was found after midday of d 5, i.e. after hatching. Binding of FBP and SBA did not alter during the period studied. The increased concentration of oligosaccharides on the blastocyst surface membrane after hatching may have important implications for blastocyst attachment to the endometrium. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7649802

  1. Analysis of molecular assemblies by flow cytometry: determinants of Gi1 and by binding

    NASA Astrophysics Data System (ADS)

    Sarvazyan, Noune A.; Neubig, Richard R.

    1998-05-01

    We report here a novel application of flow cytometry for the quantitative analysis of the high affinity interaction between membrane proteins both in detergent solutions and when reconstituted into lipid vesicles. The approach is further advanced to permit the analysis of binding to expressed protein complexes in native cell membranes. The G protein heterotrimer signal transduction function links the extracellularly activated transmembrane receptors and intracellular effectors. Upon activation, (alpha) and (beta) (gamma) subunits of G protein undergo a dissociation/association cycle on the cell membrane interface. The binding parameters of solubilized G protein (alpha) and (beta) (gamma) subunits have been defined but little is known quantitatively about their interactions in the membrane. Using a novel flow cytometry approach, the binding of low nanomolar concentrations of fluorescein-labeled G(alpha) i1 (F- (alpha) ) to (beta) (gamma) both in detergent solution and in a lipid environment was quantitatively compared. Unlabeled (beta) $gama reconstituted in biotinylated phospholipid vesicles bound F-(alpha) tightly (Kd 6 - 12 nM) while the affinity for biotinylated-(beta) (gamma) in Lubrol was even higher (Kd of 2.9 nM). The application of this approach to proteins expressed in native cell membranes will advance our understanding of G protein function in context of receptor and effector interaction. More generally, this approach can be applied to study the interaction of any fluorescently labeled protein with a membrane protein which can be expressed in Sf9 plasma membranes.

  2. Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacArthur, Stewart; Li, Xiao-Yong; Li, Jingyi

    2009-05-15

    BACKGROUND: We previously established that six sequence-specific transcription factors that initiate anterior/posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm embryos. While regions bound at high levels include known and probable functional targets, more poorly bound regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm, and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many are likely non-functional. RESULTS: Here we show that an additional 15 transcription factors that regulate other aspects of embryo patterning show a similar quantitative continuum of functionmore » and binding to thousands of genomic regions in vivo. Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to 11 DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets correlate with the known biological and transcriptional regulatory specificities of these factors. CONCLUSIONS: It is likely that the overlap in binding of biochemically and functionally unrelated transcription factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating the amount, rather than the identity, of bound factor.« less

  3. (/sup 3/H)Batrachotoxinin A 20 alpha-benzoate binding to voltage-sensitive sodium channels: a rapid and quantitative assay for local anesthetic activity in a variety of drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeal, E.T.; Lewandowski, G.A.; Daly, J.W.

    1985-03-01

    (/sup 3/H)Batrachotoxinin A benzoate ((/sup 3/H)BTX-B) binds with high affinity to sites on voltage-dependent sodium channels in a vesicular preparation from guinea pig cerebral cortex. In this preparation, local anesthetics competitively antagonize the binding of (/sup 3/H)BTX-B. The potencies of some 40 classical local anesthetics and a variety of catecholamine, histamine, serotonin, adenosine, GABA, glycine, acetylcholine, and calcium antagonists, tranquilizers, antidepressants, barbiturates, anticonvulsants, steroids, vasodilators, antiinflammatories, anticoagulants, analgesics, and other agents have been determined. An excellent correlation with the known local anesthetic activity of many of these agents indicate that antagonism of binding of (/sup 3/H)BTX-B binding provides a rapid,more » quantitative, and facile method for the screening and investigation of local anesthetic activity.« less

  4. A new approach for bioassays based on frequency- and time-domain measurements of magnetic nanoparticles.

    PubMed

    Oisjöen, Fredrik; Schneiderman, Justin F; Astalan, Andrea Prieto; Kalabukhov, Alexey; Johansson, Christer; Winkler, Dag

    2010-01-15

    We demonstrate a one-step wash-free bioassay measurement system capable of tracking biochemical binding events. Our approach combines the high resolution of frequency- and high speed of time-domain measurements in a single device in combination with a fast one-step bioassay. The one-step nature of our magnetic nanoparticle (MNP) based assay reduces the time between sample extraction and quantitative results while mitigating the risks of contamination related to washing steps. Our method also enables tracking of binding events, providing the possibility of, for example, investigation of how chemical/biological environments affect the rate of a binding process or study of the action of certain drugs. We detect specific biological binding events occurring on the surfaces of fluid-suspended MNPs that modify their magnetic relaxation behavior. Herein, we extrapolate a modest sensitivity to analyte of 100 ng/ml with the present setup using our rapid one-step bioassay. More importantly, we determine the size-distributions of the MNP systems with theoretical fits to our data obtained from the two complementary measurement modalities and demonstrate quantitative agreement between them. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Bacteroides gingivalis-Actinomyces viscosus cohesive interactions as measured by a quantitative binding assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, S.; Ellen, R.P.; Grove, D.A.

    1987-10-01

    There is limited evidence, mostly indirect, to suggest that the adherence of Bacteroides gingivalis to teeth may be enhanced by the presence of gram-positive dental plaque bacteria like Actinomyces viscosus. The purpose of this study was to carry out direct quantitative assessments of the cohesion of B gingivalis and A. viscosus by using an in vitro assay modeled on the natural sequence in which these two species colonize the teeth. The assay allowed comparisons to be made of the adherence of /sup 3/H-labeled B. gingivalis 2561 and 381 to saliva-coated hydroxyapatite beads (S-HA) and A. viscosus WVU627- or T14V-coated S-HAmore » (actinobeads) in equilibrium and kinetics binding studies. A series of preliminary binding studies with 3H-labeled A. viscosus and parallel studies by scanning electron microscopy with unlabeled A. viscosus were conducted to establish a protocol by which actinobeads suitable for subsequent Bacteroides adherence experiments could be prepared. By scanning electron microscopy, the actinobeads had only small gaps of exposed S-HA between essentially irreversibly bound A. viscosus cells. Furthermore, B. gingivalis cells appeared to bind preferentially to the Actinomyces cells instead of the exposed S-HA. B. gingivalis binding to both S-HA and actinobeads was saturable with at least 2 X 10(9) to 3 X 10(9) cells per ml, and equilibrium with saturating concentrations was reached within 10 to 20 min. B. gingivalis always bound in greater numbers to the actinobeads than to S-HA. These findings provide direct measurements supporting the concept that cohesion with dental plaque bacteria like A. viscosus may foster the establishment of B. gingivalis on teeth by enhancing its adherence.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leenheer, J.A.; Brown, G.K.; Cabaniss, S.E.

    Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca{sup 2+}, Cd{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca{sup 2+} ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The metal binding fraction was characterized by quantitative {sup 13}C NMR, {sup 1}H NMR, and FT-IR spectrometry andmore » elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca{sup 2+} binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.« less

  7. Interaction entropy for protein-protein binding

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoxi; Yan, Yu N.; Yang, Maoyou; Zhang, John Z. H.

    2017-03-01

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interaction entropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interaction entropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  8. Interaction entropy for protein-protein binding.

    PubMed

    Sun, Zhaoxi; Yan, Yu N; Yang, Maoyou; Zhang, John Z H

    2017-03-28

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interactionentropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interactionentropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  9. Quantitative Proteomic Analysis Reveals That Anti-Cancer Effects of Selenium-Binding Protein 1 In Vivo Are Associated with Metabolic Pathways

    PubMed Central

    Ying, Qi; Ansong, Emmanuel; Diamond, Alan M.; Lu, Zhaoxin; Yang, Wancai; Bie, Xiaomei

    2015-01-01

    Previous studies have shown the tumor-suppressive role of selenium-binding protein 1 (SBP1), but the underlying mechanisms are unclear. In this study, we found that induction of SBP1 showed significant inhibition of colorectal cancer cell growth and metastasis in mice. We further employed isobaric tags for relative and absolute quantitation (iTRAQ) to identify proteins that were involved in SBP1-mediated anti-cancer effects in tumor tissues. We identified 132 differentially expressed proteins, among them, 53 proteins were upregulated and 79 proteins were downregulated. Importantly, many of the differentially altered proteins were associated with lipid/glucose metabolism, which were also linked to Glycolysis, MAPK, Wnt, NF-kB, NOTCH and epithelial-mesenchymal transition (EMT) signaling pathways. These results have revealed a novel mechanism that SBP1-mediated cancer inhibition is through altering lipid/glucose metabolic signaling pathways. PMID:25974208

  10. Study of Receptor-Chaperone Interactions Using the Optical Technique of Spectroscopic Ellipsometry

    PubMed Central

    Kriechbaumer, Verena; Tsargorodskaya, Anna; Mustafa, Mohd K.; Vinogradova, Tatiana; Lacey, Joanne; Smith, David P.; Abell, Benjamin M.; Nabok, Alexei

    2011-01-01

    This work describes a detailed quantitative interaction study between the novel plastidial chaperone receptor OEP61 and isoforms of the chaperone types Hsp70 and Hsp90 using the optical method of total internal reflection ellipsometry (TIRE). The receptor OEP61 was electrostatically immobilized on a gold surface via an intermediate layer of polycations. The TIRE measurements allowed the evaluation of thickness changes in the adsorbed molecular layers as a result of chaperone binding to receptor proteins. Hsp70 chaperone isoforms but not Hsp90 were shown to be capable of binding OEP61. Dynamic TIRE measurements were carried out to evaluate the affinity constants of the above reactions and resulted in clear discrimination between specific and nonspecific binding of chaperones as well as differences in binding properties between the highly similar Hsp70 isoforms. PMID:21767504

  11. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.

    PubMed

    Hattotuwagama, Channa K; Doytchinova, Irini A; Flower, Darren R

    2007-01-01

    Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made are freely available online at the URL http://www.jenner.ac.uk/MHCPred.

  12. New horizons in mouse immunoinformatics: reliable in silico prediction of mouse class I histocompatibility major complex peptide binding affinity.

    PubMed

    Hattotuwagama, Channa K; Guan, Pingping; Doytchinova, Irini A; Flower, Darren R

    2004-11-21

    Quantitative structure-activity relationship (QSAR) analysis is a main cornerstone of modern informatic disciplines. Predictive computational models, based on QSAR technology, of peptide-major histocompatibility complex (MHC) binding affinity have now become a vital component of modern day computational immunovaccinology. Historically, such approaches have been built around semi-qualitative, classification methods, but these are now giving way to quantitative regression methods. The additive method, an established immunoinformatics technique for the quantitative prediction of peptide-protein affinity, was used here to identify the sequence dependence of peptide binding specificity for three mouse class I MHC alleles: H2-D(b), H2-K(b) and H2-K(k). As we show, in terms of reliability the resulting models represent a significant advance on existing methods. They can be used for the accurate prediction of T-cell epitopes and are freely available online ( http://www.jenner.ac.uk/MHCPred).

  13. The photostability of the commonly used biotin-4-fluorescein probe.

    PubMed

    Haack, Richard A; Swift, Kerry M; Ruan, Qiaoqiao; Himmelsbach, Richard J; Tetin, Sergey Y

    2017-08-15

    Biotin-4-fluorescein (B4F) is a commonly used fluorescent probe for studying biotin-(strept)avidin interactions. During a characterization study of an anti-biotin antibody, using B4F as the probe, we noticed a discrepancy in the expected and experimentally determined number of biotin binding sites. Analytical testing showed that the biotin moiety in the probe undergoes a photosensitized oxidation to produce a mixture of biotin sulfoxides which has the potential to impact the quantitation of binding sites using this fluorescent probe. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Decreased complement mediated binding of antibody//sup 3/-dsDNA immune complexes to the red blood cells of patients with systemic lupus erythematosus, rheumatoid arthritis, and hematologic malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, R.P.; Horgan, C.; Buschbacher, R.

    1983-06-01

    The complement mediated binding of prepared antibody//sup 3/H-dsDNA immune complexes to the red blood cells obtained from a number of patient populations has been investigated. Patients with solid tumors have binding activity similar to that seen in a normal group of individuals. However, a significant fraction of patients with systemic lupus erythematosus, rheumatoid arthritis, and hematologic malignancies have lowered binding activity compared with normal subjects. Quantitative studies indicate the lowered activity probably arises due to a decrease in complement receptors on the respective red blood cells. The potential importance and implications of these findings are briefly discussed.

  15. Sugar-Binding Profiles of Chitin-Binding Lectins from the Hevein Family: A Comprehensive Study

    PubMed Central

    Itakura, Yoko; Nakamura-Tsuruta, Sachiko; Kominami, Junko; Tateno, Hiroaki; Hirabayashi, Jun

    2017-01-01

    Chitin-binding lectins form the hevein family in plants, which are defined by the presence of single or multiple structurally conserved GlcNAc (N-acetylglucosamine)-binding domains. Although they have been used as probes for chito-oligosaccharides, their detailed specificities remain to be investigated. In this study, we analyzed six chitin-binding lectins, DSA, LEL, PWM, STL, UDA, and WGA, by quantitative frontal affinity chromatography. Some novel features were evident: WGA showed almost comparable affinity for pyridylaminated chitotriose and chitotetraose, while LEL and UDA showed much weaker affinity, and DSA, PWM, and STL had no substantial affinity for the former. WGA showed selective affinity for hybrid-type N-glycans harboring a bisecting GlcNAc residue. UDA showed extensive binding to high-mannose type N-glycans, with affinity increasing with the number of Man residues. DSA showed the highest affinity for highly branched N-glycans consisting of type II LacNAc (N-acetyllactosamine). Further, multivalent features of these lectins were investigated by using glycoconjugate and lectin microarrays. The lectins showed substantial binding to immobilized LacNAc as well as chito-oligosaccharides, although the extents to which they bound varied among them. WGA showed strong binding to heavily sialylated glycoproteins. The above observations will help interpret lectin-glycoprotein interactions in histochemical studies and glyco-biomarker investigations. PMID:28556796

  16. The development and application of a quantitative peptide microarray platform to SH2 domain specificity space

    NASA Astrophysics Data System (ADS)

    Engelmann, Brett Warren

    The Src homology 2 (SH2) domains evolved alongside protein tyrosine kinases (PTKs) and phosphatases (PTPs) in metazoans to recognize the phosphotyrosine (pY) post-translational modification. The human genome encodes 121 SH2 domains within 111 SH2 domain containing proteins that represent the primary mechanism for cellular signal transduction immediately downstream of PTKs. Despite pY recognition contributing to roughly half of the binding energy, SH2 domains possess substantial binding specificity, or affinity discrimination between phosphopeptide ligands. This specificity is largely imparted by amino acids (AAs) adjacent to the pY, typically from positions +1 to +4 C-terminal to the pY. Much experimental effort has been undertaken to construct preferred binding motifs for many SH2 domains. However, due to limitations in previous experimental methodologies these motifs do not account for the interplay between AAs. It was therefore not known how AAs within the context of individual peptides function to impart SH2 domain specificity. In this work we identified the critical role context plays in defining SH2 domain specificity for physiological ligands. We also constructed a high quality interactome using 50 SH2 domains and 192 physiological ligands. We next developed a quantitative high-throughput (Q-HTP) peptide microarray platform to assess the affinities four SH2 domains have for 124 physiological ligands. We demonstrated the superior characteristics of our platform relative to preceding approaches and validated our results using established biophysical techniques, literature corroboration, and predictive algorithms. The quantitative information provided by the arrays was leveraged to investigate SH2 domain binding distributions and identify points of binding overlap. Our microarray derived affinity estimates were integrated to produce quantitative interaction motifs capable of predicting interactions. Furthermore, our microarrays proved capable of resolving subtle contextual differences within motifs that modulate interaction affinities. We conclude that contextually informed specificity profiling of protein interaction domains using the methodologies developed in this study can inform efforts to understand the interconnectivity of signaling networks in normal and aberrant states. Three supplementary tables containing detailed lists of peptides, interactions, and sources of corroborative information are provided.

  17. Effects of egg-adaptation on receptor-binding and antigenic properties of recent influenza A (H3N2) vaccine viruses.

    PubMed

    Parker, Lauren; Wharton, Stephen A; Martin, Stephen R; Cross, Karen; Lin, Yipu; Liu, Yan; Feizi, Ten; Daniels, Rodney S; McCauley, John W

    2016-06-01

    Influenza A virus (subtype H3N2) causes seasonal human influenza and is included as a component of influenza vaccines. The majority of vaccine viruses are isolated and propagated in eggs, which commonly results in amino acid substitutions in the haemagglutinin (HA) glycoprotein. These substitutions can affect virus receptor-binding and alter virus antigenicity, thereby, obfuscating the choice of egg-propagated viruses for development into candidate vaccine viruses. To evaluate the effects of egg-adaptive substitutions seen in H3N2 vaccine viruses on sialic acid receptor-binding, we carried out quantitative measurement of virus receptor-binding using surface biolayer interferometry with haemagglutination inhibition (HI) assays to correlate changes in receptor avidity with antigenic properties. Included in these studies was a panel of H3N2 viruses generated by reverse genetics containing substitutions seen in recent egg-propagated vaccine viruses and corresponding cell culture-propagated wild-type viruses. These assays provide a quantitative approach to investigating the importance of individual amino acid substitutions in influenza receptor-binding. Results show that viruses with egg-adaptive HA substitutions R156Q, S219Y, and I226N, have increased binding avidity to α2,3-linked receptor-analogues and decreased binding avidity to α2,6-linked receptor-analogues. No measurable binding was detected for the viruses with amino acid substitution combination 156Q+219Y and receptor-binding increased in viruses where egg-adaptation mutations were introduced into cell culture-propagated virus. Substitutions at positions 156 and 190 appeared to be primarily responsible for low reactivity in HI assays with post-infection ferret antisera raised against 2012-2013 season H3N2 viruses. Egg-adaptive substitutions at position 186 caused substantial differences in binding avidity with an insignificant effect on antigenicity.

  18. Structure-based Understanding of Binding Affinity and Mode ...

    EPA Pesticide Factsheets

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicab

  19. An evaluation of ferrihydrite- and Metsorb™-DGT techniques for measuring oxyanion species (As, Se, V, P): effective capacity, competition and diffusion coefficients.

    PubMed

    Price, Helen L; Teasdale, Peter R; Jolley, Dianne F

    2013-11-25

    This study investigated several knowledge gaps with respect to the diffusive gradients in thin films (DGT) technique for measurement of oxyanions (As(III), As(V), Se(IV), Se(VI), PO4(3-), and V(V)) using the ferrihydrite and Metsorb™ binding layers. Elution efficiencies for each binding layer were higher with 1:20 dilutions, as analytical interferences for ICP-MS were minimised. Diffusion coefficients measured by diffusion cell and by DGT time-series experiments were found to agree well and generally agreed with previously reported values, although a range of diffusion coefficients have been reported for inorganic As and Se species. The relative binding affinity for both ferrihydrite and Metsorb™ was PO4(3-) ≈ As(V)>V(V) ≈ As(III)>Se(IV) > Se(VI) and effective binding capacities were measured in single ion solutions, and spiked synthetic freshwater and seawater, advising practical decisions about DGT monitoring. Under the conditions tested the performance of both ferrihydrite and Metsorb™ binding layers was directly comparable for As(V), As(III) Se(IV), V(V) and PO4(3-) over a deployment spanning ≤ 2 days for both freshwater and seawater. In order to return quantitative data for several analytes we recommend that the DGT method using either ferrihydrite or Metsorb™ be deployed for a maximum of 2 days in marine waters likely to contain high levels of the most strongly adsorbing oxyanions contaminants. The high pH, the competitive ions present in seawater and the identity of co-adsorbing ions affect the capacity of each binding layer for the analytes of interest. In freshwaters, longer deployment times can be considered but the concentration and identity of co-adsorbing ions may impact on quantitative uptake of Se(IV). This study found ferrihydrite-DGT outperformed Metsorb-DGT while previous studies have found the opposite, with variation in binding materials masses used being a likely reason. Clearly, preparation of both binding layers should always be optimised to produce the highest capacity possible, especially for seawater deployments. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  20. Theory of nucleosome corkscrew sliding in the presence of synthetic DNA ligands.

    PubMed

    Mohammad-Rafiee, Farshid; Kulić, Igor M; Schiessel, Helmut

    2004-11-12

    Histone octamers show a heat-induced mobility along DNA. Recent theoretical studies have established two mechanisms that are qualitatively and quantitatively compatible with in vitro experiments on nucleosome sliding: octamer repositioning through one-base-pair twist defects and through ten-base-pair bulge defects. A recent experiment demonstrated that the repositioning is strongly suppressed in the presence of minor-groove binding DNA ligands. In the present study, we give a quantitative theory for nucleosome repositioning in the presence of such ligands. We show that the experimentally observed octamer mobilities are consistent with the picture of bound ligands blocking the passage of twist defects through the nucleosome. This strongly supports the model of twist defects inducing a corkscrew motion of the nucleosome as the underlying mechanism of nucleosome sliding. We provide a theoretical estimate of the nucleosomal mobility without adjustable parameters, as a function of ligand concentration, binding affinity, binding site orientation, temperature and DNA anisotropy. Having this mobility in hand, we speculate on the interaction between a nucleosome and a transcribing RNA polymerase, and suggest a novel mechanism that might account for polymerase-induced nucleosome repositioning on short DNA templates.

  1. Absolute quantitation of NAPQI-modified rat serum albumin by LC-MS/MS: monitoring acetaminophen covalent binding in vivo.

    PubMed

    LeBlanc, André; Shiao, Tze Chieh; Roy, René; Sleno, Lekha

    2014-09-15

    Acetaminophen is known to cause hepatoxicity via the formation of a reactive metabolite, N-acetyl p-benzoquinone imine (NAPQI), as a result of covalent binding to liver proteins. Serum albumin (SA) is known to be covalently modified by NAPQI and is present at high concentrations in the bloodstream and is therefore a potential biomarker to assess the levels of protein modification by NAPQI. A newly developed method for the absolute quantitation of serum albumin containing NAPQI covalently bound to its active site cysteine (Cys34) is described. This optimized assay represents the first absolute quantitation of a modified protein, with very low stoichiometric abundance, using a protein-level standard combined with isotope dilution. The LC-MS/MS assay is based on a protein standard modified with a custom-designed reagent, yielding a surrogate peptide (following digestion) that is a positional isomer to the target peptide modified by NAPQI. To illustrate the potential of this approach, the method was applied to quantify NAPQI-modified SA in plasma from rats dosed with acetaminophen. The resulting method is highly sensitive (capable of quantifying down to 0.0006% of total RSA in its NAPQI-modified form) and yields excellent precision and accuracy statistics. A time-course pharmacokinetic study was performed to test the usefulness of this method for following acetaminophen-induced covalent binding at four dosing levels (75-600 mg/kg IP), showing the viability of this approach to directly monitor in vivo samples. This approach can reliably quantify NAPQI-modified albumin, allowing direct monitoring of acetaminophen-related covalent binding.

  2. Serotonin Receptors in the Medulla Oblongata of the Human Fetus and Infant: The Analytic Approach of the International Safe Passage Study

    PubMed Central

    Folkerth, Rebecca D.; Paterson, David S.; Broadbelt, Kevin G.; Dan Zaharie, S.; Hewlett, Richard H.; Dempers, Johan J.; Burger, Elsie; Wadee, Shabbir; Schubert, Pawel; Wright, Colleen; Sens, Mary Ann; Nelsen, Laura; Randall, Bradley B.; Tran, Hoa; Geldenhuys, Elaine; Elliott, Amy J.; Odendaal, Hein J.; Kinney, Hannah C.

    2016-01-01

    The Safe Passage Study is an international, prospective study of approximately 12 000 pregnancies to determine the effects of prenatal alcohol exposure (PAE) upon stillbirth and the sudden infant death syndrome (SIDS). A key objective of the study is to elucidate adverse effects of PAE upon binding to serotonin (5-HT) 1A receptors in brainstem homeostatic networks postulated to be abnormal in unexplained stillbirth and/or SIDS. We undertook a feasibility assessment of 5-HT1A receptor binding using autoradiography in the medulla oblongata (6 nuclei in 27 cases). 5-HT1A binding was compared to a reference dataset from the San Diego medical examiner’s system. There was no adverse effect of postmortem interval ≤100 h. The distribution and quantitated values of 5-HT1A binding in Safe Passage Study cases were essentially identical to those in the reference dataset, and virtually identical between stillbirths and live born fetal cases in grossly non-macerated tissues. The pattern of binding was present at mid-gestation with dramatic changes in binding levels in the medullary 5-HT nuclei over the second half of gestation; there was a plateau at lower levels in the neonatal period and into infancy. This study demonstrates feasibility of 5-HT1A binding analysis in the medulla in the Safe Passage Study. PMID:27634962

  3. Microfluidic free-flow electrophoresis for the discovery and characterisation of calmodulin binding partners

    NASA Astrophysics Data System (ADS)

    Herling, Therese; Linse, Sara; Knowles, Tuomas

    2015-03-01

    Non-covalent and transient protein-ligand interactions are integral to cellular function and malfunction. Key steps in signalling and regulatory pathways rely on reversible non-covalent protein-protein binding or ion chelation. Here we present a microfluidic free-flow electrophoresis method for detecting and characterising protein-ligand interactions in solution. We apply this method to probe the binding equilibria of calmodulin, a central protein to calcium signalling pathways. In this study we characterise the specific binding of calmodulin to phosphorylase kinase, a known target, and creatine kinase, which we identify as a putative binding partner through a protein array screen and surface plasmon resonance experiments. We verify the interaction between calmodulin and creatine kinase in solution using free-flow electrophoresis and investigate the effect of calcium and sodium chloride on the calmodulin-ligand binding affinity in free solution without the presence of a potentially interfering surface. Our results demonstrate the general applicability of quantitative microfluidic electrophoresis to characterise binding equilibria between biomolecules in solution.

  4. Systematic research on the pretreatment of peptides for quantitative proteomics using a C₁₈ microcolumn.

    PubMed

    Zhai, Linhui; Chang, Cheng; Li, Ning; Duong, Duc M; Chen, Hao; Deng, Zixin; Yang, Jian; Hong, Xuechuan; Zhu, Yunping; Xu, Ping

    2013-08-01

    Reversed phase microcolumns have been widely used for peptide pretreatment to desalt and remove interferences before tandem LC-MS in proteomics studies. However, few studies have characterized the effects of experimental parameters as well as column characteristics on the composition of identified peptides. In this study, several parameters including the concentration of ACN in washing buffer, the microcolumn's purification effect, the peptide recovery rate, and the dynamic-binding capacity were characterized in detail, based upon stable isotope labeling by amino acids in a cell culture quantitative approach. The results showed that peptide losses can be reduced with low ACN concentration in washing buffers resulting in a recovery rate of approximately 82%. Furthermore, the effects of ACN concentration and loading amount on the properties of identified peptides were also evaluated. We found that the dynamic-binding capacity of the column was approximately 26 μg. With increased loading amounts, more hydrophilic peptides were replaced by hydrophobic peptides. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quantitative determination of testosterone levels with biolayer interferometry.

    PubMed

    Zhang, Hao; Li, Wei; Luo, Hong; Xiong, Guangming; Yu, Yuanhua

    2017-10-01

    Natural and synthetic steroid hormones are widely spread in the environment and are considered as pollutants due to their endocrine activities, even at low concentrations, which are harmful to human health. To detect steroid hormones in the environment, a novel biosensor system was developed based on the principle of biolayer interferometry. Detection is based on changes in the interference pattern of white light reflected from the surface of an optical fiber with bound biomolecules. Monitoring interactions between molecules does not require radioactive, enzymatic, or fluorescent labels. Here, 2 double-stranded DNA fragments of operator 1 (OP1) and OP2 containing 10-bp palindromic sequences in chromosomal Comamonas testosteroni DNA (ATCC11996) were surface-immobilized to streptavidin sensors. Interference changes were detected when repressor protein RepA bound the DNA sequences. DNA-protein interactions were characterized and kinetic parameters were obtained. The dissociation constants between the OP1 and OP2 DNA sequences and RepA were 9.865 × 10 -9  M and 2.750 × 10 -8  M, respectively. The reactions showed high specifically and affinity. Because binding of the 10-bp palindromic sequence and RepA was affected by RepA-testosterone binding, the steroid could be quantitatively determined rapidly using the biosensor system. The mechanism of the binding assay was as follows. RepA could bind both OP1 and testosterone. RepA binding to testosterone changed the protein conformation, which influenced the binding between RepA and OP1. The percentage of the signal detected negative correlation with the testosterone concentration. A standard curve was obtained, and the correlation coefficient value was approximately 0.97. We could quantitatively determine testosterone levels between 2.13 and 136.63 ng/ml. Each sample could be quantitatively detected in 17 min. These results suggested that the specific interaction between double-stranded OP1 DNA and the RepA protein could be used to rapidly and quantitatively determine environmental testosterone levels by the biolayer interferometry technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Ion Binding Energies Determining Functional Transport of ClC Proteins

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Guo, Xu; Zou, Xian-Wu; Sang, Jian-Ping

    2014-06-01

    The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl- ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl- at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl- pathway, they are still part contributors for the Cl- functional transport. This work provides a guide rule to estimate the importance of Cl- at the binding sites and how chloride ions have influences on the function of ClC proteins.

  7. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.

    PubMed

    Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P

    2015-11-01

    Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The proposed AI models can be useful tools in screening the chemicals for their binding affinities toward carbon for their safe management.

  8. Passive transport and binding of lead by human red blood cells.

    PubMed

    Simons, T J

    1986-09-01

    The uptake of Pb into human red blood cells has been studied using Pb buffers. Passive Pb movements can be studied conveniently when the cells are depleted of adenosine 5'-triphosphate (ATP), to eliminate active transport, and of inorganic phosphate, to prevent precipitation of lead phosphate. Pb can cross the membrane passively in either direction. Influx and efflux show similar properties. Passive Pb transport is strongly stimulated by HCO3-, and is reduced by replacing Cl- with ClO4-. It is inhibited by low concentrations of 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS) and 4,4'-diisothiocyanostilbene-2.2'-disulphonic acid (DIDS), characteristic inhibitors of anion transport. Pb uptake is unaffected by varying the external concentrations of Na+, K+ and Ca2+. When Pb enters the cell, it binds mainly to haemoglobin. The ratio of bound Pb:free Pb2+ in the cytosol is estimated to be 6000:1. Pb binding to haemoglobin is unaffected by oxygenation. Binding to albumin is quantitatively similar to binding to haemoglobin. The implications of these results for the transport and binding of Pb in the blood are discussed.

  9. Study of receptor-chaperone interactions using the optical technique of spectroscopic ellipsometry.

    PubMed

    Kriechbaumer, Verena; Tsargorodskaya, Anna; Mustafa, Mohd K; Vinogradova, Tatiana; Lacey, Joanne; Smith, David P; Abell, Benjamin M; Nabok, Alexei

    2011-07-20

    This work describes a detailed quantitative interaction study between the novel plastidial chaperone receptor OEP61 and isoforms of the chaperone types Hsp70 and Hsp90 using the optical method of total internal reflection ellipsometry (TIRE). The receptor OEP61 was electrostatically immobilized on a gold surface via an intermediate layer of polycations. The TIRE measurements allowed the evaluation of thickness changes in the adsorbed molecular layers as a result of chaperone binding to receptor proteins. Hsp70 chaperone isoforms but not Hsp90 were shown to be capable of binding OEP61. Dynamic TIRE measurements were carried out to evaluate the affinity constants of the above reactions and resulted in clear discrimination between specific and nonspecific binding of chaperones as well as differences in binding properties between the highly similar Hsp70 isoforms. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Quantitatively and Kinetically Identifying Binding Motifs of Amelogenin Proteins to Mineral Crystals Through Biochemical and Spectroscopic Assays

    PubMed Central

    Zhu, Li; Hwang, Peter; Witkowska, H. Ewa; Liu, Haichuan; Li, Wu

    2014-01-01

    Tooth enamel is the hardest tissue in vertebrate animals. Consisting of millions of carbonated hydroxyapatite crystals, this highly mineralized tissue develops from a protein matrix in which amelogenin is the predominant component. The enamel matrix proteins are eventually and completely degraded and removed by proteinases to form mineral-enriched tooth enamel. Identification of the apatite-binding motifs in amelogenin is critical for understanding the amelogenin–crystal interactions and amelogenin–proteinases interactions during tooth enamel biomineralization. A stepwise strategy is introduced to kinetically and quantitatively identify the crystal-binding motifs in amelogenin, including a peptide screening assay, a competitive adsorption assay, and a kinetic-binding assay using amelogenin and gene-engineered amelogenin mutants. A modified enzyme-linked immunosorbent assay on crystal surfaces is also applied to compare binding amounts of amelogenin and its mutants on different planes of apatite crystals. We describe the detailed protocols for these assays and provide the considerations for these experiments in this chapter. PMID:24188774

  11. TFBSshape: a motif database for DNA shape features of transcription factor binding sites.

    PubMed

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein-DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone.

  12. TFBSshape: a motif database for DNA shape features of transcription factor binding sites

    PubMed Central

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W.; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein–DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone. PMID:24214955

  13. Novel benzanthrone probes for membrane and protein studies

    NASA Astrophysics Data System (ADS)

    Ryzhova, Olga; Vus, Kateryna; Trusova, Valeriya; Kirilova, Elena; Kirilov, Georgiy; Gorbenko, Galyna; Kinnunen, Paavo

    2016-09-01

    The applicability of a series of novel benzanthrone dyes to monitoring the changes in physicochemical properties of lipid bilayer and to differentiating between the native and aggregated protein states has been evaluated. Based on the quantitative parameters of the dye-membrane and dye-protein binding derived from the fluorimetric titration data, the most prospective membrane probes and amyloid tracers have been selected from the group of examined compounds. Analysis of the red edge excitation shifts of the membrane- and amyloid-bound dyes provided information on the properties of benzanthrone binding sites within the lipid and protein matrixes. To understand how amyloid specificity of benzanthrones correlates with their structure, quantitative structure activity relationship (QSAR) analysis was performed involving a range of quantum chemical molecular descriptors. A statistically significant model was obtained for predicting the sensitivity of novel benzanthrone dyes to amyloid fibrils.

  14. Scanpath memory binding: multiple read-out experiments

    NASA Astrophysics Data System (ADS)

    Stark, Lawrence W.; Privitera, Claudio M.; Yang, Huiyang; Azzariti, Michela; Ho, Yeuk F.; Chan, Angie; Krischer, Christof; Weinberger, Adam

    1999-05-01

    The scanpath theory proposed that an internal spatial- cognitive model controls perception and the active looking eye movements, EMs, of the scanpath sequence. Evidence for this came from new quantitative methods, experiments with ambiguous figures and visual imagery and from MRI studies, all on cooperating human subjects. Besides recording EMs, we introduce other experimental techniques wherein the subject must depend upon memory bindings as in visual imagery, but may call upon other motor behaviors than EMs to read-out the remembered patterns. How is the internal model distributed and operationally assembled. The concept of binding speaks to the assigning of values for the model and its execution in various parts of the brain. Current neurological information helps to localize different aspects of the spatial-cognitive model in the brain. We suppose that there are several levels of 'binding' -- semantic or symbolic binding, structural binding for the spatial locations of the regions-of-interest and sequential binding for the dynamic execution program that yields the sequence of EMs. Our aim is to dissect out respective contributions of these different forms of binding.

  15. Determinants of glycan receptor specificity of H2N2 influenza A virus hemagglutinin.

    PubMed

    Viswanathan, Karthik; Koh, Xiaoying; Chandrasekaran, Aarthi; Pappas, Claudia; Raman, Rahul; Srinivasan, Aravind; Shriver, Zachary; Tumpey, Terrence M; Sasisekharan, Ram

    2010-10-29

    The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA.

  16. Determinants of Glycan Receptor Specificity of H2N2 Influenza A Virus Hemagglutinin

    PubMed Central

    Chandrasekaran, Aarthi; Pappas, Claudia; Raman, Rahul; Srinivasan, Aravind; Shriver, Zachary; Tumpey, Terrence M.; Sasisekharan, Ram

    2010-01-01

    The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA. PMID:21060797

  17. Kinetic modeling of benzodiazepine receptor binding with PET and high specific activity [(11)C]Iomazenil in healthy human subjects.

    PubMed

    Bremner, J D; Horti, A; Staib, L H; Zea-Ponce, Y; Soufer, R; Charney, D S; Baldwin, R

    2000-01-01

    Quantitation of the PET benzodiazepine receptor antagonist, [(11)C]Iomazenil, using low specific activity radioligand was recently described. The purpose of this study was to quantitate benzodiazepine receptor binding in human subjects using PET and high specific activity [(11)C]Iomazenil. Six healthy human subjects underwent PET imaging following a bolus injection of high specific activity (>100 Ci/mmol) [(11)C]iomazenil. Arterial samples were collected at multiple time points after injection for measurement of unmetabolized total and nonprotein-bound parent compound in plasma. Time activity curves of radioligand concentration in brain and plasma were analyzed using two and three compartment model. Kinetic rate constants of transfer of radioligand between plasma, nonspecifically bound brain tissue, and specifically bound brain tissue compartments were fitted to the model. Values for fitted kinetic rate constants were used in the calculation of measures of benzodiazepine receptor binding, including binding potential (the ratio of receptor density to affinity), and product of BP and the fraction of free nonprotein-bound parent compound (V(3)'). Use of the three compartment model improved the goodness of fit in comparison to the two compartment model. Values for kinetic rate constants and measures of benzodiazepine receptor binding, including BP and V(3)', were similar to results obtained with the SPECT radioligand [(123)I]iomazenil, and a prior report with low specific activity [(11)C]Iomazenil. Kinetic modeling using the three compartment model with PET and high specific activity [(11)C]Iomazenil provides a reliable measure of benzodiazepine receptor binding. Synapse 35:68-77, 2000. Published 2000 Wiley-Liss, Inc.

  18. Identification of distinct SET/TAF-Iβ domains required for core histone binding and quantitative characterisation of the interaction

    PubMed Central

    Karetsou, Zoe; Emmanouilidou, Anastasia; Sanidas, Ioannis; Liokatis, Stamatis; Nikolakaki, Eleni; Politou, Anastasia S; Papamarcaki, Thomais

    2009-01-01

    Background The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Iβ belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Iβ, we designed several SET/TAF-Iβ truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. Results Wild type SET/TAF-Iβ binds to histones H2B and H3 with Kd values of 2.87 and 0.15 μM, respectively. The preferential binding of SET/TAF-Iβ to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Iβ, as well as the H3 amino-terminal tail, are dispensable for this interaction. Conclusion This type of analysis allowed us to assess the relative affinities of SET/TAF-Iβ for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Iβ and can be valuable to understand the role of SET/TAF-Iβ in chromatin function. PMID:19358706

  19. Identification of distinct SET/TAF-Ibeta domains required for core histone binding and quantitative characterisation of the interaction.

    PubMed

    Karetsou, Zoe; Emmanouilidou, Anastasia; Sanidas, Ioannis; Liokatis, Stamatis; Nikolakaki, Eleni; Politou, Anastasia S; Papamarcaki, Thomais

    2009-04-09

    The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Ibeta belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Ibeta, we designed several SET/TAF-Ibeta truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. Wild type SET/TAF-Ibeta binds to histones H2B and H3 with Kd values of 2.87 and 0.15 microM, respectively. The preferential binding of SET/TAF-Ibeta to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Ibeta, as well as the H3 amino-terminal tail, are dispensable for this interaction. This type of analysis allowed us to assess the relative affinities of SET/TAF-Ibeta for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Ibeta and can be valuable to understand the role of SET/TAF-Ibeta in chromatin function.

  20. Techniques for quantitative LC-MS/MS analysis of protein therapeutics: advances in enzyme digestion and immunocapture.

    PubMed

    Fung, Eliza N; Bryan, Peter; Kozhich, Alexander

    2016-04-01

    LC-MS/MS has been investigated to quantify protein therapeutics in biological matrices. The protein therapeutics is digested by an enzyme to generate surrogate peptide(s) before LC-MS/MS analysis. One challenge is isolating protein therapeutics in the presence of large number of endogenous proteins in biological matrices. Immunocapture, in which a capture agent is used to preferentially bind the protein therapeutics over other proteins, is gaining traction. The protein therapeutics is eluted for digestion and LC-MS/MS analysis. One area of tremendous potential for immunocapture-LC-MS/MS is to obtain quantitative data where ligand-binding assay alone is not sufficient, for example, quantitation of antidrug antibody complexes. Herein, we present an overview of recent advance in enzyme digestion and immunocapture applicable to protein quantitation.

  1. Allosteric Regulation of E-Cadherin Adhesion*

    PubMed Central

    Shashikanth, Nitesh; Petrova, Yuliya I.; Park, Seongjin; Chekan, Jillian; Maiden, Stephanie; Spano, Martha; Ha, Taekjip; Gumbiner, Barry M.; Leckband, Deborah E.

    2015-01-01

    Cadherins are transmembrane adhesion proteins that maintain intercellular cohesion in all tissues, and their rapid regulation is essential for organized tissue remodeling. Despite some evidence that cadherin adhesion might be allosterically regulated, testing of this has been hindered by the difficulty of quantifying altered E-cadherin binding affinity caused by perturbations outside the ectodomain binding site. Here, measured kinetics of cadherin-mediated intercellular adhesion demonstrated quantitatively that treatment with activating, anti-E-cadherin antibodies or the dephosphorylation of a cytoplasmic binding partner, p120ctn, increased the homophilic binding affinity of E-cadherin. Results obtained with Colo 205 cells, which express inactive E-cadherin and do not aggregate, demonstrated that four treatments, which induced Colo 205 aggregation and p120ctn dephosphorylation, triggered quantitatively similar increases in E-cadherin affinity. Several processes can alter cell aggregation, but these results directly demonstrated the allosteric regulation of cell surface E-cadherin by p120ctn dephosphorylation. PMID:26175155

  2. A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies.

    PubMed

    Zahn, Raphael; Osmanović, Dino; Ehret, Severin; Araya Callis, Carolina; Frey, Steffen; Stewart, Murray; You, Changjiang; Görlich, Dirk; Hoogenboom, Bart W; Richter, Ralf P

    2016-04-08

    The permeability barrier of nuclear pore complexes (NPCs) controls bulk nucleocytoplasmic exchange. It consists of nucleoporin domains rich in phenylalanine-glycine motifs (FG domains). As a bottom-up nanoscale model for the permeability barrier, we have used planar films produced with three different end-grafted FG domains, and quantitatively analyzed the binding of two different nuclear transport receptors (NTRs), NTF2 and Importin β, together with the concomitant film thickness changes. NTR binding caused only moderate changes in film thickness; the binding isotherms showed negative cooperativity and could all be mapped onto a single master curve. This universal NTR binding behavior - a key element for the transport selectivity of the NPC - was quantitatively reproduced by a physical model that treats FG domains as regular, flexible polymers, and NTRs as spherical colloids with a homogeneous surface, ignoring the detailed arrangement of interaction sites along FG domains and on the NTR surface.

  3. Quantitative analysis of species specificity of two anti-parvalbumin antibodies for detecting southern hemisphere fish species demonstrating strong phylogenetic association.

    PubMed

    Liang, Ji; Tan, Chui Choo; Taylor, Steve L; Baumert, Joseph L; Lopata, Andreas L; Lee, N Alice

    2017-12-15

    This study aimed to develop a novel approach to determine the correlation between the parvalbumin (PAV) contents and their corresponding immunoreactivity (detectability) in southern hemisphere fish species. The immuno-detected PAV contents of the test fish species were estimated by a quantitative SDS-PAGE. A quantitative Enzyme-Linked ImmunoSorbent Assay (ELISA) was formatted to assess relative immunoreactivity of PAV. Sixteen species (forty-three percent) displayed a positive correlation with the anti-cod PAV polyclonal antibody, but no correlation with the anti-carp PAV monoclonal antibody. There was a strong phylogenetic association of the PAV immunoreactivity. Species from the order of Perciformes showed strong binding with both antibodies; whereas species from Salmoniformes, Ophidiiformes, Scombriformes, Scorpaeniformes, and Tetraodontiformes showed weak or no binding. This approach showed for the first time a statistical correlation between the PAV content and the immunoreactivity and allowed to rank the relative species/order specificity of the two antibodies for the southern hemisphere fish PAV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Different binding motifs of the celiac disease-associated HLA molecules DQ2.5, DQ2.2, and DQ7.5 revealed by relative quantitative proteomics of endogenous peptide repertoires.

    PubMed

    Bergseng, Elin; Dørum, Siri; Arntzen, Magnus Ø; Nielsen, Morten; Nygård, Ståle; Buus, Søren; de Souza, Gustavo A; Sollid, Ludvig M

    2015-02-01

    Celiac disease is caused by intolerance to cereal gluten proteins, and HLA-DQ molecules are involved in the disease pathogenesis by presentation of gluten peptides to CD4(+) T cells. The α- or β-chain sharing HLA molecules DQ2.5, DQ2.2, and DQ7.5 display different risks for the disease. It was recently demonstrated that T cells of DQ2.5 and DQ2.2 patients recognize distinct sets of gluten epitopes, suggesting that these two DQ2 variants select different peptides for display. To explore whether this is the case, we performed a comprehensive comparison of the endogenous self-peptides bound to HLA-DQ molecules of B-lymphoblastoid cell lines. Peptides were eluted from affinity-purified HLA molecules of nine cell lines and subjected to quadrupole orbitrap mass spectrometry and MaxQuant software analysis. Altogether, 12,712 endogenous peptides were identified at very different relative abundances. Hierarchical clustering of normalized quantitative data demonstrated significant differences in repertoires of peptides between the three DQ variant molecules. The neural network-based method, NNAlign, was used to identify peptide-binding motifs. The binding motifs of DQ2.5 and DQ7.5 concurred with previously established binding motifs. The binding motif of DQ2.2 was strikingly different from that of DQ2.5 with position P3 being a major anchor having a preference for threonine and serine. This is notable as three recently identified epitopes of gluten recognized by T cells of DQ2.2 celiac patients harbor serine at position P3. This study demonstrates that relative quantitative comparison of endogenous peptides sampled from our protein metabolism by HLA molecules provides clues to understand HLA association with disease.

  5. Calorimetric and spectroscopic studies of the interaction between zidovudine and human serum albumin

    NASA Astrophysics Data System (ADS)

    Pîrnău, Adrian; Mic, Mihaela; Neamţu, Silvia; Floare, Călin G.; Bogdan, Mircea

    2018-02-01

    A quantitative analysis of the interaction between zidovudine (AZT) and human serum albumin (HSA) was achieved using Isothermal titration calorimetry (ITC) in combination with fluorescence and 1H NMR spectroscopy. ITC directly measure the heat during a biomolecular binding event and gave us thermodynamic parameters and the characteristic association constant. By fluorescence quenching, the binding parameters of AZT-HSA interaction was determined and location to binding site I of HSA was confirmed. Via T1 NMR selective relaxation time measurements the drug-protein binding extent was evaluated as dissociation constants Kd and the involvement of azido moiety of zidovudine in molecular complex formation was put in evidence. All three methods indicated a very weak binding interaction. The association constant determined by ITC (3.58 × 102 M- 1) is supported by fluorescence quenching data (2.74 × 102 M- 1). The thermodynamic signature indicates that at least hydrophobic and electrostatic type interactions played a main role in the binding process.

  6. Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography.

    PubMed

    Acton, Paul D; Choi, Seok-Rye; Plössl, Karl; Kung, Hank F

    2002-05-01

    Functional imaging of small animals, such as mice and rats, using ultra-high resolution positron emission tomography (PET) and single-photon emission tomography (SPET), is becoming a valuable tool for studying animal models of human disease. While several studies have shown the utility of PET imaging in small animals, few have used SPET in real research applications. In this study we aimed to demonstrate the feasibility of using ultra-high resolution SPET in quantitative studies of dopamine transporters (DAT) in the mouse brain. Four healthy ICR male mice were injected with (mean+/-SD) 704+/-154 MBq [(99m)Tc]TRODAT-1, and scanned using an ultra-high resolution SPET system equipped with pinhole collimators (spatial resolution 0.83 mm at 3 cm radius of rotation). Each mouse had two studies, to provide an indication of test-retest reliability. Reference tissue kinetic modeling analysis of the time-activity data in the striatum and cerebellum was used to quantitate the availability of DAT. A simple equilibrium ratio of striatum to cerebellum provided another measure of DAT binding. The SPET imaging results were compared against ex vivo biodistribution data from the striatum and cerebellum. The mean distribution volume ratio (DVR) from the reference tissue kinetic model was 2.17+/-0.34, with a test-retest reliability of 2.63%+/-1.67%. The ratio technique gave similar results (DVR=2.03+/-0.38, test-retest reliability=6.64%+/-3.86%), and the ex vivo analysis gave DVR=2.32+/-0.20. Correlations between the kinetic model and the ratio technique ( R(2)=0.86, P<0.001) and the ex vivo data ( R(2)=0.92, P=0.04) were both excellent. This study demonstrated clearly that ultra-high resolution SPET of small animals is capable of accurate, repeatable, and quantitative measures of DAT binding, and should open up the possibility of further studies of cerebral binding sites in mice using pinhole SPET.

  7. Identifying Metabolically Active Chemicals Using a Consensus Quantitative Structure Activity Model for Estrogen Receptor Binding

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) are abundant throughout the environment and can alter neurodevelopment, behavior, and reproductive success of humans and other species by perturbing signaling pathways related to the estrogen receptor (ER). A recent study compared results acr...

  8. Tumor necrosis factor interaction with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Tsai, De-Hao; Elzey, Sherrie; Delrio, Frank W.; Keene, Athena M.; Tyner, Katherine M.; Clogston, Jeffrey D.; Maccuspie, Robert I.; Guha, Suvajyoti; Zachariah, Michael R.; Hackley, Vincent A.

    2012-05-01

    We report on a systematic investigation of molecular conjugation of tumor necrosis factor-α (TNF) protein onto gold nanoparticles (AuNPs) and the subsequent binding behavior to its antibody (anti-TNF). We employ a combination of physical and spectroscopic characterization methods, including electrospray-differential mobility analysis, dynamic light scattering, polyacrylamide gel electrophoresis, attenuated total reflectance-Fourier transform infrared spectroscopy, fluorescence assay, and enzyme-linked immunosorbent assay. The native TNF used in this study exists in the active homotrimer configuration prior to conjugation. After binding to AuNPs, the maximum surface density of TNF is (0.09 +/- 0.02) nm-2 with a binding constant of 3 × 106 (mol L-1)-1. Dodecyl sulfate ions induce desorption of monomeric TNF from the AuNP surface, indicating a relatively weak intermolecular binding within the AuNP-bound TNF trimers. Anti-TNF binds to both TNF-conjugated and citrate-stabilized AuNPs, showing that non-specific binding is significant. Based on the number of anti-TNF molecules adsorbed, a substantially higher binding affinity was observed for the TNF-conjugated surface. The inclusion of thiolated polyethylene glycol (SH-PEG) on the AuNPs inhibits the binding of anti-TNF, and the amount of inhibition is related to the number ratio of surface bound SH-PEG to TNF and the way in which the ligands are introduced. This study highlights the challenges in quantitatively characterizing complex hybrid nanoscale conjugates, and provides insight on TNF-AuNP formation and activity.We report on a systematic investigation of molecular conjugation of tumor necrosis factor-α (TNF) protein onto gold nanoparticles (AuNPs) and the subsequent binding behavior to its antibody (anti-TNF). We employ a combination of physical and spectroscopic characterization methods, including electrospray-differential mobility analysis, dynamic light scattering, polyacrylamide gel electrophoresis, attenuated total reflectance-Fourier transform infrared spectroscopy, fluorescence assay, and enzyme-linked immunosorbent assay. The native TNF used in this study exists in the active homotrimer configuration prior to conjugation. After binding to AuNPs, the maximum surface density of TNF is (0.09 +/- 0.02) nm-2 with a binding constant of 3 × 106 (mol L-1)-1. Dodecyl sulfate ions induce desorption of monomeric TNF from the AuNP surface, indicating a relatively weak intermolecular binding within the AuNP-bound TNF trimers. Anti-TNF binds to both TNF-conjugated and citrate-stabilized AuNPs, showing that non-specific binding is significant. Based on the number of anti-TNF molecules adsorbed, a substantially higher binding affinity was observed for the TNF-conjugated surface. The inclusion of thiolated polyethylene glycol (SH-PEG) on the AuNPs inhibits the binding of anti-TNF, and the amount of inhibition is related to the number ratio of surface bound SH-PEG to TNF and the way in which the ligands are introduced. This study highlights the challenges in quantitatively characterizing complex hybrid nanoscale conjugates, and provides insight on TNF-AuNP formation and activity. Electronic supplementary information (ESI) available: Experimental procedures, instrumentation, materials and calculations. See DOI: 10.1039/c2nr30415e

  9. High-resolution slab gel isoelectric focusing: methods for quantitative electrophoretic transfer and immunodetection of proteins as applied to the study of the multiple isoelectric forms of ornithine decarboxylase.

    PubMed

    Reddy, S G; Cochran, B J; Worth, L L; Knutson, V P; Haddox, M K

    1994-04-01

    A high-resolution isoelectric focusing vertical slab gel method which can resolve proteins which differ by a single charge was developed and this method was applied to the study of the multiple isoelectric forms of ornithine decarboxylase. Separation of proteins at this high level of resolution was achieved by increasing the ampholyte concentration in the gels to 6%. Various lots of ampholytes, from the same or different commercial sources, differed significantly in their protein binding capacity. Ampholytes bound to proteins interfered both with the electrophoretic transfer of proteins from the gel to immunoblotting membranes and with the ability of antibodies to interact with proteins on the immunoblotting membranes. Increasing the amount of protein loaded into a gel lane also decreased the efficiency of the electrophoretic transfer and immunodetection. To overcome these problems, both gel washing and gel electrophoretic transfer protocols for disrupting the ampholyte-protein binding and enabling a quantitative electrophoretic transfer of proteins were developed. Two gel washing procedures, with either thiocyanate or borate buffers, and a two-step electrophoretic transfer method are described. The choice of which method to use to optimally disrupt the ampholyte-protein binding was found to vary with each lot of ampholytes employed.

  10. The common equine class I molecule Eqca-1*00101 (ELA-A3.1) is characterized by narrow peptide binding and T cell epitope repertoires.

    PubMed

    Bergmann, Tobias; Moore, Carrie; Sidney, John; Miller, Donald; Tallmadge, Rebecca; Harman, Rebecca M; Oseroff, Carla; Wriston, Amanda; Shabanowitz, Jeffrey; Hunt, Donald F; Osterrieder, Nikolaus; Peters, Bjoern; Antczak, Douglas F; Sette, Alessandro

    2015-11-01

    Here we describe a detailed quantitative peptide-binding motif for the common equine leukocyte antigen (ELA) class I allele Eqca-1*00101, present in roughly 25 % of Thoroughbred horses. We determined a preliminary binding motif by sequencing endogenously bound ligands. Subsequently, a positional scanning combinatorial library (PSCL) was used to further characterize binding specificity and derive a quantitative motif involving aspartic acid in position 2 and hydrophobic residues at the C-terminus. Using this motif, we selected and tested 9- and 10-mer peptides derived from the equine herpesvirus type 1 (EHV-1) proteome for their capacity to bind Eqca-1*00101. PSCL predictions were very efficient, with an receiver operating characteristic (ROC) curve performance of 0.877, and 87 peptides derived from 40 different EHV-1 proteins were identified with affinities of 500 nM or higher. Quantitative analysis revealed that Eqca-1*00101 has a narrow peptide-binding repertoire, in comparison to those of most human, non-human primate, and mouse class I alleles. Peripheral blood mononuclear cells from six EHV-1-infected, or vaccinated but uninfected, Eqca-1*00101-positive horses were used in IFN-γ enzyme-linked immunospot (ELISPOT) assays. When we screened the 87 Eqca-1*00101-binding peptides for T cell reactivity, only one Eqca-1*00101 epitope, derived from the intermediate-early protein ICP4, was identified. Thus, despite its common occurrence in several horse breeds, Eqca-1*00101 is associated with a narrow binding repertoire and a similarly narrow T cell response to an important equine viral pathogen. Intriguingly, these features are shared with other human and macaque major histocompatibility complex (MHC) molecules with a similar specificity for D in position 2 or 3 in their main anchor motif.

  11. The common equine class I molecule Eqca-1*00101 (ELA-A3.1) is characterized by narrow peptide binding and T cell epitope repertoires

    PubMed Central

    Bergmann, Tobias; Moore, Carrie; Sidney, John; Miller, Donald; Tallmadge, Rebecca; Harman, Rebecca M.; Oseroff, Carla; Wriston, Amanda; Shabanowitz, Jeffrey; Hunt, Donald F.; Osterrieder, Nikolaus; Peters, Bjoern; Antczak, Douglas F.; Sette, Alessandro

    2016-01-01

    Here we describe a detailed quantitative peptide-binding motif for the common equine leukocyte antigen (ELA) class I allele Eqca-1*00101, present in roughly 25 % of Thoroughbred horses. We determined a preliminary binding motif by sequencing endogenously bound ligands. Subsequently, a positional scanning combinatorial library (PSCL) was used to further characterize binding specificity and derive a quantitative motif involving aspartic acid in position 2 and hydrophobic residues at the C-terminus. Using this motif, we selected and tested 9- and 10-mer peptides derived from the equine herpesvirus type 1 (EHV-1) proteome for their capacity to bind Eqca-1*00101. PSCL predictions were very efficient, with an receiver operating characteristic (ROC) curve performance of 0.877, and 87 peptides derived from 40 different EHV-1 proteins were identified with affinities of 500 nM or higher. Quantitative analysis revealed that Eqca-1*00101 has a narrow peptide-binding repertoire, in comparison to those of most human, non-human primate, and mouse class I alleles. Peripheral blood mononuclear cells from six EHV-1-infected, or vaccinated but uninfected, Eqca-1*00101-positive horses were used in IFN-γ enzyme-linked immunospot (ELISPOT) assays. When we screened the 87 Eqca-1*00101-binding peptides for T cell reactivity, only one Eqca-1*00101 epitope, derived from the intermediate-early protein ICP4, was identified. Thus, despite its common occurrence in several horse breeds, Eqca-1*00101 is associated with a narrow binding repertoire and a similarly narrow T cell response to an important equine viral pathogen. Intriguingly, these features are shared with other human and macaque major histocompatibility complex (MHC) molecules with a similar specificity for D in position 2 or 3 in their main anchor motif. PMID:26399241

  12. Spectroscopic investigation of the effect of salt on binding of tartrazine with two homologous serum albumins: quantification by use of the Debye-Hückel limiting law and observation of enthalpy-entropy compensation.

    PubMed

    Bolel, Priyanka; Datta, Shubhashis; Mahapatra, Niharendu; Halder, Mintu

    2012-08-30

    Formation of ion pair between charged molecule and protein can lead to interesting biochemical phenomena. We report the evolution of thermodynamics of the binding of tartrazine, a negatively charged azo colorant, and serum albumins with salt. The dye binds predominantly electrostatically in low buffer strengths; however, on increasing salt concentration, affinity decreases considerably. The calculated thermodynamic parameters in high salt indicate manifestation of nonelectrostatic interactions, namely, van der Waals force and hydrogen bonding. Site-marker competitive binding studies and docking simulations indicate that the dye binds with HSA in the warfarin site and with BSA at the interface of warfarin and ibuprofen binding sites. The docked poses indicate nearby amino acid positive side chains, which are possibly responsible for electrostatic interaction. Using the Debye-Hückel interionic attraction theory for binding equilibria, it is shown that, for electrostatic binding the calculated free energy change increases linearly with square root of ionic strength. Also UV-vis, fluorescence, CD data indicate a decrease of interaction with salt concentration. This study quantitatively relates how ionic strength modulates the strength of the protein-ligand electrostatic interaction. The binding enthalpy and entropy have been found to compensate one another. The enthalpy-entropy compensation (EEC), general property of weak intermolecular interactions, has been discussed.

  13. Communication among neurons.

    PubMed

    Marner, Lisbeth

    2012-04-01

    The communication among neurons is the prerequisite for the working brain. To understand the cellular, neurochemical, and structural basis of this communication, and the impacts of aging and disease on brain function, quantitative measures are necessary. This thesis evaluates several quantitative neurobiological methods with respect to possible bias and methodological issues. Stereological methods are suited for the unbiased estimation of number, length, and volumes of components of the nervous system. Stereological estimates of the total length of myelinated nerve fibers were made in white matter of post mortem brains, and the impact of aging and diseases as Schizophrenia and Alzheimer's disease were evaluated. Although stereological methods are in principle unbiased, shrinkage artifacts are difficult to account for. Positron emission tomography (PET) recordings, in conjunction with kinetic modeling, permit the quantitation of radioligand binding in brain. The novel serotonin 5-HT4 antagonist [11C]SB207145 was used as an example of the validation process for quantitative PET receptor imaging. Methods based on reference tissue as well as methods based on an arterial plasma input function were evaluated with respect to precision and accuracy. It was shown that [11C]SB207145 binding had high sensitivity to occupancy by unlabeled ligand, necessitating high specific activity in the radiosynthesis to avoid bias. The established serotonin 5-HT2A ligand [18F]altanersin was evaluated in a two-year follow-up study in elderly subjects. Application of partial volume correction of the PET data diminished the reliability of the measures, but allowed for the correct distinction between changes due to brain atrophy and receptor availability. Furthermore, a PET study of patients with Alzheimer's disease with the serotonin transporter ligand [11C]DASB showed relatively preserved serotonergic projections, despite a marked decrease in 5-HT2A receptor binding. Possible confounders are considered and the relation to the prevailing beta-amyloid hypothesis is discussed.

  14. Nanomechanical mapping of first binding steps of a virus to animal cells

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Newton, Richard; Schubert, Rajib; Martinez-Martin, David; Delguste, Martin; Roska, Botond; Müller, Daniel J.

    2017-02-01

    Viral infection is initiated when a virus binds to cell surface receptors. Because the cell membrane is dynamic and heterogeneous, imaging living cells and simultaneously quantifying the first viral binding events is difficult. Here, we show an atomic force and confocal microscopy set-up that allows the surface receptor landscape of cells to be imaged and the virus binding events within the first millisecond of contact with the cell to be mapped at high resolution (<50 nm). We present theoretical approaches to contour the free-energy landscape of early binding events between an engineered virus and cell surface receptors. We find that the first bond formed between the viral glycoprotein and its cognate cell surface receptor has relatively low lifetime and free energy, but this increases as additional bonds form rapidly (≤1 ms). The formation of additional bonds occurs with positive allosteric modulation and the three binding sites of the viral glycoprotein are quickly occupied. Our quantitative approach can be readily applied to study the binding of other viruses to animal cells.

  15. Quantitative in vivo receptor binding. I. Theory and application to the muscarinic cholinergic receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, K.A.; Ehrenkaufer, R.L.; Beaucage, S.

    1985-02-01

    A novel approach to in vivo receptor binding experiments is presented which allows direct quantitation of binding site densities. The method is based on an equilibrium model of tracer uptake and is designed to produce a static distribution proportional to receptor density and to minimize possible confounding influences of regional blood flow, blood-brain barrier permeability, and nonspecific binding. This technique was applied to the measurement of regional muscarinic cholinergic receptor densities in rat brain using (/sup 3/H)scopolamine. Specific in vivo binding of scopolamine demonstrated saturability, a pharmacologic profile, and regional densities which are consistent with interaction of the tracer withmore » the muscarinic receptor. Estimates of receptor density obtained with the in vivo method and in vitro measurements in homogenates were highly correlated. Furthermore, reduction in striatal muscarinic receptors following ibotenic acid lesions resulted in a significant decrease in tracer uptake in vivo, indicating that the correlation between scopolamine distribution and receptor density may be used to demonstrate pathologic conditions. We propose that the general method presented here is directly applicable to investigation of high affinity binding sites for a variety of radioligands.« less

  16. Epigenetics meets mathematics: towards a quantitative understanding of chromatin biology.

    PubMed

    Steffen, Philipp A; Fonseca, João P; Ringrose, Leonie

    2012-10-01

    How fast? How strong? How many? So what? Why do numbers matter in biology? Chromatin binding proteins are forever in motion, exchanging rapidly between bound and free pools. How do regulatory systems whose components are in constant flux ensure stability and flexibility? This review explores the application of quantitative and mathematical approaches to mechanisms of epigenetic regulation. We discuss methods for measuring kinetic parameters and protein quantities in living cells, and explore the insights that have been gained by quantifying and modelling dynamics of chromatin binding proteins. Copyright © 2012 WILEY Periodicals, Inc.

  17. Reproducibility of quantitative measures of binding potential in rat striatum: A test re-test study using DTBZ dynamic PET studies

    NASA Astrophysics Data System (ADS)

    Avendaño-Estrada, A.; Lara-Camacho, V. M.; Ávila-García, M. C.; Ávila-Rodríguez, M. A.

    2014-11-01

    There is great interest in the study of dopamine (DA) pathways due to the increasing number of patients with illnesses related to the dopaminergic system and molecular imaging based in Positron Emission Tomography (PET) has been proven helpful for this task. Among the different radiopharmaceuticals available to study DA interaction, [11C ]Dihydrotetrabenazine (DTBZ) has a high affinity for the vesicular monoamine transporter type 2 (VMAT2) and its binding potential (BP) is a marker of DA terminal integrity. This paper reports on the intersubject reproducibility of BP measurements in rat striatum with [11C]DTBZ using the Logańs method.

  18. Reproducibility of quantitative measures of binding potential in rat striatum: A test re-test study using DTBZ dynamic PET studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avendaño-Estrada, A., E-mail: avilarod@uwalumni.com; Lara-Camacho, V. M., E-mail: avilarod@uwalumni.com; Ávila-García, M. C., E-mail: avilarod@uwalumni.com

    2014-11-07

    There is great interest in the study of dopamine (DA) pathways due to the increasing number of patients with illnesses related to the dopaminergic system and molecular imaging based in Positron Emission Tomography (PET) has been proven helpful for this task. Among the different radiopharmaceuticals available to study DA interaction, [{sup 11}C]Dihydrotetrabenazine (DTBZ) has a high affinity for the vesicular monoamine transporter type 2 (VMAT2) and its binding potential (BP) is a marker of DA terminal integrity. This paper reports on the intersubject reproducibility of BP measurements in rat striatum with [11C]DTBZ using the Logańs method.

  19. Identifying Metabolically Active Chemicals Using a Consensus Quantitative Structure Activity Relationship Model for Estrogen Receptor Binding

    EPA Science Inventory

    Traditional toxicity testing provides insight into the mechanisms underlying toxicological responses but requires a high investment in a large number of resources. The new paradigm of testing approaches involves rapid screening studies able to evaluate thousands of chemicals acro...

  20. Passive transport and binding of lead by human red blood cells.

    PubMed Central

    Simons, T J

    1986-01-01

    The uptake of Pb into human red blood cells has been studied using Pb buffers. Passive Pb movements can be studied conveniently when the cells are depleted of adenosine 5'-triphosphate (ATP), to eliminate active transport, and of inorganic phosphate, to prevent precipitation of lead phosphate. Pb can cross the membrane passively in either direction. Influx and efflux show similar properties. Passive Pb transport is strongly stimulated by HCO3-, and is reduced by replacing Cl- with ClO4-. It is inhibited by low concentrations of 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS) and 4,4'-diisothiocyanostilbene-2.2'-disulphonic acid (DIDS), characteristic inhibitors of anion transport. Pb uptake is unaffected by varying the external concentrations of Na+, K+ and Ca2+. When Pb enters the cell, it binds mainly to haemoglobin. The ratio of bound Pb:free Pb2+ in the cytosol is estimated to be 6000:1. Pb binding to haemoglobin is unaffected by oxygenation. Binding to albumin is quantitatively similar to binding to haemoglobin. The implications of these results for the transport and binding of Pb in the blood are discussed. PMID:3795106

  1. Studies of Peptide-Mineral Interactions and Biosilicification

    DTIC Science & Technology

    2010-07-16

    His). The effect of zinc oxide -binding peptides ( ZnO -BPs) on the morphology and formation of ZnO were studied using G-12 (GLHVMHKVAPPR) and EM-12...interactions with silica and zinc oxide . Detailed quantitative experimental studies together with molecular modeling studies have shown that G12 (GLHVMHKVAPPR...studies of a primitive 15. SUBJECT TERMS Peptides, zinc oxide , silica, silver, peptide-mineral interactions, computational chemistry, molecular

  2. Influences of Mutations on the Electrostatic Binding Free Energies of Chloride Ions in Escherichia Coli ClC

    PubMed Central

    Yu, Tao; Wang, Xiao-Qing; Sang, Jian-Ping; Pan, Chun-Xu; Zou, Xian-Wu; Chen, Tsung-Yu; Zou, Xiaoqin

    2012-01-01

    Mutations in ClC channel proteins may cause serious functional changes and even diseases. The function of ClC proteins mainly manifests as Cl− transport, which is related to the binding free energies of chloride ions. Therefore, the influence of a mutation on ClC function can be studied by investigating the mutational effect on the binding free energies of chloride ions. The present study provides quantitative and systematic investigations on the influences of residue mutations on the electrostatic binding free energies in Escherichia coli ClC (EcClC) proteins, using all-atom molecular dynamics simulations. It was found that the change of the electrostatic binding free energy decreases linearly with the increase of the residue-chloride ion distance for a mutation. This work reveals how changes in the charge of a mutated residue and in the distance between the mutated residue and the binding site govern the variations in the electrostatic binding free energies, and therefore influence the transport of chloride ions and conduction in EcClC. This work would facilitate our understanding of the mutational effects on transport of chloride ions and functions of ClC proteins, and provide a guideline to estimate which residue mutations will have great influences on ClC functions. PMID:22612693

  3. Domain-based assays of individual antibody concentrations in an oligoclonal combination targeting a single protein.

    PubMed

    Meng, Q; Li, M; Silberg, M A; Conrad, F; Bettencourt, J; To, R; Huang, C; Ma, J; Meyer, K; Shimizu, R; Cao, L; Tomic, M T; Marks, J D

    2012-02-15

    Quantitation of individual monoclonal antibodies (mAbs) within a combined antibody drug product is required for preclinical and clinical drug development, including pharmacokinetic (PK), toxicology, stability, and biochemical characterization studies of such drugs. We have developed an antitoxin, XOMA 3AB, consisting of three recombinant mAbs that potently neutralize the known subtypes of type A botulinum neurotoxin (BoNT/A). The three mAbs bind nonoverlapping BoNT/A epitopes with high affinity. XOMA 3AB is being developed as a treatment for botulism resulting from BoNT/A. To develop antibody-specific assays, we cloned, expressed, and purified BoNT/A domains from Escherichia coli. Each mAb bound only to its specific domain with affinity comparable to the binding to holotoxin. mAb-specific domains were used to develop an enzyme-linked immunosorbent assay (ELISA) for characterization of the integrity and binding activity of the three mAbs in the drug product. An electrochemiluminescence bridging assay that is robust to interference from components in serum was also developed, and we demonstrate that it can be used for PK assays. This type of antigen engineering to generate mAb-specific domains is a general method allowing quantitation and characterization of individual mAbs in a mAb cocktail that binds the same protein and is superior to anti-idiotype approaches. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Domain based assays of individual antibody concentrations in an oligoclonal combination targeting a single protein

    PubMed Central

    Meng, Q.; Li, M.; Silberg, M.A.; Conrad, F.; Bettencourt, J.; To, R.; Huang, C.; Ma, J.; Meyer, K.; Shimizu, R.; Cao, L.; Tomic, M.T.; Marks, J.D.

    2014-01-01

    Quantitation of individual mAbs within a combined antibody drug product is required for preclinical and clinical drug development including pharmacokinetics (PK), toxicology, stability and biochemical characterization studies of such drugs. We have developed an antitoxin (XOMA 3AB) consisting of three recombinant monoclonal antibodies (mAbs) that potently neutralizes the known subtypes of type A botulinum neurotoxin (BoNT/A). The three mAbs bind non-overlapping BoNT/A epitopes with high affinity. XOMA3AB is being developed as a treatment for botulism resulting from BoNT/A. To develop antibody-specific assays, we cloned, expressed, and purified BoNT/A domains from E. coli. Each mAb bound only to its specific domain with affinity comparable to the binding to holotoxin. MAb specific domains were used to develop an ELISA for characterization of the integrity and binding activity of the three mAbs in the drug product. An electrochemiluminescence bridging assay was also developed that is robust to interference from components in serum and we demonstrate that it can be used for PK assays. This type of antigen engineering to generate mAb-specific domains is a general method allowing quantitation and characterization of individual mAbs in a mAb cocktail that bind the same protein and is superior to anti-idiotype approaches. PMID:22037290

  5. Comparative proteomic analysis of differentially expressed proteins between peripheral sensory and motor nerves.

    PubMed

    He, Qianru; Man, Lili; Ji, Yuhua; Zhang, Shuqiang; Jiang, Maorong; Ding, Fei; Gu, Xiaosong

    2012-06-01

    Peripheral sensory and motor nerves have different functions and different approaches to regeneration, especially their distinct ability to accurately reinervate terminal nerve pathways. To understand the molecular aspects underlying these differences, the proteomics technique by coupling isobaric tags for relative and absolute quantitation (iTRAQ) with online two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) was used to investigate the protein profile of sensory and motor nerve samples from rats. A total of 1472 proteins were identified in either sensory or motor nerve. Of them, 100 proteins showed differential expressions between both nerves, and some of them were validated by quantitative real time RT-PCR, Western blot analysis, and immunohistochemistry. In the light of functional categorization, the differentially expressed proteins in sensory and motor nerves, belonging to a broad range of classes, were related to a diverse array of biological functions, which included cell adhesion, cytoskeleton, neuronal plasticity, neurotrophic activity, calcium-binding, signal transduction, transport, enzyme catalysis, lipid metabolism, DNA-binding, synaptosome function, actin-binding, ATP-binding, extracellular matrix, and commitment to other lineages. The relatively higher expressed proteins in either sensory or motor nerve were tentatively discussed in combination with their specific molecular characteristics. It is anticipated that the database generated in this study will provide a solid foundation for further comprehensive investigation of functional differences between sensory and motor nerves, including the specificity of their regeneration.

  6. Protein Binding: Do We Ever Learn?▿

    PubMed Central

    Zeitlinger, Markus A.; Derendorf, Hartmut; Mouton, Johan W.; Cars, Otto; Craig, William A.; Andes, David; Theuretzbacher, Ursula

    2011-01-01

    Although the influence of protein binding (PB) on antibacterial activity has been reported for many antibiotics and over many years, there is currently no standardization for pharmacodynamic models that account for the impact of protein binding of antimicrobial agents in vitro. This might explain the somewhat contradictory results obtained from different studies. Simple in vitro models which compare the MIC obtained in protein-free standard medium versus a protein-rich medium are prone to methodological pitfalls and may lead to flawed conclusions. Within in vitro test systems, a range of test conditions, including source of protein, concentration of the tested antibiotic, temperature, pH, electrolytes, and supplements may influence the impact of protein binding. As new antibiotics with a high degree of protein binding are in clinical development, attention and action directed toward the optimization and standardization of testing the impact of protein binding on the activity of antibiotics in vitro become even more urgent. In addition, the quantitative relationship between the effects of protein binding in vitro and in vivo needs to be established, since the physiological conditions differ. General recommendations for testing the impact of protein binding in vitro are suggested. PMID:21537013

  7. Deletion of transcription factor binding motifs using the CRISPR/spCas9 system in the β-globin LCR.

    PubMed

    Kim, Yea Woon; Kim, AeRi

    2017-07-20

    Transcription factors play roles in gene transcription through direct binding to their motifs in genome, and inhibiting this binding provides an effective strategy for studying their roles. Here we applied the CRISPR/spCas9 system to mutate the binding motifs of transcription factors. Binding motifs for erythroid specific transcription factors were mutated in the locus control region hypersensitive sites of the human β-globin locus. Guide RNAs targeting binding motifs were cloned into lentiviral CRISPR vector containing the spCas9 gene, and transduced into MEL/ch11 cells carrying a human chromosome 11. DNA mutations in clonal cells were initially screened by quantitative PCR in genomic DNA and then clarified by sequencing. Mutations in binding motifs reduced occupancy by transcription factors in a chromatin environment. Characterization of mutations revealed that the CRISPR/spCas9 system mainly induced deletions in short regions of <20 bp and preferentially deleted nucleotides around the fifth nucleotide upstream of Protospacer adjacent motifs. These results indicate that the CRISPR/Cas9 system is suitable for mutating the binding motifs of transcription factors, and, consequently, would contribute to elucidate the direct roles of transcription factors. ©2017 The Author(s).

  8. Force spectroscopy studies on protein-ligand interactions: a single protein mechanics perspective.

    PubMed

    Hu, Xiaotang; Li, Hongbin

    2014-10-01

    Protein-ligand interactions are ubiquitous and play important roles in almost every biological process. The direct elucidation of the thermodynamic, structural and functional consequences of protein-ligand interactions is thus of critical importance to decipher the mechanism underlying these biological processes. A toolbox containing a variety of powerful techniques has been developed to quantitatively study protein-ligand interactions in vitro as well as in living systems. The development of atomic force microscopy-based single molecule force spectroscopy techniques has expanded this toolbox and made it possible to directly probe the mechanical consequence of ligand binding on proteins. Many recent experiments have revealed how ligand binding affects the mechanical stability and mechanical unfolding dynamics of proteins, and provided mechanistic understanding on these effects. The enhancement effect of mechanical stability by ligand binding has been used to help tune the mechanical stability of proteins in a rational manner and develop novel functional binding assays for protein-ligand interactions. Single molecule force spectroscopy studies have started to shed new lights on the structural and functional consequence of ligand binding on proteins that bear force under their biological settings. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Combining Phage and Yeast Cell Surface Antibody Display to Identify Novel Cell Type-Selective Internalizing Human Monoclonal Antibodies.

    PubMed

    Bidlingmaier, Scott; Su, Yang; Liu, Bin

    2015-01-01

    Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.

  10. Quantitative Estimation of Plasma Free Drug Fraction in Patients With Varying Degrees of Hepatic Impairment: A Methodological Evaluation.

    PubMed

    Li, Guo-Fu; Yu, Guo; Li, Yanfei; Zheng, Yi; Zheng, Qing-Shan; Derendorf, Hartmut

    2018-07-01

    Quantitative prediction of unbound drug fraction (f u ) is essential for scaling pharmacokinetics through physiologically based approaches. However, few attempts have been made to evaluate the projection of f u values under pathological conditions. The primary objective of this study was to predict f u values (n = 105) of 56 compounds with or without the information of predominant binding protein in patients with varying degrees of hepatic insufficiency by accounting for quantitative changes in molar concentrations of either the major binding protein or albumin plus alpha 1-acid glycoprotein associated with differing levels of hepatic dysfunction. For the purpose of scaling, data pertaining to albumin and α1-acid glycoprotein levels in response to differing degrees of hepatic impairment were systematically collected from 919 adult donors. The results of the present study demonstrate for the first time the feasibility of physiologically based scaling f u in hepatic dysfunction after verifying with experimentally measured data of a wide variety of compounds from individuals with varying degrees of hepatic insufficiency. Furthermore, the high level of predictive accuracy indicates that the inter-relation between the severity of hepatic impairment and these plasma protein levels are physiologically accurate. The present study enhances the confidence in predicting f u in hepatic insufficiency, particularly for albumin-bound drugs. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Binding affinity toward human prion protein of some anti-prion compounds - Assessment based on QSAR modeling, molecular docking and non-parametric ranking.

    PubMed

    Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija

    2018-01-01

    The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Interactions of Indole Derivatives with β-Cyclodextrin: A Quantitative Structure-Property Relationship Study

    PubMed Central

    Šoškić, Milan; Porobić, Ivana

    2016-01-01

    Retention factors for 31 indole derivatives, most of them with auxin activity, were determined by high-performance liquid chromatography, using bonded β-cyclodextrin as a stationary phase. A three-parameter QSPR (quantitative structure-property relationship) model, based on physico-chemical and structural descriptors was derived, which accounted for about 98% variations in the retention factors. The model suggests that the indole nucleus occupies the relatively apolar cavity of β-cyclodextrin while the carboxyl group of the indole -3-carboxylic acids makes hydrogen bonds with the hydroxyl groups of β-cyclodextrin. The length and flexibility of the side chain containing carboxyl group strongly affect the binding of these compounds to β-cyclodextrin. Non-acidic derivatives, unlike the indole-3-carboxylic acids, are poorly retained on the column. A reasonably well correlation was found between the retention factors of the indole-3-acetic acids and their relative binding affinities for human serum albumin, a carrier protein in the blood plasma. A less satisfactory correlation was obtained when the retention factors of the indole derivatives were compared with their affinities for auxin-binding protein 1, a plant auxin receptor. PMID:27124734

  13. The spatial architecture of protein function and adaptation

    PubMed Central

    McLaughlin, Richard N.; Poelwijk, Frank J.; Raman, Arjun; Gosal, Walraj S.; Ranganathan, Rama

    2014-01-01

    Statistical analysis of protein evolution suggests a design for natural proteins in which sparse networks of coevolving amino acids (termed sectors) comprise the essence of three-dimensional structure and function1, 2, 3, 4, 5. However, proteins are also subject to pressures deriving from the dynamics of the evolutionary process itself—the ability to tolerate mutation and to be adaptive to changing selection pressures6, 7, 8, 9, 10. To understand the relationship of the sector architecture to these properties, we developed a high-throughput quantitative method for a comprehensive single-mutation study in which every position is substituted individually to every other amino acid. Using a PDZ domain (PSD95pdz3) model system, we show that sector positions are functionally sensitive to mutation, whereas non-sector positions are more tolerant to substitution. In addition, we find that adaptation to a new binding specificity initiates exclusively through variation within sector residues. A combination of just two sector mutations located near and away from the ligand-binding site suffices to switch the binding specificity of PSD95pdz3 quantitatively towards a class-switching ligand. The localization of functional constraint and adaptive variation within the sector has important implications for understanding and engineering proteins. PMID:23041932

  14. Replicative genetic association study between functional polymorphisms in AVPR1A and social behavior scales of autism spectrum disorder in the Korean population.

    PubMed

    Yang, So Young; Kim, Soon Ae; Hur, Gang Min; Park, Mira; Park, Jong-Eun; Yoo, Hee Jeong

    2017-01-01

    Arginine vasopressin has been shown to affect social and emotional behaviors, which is mediated by the arginine vasopressin receptor (AVPR1A). Genetic polymorphisms in the AVPR1A promoter region have been identified to be associated with susceptibility to social deficits in autism spectrum disorder (ASD). We hypothesize that alleles of polymorphisms in the promoter region of AVPR1A may differentially interact with certain transcriptional factors, which in turn affect quantitative traits, such as sociality, in children with autism. We performed an association study between ASD and polymorphisms in the AVPR1A promoter region in the Korean population using a family-based association test (FBAT). We evaluated the correlation between genotypes and the quantitative traits that are related to sociality in children with autism. We also performed a promoter assay in T98G cells and evaluated the binding affinities of transcription factors to alleles of rs7294536. The polymorphisms-RS1, RS3, rs7294536, and rs10877969-were analyzed. Under the dominant model, RS1-310, the shorter allele, was preferentially transmitted. The FBAT showed that the rs7294536 A allele was also preferentially transmitted in an additive and dominant model under the bi-allelic mode. When quantitative traits were used in the FBAT, rs7294536 and rs10877969 were statistically significant in all genotype models and modes. Luciferase and electrophoretic mobility-shift assays suggest that the rs7294536 A/G allele results in a Nf-κB binding site that exhibits differential binding affinities depending on the allele. These results demonstrate that polymorphisms in the AVPR1A promoter region might be involved in pathophysiology of ASD and in functional regulation of the expression of AVPR1A .

  15. Fabrication of nanometer- and micrometer-scale protein structures by site-specific immobilization of histidine-tagged proteins to aminosiloxane films with photoremovable protein-resistant protecting groups

    DOE PAGES

    Xia, Sijing; Cartron, Michael; Morby, James; ...

    2016-01-28

    The site-specific immobilization of histidine-tagged proteins to patterns formed by far-field and near-field exposure of films of aminosilanes with protein-resistant photolabile protecting groups is demonstrated. After deprotection of the aminosilane, either through a mask or using a scanning near-field optical microscope, the amine terminal groups are derivatized first with glutaraldehyde and then with N-(5-amino-1-carboxypentyl)iminodiacetic acid to yield a nitrilo-triacetic-acid-terminated surface. After complexation with Ni 2+, this surface binds histidine-tagged GFP and CpcA-PEB in a site-specific fashion. The chemistry is simple and reliable and leads to extensive surface functionalization. Bright fluorescence is observed in fluorescence microscopy images of micrometer- and nanometer-scalemore » patterns. X-ray photoelectron spectroscopy is used to study quantitatively the efficiency of photodeprotection and the reactivity of the modified surfaces. The efficiency of the protein binding process is investigated quantitatively by ellipsometry and by fluorescence microscopy. We find that regions of the surface not exposed to UV light bind negligible amounts of His-tagged proteins, indicating that the oligo(ethylene glycol) adduct on the nitrophenyl protecting group confers excellent protein resistance; in contrast, exposed regions bind His-GFP very effectively, yielding strong fluorescence that is almost completely removed on treatment of the surface with imidazole, confirming a degree of site-specific binding in excess of 90%. As a result, this simple strategy offers a versatile generic route to the spatially selective site-specific immobilization of proteins at surfaces.« less

  16. Fabrication of Nanometer- and Micrometer-Scale Protein Structures by Site-Specific Immobilization of Histidine-Tagged Proteins to Aminosiloxane Films with Photoremovable Protein-Resistant Protecting Groups

    PubMed Central

    2016-01-01

    The site-specific immobilization of histidine-tagged proteins to patterns formed by far-field and near-field exposure of films of aminosilanes with protein-resistant photolabile protecting groups is demonstrated. After deprotection of the aminosilane, either through a mask or using a scanning near-field optical microscope, the amine terminal groups are derivatized first with glutaraldehyde and then with N-(5-amino-1-carboxypentyl)iminodiacetic acid to yield a nitrilo-triacetic-acid-terminated surface. After complexation with Ni2+, this surface binds histidine-tagged GFP and CpcA-PEB in a site-specific fashion. The chemistry is simple and reliable and leads to extensive surface functionalization. Bright fluorescence is observed in fluorescence microscopy images of micrometer- and nanometer-scale patterns. X-ray photoelectron spectroscopy is used to study quantitatively the efficiency of photodeprotection and the reactivity of the modified surfaces. The efficiency of the protein binding process is investigated quantitatively by ellipsometry and by fluorescence microscopy. We find that regions of the surface not exposed to UV light bind negligible amounts of His-tagged proteins, indicating that the oligo(ethylene glycol) adduct on the nitrophenyl protecting group confers excellent protein resistance; in contrast, exposed regions bind His-GFP very effectively, yielding strong fluorescence that is almost completely removed on treatment of the surface with imidazole, confirming a degree of site-specific binding in excess of 90%. This simple strategy offers a versatile generic route to the spatially selective site-specific immobilization of proteins at surfaces. PMID:26820378

  17. Allosteric Regulation of E-Cadherin Adhesion.

    PubMed

    Shashikanth, Nitesh; Petrova, Yuliya I; Park, Seongjin; Chekan, Jillian; Maiden, Stephanie; Spano, Martha; Ha, Taekjip; Gumbiner, Barry M; Leckband, Deborah E

    2015-08-28

    Cadherins are transmembrane adhesion proteins that maintain intercellular cohesion in all tissues, and their rapid regulation is essential for organized tissue remodeling. Despite some evidence that cadherin adhesion might be allosterically regulated, testing of this has been hindered by the difficulty of quantifying altered E-cadherin binding affinity caused by perturbations outside the ectodomain binding site. Here, measured kinetics of cadherin-mediated intercellular adhesion demonstrated quantitatively that treatment with activating, anti-E-cadherin antibodies or the dephosphorylation of a cytoplasmic binding partner, p120(ctn), increased the homophilic binding affinity of E-cadherin. Results obtained with Colo 205 cells, which express inactive E-cadherin and do not aggregate, demonstrated that four treatments, which induced Colo 205 aggregation and p120(ctn) dephosphorylation, triggered quantitatively similar increases in E-cadherin affinity. Several processes can alter cell aggregation, but these results directly demonstrated the allosteric regulation of cell surface E-cadherin by p120(ctn) dephosphorylation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies

    PubMed Central

    Zahn, Raphael; Osmanović, Dino; Ehret, Severin; Araya Callis, Carolina; Frey, Steffen; Stewart, Murray; You, Changjiang; Görlich, Dirk; Hoogenboom, Bart W; Richter, Ralf P

    2016-01-01

    The permeability barrier of nuclear pore complexes (NPCs) controls bulk nucleocytoplasmic exchange. It consists of nucleoporin domains rich in phenylalanine-glycine motifs (FG domains). As a bottom-up nanoscale model for the permeability barrier, we have used planar films produced with three different end-grafted FG domains, and quantitatively analyzed the binding of two different nuclear transport receptors (NTRs), NTF2 and Importin β, together with the concomitant film thickness changes. NTR binding caused only moderate changes in film thickness; the binding isotherms showed negative cooperativity and could all be mapped onto a single master curve. This universal NTR binding behavior – a key element for the transport selectivity of the NPC – was quantitatively reproduced by a physical model that treats FG domains as regular, flexible polymers, and NTRs as spherical colloids with a homogeneous surface, ignoring the detailed arrangement of interaction sites along FG domains and on the NTR surface. DOI: http://dx.doi.org/10.7554/eLife.14119.001 PMID:27058170

  19. Probing protein flexibility reveals a mechanism for selective promiscuity

    PubMed Central

    Pabon, Nicolas A; Camacho, Carlos J

    2017-01-01

    Many eukaryotic regulatory proteins adopt distinct bound and unbound conformations, and use this structural flexibility to bind specifically to multiple partners. However, we lack an understanding of how an interface can select some ligands, but not others. Here, we present a molecular dynamics approach to identify and quantitatively evaluate the interactions responsible for this selective promiscuity. We apply this approach to the anticancer target PD-1 and its ligands PD-L1 and PD-L2. We discover that while unbound PD-1 exhibits a hard-to-drug hydrophilic interface, conserved specific triggers encoded in the cognate ligands activate a promiscuous binding pathway that reveals a flexible hydrophobic binding cavity. Specificity is then established by additional contacts that stabilize the PD-1 cavity into distinct bound-like modes. Collectively, our studies provide insight into the structural basis and evolution of multiple binding partners, and also suggest a biophysical approach to exploit innate binding pathways to drug seemingly undruggable targets. DOI: http://dx.doi.org/10.7554/eLife.22889.001 PMID:28432789

  20. In Vivo Assessment of Brain White Matter Inflammation in Multiple Sclerosis with (18)F-PBR111 PET.

    PubMed

    Colasanti, Alessandro; Guo, Qi; Muhlert, Nils; Giannetti, Paolo; Onega, Mayca; Newbould, Rexford D; Ciccarelli, Olga; Rison, Stuart; Thomas, Charlotte; Nicholas, Richard; Muraro, Paolo A; Malik, Omar; Owen, David R; Piccini, Paola; Gunn, Roger N; Rabiner, Eugenii A; Matthews, Paul M

    2014-07-01

    PET radioligand binding to the 18-kD translocator protein (TSPO) in the brains of patients with multiple sclerosis (MS) primarily reflects activated microglia and macrophages. We previously developed genetic stratification for accurate quantitative estimation of TSPO using second-generation PET radioligands. In this study, we used (18)F-PBR111 PET and MR imaging to measure relative binding in the lesional, perilesional, and surrounding normal-appearing white matter of MS patients, as an index of the innate immune response. (18)F-PBR111 binding was quantified in 11 MS patients and 11 age-matched healthy volunteers, stratified according to the rs6971 TSPO gene polymorphism. Fluid-attenuated inversion recovery and magnetization transfer ratio (MTR) MR imaging were used to segment the white matter in MS patients as lesions, perilesional volumes, nonlesional white matter with reduced MTR, and nonlesional white matter with normal MTR. (18)F-PBR111 binding was higher in the white matter lesions and perilesional volumes of MS patients than in white matter of healthy controls (P < 0.05). Although there was substantial heterogeneity in binding between different lesions, a within-subject analysis showed higher (18)F-PBR111 binding in MS lesions (P < 0.05) and in perilesional (P < 0.05) and nonlesional white matter with reduced MTR (P < 0.005) than in nonlesional white matter with a normal MTR. A positive correlation was observed between the mean (18)F-PBR111 volume of distribution increase in lesions relative to nonlesional white matter with a normal MTR and the MS severity score (Spearman ρ = 0.62, P < 0.05). This study demonstrates that quantitative TSPO PET with a second-generation radioligand can be used to characterize innate immune responses in MS in vivo and provides further evidence supporting an association between the white matter TSPO PET signal in lesions and disease severity. Our approach is practical for extension to studies of the role of the innate immune response in MS for differentiation of antiinflammatory effects of new medicines and their longer term impact on clinical outcome. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  1. Principles of quantitation of viral loads using nucleic acid sequence-based amplification in combination with homogeneous detection using molecular beacons.

    PubMed

    Weusten, Jos J A M; Carpay, Wim M; Oosterlaken, Tom A M; van Zuijlen, Martien C A; van de Wiel, Paul A

    2002-03-15

    For quantitative NASBA-based viral load assays using homogeneous detection with molecular beacons, such as the NucliSens EasyQ HIV-1 assay, a quantitation algorithm is required. During the amplification process there is a constant growth in the concentration of amplicons to which the beacon can bind while generating a fluorescence signal. The overall fluorescence curve contains kinetic information on both amplicon formation and beacon binding, but only the former is relevant for quantitation. In the current paper, mathematical modeling of the relevant processes is used to develop an equation describing the fluorescence curve as a function of the amplification time and the relevant kinetic parameters. This equation allows reconstruction of RNA formation, which is characterized by an exponential increase in concentrations as long as the primer concentrations are not rate limiting and by linear growth over time after the primer pool is depleted. During the linear growth phase, the actual quantitation is based on assessing the amplicon formation rate from the viral RNA relative to that from a fixed amount of calibrator RNA. The quantitation procedure has been successfully applied in the NucliSens EasyQ HIV-1 assay.

  2. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray.

    PubMed

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Wong, Hau-San

    2016-01-01

    Transcription factor binding sites (TFBSs) are relatively short (5-15 bp) and degenerate. Identifying them is a computationally challenging task. In particular, protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner; for instance, a typical PBM experiment can measure binding signal intensities of a protein to all possible DNA k-mers (k = 8∼10). Since proteins can often bind to DNA with different binding intensities, one of the major challenges is to build TFBS (also known as DNA motif) models which can fully capture the quantitative binding affinity data. To learn DNA motif models from the non-convex objective function landscape, several optimization methods are compared and applied to the PBM motif model building problem. In particular, representative methods from different optimization paradigms have been chosen for modeling performance comparison on hundreds of PBM datasets. The results suggest that the multimodal optimization methods are very effective for capturing the binding preference information from PBM data. In particular, we observe a general performance improvement if choosing di-nucleotide modeling over mono-nucleotide modeling. In addition, the models learned by the best-performing method are applied to two independent applications: PBM probe rotation testing and ChIP-Seq peak sequence prediction, demonstrating its biological applicability.

  3. Examination of a Method to Determine the Reference Region for Calculating the Specific Binding Ratio in Dopamine Transporter Imaging.

    PubMed

    Watanabe, Ayumi; Inoue, Yusuke; Asano, Yuji; Kikuchi, Kei; Miyatake, Hiroki; Tokushige, Takanobu

    2017-01-01

    The specific binding ratio (SBR) was first reported by Tossici-Bolt et al. for quantitative indicators for dopamine transporter (DAT) imaging. It is defined as the ratio of the specific binding concentration of the striatum to the non-specific binding concentration of the whole brain other than the striatum. The non-specific binding concentration is calculated based on the region of interest (ROI), which is set 20 mm inside the outer contour, defined by a threshold technique. Tossici-Bolt et al. used a 50% threshold, but sometimes we couldn't define the ROI of non-specific binding concentration (reference region) and calculate SBR appropriately with a 50% threshold. Therefore, we sought a new method for determining the reference region when calculating SBR. We used data from 20 patients who had undergone DAT imaging in our hospital, to calculate the non-specific binding concentration by the following methods, the threshold to define a reference region was fixed at some specific values (the fixing method) and reference region was visually optimized by an examiner at every examination (the visual optimization method). First, we assessed the reference region of each method visually, and afterward, we quantitatively compared SBR calculated based on each method. In the visual assessment, the scores of the fixing method at 30% and visual optimization method were higher than the scores of the fixing method at other values, with or without scatter correction. In the quantitative assessment, the SBR obtained by visual optimization of the reference region, based on consensus of three radiological technologists, was used as a baseline (the standard method). The values of SBR showed good agreement between the standard method and both the fixing method at 30% and the visual optimization method, with or without scatter correction. Therefore, the fixing method at 30% and the visual optimization method were equally suitable for determining the reference region.

  4. Quantitative Assessment of the Interplay Between DNA Elasticity and Cooperative Binding of Ligands

    NASA Astrophysics Data System (ADS)

    Siman, L.; Carrasco, I. S. S.; da Silva, J. K. L.; de Oliveira, M. C.; Rocha, M. S.; Mesquita, O. N.

    2012-12-01

    Binding of ligands to DNA can be studied by measuring the change of the persistence length of the complex formed, in single-molecule assays. We propose a methodology for persistence length data analysis based on a quenched disorder statistical model and describing the binding isotherm by a Hill-type equation. We obtain an expression for the effective persistence length as a function of the total ligand concentration, which we apply to our data of the DNA-cationic β-cyclodextrin and to the DNA-HU protein data available in the literature, determining the values of the local persistence lengths, the dissociation constant, and the degree of cooperativity for each set of data. In both cases the persistence length behaves nonmonotonically as a function of ligand concentration and based on the results obtained we discuss some physical aspects of the interplay between DNA elasticity and cooperative binding of ligands.

  5. Quantitation of Membrane-Ligand Interactions Using Backscattering Interferometry

    PubMed Central

    Baksh, Michael M.; Kussrow, Amanda K.; Mileni, Mauro; Finn, M.G.; Bornhop, Darryl J.

    2011-01-01

    Though membrane-associated proteins are ubiquitous within all living organisms and represent the majority of drug targets, a general method for direct, label-free measurement of ligand binding to native membranes has not been reported. Here we show backscattering interferometry (BSI) to be a viable technique for quantifying ligand-receptor binding affinities in a variety of membrane environments. By detecting minute changes in the refractive index of a solution, BSI allows binding interactions of proteins with their ligands to be measured at picomolar concentrations. Equilibrium binding constants in the micromolar to picomolar range were obtained for small- and large-molecule interactions in both synthetic- and cell-derived membranes without the use of labels or supporting substrates. The simple and low-cost hardware, high sensitivity, and label-free nature of BSI should make it readily applicable to the study of many membrane-associated proteins of biochemical and pharmacological interest. PMID:21399645

  6. An electrochemical sensing platform based on local repression of electrolyte diffusion for single-step, reagentless, sensitive detection of a sequence-specific DNA-binding protein.

    PubMed

    Zhang, Yun; Liu, Fang; Nie, Jinfang; Jiang, Fuyang; Zhou, Caibin; Yang, Jiani; Fan, Jinlong; Li, Jianping

    2014-05-07

    In this paper, we report for the first time an electrochemical biosensor for single-step, reagentless, and picomolar detection of a sequence-specific DNA-binding protein using a double-stranded, electrode-bound DNA probe terminally modified with a redox active label close to the electrode surface. This new methodology is based upon local repression of electrolyte diffusion associated with protein-DNA binding that leads to reduction of the electrochemical response of the label. In the proof-of-concept study, the resulting electrochemical biosensor was quantitatively sensitive to the concentrations of the TATA binding protein (TBP, a model analyte) ranging from 40 pM to 25.4 nM with an estimated detection limit of ∼10.6 pM (∼80 to 400-fold improvement on the detection limit over previous electrochemical analytical systems).

  7. Exploring the binding mechanism of Heteroaryldihydropyrimidines and Hepatitis B Virus capsid combined 3D-QSAR and molecular dynamics.

    PubMed

    Tu, Jing; Li, Jiao Jiao; Shan, Zhi Jie; Zhai, Hong Lin

    2017-01-01

    The non-nucleoside drugs have been developed to treat HBV infection owing to their increased efficacy and lesser side effects, in which heteroaryldihydropyrimidines (HAPs) have been identified as effective inhibitors of HBV capsid. In this paper, the binding mechanism of HAPs targeting on HBV capsid protein was explored through three-dimensional quantitative structure-activity relationship, molecular dynamics and binding free energy decompositions. The obtained models of comparative molecular field analysis and comparative molecular similarity indices analysis enable the sufficient interpretation of structure-activity relationship of HAPs-HBV. The binding free energy analysis correlates with the experimental data. The computational results disclose that the non-polar contribution is the major driving force and Y132A mutation enhances the binding affinity for inhibitor 2 bound to HBV. The hydrogen bond interactions between the inhibitors and Trp102 help to stabilize the conformation of HAPs-HBV. The study provides insight into the binding mechanism of HAPs-HBV and would be useful for the rational design and modification of new lead compounds of HAP drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding

    PubMed Central

    Jiang, Xiue; Weise, Stefan; Hafner, Margit; Röcker, Carlheinz; Zhang, Feng; Parak, Wolfgang J.; Nienhaus, G. Ulrich

    2010-01-01

    Nanoparticles are finding a rapidly expanding range of applications in research and technology, finally entering our daily life in medical, cosmetic or food products. Their ability to invade all regions of an organism including cells and cellular organelles offers new strategies for medical diagnosis and therapy (nanomedicine), but their safe use requires a deep knowledge about their interactions with biological systems at the molecular level. Upon incorporation, nanoparticles are exposed to biological fluids from which they adsorb proteins and other biomolecules to form a ‘protein corona’. These nanoparticle–protein interactions are still poorly understood and quantitative studies to characterize them remain scarce. Here we have quantitatively analysed the adsorption of human transferrin onto small (radius approx. 5 nm) polymer-coated FePt nanoparticles by using fluorescence correlation spectroscopy. Transferrin binds to the negatively charged nanoparticles with an affinity of approximately 26 µM in a cooperative fashion and forms a monolayer with a thickness of 7 nm. By using confocal fluorescence microscopy, we have observed that the uptake of FePt nanoparticles by HeLa cells is suppressed by the protein corona compared with the bare nanoparticles. PMID:19776149

  9. Investigation of β-lactam antibacterial drugs, β-lactamases, and penicillin-binding proteins with fluorescence polarization and anisotropy: a review

    NASA Astrophysics Data System (ADS)

    Shapiro, Adam B.

    2016-06-01

    This review covers the uses of fluorescence polarization and anisotropy for the investigation of bacterial penicillin binding proteins (PBPs), which are the targets of β-lactam antibacterial drugs (penicillins, cephalosporins, carbapenems, and monobactams), and of the β-lactamase enzymes that destroy these drugs and help to render bacterial pathogens resistant to them. Fluorescence polarization and anisotropy-based methods for quantitation of β-lactam drugs are also reviewed. A particular emphasis is on methods for quantitative measurement of the interactions of β-lactams and other inhibitors with PBPs and β-lactamases.

  10. Quantitative measurements of magnetic polaron binding on acceptors in CdMnTe alloys

    NASA Astrophysics Data System (ADS)

    Nhung, Tran Hong; Planel, R.

    1983-03-01

    The acceptor binding energy is measured as a function of Temperature and composition in Cd1-x Mnx Te alloys, by time resolved spectroscopy. The Bound magnetic polaron effect is measured and compared with a theory accouting for magnetic saturation and fluctuations.

  11. Three-dimensional structural modelling and calculation of electrostatic potentials of HLA Bw4 and Bw6 epitopes to explain the molecular basis for alloantibody binding: toward predicting HLA antigenicity and immunogenicity.

    PubMed

    Mallon, Dermot H; Bradley, J Andrew; Winn, Peter J; Taylor, Craig J; Kosmoliaptsis, Vasilis

    2015-02-01

    We have previously shown that qualitative assessment of surface electrostatic potential of HLA class I molecules helps explain serological patterns of alloantibody binding. We have now used a novel computational approach to quantitate differences in surface electrostatic potential of HLA B-cell epitopes and applied this to explain HLA Bw4 and Bw6 antigenicity. Protein structure models of HLA class I alleles expressing either the Bw4 or Bw6 epitope (defined by sequence motifs at positions 77 to 83) were generated using comparative structure prediction. The electrostatic potential in 3-dimensional space encompassing the Bw4/Bw6 epitope was computed by solving the Poisson-Boltzmann equation and quantitatively compared in a pairwise, all-versus-all fashion to produce distance matrices that cluster epitopes with similar electrostatics properties. Quantitative comparison of surface electrostatic potential at the carboxyl terminal of the α1-helix of HLA class I alleles, corresponding to amino acid sequence motif 77 to 83, produced clustering of HLA molecules in 3 principal groups according to Bw4 or Bw6 epitope expression. Remarkably, quantitative differences in electrostatic potential reflected known patterns of serological reactivity better than Bw4/Bw6 amino acid sequence motifs. Quantitative assessment of epitope electrostatic potential allowed the impact of known amino acid substitutions (HLA-B*07:02 R79G, R82L, G83R) that are critical for antibody binding to be predicted. We describe a novel approach for quantitating differences in HLA B-cell epitope electrostatic potential. Proof of principle is provided that this approach enables better assessment of HLA epitope antigenicity than amino acid sequence data alone, and it may allow prediction of HLA immunogenicity.

  12. Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study.

    PubMed

    Blatt, G J; Fitzgerald, C M; Guptill, J T; Booker, A B; Kemper, T L; Bauman, M L

    2001-12-01

    Neuropathological studies in autistic brains have shown small neuronal size and increased cell packing density in a variety of limbic system structures including the hippocampus, a change consistent with curtailment of normal development. Based on these observations in the hippocampus, a series of quantitative receptor autoradiographic studies were undertaken to determine the density and distribution of eight types of neurotransmitter receptors from four neurotransmitter systems (GABAergic, serotoninergic [5-HT], cholinergic, and glutamatergic). Data from these single concentration ligand binding studies indicate that the GABAergic receptor system (3[H]-flunitrazepam labeled benzodiazepine binding sites and 3[H]-muscimol labeled GABA(A) receptors) is significantly reduced in high binding regions, marking for the first time an abnormality in the GABA system in autism. In contrast, the density and distribution of the other six receptors studied (3[H]-80H-DPAT labeled 5-HT1A receptors, 3[H]-ketanserin labeled 5-HT2 receptors, 3[H]-pirenzepine labled M1 receptors, 3[H]-hemicholinium labeled high affinity choline uptake sites, 3[H]-MK801 labeled NMDA receptors, and 3[H]-kainate labeled kainate receptors) in the hippocampus did not demonstrate any statistically significant differences in binding.

  13. The interaction of flavonoid-lysozyme and the relationship between molecular structure of flavonoids and their binding activity to lysozyme.

    PubMed

    Yang, Ran; Yu, Lanlan; Zeng, Huajin; Liang, Ruiling; Chen, Xiaolan; Qu, Lingbo

    2012-11-01

    In this work, the interactions of twelve structurally different flavonoids with Lysozyme (Lys) were studied by fluorescence quenching method. The interaction mechanism and binding properties were investigated. It was found that the binding capacities of flavonoids to Lys were highly depend on the number and position of hydrogen, the kind and position of glycosyl. To explore the selectivity of the bindings of flavonoids with Lys, the structure descriptors of the flavonoids were calculated under QSAR software package of Cerius2, the quantitative relationship between the structures of flavonoids and their binding activities to Lys (QSAR) was performed through genetic function approximation (GFA) regression analysis. The QSAR regression equation was K(A) = 37850.460 + 1630.01Dipole +3038.330HD-171.795MR. (r = 0.858, r(CV)(2) = 0.444, F((11,3)) = 7.48), where K(A) is binding constants, Dipole, HD and MR was dipole moment, number of hydrogen-bond donor and molecular refractivity, respectively. The obtained results make us understand better how the molecular structures influencing their binding to protein which may open up new avenues for the design of the most suitable flavonoids derivatives with structure variants.

  14. Temporal Hierarchy of Gene Expression Mediated by Transcription Factor Binding Affinity and Activation Dynamics

    PubMed Central

    Gao, Rong

    2015-01-01

    ABSTRACT Understanding cellular responses to environmental stimuli requires not only the knowledge of specific regulatory components but also the quantitative characterization of the magnitude and timing of regulatory events. The two-component system is one of the major prokaryotic signaling schemes and is the focus of extensive interest in quantitative modeling and investigation of signaling dynamics. Here we report how the binding affinity of the PhoB two-component response regulator (RR) to target promoters impacts the level and timing of expression of PhoB-regulated genes. Information content has often been used to assess the degree of conservation for transcription factor (TF)-binding sites. We show that increasing the information content of PhoB-binding sites in designed phoA promoters increased the binding affinity and that the binding affinity and concentration of phosphorylated PhoB (PhoB~P) together dictate the level and timing of expression of phoA promoter variants. For various PhoB-regulated promoters with distinct promoter architectures, expression levels appear not to be correlated with TF-binding affinities, in contrast to the intuitive and oversimplified assumption that promoters with higher affinity for a TF tend to have higher expression levels. However, the expression timing of the core set of PhoB-regulated genes correlates well with the binding affinity of PhoB~P to individual promoters and the temporal hierarchy of gene expression appears to be related to the function of gene products during the phosphate starvation response. Modulation of the information content and binding affinity of TF-binding sites may be a common strategy for temporal programming of the expression profile of RR-regulated genes. PMID:26015501

  15. Substance P receptors in brain stem respiratory centers of the rat: regulation of NK1 receptors by hypoxia.

    PubMed

    Mazzone, S B; Hinrichsen, C F; Geraghty, D P

    1997-09-01

    Substance P (SP) is a key neurotransmitter involved in the brain stem integration of carotid body chemoreceptor reflexes. In this study, the characteristics and location of SP receptors in the rat brain stem and their regulation by hypoxia were investigated using homogenate radioligand binding and quantitative autoradiography. Specific binding of [125I] Bolton-Hunter SP (BHSP) to brain stem homogenates was saturable (approximately 0.3 nM) and to a single class of high-affinity sites (K(d), 0.16 nM; maximum density of binding sites, 0.43 fmol/mg wet weight tissue). The order of potency of agonists for inhibition of BHSP binding was SP > [Sar9Met(O2)11]SP > neurokinin A > septide > neurokinin B > [Nle10]-neurokinin A(4-10) = senktide, and for nonpeptide antagonists, RP 67580 > CP-96,345 > RP 68651 = CP-96,344, consistent with binding to NK1 receptors. The effect of single and multiple, 5-min bouts of hypoxia (8.5% O2/91.5% N2) on BHSP binding was investigated using quantitative autoradiography. Binding sites were localized to the lateral, medial and commissural nucleus of the solitary tract (NTS), the hypoglossal nucleus, central gray and the spinal trigeminal tract and nucleus (Sp5 and nSp5, respectively). Five min after a single bout of hypoxia, the density of BHSP binding sites had decreased significantly (P < .05) in the medial NTS (-33%) and lateral NTS (-24%) when compared to normoxic controls. However, the normal receptor complement was restored within 60 min of the hypoxic challenge. In the Sp5, a significant decrease (P < .05) in binding was observed 5 min after hypoxia which was still apparent after 60 min. In contrast, the density of BHSP binding sites in the hypoglossal nucleus decreased slowly and was significantly lower (P < .05) than normoxic controls 60 min after hypoxia. Five min after repetitive hypoxia (3 x 5 min bouts), BHSP binding in the NTS was reduced by more than 40%. Studies in homogenates showed that the affinity of SP for BHSP binding sites was not affected by repetitive hypoxia (K(d)s, normoxic, 0.27 nM; hypoxic, 0.24 nM). These data suggest that afferent input from carotid body chemoreceptors may dynamically regulate NK1 receptors in several brain stem nuclei that are intimately involved in stimulating ventilation during hypoxia, and that the time-course of receptor turnover may differ from region to region in the brain stem. The temporary loss of NK1 receptors in the NTS may partly explain why adequate ventilation is often not maintained during hypoxia.

  16. The major birch allergen, Bet v 1, shows affinity for a broad spectrum of physiological ligands.

    PubMed

    Mogensen, Jesper E; Wimmer, Reinhard; Larsen, Jørgen N; Spangfort, Michael D; Otzen, Daniel E

    2002-06-28

    Bet v 1 is a 17-kDa protein abundantly present in the pollen of the White birch tree and is the primary cause of birch pollen allergy in humans. Its three-dimensional structure is remarkable in that a solvent-accessible cavity traverses the core of the molecule. The biological function of Bet v 1 is unknown, although it is homologous to a family of pathogenesis-related proteins in plants. In this study we first show that Bet v 1 in the native state is able to bind the fluorescent probe 8-anilino-1-naphthalenesulfonic acid (ANS). ANS binds to Bet v 1 with 1:1 stoichiometry, and NMR data indicate that binding takes place in the cavity. Using an ANS displacement assay, we then identify a range of physiologically relevant ligands, including fatty acids, flavonoids, and cytokinins, which generally bind with low micromolar affinity. The ability of these ligands to displace ANS suggests that they also bind in the cavity, although the exact binding sites seem to vary among different ligands. The cytokinins, for example, seem to bind at a separate site close to ANS, because they increase the fluorescence of the ANS. Bet v 1 complex. Also, the fluorescent sterol dehydroergosterol binds to Bet v 1 as demonstrated by direct titrations. This study provides the first qualitative and quantitative data on the ligand binding properties of this important pollen allergen. Our findings indicate that ligand binding is important for the biological function of Bet v 1.

  17. Donor-π-Acceptor Polymer with Alternating Triarylborane and Triphenylamine Moieties.

    PubMed

    Li, Haiyan; Jäkle, Frieder

    2010-05-12

    A luminescent main chain donor-π-acceptor-type polymer (4) was prepared via organometallic polycondensation reaction followed by post modification. With both electron-rich amine and electron-deficient borane moieties embedded in the main chain, 4 exhibits an interesting ambipolar character: it can be reduced and oxidized electrochemically at moderate potentials and shows a strong solvatochromic effect in the emission spectra. Complexation studies show that 4 selectively binds to fluoride and cyanide; quantitative titration with cyanide reveals a two-step binding process. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-Affinity Interaction between the S-Layer Protein SbsC and the Secondary Cell Wall Polymer of Geobacillus stearothermophilus ATCC 12980 Determined by Surface Plasmon Resonance Technology▿ †

    PubMed Central

    Ferner-Ortner, Judith; Mader, Christoph; Ilk, Nicola; Sleytr, Uwe B.; Egelseer, Eva M.

    2007-01-01

    Surface plasmon resonance studies using C-terminal truncation forms of the S-layer protein SbsC (recombinant SbsC consisting of amino acids 31 to 270 [rSbsC31-270] and rSbsC31-443) and the secondary cell wall polymer (SCWP) isolated from Geobacillus stearothermophilus ATCC 12980 confirmed the exclusive responsibility of the N-terminal region comprising amino acids 31 to 270 for SCWP binding. Quantitative analyses indicated binding behavior demonstrating low, medium, and high affinities. PMID:17644609

  19. Quantitative analysis of RNA-protein interactions on a massively parallel array for mapping biophysical and evolutionary landscapes

    PubMed Central

    Buenrostro, Jason D.; Chircus, Lauren M.; Araya, Carlos L.; Layton, Curtis J.; Chang, Howard Y.; Snyder, Michael P.; Greenleaf, William J.

    2015-01-01

    RNA-protein interactions drive fundamental biological processes and are targets for molecular engineering, yet quantitative and comprehensive understanding of the sequence determinants of affinity remains limited. Here we repurpose a high-throughput sequencing instrument to quantitatively measure binding and dissociation of MS2 coat protein to >107 RNA targets generated on a flow-cell surface by in situ transcription and inter-molecular tethering of RNA to DNA. We decompose the binding energy contributions from primary and secondary RNA structure, finding that differences in affinity are often driven by sequence-specific changes in association rates. By analyzing the biophysical constraints and modeling mutational paths describing the molecular evolution of MS2 from low- to high-affinity hairpins, we quantify widespread molecular epistasis, and a long-hypothesized structure-dependent preference for G:U base pairs over C:A intermediates in evolutionary trajectories. Our results suggest that quantitative analysis of RNA on a massively parallel array (RNAMaP) relationships across molecular variants. PMID:24727714

  20. Prediction of the binding mode of N2-phenylguanine derivative inhibitors to herpes simplex virus type 1 thymidine kinase

    NASA Astrophysics Data System (ADS)

    Gaudio, Anderson Coser; Takahata, Yuji; Richards, William Graham

    1998-01-01

    The probable binding mode of the herpes simplex virus thymidine kinase (HSV1 TK) N2-[substituted]-phenylguanine inhibitors is proposed. A computational experiment was designed to check some qualitative binding parameters and to calculate the interaction binding energies of alternative binding modes of N2-phenylguanines. The known binding modes of the HSV1 TK natural substrate deoxythymidine and one of its competitive inhibitors ganciclovir were used as templates. Both the qualitative and quantitative parts of the computational experiment indicated that the N2-phenylguanine derivatives bind to the HSV1 TK active site in the deoxythymidine-like binding mode. An experimental observation that N2-phenylguanosine derivatives are not phosphorylated during the interaction with the HSV1 TK gives support to the proposed binding mode.

  1. Relative Chemical Binding Affinities for Trout and Human Estrogen Receptor Using Different Competitive Binding Assays

    EPA Science Inventory

    Rainbow trout-based assays for estrogenicity are currently being used for development of predictive models based upon quantitative structure activity relationships. A predictive model based on a single species raises the question of whether this information is valid for other spe...

  2. Quantitative Glycoproteomics Analysis Reveals Changes in N-Glycosylation Level Associated with Pancreatic Ductal Adenocarcinoma

    PubMed Central

    2015-01-01

    Glycosylation plays an important role in epithelial cancers, including pancreatic ductal adenocarcinoma. However, little is known about the glycoproteome of the human pancreas or its alterations associated with pancreatic tumorigenesis. Using quantitative glycoproteomics approach, we investigated protein N-glycosylation in pancreatic tumor tissue in comparison with normal pancreas and chronic pancreatitis tissue. The study lead to the discovery of a roster of glycoproteins with aberrant N-glycosylation level associated with pancreatic cancer, including mucin-5AC (MUC5AC), carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), insulin-like growth factor binding protein (IGFBP3), and galectin-3-binding protein (LGALS3BP). Pathway analysis of cancer-associated aberrant glycoproteins revealed an emerging phenomenon that increased activity of N-glycosylation was implicated in several pancreatic cancer pathways, including TGF-β, TNF, NF-kappa-B, and TFEB-related lysosomal changes. In addition, the study provided evidence that specific N-glycosylation sites within certain individual proteins can have significantly altered glycosylation occupancy in pancreatic cancer, reflecting the complexity of the molecular mechanisms underlying cancer-associated glycosylation events. PMID:24471499

  3. Quantitative glycoproteomics analysis reveals changes in N-glycosylation level associated with pancreatic ductal adenocarcinoma.

    PubMed

    Pan, Sheng; Chen, Ru; Tamura, Yasuko; Crispin, David A; Lai, Lisa A; May, Damon H; McIntosh, Martin W; Goodlett, David R; Brentnall, Teresa A

    2014-03-07

    Glycosylation plays an important role in epithelial cancers, including pancreatic ductal adenocarcinoma. However, little is known about the glycoproteome of the human pancreas or its alterations associated with pancreatic tumorigenesis. Using quantitative glycoproteomics approach, we investigated protein N-glycosylation in pancreatic tumor tissue in comparison with normal pancreas and chronic pancreatitis tissue. The study lead to the discovery of a roster of glycoproteins with aberrant N-glycosylation level associated with pancreatic cancer, including mucin-5AC (MUC5AC), carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), insulin-like growth factor binding protein (IGFBP3), and galectin-3-binding protein (LGALS3BP). Pathway analysis of cancer-associated aberrant glycoproteins revealed an emerging phenomenon that increased activity of N-glycosylation was implicated in several pancreatic cancer pathways, including TGF-β, TNF, NF-kappa-B, and TFEB-related lysosomal changes. In addition, the study provided evidence that specific N-glycosylation sites within certain individual proteins can have significantly altered glycosylation occupancy in pancreatic cancer, reflecting the complexity of the molecular mechanisms underlying cancer-associated glycosylation events.

  4. Chimeric cellulase matrix for investigating intramolecular synergism between non-hydrolytic disruptive functions of carbohydrate-binding modules and catalytic hydrolysis.

    PubMed

    Wang, Yuguo; Tang, Rentao; Tao, Jin; Wang, Xiaonan; Zheng, Baisong; Feng, Yan

    2012-08-24

    The conversion of renewable cellulosic biomass is of considerable interest for the production of biofuels and materials. The bottleneck in the efficient conversion is the compactness and resistance of crystalline cellulose. Carbohydrate-binding modules (CBMs), which disrupt crystalline cellulose via non-hydrolytic mechanisms, are expected to overcome this bottleneck. However, the lack of convenient methods for quantitative analysis of the disruptive functions of CBMs have hindered systematic studies and molecular modifications. Here we established a practical and systematic platform for quantifying and comparing the non-hydrolytic disruptive activities of CBMs via the synergism of CBMs and a catalytic module within designed chimeric cellulase molecules. Bioinformatics and computational biology were also used to provide a deeper understanding. A convenient vector was constructed to serve as a cellulase matrix into which heterologous CBM sequences can be easily inserted. The resulting chimeric cellulases were suitable for studying disruptive functions, and their activities quantitatively reflected the disruptive functions of CBMs on crystalline cellulose. In addition, this cellulase matrix can be used to construct novel chimeric cellulases with high hydrolytic activities toward crystalline cellulose.

  5. Deacetylation of forskolin catalyzed by bovine brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selfe, S.; Storm, D.R.

    1985-11-27

    Radiolabeled forskolin, 7-(/sup 3/H-acetyl)-forskolin, was synthesized to explore interactions between forskolin and bovine brain membrane preparations. The radiolabeled derivative was chemically characterized, and found to be indistinquishable from unlabeled forskolin in its ability to stimulate bovine brain adenylate cyclase. Preliminary binding data demonstrated that binding of 7-(/sup 3/H-acetyl)-forskolin to membranes was concentration dependent. However, competition binding studies using a constant concentration of 7-(/sup 3/H-acetyl)-forskolin with increasing levels of unlabeled forskolin showed enhanced binding of the labeled derivative. This suggested that 7-(/sup 3/H-acetyl)-forskolin was degraded by membranes and protected by native forskolin. Incubation of forskolin with membranes and analysis of themore » products by thin layer chromatography and mass spectroscopy showed the formation of 7-desacetylforskolin. The deacetylation of forskolin was monitored by quantitating the release of (/sup 3/H)acetate from 7-(/sup 3/H-acetyl)-forskolin. The reaction was linear with time and protein concentration. These data illustrate that forskolin can be degraded by membranes and indicate that ligand binding studies using labeled forskolin and membrane preparations should be cautiously interpreted.« less

  6. Cloning and characterization of a riboflavin-binding hexamerin from the larval fat body of a lepidopteran stored grain pest, Corcyra cephalonica.

    PubMed

    Rao, V Venkat; Ningshen, Thuirei Jacob; Chaitanya, R K; Senthilkumaran, B; Dutta-Gupta, Aparna

    2016-01-01

    In the present study, a riboflavin-binding hexamerin (RbHex) was cloned and characterized from the larval fat body of Corcyra cephalonica. The complete cDNA (2121bp) encodes a 706-amino acid protein with a molecular mass ~82kDa. Expression of RbHex 82 was predominant in fat body among larval tissues. Further, it is prominently expressed during the last instar larval development. Homology modeling and docking studies predicted riboflavin binding site of the hexamerin. Spectrofluorimetric analysis further confirmed riboflavin release from the hexamerin fraction. Quantitative RT-PCR studies demonstrated hormonal regulation of RbHex 82. 20-Hydroxyecdysone (20HE) had a stimulatory effect on its transcription whereas JH alone did not show any effect. However, JH in the presence of 20HE maintains the RbHex 82 expression which indicates the JH's role as a status quo factor. This study is the first to report the characterization of riboflavin-binding hexamerin in a lepidopteran pest. Further, the possibility of RbHex 82 as a pest control target is discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. In vivo evaluation of radiotracers targeting the melanin-concentrating hormone receptor 1: [11C]SNAP-7941 and [18F]FE@SNAP reveal specific uptake in the ventricular system.

    PubMed

    Zeilinger, Markus; Dumanic, Monika; Pichler, Florian; Budinsky, Lubos; Wadsak, Wolfgang; Pallitsch, Katharina; Spreitzer, Helmut; Lanzenberger, Rupert; Hacker, Marcus; Mitterhauser, Markus; Philippe, Cécile

    2017-08-14

    The MCHR1 is involved in the regulation of energy homeostasis and changes of the expression are linked to a variety of associated diseases, such as diabetes and adiposity. The study aimed at the in vitro and in vivo evaluation of [ 11 C]SNAP-7941 and [ 18 F]FE@SNAP as potential PET-tracers for the MCHR1. Competitive binding studies with non-radioactive derivatives and small-animal PET/CT and MRI brain studies were performed under baseline conditions and tracer displacement with the unlabelled MCHR1 antagonist (±)-SNAP-7941. Binding studies evinced high binding affinity of the non-radioactive derivatives. Small-animal imaging of [ 11 C]SNAP-7941 and [ 18 F]FE@SNAP evinced high tracer uptake in MCHR1-rich regions of the ventricular system. Quantitative analysis depicted a significant tracer reduction after displacement with (±)-SNAP-7941. Due to the high binding affinity of the non-labelled derivatives and the high specific tracer uptake of [ 11 C]SNAP-7941 and [ 18 F]FE@SNAP, there is strong evidence that both radiotracers may serve as highly suitable agents for specific MCHR1 imaging.

  8. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe

    PubMed Central

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R.; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    Purpose: The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/64Cu dual-labeled cyclic RGD peptide. Methods: The integrin αvβ3 binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. Results: The dual-labeled probe 64Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). Conclusion: The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models. PMID:22916074

  9. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe.

    PubMed

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/(64)Cu dual-labeled cyclic RGD peptide. The integrin α(v)β(3) binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. The dual-labeled probe (64)Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.

  10. StWRKY8 transcription factor regulates benzylisoquinoline alkaloid pathway in potato conferring resistance to late blight.

    PubMed

    Yogendra, Kalenahalli N; Dhokane, Dhananjay; Kushalappa, Ajjamada C; Sarmiento, Felipe; Rodriguez, Ernesto; Mosquera, Teresa

    2017-03-01

    The resistance to late blight is either qualitative or quantitative in nature. Quantitative resistance is durable, but challenging due to polygenic inheritance. In the present study, the diploid potato genotypes resistant and susceptible to late blight, were profiled for metabolites. Tissue specific metabolite analysis of benzylisoquinoline alkaloids (BIAs) in response to pathogen infection revealed increased accumulation of morphinone, codeine-6-glucuronide and morphine-3-glucuronides. These BIAs are antimicrobial compounds and possibly involved in cell wall reinforcement, especially through cross-linking cell wall pectins. Quantitative reverse transcription-PCR studies revealed higher expressions of TyDC, NCS, COR-2 and StWRKY8 transcription factor genes, in resistant genotypes than in susceptible genotype, following pathogen inoculation. A luciferase transient expression assay confirmed the binding of the StWRKY8 TF to promoters of downstream genes, elucidating a direct regulatory role on BIAs biosynthetic genes. Sequence analysis of StWRKY8 in potato genotypes revealed polymorphism in the WRKY DNA binding domain in the susceptible genotype, which is important for the regulatory function of this gene. A complementation assay of StWRKY8 in Arabidopsis wrky33 mutant background was associated with decreased fungal biomass. In conclusion, StWRKY8 regulates the biosynthesis of BIAs that are both antimicrobial and reinforce cell walls to contain the pathogen to initial infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ab-initio adsorption study of chitosan on functionalized graphene: critical role of van der Waals interactions.

    PubMed

    Rahman, R; Mazumdar, D

    2012-03-01

    We investigate the adsorption process of an organic biomolecule (chitosan) on epoxy-functionalized graphene using ab-initio density functional methods incorporating van-der-waals (vdW) interactions. The role of London dispersion force on the cohesive energy and conformal preference of the molecule is quantitatively elucidated. Functionalizing graphene with epoxy leads to weak hydrogen-bond interactions with chitosan. Binding energy values increase by over an order of magnitude after including vdW corrections, implying that dispersive interactions dominate the physisorption process. Conformal study show binding upto 30 kcal/mol when the molecule is oriented with the hydroxyl group approaching the functionalized graphene. Our study advances the promise of functionalized graphene for a variety of applications.

  12. Analysis of calcium-induced conformational changes in calcium-binding allergens and quantitative determination of their IgE binding properties.

    PubMed

    Parody, Nuria; Fuertes, Miguel Angel; Alonso, Carlos; Pico de Coaña, Yago

    2013-01-01

    The polcalcin family is one of the most epidemiologically relevant families of calcium-binding allergens. Polcalcins are potent plant allergens that contain one or several EF-hand motifs and their allergenicity is primarily associated with the Ca(2+)-bound form of the protein. Conformation, stability, as well as IgE recognition of calcium-binding allergens greatly depend on the presence of protein-bound calcium ions. We describe a protocol that uses three techniques (SDS-PAGE, circular dichroism spectroscopy, and ELISA) to describe the effects that calcium has on the structural changes in an allergen and its IgE binding properties.

  13. Optical tweezers based force measurement system for quantitating binding interactions: system design and application for the study of bacterial adhesion.

    PubMed

    Fällman, Erik; Schedin, Staffan; Jass, Jana; Andersson, Magnus; Uhlin, Bernt Eric; Axner, Ove

    2004-06-15

    An optical force measurement system for quantitating forces in the pN range between micrometer-sized objects has been developed. The system was based upon optical tweezers in combination with a sensitive position detection system and constructed around an inverted microscope. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omnidirectional mechanical spring in response to an external force. The particle's displacement from the equilibrium position is therefore a direct measure of the exerted force. A weak probe laser beam, focused directly below the trapping focus, was used for position detection of the trapped particle (a polystyrene bead). The bead and the condenser focus the light to a distinct spot in the far field, monitored by a position sensitive detector. Various calibration procedures were implemented in order to provide absolute force measurements. The system has been used to measure the binding forces between Escherichia coli bacterial adhesins and galabiose-functionalized beads.

  14. Development and application of a quantitative multiplexed small GTPase activity assay using targeted proteomics.

    PubMed

    Zhang, Cheng-Cheng; Li, Ru; Jiang, Honghui; Lin, Shujun; Rogalski, Jason C; Liu, Kate; Kast, Juergen

    2015-02-06

    Small GTPases are a family of key signaling molecules that are ubiquitously expressed in various types of cells. Their activity is often analyzed by western blot, which is limited by its multiplexing capability, the quality of isoform-specific antibodies, and the accuracy of quantification. To overcome these issues, a quantitative multiplexed small GTPase activity assay has been developed. Using four different binding domains, this assay allows the binding of up to 12 active small GTPase isoforms simultaneously in a single experiment. To accurately quantify the closely related small GTPase isoforms, a targeted proteomic approach, i.e., selected/multiple reaction monitoring, was developed, and its functionality and reproducibility were validated. This assay was successfully applied to human platelets and revealed time-resolved coactivation of multiple small GTPase isoforms in response to agonists and differential activation of these isoforms in response to inhibitor treatment. This widely applicable approach can be used for signaling pathway studies and inhibitor screening in many cellular systems.

  15. Evaluation of 89Zr-pertuzumab in Breast Cancer Xenografts

    DOE PAGES

    Marquez, Bernadette V.; Ikotun, Oluwatayo F.; Zheleznyak, Alexander; ...

    2014-07-24

    Here, pertuzumab is a monoclonal antibody that binds to HER2 and is used in combination with another HER2–specific monoclonal antibody, trastuzumab, for the treatment of HER2+ metastatic breast cancer. Pertuzumab binds to an HER2 binding site distinct from that of trastuzumab, and its affinity is enhanced when trastuzumab is present. We aim to exploit this enhanced affinity of pertuzumab for its HER2 binding epitope and adapt this antibody as a PET imaging agent by radiolabeling with 89Zr to increase the sensitivity of HER2 detection in vivo. Here, we investigate the biodistribution of 89Zr-pertuzumab in HER2–expressing BT-474 and HER2–nonexpressing MDA-MB-231 xenograftsmore » to quantitatively assess HER2 expression in vivo. In vitro cell binding studies were performed resulting in retained immunoreactivity and specificity for HER2–expressing cells. In vivo evaluation of 89Zr-pertuzumab was conducted in severely combined immunodeficient mice, subcutaneously inoculated with BT-474 and MDA-MB-231 cells. 89Zr-pertuzumab was systemically administered and imaged at 7 days postinjection (p.i.) followed by terminal biodistribution studies. Higher tumor uptake was observed in BT-474 compared to MDA-MB-231 xenografts with 47.5 ± 32.9 and 9.5 ± 1.7% ID/g, respectively at 7 days p.i (P = 0.0009) and blocking studies with excess unlabeled pertuzumab showed a 5-fold decrease in BT-474 tumor uptake (P = 0.0006), confirming the in vivo specificity of this radiotracer. Importantly, we observed that the tumor accumulation of 89Zr-pertuzumab was increased in the presence of unlabeled trastuzumab, at 173 ± 74.5% ID/g (P = 0.01). Biodistribution studies correlate with PET imaging quantification using max SUV (r = 0.98, P = 0.01). Collectively, these results illustrate that 89Zr-pertuzumab as a PET imaging agent may be beneficial for the quantitative and noninvasive assessment of HER2 expression in vivo especially for patients undergoing trastuzumab therapy.« less

  16. A Simple, Fast, Low Cost, HPLC/UV Validated Method for Determination of Flutamide: Application to Protein Binding Studies.

    PubMed

    Esmaeilzadeh, Sara; Valizadeh, Hadi; Zakeri-Milani, Parvin

    2016-06-01

    The main goal of this study was development of a reverse phase high performance liquid chromatography (RP-HPLC) method for flutamide quantitation which is applicable to protein binding studies. Ultrafilteration method was used for protein binding study of flutamide. For sample analysis, flutamide was extracted by a simple and low cost extraction method using diethyl ether and then was determined by HPLC/UV. Acetanilide was used as an internal standard. The chromatographic system consisted of a reversed-phase C8 column with C8 pre-column, and the mobile phase of a mixture of 29% (v/v) methanol, 38% (v/v) acetonitrile and 33% (v/v) potassium dihydrogen phosphate buffer (50 mM) with pH adjusted to 3.2. Acetanilide and flutamide were eluted at 1.8 and 2.9 min, respectively. The linearity of method was confirmed in the range of 62.5-16000 ng/ml (r(2) > 0.99). The limit of quantification was shown to be 62.5 ng/ml. Precision and accuracy ranges found to be (0.2-1.4%, 90-105%) and (0.2-5.3 %, 86.7-98.5 %) respectively. Acetanilide and flutamide capacity factor values of 1.35 and 2.87, tailing factor values of 1.24 and 1.07 and resolution values of 1.8 and 3.22 were obtained in accordance with ICH guidelines. Based on the obtained results a rapid, precise, accurate, sensitive and cost-effective analysis procedure was proposed for quantitative determination of flutamide.

  17. A Simple, Fast, Low Cost, HPLC/UV Validated Method for Determination of Flutamide: Application to Protein Binding Studies

    PubMed Central

    Esmaeilzadeh, Sara; Valizadeh, Hadi; Zakeri-Milani, Parvin

    2016-01-01

    Purpose: The main goal of this study was development of a reverse phase high performance liquid chromatography (RP-HPLC) method for flutamide quantitation which is applicable to protein binding studies. Methods: Ultrafilteration method was used for protein binding study of flutamide. For sample analysis, flutamide was extracted by a simple and low cost extraction method using diethyl ether and then was determined by HPLC/UV. Acetanilide was used as an internal standard. The chromatographic system consisted of a reversed-phase C8 column with C8 pre-column, and the mobile phase of a mixture of 29% (v/v) methanol, 38% (v/v) acetonitrile and 33% (v/v) potassium dihydrogen phosphate buffer (50 mM) with pH adjusted to 3.2. Results: Acetanilide and flutamide were eluted at 1.8 and 2.9 min, respectively. The linearity of method was confirmed in the range of 62.5-16000 ng/ml (r2 > 0.99). The limit of quantification was shown to be 62.5 ng/ml. Precision and accuracy ranges found to be (0.2-1.4%, 90-105%) and (0.2-5.3 %, 86.7-98.5 %) respectively. Acetanilide and flutamide capacity factor values of 1.35 and 2.87, tailing factor values of 1.24 and 1.07 and resolution values of 1.8 and 3.22 were obtained in accordance with ICH guidelines. Conclusion: Based on the obtained results a rapid, precise, accurate, sensitive and cost-effective analysis procedure was proposed for quantitative determination of flutamide. PMID:27478788

  18. Fluorescence lifetime spectroscopy in multiple-scattering environments: an application to biotechnology

    NASA Astrophysics Data System (ADS)

    Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio

    1999-07-01

    Over the past few years, there has been significant research activity devoted to the application of fluorescence spectroscopy to strongly scattering media, where photons propagate diffusely. Much of this activity focused on fluorescence as a source of contrast enhancement in optical tomography. Our efforts have emphasized the quantitative recovery of fluorescence parameters for spectroscopy. Using a frequency-domain diffusion-based model, we have successfully recovered the lifetime, the absolute quantum yield, the fluorophore concentration, and the emission spectrum of the fluorophore, as well as the absorption and the reduced scattering coefficients at the emission wavelength of the medium in different measurements. In this contribution, we present a sensitive monitor of the binding between ethidium bromide and bovine cells in fresh milk. The spectroscopic contrast was the approximately tenfold increase in the ethidium bromide lifetime upon binding to DNA. The measurement clearly demonstrated that we could quantitatively measure the density of cells in the milk, which is an application vital to the tremendous economic burden of bovine subclinical mastitis detection. Furthermore, we may in principle use the spirit of this technique as a quantitative monitor of the binding of fluorescent drugs inside tissues. This is a first step towards lifetime spectroscopy in tissues.

  19. Analysis of in vitro interactions of protein tyrosine phosphatase 1B with insulin receptors.

    PubMed

    Wang, X Y; Bergdahl, K; Heijbel, A; Liljebris, C; Bleasdale, J E

    2001-02-28

    One strategy to treat the insulin resistance that is central to type II diabetes mellitus may be to maintain insulin receptors (IR) in the active (tyrosine phosphorylated) form. Because protein tyrosine phosphatase 1B (PTP1B) binds and subsequently dephosphorylates IR, inhibitors of PTP1B-IR binding are potential insulin 'sensitizers.' A Scintillation Proximity Assay (SPA) was developed to characterize and quantitate PTP1B-IR binding. Human IR were solubilized and captured on wheat germ agglutinin (WGA)-coated SPA beads. Subsequent binding of human, catalytically inactive [35S] PTP1B Cys(215)/Ser (PTP1B(C215S)) to the lectin-anchored IR results in scintillation from the SPA beads that can be quantitated. Binding of PTP1B to IR was pH- and divalent cation-sensitive. Ca(2+) and Mn(2+), but not Mg(2+), dramatically attenuated the loss of PTP1B-IR binding observed when pH was raised from 6.2 to 7.8. PTP1B binding to IR from insulin-stimulated cells was much greater than to IR from unstimulated cells and was inhibited by either an antiphosphotyrosine antibody or treatment of IR with alkaline phosphatase, suggesting that tyrosine phosphorylation of IR is required for PTP1B binding. Phosphopeptides modeled after various IR phosphotyrosine domains each only partially inhibited PTP1B-IR binding, indicating that multiple domains of IR are likely involved in binding PTP1B. However, competitive displacement of [35S]PTP1B(C215S) by PTP1B(C215S) fitted best to a single binding site with a K(d) in the range 100-1000 nM, depending upon pH and divalent cations. PNU-200898, a potent and selective inhibitor of PTP1B whose orientation in the active site of PTP1B has been solved, competitively inhibited catalysis and PTP1B-IR binding with equal potency. The results of this novel assay for PTP1B-IR binding suggest that PTP1B binds preferentially to tyrosine phosphorylated IR through its active site and that binding may be susceptible to therapeutic disruption by small molecules.

  20. Quantitative structure activity relationships from optimised ab initio bond lengths: steroid binding affinity and antibacterial activity of nitrofuran derivatives

    NASA Astrophysics Data System (ADS)

    Smith, P. J.; Popelier, P. L. A.

    2004-02-01

    The present day abundance of cheap computing power enables the use of quantum chemical ab initio data in Quantitative Structure-Activity Relationships (QSARs). Optimised bond lengths are a new such class of descriptors, which we have successfully used previously in representing electronic effects in medicinal and ecological QSARs (enzyme inhibitory activity, hydrolysis rate constants and pKas). Here we use AM1 and HF/3-21G* bond lengths in conjunction with Partial Least Squares (PLS) and a Genetic Algorithm (GA) to predict the Corticosteroid-Binding Globulin (CBG) binding activity of the classic steroid data set, and the antibacterial activity of nitrofuran derivatives. The current procedure, which does not require molecular alignment, produces good r2 and q2 values. Moreover, it highlights regions in the common steroid skeleton deemed relevant to the active regions of the steroids and nitrofuran derivatives.

  1. Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes.

    PubMed

    Segers-Nolten, G M J; Wyman, C; Wijgers, N; Vermeulen, W; Lenferink, A T M; Hoeijmakers, J H J; Greve, J; Otto, C

    2002-11-01

    We used scanning confocal fluorescence microscopy to observe and analyze individual DNA- protein complexes formed between human nucleotide excision repair (NER) proteins and model DNA substrates. For this purpose human XPA protein was fused to EGFP, purified and shown to be functional. Binding of EGFP-labeled XPA protein to a Cy3.5-labeled DNA substrate, in the presence and absence of RPA, was assessed quantitatively by simultaneous excitation and emission detection of both fluorophores. Co-localization of Cy3.5 and EGFP signals within one diffraction limited spot indicated complexes of XPA with DNA. Measurements were performed on samples in a 1% agarose matrix in conditions that are compatible with protein activity and where reactions can be studied under equilibrium conditions. In these samples DNA alone was freely diffusing and protein-bound DNA was immobile, whereby they could be discriminated resulting in quantitative data on DNA binding. On the single molecule level approximately 10% of XPA co-localized with DNA; this increased to 32% in the presence of RPA. These results, especially the enhanced binding of XPA in the presence of RPA, are similar to those obtained in bulk experiments, validating the utility of scanning confocal fluorescence microscopy for investigating functional interactions at the single molecule level.

  2. Binding abilities of polyaminocyclodextrins: polarimetric investigations and biological assays

    PubMed Central

    Russo, Marco; La Corte, Daniele; Pisciotta, Annalisa; Riela, Serena; Alduina, Rosa

    2017-01-01

    Three polyaminocyclodextrin materials, obtained by direct reaction between heptakis(6-deoxy-6-iodo)-β-cyclodextrin and the proper linear polyamines, were investigated for their binding properties, in order to assess their potential applications in biological systems, such as vectors for simultaneous drug and gene cellular uptake or alternatively for the protection of macromolecules. In particular, we exploited polarimetry to test their interaction with some model p-nitroaniline derivatives, chosen as probe guests. The data obtained indicate that binding inside the host cavity is mainly affected by interplay between Coulomb interactions and conformational restraints. Moreover, simultaneous interaction of the cationic polyamine pendant bush at the primary rim was positively assessed. Insights on quantitative aspects of the interaction between our materials and polyanions were investigated by studying the binding with sodium alginate. Finally, the complexation abilities of the same materials towards polynucleotides were assessed by studying their interaction with the model plasmid pUC19. Our results positively highlight the ability of our materials to exploit both the cavity and the polycationic branches, thus functioning as bimodal ligands. PMID:29564010

  3. A structure-based design of new C2- and C13-substituted taxanes: tubulin binding affinities and extended quantitative structure-activity relationships using comparative binding energy (COMBINE) analysis.

    PubMed

    Coderch, Claire; Tang, Yong; Klett, Javier; Zhang, Shu-En; Ma, Yun-Tao; Shaorong, Wang; Matesanz, Ruth; Pera, Benet; Canales, Angeles; Jiménez-Barbero, Jesús; Morreale, Antonio; Díaz, J Fernando; Fang, Wei-Shuo; Gago, Federico

    2013-05-14

    Ten novel taxanes bearing modifications at the C2 and C13 positions of the baccatin core have been synthesized and their binding affinities for mammalian tubulin have been experimentally measured. The design strategy was guided by (i) calculation of interaction energy maps with carbon, nitrogen and oxygen probes within the taxane-binding site of β-tubulin, and (ii) the prospective use of a structure-based QSAR (COMBINE) model derived from an earlier series comprising 47 congeneric taxanes. The tubulin-binding affinity displayed by one of the new compounds (CTX63) proved to be higher than that of docetaxel, and an updated COMBINE model provided a good correlation between the experimental binding free energies and a set of weighted residue-based ligand-receptor interaction energies for 54 out of the 57 compounds studied. The remaining three outliers from the original training series have in common a large unfavourable entropic contribution to the binding free energy that we attribute to taxane preorganization in aqueous solution in a conformation different from that compatible with tubulin binding. Support for this proposal was obtained from solution NMR experiments and molecular dynamics simulations in explicit water. Our results shed additional light on the determinants of tubulin-binding affinity for this important class of antitumour agents and pave the way for further rational structural modifications.

  4. Single-Molecule Imaging of an in Vitro-Evolved RNA Aptamer Reveals Homogeneous Ligand Binding Kinetics

    PubMed Central

    2009-01-01

    Many studies of RNA folding and catalysis have revealed conformational heterogeneity, metastable folding intermediates, and long-lived states with distinct catalytic activities. We have developed a single-molecule imaging approach for investigating the functional heterogeneity of in vitro-evolved RNA aptamers. Monitoring the association of fluorescently labeled ligands with individual RNA aptamer molecules has allowed us to record binding events over the course of multiple days, thus providing sufficient statistics to quantitatively define the kinetic properties at the single-molecule level. The ligand binding kinetics of the highly optimized RNA aptamer studied here displays a remarkable degree of uniformity and lack of memory. Such homogeneous behavior is quite different from the heterogeneity seen in previous single-molecule studies of naturally derived RNA and protein enzymes. The single-molecule methods we describe may be of use in analyzing the distribution of functional molecules in heterogeneous evolving populations or even in unselected samples of random sequences. PMID:19572753

  5. A combinatorial feature selection approach to describe the QSAR of dual site inhibitors of acetylcholinesterase.

    PubMed

    Asadabadi, Ebrahim Barzegari; Abdolmaleki, Parviz; Barkooie, Seyyed Mohsen Hosseini; Jahandideh, Samad; Rezaei, Mohammad Ali

    2009-12-01

    Regarding the great potential of dual binding site inhibitors of acetylcholinesterase as the future potent drugs of Alzheimer's disease, this study was devoted to extraction of the most effective structural features of these inhibitors from among a large number of quantitative descriptors. To do this, we adopted a unique approach in quantitative structure-activity relationships. An efficient feature selection method was emphasized in such an approach, using the confirmative results of different routine and novel feature selection methods. The proposed methods generated quite consistent results ensuring the effectiveness of the selected structural features.

  6. Molecular galactose-galectin association in neuroblastoma cells: An unconventional tool for qualitative/quantitative screening.

    PubMed

    Pastorino, Fabio; Ponzoni, Mirco; Simone, Giuseppina

    2017-05-01

    Galectin decorates the cell membrane and forms an extracellular molecular association with galactoside units. Here, galactoside probes have been used to study galectin expression in neuroblastoma cells. The hypothesis behind this investigation has been that the molecular mechanisms by which glycans modulate neural metastatic cells involve a protein-carbohydrate association, galectin-galactose. Preliminary screening to validate the hypothesis has been performed with galactose moieties anchored to beads. The molecular association has been studied by FACS. In vitro experiments reveal the molecular binding preferences of the metastatic neuroblastoma cells. Ex vivo, the galactose probes discriminate healthy tissues. The unconventional assay in microfluidics used in this study displayed results analogous to the above (GI-LI-N cell capture efficiency overcomes IMR-32). At the point of equilibrium of shear and binding forces, the capture yield inside the chamber was measured to 60 ± 4.4% in GI-LI-N versus 40 ± 2.1% in IMR-32. Staining of the fished cells and subsequent conjugation with red beads bearing the galactose also have evidenced that microfluidics can be used to study and quantify the molecular association of galectin-galactose. Most importantly, a crucial insight for obtaining single-cell qualitative/quantitative glycome analysis has been achieved. Finally, the specificity of the assay performed in microfluidics is demonstrated by comparing GI-LI-N fishing efficiency in galactose and fucose environments. The residual adhesion to fucose confirmed the existence of receptors for this glycan and that its eventual unspecific binding (i.e. due to electrostatic interactions) is insignificant compared with the molecular binding. Identification and understanding of this mechanism of discrimination can be relevant for diagnostic monitoring and for producing probes tailored to interfere with galectin activities associated with the malignant phenotype. Besides, the given strategy has implications for the rational design of galectin-specific ligands. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Adsorbate Diffusion on Transition Metal Nanoparticles

    DTIC Science & Technology

    2015-01-01

    different sizes and shapes using density functional theory calculations. We show that nanoparticles bind adsorbates more strongly than the...structure theoretical methods, a quantitative study with accurate density functional theory (DFT) calculations is still missing. Here, we perform a...functional theory . The projector augmented wave (PAW) potentials29,30 were used for electron- ion interactions and the generalized gradient approximation

  8. Sex hormone-binding globulin and corticosteroid-binding globulin mRNA levels in infertile women with luteal phase deficiency.

    PubMed

    Misao, R; Nakanishi, Y; Fujimoto, J; Tamaya, T

    1995-09-01

    This study was designed to investigate the biological significance in intracellular expression of sex hormone-binding globulin (SHBG) and corticosteroid-binding globulin (CBG) mRNA in uterine endometrium with luteal phase deficiency (designated as out-of-phase endometrium or low serum progesterone level). The levels of such mRNAs were measured by the quantitative reverse transcription-polymerase chain reaction. Under the normal serum 17 beta-estradiol and progesterone levels in the mid-luteal phase, the levels of SHBG and CBG mRNAs in the out-of-phase endometria were not significantly different from those in the normal endometria. On the other hand, SHBG and CBG mRNA levels in the endometria of low serum midluteal progesterone level were significantly (p < 0.05) reduced and raised, respectively, compared with normal levels. These findings suggest that the synthesis of endometrial steroid-binding proteins in the out-of-phase endometrium is conserved, as that in the in-phase endometrium, whereas the decreased progesterone level might up-regulate CBG expression with down-regulation of SHBG expression.

  9. Chlorhexidine binding to mineralized versus demineralized dentin powder

    PubMed Central

    Kim, Jongryul; Uchiyama, Toshikazu; Carrilho, Marcela; Agee, Kelli A.; Mazzoni, Annalisa; Breschi, Lorenzo; Carvalho, Ricardo M.; Tjäderhane, Leo; Looney, Stephen; Wimmer, Courtney; Tezvergil-Mutluay, Arzu; Tay, Franklin R.; Pashley, David H.

    2010-01-01

    Objectives The purposes of this work were to quantitate the affinity and binding capacity of chlorhexidine (CHX) digluconate to mineralized vs. demineralized dentin powder, and to determine how much debinding would result from rinsing with water, ethanol, hydroxyethylmethacrylate (HEMA) or 0.5 M NaCl in water. Methods Dentin powder was made from coronal dentin of extracted human third molars. Standard amounts of dentin powder were tumbled with increasing concentrations of CHX (0–30 mM) for 30 min at 37 C. After centrifuging the tubes, the supernatant was removed and the decrease in CHX concentration quantitated by UV-spectroscopy. CHX-treated dentin powder was resuspended in one of the four debinding solutions for 3 min. The amount of debound CHX in the solvents was also quantitated by UV-spectroscopy. Results As the CHX concentration in the medium increased, the CHX binding to mineralized dentin powder also increased up to 6.8 μmoles/g of dry dentin powder. Demineralized dentin powder took up significantly (p<0.01) more CHX, reaching 30.1 μmoles CHX/g of dry dentin powder. Debinding of CHX was in the order: HEMA < ethanol < 0.05 M NaCl < water. The highest CHX binding to demineralized dentin occurred at 30 mM (1.5 wt%). Significance As CHX is not debound by HEMA, it may remain bound to demineralized dentin during resin-dentin bonding. This may be responsible for the long-term efficacy of CHX as an MMP inhibitor in resin-dentin bonds. PMID:20472280

  10. Chemisorption of iodine-125 to gold nanoparticles allows for real-time quantitation and potential use in nanomedicine.

    PubMed

    Walsh, Adrian A

    2017-01-01

    Gold nanoparticles have been available for many years as a research tool in the life sciences due to their electron density and optical properties. New applications are continually being developed, particularly in nanomedicine. One drawback is the need for an easy, real-time quantitation method for gold nanoparticles so that the effects observed in in vitro cell toxicity assays and cell uptake studies can be interpreted quantitatively in terms of nanoparticle loading. One potential method of quantifying gold nanoparticles in real time is by chemisorption of iodine-125, a gamma emitter, to the nanoparticles. This paper revisits the labelling of gold nanoparticles with iodine-125, first described 30 years ago and never fully exploited since. We explore the chemical properties and usefulness in quantifying bio-functionalised gold nanoparticle binding in a quick and simple manner. The gold particles were labelled specifically and quantitatively simply by mixing the two items. The nature of the labelling is chemisorption and is robust, remaining bound over several weeks in a variety of cell culture media. Chemisorption was confirmed as potassium iodide can remove the label whereas sodium chloride and many other buffers had no effect. Particles precoated in polymers or proteins can be labelled just as efficiently allowing for post-labelling experiments in situ rather than using radioactive gold atoms in the production process. We also demonstrate that interparticle exchange of I-125 between different size particles does not appear to take place confirming the affinity of the binding.

  11. Fluorescence acquisition during hybridization phase in quantitative real-time PCR improves specificity and signal-to-noise ratio.

    PubMed

    Mehndiratta, Mohit; Palanichamy, Jayanth Kumar; Ramalingam, Pradeep; Pal, Arnab; Das, Prerna; Sinha, Subrata; Chattopadhyay, Parthaprasad

    2008-12-01

    Quantitative real-time PCR (qPCR) is a standard method used for quantification of specific gene expression. This utilizes either dsDNA binding dyes or probe based chemistry. While dsDNA binding dyes have the advantage of low cost and flexibility, fluorescence due to primer dimers also interferes with the fluorescence of the specific product. Sometimes it is difficult, if not impossible, to standardize conditions and redesign primers in such a way that only specific fluorescence of the products of test and reference genes are acquired. Normally, the fluorescence acquisition in qPCR using dsDNA binding dyes is done during the melting phase of the PCR at a temperature between the melting points of primer dimers and the specific product. We have modified the protocol to acquire fluorescence during the hybridization phase. This significantly increased the signal-to-noise ratio and enabled the use of dsDNA binding dyes for mRNA quantification in situations where it was not possible when measurement was done in the melting phase. We have demonstrated it for three mRNAs, E6, E7, and DNMT1 with beta-actin as the reference gene, and for two miRNAs. This modification broadens the scope of qPCR using dsDNA binding dyes.

  12. RNA Modulates the Interaction between Influenza A Virus NS1 and Human PABP1.

    PubMed

    Arias-Mireles, Bryan H; de Rozieres, Cyrus M; Ly, Kevin; Joseph, Simpson

    2018-05-25

    Nonstructural protein 1 (NS1) is a multifunctional protein involved in preventing host-interferon response in influenza A virus (IAV). Previous studies have indicated that NS1 also stimulates the translation of viral mRNA by binding to conserved sequences in the viral 5'-UTR. Additionally, NS1 binds to poly(A) binding protein 1 (PABP1) and eukaryotic initiation factor 4G (eIF4G). The interaction of NS1 with the viral 5'-UTR, PABP1, and eIF4G has been suggested to specifically enhance the translation of viral mRNAs. In contrast, we report that NS1 does not directly bind to sequences in the viral 5'-UTR, indicating that NS1 is not responsible for providing the specificity to stimulate viral mRNA translation. We also monitored the interaction of NS1 with PABP1 using a new, quantitative FRET assay. Our data show that NS1 binds to PABP1 with high affinity; however, the binding of double-stranded RNA (dsRNA) to NS1 weakens the binding of NS1 to PABP1. Correspondingly, the binding of PABP1 to NS1 weakens the binding of NS1 to double-stranded RNA (dsRNA). In contrast, the affinity of PABP1 for binding to poly(A) RNA is not significantly changed by NS1. We propose that the modulation of NS1·PABP1 interaction by dsRNA may be important for the viral cycle.

  13. Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Valle-Delgado, Juan José; Urbán, Patricia; Fernàndez-Busquets, Xavier

    2013-04-01

    Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force ranging between 28 and 46 pN depending on the loading rate. No significant binding of heparin to non-infected RBCs has been observed in control experiments. This work represents the first approach to quantitatively evaluate GAG-pRBC molecular interactions at the individual molecule level.Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force ranging between 28 and 46 pN depending on the loading rate. No significant binding of heparin to non-infected RBCs has been observed in control experiments. This work represents the first approach to quantitatively evaluate GAG-pRBC molecular interactions at the individual molecule level. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32821f

  14. Escitalopram, an antidepressant with an allosteric effect at the serotonin transporter--a review of current understanding of its mechanism of action.

    PubMed

    Zhong, Huailing; Haddjeri, Nasser; Sánchez, Connie

    2012-01-01

    Escitalopram is a widely used antidepressant for the treatment of patients with major depression. It is the pure S-enantiomer of racemic citalopram. Several clinical trials and meta-analyses indicate that escitalopram is quantitatively more efficacious than many other antidepressants with a faster onset of action. This paper reviews current knowledge about the mechanism of action of escitalopram. The primary target for escitalopram is the serotonin transporter (SERT), which is responsible for serotonin (or 5-hydroxytryptamine [5-HT]) reuptake at the terminals and cell bodies of serotonergic neurons. Escitalopram and selective serotonin reuptake inhibitors bind with high affinity to the 5-HT binding site (orthosteric site) on the transporter. This leads to antidepressant effects by increasing extracellular 5-HT levels which enhance 5-HT neurotransmission. SERT also has one or more allosteric sites, binding to which modulates activity at the orthosteric binding site but does not directly affect 5-HT reuptake by the transporter. In vitro studies have shown that through allosteric binding, escitalopram decreases its own dissociation rate from the orthosteric site on the SERT. R-citalopram, the nontherapeutic enantiomer in citalopram, is also an allosteric modulator of SERT but can inhibit the actions of escitalopram by interfering negatively with its binding. Both nonclinical studies and some clinical investigations have demonstrated the cellular, neurochemical, neuroadaptive, and neuroplastic changes induced by escitalopram with acute and chronic administration. The findings from binding, neurochemical, and neurophysiological studies may provide a mechanistic rationale for the clinical difference observed with escitalopram compared to other antidepressant therapies.

  15. Structures of glycans bound to receptors from saturation transfer difference (STD) NMR spectroscopy: quantitative analysis by using CORCEMA-ST.

    PubMed

    Enríquez-Navas, Pedro M; Guzzi, Cinzia; Muñoz-García, Juan C; Nieto, Pedro M; Angulo, Jesús

    2015-01-01

    Glycan-receptor interactions are of fundamental relevance for a large number of biological processes, and their kinetics properties (medium/weak binding affinities) make them appropriated to be studied by ligand observed NMR techniques, among which saturation transfer difference (STD) NMR spectroscopy has been shown to be a very robust and powerful approach. The quantitative analysis of the results from a STD NMR study of a glycan-receptor interaction is essential to be able to translate the resulting spectral intensities into a 3D molecular model of the complex. This chapter describes how to carry out such a quantitative analysis by means of the Complete Relaxation and Conformational Exchange Matrix Approach for STD NMR (CORCEMA-ST), in general terms, and an example of a previous work on an antibody-glycan interaction is also shown.

  16. Autoradiographic analysis of tritiated imipramine binding in the human brain post mortem: effects of suicide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross-Isseroff, R.; Israeli, M.; Biegon, A.

    In vitro quantitative autoradiography of high-affinity tritiated imipramine binding sites was performed on brains of 12 suicide victims and 12 matched controls. Region-specific differences in imipramine binding were found between the two groups. Thus, the pyramidal and molecular layers of the cornu ammoni hippocampal fields and the hilus of the dentate gyrus exhibited 80%, 60%, and 90% increases in binding in the suicide group, respectively. The postcentral cortical gyrus, insular cortex, and claustrum had 45%, 28%, and 75% decreases in binding in the suicide group, respectively. No difference in imipramine binding was observed in prefrontal cortical regions, in the basalmore » ganglia, and in mesencephalic nuclei. No sex and postmortem delay effects on imipramine binding were found. Imipramine binding was positively correlated with age, the effect of age being most pronounced in portions of the basal ganglia and temporal cortex.« less

  17. HYDROXYCHLOROQUINE REDUCES BINDING OF ANTIPHOSPHOLIPID ANTIBODIES TO SYNCYTIOTROPHOBLASTS AND RESTORES ANNEXIN A5 EXPRESSION

    PubMed Central

    Wu, Xiao-Xuan; Guller, Seth; Rand, Jacob H.

    2011-01-01

    Objectives Antibody-mediated disruption of the annexin A5 (AnxA5) anticoagulant shield has been posited to be a thrombogenic mechanism in the antiphospholipid syndrome. We recently showed that the antimalarial drug, hydroxychloroquine, dissociates antiphospholipid immune complexes and restores AnxA5 binding to planar phospholipid bilayer. Using quantitative immunoassays, we demonstrated similar effects on BeWo trophoblasts. We therefore investigated the effects of the drug on localization of AnxA5 in primary cultures of human placental syncytiotrophoblasts (SCTs). Study Laser confocal microscopy with computer-based morphometric analysis was used to localize AnxA5 and antiphospholipid antibodies on SCTs exposed to polyclonal and monoclonal antiphospholipid and control IgGs. Results Hydroxychloroquine reversed the effects of the antiphospholipid antibodies on the SCTs by markedly reducing IgG binding and restoring AnxA5 expression. Conclusions These results provide the first morphologic evidence for this effect of hydroxychloroquine on human placental SCTs and support the possibility of novel treatments that target antiphospholipid antibody binding. PMID:21871597

  18. Exploring Hydrophobic Binding Surfaces Using Comfa and Flexible Hydrophobic Ligands

    NASA Astrophysics Data System (ADS)

    Thakkar, Shraddha; Sanchez, Rosa. I.; Bhuveneswaran, Chidambaram; Compadre, Cesar M.

    2011-06-01

    Cysteine proteinases are a very important group of enzymes involved in a variety of physiological and pathological processes including cancer metastasis and rheumatoid arthritis. In this investigation we used 3D-Quantitative Structure Activity Relationships (3D-QSAR) techniques to model the binding of a variety of substrates to two cysteine proteinases, papain, and cathepsin B. The analysis was performed using Comparative Molecular Field Analysis (CoMFA). The molecules were constructed using standard bond angles and lengths, minimized and aligned. Charges were calculated using the PM3 method in MOPAC. The CoMFA models derived for the binding of the studied substrates to the two proteinases were compared with the expected results from the experimental X-ray crystal structures of the same proteinases. The results showed the value of CoMFA modeling of flexible hydrophobic ligands to analyze ligand binding to protein receptors, and could also serve as the basis to design specific inhibitors of cysteine proteinases with potential therapeutic value.

  19. Mutations in the substrate binding site of human heat-shock protein 70 indicate specific interaction with HLA-DR outside the peptide binding groove

    PubMed Central

    Rohrer, Karin M; Haug, Markus; Schwörer, Daniela; Kalbacher, Hubert; Holzer, Ursula

    2014-01-01

    Heat-shock protein 70 (Hsp70)–peptide complexes are involved in MHC class I-and II-restricted antigen presentation, enabling enhanced activation of T cells. As shown previously, mammalian cytosolic Hsp70 (Hsc70) molecules interact specifically with HLA-DR molecules. This interaction might be of significance as Hsp70 molecules could transfer bound antigenic peptides in a ternary complex into the binding groove of HLA-DR molecules. The present study provides new insights into the distinct interaction of Hsp70 with HLA-DR molecules. Using a quantitative binding assay, it could be demonstrated that a point mutation of amino acids alanine 406 and valine 438 in the substrate binding pocket led to reduced peptide binding compared with the wild-type Hsp70 whereas HLA-DR binding remains unaffected. The removal of the C-terminal lid neither altered the substrate binding capacity nor the Hsp70 binding characteristics to HLA-DR. A truncated variant lacking the nucleotide binding domain showed no binding interactions with HLA-DR. Furthermore, the truncated ATPase subunit of constitutively expressed Hsc70 revealed similar binding affinities to HLA-DR compared with the complete Hsc70. Hence, it can be assumed that the Hsp70–HLA-DR interaction takes place outside the peptide binding groove and is attributed to the ATPase domain of HSP70 molecules. The Hsp70-chaperoned peptides might thereby be directly transferred into the binding groove of HLA-DR, so enabling enhanced presentation of the peptide on antigen-presenting cells and leading to an improved proliferation of responding T cells as shown previously. PMID:24428437

  20. A comparison of sperm agglutination and immobilization assays with a quantitative ELISA for anti-sperm antibody in serum.

    PubMed

    Lynch, D M; Leali, B A; Howe, S E

    1986-08-01

    An enzyme-linked immunosorbent assay (ELISA) that quantitates antisperm antibody in serum was compared with standard sperm agglutination and immobilization assays with the use of sera from 40 normal and 292 subfertile individuals. Quantitation of the assay was accomplished by standardizing assay parameters, including the incorporation of a standard reference curve, the number of whole target sperm, the optimal dilution of serum, the selection of microtiter plate, and the time and temperatures involved in the adsorption and incubation phases. With this method, the level of antisperm antibody binding to target sperm in 40 normal fertile individuals was found to be 2.3 (+/- 1.1 standard deviation [SD]) fg immunoglobulin (Ig)/sperm. An increased mean level of 7.4 +/- 3.7 fg Ig/sperm was determined in 84 infertile patients with positive agglutination and/or immobilization tests. In 208 individuals with negative agglutination and immobilization tests the mean concentration of antisperm antibody was 2.5 +/- 1.3 fg Ig/sperm. Postvasectomy patients assayed by this method had a mean Ig binding value of 7.1 +/- 2.4 fg Ig/sperm. The infertile group with positive agglutination and/or immobilization tests had a significantly higher mean antisperm antibody level than the normal fertile group, according to the Student's t-test for independent samples (P less than 0.001). This indirect serum-based assay reproducibly quantitates antisperm antibody binding to whole target sperm, suggests the normal and abnormal levels of antisperm antibody, and correlates with standard functional assays.

  1. Substance P receptor binding sites are expressed by glia in vivo after neuronal injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantyh, P.W.; Johnson, D.J.; Boehmer, C.G.

    1989-07-01

    In vitro studies have demonstrated that glia can express functional receptors for a variety of neurotransmitters. To determine whether similar neurotransmitter receptors are also expressed by glia in vivo, the authors examined the glial scar in the transected optic nerve of the albino rabbit by quantitative receptor autoradiography. Receptor binding sites for radiolabeled calcitonin gene-related peptide, cholecystokinin, galanin, glutamate, somatostatin, substance P, and vasoactive intestinal peptide were examined. Specific receptor binding sites for each of these neurotransmitters were identified in the rabbit forebrain but were not detected in the normal optic nerve or tract. In the transected optic nerve andmore » tract, only receptor binding sites for substance P were expressed at detectable levels. The density of substance P receptor binding sites observed in this glial scar is among the highest observed in the rabbit forebrain. Ligand displacement and saturation experiments indicate that the substance P receptor binding site expressed by the glial scar has pharmacological characteristics similar to those of substance P receptors in the rabbit striatum, rat brain, and rat and canine gut. The present study demonstrates that glial cells in vivo express high concentrations of substance P receptor binding sites after transection of retinal ganglion cell axons. Because substance P has been shown to regulate inflammatory and immune responses in peripheral tissues, substance P may also, by analogy, be involved in regulating the glial response to injury in the central nervous system.« less

  2. Diphosphoglycerate and Inosine Hexaphosphate Control of Oxygen Binding by Hemoglobin: A Theoretical Interpretation of Experimental Data*

    PubMed Central

    Ling, Gilbert N.

    1970-01-01

    A theoretical equation is presented for the control of cooperative adsorption on proteins and other linear macromolecules by hormones, drugs, ATP, and other „cardinal adsorbents.” With reasonable accuracy, this equation describes quantitatively the control of oxygen binding to hemoglobin by 2,3-diphosphoglycerate and by inosine hexaphosphate. PMID:5272319

  3. Quantitative blood group typing using surface plasmon resonance.

    PubMed

    Then, Whui Lyn; Aguilar, Marie-Isabel; Garnier, Gil

    2015-11-15

    The accurate and reliable typing of blood groups is essential prior to blood transfusion. While current blood typing methods are well established, results are subjective and heavily reliant on analysis by trained personnel. Techniques for quantifying blood group antibody-antigen interactions are also very limited. Many biosensing systems rely on surface plasmon resonance (SPR) detection to quantify biomolecular interactions. While SPR has been widely used for characterizing antibody-antigen interactions, measuring antibody interactions with whole cells is significantly less common. Previous studies utilized SPR for blood group antigen detection, however, showed poor regeneration causing loss of functionality after a single use. In this study, a fully regenerable, multi-functional platform for quantitative blood group typing via SPR detection is achieved by immobilizing anti-human IgG antibody to the sensor surface, which binds to the Fc region of human IgG antibodies. The surface becomes an interchangeable platform capable of quantifying the blood group interactions between red blood cells (RBCs) and IgG antibodies. As with indirect antiglobulin tests (IAT), which use IgG antibodies for detection, IgG antibodies are initially incubated with RBCs. This facilitates binding to the immobilized monolayer and allows for quantitative blood group detection. Using the D-antigen as an example, a clear distinction between positive (>500 RU) and negative (<100 RU) RBCs is achieved using anti-D IgG. Complete regeneration of the anti-human IgG surface is also successful, showing negligible degradation of the surface after more than 100 regenerations. This novel approach is validated with human-sourced whole blood samples to demonstrate an interesting alternative for quantitative blood grouping using SPR analysis. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  4. Toxicity challenges in environmental chemicals: Prediction of human plasma protein binding through quantitative structure-activity relationship (QSAR) models (2016 IVIVE Workshop Proceedings)

    EPA Science Inventory

    Physiologically based pharmacokinetic (PBPK) models bridge the gap between in vitro assays and in vivo effects by accounting for the adsorption, distribution, metabolism, and excretion of xenobiotics, which is especially useful in the assessment of human toxicity. Quantitative st...

  5. Computational studies of novel chymase inhibitors against cardiovascular and allergic diseases: mechanism and inhibition.

    PubMed

    Arooj, Mahreen; Thangapandian, Sundarapandian; John, Shalini; Hwang, Swan; Park, Jong K; Lee, Keun W

    2012-12-01

    To provide a new idea for drug design, a computational investigation is performed on chymase and its novel 1,4-diazepane-2,5-diones inhibitors that explores the crucial molecular features contributing to binding specificity. Molecular docking studies of inhibitors within the active site of chymase were carried out to rationalize the inhibitory properties of these compounds and understand their inhibition mechanism. The density functional theory method was used to optimize molecular structures with the subsequent analysis of highest occupied molecular orbital, lowest unoccupied molecular orbital, and molecular electrostatic potential maps, which revealed that negative potentials near 1,4-diazepane-2,5-diones ring are essential for effective binding of inhibitors at active site of enzyme. The Bayesian model with receiver operating curve statistic of 0.82 also identified arylsulfonyl and aminocarbonyl as the molecular features favoring and not favoring inhibition of chymase, respectively. Moreover, genetic function approximation was applied to construct 3D quantitative structure-activity relationships models. Two models (genetic function approximation model 1 r(2) = 0.812 and genetic function approximation model 2 r(2) = 0.783) performed better in terms of correlation coefficients and cross-validation analysis. In general, this study is used as example to illustrate how combinational use of 2D/3D quantitative structure-activity relationships modeling techniques, molecular docking, frontier molecular orbital density fields (highest occupied molecular orbital and lowest unoccupied molecular orbital), and molecular electrostatic potential analysis may be useful to gain an insight into the binding mechanism between enzyme and its inhibitors. © 2012 John Wiley & Sons A/S.

  6. Anibamine and its Analogues as Novel Anti Prostate Cancer Agents

    DTIC Science & Technology

    2010-06-01

    PC- 3, and DU-145 has been conducted continuously to evaluate the efficacy of more ligands. A molecular modeling study (3D QSAR ) protocol has been... Toxicology at Virginia Commonwealth University. Both the PI’s lab and Dr. 10 Selley’s lab have fully functional binding assay facility. The assays is...pursue the docking study and 3D QSAR study. 5.3 3D QSAR (Quantitative Structure-Activity Relationships) Study As proposed in our proposal, we will

  7. Different binding mechanisms of neutral and anionic poly-/perfluorinated chemicals to human transthyretin revealed by In silico models.

    PubMed

    Yang, Xianhai; Lyakurwa, Felichesmi; Xie, Hongbin; Chen, Jingwen; Li, Xuehua; Qiao, Xianliang; Cai, Xiyun

    2017-09-01

    Chemical forms-dependent binding interactions between phenolic compounds and human transthyretin (hTTR) have been elaborated previously. However, it is not known whether the binding interactions between ionizable halogenated alphatic compounds and hTTR also have the same manner. In this study, poly-/perfluorinated chemicals (PFCs) were selected as model compounds and molecular dynamic simulation was performed to investigate the binding mechanisms between PFCs and hTTR. Results show the binding interactions between the halogenated aliphatic compounds and hTTR are related to the chemical forms. The ionized groups of PFCs can form electrostatic interactions with the -NH + 3 groups of Lys 15 residues in hTTR and form hydrogen bonds with the residues of hTTR. By analyzing the molecular orbital energies of PFCs, we also found that the anionic groups (nucleophile) in PFCs could form electron donor - acceptor interactions with the -NH + 3 groups (electrophile) in Lys 15. The aforementioned orientational interactions make the ionized groups of the PFCs point toward the entry port of the binding site. The roles of fluorine atoms in the binding interactions were also explored. The fluorine atoms can influence the binding interactions via inductive effects. Appropriate molecular descriptors were selected to characterize these interactions, and two quantitative structure-activity relationship models were developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Quantitation of specific binding ratio in 123I-FP-CIT SPECT: accurate processing strategy for cerebral ventricular enlargement with use of 3D-striatal digital brain phantom.

    PubMed

    Furuta, Akihiro; Onishi, Hideo; Amijima, Hizuru

    2018-06-01

    This study aimed to evaluate the effect of ventricular enlargement on the specific binding ratio (SBR) and to validate the cerebrospinal fluid (CSF)-Mask algorithm for quantitative SBR assessment of 123 I-FP-CIT single-photon emission computed tomography (SPECT) images with the use of a 3D-striatum digital brain (SDB) phantom. Ventricular enlargement was simulated by three-dimensional extensions in a 3D-SDB phantom comprising segments representing the striatum, ventricle, brain parenchyma, and skull bone. The Evans Index (EI) was measured in 3D-SDB phantom images of an enlarged ventricle. Projection data sets were generated from the 3D-SDB phantoms with blurring, scatter, and attenuation. Images were reconstructed using the ordered subset expectation maximization (OSEM) algorithm and corrected for attenuation, scatter, and resolution recovery. We bundled DaTView (Southampton method) with the CSF-Mask processing software for SBR. We assessed SBR with the use of various coefficients (f factor) of the CSF-Mask. Specific binding ratios of 1, 2, 3, 4, and 5 corresponded to SDB phantom simulations with true values. Measured SBRs > 50% that were underestimated with EI increased compared with the true SBR and this trend was outstanding at low SBR. The CSF-Mask improved 20% underestimates and brought the measured SBR closer to the true values at an f factor of 1.0 despite an increase in EI. We connected the linear regression function (y = - 3.53x + 1.95; r = 0.95) with the EI and f factor using root-mean-square error. Processing with CSF-Mask generates accurate quantitative SBR from dopamine transporter SPECT images of patients with ventricular enlargement.

  9. dCLIP: a computational approach for comparative CLIP-seq analyses

    PubMed Central

    2014-01-01

    Although comparison of RNA-protein interaction profiles across different conditions has become increasingly important to understanding the function of RNA-binding proteins (RBPs), few computational approaches have been developed for quantitative comparison of CLIP-seq datasets. Here, we present an easy-to-use command line tool, dCLIP, for quantitative CLIP-seq comparative analysis. The two-stage method implemented in dCLIP, including a modified MA normalization method and a hidden Markov model, is shown to be able to effectively identify differential binding regions of RBPs in four CLIP-seq datasets, generated by HITS-CLIP, iCLIP and PAR-CLIP protocols. dCLIP is freely available at http://qbrc.swmed.edu/software/. PMID:24398258

  10. Special AT-rich sequence binding protein 1 promotes tumor growth and metastasis of esophageal squamous cell carcinoma.

    PubMed

    Ma, Jun; Wu, Kaiming; Zhao, Zhenxian; Miao, Rong; Xu, Zhe

    2017-03-01

    Esophageal squamous cell carcinoma is one of the most aggressive malignancies worldwide. Special AT-rich sequence binding protein 1 is a nuclear matrix attachment region binding protein which participates in higher order chromatin organization and tissue-specific gene expression. However, the role of special AT-rich sequence binding protein 1 in esophageal squamous cell carcinoma remains unknown. In this study, western blot and quantitative real-time polymerase chain reaction analysis were performed to identify differentially expressed special AT-rich sequence binding protein 1 in a series of esophageal squamous cell carcinoma tissue samples. The effects of special AT-rich sequence binding protein 1 silencing by two short-hairpin RNAs on cell proliferation, migration, and invasion were assessed by the CCK-8 assay and transwell assays in esophageal squamous cell carcinoma in vitro. Special AT-rich sequence binding protein 1 was significantly upregulated in esophageal squamous cell carcinoma tissue samples and cell lines. Silencing of special AT-rich sequence binding protein 1 inhibited the proliferation of KYSE450 and EC9706 cells which have a relatively high level of special AT-rich sequence binding protein 1, and the ability of migration and invasion of KYSE450 and EC9706 cells was distinctly suppressed. Special AT-rich sequence binding protein 1 could be a potential target for the treatment of esophageal squamous cell carcinoma and inhibition of special AT-rich sequence binding protein 1 may provide a new strategy for the prevention of esophageal squamous cell carcinoma invasion and metastasis.

  11. Small molecule antagonists of the urokinase (uPA): urokinase receptor (uPAR) interaction with high reported potencies show only weak effects in cell-based competition assays employing the native uPAR ligand.

    PubMed

    De Souza, Melissa; Matthews, Hayden; Lee, Jodi A; Ranson, Marie; Kelso, Michael J

    2011-04-15

    Binding of the urokinase-type plasminogen activator (uPA) to its cell-surface-bound receptor uPAR and upregulation of the plasminogen activation system (PAS) correlates with increased metastasis and poor prognosis in several tumour types. Disruptors of the uPA:uPAR interaction represent promising anti-tumour/metastasis agents and several approaches have been explored for this purpose, including the use of small molecule antagonists. Two highly potent non-peptidic antagonists 1 and 2 (IC(50)1=0.8 nM, IC(50)2=33 nM) from the patent literature were reportedly identified using competition assays employing radiolabelled uPAR-binding uPA fragments and appeared as useful pharmacological tools for studying the PAS. Before proceeding to such studies, confirmation was sought that 1 and 2 retained their potencies in physiologically relevant cell-based competition assays employing uPAR's native binding partner high molecular weight uPA (HMW-uPA). This study describes a new solution phase synthesis of 1, a mixed solid/solution phase synthesis of 2 and reports the activities of 1 and 2 in semi-quantitative competition flow cytometry assays and quantitative cell-based uPA activity assays that employed HMW-uPA as the competing ligand. The flow cytometry experiments revealed that high concentrations of 2 (10-100 μM) are required to compete with HMW-uPA for uPAR binding and that 1 shows no antagonist effects at 100 μM. The cell-based enzyme activity assays similarly revealed that 1 and 2 are poor inhibitors of cell surface-bound HMW-uPA activity (IC(50) >100 μM for 1 and 2). The report highlights the dangers of identifying false-positive lead uPAR antagonists from competition assays employing labelled competing ligands other than the native HMW-uPA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Preferential reduction of binding of sup 125 I-iodopindolol to beta-1 adrenoceptors in the amygdala of rat after antidepressant treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordway, G.A.; Gambarana, C.; Tejani-Butt, S.M.

    1991-05-01

    This study utilized quantitative receptor autoradiography to examine the effects of repeated administration of antidepressants to rats on the binding of the beta adrenoceptor antagonist, {sup 125}I-iodopindolol ({sup 125}I-IPIN) to either beta-1 or beta-2 adrenoceptors in various regions of brain. Antidepressants were selected to represent various chemical and pharmacological classes including tricyclic compounds (desipramine and protriptyline), monoamine oxidase inhibitors (clorgyline, phenelzine and tranylcypromine), atypical antidepressants (mianserin and trazodone) and selective inhibitors of the uptake of serotonin (citalopram and sertraline). Additionally, rats were treated with various psychotropic drugs that lack antidepressant efficacy (cocaine, deprenyl, diazepam and haloperidol). Repeated treatment of ratsmore » with desipramine, protriptyline, clorgyline, phenelzine, tranylcypromine or mianserin reduced the binding of {sup 125}I-IPIN to beta-1 adrenoceptors in many brain areas. Only in the basolateral and lateral nuclei of the amygdala did all six of these antidepressants significantly reduce {sup 125}I-IPIN binding to beta-1 adrenoceptors. In these amygdaloid nuclei, the magnitude of the reduction in the binding of {sup 125}I-IPIN caused by each of these drugs was comparable to or greater than the reduction in binding produced in any other region of brain. Reductions of binding of {sup 125}I-IPIN after antidepressant treatments were not consistently observed in the cortex, the area of brain examined most often in homogenate binding studies. Only the monoamine oxidase inhibitors caused reductions in the binding of {sup 125}I-IPIN to beta-2 adrenoceptors, and this effect was generally localized to the amygdala and hypothalamus.« less

  13. Analysis of Protein Interactions with Picomolar Binding Affinity by Fluorescence-Detected Sedimentation Velocity

    PubMed Central

    2014-01-01

    The study of high-affinity protein interactions with equilibrium dissociation constants (KD) in the picomolar range is of significant interest in many fields, but the characterization of stoichiometry and free energy of such high-affinity binding can be far from trivial. Analytical ultracentrifugation has long been considered a gold standard in the study of protein interactions but is typically applied to systems with micromolar KD. Here we present a new approach for the study of high-affinity interactions using fluorescence detected sedimentation velocity analytical ultracentrifugation (FDS-SV). Taking full advantage of the large data sets in FDS-SV by direct boundary modeling with sedimentation coefficient distributions c(s), we demonstrate detection and hydrodynamic resolution of protein complexes at low picomolar concentrations. We show how this permits the characterization of the antibody–antigen interactions with low picomolar binding constants, 2 orders of magnitude lower than previously achieved. The strongly size-dependent separation and quantitation by concentration, size, and shape of free and complex species in free solution by FDS-SV has significant potential for studying high-affinity multistep and multicomponent protein assemblies. PMID:24552356

  14. Chimeric Cellulase Matrix for Investigating Intramolecular Synergism between Non-hydrolytic Disruptive Functions of Carbohydrate-binding Modules and Catalytic Hydrolysis*

    PubMed Central

    Wang, Yuguo; Tang, Rentao; Tao, Jin; Wang, Xiaonan; Zheng, Baisong; Feng, Yan

    2012-01-01

    The conversion of renewable cellulosic biomass is of considerable interest for the production of biofuels and materials. The bottleneck in the efficient conversion is the compactness and resistance of crystalline cellulose. Carbohydrate-binding modules (CBMs), which disrupt crystalline cellulose via non-hydrolytic mechanisms, are expected to overcome this bottleneck. However, the lack of convenient methods for quantitative analysis of the disruptive functions of CBMs have hindered systematic studies and molecular modifications. Here we established a practical and systematic platform for quantifying and comparing the non-hydrolytic disruptive activities of CBMs via the synergism of CBMs and a catalytic module within designed chimeric cellulase molecules. Bioinformatics and computational biology were also used to provide a deeper understanding. A convenient vector was constructed to serve as a cellulase matrix into which heterologous CBM sequences can be easily inserted. The resulting chimeric cellulases were suitable for studying disruptive functions, and their activities quantitatively reflected the disruptive functions of CBMs on crystalline cellulose. In addition, this cellulase matrix can be used to construct novel chimeric cellulases with high hydrolytic activities toward crystalline cellulose. PMID:22778256

  15. Quantitation of the calcium and membrane binding properties of the C2 domains of dysferlin.

    PubMed

    Abdullah, Nazish; Padmanarayana, Murugesh; Marty, Naomi J; Johnson, Colin P

    2014-01-21

    Dysferlin is a large membrane protein involved in calcium-triggered resealing of the sarcolemma after injury. Although it is generally accepted that dysferlin is Ca(2+) sensitive, the Ca(2+) binding properties of dysferlin have not been characterized. In this study, we report an analysis of the Ca(2+) and membrane binding properties of all seven C2 domains of dysferlin as well as a multi-C2 domain construct. Isothermal titration calorimetry measurements indicate that all seven dysferlin C2 domains interact with Ca(2+) with a wide range of binding affinities. The C2A and C2C domains were determined to be the most sensitive, with Kd values in the tens of micromolar, whereas the C2D domain was least sensitive, with a near millimolar Kd value. Mutagenesis of C2A demonstrates the requirement for negatively charged residues in the loop regions for divalent ion binding. Furthermore, dysferlin displayed significantly lower binding affinity for the divalent cations magnesium and strontium. Measurement of a multidomain construct indicates that the solution binding affinity does not change when C2 domains are linked. Finally, sedimentation assays suggest all seven C2 domains bind lipid membranes, and that Ca(2+) enhances but is not required for interaction. This report reveals for the first time, to our knowledge, that all dysferlin domains bind Ca(2+) albeit with varying affinity and stoichiometry. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. The clinical relevance and prognostic significance of adenosine triphosphate ATP-binding cassette (ABCB5) and multidrug resistance (MDR1) genes expression in acute leukemia: an Egyptian study.

    PubMed

    Farawela, Hala M; Khorshied, Mervat M; Kassem, Neemat M; Kassem, Heba A; Zawam, Hamdy M

    2014-08-01

    Multidrug resistance (MDR1) represents a major obstacle in the chemotherapeutic treatment of acute leukemia (AL). Adenosine triphosphate ATP-binding cassette (ABCB5) and MDR1 genes are integral membrane proteins belonging to ATP-binding cassette transporters superfamily. The present work aimed to investigate the impact of ABCB5 and MDR1 genes expression on the response to chemotherapy in a cohort of Egyptian AL patients. The study included 90 patients: 53 AML cases and 37 ALL cases in addition to 20 healthy volunteers as controls. Quantitative assessment of MDR1 and ABCB5 genes expression was performed by quantitative real-time polymerase chain reaction. Additional prognostic molecular markers were determined as internal tandem duplications of the FLT3 gene (FLT3-ITD) and nucleophosmin gene mutation (NPM1) for AML cases, and mbcr-abl fusion transcript for B-ALL cases. In AML patients, ABCB5 and MDR1 expression levels did not differ significantly between de novo and relapsed cases and did not correlate with the overall survival or disease-free survival. AML patients were stratified according to the studied genetic markers, and complete remission rate was found to be more prominent in patients having low expression of MDR1 and ABCB5 genes together with mutated NPM1 gene. In ALL patients, ABCB5 gene expression level was significantly higher in relapsed cases and MDR1 gene expression was significantly higher in patients with resistant disease. In conclusion, the results obtained by the current study provide additional evidence of the role played by these genes as predictive factors for resistance of leukemic cells to chemotherapy and hence treatment outcome.

  17. Glycodendritic structures based on Boltorn hyperbranched polymers and their interactions with Lens culinaris lectin.

    PubMed

    Arce, Eva; Nieto, Pedro M; Díaz, Vicente; Castro, Rossana García; Bernad, Antonio; Rojo, Javier

    2003-01-01

    Multivalent scaffolds bearing carbohydrates have been prepared to mediate biological processes where carbohydrates are involved. These systems consist of dendritic structures based on Boltorn H20 and H30 hyperbranched polymers to which carbohydrates are linked through a convenient spacer. Mannose has been chosen as a sugar unit to test the viability of this strategy. These glycodendritic compounds have been prepared in a few steps with good yields, showing a high solubility in physiological media and low toxicity. The binding of these dendritic polymers to the mannose-binding lectin Lens culinaris (LCA) was studied using STD-NMR experiments and quantitative precipitation assays. The results demonstrate the existence of a clear interaction between the mannose derivative systems and the Lens lectin where the dendritic scaffold does not have an important role in mannose binding but supplies the necessary multivalence for lectin cluster formation. These glycodendritic structures are able to interact with a receptor, and therefore they can be considered as promising tools for biological studies.

  18. Pig liver pyruvate carboxylase. The reaction pathway for the decarboxylation of oxaloacetate

    PubMed Central

    Warren, Graham B.; Tipton, Keith F.

    1974-01-01

    1. The reaction pathway for the decarboxylation of oxaloacetate, catalysed by pig liver pyruvate carboxylase, was studied in the presence of saturating concentrations of K+ and acetyl-CoA. 2. Free Mg2+ binds to the enzyme in an equilibrium fashion and remains bound during all further catalytic cycles. MgADP− and Pi bind randomly, at equilibrium, followed by the binding of oxaloacetate. Pyruvate is released before the ordered steay-state release of HCO3− and MgATP2−. 3. These results are entirely consistent with studies on the carboxylation of pyruvate presented in the preceding paper (Warren & Tipton, 1974b) and together they allow a quantitative description of the reaction mechanism of pig liver pyruvate carboxylase. 4. In the absence of other substrates of the back reaction pig liver pyruvate carboxylase will decarboxylate oxaloacetate in a manner that is not inhibited by avidin. 5. Reciprocal plots involving oxaloacetate are non-linear curves, which suggest a negatively co-operative interaction between this substrate and the enzyme. PMID:4447613

  19. Comparative assessment of fluorescent transgene methods for quantitative imaging in human cells.

    PubMed

    Mahen, Robert; Koch, Birgit; Wachsmuth, Malte; Politi, Antonio Z; Perez-Gonzalez, Alexis; Mergenthaler, Julia; Cai, Yin; Ellenberg, Jan

    2014-11-05

    Fluorescence tagging of proteins is a widely used tool to study protein function and dynamics in live cells. However, the extent to which different mammalian transgene methods faithfully report on the properties of endogenous proteins has not been studied comparatively. Here we use quantitative live-cell imaging and single-molecule spectroscopy to analyze how different transgene systems affect imaging of the functional properties of the mitotic kinase Aurora B. We show that the transgene method fundamentally influences level and variability of expression and can severely compromise the ability to report on endogenous binding and localization parameters, providing a guide for quantitative imaging studies in mammalian cells. © 2014 Mahen et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Prostate Cancer Progression and Serum SIBLING (Small Integrin Binding N-Linked Glycoprotein)Levels

    DTIC Science & Technology

    2007-10-01

    termed SIBLINGs (for small integrin binding ligand N-linked glycoproteins) whose members include bone sialoprotein (BSP), osteopontin (OPN), dentin...enzyme-linked immunosorbent assays (ELISAs) for quantitatively determining the levels of bone sialoprotein (BSP), osteopontin (OPN), dentin...synthesized as a chimeric protein, composed of three parts: dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP, also

  1. Relationship of nonreturn rates of dairy bulls to binding affinity of heparin to sperm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, J.L.; Ax, R.L.

    1985-08-01

    The binding of the glycosaminoglycan (3H) heparin to bull spermatozoa was compared with nonreturn rates of dairy bulls. Semen samples from five bulls above and five below an average 71% nonreturn rate were used. Samples consisted of first and second ejaculates on a single day collected 1 d/wk for up to 5 consecutive wk. Saturation binding assays using (TH) heparin were performed to quantitate the binding characteristics of each sample. Scatchard plot analyses indicated a significant difference in the binding affinity for (TH) heparin between bulls of high and low fertility. Dissociation constants were 69.0 and 119.3 pmol for bullsmore » of high and low fertility, respectively. In contrast, the number of binding sites for (TH) heparin did not differ significantly among bulls. Differences in binding affinity of (TH) heparin to bull sperm might be used to predict relative fertility of dairy bulls.« less

  2. Binding proteins enhance specific uptake rate by increasing the substrate-transporter encounter rate.

    PubMed

    Bosdriesz, Evert; Magnúsdóttir, Stefanía; Bruggeman, Frank J; Teusink, Bas; Molenaar, Douwe

    2015-06-01

    Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is lacking. By combining knowledge of selection pressure and physiochemical constraints, we derive kinetic, thermodynamic, and stoichiometric properties of binding-protein dependent transport systems that enable a maximal import activity per amount of transporter. Under the hypothesis that this maximal specific activity of the transport complex is the selection objective, binding protein concentrations should exceed the concentration of both the scarce nutrient and the transporter. This increases the encounter rate of transporter with loaded binding protein at low substrate concentrations, thereby enhancing the affinity and specific uptake rate. These predictions are experimentally testable, and a number of observations confirm them. © 2015 FEBS.

  3. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    PubMed

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  4. BiPPred: Combined sequence- and structure-based prediction of peptide binding to the Hsp70 chaperone BiP.

    PubMed

    Schneider, Markus; Rosam, Mathias; Glaser, Manuel; Patronov, Atanas; Shah, Harpreet; Back, Katrin Christiane; Daake, Marina Angelika; Buchner, Johannes; Antes, Iris

    2016-10-01

    Substrate binding to Hsp70 chaperones is involved in many biological processes, and the identification of potential substrates is important for a comprehensive understanding of these events. We present a multi-scale pipeline for an accurate, yet efficient prediction of peptides binding to the Hsp70 chaperone BiP by combining sequence-based prediction with molecular docking and MMPBSA calculations. First, we measured the binding of 15mer peptides from known substrate proteins of BiP by peptide array (PA) experiments and performed an accuracy assessment of the PA data by fluorescence anisotropy studies. Several sequence-based prediction models were fitted using this and other peptide binding data. A structure-based position-specific scoring matrix (SB-PSSM) derived solely from structural modeling data forms the core of all models. The matrix elements are based on a combination of binding energy estimations, molecular dynamics simulations, and analysis of the BiP binding site, which led to new insights into the peptide binding specificities of the chaperone. Using this SB-PSSM, peptide binders could be predicted with high selectivity even without training of the model on experimental data. Additional training further increased the prediction accuracies. Subsequent molecular docking (DynaDock) and MMGBSA/MMPBSA-based binding affinity estimations for predicted binders allowed the identification of the correct binding mode of the peptides as well as the calculation of nearly quantitative binding affinities. The general concept behind the developed multi-scale pipeline can readily be applied to other protein-peptide complexes with linearly bound peptides, for which sufficient experimental binding data for the training of classical sequence-based prediction models is not available. Proteins 2016; 84:1390-1407. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. A fluorescent-photochrome method for the quantitative characterization of solid phase antibody orientation.

    PubMed

    Ahluwalia, Arti; De Rossi, Danilo; Giusto, Giuseppe; Chen, Oren; Papper, Vladislav; Likhtenshtein, Gertz I

    2002-06-15

    A fluorescent-photochrome method of quantifying the orientation and surface density of solid phase antibodies is described. The method is based on measurements of quenching and rates of cis-trans photoisomerization and photodestruction of a stilbene-labeled hapten by a quencher in solution. These experimental parameters enable a quantitative description of the order of binding sites of antibodies immobilized on a surface and can be used to characterize the microviscosity and steric hindrance in the vicinity of the binding site. Furthermore, a theoretical method for the determination of the depth of immersion of the fluorescent label in a two-phase system was developed. The model exploits the concept of dynamic interactions and is based on the empirical dependence of parameters of static exchange interactions on distances between exchangeable centers. In the present work, anti-dinitrophenyl (DNP) antibodies and stilbene-labeled DNP were used to investigate three different protein immobilization methods: physical adsorption, covalent binding, and the Langmuir-Blodgett technique. Copyright 2002 Elsevier Science (USA).

  6. MDB: the Metalloprotein Database and Browser at The Scripps Research Institute

    PubMed Central

    Castagnetto, Jesus M.; Hennessy, Sean W.; Roberts, Victoria A.; Getzoff, Elizabeth D.; Tainer, John A.; Pique, Michael E.

    2002-01-01

    The Metalloprotein Database and Browser (MDB; http://metallo.scripps.edu) at The Scripps Research Institute is a web-accessible resource for metalloprotein research. It offers the scientific community quantitative information on geometrical parameters of metal-binding sites in protein structures available from the Protein Data Bank (PDB). The MDB also offers analytical tools for the examination of trends or patterns in the indexed metal-binding sites. A user can perform interactive searches, metal-site structure visualization (via a Java applet), and analysis of the quantitative data by accessing the MDB through a web browser without requiring an external application or platform-dependent plugin. The MDB also has a non-interactive interface with which other web sites and network-aware applications can seamlessly incorporate data or statistical analysis results from metal-binding sites. The information contained in the MDB is periodically updated with automated algorithms that find and index metal sites from new protein structures released by the PDB. PMID:11752342

  7. Odorant-binding proteins display high affinities for behavioral attractants and repellents in the natural predator Chrysopa pallens.

    PubMed

    Li, Zhao-Qun; Zhang, Shuai; Luo, Jun-Yu; Wang, Si-Bao; Dong, Shuang-Lin; Cui, Jin-Jie

    2015-07-01

    Chrysopa pallens is an important natural predator of various pests in many different cropping systems. Understanding the sophisticated olfactory system of insect antennae is crucial for studying the physiological bases of olfaction and could also help enhance the effectiveness of C. pallens in biological control. However, functional studies of the olfactory genes in C. pallens are still lacking. In this study, we cloned five odorant-binding protein (OBP) genes from C. pallens (CpalOBPs). Quantitative RT-PCR results indicated that the five CpalOBPs had different tissue expression profiles. Ligand-binding assays showed that farnesol, farnesene, cis-3-hexenyl hexanoate, geranylacetone, beta-ionone, octyl aldehyde, decanal, nerolidol (Ki<20 μM), and especially 2-pentadecanone (Ki=1.19 μM) and 2-hexyl-1-decanol (Ki=0.37 μM) strongly bound to CpalOBP2. CpalOBP15 exhibited high binding affinities for beta-ionone, 2-tridecanone, trans-nerolidol, and dodecyl aldehyde. Behavioral trials using the 14 compounds exhibiting high binding affinities for the CpalOBPs revealed that nine were able to elicit significant behavioral responses from C. pallens. Among them, farnesene and its corresponding alcohol, farnesol, elicited remarkable repellent behavioral responses from C. pallens. Our study provides several compounds that could be selected to develop slow-release agents that attract/repel C. pallens and to improve the search for strategies to eliminate insect pests. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction

    PubMed Central

    Gleitsman, Kristin R.

    2014-01-01

    Determination of quantitative thermodynamic and kinetic frameworks for ribozymes derived from the Azoarcus group I intron and comparisons to their well-studied analogs from the Tetrahymena group I intron reveal similarities and differences between these RNAs. The guanosine (G) substrate binds to the Azoarcus and Tetrahymena ribozymes with similar equilibrium binding constants and similar very slow association rate constants. These and additional literature observations support a model in which the free ribozyme is not conformationally competent to bind G and in which the probability of assuming the binding-competent state is determined by tertiary interactions of peripheral elements. As proposed previously, the slow binding of guanosine may play a role in the specificity of group I intron self-splicing, and slow binding may be used analogously in other biological processes. The internal equilibrium between ribozyme-bound substrates and products is similar for these ribozymes, but the Azoarcus ribozyme does not display the coupling in the binding of substrates that is observed with the Tetrahymena ribozyme, suggesting that local preorganization of the active site and rearrangements within the active site upon substrate binding are different for these ribozymes. Our results also confirm the much greater tertiary binding energy of the 5′-splice site analog with the Azoarcus ribozyme, binding energy that presumably compensates for the fewer base-pairing interactions to allow the 5′-exon intermediate in self splicing to remain bound subsequent to 5′-exon cleavage and prior to exon ligation. Most generally, these frameworks provide a foundation for design and interpretation of experiments investigating fundamental properties of these and other structured RNAs. PMID:25246656

  9. Investigation of the interaction between naringin and human serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Yaheng; Li, Ying; Dong, Lijun; Li, Jiazhong; He, Wenying; Chen, Xingguo; Hu, Zhide

    2008-03-01

    The interaction between naringin and human serum albumin (HSA) has been thoroughly studied by fluorescence quenching technique in combination with UV absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling method. Under the simulative physiological conditions, fluorescence data revealed the presence of the binding site on HSA and its binding constants ( K) are 1.62 × 10 4, 1.68 × 10 4, 1.72 × 10 4, and 1.79 × 10 4 M -1 at 289, 296, 303, and 310 K, respectively. The alterations of protein secondary structure in the presence of naringin aqueous solution were qualitative and quantitative calculated by the evidence from CD and FT-IR spectroscopes. In addition, according to the Van't Hoff equation, the thermodynamic functions standard enthalpy (Δ H0) and standard entropy (Δ S0) for the reaction were calculated to be 3.45 kJ mol -1 and 92.52 J mol -1 K -1. These results indicated that naringin binds to HSA mainly by a hydrophobic interaction. Furthermore, the displacement experiments confirmed that naringin could bind to the site I of HSA, which was also in agreement with the result of the molecular modeling study.

  10. Subnanomolar indazole-5-carboxamide inhibitors of monoamine oxidase B (MAO-B) continued: indications of iron binding, experimental evidence for optimised solubility and brain penetration.

    PubMed

    Tzvetkov, Nikolay T; Antonov, Liudmil

    2017-12-01

    Pharmacological and physicochemical studies of N-unsubstituted indazole-5-carboxamides (subclass I) and their structurally optimised N1-methylated analogues (subclass II), initially developed as drug and radioligand candidates for the treatment and diagnosis of Parkinson's disease (PD), are presented. The compounds are highly brain permeable, selective, reversible, and competitive monoamine oxidase B (MAO-B) inhibitors with improved water-solubility and subnanomolar potency (pIC 50  >8.8). Using a well-validated, combined X-ray/modelling technology platform, we performed a semi-quantitative analysis of the binding modes of all compounds and investigated the role of the indazole N1 position for their MAO-B inhibitory activity. Moreover, compounds NTZ-1006, 1032, and 1441 were investigated for their ability to bind Fe 2+ and Fe 3+ ions using UV-visible spectroscopy.

  11. Comprehensive Identification of RNA-Binding Proteins by RNA Interactome Capture.

    PubMed

    Castello, Alfredo; Horos, Rastislav; Strein, Claudia; Fischer, Bernd; Eichelbaum, Katrin; Steinmetz, Lars M; Krijgsveld, Jeroen; Hentze, Matthias W

    2016-01-01

    RNA associates with RNA-binding proteins (RBPs) from synthesis to decay, forming dynamic ribonucleoproteins (RNPs). In spite of the preeminent role of RBPs regulating RNA fate, the scope of cellular RBPs has remained largely unknown. We have recently developed a novel and comprehensive method to identify the repertoire of active RBPs of cultured cells, called RNA interactome capture. Using in vivo UV cross-linking on cultured cells, proteins are covalently bound to RNA if the contact between the two is direct ("zero distance"). Protein-RNA complexes are purified by poly(A) tail-dependent oligo(dT) capture and analyzed by quantitative mass spectrometry. Because UV irradiation is applied to living cells and purification is performed using highly stringent washes, RNA interactome capture identifies physiologic and direct protein-RNA interactions. Applied to HeLa cells, this protocol revealed the near-complete repertoire of RBPs, including hundreds of novel RNA binders. Apart from its RBP discovery capacity, quantitative and comparative RNA interactome capture can also be used to study the responses of the RBP repertoire to different physiological cues and processes, including metabolic stress, differentiation, development, or the response to drugs.

  12. [Integration of pharmacokinetics and pharmacodynamics based on the in vivo analysis of drug-receptor binding].

    PubMed

    Yamada, Shizuo

    2015-01-01

      As I was deeply interested in the effects of drugs on the human body, I chose pharmacology as the subject of special study when I became a 4th year student at Shizuoka College of Pharmacy. I studied abroad as a postdoctoral fellow for two years, from 1978, under the tutelage of Professor Henry I. Yamamura (pharmacology) in the College of Medicine at the University of Arizona, USA. He taught me a variety of valuable skills such as the radioreceptor binding assay, which represented the most advanced technology developed in the US at that time. After returning home, I engaged in clarifying receptor abnormalities in pathological conditions, as well as in drug action mechanisms, by making the best use of this radioreceptor binding assay. In 1989, following the founding of the University of Shizuoka, I was invited by Professor Ryohei Kimura to join the Department of Pharmacokinetics. This switch in discipline provided a good opportunity for me to broaden my perspectives in pharmaceutical sciences. I worked on evaluating drug-receptor binding in vivo as a combined index for pharmacokinetics and pharmacological effect manifestation, with the aim of bridging pharmacology and pharmacokinetics. In fact, by focusing on data from in vivo receptor binding, it became possible to clearly rationalize the important consideration of drug dose-concentration-action relationships, and to study quantitative and kinetic analyses of relationships among pharmacokinetics, receptor binding and pharmacological effects. Based on this concept, I was able to demonstrate the utility of dynamic analyses of drug-receptor binding in drug discovery, drug fostering, and the proper use of pharmacokinetics with regard to many drugs.

  13. Application of Quantitative Structure–Activity Relationship Models of 5-HT1A Receptor Binding to Virtual Screening Identifies Novel and Potent 5-HT1A Ligands

    PubMed Central

    2015-01-01

    The 5-hydroxytryptamine 1A (5-HT1A) serotonin receptor has been an attractive target for treating mood and anxiety disorders such as schizophrenia. We have developed binary classification quantitative structure–activity relationship (QSAR) models of 5-HT1A receptor binding activity using data retrieved from the PDSP Ki database. The prediction accuracy of these models was estimated by external 5-fold cross-validation as well as using an additional validation set comprising 66 structurally distinct compounds from the World of Molecular Bioactivity database. These validated models were then used to mine three major types of chemical screening libraries, i.e., drug-like libraries, GPCR targeted libraries, and diversity libraries, to identify novel computational hits. The five best hits from each class of libraries were chosen for further experimental testing in radioligand binding assays, and nine of the 15 hits were confirmed to be active experimentally with binding affinity better than 10 μM. The most active compound, Lysergol, from the diversity library showed very high binding affinity (Ki) of 2.3 nM against 5-HT1A receptor. The novel 5-HT1A actives identified with the QSAR-based virtual screening approach could be potentially developed as novel anxiolytics or potential antischizophrenic drugs. PMID:24410373

  14. High-throughput process development: determination of dynamic binding capacity using microtiter filter plates filled with chromatography resin.

    PubMed

    Bergander, Tryggve; Nilsson-Välimaa, Kristina; Oberg, Katarina; Lacki, Karol M

    2008-01-01

    Steadily increasing demand for more efficient and more affordable biomolecule-based therapies put a significant burden on biopharma companies to reduce the cost of R&D activities associated with introduction of a new drug to the market. Reducing the time required to develop a purification process would be one option to address the high cost issue. The reduction in time can be accomplished if more efficient methods/tools are available for process development work, including high-throughput techniques. This paper addresses the transitions from traditional column-based process development to a modern high-throughput approach utilizing microtiter filter plates filled with a well-defined volume of chromatography resin. The approach is based on implementing the well-known batch uptake principle into microtiter plate geometry. Two variants of the proposed approach, allowing for either qualitative or quantitative estimation of dynamic binding capacity as a function of residence time, are described. Examples of quantitative estimation of dynamic binding capacities of human polyclonal IgG on MabSelect SuRe and of qualitative estimation of dynamic binding capacity of amyloglucosidase on a prototype of Capto DEAE weak ion exchanger are given. The proposed high-throughput method for determination of dynamic binding capacity significantly reduces time and sample consumption as compared to a traditional method utilizing packed chromatography columns without sacrificing the accuracy of data obtained.

  15. Pharmaceutical-grade albumin: impaired drug-binding capacity in vitro

    PubMed Central

    Olsen, Harald; Andersen, Anders; Nordbø, Arve; Kongsgaard, Ulf E; Børmer, Ole P

    2004-01-01

    Background Albumin is the most abundant protein in blood plasma, and due to its ligand binding properties, serves as a circulating depot for endogenous and exogenous (e.g. drugs) compounds. Hence, the unbound drug is the pharmacologically active drug. Commercial human albumin preparations are frequently used during surgery and in critically ill patients. Recent studies have indicated that the use of pharmaceutical-grade albumin is controversial in critically ill patients. In this in vitro study we investigated the drug binding properties of pharmaceutical-grade albumins (Baxter/Immuno, Octapharma, and Pharmacia & Upjohn), native human serum, and commercially available human serum albumin from Sigma Chemical Company. Methods The binding properties of the various albumin solutions were tested in vitro by means of ultrafiltration. Naproxen, warfarin, and digitoxin were used as ligands. HPLC was used to quantitate the total and free drug concentrations. The data were fitted to a model of two classes of binding sites for naproxen and warfarin and one class for digitoxin, using Microsoft Excel and Graphpad Prism. Results The drugs were highly bound to albumin (95–99.5%). The highest affinity (lowest K1) was found with naproxen. Pharmaceutical-grade albumin solutions displayed significantly lower drug-binding capacity compared to native human serum and Sigma albumin. Thus, the free fraction was considerably higher, approximately 40 times for naproxen and 5 and 2 times for warfarin and digitoxin, respectively. The stabilisers caprylic acid and N-acetyl-DL-tryptophan used in the manufacturing procedure seem to be of importance. Adding the stabilisers to human serum and Sigma albumin reduced the binding affinity whereas charcoal treatment of the pharmaceutical-grade albumin from Octapharma almost restored the specific binding capacity. Conclusion This in vitro study demonstrates that the specific binding for warfarin and digitoxin is significantly reduced and for naproxen no longer detectable in pharmaceutical-grade albumin. It further shows that the addition of stabilisers may be of major importance for this effect. PMID:15046641

  16. Fast and reliable prediction of domain-peptide binding affinity using coarse-grained structure models.

    PubMed

    Tian, Feifei; Tan, Rui; Guo, Tailin; Zhou, Peng; Yang, Li

    2013-07-01

    Domain-peptide recognition and interaction are fundamentally important for eukaryotic signaling and regulatory networks. It is thus essential to quantitatively infer the binding stability and specificity of such interaction based upon large-scale but low-accurate complex structure models which could be readily obtained from sophisticated molecular modeling procedure. In the present study, a new method is described for the fast and reliable prediction of domain-peptide binding affinity with coarse-grained structure models. This method is designed to tolerate strong random noises involved in domain-peptide complex structures and uses statistical modeling approach to eliminate systematic bias associated with a group of investigated samples. As a paradigm, this method was employed to model and predict the binding behavior of various peptides to four evolutionarily unrelated peptide-recognition domains (PRDs), i.e. human amph SH3, human nherf PDZ, yeast syh GYF and yeast bmh 14-3-3, and moreover, we explored the molecular mechanism and biological implication underlying the binding of cognate and noncognate peptide ligands to their domain receptors. It is expected that the newly proposed method could be further used to perform genome-wide inference of domain-peptide binding at three-dimensional structure level. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Quantitative in vivo receptor binding. III. Tracer kinetic modeling of muscarinic cholinergic receptor binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, K.A.; Hichwa, R.D.; Ehrenkaufer, R.L.

    1985-10-01

    A tracer kinetic method is developed for the in vivo estimation of high-affinity radioligand binding to central nervous system receptors. Ligand is considered to exist in three brain pools corresponding to free, nonspecifically bound, and specifically bound tracer. These environments, in addition to that of intravascular tracer, are interrelated by a compartmental model of in vivo ligand distribution. A mathematical description of the model is derived, which allows determination of regional blood-brain barrier permeability, nonspecific binding, the rate of receptor-ligand association, and the rate of dissociation of bound ligand, from the time courses of arterial blood and tissue tracer concentrations.more » The term ''free receptor density'' is introduced to describe the receptor population measured by this method. The technique is applied to the in vivo determination of regional muscarinic acetylcholine receptors in the rat, with the use of (TH)scopolamine. Kinetic estimates of free muscarinic receptor density are in general agreement with binding capacities obtained from previous in vivo and in vitro equilibrium binding studies. In the striatum, however, kinetic estimates of free receptor density are less than those in the neocortex--a reversal of the rank ordering of these regions derived from equilibrium determinations. A simplified model is presented that is applicable to tracers that do not readily dissociate from specific binding sites during the experimental period.« less

  18. Evidence of bovine serum albumin-viologen herbicide binding interaction and associated structural modifications

    NASA Astrophysics Data System (ADS)

    Roy, Swarup; Saxena, Shailendra K.; Mishra, Suryakant; Yogi, Priyanka; Sagdeo, P. R.; Kumar, Rajesh

    2017-07-01

    The binding ability of viologen herbicide with bovine serum albumin (BSA) has been investigated to understand viologen associated hazards by investigating ethyl viologen's (EV) binding using various spectroscopies and in-silico molecular docking approaches. Apparent association constant (1.3 × 104 L/mol), calculated using UV-Vis spectra indicating a moderate complex formation between BSA and EV. A static mode of fluorescence quenching has been observed as evident from inverse temperature dependence of Stern-Volmer quenching constant which also confirms an EV-BSA complex formation. Emission and time resolved fluorescence studies reveal that the emission quenching of BSA with EV is initiated by static quenching mechanism. A moderately strong binding affinity between EV and BSA has been observed (binding constant value of 7.58 × 104 L/Mol) using fluorescence quenching titration, obtained at 298 K. Quantitative measurements of thermodynamic parameters like enthalpy and entropy changes clearly indicates hydrophobic force responsible for EV-BSA complex formation. The binding distance between EV and BSA was found to be 4.48 nm are involved in non-radiative energy transfer process. Furthermore, from the circular dichroism spectra it was observed that addition of EV is also found to change the secondary structure of BSA which leads to decrease in α-helix. Above mentioned results are found to be in consonance with molecular docking simulations and supports the EV-BSA binding.

  19. Analysis of Nuclear Factor-κB (NF-κB) Essential Modulator (NEMO) Binding to Linear and Lysine-linked Ubiquitin Chains and Its Role in the Activation of NF-κB*

    PubMed Central

    Kensche, Tobias; Tokunaga, Fuminori; Ikeda, Fumiyo; Goto, Eiji; Iwai, Kazuhiro; Dikic, Ivan

    2012-01-01

    Nuclear factor-κB (NF-κB) essential modulator (NEMO), a component of the inhibitor of κB kinase (IKK) complex, controls NF-κB signaling by binding to ubiquitin chains. Structural studies of NEMO provided a rationale for the specific binding between the UBAN (ubiquitin binding in ABIN and NEMO) domain of NEMO and linear (Met-1-linked) di-ubiquitin chains. Full-length NEMO can also interact with Lys-11-, Lys-48-, and Lys-63-linked ubiquitin chains of varying length in cells. Here, we show that purified full-length NEMO binds preferentially to linear ubiquitin chains in competition with lysine-linked ubiquitin chains of defined length, including long Lys-63-linked deca-ubiquitins. Linear di-ubiquitins were sufficient to activate both the IKK complex in vitro and to trigger maximal NF-κB activation in cells. In TNFα-stimulated cells, NEMO chimeras engineered to bind exclusively to Lys-63-linked ubiquitin chains mediated partial NF-κB activation compared with cells expressing NEMO that binds to linear ubiquitin chains. We propose that NEMO functions as a high affinity receptor for linear ubiquitin chains and a low affinity receptor for long lysine-linked ubiquitin chains. This phenomenon could explain quantitatively distinct NF-κB activation patterns in response to numerous cell stimuli. PMID:22605335

  20. Characterization of interaction between esculin and human serum albumin in membrane mimetic environments

    NASA Astrophysics Data System (ADS)

    Zhang, Yaheng; Li, Jiazhong; Dong, Lijun; Li, Ying; Chen, Xingguo

    2008-10-01

    In this study the interaction between esculin and human serum albumin (HSA) in AOT/isooctane/water microemulsions was studied for the first time using fluorescence quenching technique in combination with UV absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) technique. Fluorescence data in ω o 20 microemulsions revealed the presence of the binding site of esculin on HSA and its binding constants at four different temperatures were obtained. The affinities in microemulsions are similar to that in buffer solution. The alterations of protein secondary structure in the microemulsions in the absence and presence of esculin compared with the free form of HSA in buffer were qualitatively and quantitatively analyzed by the evidence from CD and FT-IR spectroscopes. The displacement experiments confirmed that esculin could bind to the site I of HSA, which was in agreement with the result of the molecular modeling study. Furthermore, the DLS data suggested that HSA may locate at the interface of the microemulsion and esculin could interact with them.

  1. Analysis of the interactions between GMF and Arp2/3 complex in two binding sites by molecular dynamics simulation.

    PubMed

    Popinako, A; Antonov, M; Dibrova, D; Chemeris, A; Sokolova, O S

    2018-02-05

    The Arp2/3 complex plays a key role in nucleating actin filaments branching. The glia maturation factor (GMF) competes with activators for interacting with the Arp2/3 complex and initiates the debranching of actin filaments. In this study, we performed a comparative analysis of interactions between GMF and the Arp2/3 complex and identified new amino acid residues involved in GMF binding to the Arp2/3 complex at two separate sites, revealed by X-ray and single particle EM techniques. Using molecular dynamics simulations we demonstrated the quantitative and qualitative changes in hydrogen bonds upon binding with GMF. We identified the specific amino acid residues in GMF and Arp2/3 complex that stabilize the interactions and estimated the mean force profile for the GMF using umbrella sampling. Phylogenetic and structural analyses of the recently defined GMF binding site on the Arp3 subunit indicate a new mechanism for Arp2/3 complex inactivation that involves interactions between the Arp2/3 complex and GMF at two binding sites. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Thermodynamic contribution of backbone conformational entropy in the binding between SH3 domain and proline-rich motif.

    PubMed

    Zeng, Danyun; Shen, Qingliang; Cho, Jae-Hyun

    2017-02-26

    Biological functions of intrinsically disordered proteins (IDPs), and proteins containing intrinsically disordered regions (IDRs) are often mediated by short linear motifs, like proline-rich motifs (PRMs). Upon binding to their target proteins, IDPs undergo a disorder-to-order transition which is accompanied by a large conformational entropy penalty. Hence, the molecular mechanisms underlying control of conformational entropy are critical for understanding the binding affinity and selectivity of IDPs-mediated protein-protein interactions (PPIs). Here, we investigated the backbone conformational entropy change accompanied by binding of the N-terminal SH3 domain (nSH3) of CrkII and PRM derived from guanine nucleotide exchange factor 1 (C3G). In particular, we focused on the estimation of conformational entropy change of disordered PRM upon binding to the nSH3 domain. Quantitative characterization of conformational dynamics of disordered peptides like PRMs is limited. Hence, we combined various methods, including NMR model-free analysis, δ2D, DynaMine, and structure-based calculation of entropy loss. This study demonstrates that the contribution of backbone conformational entropy change is significant in the PPIs mediated by IDPs/IDRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A long-term stability study of Prussian blue: A quality assessment of water content and cesium binding.

    PubMed

    Mohammad, Adil; Yang, Yongsheng; Khan, Mansoor A; Faustino, Patrick J

    2015-01-25

    Prussian blue (PB) is the active pharmaceutical ingredient (API) of Radiogardase, the first approved medical countermeasure for the treatment of radiocesium poisoning in the event of a major radiological incident such as a "dirty bomb" or nuclear attack. The purpose of this study is to assess the long-term stability of Prussian blue drug products (DPs) and APIs under laboratory storage condition by monitoring the loss in water content and the in vitro cesium binding. The water content was measured by thermal gravimetric analysis (TGA). The in-vitro cesium binding study was conducted using a surrogate model to mimic gastric residence and intestinal transport. Free cesium was analyzed using a validated flame atomic emission spectroscopy (AES) method. The binding equilibrium was reached at 24h. The Langmuir isotherm was plotted to calculate the maximum binding capacity (MBC). Comparison of the same PB samples with 2003 data samples, the water content of both APIs and DPs decreased on an average by approximately 12-24%. Consequently, the MBC of cesium was decreased from 358mg/g in 2003 to 265mg/g @ pH 7.5, a decrease of approximately 26%. The binding of cesium is also pH dependent with lowest binding at pH 1.0 and maximum binding at pH 7.5. At pH 7.5, the amount of cesium bound decreased by an average value of 7.9% for APIs and 8.9% for DPs (for 600ppm initial cesium concentration). These findings of water loss, pH dependence and decrease in cesium binding are consistent with our previously published data in 2003. Over last 10 years the stored DPs and APIs of PB have lost about 20% of water which has a negative impact on the PB cesium binding, however PB still meets the FDA specification of >150mg/g at equilibrium. The study is the first quantitative assessment of the long-term stability of PB and directs that proper long-term and short-term storage of PB is required to ensure that it is safe and efficacious at the time of an emergency situation. Published by Elsevier B.V.

  4. DNA Nanostructures as Models for Evaluating the Role of Enthalpy and Entropy in Polyvalent Binding

    PubMed Central

    Nangreave, Jeanette; Yan, Hao; Liu, Yan

    2011-01-01

    DNA nanotechnology allows the design and construction of nano-scale objects that have finely tuned dimensions, orientation, and structure with remarkable ease and convenience. Synthetic DNA nanostructures can be precisely engineered to model a variety of molecules and systems, providing the opportunity to probe very subtle biophysical phenomena. In this study, several such synthetic DNA nanostructures were designed to serve as models to study the binding behavior of polyvalent molecules and gain insight into how small changes to the ligand/receptor scaffolds, intended to vary their conformational flexibility, will affect their association equilibrium. This approach has yielded a quantitative identification of the roles of enthalpy and entropy in the affinity of polyvalent DNA nanostructure interactions, which exhibit an intriguing compensating effect. PMID:21381740

  5. Quantitative identification of proteins that influence miRNA biogenesis by RNA pull-down-SILAC mass spectrometry (RP-SMS).

    PubMed

    Choudhury, Nila Roy; Michlewski, Gracjan

    2018-06-08

    RNA-binding proteins mediate and control gene expression. As some examples, they regulate pre-mRNA synthesis and processing; mRNA localisation, translation and decay; and microRNA (miRNA) biogenesis and function. Here, we present a detailed protocol for RNA pull-down coupled to stable isotope labelling by amino acids in cell culture (SILAC) mass spectrometry (RP-SMS) that enables quantitative, fast and specific detection of RNA-binding proteins that regulate miRNA biogenesis. In general, this method allows for the identification of RNA-protein complexes formed using in vitro or chemically synthesized RNAs and protein extracts derived from cultured cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Development of QSAR models for predicting the binding affinity of endocrine disrupting chemicals to eight fish estrogen receptor.

    PubMed

    He, Junyi; Peng, Tao; Yang, Xianhai; Liu, Huihui

    2018-02-01

    Endocrine disrupting effect has become a central point of concern, and various biological mechanisms involve in the disruption of endocrine system. Recently, we have explored the mechanism of disrupting hormonal transport protein, through the binding affinity of sex hormone-binding globulin in different fish species. This study, serving as a companion article, focused on the mechanism of activating/inhibiting hormone receptor, by investigating the binding interaction of chemicals with the estrogen receptor (ER) of different fish species. We collected the relative binding affinity (RBA) of chemicals with 17β-estradiol binding to the ER of eight fish species. With this parameter as the endpoints, quantitative structure-activity relationship (QSAR) models were established using DRAGON descriptors. Statistical results indicated that the developed models had satisfactory goodness of fit, robustness and predictive ability. The Euclidean distance and Williams plot verified that these models had wide application domains, which covered a large number of structurally diverse chemicals. Based on the screened descriptors, we proposed an appropriate mechanism interpretation for the binding potency. Additionally, even though the same chemical had different affinities for ER from different fish species, the affinity of ER exhibited a high correlation for fish species within the same Order (i.e., Salmoniformes, Cypriniformes, Perciformes), which consistent with that in our previous study. Hence, when performing the endocrine disrupting effect assessment, the species diversity should be taken into account, but maybe the fish species in the same Order can be grouped together. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Facilitated dissociation of transcription factors from single DNA binding sites

    PubMed Central

    Kamar, Ramsey I.; Banigan, Edward J.; Erbas, Aykut; Giuntoli, Rebecca D.; Olvera de la Cruz, Monica; Johnson, Reid C.; Marko, John F.

    2017-01-01

    The binding of transcription factors (TFs) to DNA controls most aspects of cellular function, making the understanding of their binding kinetics imperative. The standard description of bimolecular interactions posits that TF off rates are independent of TF concentration in solution. However, recent observations have revealed that proteins in solution can accelerate the dissociation of DNA-bound proteins. To study the molecular basis of facilitated dissociation (FD), we have used single-molecule imaging to measure dissociation kinetics of Fis, a key Escherichia coli TF and major bacterial nucleoid protein, from single dsDNA binding sites. We observe a strong FD effect characterized by an exchange rate ∼1×104 M−1s−1, establishing that FD of Fis occurs at the single-binding site level, and we find that the off rate saturates at large Fis concentrations in solution. Although spontaneous (i.e., competitor-free) dissociation shows a strong salt dependence, we find that FD depends only weakly on salt. These results are quantitatively explained by a model in which partially dissociated bound proteins are susceptible to invasion by competitor proteins in solution. We also report FD of NHP6A, a yeast TF with structure that differs significantly from Fis. We further perform molecular dynamics simulations, which indicate that FD can occur for molecules that interact far more weakly than those that we have studied. Taken together, our results indicate that FD is a general mechanism assisting in the local removal of TFs from their binding sites and does not necessarily require cooperativity, clustering, or binding site overlap. PMID:28364020

  8. Predicting MHC-II binding affinity using multiple instance regression

    PubMed Central

    EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2011-01-01

    Reliably predicting the ability of antigen peptides to bind to major histocompatibility complex class II (MHC-II) molecules is an essential step in developing new vaccines. Uncovering the amino acid sequence correlates of the binding affinity of MHC-II binding peptides is important for understanding pathogenesis and immune response. The task of predicting MHC-II binding peptides is complicated by the significant variability in their length. Most existing computational methods for predicting MHC-II binding peptides focus on identifying a nine amino acids core region in each binding peptide. We formulate the problems of qualitatively and quantitatively predicting flexible length MHC-II peptides as multiple instance learning and multiple instance regression problems, respectively. Based on this formulation, we introduce MHCMIR, a novel method for predicting MHC-II binding affinity using multiple instance regression. We present results of experiments using several benchmark datasets that show that MHCMIR is competitive with the state-of-the-art methods for predicting MHC-II binding peptides. An online web server that implements the MHCMIR method for MHC-II binding affinity prediction is freely accessible at http://ailab.cs.iastate.edu/mhcmir. PMID:20855923

  9. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.

    PubMed

    Brannan, Kristopher W; Jin, Wenhao; Huelga, Stephanie C; Banks, Charles A S; Gilmore, Joshua M; Florens, Laurence; Washburn, Michael P; Van Nostrand, Eric L; Pratt, Gabriel A; Schwinn, Marie K; Daniels, Danette L; Yeo, Gene W

    2016-10-20

    RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules

    DOE PAGES

    Walker, Johnnie A.; Takasuka, Taichi E.; Deng, Kai; ...

    2015-12-21

    Carbohydrate binding modules (CBMs) bind polysaccharides and help target glycoside hydrolases catalytic domains to their appropriate carbohydrate substrates. To better understand how CBMs can improve cellulolytic enzyme reactivity, representatives from each of the 18 families of CBM found in Ruminoclostridium thermocellum were fused to the multifunctional GH5 catalytic domain of CelE (Cthe_0797, CelEcc), which can hydrolyze numerous types of polysaccharides including cellulose, mannan, and xylan. Since CelE is a cellulosomal enzyme, none of these fusions to a CBM previously existed. CelEcc_CBM fusions were assayed for their ability to hydrolyze cellulose, lichenan, xylan, and mannan. Several CelEcc_CBM fusions showed enhanced hydrolyticmore » activity with different substrates relative to the fusion to CBM3a from the cellulosome scaffoldin, which has high affinity for binding to crystalline cellulose. Additional binding studies and quantitative catalysis studies using nanostructure-initiator mass spectrometry (NIMS) were carried out with the CBM3a, CBM6, CBM30, and CBM44 fusion enzymes. In general, and consistent with observations of others, enhanced enzyme reactivity was correlated with moderate binding affinity of the CBM. Numerical analysis of reaction time courses showed that CelEcc_CBM44, a combination of a multifunctional enzyme domain with a CBM having broad binding specificity, gave the fastest rates for hydrolysis of both the hexose and pentose fractions of ionic-liquid pretreated switchgrass. In conclusion, we have shown that fusions of different CBMs to a single multifunctional GH5 catalytic domain can increase its rate of reaction with different pure polysaccharides and with pretreated biomass. This fusion approach, incorporating domains with broad specificity for binding and catalysis, provides a new avenue to improve reactivity of simple combinations of enzymes within the complexity of plant biomass.« less

  11. Quantitative Impact of Plasma Clearance and Down-regulation on GLP-1 Receptor Molecular Imaging.

    PubMed

    Zhang, Liang; Thurber, Greg M

    2016-02-01

    Quantitative molecular imaging of beta cell mass (BCM) would enable early detection and treatment monitoring of type 1 diabetes. The glucagon-like peptide-1 (GLP-1) receptor is an attractive target due to its beta cell specificity and cell surface location. We quantitatively investigated the impact of plasma clearance and receptor internalization on targeting efficiency in healthy B6 mice. Four exenatide-based probes were synthesized that varied in molecular weight, binding affinity, and plasma clearance. The GLP-1 receptor internalization rate and in vivo receptor expression were quantified. Receptor internalization (54,000 receptors/cell in vivo) decreased significantly within minutes, reducing the benefit of a slower-clearing agent. The multimers and albumin binding probes had higher kidney and liver uptake, respectively. Slow plasma clearance is beneficial for GLP-1 receptor peptide therapeutics. However, for exendin-based imaging of islets, down-regulation of the GLP-1 receptor and non-specific background uptake result in a higher target-to-background ratio for fast-clearing agents.

  12. Quantitative Impact of Plasma Clearance and Down-regulation on GLP-1 Receptor Molecular Imaging

    PubMed Central

    Zhang, Liang; Thurber, Greg M.

    2016-01-01

    Purpose Quantitative molecular imaging of beta cell mass (BCM) would enable early detection and treatment monitoring of type-1 diabetes. The glucagon like peptide-1 (GLP-1) receptor is an attractive target due to its beta cell specificity and cell surface location. We quantitatively investigated the impact of plasma clearance and receptor internalization on targeting efficiency in healthy B6 mice. Procedures Four exenatide-based probes were synthesized that varied in molecular weight, binding affinity, and plasma clearance. The GLP-1 receptor internalization rate and in vivo receptor expression were quantified. Results Receptor internalization (54,000 receptors/cell in vivo) decreased significantly within minutes, reducing the benefit of a slower clearing agent. The multimers and albumin binding probes had higher kidney and liver uptake, respectively. Conclusions Slow plasma clearance is beneficial for GLP-1 receptor peptide therapeutics. However, for exendin-based imaging of islets, downregulation of the GLP-1 receptor and non-specific background uptake result in a higher TBR for fast-clearing agents. PMID:26194012

  13. In Vitro Comparison of Adipokine Export Signals.

    PubMed

    Sharafi, Parisa; Kocaefe, Y Çetin

    2016-01-01

    Mammalian cells are widely used for recombinant protein production in research and biotechnology. Utilization of export signals significantly facilitates production and purification processes. 35 years after the discovery of the mammalian export machinery, there still are obscurities regarding the efficiency of the export signals. The aim of this study was the comparative evaluation of the efficiency of selected export signals using adipocytes as a cell model. Adipocytes have a large capacity for protein secretion including several enzymes, adipokines, and other signaling molecules, providing a valid system for a quantitative evaluation. Constructs that expressed N-terminal fusion export signals were generated to express Enhanced Green Fluorescence Protein (EGFP) as a reporter for quantitative and qualitative evaluation. Furthermore, fluorescent microscopy was used to trace the intracellular traffic of the reporter. The export efficiency of six selected proteins secreted from adipocytes was evaluated. Quantitative comparison of intracellular and exported fractions of the recombinant constructs demonstrated a similar efficiency among the studied sequences with minor variations. The export signal of Retinol Binding Protein (RBP4) exhibited the highest efficiency. This study presents the first quantitative data showing variations among export signals, in adipocytes which will help optimization of recombinant protein distribution.

  14. Biomacromolecular quantitative structure-activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein-protein binding affinity.

    PubMed

    Zhou, Peng; Wang, Congcong; Tian, Feifei; Ren, Yanrong; Yang, Chao; Huang, Jian

    2013-01-01

    Quantitative structure-activity relationship (QSAR), a regression modeling methodology that establishes statistical correlation between structure feature and apparent behavior for a series of congeneric molecules quantitatively, has been widely used to evaluate the activity, toxicity and property of various small-molecule compounds such as drugs, toxicants and surfactants. However, it is surprising to see that such useful technique has only very limited applications to biomacromolecules, albeit the solved 3D atom-resolution structures of proteins, nucleic acids and their complexes have accumulated rapidly in past decades. Here, we present a proof-of-concept paradigm for the modeling, prediction and interpretation of the binding affinity of 144 sequence-nonredundant, structure-available and affinity-known protein complexes (Kastritis et al. Protein Sci 20:482-491, 2011) using a biomacromolecular QSAR (BioQSAR) scheme. We demonstrate that the modeling performance and predictive power of BioQSAR are comparable to or even better than that of traditional knowledge-based strategies, mechanism-type methods and empirical scoring algorithms, while BioQSAR possesses certain additional features compared to the traditional methods, such as adaptability, interpretability, deep-validation and high-efficiency. The BioQSAR scheme could be readily modified to infer the biological behavior and functions of other biomacromolecules, if their X-ray crystal structures, NMR conformation assemblies or computationally modeled structures are available.

  15. Application of headspace solid phase microextraction for study of noncovalent interaction of borneol with human serum albumin

    PubMed Central

    Hu, Liang; Chen, Dong-ying

    2009-01-01

    Aim: To investigate noncovalent interactions between borneol and human serum albumin (HSA) under near-physiological conditions. Methods: A 65-μm polydimethylsiloxane (PDMS) fiber was selected for sampling. The extraction temperature was kept at 37 °C, and the extraction time was optimized at 10 min. Borneol solutions of different concentrations were equilibrated in 600 μmol/L HSA and 67 mmol/L phosphate buffer solution (pH 7.4, 37 °C) for 24 h prior to solid phase microextraction (SPME) using headspace mode. The binding properties were obtained based on the calculation of extracted borneol amount using gas chromatography (GC) determination. Results: The headspace SPME extraction method avoided disturbance from the HSA binding matrix. The recovery showed good linearity for the borneol concentrations over the range of 0.4–16.3 μmol/L with a regression coefficient (R2) of 0.9998. The limit of detection and lower limit of quantitation were determined to be 0.01 μmol/L and 0.4 μmol/L, respectively. The binding constant and the percentage binding rate were estimated to be 2.4×103(mol/L)-1 and 59.5%, respectively. Conclusion: Headspace SPME coupled to GC is a simple, sensitive and rapid method for the study of borneol binding to HSA. The method may be applied in the determination of other protein binding properties in human plasma. PMID:19890364

  16. Binding of basic amphipathic peptides to neutral phospholipid membranes: a thermodynamic study applied to dansyl-labeled melittin and substance P analogues.

    PubMed

    Pérez-Payá, E; Porcar, I; Gómez, C M; Pedrós, J; Campos, A; Abad, C

    1997-08-01

    A thermodynamic approach is proposed to quantitatively analyze the binding isotherms of peptides to model membranes as a function of one adjustable parameter, the actual peptide charge in solution z(p)+. The main features of this approach are a theoretical expression for the partition coefficient calculated from the molar free energies of the peptide in the aqueous and lipid phases, an equation proposed by S. Stankowski [(1991) Biophysical Journal, Vol. 60, p. 341] to evaluate the activity coefficient of the peptide in the lipid phase, and the Debye-Hückel equation that quantifies the activity coefficient of the peptide in the aqueous phase. To assess the validity of this approach we have studied, by means of steady-state fluorescence spectroscopy, the interaction of basic amphipathic peptides such as melittin and its dansylcadaverine analogue (DNC-melittin), as well as a new fluorescent analogue of substance P, SP (DNC-SP) with neutral phospholipid membranes. A consistent quantitative analysis of each binding curve was achieved. The z(p)+ values obtained were always found to be lower than the physical charge of the peptide. These z(p)+ values can be rationalized by considering that the peptide charged groups are strongly associated with counterions in buffer solution at a given ionic strength. The partition coefficients theoretically derived using the z(p)+ values were in agreement with those deduced from the Gouy-Chapman formalism. Ultimately, from the z(p)+ values the molar free energies for the free and lipid-bound states of the peptides have been calculated.

  17. Distribution of monoamine oxidase proteins in human brain: implications for brain imaging studies

    PubMed Central

    Tong, Junchao; Meyer, Jeffrey H; Furukawa, Yoshiaki; Boileau, Isabelle; Chang, Li-Jan; Wilson, Alan A; Houle, Sylvain; Kish, Stephen J

    2013-01-01

    Positron emission tomography (PET) imaging of monoamine oxidases (MAO-A: [11C]harmine, [11C]clorgyline, and [11C]befloxatone; MAO-B: [11C]deprenyl-D2) has been actively pursued given clinical importance of MAOs in human neuropsychiatric disorders. However, it is unknown how well PET outcome measures for the different radiotracers are quantitatively related to actual MAO protein levels. We measured regional distribution (n=38) and developmental/aging changes (21 hours to 99 years) of both MAOs by quantitative immunoblotting in autopsied normal human brain. MAO-A was more abundant than MAO-B in infants, which was reversed as MAO-B levels increased faster before 1 year and, unlike MAO-A, kept increasing steadily to senescence. In adults, regional protein levels of both MAOs were positively and proportionally correlated with literature postmortem data of MAO activities and binding densities. With the exception of [11C]befloxatone (binding potential (BP), r=0.61, P=0.15), correlations between regional PET outcome measures of binding in the literature and MAO protein levels were good (P<0.01) for [11C]harmine (distribution volume, r=0.86), [11C]clorgyline (λk3, r=0.82), and [11C]deprenyl-D2 (λk3 or modified Patlak slope, r=0.78 to 0.87), supporting validity of the latter imaging measures. However, compared with in vitro data, the latter PET measures underestimated regional contrast by ∼2-fold. Further studies are needed to address cause of the in vivo vs. in vitro nonproportionality. PMID:23403377

  18. A systematic quantitative approach to rational drug design and discovery of novel human carbonic anhydrase IX inhibitors.

    PubMed

    Sethi, Kalyan K; Verma, Saurabh M

    2014-08-01

    Drug design involves the design of small molecules that are complementary in shape and charge to the biomolecular target with which they interact and therefore will bind to it. Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed for a series of carbonic anhydrase IX inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques with the help of SYBYL 7.1 software. The large set of 36 different aromatic/heterocyclic sulfamates carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, such as hCA IX, was chosen for this study. The conventional ligand-based 3D-QSAR studies were performed based on the low energy conformations employing database alignment rule. The ligand-based model gave q(2) values 0.802 and 0.829 and r(2) values 1.000 and 0.994 for CoMFA and CoMSIA, respectively, and the predictive ability of the model was validated. The predicted r(2) values are 0.999 and 0.502 for CoMFA and CoMSIA, respectively. SEA (steric, electrostatic, hydrogen bond acceptor) of CoMSIA has the significant contribution for the model development. The docking of inhibitors into hCA IX active site using Glide XP (Schrödinger) software revealed the vital interactions and binding conformation of the inhibitors. The CoMFA and CoMSIA field contour maps are well in agreement with the structural characteristics of the binding pocket of hCA IX active site, which suggests that the information rendered by 3D-QSAR models and the docking interactions can provide guidelines for the development of improved hCA IX inhibitors as leads for various types of metastatic cancers including those of cervical, renal, breast and head and neck origin.

  19. Quantitatively probing propensity for structural transitions in engineered virus nanoparticles by single-molecule mechanical analysis

    NASA Astrophysics Data System (ADS)

    Castellanos, Milagros; Carrillo, Pablo J. P.; Mateu, Mauricio G.

    2015-03-01

    Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological applications. In viral particles of the minute virus of mice (MVM), folded segments of the single-stranded DNA genome are bound to the capsid inner wall and act as molecular buttresses that increase locally the mechanical stiffness of the particle. We have explored whether a quantitative linkage exists in MVM particles between their DNA-mediated stiffening and impairment of a heat-induced, virus-inactivating structural change. A series of structurally modified virus particles with disrupted capsid-DNA interactions and/or distorted capsid cavities close to the DNA-binding sites were engineered and characterized, both in classic kinetics assays and by single-molecule mechanical analysis using atomic force microscopy. The rate constant of the virus inactivation reaction was found to decrease exponentially with the increase in elastic constant (stiffness) of the regions closer to DNA-binding sites. The application of transition state theory suggests that the height of the free energy barrier of the virus-inactivating structural transition increases linearly with local mechanical stiffness. From a virological perspective, the results indicate that infectious MVM particles may have acquired the biological advantage of increased survival under thermal stress by evolving architectural elements that rigidify the particle and impair non-productive structural changes. From a nanotechnological perspective, this study provides proof of principle that determination of mechanical stiffness and its manipulation by protein engineering may be applied for quantitatively probing and tuning the conformational dynamics of virus-based and other protein-based nanoassemblies.Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological applications. In viral particles of the minute virus of mice (MVM), folded segments of the single-stranded DNA genome are bound to the capsid inner wall and act as molecular buttresses that increase locally the mechanical stiffness of the particle. We have explored whether a quantitative linkage exists in MVM particles between their DNA-mediated stiffening and impairment of a heat-induced, virus-inactivating structural change. A series of structurally modified virus particles with disrupted capsid-DNA interactions and/or distorted capsid cavities close to the DNA-binding sites were engineered and characterized, both in classic kinetics assays and by single-molecule mechanical analysis using atomic force microscopy. The rate constant of the virus inactivation reaction was found to decrease exponentially with the increase in elastic constant (stiffness) of the regions closer to DNA-binding sites. The application of transition state theory suggests that the height of the free energy barrier of the virus-inactivating structural transition increases linearly with local mechanical stiffness. From a virological perspective, the results indicate that infectious MVM particles may have acquired the biological advantage of increased survival under thermal stress by evolving architectural elements that rigidify the particle and impair non-productive structural changes. From a nanotechnological perspective, this study provides proof of principle that determination of mechanical stiffness and its manipulation by protein engineering may be applied for quantitatively probing and tuning the conformational dynamics of virus-based and other protein-based nanoassemblies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07046a

  20. A fluorescent nucleic acid nanodevice quantitatively images elevated cyclic adenosine monophosphate in membrane-bound compartments.

    PubMed

    Sharma, Suruchi; Zaveri, Anisha; Visweswariah, Sandhya S; Krishnan, Yamuna

    2014-11-12

    cAMPhor: In the presence of cAMP, cAMPhor folds into a structure that binds DFHBI (green), increasing its fluorescence, while Alexa 647 (red) functions as a normalizing dye. It can thus be used to spatially image cAMP quantitatively in membrane-bound compartments. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. An in situ method to quantitatively determine dissolved free drug concentrations in vitro in the presence of polymer excipients using pulsatile microdialysis (PMD).

    PubMed

    Vejani, Charchil; Bellantone, Robert A

    2015-12-30

    In drug formulations containing polymer excipients, the effects of the polymer on the dissolved free drug concentration and resulting dissolution or release can be important, especially for poorly soluble drugs. In this study, an in vitro method based on pulsatile microdialysis (PMD) was developed to quantitatively determine dissolved free concentrations of drugs in the presence of polymers in aqueous media in situ (e.g., in place within the system being characterized). Formulations were made by dissolving various ratios of the drug griseofulvin and polymer PVP K30 in water and allowing the mix to equilibrate. A PMD probe was immersed in each mixture and the dissolved free drug concentrations were determined in the PMD samples. The experimental procedure and the equations used for data analysis are presented. To assess the consistency of data, a binding model was fit to the data obtained using PMD by calculating the dissolved free drug fraction fD for each drug-polymer ratio in solution, and obtaining the product of the binding stoichiometry and binding constant (νK per mole of polymer) from the slope of a plot of (1-fD)/fD vs. the molar polymer concentration. For comparison, equilibrium binding experiments were also performed at 23C, and the determined value of νK was similar to the value found using PMD. Experiments were performed at three temperatures, and a plot of ln (νK) vs. 1/T was linear and a binding enthalpy of -110.9±4.4J/mol of monomer was calculated from its slope. It was concluded that PMD can be used to determine the dissolved free drug concentrations in situ, which allows characterization of the drug-polymer interaction, even for low drug concentrations. This information may be important in modeling the dissolution or release of drugs from formulations containing polymers. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. miR-758-3p: a blood-based biomarker that’s influence on the expression of CERP/ABCA1 may contribute to the progression of obesity to metabolic syndrome

    PubMed Central

    O’Neill, Sadhbh; Larsen, Mette Bohl; Gregersen, Søren; Hermansen, Kjeld; O’Driscoll, Lorraine

    2018-01-01

    Due to increasing prevalence of obesity, a simple method or methods for the diagnosis of metabolic syndrome are urgently required to reduce the risk of associated cardiovascular disease, diabetes and cancer. This study aimed to identify a miRNA biomarker that may distinguish metabolic syndrome from obesity and to investigate if such a miRNA may have functional relevance for metabolic syndrome. 52 adults with clinical obesity (n=26) or metabolic syndrome (n=26) were recruited. Plasma specimens were procured from all and were randomly designated to discovery and validation cohorts. miRNA discovery profiling was performed, using array technology, on plasma RNA. Validation was performed by quantitative polymerase chain reaction. The functional effect of miR-758-3p on its predicted target, cholesterol efflux regulatory protein/ATP-binding cassette transporter, was investigated using HepG2 liver cells. Custom miRNA profiling of 25 miRNAs in the discovery cohort found miR-758-3p to be detected in the obese cohort but undetected in the metabolic syndrome cohort. miR-758-3p was subsequently validated as a potential biomarker for metabolic syndrome by quantitative polymerase chain reaction. Bioinformatics analysis identified cholesterol efflux regulatory protein/ATP-binding cassette transporter as miR-758-3p’s predicted target. Specifically, mimicking miR-758-3p in HepG2 cells suppressed cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression; conversely, inhibiting miR-758-3p increased cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression. miR-758-3p holds potential as a blood-based biomarker for distinguishing progression from obesity to metabolic syndrome and as a driver in controlling cholesterol efflux regulatory protein/ATP-binding cassette transporter expression, indicating it potential role in cholesterol control in metabolic syndrome. PMID:29507696

  3. Quantitative structure-activity relationship studies of threo-methylphenidate analogs.

    PubMed

    Misra, Milind; Shi, Qing; Ye, Xiaocong; Gruszecka-Kowalik, Ewa; Bu, Wei; Liu, Zhanzhu; Schweri, Margaret M; Deutsch, Howard M; Venanzi, Carol A

    2010-10-15

    Complementary two-dimensional (2D) and three-dimensional (3D) Quantitative Structure-Activity Relationship (QSAR) techniques were used to derive a preliminary model for the dopamine transporter (DAT) binding affinity of 80 racemic threo-methylphenidate (MP) analogs. A novel approach based on using the atom-level E-state indices of the 14 common scaffold atoms in a sphere exclusion protocol was used to identify a test set for 2D- and 3D-QSAR model validation. Comparative Molecular Field Analysis (CoMFA) contour maps based on the structure-activity data of the training set indicate that the 2' position of the phenyl ring cannot tolerate much steric bulk and that addition of electron-withdrawing groups to the 3' or 4' positions of the phenyl ring leads to improved DAT binding affinity. In particular, the optimal substituents were found to be those whose bulk is mainly in the plane of the phenyl ring. Substituents with significant bulk above or below the plane of the ring led to decreased binding affinity. Suggested alterations to be explored in the design of new compounds are the placement at the 3' and 4' position of the phenyl ring of electron-withdrawing groups that lie chiefly in the plane of the ring, for example, halogen substituents on the 3',4'-benzo analog, 79. A complementary 2D-QSAR approach-partial least squares analysis using a reduced set of Molconn-Z descriptors-supports the CoMFA structure-activity interpretation that phenyl ring substitution is a major determinant of DAT binding affinity. The potential usefulness of the CoMFA models was demonstrated by the prediction of the binding affinity of methyl 2-(naphthalen-1-yl)-2-(piperidin-2-yl)acetate, an analog not in the original data set, to be in good agreement with the experimental value. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. miR-758-3p: a blood-based biomarker that's influence on the expression of CERP/ABCA1 may contribute to the progression of obesity to metabolic syndrome.

    PubMed

    O'Neill, Sadhbh; Larsen, Mette Bohl; Gregersen, Søren; Hermansen, Kjeld; O'Driscoll, Lorraine

    2018-02-06

    Due to increasing prevalence of obesity, a simple method or methods for the diagnosis of metabolic syndrome are urgently required to reduce the risk of associated cardiovascular disease, diabetes and cancer. This study aimed to identify a miRNA biomarker that may distinguish metabolic syndrome from obesity and to investigate if such a miRNA may have functional relevance for metabolic syndrome. 52 adults with clinical obesity (n=26) or metabolic syndrome (n=26) were recruited. Plasma specimens were procured from all and were randomly designated to discovery and validation cohorts. miRNA discovery profiling was performed, using array technology, on plasma RNA. Validation was performed by quantitative polymerase chain reaction. The functional effect of miR-758-3p on its predicted target, cholesterol efflux regulatory protein/ATP-binding cassette transporter, was investigated using HepG2 liver cells. Custom miRNA profiling of 25 miRNAs in the discovery cohort found miR-758-3p to be detected in the obese cohort but undetected in the metabolic syndrome cohort. miR-758-3p was subsequently validated as a potential biomarker for metabolic syndrome by quantitative polymerase chain reaction. Bioinformatics analysis identified cholesterol efflux regulatory protein/ATP-binding cassette transporter as miR-758-3p's predicted target. Specifically, mimicking miR-758-3p in HepG2 cells suppressed cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression; conversely, inhibiting miR-758-3p increased cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression. miR-758-3p holds potential as a blood-based biomarker for distinguishing progression from obesity to metabolic syndrome and as a driver in controlling cholesterol efflux regulatory protein/ATP-binding cassette transporter expression, indicating it potential role in cholesterol control in metabolic syndrome.

  5. Influence of quasi-specific sites on kinetics of target DNA search by a sequence-specific DNA-binding protein.

    PubMed

    Kemme, Catherine A; Esadze, Alexandre; Iwahara, Junji

    2015-11-10

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such "quasi-specific" sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1's association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins.

  6. Influence of Quasi-Specific Sites on Kinetics of Target DNA Search by a Sequence-Specific DNA-Binding Protein

    PubMed Central

    2015-01-01

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such “quasi-specific” sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1’s association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins. PMID:26502071

  7. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    NASA Astrophysics Data System (ADS)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  8. Quantitative interdependence of coeffectors, CcpA and cre in carbon catabolite regulation of Bacillus subtilis.

    PubMed

    Seidel, Gerald; Diel, Marco; Fuchsbauer, Norbert; Hillen, Wolfgang

    2005-05-01

    The phosphoproteins HPrSerP and CrhP are the main effectors for CcpA-mediated carbon catabolite regulation (CCR) in Bacillus subtilis. Complexes of CcpA with HPrSerP or CrhP regulate genes by binding to the catabolite responsive elements (cre). We present a quantitative analysis of HPrSerP and CrhP interaction with CcpA by surface plasmon resonance (SPR) revealing small and similar equilibrium constants of 4.8 +/- 0.4 microm for HPrSerP-CcpA and 19.1 +/- 2.5 microm for CrhP-CcpA complex dissociation. Forty millimolar fructose-1,6-bisphosphate (FBP) or glucose-6-phosphate (Glc6-P) increases the affinity of HPrSerP to CcpA at least twofold, but have no effect on CrhP-CcpA binding. Saturation of binding of CcpA to cre as studied by fluorescence and SPR is dependent on 50 microm of HPrSerP or > 200 microm CrhP. The rate constants of HPrSerP-CcpA-cre complex formation are k(a) = 3 +/- 1 x 10(6) m(-1).s(-1) and k(d) = 2.0 +/- 0.4 x 10(-3).s(-1), resulting in a K(D) of 0.6 +/- 0.3 nm. FBP and Glc6-P stimulate CcpA-HPrSerP but not CcpA-CrhP binding to cre. Maximal HPrSerP-CcpA-cre complex formation in the presence of 10 mm FBP requires about 10-fold less HPrSerP. These data suggest a specific role for FBP and Glc6-P in enhancing only HPrSerP-mediated CCR.

  9. Image Restoration and Analysis of Influenza Virions Binding to Membrane Receptors Reveal Adhesion-Strengthening Kinetics

    PubMed Central

    Lee, Donald W.; Hsu, Hung-Lun; Bacon, Kaitlyn B.; Daniel, Susan

    2016-01-01

    With the development of single-particle tracking (SPT) microscopy and host membrane mimics called supported lipid bilayers (SLBs), stochastic virus-membrane binding interactions can be studied in depth while maintaining control over host receptor type and concentration. However, several experimental design challenges and quantitative image analysis limitations prevent the widespread use of this approach. One main challenge of SPT studies is the low signal-to-noise ratio of SPT videos, which is sometimes inevitable due to small particle sizes, low quantum yield of fluorescent dyes, and photobleaching. These situations could render current particle tracking software to yield biased binding kinetic data caused by intermittent tracking error. Hence, we developed an effective image restoration algorithm for SPT applications called STAWASP that reveals particles with a signal-to-noise ratio of 2.2 while preserving particle features. We tested our improvements to the SPT binding assay experiment and imaging procedures by monitoring X31 influenza virus binding to α2,3 sialic acid glycolipids. Our interests lie in how slight changes to the peripheral oligosaccharide structures can affect the binding rate and residence times of viruses. We were able to detect viruses binding weakly to a glycolipid called GM3, which was undetected via assays such as surface plasmon resonance. The binding rate was around 28 folds higher when the virus bound to a different glycolipid called GD1a, which has a sialic acid group extending further away from the bilayer surface than GM3. The improved imaging allowed us to obtain binding residence time distributions that reflect an adhesion-strengthening mechanism via multivalent bonds. We empirically fitted these distributions using a time-dependent unbinding rate parameter, koff, which diverges from standard treatment of koff as a constant. We further explain how to convert these models to fit ensemble-averaged binding data obtained by assays such as surface plasmon resonance. PMID:27695072

  10. Binding and orientation of fibronectin on polystyrene surfaces using immobilized bacterial adhesin-related peptides.

    PubMed

    Klueh, U; Bryers, J D; Kreutzer, D L

    2003-10-01

    Fibronectin (FN) is known to bind to bacteria via high affinity receptors on bacterial surfaces known as adhesins. The binding of bacteria to FN is thought to have a key role in foreign device associated infections. For example, previous studies have indicated that Staphylococcus aureus adhesins bind to the 29 kDa NH(3) terminus end of FN, and thereby promote bacteria adherence to surfaces. Recently, the peptide sequences within the S. aureus adhesin molecule that are responsible for FN binding have been identified. Based on these observations, we hypothesize that functional FN can be bound and specifically oriented on polystyrene surfaces using bacterial adhesin-related (BRP-A) peptide. We further hypothesize that monoclonal antibodies that react with specific epitopes on the FN can be used to quantify both FN binding and orientation on these surfaces. Based on this hypothesis, we initiated a systematic investigation of the binding and orientation of FN on polystyrene surfaces using BRP-A peptide. To test this hypothesis, the binding and orientation of the FN to immobilized BRP-A was quantified using (125)I-FN, and monoclonal antibodies. (125)I-FN was used to quantitate FN binding to peptide-coated polystyrene surfaces. The orientation of bound FN was demonstrated by the use of monoclonal antibodies, which are reactive with the amine (N) or carboxyl (C) termini of the FN. The results of our studies demonstrated that when the BRP-A peptide was used to bind FN to surfaces that: 1. functional FN was bound to the peptide; 2. anti-C terminus antibodies bound to the peptide FN; and 3. only limited binding of anti-N terminus antibodies to peptide-bound FN occurred. We believe that the data that indicate an enhanced binding of anti-C antibodies reactive to anti-N antibodies are a result of the FN binding in an oriented manner with the N termini of FN bound tightly to the BRP-A on the polystyrene surface. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 36-43, 2003

  11. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.

    PubMed

    Patching, Simon G

    2014-01-01

    Surface plasmon resonance (SPR) spectroscopy is a rapidly developing technique for the study of ligand binding interactions with membrane proteins, which are the major molecular targets for validated drugs and for current and foreseeable drug discovery. SPR is label-free and capable of measuring real-time quantitative binding affinities and kinetics for membrane proteins interacting with ligand molecules using relatively small quantities of materials and has potential to be medium-throughput. The conventional SPR technique requires one binding component to be immobilised on a sensor chip whilst the other binding component in solution is flowed over the sensor surface; a binding interaction is detected using an optical method that measures small changes in refractive index at the sensor surface. This review first describes the basic SPR experiment and the challenges that have to be considered for performing SPR experiments that measure membrane protein-ligand binding interactions, most importantly having the membrane protein in a lipid or detergent environment that retains its native structure and activity. It then describes a wide-range of membrane protein systems for which ligand binding interactions have been characterised using SPR, including the major drug targets G protein-coupled receptors, and how challenges have been overcome for achieving this. Finally it describes some recent advances in SPR-based technology and future potential of the technique to screen ligand binding in the discovery of drugs. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Theoretical kinetic studies of models for binding myosin subfragment-1 to regulated actin: Hill model versus Geeves model.

    PubMed Central

    Chen , Y; Yan, B; Chalovich, J M; Brenner, B

    2001-01-01

    It was previously shown that a one-dimensional Ising model could successfully simulate the equilibrium binding of myosin S1 to regulated actin filaments (T. L. Hill, E. Eisenberg and L. Greene, Proc. Natl. Acad. Sci. U.S.A. 77:3186-3190, 1980). However, the time course of myosin S1 binding to regulated actin was thought to be incompatible with this model, and a three-state model was subsequently developed (D. F. McKillop and M. A. Geeves, Biophys. J. 65:693-701, 1993). A quantitative analysis of the predicted time course of myosin S1 binding to regulated actin, however, was never done for either model. Here we present the procedure for the theoretical evaluation of the time course of myosin S1 binding for both models and then show that 1) the Hill model can predict the "lag" in the binding of myosin S1 to regulated actin that is observed in the absence of Ca++ when S1 is in excess of actin, and 2) both models generate very similar families of binding curves when [S1]/[actin] is varied. This result shows that, just based on the equilibrium and pre-steady-state kinetic binding data alone, it is not possible to differentiate between the two models. Thus, the model of Hill et al. cannot be ruled out on the basis of existing pre-steady-state and equilibrium binding data. Physical mechanisms underlying the generation of the lag in the Hill model are discussed. PMID:11325734

  13. Topological Interaction by Entanglement of DNA

    NASA Astrophysics Data System (ADS)

    Feng, Lang; Sha, Ruojie; Seeman, Nadrian; Chaikin, Paul

    2012-02-01

    We find and study a new type of interaction between colloids, Topological Interaction by Entanglement of DNA (TIED), due to concatenation of loops formed by palindromic DNA. Consider a particle coated with palindromic DNA of sequence ``P1.'' Below the DNA hybridization temperature (Tm), loops of the self-complementary DNA form on the particle surface. Direct hybridization with similar particle covered with a different sequence P2 do not occur. However when particles are held together at T > Tm, then cooled to T < Tm, some of the loops entangle and link, similar to a Olympic Gel. We quantitatively observe and measure this topological interaction between colloids in a ˜5^o C temperature window, ˜6^o C lower than direct binding of complementary DNA with similar strength and introduce the concept of entanglement binding free energy. To prove our interaction to be topological, we unknot the purely entangled binding sites between colloids by adding Topoisomerase I which unconcatenates our loops. This research suggests novel history dependent ways of binding particles and serves as a new design tool in colloidal self-assembly.

  14. Dynamics of VEGF matrix-retention in vascular network patterning

    NASA Astrophysics Data System (ADS)

    Köhn-Luque, A.; de Back, W.; Yamaguchi, Y.; Yoshimura, K.; Herrero, M. A.; Miura, T.

    2013-12-01

    Vascular endothelial growth factor (VEGF) is a central regulator of blood vessel morphogenesis, although its role in patterning of endothelial cells into vascular networks is not fully understood. It has been suggested that binding of soluble VEGF to extracellular matrix components causes spatially restricted cues that guide endothelial cells into network patterns. Yet, current evidence for such a mechanism remains indirect. In this study, we quantitatively analyse the dynamics of VEGF retention in a controlled in vitro situation of human umbilical vascular endothelial cells (HUVECs) in Matrigel. We show that fluorescent VEGF accumulates in pericellular areas and colocalizes with VEGF binding molecules. Analysis of fluorescence recovery after photobleaching reveals that binding/unbinding to matrix molecules dominates VEGF dynamics in the pericellular region. Computational simulations using our experimental measurements of kinetic parameters show that matrix retention of chemotactic signals can lead to the formation of reticular cellular networks on a realistic timescale. Taken together, these results show that VEGF binds to matrix molecules in proximity of HUVECs in Matrigel, and suggest that bound VEGF drives vascular network patterning.

  15. Computational insights into the interaction of small molecule inhibitors with HRI kinase domain.

    PubMed

    Palrecha, Sourabh; Lakade, Dushant; Kulkarni, Abhijeet; Pal, Jayanta K; Joshi, Manali

    2018-05-07

    The Heme-Regulated Inhibitor (HRI) kinase regulates globin synthesis in a heme-dependent manner in reticulocytes and erythroid cells in bone marrow. Inhibitors of HRI have been proposed to lead to an increased amount of haemoglobin, benefitting anaemia patients. A series of indeno[1,2-c]pyrazoles were discovered to be the first known in vitro inhibitors of HRI. However, the structural mechanism of inhibition is yet to be understood. The aim of this study was to unravel the binding mechanism of these inhibitors using molecular dynamic simulations and docking. The docking scores were observed to correlate well with experimentally determined pIC 50 values. The inhibitors were observed to bind in the ATP-binding site forming hydrogen bonds with the hinge region and van der Waals interactions with non-polar residues in the binding site. Further, quantitative structure-activity relationship (QSAR) studies were performed to correlate the structural features of the inhibitors with their biological activity. The developed QSAR models were found to be statistically significant in terms of internal and external predictabilities. The presence of chlorine atoms and the hydroxymethyl groups were found to correlate with higher activity. The identified binding modes and the descriptors can support future rational identification of more potent and selective small molecule inhibitors for this kinase which are of therapeutic importance in the context of various human pathological disorders.

  16. Interaction of lafutidine in binding to human serum albumin in gastric ulcer therapy: STD-NMR, WaterLOGSY-NMR, NMR relaxation times, Tr-NOESY, molecule docking, and spectroscopic studies.

    PubMed

    Yang, Hongqin; Huang, Yanmei; He, Jiawei; Li, Shanshan; Tang, Bin; Li, Hui

    2016-09-15

    In this study, lafutidine (LAF) was used as a model compound to investigate the binding mechanism between antiulcer drugs and human serum albumin (HSA) through various techniques, including STD-NMR, WaterLOGSY-NMR, (1)H NMR relaxation times, tr-NOESY, molecule docking calculation, FT-IR spectroscopy, and CD spectroscopy. The analyses of STD-NMR, which derived relative STD (%) intensities, and WaterLOGSY-NMR, determined that LAF bound to HSA. In particular, the pyridyl group of LAF was in close contact with HSA binding pocket, whereas furyl group had a secondary binding. Competitive STD-NMR and WaterLOGSY-NMR experiments, with warifarin and ibuprofen as site-selective probes, indicated that LAF preferentially bound to site II in the hydrophobic subdomains IIIA of HSA. The bound conformation of LAF at the HSA binding site was further elucidated by transferred NOE effect (tr-NOESY) experiment. Relaxation experiments provided quantitative information about the relationship between the affinity and structure of LAF. The molecule docking simulations conducted with AutoDock and the restraints derived from STD results led to three-dimensional models that were consistent with the NMR spectroscopic data. The presence of hydrophobic forces and hydrogen interactions was also determined. Additionally, FT-IR and CD spectroscopies showed that LAF induced secondary structure changes of HSA. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Mapping the Binding Interface of VEGF and a Monoclonal Antibody Fab-1 Fragment with Fast Photochemical Oxidation of Proteins (FPOP) and Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Wecksler, Aaron T.; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.

    2017-05-01

    We previously analyzed the Fab-1:VEGF (vascular endothelial growth factor) system described in this work, with both native top-down mass spectrometry and bottom-up mass spectrometry (carboxyl-group or GEE footprinting) techniques. This work continues bottom-up mass spectrometry analysis using a fast photochemical oxidation of proteins (FPOP) platform to map the solution binding interface of VEGF and a fragment antigen binding region of an antibody (Fab-1). In this study, we use FPOP to compare the changes in solvent accessibility by quantitating the extent of oxidative modification in the unbound versus bound states. Determining the changes in solvent accessibility enables the inference of the protein binding sites (epitope and paratopes) and a comparison to the previously published Fab-1:VEGF crystal structure, adding to the top-down and bottom-up data. Using this method, we investigated peptide-level and residue-level changes in solvent accessibility between the unbound proteins and bound complex. Mapping these data onto the Fab-1:VEGF crystal structure enabled successful characterization of both the binding region and regions of remote conformation changes. These data, coupled with our previous higher order structure (HOS) studies, demonstrate the value of a comprehensive toolbox of methods for identifying the putative epitopes and paratopes for biotherapeutic antibodies.

  18. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    PubMed

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  19. Quantitative Fluorescence Studies in Living Cells: Extending Fluorescence Fluctuation Spectroscopy to Peripheral Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Smith, Elizabeth Myhra

    The interactions of peripheral membrane proteins with both membrane lipids and proteins are vital for many cellular processes including membrane trafficking, cellular signaling, and cell growth/regulation. Building accurate biophysical models of these processes requires quantitative characterization of the behavior of peripheral membrane proteins, yet methods to quantify their interactions inside living cells are very limited. Because peripheral membrane proteins usually exist both in membrane-bound and cytoplasmic forms, the separation of these two populations is a key challenge. This thesis aims at addressing this challenge by extending fluorescence fluctuation spectroscopy (FFS) to simultaneously measure the oligomeric state of peripheral membrane proteins in the cytoplasm and at the plasma membrane. We developed a new method based on z-scan FFS that accounts for the fluorescence contributions from cytoplasmic and membrane layers by incorporating a fluorescence intensity z-scan through the cell. H-Ras-EGFP served as a model system to demonstrate the feasibility of the technique. The resolvability and stability of z-scanning was determined as well as the oligomeric state of H-Ras-EGFP at the plasma membrane and in the cytoplasm. Further, we successfully characterized the binding affinity of a variety of proteins to the plasma membrane by quantitative analysis of the z-scan fluorescence intensity profile. This analysis method, which we refer to as z-scan fluorescence profile deconvoution, was further used in combination with dual-color competition studies to determine the lipid specificity of protein binding. Finally, we applied z-scan FFS to provide insight into the early assembly steps of the HTLV-1 retrovirus.

  20. Quantitative study of protein-protein interactions by quartz nanopipettes

    NASA Astrophysics Data System (ADS)

    Tiwari, Purushottam Babu; Astudillo, Luisana; Miksovska, Jaroslava; Wang, Xuewen; Li, Wenzhi; Darici, Yesim; He, Jin

    2014-08-01

    In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions.In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions. Electronic supplementary information (ESI) available: Determination of nanopipette diameter; surface modification scheme; numerical simulation; noise analysis; SPR experiments. See DOI: 10.1039/c4nr02964j

  1. The underlying toxicological mechanism of chemical mixtures: A case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Dayong; Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000; Lin, Zhifen, E-mail: lzhifen@tongji.edu.cn

    Intracellular chemical reaction of chemical mixtures is one of the main reasons that cause synergistic or antagonistic effects. However, it still remains unclear what the influencing factors on the intracellular chemical reaction are, and how they influence on the toxicological mechanism of chemical mixtures. To reveal this underlying toxicological mechanism of chemical mixtures, a case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum was employed, and both their joint effects and mixture toxicity were observed. Then series of two-step linear regressions were performed to describe the relationships between joint effects, the expected additive toxicities and descriptorsmore » of individual chemicals (including concentrations, binding affinity to receptors, octanol/water partition coefficients). Based on the quantitative relationships, the underlying joint toxicological mechanisms were revealed. The result shows that, for mixtures with their joint effects resulting from intracellular chemical reaction, their underlying toxicological mechanism depends on not only their interaction with target proteins, but also their transmembrane actions and their concentrations. In addition, two generic points of toxicological mechanism were proposed including the influencing factors on intracellular chemical reaction and the difference of the toxicological mechanism between single reactive chemicals and their mixtures. This study provided an insight into the understanding of the underlying toxicological mechanism for chemical mixtures with intracellular chemical reaction. - Highlights: • Joint effects of nitriles and aldehydes at non-equitoxic ratios were determined. • A novel descriptor, ligand–receptor interaction energy (E{sub binding}), was employed. • Quantitative relationships for mixtures were developed based on a novel descriptor. • The underlying toxic mechanism was revealed based on quantitative relationships. • Two generic points of toxicological mechanism were elucidated.« less

  2. Computational design of nanoparticle drug delivery systems for selective targeting

    NASA Astrophysics Data System (ADS)

    Duncan, Gregg A.; Bevan, Michael A.

    2015-09-01

    Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues. Electronic supplementary information (ESI) available: Movie showing simulation renderings of targeted (ρL = 1820/μm2, KD = 120 μM) nanoparticle selective binding to cancer (ρR = 256/μm2) vs. healthy (ρR = 64/μm2) cell surfaces. Target membrane proteins have linear color scale depending on binding energy ranging from white when unbound (URL = 0) to red when tightly bound (URL = UM). See DOI: 10.1039/c5nr03691g

  3. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system.

    PubMed

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    2015-11-19

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. This database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.

  4. Benzodiazepine and kainate receptor binding sites in the RCS rat retina.

    PubMed

    Stasi, Kalliopi; Naskar, Rita; Thanos, Solon; Kouvelas, Elias D; Mitsacos, Ada

    2003-02-01

    The effect of age and photoreceptor degeneration on the kainate subtype of glutamate receptors and on the benzodiazepine-sensitive gamma-aminobutyric acid-A receptors (GABA(A)) in normal and RCS (Royal College of Surgeons) rats were investigated. [(3)H]Kainate and [(3)H]flunitrazepam were used as radioligands for kainate and GABA(A)/benzodiazepine()receptors, respectively, using the quantitative receptor autoradiography technique. In both normal and RCS rat retina we observed that [(3)Eta]flunitrazepam and [(3)Eta]kainate binding levels were several times higher in inner plexiform layer (IPL) than in outer plexiform layer (OPL) at all four ages studied (P17, P35, P60 and P180). Age-related changes in receptor binding were observed in normal rat retina: [(3)Eta]flunitrazepam binding showed a significant decrease of 25% between P17 and P60 in IPL,and [(3)Eta]kainate binding showed significant decreases between P17 and P35 in both synaptic layers (71% in IPL and 63% in OPL). Degeneration-related changes in benzodiazepine and kainate receptor binding were observed in RCS rat retina. In IPL, [(3)Eta]flunitrazepam and [(3)Eta]kainate binding levels were higher than in normal retina at P35 (by 24% and 86%, respectively). In OPL, [(3)Eta]flunitrazepam binding was higher in RCS than in normal retina on P35 (74%) and also on P60 (62%). The results indicate that postnatal changes occur in kainate and benzodiazepine receptor binding sites in OPL and IPL of the rat retina up to 6 months of age. The data also suggest that the receptor binding changes observed in the RCS retina could be a consequence of the primary photoreceptor degeneration.

  5. Quantitative assessment of RNA-protein interactions with high-throughput sequencing-RNA affinity profiling.

    PubMed

    Ozer, Abdullah; Tome, Jacob M; Friedman, Robin C; Gheba, Dan; Schroth, Gary P; Lis, John T

    2015-08-01

    Because RNA-protein interactions have a central role in a wide array of biological processes, methods that enable a quantitative assessment of these interactions in a high-throughput manner are in great demand. Recently, we developed the high-throughput sequencing-RNA affinity profiling (HiTS-RAP) assay that couples sequencing on an Illumina GAIIx genome analyzer with the quantitative assessment of protein-RNA interactions. This assay is able to analyze interactions between one or possibly several proteins with millions of different RNAs in a single experiment. We have successfully used HiTS-RAP to analyze interactions of the EGFP and negative elongation factor subunit E (NELF-E) proteins with their corresponding canonical and mutant RNA aptamers. Here we provide a detailed protocol for HiTS-RAP that can be completed in about a month (8 d hands-on time). This includes the preparation and testing of recombinant proteins and DNA templates, clustering DNA templates on a flowcell, HiTS and protein binding with a GAIIx instrument, and finally data analysis. We also highlight aspects of HiTS-RAP that can be further improved and points of comparison between HiTS-RAP and two other recently developed methods, quantitative analysis of RNA on a massively parallel array (RNA-MaP) and RNA Bind-n-Seq (RBNS), for quantitative analysis of RNA-protein interactions.

  6. Quantitative structure-activity relationships studies of CCR5 inhibitors and toxicity of aromatic compounds using gene expression programming.

    PubMed

    Shi, Weimin; Zhang, Xiaoya; Shen, Qi

    2010-01-01

    Quantitative structure-activity relationship (QSAR) study of chemokine receptor 5 (CCR5) binding affinity of substituted 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas and toxicity of aromatic compounds have been performed. The gene expression programming (GEP) was used to select variables and produce nonlinear QSAR models simultaneously using the selected variables. In our GEP implementation, a simple and convenient method was proposed to infer the K-expression from the number of arguments of the function in a gene, without building the expression tree. The results were compared to those obtained by artificial neural network (ANN) and support vector machine (SVM). It has been demonstrated that the GEP is a useful tool for QSAR modeling. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  7. Contrast Agents for Micro-Computed Tomography of Microdamage in Bone

    DTIC Science & Technology

    2009-01-01

    carboxylate (reported in January 2009), phosphonate and bisphosphonate groups (Fig. 2). The presence of functional groups was verified by FT- IR (Fig. 3...carboxylic acid, (b) phosphonate or (c) bisphosphonate groups for calcium binding damaged tissue. (a) (b) (c) Fig. 3. FT- IR spectra for Au NPs...functional group. Quantitative measurements of the binding affinity were performed by adding hydroxyapatite (HA) crystals to functionalized Au NP solutions in

  8. Pseudouridine and N6-methyladenosine modifications weaken PUF protein/RNA interactions

    PubMed Central

    AlSadhan, Ishraq; Merriman, Dawn K.; Al-Hashimi, Hashim M.; Herschlag, Daniel

    2017-01-01

    RNA modifications are ubiquitous in biology, with over 100 distinct modifications. While the vast majority were identified and characterized on abundant noncoding RNA such as tRNA and rRNA, the advent of sensitive sequencing-based approaches has led to the discovery of extensive and regulated modification of eukaryotic messenger RNAs as well. The two most abundant mRNA modifications—pseudouridine (Ψ) and N6-methyladenosine (m6A)—affect diverse cellular processes including mRNA splicing, localization, translation, and decay and modulate RNA structure. Here, we test the hypothesis that RNA modifications directly affect interactions between RNA-binding proteins and target RNA. We show that Ψ and m6A weaken the binding of the human single-stranded RNA binding protein Pumilio 2 (hPUM2) to its consensus motif, with individual modifications having effects up to approximately threefold and multiple modifications giving larger effects. While there are likely to be some cases where RNA modifications essentially fully ablate protein binding, here we see modest responses that may be more common. Such modest effects could nevertheless profoundly alter the complex landscape of RNA:protein interactions, and the quantitative rather than qualitative nature of these effects underscores the need for quantitative, systems-level accounting of RNA:protein interactions to understand post-transcriptional regulation. PMID:28138061

  9. Receptor binding sites for substance P in surgical specimens obtained from patients with ulcerative colitis and Crohn disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantyh, C.R.; Gates, T.S.; Zimmerman, R.P.

    1988-05-01

    Several lines of evidence indicate that tachykinin neuropeptides (substance P (SP), substance K (SK), and neuromedin K (NK)) play a role in regulating the inflammatory and immune responses. To test this hypothesis in a human inflammatory disease, quantitative receptor autoradiography was used to examine possible abnormalities in tachykinin binding sites in surgical specimens from patients with inflammatory bowel disease. In all cases, specimens were processed for quantitative receptor autoradiography by using /sup 125/I-labeled Bolton-Hunter conjugates of NK, SK, and SP. In colon tissue obtained from ulcerative colitis and Crohn disease patients, very high concentrations of SP receptor binding sites aremore » expressed by arterioles and venules located in the submucosa, muscalairs mucosa, external circular muscle, external longitudinal muscle, and serosa, in contrast to control patients. These results demonstrate that receptor binding sites for SP, but not SK or NK, are ectopically expressed in high concentrations by cells involved in mediating inflammatory and immune responses. These data suggest that SP may be involved in the pathophysiology of inflammatory bowel disease and might provide some insight into the interaction between the nervous system and the regulation of inflammation and the immune response in human inflammatory disease.« less

  10. Analysis of the surfaces of wood tissues and pulp fibers using carbohydrate-binding modules specific for crystalline cellulose and mannan.

    PubMed

    Filonova, Lada; Kallas, Asa M; Greffe, Lionel; Johansson, Gunnar; Teeri, Tuula T; Daniel, Geoffrey

    2007-01-01

    Carbohydrate binding modules (CBMs) are noncatalytic substrate binding domains of many enzymes involved in carbohydrate metabolism. Here we used fluorescent labeled recombinant CBMs specific for crystalline cellulose (CBM1(HjCel7A)) and mannans (CBM27(TmMan5) and CBM35(CjMan5C)) to analyze the complex surfaces of wood tissues and pulp fibers. The crystalline cellulose CBM1(HjCel7A) was found as a reliable marker of both bacterially produced and plant G-layer cellulose, and labeling of spruce pulp fibers with CBM1(HjCel7A) revealed a signal that increased with degree of fiber damage. The mannan-specific CBM27(TmMan5) and CBM35(CjMan5C) CBMs were found to be more specific reagents than a monoclonal antibody specific for (1-->4)-beta-mannan/galacto-(1-->4)-beta-mannan for mapping carbohydrates on native substrates. We have developed a quantitative fluorometric method for analysis of crystalline cellulose accumulation on fiber surfaces and shown a quantitative difference in crystalline cellulose binding sites in differently processed pulp fibers. Our results indicated that CBMs provide useful, novel tools for monitoring changes in carbohydrate content of nonuniform substrate surfaces, for example, during wood or pulping processes and possibly fiber biosynthesis.

  11. Mammalian transcription factor LSF is a target of ERK signaling

    PubMed Central

    Pagon, Zrinka; Volker, Janet; Cooper, Geoffrey M.; Hansen, Ulla

    2012-01-01

    LSF is a mammalian transcription factor that is rapidly and quantitatively phosphorylated upon growth induction of resting, peripheral human T cells, as assayed by a reduction in its electrophoretic mobility. The DNA-binding activity of LSF in primary T cells is greatly increased after this phosphorylation event [Volker et al., 1997]. We demonstrate here that LSF is also rapidly and quantitatively phosphorylated upon growth induction in NIH 3T3 cells, although its DNA-binding activity is not significantly altered. Three lines of experimentation established that ERK is responsible for phosphorylating LSF upon growth induction in both cell types. First, phosphorylation of LSF by ERK is sufficient to cause the reduced electrophoretic mobility of LSF. Second, the amount of ERK activity correlates with the extent of LSF phosphorylation in both primary human T cells and NIH 3T3 cells. Finally, specific inhibitors of the Ras/Raf/MEK/ERK pathway inhibit LSF modification in vivo. This phosphorylation by ERK is not sufficient for activation of LSF DNA-binding activity, as evidenced both in vitro and in mouse fibroblasts. Nonetheless, activation of ERK is a prerequisite for the substantial increase in LSF DNA-binding activity upon activation of resting T cells, indicating that ERK phosphorylation is necessary but not sufficient for activation of LSF in this cell type. PMID:12858339

  12. Quantitative analysis of rat brain alpha 2-receptors discriminated by [3H]clonidine and [3H]rauwolscine.

    PubMed

    Asakura, M; Tsukamoto, T; Imafuku, J; Matsui, H; Ino, M; Hasegawa, K

    1984-10-30

    Quantitative analysis of direct ligand binding of both [3H]clonidine and [3H]rauwolscine to the rat cerebral cortex alpha 2-receptors indicates the existence of two affinity states of the same receptor populations. In the presence of Mn2+, the high affinity state of [3H]clonidine binding was increased, whereas the high affinity state of [3H]rauwolscine binding was reduced. By contrast, GTP in micromolar ranges caused a decrease of the agonist high affinity state and an increase of the antagonist high affinity state. The total receptor sites and the respective separate affinities for both radioligands were approximately equal to their control values under all conditions, indicating that Mn2+ and GTP modulate the proportion of the two affinity states of the receptor. These results can be incorporated into a two-step, ternary complex model involving a guanine nucleotide binding protein (N protein) for the agonist and antagonist interaction with the alpha 2-receptor. Furthermore, the effects of GTP on the interaction of both ligands with the two affinity states can be mimicked by EDTA. It is suggested that divalent cations induce the formation of the receptor-N protein binary complex showing high affinity for agonists and low affinity for antagonists.

  13. Drug-DNA interactions at single molecule level: A view with optical tweezers

    NASA Astrophysics Data System (ADS)

    Paramanathan, Thayaparan

    Studies of small molecule--DNA interactions are essential for developing new drugs for challenging diseases like cancer and HIV. The main idea behind developing these molecules is to target and inhibit the reproduction of the tumor cells and infected cells. We mechanically manipulate single DNA molecule using optical tweezers to investigate two molecules that have complex and multiple binding modes. Mononuclear ruthenium complexes have been extensively studied as a test for rational drug design. Potential drug candidates should have high affinity to DNA and slow dissociation kinetics. To achieve this, motifs of the ruthenium complexes are altered. Our collaborators designed a dumb-bell shaped binuclear ruthenium complex that can only intercalate DNA by threading through its bases. Studying the binding properties of this complex in bulk studies took hours. By mechanically manipulating a single DNA molecule held with optical tweezers, we lower the barrier to thread and make it fast compared to the bulk experiments. Stretching single DNA molecules with different concentration of drug molecules and holding it at a constant force allows the binding to reach equilibrium. By this we can obtain the equilibrium fractional ligand binding and length of DNA at saturated binding. Fitting these results yields quantitative measurements of the binding thermodynamics and kinetics of this complex process. The second complex discussed in this study is Actinomycin D (ActD), a well studied anti-cancer agent that is used as a prototype for developing new generations of drugs. However, the biophysical basis of its activity is still unclear. Because ActD is known to intercalate double stranded DNA (dsDNA), it was assumed to block replication by stabilizing dsDNA in front of the replication fork. However, recent studies have shown that ActD binds with even higher affinity to imperfect duplexes and some sequences of single stranded DNA (ssDNA). We directly measure the on and off rates by stretching the DNA molecule to a certain force and holding it at constant force while adding the drug and then while washing off the drug. Our finding resolves the long lasting controversy of ActD binding modes, clearly showing that both the dsDNA binding and ssDNA binding converge to the same single mode. The result supports the hypothesis that the primary characteristic of ActD that contributes to its biological activity is its ability to inhibit cellular replication by binding to transcription bubbles and causing cell death.

  14. Cooperative DNA binding and sequence discrimination by the Opaque2 bZIP factor.

    PubMed Central

    Yunes, J A; Vettore, A L; da Silva, M J; Leite, A; Arruda, P

    1998-01-01

    The maize Opaque2 (O2) protein is a basic leucine zipper transcription factor that controls the expression of distinct classes of endosperm genes through the recognition of different cis-acting elements in their promoters. The O2 target region in the promoter of the alpha-coixin gene was analyzed in detail and shown to comprise two closely adjacent binding sites, named O2u and O2d, which are related in sequence to the GCN4 binding site. Quantitative DNase footprint analysis indicated that O2 binding to alpha-coixin target sites is best described by a cooperative model. Transient expression assays showed that the two adjacent sites act synergistically. This synergy is mediated in part by cooperative DNA binding. In tobacco protoplasts, O2 binding at the O2u site is more important for enhancer activity than is binding at the O2d site, suggesting that the architecture of the O2-DNA complex is important for interaction with the transcriptional machinery. PMID:9811800

  15. Cooperative DNA binding and sequence discrimination by the Opaque2 bZIP factor.

    PubMed

    Yunes, J A; Vettore, A L; da Silva, M J; Leite, A; Arruda, P

    1998-11-01

    The maize Opaque2 (O2) protein is a basic leucine zipper transcription factor that controls the expression of distinct classes of endosperm genes through the recognition of different cis-acting elements in their promoters. The O2 target region in the promoter of the alpha-coixin gene was analyzed in detail and shown to comprise two closely adjacent binding sites, named O2u and O2d, which are related in sequence to the GCN4 binding site. Quantitative DNase footprint analysis indicated that O2 binding to alpha-coixin target sites is best described by a cooperative model. Transient expression assays showed that the two adjacent sites act synergistically. This synergy is mediated in part by cooperative DNA binding. In tobacco protoplasts, O2 binding at the O2u site is more important for enhancer activity than is binding at the O2d site, suggesting that the architecture of the O2-DNA complex is important for interaction with the transcriptional machinery.

  16. Parallel Force Assay for Protein-Protein Interactions

    PubMed Central

    Aschenbrenner, Daniela; Pippig, Diana A.; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E.

    2014-01-01

    Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay. PMID:25546146

  17. Parallel force assay for protein-protein interactions.

    PubMed

    Aschenbrenner, Daniela; Pippig, Diana A; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E

    2014-01-01

    Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay.

  18. Human cyclophilin has a significantly higher affinity for HIV-1 recombinant p55 than p24.

    PubMed

    Bristow, R; Byrne, J; Squirell, J; Trencher, H; Carter, T; Rodgers, B; Saman, E; Duncan, J

    1999-04-01

    The ability of cyclophilin to bind a panel of recombinant HIV-gag proteins was assessed using sensitive, quantitative, sandwich enzyme-linked immunosorbant assays (ELISAs). Significantly higher binding to cyclophilin was observed when recombinants contained at least 12 carboxy-terminal amino acids of p17 in addition to p24 sequences. These results indicate that the carboxy-terminus of p17 is important for optimal binding of cyclophilin to p24 and support the theory that cyclophilin acts on the uncleaved HIV-1 gag (p17-p24) precursor.

  19. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  20. Determination of adsorption and desorption of DNA molecules on freshwater and marine sediments.

    PubMed

    Xue, J; Feng, Y

    2018-06-01

    Free DNA and its adsorption by sediment in the aquatic environment lead to ambiguity in the identification of recent faecal pollution sources. The goal of this study was to understand the mechanisms of DNA adsorption and desorption on aquatic sediment under various conditions using quantitative polymerase chain reaction (qPCR). Both raw sewage (RS) DNA and purified PCR product (PPP) were used in adsorption and desorption experiments; autoclaved freshwater and marine sediments served as sorbents. Thirty-six hours were needed for adsorption to reach equilibrium. More DNA was adsorbed on both sediments in stream water than in 5 mmol l -1 NaCl and DNA adsorption increased in the presence of Ca 2+ and Mg 2+ . Successive desorption experiments showed that between 5% and 22% of adsorbed DNA was desorbed. Organic matter and clay played a significant role in determining the DNA adsorption capacity on sediment. The data suggest the presence of multilayer adsorption. DNA molecules on sediments were mostly adsorbed through ligand binding rather than electrostatic binding. Quantitative polymerase chain reaction assays provide a better way to investigate the DNA adsorption and desorption mechanisms by sediment. DNA desorption can potentially complicate the outcomes of microbial source tracking studies. © 2018 The Society for Applied Microbiology.

  1. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Wilson, David S. (Inventor); Szostak, Jack W. (Inventor); Keefe, Anthony D. (Inventor)

    2005-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  2. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Szostak, Jack W. (Inventor); Keefe, Anthony D. (Inventor); Wilson, David S. (Inventor)

    2006-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  3. A simple and widely applicable hit validation strategy for protein-protein interaction inhibitors based on a quantitative ligand displacement assay.

    PubMed

    Sameshima, Tomoya; Miyahisa, Ikuo; Homma, Misaki; Aikawa, Katsuji; Hixon, Mark S; Matsui, Junji

    2014-12-15

    Identification of inhibitors for protein-protein interactions (PPIs) from high-throughput screening (HTS) is challenging due to the weak affinity of primary hits. We present a hit validation strategy of PPI inhibitors using quantitative ligand displacement assay. From an HTS for Bcl-xL/Mcl-1 inhibitors, we obtained a hit candidate, I1, which potentially forms a reactive Michael acceptor, I2, inhibiting Bcl-xL/Mcl-1 through covalent modification. We confirmed rapid reversible and competitive binding of I1 with a probe peptide, suggesting non-covalent binding. The advantages of our approach over biophysical assays include; simplicity, higher throughput, low protein consumption and universal application to PPIs including insoluble membrane proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Entrapment of alpha1-acid glycoprotein in high-performance affinity columns for drug-protein binding studies.

    PubMed

    Bi, Cong; Jackson, Abby; Vargas-Badilla, John; Li, Rong; Rada, Giana; Anguizola, Jeanethe; Pfaunmiller, Erika; Hage, David S

    2016-05-15

    A slurry-based method was developed for the entrapment of alpha1-acid glycoprotein (AGP) for use in high-performance affinity chromatography to study drug interactions with this serum protein. Entrapment was achieved based on the physical containment of AGP in hydrazide-activated porous silica supports and by using mildly oxidized glycogen as a capping agent. The conditions needed for this process were examined and optimized. When this type of AGP column was used in binding studies, the association equilibrium constant (Ka) measured by frontal analysis at pH 7.4 and 37°C for carbamazepine with AGP was found to be 1.0 (±0.5)×10(5)M(-1), which agreed with a previously reported value of 1.0 (±0.1)×10(5)M(-1). Binding studies based on zonal elution were conducted for several other drugs with such columns, giving equilibrium constants that were consistent with literature values. An entrapped AGP column was also used in combination with a column containing entrapped HSA in a screening assay format to compare the binding of various drugs to AGP and HSA. These results also agreed with previous data that have been reported in literature for both of these proteins. The same entrapment method could be extended to other proteins and to the investigation of additional types of drug-protein interactions. Potential applications include the rapid quantitative analysis of biological interactions and the high-throughput screening of drug candidates for their binding to a given protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Entrapment of Alpha1-Acid Glycoprotein in High-Performance Affinity Columns for Drug-Protein Binding Studies

    PubMed Central

    Bi, Cong; Jackson, Abby; Vargas-Badilla, John; Li, Rong; Rada, Giana; Anguizola, Jeanethe; Pfaunmiller, Erika; Hage, David S.

    2015-01-01

    A slurry-based method was developed for the entrapment of alpha1-acid glycoprotein (AGP) for use in high-performance affinity chromatography to study drug interactions with this serum protein. Entrapment was achieved based on the physical containment of AGP in hydrazide-activated porous silica supports and by using mildly oxidized glycogen as a capping agent. The conditions needed for this process were examined and optimized. When this type of AGP column was used in binding studies, the association equilibrium constant (Ka) measured by frontal analysis at pH 7.4 and 37°C for carbamazepine with AGP was found to be 1.0 (± 0.5) × 105 M−1, which agreed with a previously reported value of 1.0 (± 0.1) × 105 M−1. Binding studies based on zonal elution were conducted for several other drugs with such columns, giving equilibrium constants that were consistent with literature values. An entrapped AGP column was also used in combination with a column containing entrapped HSA in a screening assay format to compare the binding of various drugs to AGP and HSA. These results also agreed with previous data that have been reported in literature for both of these proteins. The same entrapment method could be extended to other proteins and to the investigation of additional types of drug-protein interactions. Potential applications include the rapid quantitative analysis of biological interactions and the high-throughput screening of drug candidates for their binding to a given protein. PMID:26627938

  6. Primary porcine Kupffer cell phagocytosis of human platelets involves the CD18 receptor.

    PubMed

    Chihara, Ray K; Paris, Leela L; Reyes, Luz M; Sidner, Richard A; Estrada, Jose L; Downey, Susan M; Wang, Zheng-Yu; Tector, A Joseph; Burlak, Christopher

    2011-10-15

    Hepatic failure has been treated successfully with clinical extracorporeal perfusions of porcine livers. However, dog-to-pig and pig-to-baboon liver xenotransplant models have resulted in severe bleeding secondary to liver xenograft-induced thrombocytopenia. Kupffer cells (KC) are abundant phagocytic cells in the liver. KC express the CD11b/CD18 receptor, which has been implicated in chilled platelet binding and phagocytosis through interaction with platelet surface proteins and carbohydrates. We sought to identify the role of KC CD18 in liver xenograft-induced thrombocytopenia. Primary pig KC were characterized by flow cytometry, immunoblots, and quantitative polymerase chain reaction. Pig KC were used in inhibition assays with fluorescently labeled human platelets. The CD18 receptor was targeted for siRNA knockdown. Domestic and α1,3-galactosyltransferase double knockout porcine KC cultures were approximately 92% positive for CD18 as detected by quantitative polymerase chain reaction and flow cytometry. Use of CD18 blocking antibodies resulted in reduction of human platelet binding and phagocytosis. Additionally, asialofetuin, not fetuin, inhibited platelet phagocytosis suggesting the involvement of an oligosaccharide-binding site. Furthermore, reduced CD18 expression by siRNA resulted in decreased human platelet binding. Our data suggest that primary pig KC bind and phagocytose human platelets with involvement of CD18. Further understanding and modification of CD18 expression in pigs may result in a liver xenograft with reduced thrombocytopenic effects, which could be used as a bridge to allogeneic liver transplantation.

  7. DNA-magnetic Particle Binding Analysis by Dynamic and Electrophoretic Light Scattering.

    PubMed

    Haddad, Yazan; Dostalova, Simona; Kudr, Jiri; Zitka, Ondrej; Heger, Zbynek; Adam, Vojtech

    2017-11-09

    Isolation of DNA using magnetic particles is a field of high importance in biotechnology and molecular biology research. This protocol describes the evaluation of DNA-magnetic particles binding via dynamic light scattering (DLS) and electrophoretic light scattering (ELS). Analysis by DLS provides valuable information on the physicochemical properties of particles including particle size, polydispersity, and zeta potential. The latter describes the surface charge of the particle which plays major role in electrostatic binding of materials such as DNA. Here, a comparative analysis exploits three chemical modifications of nanoparticles and microparticles and their effects on DNA binding and elution. Chemical modifications by branched polyethylenimine, tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane are investigated. Since DNA exhibits a negative charge, it is expected that zeta potential of particle surface will decrease upon binding of DNA. Forming of clusters should also affect particle size. In order to investigate the efficiency of these particles in isolation and elution of DNA, the particles are mixed with DNA in low pH (~6), high ionic strength and dehydration environment. Particles are washed on magnet and then DNA is eluted by Tris-HCl buffer (pH = 8). DNA copy number is estimated using quantitative polymerase chain reaction (PCR). Zeta potential, particle size, polydispersity and quantitative PCR data are evaluated and compared. DLS is an insightful and supporting method of analysis that adds a new perspective to the process of screening of particles for DNA isolation.

  8. A trisubstituted pyrazole derivative reduces DMBA-induced mammary tumor growth in rats by inhibiting estrogen receptor-α expression.

    PubMed

    Ananda, Hanumappa; Sharath Kumar, Kothanahally S; Sudhanva, Muddenahalli S; Rangappa, Shobith; Rangappa, Kanchugarakoppal S

    2018-05-18

    Aberrant expression of estrogen receptor alpha (ER-α) is observed in many pathological complications like breast cancer, endometrial cancer, and in osteoporosis. ER-α plays a vital role in the initiation and progression of breast cancer and confers chemo and radioresistance to the cancer cells by upregulating expression of anti-apoptotic proteins. The synthetic pyrazole derivative 3-(1-(4-bromophenyl)-5-phenyl-1H-pyrazol-3-yl)pyridine (compound 5d) displays significant cytotoxicity against mammary carcinoma cells. Molecular docking studies revealed that compound 5d binds to ligand binding domain of (ER-α). In vivo studies were carried out to investigate ER-α expression by immunohistochemistry and quantitative RT-PCR, which revealed reduction of ER-α in tumor cells upon treatment with compound 5d indicating its ER-α antagonistic effect. Our study ascertains compound 5d as a potent inhibitor of mammary carcinoma cells.

  9. Mapping specificity landscapes of RNA-protein interactions by high throughput sequencing.

    PubMed

    Jankowsky, Eckhard; Harris, Michael E

    2017-04-15

    To function in a biological setting, RNA binding proteins (RBPs) have to discriminate between alternative binding sites in RNAs. This discrimination can occur in the ground state of an RNA-protein binding reaction, in its transition state, or in both. The extent by which RBPs discriminate at these reaction states defines RBP specificity landscapes. Here, we describe the HiTS-Kin and HiTS-EQ techniques, which combine kinetic and equilibrium binding experiments with high throughput sequencing to quantitatively assess substrate discrimination for large numbers of substrate variants at ground and transition states of RNA-protein binding reactions. We discuss experimental design, practical considerations and data analysis and outline how a combination of HiTS-Kin and HiTS-EQ allows the mapping of RBP specificity landscapes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Deciphering the mechanisms of binding induced folding at nearly atomic resolution: The Φ value analysis applied to IDPs.

    PubMed

    Gianni, Stefano; Dogan, Jakob; Jemth, Per

    2014-01-01

    The Φ value analysis is a method to analyze the structure of metastable states in reaction pathways. Such a methodology is based on the quantitative analysis of the effect of point mutations on the kinetics and thermodynamics of the probed reaction. The Φ value analysis is routinely used in protein folding studies and is potentially an extremely powerful tool to analyze the mechanism of binding induced folding of intrinsically disordered proteins. In this review we recapitulate the key equations and experimental advices to perform the Φ value analysis in the perspective of the possible caveats arising in intrinsically disordered systems. Finally, we briefly discuss some few examples already available in the literature.

  11. Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy.

    PubMed

    Siligardi, Giuliano; Hussain, Rohanah; Patching, Simon G; Phillips-Jones, Mary K

    2014-01-01

    A great number of membrane proteins have proven difficult to crystallise for use in X-ray crystallographic structural determination or too complex for NMR structural studies. Circular dichroism (CD) is a fast and relatively easy spectroscopic technique to study protein conformational behaviour. In this review examples of the applications of CD and synchrotron radiation CD (SRCD) to membrane protein ligand binding interaction studies are discussed. The availability of SRCD has been an important advancement in recent progress, most particularly because it can be used to extend the spectral region in the far-UV region (important for increasing the accuracy of secondary structure estimations) and for working with membrane proteins available in only small quantities for which SRCD has facilitated molecular recognition studies. Such studies have been accomplished by probing in the near-UV region the local tertiary structure of aromatic amino acid residues upon addition of chiral or non-chiral ligands using long pathlength cells of small volume capacity. In particular, this review describes the most recent use of the technique in the following areas: to obtain quantitative data on ligand binding (exemplified by the FsrC membrane sensor kinase receptor); to distinguish between functionally similar drugs that exhibit different mechanisms of action towards membrane proteins (exemplified by secretory phospholipase A2); and to identify suitable detergent conditions to observe membrane protein-ligand interactions using stabilised proteins (exemplified by the antiseptic transporter SugE). Finally, the importance of characterising in solution the conformational behaviour and ligand binding properties of proteins in both far- and near-UV regions is discussed. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding. © 2013.

  12. Analysis of myelomonocytic leukemic differentiation by a cell surface marker panel including a fucose-binding lectin from Lotus tetragonolobus.

    PubMed

    Elias, L; Van Epps, D E

    1984-06-01

    The fucose-binding lectin from Lotus tetragonolobus ( FBL -L) has been previously shown to bind specifically to normal cells of the myeloid and monocytic lineages. The purpose of this study was to explore the utility of fluoresceinated FBL -L as a leukemia differentiation marker in conjunction with a panel of other frequently used surface markers (Fc receptor, HLA-DR, OKM1, and antimonocyte antibody). FBL -L reacted with leukemic cells in 8/9 cases of clinically recognized acute myeloid leukemia, including myeloid blast crisis of chronic granulocytic leukemia, 3/3 cases of chronic phase chronic myelogenous leukemia, and in 2/7 cases of clinically undifferentiated acute leukemia. Correlations were noted between reactivity with FBL -L, and DR and Fc receptor expression. Among continuous cell lines, FBL -L bound with high intensity to a majority of HL-60 and U937 cells. The less well differentiated myeloblast cell lines, KG-1, KG1a , and HL-60 blast II, exhibited less FBL -L binding than HL-60 and U937. A moderate proportion of K562 cells exhibited low level binding of FBL -L. Several lymphoblastic cell lines exhibited a pattern of low intensity binding that was distinguishable from the high intensity binding pattern of the myeloblastic lines. FBL -L reactivity of U937 was enhanced by induction of differentiation with leukocyte conditioned medium, but not dimethylsulfoxide. Such treatments induced contrasting patterns of change of HL-60 and U937 when labeled with OKM1, alpha-Mono, and HLA-DR. These studies demonstrate the application of FBL -L to analysis and quantitation of myelomonocytic leukemic differentiation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Johnnie A.; Takasuka, Taichi E.; Deng, Kai

    Carbohydrate binding modules (CBMs) bind polysaccharides and help target glycoside hydrolases catalytic domains to their appropriate carbohydrate substrates. To better understand how CBMs can improve cellulolytic enzyme reactivity, representatives from each of the 18 families of CBM found in Ruminoclostridium thermocellum were fused to the multifunctional GH5 catalytic domain of CelE (Cthe_0797, CelEcc), which can hydrolyze numerous types of polysaccharides including cellulose, mannan, and xylan. Since CelE is a cellulosomal enzyme, none of these fusions to a CBM previously existed. CelEcc_CBM fusions were assayed for their ability to hydrolyze cellulose, lichenan, xylan, and mannan. Several CelEcc_CBM fusions showed enhanced hydrolyticmore » activity with different substrates relative to the fusion to CBM3a from the cellulosome scaffoldin, which has high affinity for binding to crystalline cellulose. Additional binding studies and quantitative catalysis studies using nanostructure-initiator mass spectrometry (NIMS) were carried out with the CBM3a, CBM6, CBM30, and CBM44 fusion enzymes. In general, and consistent with observations of others, enhanced enzyme reactivity was correlated with moderate binding affinity of the CBM. Numerical analysis of reaction time courses showed that CelEcc_CBM44, a combination of a multifunctional enzyme domain with a CBM having broad binding specificity, gave the fastest rates for hydrolysis of both the hexose and pentose fractions of ionic-liquid pretreated switchgrass. In conclusion, we have shown that fusions of different CBMs to a single multifunctional GH5 catalytic domain can increase its rate of reaction with different pure polysaccharides and with pretreated biomass. This fusion approach, incorporating domains with broad specificity for binding and catalysis, provides a new avenue to improve reactivity of simple combinations of enzymes within the complexity of plant biomass.« less

  14. Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation

    NASA Astrophysics Data System (ADS)

    Peng, Lanfang; Liu, Paiyu; Feng, Xionghan; Wang, Zimeng; Cheng, Tao; Liang, Yuzhen; Lin, Zhang; Shi, Zhenqing

    2018-03-01

    Predicting the kinetics of heavy metal adsorption and desorption in soil requires consideration of multiple heterogeneous soil binding sites and variations of reaction chemistry conditions. Although chemical speciation models have been developed for predicting the equilibrium of metal adsorption on soil organic matter (SOM) and important mineral phases (e.g. Fe and Al (hydr)oxides), there is still a lack of modeling tools for predicting the kinetics of metal adsorption and desorption reactions in soil. In this study, we developed a unified model for the kinetics of heavy metal adsorption and desorption in soil based on the equilibrium models WHAM 7 and CD-MUSIC, which specifically consider metal kinetic reactions with multiple binding sites of SOM and soil minerals simultaneously. For each specific binding site, metal adsorption and desorption rate coefficients were constrained by the local equilibrium partition coefficients predicted by WHAM 7 or CD-MUSIC, and, for each metal, the desorption rate coefficients of various binding sites were constrained by their metal binding constants with those sites. The model had only one fitting parameter for each soil binding phase, and all other parameters were derived from WHAM 7 and CD-MUSIC. A stirred-flow method was used to study the kinetics of Cd, Cu, Ni, Pb, and Zn adsorption and desorption in multiple soils under various pH and metal concentrations, and the model successfully reproduced most of the kinetic data. We quantitatively elucidated the significance of different soil components and important soil binding sites during the adsorption and desorption kinetic processes. Our model has provided a theoretical framework to predict metal adsorption and desorption kinetics, which can be further used to predict the dynamic behavior of heavy metals in soil under various natural conditions by coupling other important soil processes.

  15. Lupus Risk Variant Increases pSTAT1 Binding and Decreases ETS1 Expression

    PubMed Central

    Lu, Xiaoming; Zoller, Erin E.; Weirauch, Matthew T.; Wu, Zhiguo; Namjou, Bahram; Williams, Adrienne H.; Ziegler, Julie T.; Comeau, Mary E.; Marion, Miranda C.; Glenn, Stuart B.; Adler, Adam; Shen, Nan; Nath, Swapan K.; Stevens, Anne M.; Freedman, Barry I.; Tsao, Betty P.; Jacob, Chaim O.; Kamen, Diane L.; Brown, Elizabeth E.; Gilkeson, Gary S.; Alarcón, Graciela S.; Reveille, John D.; Anaya, Juan-Manuel; James, Judith A.; Sivils, Kathy L.; Criswell, Lindsey A.; Vilá, Luis M.; Alarcón-Riquelme, Marta E.; Petri, Michelle; Scofield, R. Hal; Kimberly, Robert P.; Ramsey-Goldman, Rosalind; Joo, Young Bin; Choi, Jeongim; Bae, Sang-Cheol; Boackle, Susan A.; Graham, Deborah Cunninghame; Vyse, Timothy J.; Guthridge, Joel M.; Gaffney, Patrick M.; Langefeld, Carl D.; Kelly, Jennifer A.; Greis, Kenneth D.; Kaufman, Kenneth M.; Harley, John B.; Kottyan, Leah C.

    2015-01-01

    Genetic variants at chromosomal region 11q23.3, near the gene ETS1, have been associated with systemic lupus erythematosus (SLE), or lupus, in independent cohorts of Asian ancestry. Several recent studies have implicated ETS1 as a critical driver of immune cell function and differentiation, and mice deficient in ETS1 develop an SLE-like autoimmunity. We performed a fine-mapping study of 14,551 subjects from multi-ancestral cohorts by starting with genotyped variants and imputing to all common variants spanning ETS1. By constructing genetic models via frequentist and Bayesian association methods, we identified 16 variants that are statistically likely to be causal. We functionally assessed each of these variants on the basis of their likelihood of affecting transcription factor binding, miRNA binding, or chromatin state. Of the four variants that we experimentally examined, only rs6590330 differentially binds lysate from B cells. Using mass spectrometry, we found more binding of the transcription factor signal transducer and activator of transcription 1 (STAT1) to DNA near the risk allele of rs6590330 than near the non-risk allele. Immunoblot analysis and chromatin immunoprecipitation of pSTAT1 in B cells heterozygous for rs6590330 confirmed that the risk allele increased binding to the active form of STAT1. Analysis with expression quantitative trait loci indicated that the risk allele of rs6590330 is associated with decreased ETS1 expression in Han Chinese, but not other ancestral cohorts. We propose a model in which the risk allele of rs6590330 is associated with decreased ETS1 expression and increases SLE risk by enhancing the binding of pSTAT1. PMID:25865496

  16. Comparison of three quantitative phosphoproteomic strategies to study receptor tyrosine kinase signaling.

    PubMed

    Zhang, Guoan; Neubert, Thomas A

    2011-12-02

    There are three quantitative phosphoproteomic strategies most commonly used to study receptor tyrosine kinase (RTK) signaling. These strategies quantify changes in: (1) all three forms of phosphosites (phosphoserine, phosphothreonine and phosphotyrosine) following enrichment of phosphopeptides by titanium dioxide or immobilized metal affinity chromatography; (2) phosphotyrosine sites following anti- phosphotyrosine antibody enrichment of phosphotyrosine peptides; or (3) phosphotyrosine proteins and their binding partners following anti-phosphotyrosine protein immunoprecipitation. However, it is not clear from literature which strategy is more effective. In this study, we assessed the utility of these three phosphoproteomic strategies in RTK signaling studies by using EphB receptor signaling as an example. We used all three strategies with stable isotope labeling with amino acids in cell culture (SILAC) to compare changes in phosphoproteomes upon EphB receptor activation. We used bioinformatic analysis to compare results from the three analyses. Our results show that the three strategies provide complementary information about RTK pathways.

  17. Global Phosphoproteomics Identifies a Major Role for AKT and 14-3-3 in Regulating EDC3*

    PubMed Central

    Larance, Mark; Rowland, Alexander F.; Hoehn, Kyle L.; Humphreys, David T.; Preiss, Thomas; Guilhaus, Michael; James, David E.

    2010-01-01

    Insulin plays an essential role in metabolic homeostasis in mammals, and many of the underlying biochemical pathways are regulated via the canonical phosphatidylinositol 3-kinase/AKT pathway. To identify novel metabolic actions of insulin, we conducted a quantitative proteomics analysis of insulin-regulated 14-3-3-binding proteins in muscle cells. These studies revealed a novel role for insulin in the post-transcriptional regulation of mRNA expression. EDC3, a component of the mRNA decay and translation repression pathway associated with mRNA processing bodies, was shown to be phosphorylated by AKT downstream of insulin signaling. The major insulin-regulated site was mapped to Ser-161, and phosphorylation at this site led to increased 14-3-3 binding. Functional studies indicated that induction of 14-3-3 binding to EDC3 causes morphological changes in processing body structures, inhibition of microRNA-mediated mRNA post-transcriptional regulation, and alterations in the protein- protein interactions of EDC3. These data highlight an important new arm of the insulin signaling cascade in the regulation of mRNA utilization. PMID:20051463

  18. Global Conformational Selection and Local Induced Fit for the Recognition between Intrinsic Disordered p53 and CBP

    PubMed Central

    Yu, Qingfen; Ye, Wei; Wang, Wei; Chen, Hai-Feng

    2013-01-01

    The transactivation domain (TAD) of tumor suppressor p53 can bind with the nuclear coactivator binding domain (NCBD) of cyclic-AMP response element binding protein (CBP) and activate transcription. NMR experiments demonstrate that both apo-NCBD and TAD are intrinsic disordered and bound NCBD/TAD undergoes a transition to well folded. The recognition mechanism between intrinsic disordered proteins is still hotly debated. Molecular dynamics (MD) simulations in explicit solvent are used to study the recognition mechanism between intrinsic disordered TAD and NCBD. The average RMSD values between bound and corresponding apo states and Kolmogorov-Smirnov P test analysis indicate that TAD and NCBD may follow an induced fit mechanism. Quantitative analysis indicates there is also a global conformational selection. In summary, the recognition of TAD and NCBD might obey a local induced fit and global conformational selection. These conclusions are further supported by high-temperature unbinding kinetics and room temperature landscape analysis. These methods can be used to study the recognition mechanism of other intrinsic disordered proteins. PMID:23555731

  19. Tyrosine phosphorylation of the orphan receptor ESDN/DCBLD2 serves as a scaffold for the signaling adaptor CrkL.

    PubMed

    Aten, Tyler M; Redmond, Miranda M; Weaver, Sheila O; Love, Collin C; Joy, Ryan M; Lapp, Aliya S; Rivera, Osvaldo D; Hinkle, Karen L; Ballif, Bryan A

    2013-08-02

    A quantitative proteomics screen to identify substrates of the Src family of tyrosine kinases (SFKs) whose phosphorylation promotes CrkL-SH2 binding identified the known Crk-associated substrate (Cas) of Src as well as the orphan receptor endothelial and smooth muscle cell-derived neuropilin-like protein (ESDN). Mutagenesis analysis of ESDN's seven intracellular tyrosines in YxxP motifs found several contribute to the binding of ESDN to the SH2 domains of both CrkCT10 regulator of kinase Crk-Like (CrkL) and a representative SFK Fyn. Quantitative mass spectrometry showed that at least three of these (Y565, Y621 and Y750), as well as non-YxxP Y715, are reversibly phosphorylated. SFK activity was shown to be sufficient, but not required for the interaction between ESDN and the CrkL-SH2 domain. Finally, antibody-mediated ESDN clustering induces ESDN tyrosine phosphorylation and CrkL-SH2 binding. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Expression of melatonin receptors in arteries involved in thermoregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, M.; Laitinen, J.T.; Saavedra, J.M.

    Melatonin binding sites were localized and characterized in the vasculature of the rat by using the melatonin analogue 2-(125I)iodomelatonin (125I-melatonin) and quantitative in vitro autoradiography. The expression of these sites was restricted to the caudal artery and to the arteries that form the circle of Willis at the base of the brain. The arterial 125I-melatonin binding was stable, saturable, and reversible. Saturation studies revealed that the binding represented a single class of high-affinity binding sites with a dissociation constant (Kd) of 3.4 x 10(-11) M in the anterior cerebral artery and 1.05 x 10(-10) M in the caudal artery. Themore » binding capacities (Bmax) in these arteries were 19 and 15 fmol/mg of protein, respectively. The relative order of potency of indoles for inhibition of 125I-melatonin binding at these sites was typical of a melatonin receptor: 2-iodomelatonin greater than melatonin greater than N-acetylserotonin much much greater than 5-hydroxytryptamine. Norepinephrine-induced contraction of the caudal artery in vitro was significantly prolonged and potentiated by melatonin in a concentration-dependent manner, suggesting that these arterial binding sites are functional melatonin receptors. Neither primary steps in smooth muscle contraction (inositol phospholipid hydrolysis) nor relaxation (adenylate cyclase activation) were affected by melatonin. Melatonin, through its action on the tone of these arteries, may cause circulatory adjustments in these arteries, which are believed to be involved in thermoregulation.« less

  1. Quantitation of IgE antibody specific for ragweed and grass allergens: binding of radiolabeled allergens by solid-phase bond IgE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeiss, C.R.; Levitz, D.; Suszko, I.M.

    1978-08-01

    IgE antibody specific for multiple allergens extracted from grass and ragweed pollens was measured by radioimmunoassay. The assay depends on the interaction between IgE antibody bound to a polystyrene solid phase, /sup 125/I-labeled grass allergens (GA), and ragweed allergens (RW). The binding of /sup 125/I RW by serum IgE antibody from 37 allergic patients ranged from 0.2 ng to 75 ng RW protein (P) bound per ml. This binding of /sup 125/I RW by patient's IgE was paralleled by their IgE binding of /sup 125/I antigen E (AgE), a purified allergen from ragweed pollen (r = 0.90, p less thanmore » 0.001). Inhibition of patient's IgE binding of /sup 125/I RW by highly purified AgE ranged from 25 to 85% indicated individual differences in patient's IgE response to inhaled ragweed pollen. The binding of /sup 125/I GA by serum IgE antibody from 7 grass-sensitive patients ranged from 0.6 ng GA P bound per ml to 15 ng. This assay should be useful in the study of IgE responses to environmental agents containing multiple allergens and has the advantage that other antibody classes cannot interfere with the interaction between IgE antibody and labeled allergens.« less

  2. Stereoselective binding of agonists to the β2-adrenergic receptor: insights into molecular details and thermodynamics from molecular dynamics simulations.

    PubMed

    Plazinska, Anita; Plazinski, Wojciech

    2017-05-02

    The β 2 -adrenergic receptor (β 2 -AR) is one of the most studied G-protein-coupled receptors. When interacting with ligand molecules, it exhibits a binding characteristic that is strongly dependent on ligand stereoconfiguration. In particular, many experimental and theoretical studies confirmed that stereoisomers of an important β 2 -AR agonist, fenoterol, are associated with diverse mechanisms of binding and activation of β 2 -AR. The objective of the present study was to explore the stereoselective binding of fenoterol to β 2 -AR through the application of an advanced computational methodology based on enhanced-sampling molecular dynamics simulations and potentials of interactions tailored to investigate the stereorecognition effects. The results remain in very good, quantitative agreement with the experimental data (measured in the context of ligand-receptor affinities and their dependence on the temperature), which provides an additional validation for the applied computational protocols. Additionally, our results contribute to the understanding of stereoselective agonist binding by β 2 -AR. Although the significant role of the N293 6.55 residue is confirmed, we additionally show that stereorecognition does not depend solely on the N293-ligand interactions; the stereoselective effects rely on the co-operation of several residues located on both the 6th and 7th transmembrane domains and on extracellular loops. The magnitude and character of the contributions of these residues may be very diverse and result in either enhancing or reducing the stereoselective effects. The same is true when considering the enthalpic and entropic contributions to the binding free energies, which also are dependent on the ligand stereoconfiguration.

  3. High occupancy of sigma-1 receptors in the human brain after single oral administration of fluvoxamine: a positron emission tomography study using [11C]SA4503.

    PubMed

    Ishikawa, Masatomo; Ishiwata, Kiichi; Ishii, Kenji; Kimura, Yuichi; Sakata, Muneyuki; Naganawa, Mika; Oda, Keiichi; Miyatake, Ryousuke; Fujisaki, Mihisa; Shimizu, Eiji; Shirayama, Yukihiko; Iyo, Masaomi; Hashimoto, Kenji

    2007-10-15

    Sigma-1 receptors might be implicated in the pathophysiology of psychiatric diseases, as well as in the mechanisms of action of some selective serotonin reuptake inhibitors (SSRIs). Among the several SSRIs, fluvoxamine has the highest affinity for sigma-1 receptors (Ki = 36 nM), whereas paroxetine shows low affinity (Ki = 1893 nM). The present study was undertaken to examine whether fluvoxamine binds to sigma-1 receptors in living human brain. A dynamic positron emission tomography (PET) data acquisition using the selective sigma-1 receptor ligand [(11)C]SA4503 was performed with arterial blood sampling to evaluate quantitatively the binding of [(11)C]SA4503 to sigma-1 receptors in 15 healthy male volunteers. Each subject had two PET scans before and after randomly receiving a single dose of either fluvoxamine (50, 100, 150, or 200 mg) or paroxetine (20 mg). The binding potential of [(11)C]SA4503 in 9 regions of the brain was calculated by a 2-tissue 3-compartment model. In addition, we examined the effects of functional polymorphisms of the sigma-1 receptor (SIGMAR1) gene on the binding potential of [(11)C]SA4503. Fluvoxamine bound to sigma-1 receptors in all brain regions in a dose-dependent manner, whereas paroxetine did not bind to sigma-1 receptors. However, there was no association between the SIGMAR1 gene polymorphism GC-241-240TT and binding potential. The study demonstrated that fluvoxamine bound to sigma-1 receptors in living human brain at therapeutic doses. These findings suggest that sigma-1 receptors may play an important role in the mechanism of action of fluvoxamine.

  4. The analysis with monoclonal antibodies of the heterogeneity of Ia glycoproteins on chronic lymphocytic leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addis, J.B.; Tisch, R.; Falk, J.A.

    The accessible Ia molecules on the surface of chronic lymphocytic leukemia (CLL) cells were quantitated in the cellular radioimmunoassay with saturating concentrations of monoclonal antibodies. Monoclonal antibody 21w4, like DA/2 antibody, recognizes monomorphic determinants of human Ia antigens.The amount of 21w4 or DA/2 bound to CLL cells derived from eight patients (varying from 2.6 to 13.9 x 10/sup 5/ molecules/cell) appears to be the maximum observed with the antibodies studied. Two other antibodies, 18d5 and 21r5, although also directed at nonpolymorphic Ia determinants, bind differentially to CLL cells, with the ratios of 21r5/21w4 and 18d5/21w4 varying from 0.08 to 0.90.more » Sequential immunoprecipitation studies have established that the four epitopes 18d5, 21r5, 21w4, and DA/2 were present on the same molecules. All Ia molecules express 21w4 and DA/2 epitopes, whereas only certain subsets of Ia molecules carry accessible 21r5 or 18d5 epitopes. Competitive binding studies showed that the epitopes recognized by the four monoclonal antibodies were different. Monoclonal antibodies 21r5 and 21w4 did not inhibit each other's binding. Furthermore, binding of 21w4 to CLL cells potentiated the binding of /sup 125/I-21r5 IgG to the same cells, suggesting that binding of 21w4 antibody induces a conformational change in the molecule that renders 21r5 epitopes more accessible.« less

  5. Receiver-operating-characteristic analysis of an automated program for analyzing striatal uptake of 123I-ioflupane SPECT images: calibration using visual reads.

    PubMed

    Kuo, Phillip Hsin; Avery, Ryan; Krupinski, Elizabeth; Lei, Hong; Bauer, Adam; Sherman, Scott; McMillan, Natalie; Seibyl, John; Zubal, George

    2013-03-01

    A fully automated objective striatal analysis (OSA) program that quantitates dopamine transporter uptake in subjects with suspected Parkinson's disease was applied to images from clinical (123)I-ioflupane studies. The striatal binding ratios or alternatively the specific binding ratio (SBR) of the lowest putamen uptake was computed, and receiver-operating-characteristic (ROC) analysis was applied to 94 subjects to determine the best discriminator using this quantitative method. Ninety-four (123)I-ioflupane SPECT scans were analyzed from patients referred to our clinical imaging department and were reconstructed using the manufacturer-supplied reconstruction and filtering parameters for the radiotracer. Three trained readers conducted independent visual interpretations and reported each case as either normal or showing dopaminergic deficit (abnormal). The same images were analyzed using the OSA software, which locates the striatal and occipital structures and places regions of interest on the caudate and putamen. Additionally, the OSA places a region of interest on the occipital region that is used to calculate the background-subtracted SBR. The lower SBR of the 2 putamen regions was taken as the quantitative report. The 33 normal (bilateral comma-shaped striata) and 61 abnormal (unilateral or bilateral dopaminergic deficit) studies were analyzed to generate ROC curves. Twenty-nine of the scans were interpreted as normal and 59 as abnormal by all 3 readers. For 12 scans, the 3 readers did not unanimously agree in their interpretations (discordant). The ROC analysis, which used the visual-majority-consensus interpretation from the readers as the gold standard, yielded an area under the curve of 0.958 when using 1.08 as the threshold SBR for the lowest putamen. The sensitivity and specificity of the automated quantitative analysis were 95% and 89%, respectively. The OSA program delivers SBR quantitative values that have a high sensitivity and specificity, compared with visual interpretations by trained nuclear medicine readers. Such a program could be a helpful aid for readers not yet experienced with (123)I-ioflupane SPECT images and if further adapted and validated may be useful to assess disease progression during pharmaceutical testing of therapies.

  6. The role of the peripheral benzodiazepine receptor in photodynamic activity of certain pyropheophorbide ether photosensitizers: albumin site II as a surrogate marker for activity.

    PubMed

    Dougherty, Thomas J; Sumlin, Adam B; Greco, William R; Weishaupt, Kenneth R; Vaughan, Lurine A; Pandey, Ravindra K

    2002-07-01

    A study has been carried out to define the importance of the peripheral benzodiazepine receptor (PBR) as a binding site for a series of chlorin-type photosensitizers, pyropheophorbide-a ethers, the subject of a previous quantitative structure-activity relationship study by us. The effects of the PBR ligand PK11195 on the photodynamic activity have been determined in vivo for certain members of this series of alkyl-substituted ethers: two of the most active derivatives (hexyl and heptyl), the least active derivative (dodecyl [C12]) and one of intermediate activity (octyl [C8]). The photodynamic therapy (PDT) effect was inhibited by PK11195 for both of the most active derivatives, but no effect on PDT activity was found for the less active C12 or C8 ethers. The inhibitory effects of PK11195 were predicted by the binding of only the active derivatives to the benzodiazepine site on albumin, ie. human serum albumin (HSA)-Site II. Thus, as with certain other types of photosensitizers, it has been demonstrated with this series of pyropheophorbide ethers that in vitro binding to HSA-Site II is a predictor of both optimal in vivo activity and binding to the PBR in vivo.

  7. Does atrial natriuretic factor protect against right ventricular overload II. Tissue binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, L.C.; Yen, S.; Sardella, G.L.

    1989-10-01

    Previous studies have led us to hypothesize that the physiological significance of the diuretic and pulmonary vaso-relaxant effects of atrial natriuretic factor (ANF) is to protect the right heart. This study was designed to evaluate the relative importance of various peripheral tissues as sites of ANF action by tracing the temporal pattern of distribution of {sup 125}I-ANF and quantitating the specific binding sites. An in vivo approach, utilizing trace amount of {sup 125}I-ANF was adopted to simulate physiological conditions. {sup 125}I-ANF injected either intravenously or intra-arterially was quickly bound to peripheral tissues with less than 5% remaining in the circulationmore » after 1 min. The relative binding capacity was greatest in the lung, followed by the kidney, right ventricle, adrenal gland, and left ventricle. The magnitude of specific ANF binding sites per gram of tissue weight followed a similar order. The data demonstrate that ANF released under all circumstances is quickly bound to the target organs, particularly the lung and the kidney, and suggest that these two organs could be the most important target organs of ANF. This evidence provides further support for the proposed hypothesis that a major evolutionary role of ANF is the protection of the right ventricle from mechanical loads.« less

  8. Mathematical description of drug-target interactions: application to biologics that bind to targets with two binding sites.

    PubMed

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2018-02-01

    The emerging discipline of mathematical pharmacology occupies the space between advanced pharmacometrics and systems biology. A characteristic feature of the approach is application of advance mathematical methods to study the behavior of biological systems as described by mathematical (most often differential) equations. One of the early application of mathematical pharmacology (that was not called this name at the time) was formulation and investigation of the target-mediated drug disposition (TMDD) model and its approximations. The model was shown to be remarkably successful, not only in describing the observed data for drug-target interactions, but also in advancing the qualitative and quantitative understanding of those interactions and their role in pharmacokinetic and pharmacodynamic properties of biologics. The TMDD model in its original formulation describes the interaction of the drug that has one binding site with the target that also has only one binding site. Following the framework developed earlier for drugs with one-to-one binding, this work aims to describe a rigorous approach for working with similar systems and to apply it to drugs that bind to targets with two binding sites. The quasi-steady-state, quasi-equilibrium, irreversible binding, and Michaelis-Menten approximations of the model are also derived. These equations can be used, in particular, to predict concentrations of the partially bound target (RC). This could be clinically important if RC remains active and has slow internalization rate. In this case, introduction of the drug aimed to suppress target activity may lead to the opposite effect due to RC accumulation.

  9. Interrogating the relationship between rat in vivo tissue distribution and drug property data for >200 structurally unrelated molecules

    PubMed Central

    Harrell, Andrew W; Sychterz, Caroline; Ho, May Y; Weber, Andrew; Valko, Klara; Negash, Kitaw

    2015-01-01

    The ability to explain distribution patterns from drug physicochemical properties and binding characteristics has been explored for more than 200 compounds by interrogating data from quantitative whole body autoradiography studies (QWBA). These in vivo outcomes have been compared to in silico and in vitro drug property data to determine the most influential properties governing drug distribution. Consistent with current knowledge, in vivo distribution was most influenced by ionization state and lipophilicity which in turn affected phospholipid and plasma protein binding. Basic and neutral molecules were generally better distributed than acidic counterparts demonstrating weaker plasma protein and stronger phospholipid binding. The influence of phospholipid binding was particularly evident in tissues with high phospholipid content like spleen and lung. Conversely, poorer distribution of acidic drugs was associated with stronger plasma protein and weaker phospholipid binding. The distribution of a proportion of acidic drugs was enhanced, however, in tissues known to express anionic uptake transporters such as the liver and kidney. Greatest distribution was observed into melanin containing tissues of the eye, most likely due to melanin binding. Basic molecules were consistently better distributed into parts of the eye and skin containing melanin than those without. The data, therefore, suggest that drug binding to macromolecules strongly influences the distribution of total drug for a large proportion of molecules in most tissues. Reducing lipophilicity, a strategy often used in discovery to optimize pharmacokinetic properties such as absorption and clearance, also decreased the influence of nonspecific binding on drug distribution. PMID:26516585

  10. Regulation of the aceI multidrug efflux pump gene in Acinetobacter baumannii.

    PubMed

    Liu, Qi; Hassan, Karl A; Ashwood, Heather E; Gamage, Hasinika K A H; Li, Liping; Mabbutt, Bridget C; Paulsen, Ian T

    2018-06-01

    To investigate the function of AceR, a putative transcriptional regulator of the chlorhexidine efflux pump gene aceI in Acinetobacter baumannii. Chlorhexidine susceptibility and chlorhexidine induction of aceI gene expression were determined by MIC and quantitative real-time PCR, respectively, in A. baumannii WT and ΔaceR mutant strains. Recombinant AceR was prepared as both a full-length protein and as a truncated protein, AceR (86-299), i.e. AceRt, which has the DNA-binding domain deleted. The binding interaction of the purified AceR protein and its putative operator region was investigated by electrophoretic mobility shift assays and DNase I footprinting assays. The binding of AceRt with its putative ligand chlorhexidine was examined using surface plasmon resonance and tryptophan fluorescence quenching assays. MIC determination assays indicated that the ΔaceI and ΔaceR mutant strains both showed lower resistance to chlorhexidine than the parental strain. Chlorhexidine-induced expression of aceI was abolished in a ΔaceR background. Electrophoretic mobility shift assays and DNase I footprinting assays demonstrated chlorhexidine-stimulated binding of AceR with two sites upstream of the putative aceI promoter. Surface plasmon resonance and tryptophan fluorescence quenching assays suggested that the purified ligand-binding domain of the AceR protein was able to bind with chlorhexidine with high affinity. This study provides strong evidence that AceR is an activator of aceI gene expression when challenged with chlorhexidine. This study is the first characterization, to our knowledge, of a regulator controlling expression of a PACE family multidrug efflux pump.

  11. Selectivity of arsenite interaction with zinc finger proteins.

    PubMed

    Zhao, Linhong; Chen, Siming; Jia, Liangyuan; Shu, Shi; Zhu, Pingping; Liu, Yangzhong

    2012-08-01

    Arsenic is a carcinogenic element also used for the treatment of acute promyelocytic leukemia. The reactivity of proteins to arsenic must be associated with the various biological functions of As. Here, we investigated the selectivity of arsenite to zinc finger proteins (ZFPs) with different zinc binding motifs (C2H2, C3H, and C4). Single ZFP domain proteins were used for the direct comparison of the reactivity of different ZFPs. The binding constants and the reaction rates have been studied quantitatively. Results show that both the binding affinity and reaction rates of single-domain ZFPs follow the trend of C4 > C3H ≫ C2H2. Compared with the C2H2 motif ZFPs, the binding affinities of C3H and C4 motif ZFPs are nearly two orders of magnitude higher and the reaction rates are approximately two-fold higher. The formation of multi-domain ZFPs significantly enhances the reactivity of C2H2 type ZFPs, but has negligible effects on C3H and C4 ZFPs. Consequently, the reactivities of the three types of multi-domain ZFPs are rather similar. The 2D NMR spectra indicate that the As(III)-bound ZFPs are also unfolded, suggesting that arsenic binding interferes with the function of ZFPs.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Totoritis, Rachel; Duraiswami, Chaya; Taylor, Amy N.

    The continual bacterial adaptation to antibiotics creates an ongoing medical need for the development of novel therapeutics. Polypeptide deformylase (PDF) is a highly conserved bacterial enzyme, which is essential for viability. It has previously been shown that PDF inhibitors represent a promising new area for the development of antimicrobial agents, and that many of the best PDF inhibitors demonstrate slow, time-dependent binding. To improve our understanding of the mechanistic origin of this time-dependent inhibition, we examined in detail the kinetics of PDF catalysis and inhibition by several different PDF inhibitors. Varying pH and solvent isotope led to clear changes inmore » time-dependent inhibition parameters, as did inclusion of NaCl, which binds to the active site metal of PDF. Quantitative analysis of these results demonstrated that the observed time dependence arises from slow binding of the inhibitors to the active site metal. However, we also found several metal binding inhibitors that exhibited rapid, non-time-dependent onset of inhibition. By a combination of structural and chemical modification studies, we show that metal binding is only slow when the rest of the inhibitor makes optimal hydrogen bonds within the subsites of PDF. Both of these interactions between the inhibitor and enzyme were found to be necessary to observe time-dependent inhibition, as elimination of either leads to its loss.« less

  13. Inhibitory Effects of Lysine Analogues on t-PA Induced Whole Blood Clot Lysis

    DTIC Science & Technology

    1994-01-01

    aminocaproic acid (EACA) and trans-4-amino- methyl cyclohexane carboxylic acid (AMCA) are used to prevent excessive bleeding in patients with... aminocaproic acid (EACA) and the others have lower affinity binding sites (K&=5 mM) (5). The lysine analogues EACA and trans-4-aniinomethyl...JL, Wissler FC. Quantitative determination of the binding of epsilon- aminocaproic acid to native plasminogen. J Biol Chem 253, 727-732, 1978. 6

  14. A Ligand-observed Mass Spectrometry Approach Integrated into the Fragment Based Lead Discovery Pipeline

    PubMed Central

    Chen, Xin; Qin, Shanshan; Chen, Shuai; Li, Jinlong; Li, Lixin; Wang, Zhongling; Wang, Quan; Lin, Jianping; Yang, Cheng; Shui, Wenqing

    2015-01-01

    In fragment-based lead discovery (FBLD), a cascade combining multiple orthogonal technologies is required for reliable detection and characterization of fragment binding to the target. Given the limitations of the mainstream screening techniques, we presented a ligand-observed mass spectrometry approach to expand the toolkits and increase the flexibility of building a FBLD pipeline especially for tough targets. In this study, this approach was integrated into a FBLD program targeting the HCV RNA polymerase NS5B. Our ligand-observed mass spectrometry analysis resulted in the discovery of 10 hits from a 384-member fragment library through two independent screens of complex cocktails and a follow-up validation assay. Moreover, this MS-based approach enabled quantitative measurement of weak binding affinities of fragments which was in general consistent with SPR analysis. Five out of the ten hits were then successfully translated to X-ray structures of fragment-bound complexes to lay a foundation for structure-based inhibitor design. With distinctive strengths in terms of high capacity and speed, minimal method development, easy sample preparation, low material consumption and quantitative capability, this MS-based assay is anticipated to be a valuable addition to the repertoire of current fragment screening techniques. PMID:25666181

  15. Paper-based microfluidic sensing device for label-free immunoassay demonstrated by biotin-avidin binding interaction.

    PubMed

    Lei, Kin Fong; Yang, Shih-I; Tsai, Shiao-Wen; Hsu, Hsiao-Ting

    2015-03-01

    Efficient diagnosis is very important for the prevention and treatment of diseases. Rapid disease screening in ambulatory environment is one of the most pressing needs for disease control. Despite there are many methods to detect the results of immunoassays, quantitative measurement for rapid disease screening is still a great challenge for point-of-care applications. In this study, a fabrication method for depositing carbon nanotube bundles has been successfully developed for realization of functional paper-based microfluidic sensing device. Quantitative detection of label-free immunoassay, i.e., biotin-avidin binding interaction, was demonstrated by direct measurement of the current change of the biosensor after single application of the target analyte. Sensitivity of 0.33 μA/ng mL(-1) and minimal detectable analyte concentration of 25 ng/mL were achieved. The time necessary for the detection was 500 s which is a large reduction compared with the conventional immunoassay. Such paper-based biosensor has the benefits of portability, fast response, simple operation, and low cost and has the potential for the development of rapid disease screening devices. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Quantum defect theory for the orbital Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Cheng, Yanting; Zhang, Ren; Zhang, Peng

    2017-01-01

    In the ultracold gases of alkali-earth-metal-like atoms, a new type of Feshbach resonance, i.e., the orbital Feshbach resonance (OFR), has been proposed and experimentally observed in ultracold 173Yb atoms [R. Zhang et al., Phys. Rev. Lett. 115, 135301 (2015), 10.1103/PhysRevLett.115.135301]. When the OFR of the 173Yb atoms occurs, the energy gap between the open and closed channels is smaller by two orders of magnitude than the van der Waals energy. As a result, quantitative accurate results for the low-energy two-body problems can be obtained via multichannel quantum defect theory (MQDT), which is based on the exact solution of the Schrödinger equation with the van der Waals potential. In this paper we use MQDT to calculate the two-atom scattering length, effective range, and binding energy of two-body bound states for the systems with OFR. With these results we further study the clock-transition spectrum for the two-body bound states, which can be used to experimentally measure the binding energy. Our results are helpful for the quantitative theoretical and experimental research for the ultracold gases of alkali-earth-metal-like atoms with OFR.

  17. Understanding ligninase-mediated reactions of endocrine disrupting chemicals in water: reaction rates and quantitative structure-activity relationships.

    PubMed

    Mao, Liang; Colosi, Lisa M; Gao, Shixiang; Huang, Qingguo

    2011-07-15

    We have verified in our previous work that lignin peroxidase (LiP) mediates effective removal of selected natural and synthetic estrogens. The efficiency of these reactions was greatly enhanced in the presence of veratryl alcohol (VA), a chemical that is produced along with LiP by certain white rot fungi, for example, Phanerochaete chrysosporium. In this study, we systematically evaluated the kinetic behaviors of LiP-mediated reactions for six endocrine disrupting compounds (EDCs), that is, steroid estrogens and their structural analogs, in both the presence and absence of VA. Resulting kinetic parameters were then correlated with structural features of LiP/substrate binding complexes, as quantified using molecular simulation, to create quantitative structure-activity relationship (QSAR) equations. These equations suggest that binding distance between a substrate's phenolic proton and δN of HIS47's imidazole ring plays an important role in modulating substrate reactivity toward LiP in both the presence and absence of VA. This information provides insight into an important enzymatic reaction process that occurs in the natural environment affecting EDC transformation, a process that may be used in engineered systems to achieve EDC removal from water.

  18. Direct Test for Neuroinflammation with [11C]DAP-713-PET Scanning

    DTIC Science & Technology

    2015-10-01

    individuals suffering from the Gulf War Illness (GWI). We are using quantitative positron emission tomography (PET) using [11C]DPA-713 (DPA). DPA...suffering from the Gulf War Illness (GWI). We are using quantitative positron emission tomography (PET) using [11C]DPA-713 (DPA). DPA binds to the... Resistant Prostate Cancer Time commitments: 0.12 calendar months Supporting Agency: CDMRP Grants Contact: TBD PI: Denmeade Co-Investigator

  19. Quantitative study of protein-protein interactions by quartz nanopipettes.

    PubMed

    Tiwari, Purushottam Babu; Astudillo, Luisana; Miksovska, Jaroslava; Wang, Xuewen; Li, Wenzhi; Darici, Yesim; He, Jin

    2014-09-07

    In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions.

  20. Interaction between calcium and phosphate adsorption on goethite.

    PubMed

    Rietra, R P; Hiemstra, T; van Riemsdijk, W H

    2001-08-15

    Quantitatively, little is known about the ion interaction processes that are responsible for the binding of phosphate in soil, water, and sediment, which determine the bioavailability and mobility of phosphate. Studies have shown that metal hydroxides are often responsible for the binding of PO4 in soils and sediments, but the binding behavior of PO4 in these systems often differs significantly from adsorption studies on metal hydroxides in laboratory. The interaction between PO4 and Ca adsorption was studied on goethite because Ca can influence the PO4 adsorption equilibria. Since adsorption interactions are very difficult to discriminate from precipitation reactions, conditions were chosen to prevent precipitation of Ca-PO4 solids. Adsorption experiments of PO4 and Ca, individually and in combination, show a strong interaction between adsorbed Ca and PO4 on goethite for conditions below the saturation index of apatite. It is shown that it is possible to predict the adsorption and interaction of PO4 and Ca on electrostatic arguments using the model parameter values derived from the single-ion systems and without invoking ternary complex formation or precipitation. The model enables the prediction of the Ca-PO4 interaction for environmentally relevant calcium and phosphate concentrations.

  1. Synthesis and binding studies of Alzheimer ligands on solid support.

    PubMed

    Rzepecki, Petra; Geib, Nina; Peifer, Manuel; Biesemeier, Frank; Schrader, Thomas

    2007-05-11

    Aminopyrazole derivatives constitute the first class of nonpeptidic rationally designed beta-sheet ligands. Here we describe a double solid-phase protocol for both synthesis and affinity testing. The presented solid-phase synthesis of four types of hybrid compounds relies on the Fmoc strategy and circumvents subsequent HPLC purification by precipitating the final product from organic solution in pure form. Hexa- and octapeptide pendants with internal di- and tetrapeptide bridges are now amenable in high yields to combinatorial synthesis of compound libraries for high-throughput screening purposes. Solid-phase peptide synthesis (SPPS) on an acid-resistant PAM allows us, after PMB deprotection, to subject the free aminopyrazole binding sites in an immobilized state to on-bead assays with fluorescence-labeled peptides. From the fluorescence emission intensity decrease, individual binding constants can be calculated via reference curves by simple application of the law of mass action. Gratifyingly, host/guest complexation can be monitored quantitatively even for those ligands, which are almost insoluble in water.

  2. Ligand-receptor assay for evaluation of functional activity of human recombinant VEGF and VEGFR-1 extracellular fragment.

    PubMed

    Leopol'd, A V; Baklaushev, V P; Korchagina, A A; Shein, S A; Grinenko, N F; Pavlov, K A; Ryabukhin, I A; Chekhonin, V P

    2012-04-01

    cDNA encoding VEGF and Ig-like extracellular domains 2-4 of VEGFR-1 (sFlt-1(2-4)) were cloned into prokaryotic expression vectors pET32a and pQE60. Recombinant proteins were purified (metal affinity chromatography) and renatured. Chemiluminescent study for the interaction of recombinant VEGF and sFlt-1(2-4) showed that biotinylated VEGF specifically binds to the polystyrene-immobilized receptor extracellular fragment. Biotinylated recombinant sFlt-1 interacts with immobilized VEGF. Analysis of the interaction of immobilized recombinant VEGFR-1 and VEGF with C6 glioma cells labeled with CFDA-SE (vital fluorescent dye) showed that recombinant VEGFR-1 also binds to native membrane-associated VEGF. Recombinant VEGF was shown to bind to specific receptors expressed on the surface of C6 glioma cells. Functional activity of these proteins was confirmed by ligand-receptor assay for VEGF and VEGFR-1 (sFlt-1) and quantitative chemiluminescent detection.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroupa, Daniel M.; Anderson, Nicholas C.; Castaneda, Chloe V.

    Here, we employed quantitative NMR spectroscopy and spectrophotometric absorbance titration to study a quantum dot X-type ligand exchange reaction. We find that the exchange is highly cooperative, where at low extents of exchange the change in free energy of the reaction, Δ G XC, is ~11 kJ mol –1 while at higher extents of exchange Δ G XC saturates to ~–4 kJ mol –1. A modified Fowler binding isotherm is developed to describe the reaction.

  4. A new LC-MS based method to quantitate exogenous recombinant transferrin in cerebrospinal fluid: a potential approach for pharmacokinetic studies of transferrin-based therapeutics in the central nervous system

    PubMed Central

    Wang, Shunhai; Bobst, Cedric E.; Kaltashov, Igor A.

    2018-01-01

    Transferrin (Tf) is an 80 kDa iron-binding protein which is viewed as a promising drug carrier to target the central nervous system due to its ability to penetrate the blood-brain barrier (BBB). Among the many challenges during the development of Tf-based therapeutics, sensitive and accurate quantitation of the administered Tf in cerebrospinal fluid (CSF) remains particularly difficult due to the presence of abundant endogenous Tf. Herein, we describe the development of a new LC-MS based method for sensitive and accurate quantitation of exogenous recombinant human Tf in rat CSF. By taking advantage of a His-tag present in recombinant Tf and applying Ni affinity purification, the exogenous hTf can be greatly enriched from rat CSF, despite the presence of the abundant endogenous protein. Additionally, we applied a newly developed O18-labeling technique that can generate internal standards at the protein level, which greatly improved the accuracy and robustness of quantitation. The developed method was investigated for linearity, accuracy, precision and lower limit of quantitation, all of which met the commonly accepted criteria for bioanalytical method validation. PMID:26307718

  5. In silico studies and fluorescence binding assays of potential anti-prion compounds reveal an important binding site for prion inhibition from PrP(C) to PrP(Sc).

    PubMed

    Pagadala, Nataraj S; Perez-Pineiro, Rolando; Wishart, David S; Tuszynski, Jack A

    2015-02-16

    To understand the pharmacophore properties of 2-aminothiazoles and design novel inhibitors against the prion protein, a highly predictive 3D quantitative structure-activity relationship (QSAR) has been developed by performing comparative molecular field analysis (CoMFA) and comparative similarity analysis (CoMSIA). Both CoMFA and CoMSIA maps reveal the presence of the oxymethyl groups in meta and para positions on the phenyl ring of compound 17 (N-[4-(3,4-dimethoxyphenyl)-1,3-thiazol-2-yl]quinolin-2-amine), is necessary for activity while electro-negative nitrogen of quinoline is highly favorable to enhance activity. The blind docking results for these compounds show that the compound with quinoline binds with higher affinity than isoquinoline and naphthalene groups. Out of 150 novel compounds retrieved using finger print analysis by pharmacophoric model predicted based on five test sets of compounds, five compounds with diverse scaffolds were selected for biological evaluation as possible PrP inhibitors. Molecular docking combined with fluorescence quenching studies show that these compounds bind to pocket-D of SHaPrP near Trp145. The new antiprion compounds 3 and 6, which bind with the interaction energies of -12.1 and -13.2 kcal/mol, respectively, show fluorescence quenching with binding constant (Kd) values of 15.5 and 44.14 μM, respectively. Further fluorescence binding assays with compound 5, which is similar to 2-aminothiazole as a positive control, also show that the molecule binds to the pocket-D with the binding constant (Kd) value of 84.7 μM. Finally, both molecular docking and a fluorescence binding assay of noscapine as a negative control reveals the same binding site on the surface of pocket-A near a rigid loop between β2 and α2 interacting with Arg164. This high level of correlation between molecular docking and fluorescence quenching studies confirm that these five compounds are likely to act as inhibitors for prion propagation while noscapine might act as a prion accelerator from PrP(C) to PrP(Sc). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Tactics for preclinical validation of receptor-binding radiotracers

    PubMed Central

    Lever, Susan Z.; Fan, Kuo-Hsien; Lever, John R.

    2016-01-01

    Introduction Aspects of radiopharmaceutical development are illustrated through preclinical studies of [125I]-(E)-1-(2-(2,3-dihydrobenzofuran-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA- BF-PE-PIPZE), a radioligand for sigma-1 (σ1) receptors, coupled with examples from the recent literature. Findings are compared to those previously observed for [125I]-(E)-1-(2-(2,3-dimethoxy-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA-DM-PE-PIPZE). Methods Syntheses of E-IA-BF-PE-PIPZE and [125I]-E-IA-BF-PE-PIPZE were accomplished by standard methods. In vitro receptor binding studies and autoradiography were performed, and binding potential was predicted. Measurements of lipophilicity and protein binding were obtained. In vivo studies were conducted in mice to evaluate radioligand stability, as well as specific binding to σ1 sites in brain, brain regions and peripheral organs in the presence and absence of potential blockers. Results E-IA-BF-PE-PIPZE exhibited high affinity and selectivity for σ1 receptors (Ki = 0.43 ± 0.03 nM, σ2 / σ1 = 173). [125I]-E-IA-BF-PE-PIPZE was prepared in good yield and purity, with high specific activity. Radioligand binding provided dissociation (koff) and association (kon) rate constants, along with a measured Kd of 0.24 ± 0.01 nM and Bmax of 472 ± 13 fmol / mg protein. The radioligand proved suitable for quantitative autoradiography in vitro using brain sections. Moderate lipophilicity, Log D7.4 2.69 ± 0.28, was determined, and protein binding was 71 ± 0.3%. In vivo, high initial whole brain uptake, > 6% injected dose / g, cleared slowly over 24 h. Specific binding represented 75% to 93% of total binding from 15 min to 24 h. Findings were confirmed and extended by regional brain biodistribution. Radiometabolites were not observed in brain (1%). Conclusions Substitution of dihydrobenzofuranylethyl for dimethoxyphenethyl increased radioligand affinity for σ1 receptors by 16-fold. While high specific binding to σ1 receptors was observed for both radioligands in vivo, [125I]-E-IA-BF-PE-PIPZE displayed much slower clearance kinetics than [125I]-E-IA-DM-PE-PIPZE. Thus, minor structural modifications of σ1 receptor radioligands lead to major differences in binding properties in vitro and in vivo. PMID:27755986

  7. Analysis of DNA interactions using single-molecule force spectroscopy.

    PubMed

    Ritzefeld, Markus; Walhorn, Volker; Anselmetti, Dario; Sewald, Norbert

    2013-06-01

    Protein-DNA interactions are involved in many biochemical pathways and determine the fate of the corresponding cell. Qualitative and quantitative investigations on these recognition and binding processes are of key importance for an improved understanding of biochemical processes and also for systems biology. This review article focusses on atomic force microscopy (AFM)-based single-molecule force spectroscopy and its application to the quantification of forces and binding mechanisms that lead to the formation of protein-DNA complexes. AFM and dynamic force spectroscopy are exciting tools that allow for quantitative analysis of biomolecular interactions. Besides an overview on the method and the most important immobilization approaches, the physical basics of the data evaluation is described. Recent applications of AFM-based force spectroscopy to investigate DNA intercalation, complexes involving DNA aptamers and peptide- and protein-DNA interactions are given.

  8. AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data

    PubMed Central

    Toseland, Christopher P; Clayton, Debra J; McSparron, Helen; Hemsley, Shelley L; Blythe, Martin J; Paine, Kelly; Doytchinova, Irini A; Guan, Pingping; Hattotuwagama, Channa K; Flower, Darren R

    2005-01-01

    AntiJen is a database system focused on the integration of kinetic, thermodynamic, functional, and cellular data within the context of immunology and vaccinology. Compared to its progenitor JenPep, the interface has been completely rewritten and redesigned and now offers a wider variety of search methods, including a nucleotide and a peptide BLAST search. In terms of data archived, AntiJen has a richer and more complete breadth, depth, and scope, and this has seen the database increase to over 31,000 entries. AntiJen provides the most complete and up-to-date dataset of its kind. While AntiJen v2.0 retains a focus on both T cell and B cell epitopes, its greatest novelty is the archiving of continuous quantitative data on a variety of immunological molecular interactions. This includes thermodynamic and kinetic measures of peptide binding to TAP and the Major Histocompatibility Complex (MHC), peptide-MHC complexes binding to T cell receptors, antibodies binding to protein antigens and general immunological protein-protein interactions. The database also contains quantitative specificity data from position-specific peptide libraries and biophysical data, in the form of diffusion co-efficients and cell surface copy numbers, on MHCs and other immunological molecules. The uses of AntiJen include the design of vaccines and diagnostics, such as tetramers, and other laboratory reagents, as well as helping parameterize the bioinformatic or mathematical in silico modeling of the immune system. The database is accessible from the URL: . PMID:16305757

  9. DGT Passive Sampling for Quantitative in Situ Measurements of Compounds from Household and Personal Care Products in Waters.

    PubMed

    Chen, Wei; Li, Yanying; Chen, Chang-Er; Sweetman, Andrew J; Zhang, Hao; Jones, Kevin C

    2017-11-21

    Widespread use of organic chemicals in household and personal care products (HPCPs) and their discharge into aquatic systems means reliable, robust techniques to monitor environmental concentrations are needed. The passive sampling approach of diffusive gradients in thin-films (DGT) is developed here and demonstrated to provide in situ quantitative and time-weighted average (TWA) measurement of these chemicals in waters. The novel technique is developed for HPCPs, including preservatives, antioxidants and disinfectants, by evaluating the performance of different binding agents. Ultrasonic extraction of binding gels in acetonitrile gave good and consistent recoveries for all test chemicals. Uptake by DGT with HLB (hydrophilic-lipophilic-balanced) as the binding agent was relatively independent of pH (3.5-9.5), ionic strength (0.001-0.1 M) and dissolved organic matter (0-20 mg L -1 ), making it suitable for applications across a wide range of environments. Deployment time and diffusion layer thickness dependence experiments confirmed DGT accumulated chemicals masses are consistent with theoretical predictions. The technique was further tested and applied in the influent and effluent of a wastewater treatment plant. Results were compared with conventional grab-sampling and 24-h-composited samples from autosamplers. DGT provided TWA concentrations over up to 18 days deployment, with minimal effects from biofouling or the diffusive boundary layer. The field application demonstrated advantages of the DGT technique: it gives in situ analyte preconcentration in a simple matrix, with more quantitative measurement of the HPCP analytes.

  10. Cytometer on a chip

    NASA Technical Reports Server (NTRS)

    Lynes, Michael A. (Inventor); Fernandez, Salvador M. (Inventor)

    2010-01-01

    An assay technique for label-free, highly parallel, qualitative and quantitative detection of specific cell populations in a sample and for assessing cell functional status, cell-cell interactions and cellular responses to drugs, environmental toxins, bacteria, viruses and other factors that may affect cell function. The technique includes a) creating a first array of binding regions in a predetermined spatial pattern on a sensor surface capable of specifically binding the cells to be assayed; b) creating a second set of binding regions in specific spatial patterns relative to the first set designed to efficiently capture potential secreted or released products from cells captured on the first set of binding regions; c) contacting the sensor surface with the sample, and d) simultaneously monitoring the optical properties of all the binding regions of the sensor surface to determine the presence and concentration of specific cell populations in the sample and their functional status by detecting released or secreted bioproducts.

  11. Reference tissue modeling with parameter coupling: application to a study of SERT binding in HIV

    NASA Astrophysics Data System (ADS)

    Endres, Christopher J.; Hammoud, Dima A.; Pomper, Martin G.

    2011-04-01

    When applicable, it is generally preferred to evaluate positron emission tomography (PET) studies using a reference tissue-based approach as that avoids the need for invasive arterial blood sampling. However, most reference tissue methods have been shown to have a bias that is dependent on the level of tracer binding, and the variability of parameter estimates may be substantially affected by noise level. In a study of serotonin transporter (SERT) binding in HIV dementia, it was determined that applying parameter coupling to the simplified reference tissue model (SRTM) reduced the variability of parameter estimates and yielded the strongest between-group significant differences in SERT binding. The use of parameter coupling makes the application of SRTM more consistent with conventional blood input models and reduces the total number of fitted parameters, thus should yield more robust parameter estimates. Here, we provide a detailed evaluation of the application of parameter constraint and parameter coupling to [11C]DASB PET studies. Five quantitative methods, including three methods that constrain the reference tissue clearance (kr2) to a common value across regions were applied to the clinical and simulated data to compare measurement of the tracer binding potential (BPND). Compared with standard SRTM, either coupling of kr2 across regions or constraining kr2 to a first-pass estimate improved the sensitivity of SRTM to measuring a significant difference in BPND between patients and controls. Parameter coupling was particularly effective in reducing the variance of parameter estimates, which was less than 50% of the variance obtained with standard SRTM. A linear approach was also improved when constraining kr2 to a first-pass estimate, although the SRTM-based methods yielded stronger significant differences when applied to the clinical study. This work shows that parameter coupling reduces the variance of parameter estimates and may better discriminate between-group differences in specific binding.

  12. Characterizing Active Pharmaceutical Ingredient Binding to Human Serum Albumin by Spin-Labeling and EPR Spectroscopy.

    PubMed

    Hauenschild, Till; Reichenwallner, Jörg; Enkelmann, Volker; Hinderberger, Dariush

    2016-08-26

    Drug binding to human serum albumin (HSA) has been characterized by a spin-labeling and continuous-wave (CW) EPR spectroscopic approach. Specifically, the contribution of functional groups (FGs) in a compound on its albumin-binding capabilities is quantitatively described. Molecules from different drug classes are labeled with EPR-active nitroxide radicals (spin-labeled pharmaceuticals (SLPs)) and in a screening approach CW-EPR spectroscopy is used to investigate HSA binding under physiological conditions and at varying ratios of SLP to protein. Spectral simulations of the CW-EPR spectra allow extraction of association constants (KA ) and the maximum number (n) of binding sites per protein. By comparison of data from 23 SLPs, the mechanisms of drug-protein association and the impact of chemical modifications at individual positions on drug uptake can be rationalized. Furthermore, new drug modifications with predictable protein binding tendency may be envisaged. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Molecular Dynamics Simulations of Protein-Ligand Complexes in Near Physiological Conditions

    NASA Astrophysics Data System (ADS)

    Wambo, Thierry Oscar

    Proteins are important molecules for their key functions. However, under certain circumstances, the function of these proteins needs to be regulated to keep us healthy. Ligands are small molecules often used to modulate the function of proteins. The binding affinity is a quantitative measure of how strong the ligand will modulate the function of the protein: a strong binding affinity will highly impact the performance of the protein. It becomes clear that it is critical to have appropriate techniques to accurately compute the binding affinity. The most difficult task in computer simulations is how to efficiently sample the space spanned by the ligand during the binding process. In this work, we have developed some schemes to compute the binding affinity of a ligand to a protein, and of a metal ion to a protein. Application of these techniques to some complexes yield results in agreement with experimental values. These methods are a brute force approach and make no assumption other than that the complexes are governed by the force field used. Specifically, we computed the free energy of binding between (1) human carbonic anhydrase II and the drug acetazolamide (hcaII-AZM), (2) human carbonic anhydrase II and the zinc ion (hcaII-Zinc), and (3) beta-lactoglobulin and five fatty acids complexes (BLG-FAs). We found the following free energies of binding in unit of kcal/mol: -12.96 +/-2.44 (-15.74) for hcaII-Zinc complex, -5.76+/-0.76 (-5.57) for BLG-OCA , -4.44+/-1.08 (-5.22) for BLG-DKA,-6.89+/-1.25 (-7.24) for BLG-DAO, -8.57+/-0.82 (-8.14) for BLG-MYR, -8.99+/-0.87 (-8.72) for BLG-PLM, and -11.87+/-1.8 (-10.8) for hcaII-AZM. The values inside the parentheses are experimental results. The simulations and quantitative analysis of each system provide interesting insights into the interactions between each entity and helps us to better understand the dynamics of these systems.

  14. Lectin binding profiles of SSEA-4 enriched, pluripotent human embryonic stem cell surfaces

    PubMed Central

    Venable, Alison; Mitalipova, Maisam; Lyons, Ian; Jones, Karen; Shin, Soojung; Pierce, Michael; Stice, Steven

    2005-01-01

    Background Pluripotent human embryonic stem cells (hESCs) have the potential to form every cell type in the body. These cells must be appropriately characterized prior to differentiation studies or when defining characteristics of the pluripotent state. Some developmentally regulated cell surface antigens identified by monoclonal antibodies in a variety of species and stem cell types have proven to be side chains of membrane glycolipids and glycoproteins. Therefore, to examine hESC surfaces for other potential pluripotent markers, we used a panel of 14 lectins, which were chosen based on their specificity for a variety of carbohydrates and carbohydrate linkages, along with stage specific embryonic antigen-4 (SSEA-4), to determine binding quantitation by flow cytometry and binding localization in adherent colonies by immunocytochemistry. Results Enriching cells for SSEA-4 expression increased the percentage of SSEA-4 positive cells to 98–99%. Using enriched high SSEA-4-expressing hESCs, we then analyzed the binding percentages of selected lectins and found a large variation in binding percentages ranging from 4% to 99% binding. Lycopersicon (tomato)esculetum lectin (TL), Ricinus communis agglutinin (RCA), and Concanavalin A (Con A) bound to SSEA-4 positive regions of hESCs and with similar binding percentages as SSEA-4. In contrast, we found Dolichos biflorus agglutinin (DBA) and Lotus tetragonolobus lectin (LTL) did not bind to hESCs while Phaseolus vulgaris leuco-agglutinin (PHA-L), Vicia villosa agglutinin (VVA), Ulex europaeus agglutinin (UEA), Phaseolus vulgaris erythro-agglutinin (PHA-E), and Maackia amurensis agglutinin (MAA) bound partially to hESCs. These binding percentages correlated well with immunocytochemistry results. Conclusion Our results provide information about types of carbohydrates and carbohydrate linkages found on pluripotent hESC surfaces. We propose that TL, RCA and Con A may be used as markers that are associated with the pluripotent state of hESCs because binding percentages and binding localization of these lectins are similar to those of SSEA-4. Non-binding lectins, DBA and LTL, may identify differentiated cell types; however, we did not find these lectins to bind to pluripotent SSEA-4 positive hESCs. This work represents a fundamental base to systematically classify pluripotent hESCs, and in future studies these lectins may be used to distinguish differentiated hESC types based on glycan presentation that accompanies differentiation. PMID:16033656

  15. Evaluation of Phosphatidylserine-Binding Peptides Radiolabeled with Fluorine 18 for in vivo Imaging of Apoptosis

    NASA Astrophysics Data System (ADS)

    Kapty, Janice Sarah

    We currently do not have a clinical method to directly assess apoptosis induced by cancer therapies. Phosphatidylserine (PS) is an attractive target for imaging apoptosis since it is on the exterior of the apoptotic cells and PS externalization is an early marker of apoptosis. PS-binding peptides are an attractive option for developing an imaging probe to detect apoptosis using positron emission tomography. In this study we evaluated binding characteristics of PS-binding peptides for ability to bind to PS, radiolabeled PS-binding peptides with fluorine-18, and performed in vitro and in vivo analysis of 18F radiolabeled PS-binding peptides including biodistribution analysis and dynamic PET imaging in a murine tumor model of apoptosis. Four peptides were evaluated for PS binding characteristics using a plate based assay system, a liposome mimic of cell membrane PS presentation, and a cell assay of apoptosis. The results indicate that all four peptides bind to PS and are specific to apoptotic cells. The widely used 18 F prosthetic group N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) and the recently developed N-[6-(4-[ 18F]fluorobenzylidene) aminooxyhexyl]maleimide ([18F]FBAM) were investigated for radiolabeling of two representative phosphatidylserine-binding peptides. The prosthetic groups were compared with respect to required reaction conditions for optimum labeling, radiolabeling yield and chemoselectivity. The N-terminus labeled product produced by reaction of [18F]SFB with binding peptide LIKKPF was produced in 18% radiochemical yield while no N-terminus labeled product could be isolated following [18F]SFB reaction with PDGLSR. When the peptides were modified by addition of a cysteine residue at the N-terminus they provided almost quantitative radiochemical yields with [18F]FBAM. Results indicate that for the peptides in this study, [18F]FBAM is a more useful prosthetic group compared to [18F]SFB due to its excellent chemo-selectivity and high radiochemical yield. We report the first experiments where PS-binding peptides were radiolabeled with 18F and evaluated as possible radiotracers for imaging apoptosis. We investigated two radio-peptides ([ 18F]FBAM-CLIKKPF and [18F]FBAM-CPGDLSR) in vitro and in vivo as possible radiotracers able to bind to apoptotic cells and to image chemotherapy induced apoptosis.

  16. Enhancement of GABAergic transmission by zolpidem, an imidazopyridine with preferential affinity for type I benzodiazepine receptors.

    PubMed

    Biggio, G; Concas, A; Corda, M G; Serra, M

    1989-02-28

    The effect of zolpidem, an imidazopyridine derivative with high affinity at the type I benzodiazepine recognition site, on the function of the GABAA/ionophore receptor complex was studied in vitro. Zolpidem, mimicking the action of diazepam, increased [3H]GABA binding, enhanced muscimol-stimulated 36Cl- uptake and reduced [35S]TBPS binding in rat cortical membrane preparations. Zolpidem was less effective than diazepam on the above parameters. Zolpidem induced a lower increase of [3H]GABA binding (23 vs. 35%) and muscimol-stimulated 36Cl- uptake (22 vs. 40%) and a smaller decrease of [35S]TBPS binding (47 vs. 77%) than diazepam. The finding that zolpidem enhanced the function of GABAergic synapses with an efficacy qualitatively and quantitatively different from that of diazepam suggests that this compound is a partial agonist at the benzodiazepine recognition site. Thus, our results are consistent with the view that the biochemical and pharmacological profile of a benzodiazepine recognition site ligand reflects its efficacy to enhance GABAergic transmission. Whether the preferential affinity of zolpidem at the type I site is involved in its atypical biochemical and pharmacological profile remains to be clarified.

  17. Adolescent social defeat alters markers of adult dopaminergic function.

    PubMed

    Novick, Andrew M; Forster, Gina L; Tejani-Butt, Shanaz M; Watt, Michael J

    2011-08-10

    Stressful experiences during adolescence can alter the trajectory of neural development and contribute to psychiatric disorders in adulthood. We previously demonstrated that adolescent male rats exposed to repeated social defeat stress show changes in mesocorticolimbic dopamine content both at baseline and in response to amphetamine when tested in adulthood. In the present study we examined whether markers of adult dopamine function are also compromised by adolescent experience of social defeat. Given that the dopamine transporter as well as dopamine D1 receptors act as regulators of psychostimulant action, are stress sensitive and undergo changes during adolescence, quantitative autoradiography was used to measure [(3)H]-GBR12935 binding to the dopamine transporter and [(3)H]-SCH23390 binding to dopamine D1 receptors, respectively. Our results indicate that social defeat during adolescence led to higher dopamine transporter binding in the infralimbic region of the medial prefrontal cortex and higher dopamine D1 receptor binding in the caudate putamen, while other brain regions analyzed were comparable to controls. Thus it appears that social defeat during adolescence causes specific changes to the adult dopamine system, which may contribute to behavioral alterations and increased drug seeking. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts

    PubMed Central

    Zhang, Chao; Zhao, Mei; Zhang, Quan-Wu; Gao, Feng-Hou

    2016-01-01

    Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS) scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB)-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP)-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced. PMID:27486852

  19. Comprehensive analysis of RNA-protein interactions by high-throughput sequencing-RNA affinity profiling.

    PubMed

    Tome, Jacob M; Ozer, Abdullah; Pagano, John M; Gheba, Dan; Schroth, Gary P; Lis, John T

    2014-06-01

    RNA-protein interactions play critical roles in gene regulation, but methods to quantitatively analyze these interactions at a large scale are lacking. We have developed a high-throughput sequencing-RNA affinity profiling (HiTS-RAP) assay by adapting a high-throughput DNA sequencer to quantify the binding of fluorescently labeled protein to millions of RNAs anchored to sequenced cDNA templates. Using HiTS-RAP, we measured the affinity of mutagenized libraries of GFP-binding and NELF-E-binding aptamers to their respective targets and identified critical regions of interaction. Mutations additively affected the affinity of the NELF-E-binding aptamer, whose interaction depended mainly on a single-stranded RNA motif, but not that of the GFP aptamer, whose interaction depended primarily on secondary structure.

  20. Engineered domain based assays to identify individual antibodies in oligoclonal combinations targeting the same protein

    PubMed Central

    Meng, Q.; Garcia-Rodriguez, C.; Manzanarez, G.; Silberg, M.A.; Conrad, F.; Bettencourt, J.; Pan, X.; Breece, T.; To, R.; Li, M.; Lee, D.; Thorner, L.; Tomic, M.T.; Marks, J.D.

    2014-01-01

    Quantitation of individual mAbs within a combined antibody drug product is required for preclinical and clinical drug development. We have developed two antitoxins (XOMA 3B and XOMA 3E) each consisting of three monoclonal antibodies (mAbs) that neutralize type B and type E botulinum neurotoxin (BoNT/B and BoNT/E) to treat serotype B and E botulism. To develop mAb-specific binding assays for each antitoxin, we mapped the epitopes of the six mAbs. Each mAb bound an epitope on either the BoNT light chain (LC) or translocation domain (HN). Epitope mapping data was used to design LC-HN domains with orthogonal mutations to make them specific for only one mAb in either XOMA 3B or 3E. Mutant LC-HN domains were cloned, expressed, and purified from E. coli. Each mAb bound only to its specific domain with affinity comparable to the binding to holotoxin. Further engineering of domains allowed construction of ELISAs that could characterize the integrity, binding affinity, and identity of each of the six mAbs in XOMA 3B, and 3E without interference from the three BoNT/A mAbs in XOMA 3AB. Such antigen engineering is a general method allowing quantitation and characterization of individual mAbs in a mAb cocktail that bind the same protein. PMID:22922799

  1. Identification of TTAGGG-binding proteins in Neurospora crassa, a fungus with vertebrate-like telomere repeats.

    PubMed

    Casas-Vila, Núria; Scheibe, Marion; Freiwald, Anja; Kappei, Dennis; Butter, Falk

    2015-11-17

    To date, telomere research in fungi has mainly focused on Saccharomyces cerevisiae and Schizosaccharomyces pombe, despite the fact that both yeasts have degenerated telomeric repeats in contrast to the canonical TTAGGG motif found in vertebrates and also several other fungi. Using label-free quantitative proteomics, we here investigate the telosome of Neurospora crassa, a fungus with canonical telomeric repeats. We show that at least six of the candidates detected in our screen are direct TTAGGG-repeat binding proteins. While three of the direct interactors (NCU03416 [ncTbf1], NCU01991 [ncTbf2] and NCU02182 [ncTay1]) feature the known myb/homeobox DNA interaction domain also found in the vertebrate telomeric factors, we additionally show that a zinc-finger protein (NCU07846) and two proteins without any annotated DNA-binding domain (NCU02644 and NCU05718) are also direct double-strand TTAGGG binders. We further find two single-strand binders (NCU02404 [ncGbp2] and NCU07735 [ncTcg1]). By quantitative label-free interactomics we identify TTAGGG-binding proteins in Neurospora crassa, suggesting candidates for telomeric factors that are supported by phylogenomic comparison with yeast species. Intriguingly, homologs in yeast species with degenerated telomeric repeats are also TTAGGG-binding proteins, e.g. in S. cerevisiae Tbf1 recognizes the TTAGGG motif found in its subtelomeres. However, there is also a subset of proteins that is not conserved. While a rudimentary core TTAGGG-recognition machinery may be conserved across yeast species, our data suggests Neurospora as an emerging model organism with unique features.

  2. Identification of the HrpS binding site in the hrpL promoter and effect of the RpoN binding site of HrpS on the regulation of the type III secretion system in Erwinia amylovora.

    PubMed

    Lee, Jae Hoon; Sundin, George W; Zhao, Youfu

    2016-06-01

    The type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by an RpoN-HrpL sigma factor cascade, which is activated by the bacterial alarmone (p)ppGpp. In this study, the binding site of HrpS, an enhancer binding protein, was identified for the first time in plant-pathogenic bacteria. Complementation of the hrpL mutant with promoter deletion constructs of the hrpL gene and promoter activity analyses using various lengths of the hrpL promoter fused to a promoter-less green fluorescent protein (gfp) reporter gene delineated the upstream region for HrpS binding. Sequence analysis revealed a dyad symmetry sequence between -138 and -125 nucleotides (TGCAA-N4-TTGCA) as the potential HrpS binding site, which is conserved in the promoter of the hrpL gene among plant enterobacterial pathogens. Results of quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and electrophoresis mobility shift assay coupled with site-directed mutagenesis (SDM) analysis showed that the intact dyad symmetry sequence was essential for HrpS binding, full activation of T3SS gene expression and virulence. In addition, the role of the GAYTGA motif (RpoN binding site) of HrpS in the regulation of T3SS gene expression in E. amylovora was characterized by complementation of the hrpS mutant using mutant variants generated by SDM. Results showed that a Y100F substitution of HrpS complemented the hrpS mutant, whereas Y100A and Y101A substitutions did not. These results suggest that tyrosine (Y) and phenylalanine (F) function interchangeably in the conserved GAYTGA motif of HrpS in E. amylovora. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  3. Studies on identifying the binding sites of folate and its derivatives in Lactobacillus casei thymidylate synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maley, F.; Maley, G.F.

    1983-01-01

    It was shown that folate and its derivatives have a profound effect on stabilizing thymidylate synthase in vitro and in vivo, as a consequence of ternary formation between the folate, dUMP, or FdUMP, and the synthase. The degree to which complex formation is affected can be revealed qualitatively by circular dichroism and quantitatively by equilibrium dialysis using the Lactobacillus casei synthase. In contrast to the pteroylmonoglutamates, the pteroylpolyglutamates bind to thymidylate synthase in the absence of dUMP, but even their binding affinity is increased greatly by this nucleotide or its analogues. Similarly, treatment of the synthase with carboxypeptidase A preventsmore » the binding of the pteroylmonoglutamates and reduces the binding of the polyglutamates without affecting dUMP binding. The latter does not protect against carboxypeptidase inactivation but does potentiate the protective effect of the pteroylpolyglutamates. To determine the region of the synthase involved in the binding of the glutamate residues, Pte(/sup 14/C)GluGlu6 was activated by a water soluble carbodiimide in the presence and absence of dUMP. This folate derivative behaved as a competitive inhibitor of 5,10-CH/sub 2/H/sub 4/PteGlu, in contrast to methotrexate which was non-competitive. Separation of the five cyanogen bromide peptides from the L. casei synthase revealed 80% of the radioactivity to be associated with CNBr-2 and about 15% with CNBr-4. Chymotrypsin treatment of CNBr-2 yielded two /sup 14/C-labeled peaks on high performance liquid chromatography, with the slower migrating one being separated further into two peaks by Bio-gel P2 chromatography. All three peptides came from the same region of CNBr-2, encompassing residues 47-61 of the enzyme. From these studies it would appear that the residues most probably involved in the fixation of PteGlu7 are lysines 50 and 58. In contrast, methotrexate appeared to bind to another region of CNBr-2.« less

  4. Synthesis, QSAR, and Molecular Dynamics Simulation of Amidino-substituted Benzimidazoles as Dipeptidyl Peptidase III Inhibitors.

    PubMed

    Rastija, Vesna; Agić, Dejan; Tomiš, Sanja; Nikolič, Sonja; Hranjec, Marijana; Grace, Karminski-Zamola; Abramić, Marija

    2015-01-01

    A molecular modeling study is performed on series of benzimidazol-based inhibitors of human dipeptidyl peptidase III (DPP III). An eight novel compounds were synthesized in excellent yields using green chemistry approach. This study is aimed to elucidate the structural features of benzimidazole derivatives required for antagonism of human DPP III activity using Quantitative Structure-Activity Relationship (QSAR) analysis, and to understand the mechanism of one of the most potent inhibitor binding into the active site of this enzyme, by molecular dynamics (MD) simulations. The best model obtained includes S3K and RDF045m descriptors which have explained 89.4 % of inhibitory activity. Depicted moiety for strong inhibition activity matches to the structure of most potent compound. MD simulation has revealed importance of imidazolinyl and phenyl groups in the mechanism of binding into the active site of human DPP III.

  5. In Vitro Binding of [³H]PSB-0413 to P2Y₁₂ Receptors.

    PubMed

    Dupuis, Arnaud; Heim, Véronique; Ohlmann, Philippe; Gachet, Christian

    2015-12-08

    The P2Y₁₂/ADP receptor plays a central role in platelet activation. Characterization of this receptor is mandatory for studying disorders associated with a P2Y₁₂ receptor defect and for evaluating P2Y₁₂ receptor agonists and antagonists. In the absence of suitable anti-P2Y₁₂ antibodies, radioligand binding assays are the only way to conduct such studies. While various radioligands were employed in the past for this purpose, none were found to be suitable for routine use. Described in this unit are protocols for quantitatively and qualitatively assessing P2Y₁₂ receptors with [³H]PSB-0413, a selective antagonist for this site. The saturation and competition assays described herein make possible the determination of P2Y₁₂ receptor density on cells, as well as the potencies and affinities of test agents at this site. Copyright © 2015 John Wiley & Sons, Inc.

  6. Theoretical study of structure, bonding, and electronic behavior of novel sandwich compounds M₃(C6R6)₂ (M = Ni, Pd, Pt; R = H, F).

    PubMed

    Zhou, Ke

    2012-10-01

    The correlations between the structural and electronic properties of the monolayer clusters M₃ (where M = Ni, Pd, Pt) and the sandwich complexes M₃(C₆R₆)₂ (where M = Ni, Pd, Pt; R = H, F) were studied by performing quantum-chemical calculations. All of the sandwich complexes are strongly donating and backdonating metal-ligand bonding structures. The influence of the ligand as well as significant variations in the M-C, M-M, and C-C bond lengths and binding energies were examined to obtain a qualitative and quantitative picture of the intramolecular interactions in C₆R₆-M₃. Our theoretical investigations show that the binding energies of these sandwich complexes gradually decrease from Ni to Pt as well as from H to F, which can be explained via the frontier orbitals of the clusters M₃ and C₆R₆.

  7. Interpretation of the Raji cell assay in sera containing anti-nuclear antibodies and immune complexes.

    PubMed Central

    Horsfall, A C; Venables, P J; Mumford, P A; Maini, R N

    1981-01-01

    The Raji cell assay is regarded as a test for the detection and quantitation of immune complexes. It is frequently positive in sera from patients with SLE. We have demonstrated a relationship between Raji cell binding and antibodies to DNA and soluble cellular antigens. In five sera containing high titres of antibodies of known single specificity, most of the Raji cell binding occurred in the 7S IgG fraction where the majority of anti-nuclear antibody was also found. When each of these sera was incubated with its specific antigen, Raji cell binding increased. Subsequent fractionation showed that this binding was in the high molecular weight fraction (greater than 200,000 daltons) and that Raji cell binding and antibody activity were abolished in the 7S fraction. These data confirm that Raji cell bind immune complexes but also indicate that 7S anti-nuclear antibodies may interact directly with Raji cells by an unknown mechanism. Therefore, in sera of patients with anti-nuclear antibodies, binding to Raji cells does not necessarily imply the presence of immune complexes alone. PMID:6975676

  8. Use of a sensitive EnVision +-based detection system for Western blotting: avoidance of streptavidin binding to endogenous biotin and biotin-containing proteins in kidney and other tissues.

    PubMed

    Banks, Rosamonde E; Craven, Rachel A; Harnden, Patricia A; Selby, Peter J

    2003-04-01

    Western blotting remains a central technique in confirming identities of proteins, their quantitation and analysis of various isoforms. The biotin-avidin/streptavidin system is often used as an amplification step to increase sensitivity but in some tissues such as kidney, "nonspecific" interactions may be a problem due to high levels of endogenous biotin-containing proteins. The EnVision system, developed for immunohistochemical applications, relies on binding of a polymeric conjugate consisting of up to 100 peroxidase molecules and 20 secondary antibody molecules linked directly to an activated dextran backbone, to the primary antibody. This study demonstrates that it is also a viable and sensitive alternative detection system in Western blotting applications.

  9. Validation and quantification of [18F]altanserin binding in the rat brain using blood input and reference tissue modeling

    PubMed Central

    Riss, Patrick J; Hong, Young T; Williamson, David; Caprioli, Daniele; Sitnikov, Sergey; Ferrari, Valentina; Sawiak, Steve J; Baron, Jean-Claude; Dalley, Jeffrey W; Fryer, Tim D; Aigbirhio, Franklin I

    2011-01-01

    The 5-hydroxytryptamine type 2a (5-HT2A) selective radiotracer [18F]altanserin has been subjected to a quantitative micro-positron emission tomography study in Lister Hooded rats. Metabolite-corrected plasma input modeling was compared with reference tissue modeling using the cerebellum as reference tissue. [18F]altanserin showed sufficient brain uptake in a distribution pattern consistent with the known distribution of 5-HT2A receptors. Full binding saturation and displacement was documented, and no significant uptake of radioactive metabolites was detected in the brain. Blood input as well as reference tissue models were equally appropriate to describe the radiotracer kinetics. [18F]altanserin is suitable for quantification of 5-HT2A receptor availability in rats. PMID:21750562

  10. Novel coumarins and related copper complexes with biological activity: DNA binding, molecular docking and in vitro antiproliferative activity.

    PubMed

    Pivetta, Tiziana; Valletta, Elisa; Ferino, Giulio; Isaia, Francesco; Pani, Alessandra; Vascellari, Sarah; Castellano, Carlo; Demartin, Francesco; Cabiddu, Maria Grazia; Cadoni, Enzo

    2017-12-01

    Coumarins show biological activity and are widely exploited for their therapeutic effects. Although a great number of coumarins substituted by heterocyclic moieties have been prepared, few studies have been carried out on coumarins containing pyridine heterocycle, which is known to modulate their physiological activities. We prepared and characterized three novel 3-(pyridin-2-yl)coumarins and their corresponding copper(II) complexes. We extended our investigations also to three known similar coumarins, since no data about their biochemical activity was previously been reported. The antiproliferative activity of the studied compounds was tested against human derived tumor cell lines and one human normal cell line. The DNA binding constants were determined and docking studies with DNA carried out. Selected Quantitative Structure-Activity Relationship (QSAR) descriptors were calculated in order to relate a set of structural and topological descriptors of the studied compounds to their DNA interaction and cytotoxic activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. ELEGANT ENVIRONMENTAL IMMUNOASSAYS

    EPA Science Inventory

    Immunochemical methods are based on selective antibodies directed to a particular target analyte. The specific binding between antibody and analyte can be used for detection and quantitation. Methods such as the enzyme-linked immunosorbent assay (ELISA) can provide a sensitiv...

  12. A heteronuclear zero quantum coherence Nz-exchange experiment that resolves resonance overlap and its application to measure the rates of heme binding to the IsdC protein.

    PubMed

    Robson, Scott A; Peterson, Robert; Bouchard, Louis-S; Villareal, Valerie A; Clubb, Robert T

    2010-07-21

    Chemical exchange phenomena in NMR spectra can be quantitatively interpreted to measure the rates of ligand binding, as well as conformational and chemical rearrangements. In macromolecules, processes that occur slowly on the chemical shift time scale are frequently studied using 2D heteronuclear ZZ or N(z)-exchange spectroscopy. However, to successfully apply this method, peaks arising from each exchanging species must have unique chemical shifts in both dimensions, a condition that is often not satisfied in protein-ligand binding equilibria for (15)N nuclei. To overcome the problem of (15)N chemical shift degeneracy we developed a heteronuclear zero-quantum (and double-quantum) coherence N(z)-exchange experiment that resolves (15)N chemical shift degeneracy in the indirect dimension. We demonstrate the utility of this new experiment by measuring the heme binding kinetics of the IsdC protein from Staphylococcus aureus. Because of peak overlap, we could not reliably analyze binding kinetics using conventional methods. However, our new experiment resulted in six well-resolved systems that yielded interpretable data. We measured a relatively slow k(off) rate of heme from IsdC (<10 s(-1)), which we interpret as necessary so heme loaded IsdC has time to encounter downstream binding partners to which it passes the heme. The utility of using this new exchange experiment can be easily expanded to (13)C nuclei. We expect our heteronuclear zero-quantum coherence N(z)-exchange experiment will expand the usefulness of exchange spectroscopy to slow chemical exchange events that involve ligand binding.

  13. Effect of the NBD-group position on interaction of fluorescently-labeled cholesterol analogues with human steroidogenic acute regulatory protein STARD1.

    PubMed

    Tugaeva, Kristina V; Faletrov, Yaroslav V; Allakhverdiev, Elvin S; Shkumatov, Vladimir M; Maksimov, Eugene G; Sluchanko, Nikolai N

    2018-02-26

    Steroidogenic acute regulatory protein (StAR, STARD1) is a key factor of intracellular cholesterol transfer to mitochondria, necessary for adrenal and gonadal steroidogenesis, and is an archetypal member of the START protein family. Despite the common overall structural fold, START members differ in their binding selectivity toward various lipid ligands, but the lack of direct structural information hinders complete understanding of the binding process and cholesterol orientation in the STARD1 complex in particular. Cholesterol binding has been widely studied by commercially available fluorescent steroids, but the effect of the fluorescent group position on binding remained underexplored. Here, we dissect STARD1 interaction with cholesterol-like steroids bearing 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group in different positions, namely, with 22-NBD-cholesterol (22NC), 25-NBD-cholesterol (25NC), 20-((NBDamino)-pregn-5-en-3-ol (20NP) and 3-(NBDamino)-cholestane (3NC). While being able to stoichiometrically bind 22NC and 20NP with high fluorescence yield and quantitative exhaustion of fluorescence of some protein tryptophans, STARD1 binds 25NC and 3NC with much lower affinity and poor fluorescence response. In contrast to 3NC, binding of 20NP leads to STARD1 stabilization and substantially increases the NBD fluorescence lifetime. Remarkably, in terms of fluorescence response, 20NP slightly outperforms commonly used 22NC and can thus be used for screening of various potential ligands by a competition mechanism in the future. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Genomic Heat Shock Element Sequences Drive Cooperative Human Heat Shock Factor 1 DNA Binding and Selectivity*

    PubMed Central

    Jaeger, Alex M.; Makley, Leah N.; Gestwicki, Jason E.; Thiele, Dennis J.

    2014-01-01

    The heat shock transcription factor 1 (HSF1) activates expression of a variety of genes involved in cell survival, including protein chaperones, the protein degradation machinery, anti-apoptotic proteins, and transcription factors. Although HSF1 activation has been linked to amelioration of neurodegenerative disease, cancer cells exhibit a dependence on HSF1 for survival. Indeed, HSF1 drives a program of gene expression in cancer cells that is distinct from that activated in response to proteotoxic stress, and HSF1 DNA binding activity is elevated in cycling cells as compared with arrested cells. Active HSF1 homotrimerizes and binds to a DNA sequence consisting of inverted repeats of the pentameric sequence nGAAn, known as heat shock elements (HSEs). Recent comprehensive ChIP-seq experiments demonstrated that the architecture of HSEs is very diverse in the human genome, with deviations from the consensus sequence in the spacing, orientation, and extent of HSE repeats that could influence HSF1 DNA binding efficacy and the kinetics and magnitude of target gene expression. To understand the mechanisms that dictate binding specificity, HSF1 was purified as either a monomer or trimer and used to evaluate DNA-binding site preferences in vitro using fluorescence polarization and thermal denaturation profiling. These results were compared with quantitative chromatin immunoprecipitation assays in vivo. We demonstrate a role for specific orientations of extended HSE sequences in driving preferential HSF1 DNA binding to target loci in vivo. These studies provide a biochemical basis for understanding differential HSF1 target gene recognition and transcription in neurodegenerative disease and in cancer. PMID:25204655

  15. ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer.

    PubMed

    Dvorak, Pavel; Pesta, Martin; Soucek, Pavel

    2017-05-01

    Adenosine triphosphate-binding cassette proteins constitute a large family of active transporters through extracellular and intracellular membranes. Increased drug efflux based on adenosine triphosphate-binding cassette protein activity is related to the development of cancer cell chemoresistance. Several articles have focused on adenosine triphosphate-binding cassette gene expression profiles (signatures), based on the expression of all 49 human adenosine triphosphate-binding cassette genes, in individual tumor types and reported connections to established clinicopathological features. The aim of this study was to test our theory about the existence of adenosine triphosphate-binding cassette gene expression profiles common to multiple types of tumors, which may modify tumor progression and provide clinically relevant information. Such general adenosine triphosphate-binding cassette profiles could constitute a new attribute of carcinogenesis. Our combined cohort consisted of tissues from 151 cancer patients-breast, colorectal, and pancreatic carcinomas. Standard protocols for RNA isolation and quantitative real-time polymerase chain reaction were followed. Gene expression data from individual tumor types as well as a merged tumor dataset were analyzed by bioinformatics tools. Several general adenosine triphosphate-binding cassette profiles, with differences in gene functions, were established and shown to have significant relations to clinicopathological features such as tumor size, histological grade, or clinical stage. Genes ABCC7, A3, A8, A12, and C8 prevailed among the most upregulated or downregulated ones. In conclusion, the results supported our theory about general adenosine triphosphate-binding cassette gene expression profiles and their importance for cancer on clinical as well as research levels. The presence of ABCC7 (official symbol CFTR) among the genes with key roles in the profiles supports the emerging evidence about its crucial role in various cancers. Graphical abstract.

  16. Linker histone H1.0 interacts with an extensive network of proteins found in the nucleolus

    PubMed Central

    Kalashnikova, Anna A.; Winkler, Duane D.; McBryant, Steven J.; Henderson, Ryan K.; Herman, Jacob A.; DeLuca, Jennifer G.; Luger, Karolin; Prenni, Jessica E.; Hansen, Jeffrey C.

    2013-01-01

    The H1 linker histones are abundant chromatin-associated DNA-binding proteins. Recent evidence suggests that linker histones also may function through protein–protein interactions. To gain a better understanding of the scope of linker histone involvement in protein–protein interactions, we used a proteomics approach to identify H1-binding proteins in human nuclear extracts. Full-length H1.0 and H1.0 lacking its C-terminal domain (CTD) were used for protein pull-downs. A total of 107 candidate H1.0 binding proteins were identified by LC-MS/MS. About one-third of the H1.0-dependent interactions were mediated by the CTD, and two-thirds by the N-terminal domain-globular domain fragment. Many of the proteins pulled down by H1.0 were core splicing factors. Another group of H1-binding proteins functions in rRNA biogenesis. H1.0 also pulled down numerous ribosomal proteins and proteins involved in cellular transport. Strikingly, nearly all of the H1.0-binding proteins are found in the nucleolus. Quantitative biophysical studies with recombinant proteins confirmed that H1.0 directly binds to FACT and the splicing factors SF2/ASF and U2AF65. Our results demonstrate that H1.0 interacts with an extensive network of proteins that function in RNA metabolism in the nucleolus, and suggest that a new paradigm for linker histone action is in order. PMID:23435226

  17. Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach.

    PubMed

    Guo, Zuojun; Li, Bo; Cheng, Li-Tien; Zhou, Shenggao; McCammon, J Andrew; Che, Jianwei

    2015-02-10

    Protein–ligand binding is a key biological process at the molecular level. The identification and characterization of small-molecule binding sites on therapeutically relevant proteins have tremendous implications for target evaluation and rational drug design. In this work, we used the recently developed level-set variational implicit-solvent model (VISM) with the Coulomb field approximation (CFA) to locate and characterize potential protein–small-molecule binding sites. We applied our method to a data set of 515 protein–ligand complexes and found that 96.9% of the cocrystallized ligands bind to the VISM-CFA-identified pockets and that 71.8% of the identified pockets are occupied by cocrystallized ligands. For 228 tight-binding protein–ligand complexes (i.e, complexes with experimental pKd values larger than 6), 99.1% of the cocrystallized ligands are in the VISM-CFA-identified pockets. In addition, it was found that the ligand binding orientations are consistent with the hydrophilic and hydrophobic descriptions provided by VISM. Quantitative characterization of binding pockets with topological and physicochemical parameters was used to assess the “ligandability” of the pockets. The results illustrate the key interactions between ligands and receptors and can be very informative for rational drug design.

  18. Redox-dependent interaction between thaumatin-like protein and β-glucan influences malting quality of barley.

    PubMed

    Singh, Surinder; Tripathi, Rajiv K; Lemaux, Peggy G; Buchanan, Bob B; Singh, Jaswinder

    2017-07-18

    Barley is the cornerstone of the malting and brewing industry. It is known that 250 quantitative trait loci (QTLs) of the grain are associated with 19 malting-quality phenotypes. However, only a few of the contributing genetic components have been identified. One of these, on chromosome 4H, contains a major malting QTL, QTL2, located near the telomeric region that accounts, respectively, for 28.9% and 37.6% of the variation in the β-glucan and extract fractions of malt. In the current study, we dissected the QTL2 region using an expression- and microsynteny-based approach. From a set of 22 expressed sequence tags expressed in seeds at the malting stage, we identified a candidate gene, TLP8 ( thaumatin-like protein 8 ), which was differentially expressed and influenced malting quality. Transcript abundance and protein profiles of TLP8 were studied in different malt and feed varieties using quantitative PCR, immunoblotting, and enzyme-linked immunosorbent assay (ELISA). The experiments demonstrated that TLP8 binds to insoluble (1, 3, 1, 4)-β-D glucan in grain extracts, thereby facilitating the removal of this undesirable polysaccharide during malting. Further, the binding of TLP8 to β-glucan was dependent on redox. These findings represent a stride forward in our understanding of the malting process and provide a foundation for future improvements in the final beer-making process.

  19. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Lei; Shi, Zhenqing; Lu, Yang

    Understanding the kinetics of toxic ion reactions with ferrihydrite is crucial for predicting the dynamic behavior of contaminants in soil environments. In this study, the kinetics of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite were investigated with a combination of laboratory macroscopic experiments, microscopic investigation and mechanistic modeling. The rates of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite, as systematically studied using a stirred-flow method, was highly dependent on the reaction pH and metal concentrations and varied significantly among four metals. Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) showed, at sub-nano scales, all fourmore » metals were distributed within the ferrihydrite particle aggregates homogeneously after adsorption reactions, with no evidence of surface diffusion-controlled processes. Based on experimental results, we developed a unifying kinetics model for both cation and oxyanion adsorption/desorption on ferrihydrite based on the mechanistic-based equilibrium model CD-MUSIC. Overall, the model described the kinetic results well, and we quantitatively demonstrated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites affected the adsorption and desorption rates. Our results provided a unifying quantitative modeling method for the kinetics of both cation and oxyanion adsorption/desorption on iron minerals.« less

  20. Development of a general method for detection and quantification of the P35S promoter based on assessment of existing methods

    PubMed Central

    Wu, Yuhua; Wang, Yulei; Li, Jun; Li, Wei; Zhang, Li; Li, Yunjing; Li, Xiaofei; Li, Jun; Zhu, Li; Wu, Gang

    2014-01-01

    The Cauliflower mosaic virus (CaMV) 35S promoter (P35S) is a commonly used target for detection of genetically modified organisms (GMOs). There are currently 24 reported detection methods, targeting different regions of the P35S promoter. Initial assessment revealed that due to the absence of primer binding sites in the P35S sequence, 19 of the 24 reported methods failed to detect P35S in MON88913 cotton, and the other two methods could only be applied to certain GMOs. The rest three reported methods were not suitable for measurement of P35S in some testing events, because SNPs in binding sites of the primer/probe would result in abnormal amplification plots and poor linear regression parameters. In this study, we discovered a conserved region in the P35S sequence through sequencing of P35S promoters from multiple transgenic events, and developed new qualitative and quantitative detection systems targeting this conserved region. The qualitative PCR could detect the P35S promoter in 23 unique GMO events with high specificity and sensitivity. The quantitative method was suitable for measurement of P35S promoter, exhibiting good agreement between the amount of template and Ct values for each testing event. This study provides a general P35S screening method, with greater coverage than existing methods. PMID:25483893

  1. Zonal Rate Model for Axial and Radial Flow Membrane Chromatography. Part I: Knowledge Transfer Across Operating Conditions and Scales

    PubMed Central

    Ghosh, Pranay; Vahedipour, Kaveh; Lin, Min; Vogel, Jens H; Haynes, Charles A; von Lieres, Eric

    2013-01-01

    The zonal rate model (ZRM) has previously been applied for analyzing the performance of axial flow membrane chromatography capsules by independently determining the impacts of flow and binding related non-idealities on measured breakthrough curves. In the present study, the ZRM is extended to radial flow configurations, which are commonly used at larger scales. The axial flow XT5 capsule and the radial flow XT140 capsule from Pall are rigorously analyzed under binding and non-binding conditions with bovine serum albumin (BSA) as test molecule. The binding data of this molecule is much better reproduced by the spreading model, which hypothesizes different binding orientations, than by the well-known Langmuir model. Moreover, a revised cleaning protocol with NaCl instead of NaOH and minimizing the storage time has been identified as most critical for quantitatively reproducing the measured breakthrough curves. The internal geometry of both capsules is visualized by magnetic resonance imaging (MRI). The flow in the external hold-up volumes of the XT140 capsule was found to be more homogeneous as in the previously studied XT5 capsule. An attempt for model-based scale-up was apparently impeded by irregular pleat structures in the used XT140 capsule, which might lead to local variations in the linear velocity through the membrane stack. However, the presented approach is universal and can be applied to different capsules. The ZRM is shown to potentially help save valuable material and time, as the experiments required for model calibration are much cheaper than the predicted large-scale experiment at binding conditions. Biotechnol. Bioeng. 2013; 110: 1129–1141. © 2012 Wiley Periodicals, Inc. PMID:23097218

  2. Investigating the binding mechanism of novel 6-aminonicotinate-based antagonists with P2Y12 by 3D-QSAR, docking and molecular dynamics simulations.

    PubMed

    Zhou, Shengfu; Fang, Danqing; Tan, Shepei; Lin, Weicong; Wu, Wenjuan; Zheng, Kangcheng

    2017-10-01

    P2Y 12 receptor is an attractive target for the anti-platelet therapies, treating various thrombotic diseases. In this work, a total of 107 6-aminonicotinate-based compounds as potent P2Y 12 antagonists were studies by a molecular modeling study combining three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations to explore the decisive binding conformations of these antagonists with P2Y 12 and the structural features for the activity. The optimum CoMFA and CoMSIA models identified satisfactory robustness and good predictive ability, with R 2  = .983, q 2  = .805, [Formula: see text] = .881 for CoMFA model, and R 2  = .935, q 2  = .762, [Formula: see text] = .690 for CoMSIA model, respectively. The probable binding modes of compounds and key amino acid residues were revealed by molecular docking. MD simulations and MM/GBSA free energy calculations were further performed to validate the rationality of docking results and to compare the binding modes of several compound pairs with different activities, and the key residues (Val102, Tyr105, Tyr109, His187, Val190, Asn191, Phe252, His253, Arg256, Tyr259, Thr260, Val279, and Lys280) for the higher activity were pointed out. The binding energy decomposition indicated that the hydrophobic and hydrogen bond interactions play important roles for the binding of compounds to P2Y 12 . We hope these results could be helpful in design of potent and selective P2Y 12 antagonists.

  3. Molecular mechanism of membrane binding of the GRP1 PH domain.

    PubMed

    Lai, Chun-Liang; Srivastava, Anand; Pilling, Carissa; Chase, Anna R; Falke, Joseph J; Voth, Gregory A

    2013-09-09

    The pleckstrin homology (PH) domain of the general receptor of phosphoinositides 1 (GRP1) protein selectively binds to a rare signaling phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), in the membrane. The specific PIP3 lipid docking of GRP1 PH domain is essential to protein cellular function and is believed to occur in a stepwise process, electrostatic-driven membrane association followed by the specific PIP3 binding. By a combination of all-atom molecular dynamics (MD) simulations, coarse-grained analysis, electron paramagnetic resonance (EPR) membrane docking geometry, and fluorescence resonance energy transfer (FRET) kinetic studies, we have investigated the search and bind process in the GRP1 PH domain at the molecular scale. We simulated the two membrane binding states of the GRP1 PH domain in the PIP3 search process, before and after the GRP1 PH domain docks with the PIP3 lipid. Our results suggest that the background anionic phosphatidylserine lipids, which constitute around one-fifth of the membrane by composition, play a critical role in the initial stages of recruiting protein to the membrane surface through non-specific electrostatic interactions. Our data also reveal a previously unseen transient membrane association mechanism that is proposed to enable a two-dimensional "hopping" search of the membrane surface for the rare PIP3 target lipid. We further modeled the PIP3-bound membrane-protein system using the EPR membrane docking structure for the MD simulations, quantitatively validating the EPR membrane docking structure and augmenting our understanding of the binding interface with atomic-level detail. Several observations and hypotheses reached from our MD simulations are also supported by experimental kinetic studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Human cytomegalovirus DNA polymerase catalytic subunit pUL54 possesses independently acting nuclear localization and ppUL44 binding motifs.

    PubMed

    Alvisi, Gualtiero; Ripalti, Alessandro; Ngankeu, Apollinaire; Giannandrea, Maila; Caraffi, Stefano G; Dias, Manisha M; Jans, David A

    2006-10-01

    The catalytic subunit of human cytomegalovirus (HCMV) DNA polymerase pUL54 is a 1242-amino-acid protein, whose function, stimulated by the processivity factor, phosphoprotein UL44 (ppUL44), is essential for viral replication. The C-terminal residues (amino acids 1220-1242) of pUL54 have been reported to be sufficient for ppUL44 binding in vitro. Although believed to be important for functioning in the nuclei of infected cells, no data are available on either the interaction of pUL54 with ppUL44 in living mammalian cells or the mechanism of pUL54 nuclear transport and its relationship with that of ppUL44. The present study examines for the first time the nuclear import pathway of pUL54 and its interaction with ppUL44 using dual color, quantitative confocal laser scanning microscopy on live transfected cells and quantitative gel mobility shift assays. We showed that of two nuclear localization signals (NLSs) located at amino acids 1153-1159 (NLSA) and 1222-1227 (NLSB), NLSA is sufficient to confer nuclear localization on green fluorescent protein (GFP) by mediating interaction with importin alpha/beta. We also showed that pUL54 residues 1213-1242 are sufficient to confer ppUL44 binding abilities on GFP and that pUL54 and ppUL44 can be transported to the nucleus as a complex. Our work thus identified distinct sites within the HCMV DNA polymerase, which represent potential therapeutic targets and establishes the molecular basis of UL54 nuclear import.

  5. Role of platinum DNA damage-induced transcriptional inhibition in chemotherapy-induced neuronal atrophy and peripheral neurotoxicity.

    PubMed

    Yan, Fang; Liu, Johnson J; Ip, Virginia; Jamieson, Stephen M F; McKeage, Mark J

    2015-12-01

    Platinum-based anticancer drugs cause peripheral neurotoxicity by damaging sensory neurons within the dorsal root ganglia (DRG), but the mechanisms are incompletely understood. The roles of platinum DNA binding, transcription inhibition and altered cell size were investigated in primary cultures of rat DRG cells. Click chemistry quantitative fluorescence imaging of RNA-incorporated 5-ethynyluridine showed high, but wide ranging, global levels of transcription in individual neurons that correlated with their cell body size. Treatment with platinum drugs reduced neuronal transcription and cell body size to an extent that corresponded to the amount of preceding platinum DNA binding, but without any loss of neuronal cells. The effects of platinum drugs on neuronal transcription and cell body size were inhibited by blocking platinum DNA binding with sodium thiosulfate, and mimicked by treatment with a model transcriptional inhibitor, actinomycin D. In vivo oxaliplatin treatment depleted the total RNA content of DRG tissue concurrently with altering DRG neuronal size. These findings point to a mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. DRG neurons may be particularly vulnerable to this mechanism of toxicity because of their requirements for high basal levels of global transcriptional activity. Findings point to a new stepwise mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. Dorsal root ganglion neurons may be particularly vulnerable to this neurotoxicity because of their high global transcriptional outputs, demonstrated in this study by click chemistry quantitative fluorescence imaging. © 2015 International Society for Neurochemistry.

  6. Characterization of Calmodulin–Fas Death Domain Interaction: An Integrated Experimental and Computational Study

    PubMed Central

    2015-01-01

    The Fas death receptor-activated death-inducing signaling complex (DISC) regulates apoptosis in many normal and cancer cells. Qualitative biochemical experiments demonstrate that calmodulin (CaM) binds to the death domain of Fas. The interaction between CaM and Fas regulates Fas-mediated DISC formation. A quantitative understanding of the interaction between CaM and Fas is important for the optimal design of antagonists for CaM or Fas to regulate the CaM–Fas interaction, thus modulating Fas-mediated DISC formation and apoptosis. The V254N mutation of the Fas death domain (Fas DD) is analogous to an identified mutant allele of Fas in lpr-cg mice that have a deficiency in Fas-mediated apoptosis. In this study, the interactions of CaM with the Fas DD wild type (Fas DD WT) and with the Fas DD V254N mutant were characterized using isothermal titration calorimetry (ITC), circular dichroism spectroscopy (CD), and molecular dynamics (MD) simulations. ITC results reveal an endothermic binding characteristic and an entropy-driven interaction of CaM with Fas DD WT or with Fas DD V254N. The Fas DD V254N mutation decreased the association constant (Ka) for CaM–Fas DD binding from (1.79 ± 0.20) × 106 to (0.88 ± 0.14) × 106 M–1 and slightly increased a standard state Gibbs free energy (ΔG°) for CaM–Fas DD binding from −8.87 ± 0.07 to −8.43 ± 0.10 kcal/mol. CD secondary structure analysis and MD simulation results did not show significant secondary structural changes of the Fas DD caused by the V254N mutation. The conformational and dynamical motion analyses, the analyses of hydrogen bond formation within the CaM binding region, the contact numbers of each residue, and the electrostatic potential for the CaM binding region based on MD simulations demonstrated changes caused by the Fas DD V254N mutation. These changes caused by the Fas DD V254N mutation could affect the van der Waals interactions and electrostatic interactions between CaM and Fas DD, thereby affecting CaM–Fas DD interactions. Results from this study characterize CaM–Fas DD interactions in a quantitative way, providing structural and thermodynamic evidence of the role of the Fas DD V254N mutation in the CaM–Fas DD interaction. Furthermore, the results could help to identify novel strategies for regulating CaM–Fas DD interactions and Fas DD conformation and thus to modulate Fas-mediated DISC formation and thus Fas-mediated apoptosis. PMID:24702583

  7. Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue.

    PubMed

    Faustino, Patrick J; Yang, Yongsheng; Progar, Joseph J; Brownell, Charles R; Sadrieh, Nakissa; May, Joan C; Leutzinger, Eldon; Place, David A; Duffy, Eric P; Houn, Florence; Loewke, Sally A; Mecozzi, Vincent J; Ellison, Christopher D; Khan, Mansoor A; Hussain, Ajaz S; Lyon, Robbe C

    2008-05-12

    Ferric hexacyanoferrate (Fe4III[FeII(CN)6]3), also known as insoluble Prussian blue (PB) is the active pharmaceutical ingredient (API) of the drug product, Radiogardase. Radiogardase is the first FDA approved medical countermeasure for the treatment of internal contamination with radioactive cesium (Cs) or thallium in the event of a major radiological incident such as a "dirty bomb". A number of pre-clinical and clinical studies have evaluated the use of PB as an investigational decorporation agent to enhance the excretion of metal cations. There are few sources of published in vitro data that detail the binding capacity of cesium to insoluble PB under various chemical and physical conditions. The study objective was to determine the in vitro binding capacity of PB APIs and drug products by evaluating certain chemical and physical factors such as medium pH, particle size, and storage conditions (temperature). In vitro experimental conditions ranged from pH 1 to 9, to cover the range of pH levels that PB may encounter in the gastrointestinal (GI) tract in humans. Measurements of cesium binding were made between 1 and 24h, to cover gastric and intestinal tract residence time using a validated atomic emission spectroscopy (AES) method. The results indicated that pH, exposure time, storage temperature (affecting moisture content) and particle size play significant roles in the cesium binding to both the PB API and the drug product. The lowest cesium binding was observed at gastric pH of 1 and 2, whereas the highest cesium binding was observed at physiological pH of 7.5. It was observed that dry storage conditions resulted in a loss of moisture from PB, which had a significant negative effect on the PB cesium binding capacity at time intervals consistent with gastric residence. Differences were also observed in the binding capacity of PB with different particle sizes. Significant batch to batch differences were also observed in the binding capacity of some PB API and drug products. Our results suggest that certain physiochemical properties affect the initial binding capacity and the overall binding capacity of PB APIs and drug products during conditions that simulated gastric and GI residence time. These physiochemical properties can be utilized as quality attributes to monitor and predict drug product quality under certain manufacturing and storage conditions and may be utilized to enhance the clinical efficacy of PB.

  8. Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing

    PubMed Central

    Gu, Xin; Yan, Yan; Novick, Scott J.; Kovach, Amanda; Goswami, Devrishi; Ke, Jiyuan; Tan, M. H. Eileen; Wang, Lili; Li, Xiaodan; de Waal, Parker W.; Webb, Martin R.; Griffin, Patrick R.; Xu, H. Eric

    2017-01-01

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism. PMID:28615457

  9. Comparison of calculation and experiment implicates significant electrostatic contributions to the binding stability of barnase and barstar.

    PubMed

    Dong, Feng; Vijayakumar, M; Zhou, Huan-Xiang

    2003-07-01

    The contributions of electrostatic interactions to the binding stability of barnase and barstar were studied by the Poisson-Boltzmann model with three different protocols: a), the dielectric boundary specified as the van der Waals (vdW) surface of the protein along with a protein dielectric constant (epsilon (p)) of 4; b), the dielectric boundary specified as the molecular (i.e., solvent-exclusion (SE)) surface along with epsilon (p) = 4; and c), "SE + epsilon (p) = 20." The "vdW + epsilon (p) = 4" and "SE + epsilon (p) = 20" protocols predicted an overall electrostatic stabilization whereas the "SE + epsilon (p) = 4" protocol predicted an overall electrostatic destabilization. The "vdW + epsilon (p) = 4" protocol was most consistent with experiment. It quantitatively reproduced the observed effects of 17 mutations neutralizing charged residues lining the binding interface and the measured coupling energies of six charge pairs across the interface and reasonably rationalized the experimental ionic strength and pH dependences of the binding constant. In contrast, the "SE + epsilon (p) = 4" protocol predicted significantly larger coupling energies of charge pairs whereas the "SE + epsilon (p) = 20" protocol did not predict any pH dependence. This study calls for further scrutiny of the different Poisson-Boltzmann protocols and demonstrates potential danger in drawing conclusions on electrostatic contributions based on a particular calculation protocol.

  10. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.« less

  11. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system

    DOE PAGES

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    2015-11-19

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.« less

  12. Estrogen Receptor Folding Modulates cSrc Kinase SH2 Interaction via a Helical Binding Mode.

    PubMed

    Nieto, Lidia; Tharun, Inga M; Balk, Mark; Wienk, Hans; Boelens, Rolf; Ottmann, Christian; Milroy, Lech-Gustav; Brunsveld, Luc

    2015-11-20

    The estrogen receptors (ERs) feature, next to their transcriptional role, important nongenomic signaling actions, with emerging clinical relevance. The Src Homology 2 (SH2) domain mediated interaction between cSrc kinase and ER plays a key role in this; however the molecular determinants of this interaction have not been elucidated. Here, we used phosphorylated ER peptide and semisynthetic protein constructs in a combined biochemical and structural study to, for the first time, provide a quantitative and structural characterization of the cSrc SH2-ER interaction. Fluorescence polarization experiments delineated the SH2 binding motif in the ER sequence. Chemical shift perturbation analysis by nuclear magnetic resonance (NMR) together with molecular dynamics (MD) simulations allowed us to put forward a 3D model of the ER-SH2 interaction. The structural basis of this protein-protein interaction has been compared with that of the high affinity SH2 binding sequence GpYEEI. The ER features a different binding mode from that of the "two-pronged plug two-hole socket" model in the so-called specificity determining region. This alternative binding mode is modulated via the folding of ER helix 12, a structural element directly C-terminal of the key phosphorylated tyrosine. The present findings provide novel molecular entries for understanding nongenomic ER signaling and targeting the corresponding disease states.

  13. Antenna-predominant and male-biased CSP19 of Sesamia inferens is able to bind the female sex pheromones and host plant volatiles.

    PubMed

    Zhang, Ya-Nan; Ye, Zhan-Feng; Yang, Ke; Dong, Shuang-Lin

    2014-02-25

    Insect chemosensory proteins (CSPs) are proposed to capture and transport hydrophobic chemicals across the sensillum lymph to olfactory receptors (ORs), but this has not been clarified in moths. In this study, we built on our previously reported segment sequence work and cloned the full length CSP19 gene (SinfCSP19) from the antennae of Sesamia inferens by using rapid amplification of cDNA ends. Quantitative real time-PCR (qPCR) assays indicated that the gene was expressed in a unique profile, i.e. predominant in antennae and significantly higher in male than in female. To explore the function, recombinant SinfCSP19 was expressed in Escherichia coli cells and purified by Ni-ion affinity chromatography. Binding affinities of the recombinant SinfCSP19 with 39 plant volatiles, 3 sex pheromone components and 10 pheromone analogs were measured using fluorescent competitive binding assays. The results showed that 6 plant volatiles displayed high binding affinities to SinfCSP19 (Ki = 2.12-8.75 μM), and more interesting, the 3 sex pheromone components and analogs showed even higher binding to SinfCSP19 (Ki = 0.49-1.78 μM). Those results suggest that SinfCSP19 plays a role in reception of female sex pheromones of S. inferens and host plant volatiles. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Proteomic analysis in peritoneal dialysis patients with different peritoneal transport characteristics.

    PubMed

    Wen, Qiong; Zhang, Li; Mao, Hai-Ping; Tang, Xue-Qing; Rong, Rong; Fan, Jin-Jin; Yu, Xue-Qing

    2013-08-30

    Peritoneal membranes can be categorized as high, high average, low average, and low transporters, based on the removal or transport rate of solutes. In this study, we used proteomic analysis to determine the differences in proteins removed by different types of peritoneal membranes. Peritoneal transport characteristics in patients who received peritoneal dialysis therapy were assessed by a peritoneal equilibration test. Two-dimensional differential gel electrophoresis technology followed by quantitative analysis was performed to study the variation in protein expression from peritoneal dialysis effluents (PDE) among different groups. Proteins were identified by MALDI-TOF-MS/MS analyses. Further validation in PDE or serum was performed utilizing ELISA analysis. Proteomics analysis revealed ten protein spots with significant differences in intensity levels among different groups, including vitamin D-binding protein, complement C3, apolipoprotein-A1, complement factor C4A, haptoglobin, alpha-1 antitrypsin, immunoglobulin kappa light chain, alpha-2-microglobulin, retinol-binding protein 4 and transthyretin. The levels of vitamin D-binding protein, complement C3, and apolipoprotein-A1 in PDE derived from different groups were greatly varied (P<0.05). However, no significant difference was found in the serum levels of these proteins among different groups (P>0.05 for all groups). This study provides a novel overview of the differences in PDE proteomes of four types of peritoneal membranes. Vitamin D-binding protein, complement C3, and apolipoprotein-A1 showed enhanced expression in PDE of patients with high transporter. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. A novel structure-based multimode QSAR method affords predictive models for phosphodiesterase inhibitors.

    PubMed

    Dong, Xialan; Ebalunode, Jerry O; Cho, Sung Jin; Zheng, Weifan

    2010-02-22

    Quantitative structure-activity relationship (QSAR) methods aim to build quantitatively predictive models for the discovery of new molecules. It has been widely used in medicinal chemistry for drug discovery. Many QSAR techniques have been developed since Hansch's seminal work, and more are still being developed. Motivated by Hopfinger's receptor-dependent QSAR (RD-QSAR) formalism and the Lukacova-Balaz scheme to treat multimode issues, we have initiated studies that focus on a structure-based multimode QSAR (SBMM QSAR) method, where the structure of the target protein is used in characterizing the ligand, and the multimode issue of ligand binding is systematically treated with a modified Lukacova-Balaz scheme. All ligand molecules are first docked to the target binding pocket to obtain a set of aligned ligand poses. A structure-based pharmacophore concept is adopted to characterize the binding pocket. Specifically, we represent the binding pocket as a geometric grid labeled by pharmacophoric features. Each pose of the ligand is also represented as a labeled grid, where each grid point is labeled according to the atom types of nearby ligand atoms. These labeled grids or three-dimensional (3D) maps (both the receptor map (R-map) and the ligand map (L-map)) are compared to each other to derive descriptors for each pose of the ligand, resulting in a multimode structure-activity relationship (SAR) table. Iterative partial least-squares (PLS) is employed to build the QSAR models. When we applied this method to analyze PDE-4 inhibitors, predictive models have been developed, obtaining models with excellent training correlation (r(2) = 0.65-0.66), as well as test correlation (R(2) = 0.64-0.65). A comparative analysis with 4 other QSAR techniques demonstrates that this new method affords better models, in terms of the prediction power for the test set.

  16. Stepwise identification of HLA-A*0201-restricted CD8+ T-cell epitope peptides from herpes simplex virus type 1 genome boosted by a StepRank scheme.

    PubMed

    Bi, Jianjun; Song, Rengang; Yang, Huilan; Li, Bingling; Fan, Jianyong; Liu, Zhongrong; Long, Chaoqin

    2011-01-01

    Identification of immunodominant epitopes is the first step in the rational design of peptide vaccines aimed at T-cell immunity. To date, however, it is yet a great challenge for accurately predicting the potent epitope peptides from a pool of large-scale candidates with an efficient manner. In this study, a method that we named StepRank has been developed for the reliable and rapid prediction of binding capabilities/affinities between proteins and genome-wide peptides. In this procedure, instead of single strategy used in most traditional epitope identification algorithms, four steps with different purposes and thus different computational demands are employed in turn to screen the large-scale peptide candidates that are normally generated from, for example, pathogenic genome. The steps 1 and 2 aim at qualitative exclusion of typical nonbinders by using empirical rule and linear statistical approach, while the steps 3 and 4 focus on quantitative examination and prediction of the interaction energy profile and binding affinity of peptide to target protein via quantitative structure-activity relationship (QSAR) and structure-based free energy analysis. We exemplify this method through its application to binding predictions of the peptide segments derived from the 76 known open-reading frames (ORFs) of herpes simplex virus type 1 (HSV-1) genome with or without affinity to human major histocompatibility complex class I (MHC I) molecule HLA-A*0201, and find that the predictive results are well compatible with the classical anchor residue theory and perfectly match for the extended motif pattern of MHC I-binding peptides. The putative epitopes are further confirmed by comparisons with 11 experimentally measured HLA-A*0201-restrcited peptides from the HSV-1 glycoproteins D and K. We expect that this well-designed scheme can be applied in the computational screening of other viral genomes as well.

  17. Binding efficiency of recombinant collagen-binding basic fibroblast growth factors (CBD-bFGFs) and their promotion for NIH-3T3 cell proliferation.

    PubMed

    Wu, Zhenxu; Zhou, Yulai; Chen, Li; Hu, Mingxin; Wang, Yu; Li, Linlong; Wang, Zongliang; Zhang, Peibiao

    2018-03-01

    The recombinant basic fibroblast growth factor (bFGF) containing collagen-binding domain (CBD) has been found to be a potential therapeutic factor in tissue regeneration. However, its binding efficiency and quantification remain uncertain. In this research, massive recombinant bFGFs with good bioactivity for enhancing the proliferation of NIH-3T3 cells were achieved. An ELISA-based quantitative method was set up to investigate the binding efficiency of CBD-bFGFs on collagen films. It indicated that the CBDs significantly increased the collagen-binding ability of bFGF (P < .05), with the optimum binding condition first determined to be in the pH range of 7.5-9.5 (P < .05). Then, the relevant equations to calculate the binding density of bFGF, C-bFGF, and V-bFGF were acquired. Analysis confirmed that the bioactivity of immobilized bFGFs was well correlated with the density of growth factor on collagen films. Based on this research, the density of growth factor is a logical and applicable dosage unit for quantification of binding efficiency of growth factors, rather than traditional concentration of soluble growth factors in tissue engineering applications. © 2018 Wiley Periodicals, Inc.

  18. MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions.

    PubMed

    Li, Minghui; Simonetti, Franco L; Goncearenco, Alexander; Panchenko, Anna R

    2016-07-08

    Proteins engage in highly selective interactions with their macromolecular partners. Sequence variants that alter protein binding affinity may cause significant perturbations or complete abolishment of function, potentially leading to diseases. There exists a persistent need to develop a mechanistic understanding of impacts of variants on proteins. To address this need we introduce a new computational method MutaBind to evaluate the effects of sequence variants and disease mutations on protein interactions and calculate the quantitative changes in binding affinity. The MutaBind method uses molecular mechanics force fields, statistical potentials and fast side-chain optimization algorithms. The MutaBind server maps mutations on a structural protein complex, calculates the associated changes in binding affinity, determines the deleterious effect of a mutation, estimates the confidence of this prediction and produces a mutant structural model for download. MutaBind can be applied to a large number of problems, including determination of potential driver mutations in cancer and other diseases, elucidation of the effects of sequence variants on protein fitness in evolution and protein design. MutaBind is available at http://www.ncbi.nlm.nih.gov/projects/mutabind/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Pixel-based absorption correction for dual-tracer fluorescence imaging of receptor binding potential

    PubMed Central

    Kanick, Stephen C.; Tichauer, Kenneth M.; Gunn, Jason; Samkoe, Kimberley S.; Pogue, Brian W.

    2014-01-01

    Ratiometric approaches to quantifying molecular concentrations have been used for decades in microscopy, but have rarely been exploited in vivo until recently. One dual-tracer approach can utilize an untargeted reference tracer to account for non-specific uptake of a receptor-targeted tracer, and ultimately estimate receptor binding potential quantitatively. However, interpretation of the relative dynamic distribution kinetics is confounded by differences in local tissue absorption at the wavelengths used for each tracer. This study simulated the influence of absorption on fluorescence emission intensity and depth sensitivity at typical near-infrared fluorophore wavelength bands near 700 and 800 nm in mouse skin in order to correct for these tissue optical differences in signal detection. Changes in blood volume [1-3%] and hemoglobin oxygen saturation [0-100%] were demonstrated to introduce substantial distortions to receptor binding estimates (error > 30%), whereas sampled depth was relatively insensitive to wavelength (error < 6%). In response, a pixel-by-pixel normalization of tracer inputs immediately post-injection was found to account for spatial heterogeneities in local absorption properties. Application of the pixel-based normalization method to an in vivo imaging study demonstrated significant improvement, as compared with a reference tissue normalization approach. PMID:25360349

  20. Experience of agency and sense of responsibility.

    PubMed

    Moretto, Giovanna; Walsh, Eamonn; Haggard, Patrick

    2011-12-01

    The experience of agency refers to the feeling that we control our own actions, and through them the outside world. In many contexts, sense of agency has strong implications for moral responsibility. For example, a sense of agency may allow people to choose between right and wrong actions, either immediately, or on subsequent occasions through learning about the moral consequences of their actions. In this study we investigate the relation between the experience of operant action, and responsibility for action outcomes using the intentional binding effect (Haggard, Clark, & Kalogeras, 2002) as an implicit, quantitative measure related to sense of agency. We studied the time at which people perceived simple manual actions and their effects, when these actions were embedded in scenarios where their actions had unpredictable consequences that could be either moral or merely economic. We found an enhanced binding of effects back towards the actions that caused them, implying an enhanced sense of agency, in moral compared to non-moral contexts. We also found stronger binding for effects with severely negative, compared to moderately negative, values. A tight temporal association between action and effect may be a low-level phenomenal marker of the sense of responsibility. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Quantitative cytochemistry of nuclear and cytoplasmic proteins using the Naphthol Yellow S and dinitrofluorobenzene staining methods.

    PubMed

    Tas, J; James, J

    1981-09-01

    The 'total protein staining' of biological specimens with the electrostatically binding Naphthol Yellow S or the covalently binding dinitrofluorobenzene must be interpreted as methods which yield data on the specific amino acid pool of the proteins concerned. Both dyes bind to certain free amino-acid side-chains, giving different dye--protein ratios for various proteins. In the presence of DNA, dinitrofluorobenzene stains all proteins present in cell nuclei, whereas Naphthol Yellow S only stains the majority of the non-histone proteins. When protein staining methods are combined with the Feulgen--Pararosanile (SO2) procedure for DNA, decreased Feulgen--DNA contents were measured in dinitrofluorobenzene-stained isolated nuclei and lymphocytes.

  2. Binding site size limit of the 2:1 pyrrole-imidazole polyamide-DNA motif.

    PubMed Central

    Kelly, J J; Baird, E E; Dervan, P B

    1996-01-01

    Polyamides containing N-methylimidazole (Im) and N-methylpyrrole (Py) amino acids can be combined in antiparallel side-by-side dimeric complexes for sequence-specific recognition in the minor groove of DNA. Six polyamides containing three to eight rings bind DNA sites 5-10 bp in length, respectively. Quantitative DNase I footprint titration experiments demonstrate that affinity maximizes and is similar at ring sizes of five, six, and seven. Sequence specificity decreases as the length of the polyamides increases beyond five rings. These results provide useful guidelines for the design of new polyamides that bind longer DNA sites with enhanced affinity and specificity. Images Fig. 4 PMID:8692930

  3. UniPROBE, update 2011: expanded content and search tools in the online database of protein-binding microarray data on protein-DNA interactions.

    PubMed

    Robasky, Kimberly; Bulyk, Martha L

    2011-01-01

    The Universal PBM Resource for Oligonucleotide-Binding Evaluation (UniPROBE) database is a centralized repository of information on the DNA-binding preferences of proteins as determined by universal protein-binding microarray (PBM) technology. Each entry for a protein (or protein complex) in UniPROBE provides the quantitative preferences for all possible nucleotide sequence variants ('words') of length k ('k-mers'), as well as position weight matrix (PWM) and graphical sequence logo representations of the k-mer data. In this update, we describe >130% expansion of the database content, incorporation of a protein BLAST (blastp) tool for finding protein sequence matches in UniPROBE, the introduction of UniPROBE accession numbers and additional database enhancements. The UniPROBE database is available at http://uniprobe.org.

  4. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure based modeling methods

    PubMed Central

    Politi, Regina; Rusyn, Ivan; Tropsha, Alexander

    2016-01-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure-Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R2=0.55 and CCR=0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R2=0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. PMID:25058446

  5. Insights into the Modulation of Dopamine Transporter Function by Amphetamine, Orphenadrine, and Cocaine Binding

    PubMed Central

    Cheng, Mary Hongying; Block, Ethan; Hu, Feizhuo; Cobanoglu, Murat Can; Sorkin, Alexander; Bahar, Ivet

    2015-01-01

    Human dopamine (DA) transporter (hDAT) regulates dopaminergic signaling in the central nervous system by maintaining the synaptic concentration of DA at physiological levels, upon reuptake of DA into presynaptic terminals. DA translocation involves the co-transport of two sodium ions and the channeling of a chloride ion, and it is achieved via alternating access between outward-facing (OF) and inward-facing states of DAT. hDAT is a target for addictive drugs, such as cocaine, amphetamine (AMPH), and therapeutic antidepressants. Our recent quantitative systems pharmacology study suggested that orphenadrine (ORPH), an anticholinergic agent and anti-Parkinson drug, might be repurposable as a DAT drug. Previous studies have shown that DAT-substrates like AMPH or -blockers like cocaine modulate the function of DAT in different ways. However, the molecular mechanisms of modulation remained elusive due to the lack of structural data on DAT. The newly resolved DAT structure from Drosophila melanogaster opens the way to a deeper understanding of the mechanism and time evolution of DAT–drug/ligand interactions. Using a combination of homology modeling, docking analysis, molecular dynamics simulations, and molecular biology experiments, we performed a comparative study of the binding properties of DA, AMPH, ORPH, and cocaine and their modulation of hDAT function. Simulations demonstrate that binding DA or AMPH drives a structural transition toward a functional form predisposed to translocate the ligand. In contrast, ORPH appears to inhibit DAT function by arresting it in the OF open conformation. The analysis shows that cocaine and ORPH competitively bind DAT, with the binding pose and affinity dependent on the conformational state of DAT. Further assays show that the effect of ORPH on DAT uptake and endocytosis is comparable to that of cocaine. PMID:26106364

  6. Low μ-Opioid Receptor Status in Alcohol Dependence Identified by Combined Positron Emission Tomography and Post-Mortem Brain Analysis

    PubMed Central

    Hermann, Derik; Hirth, Natalie; Reimold, Matthias; Batra, Anil; Smolka, Michael N; Hoffmann, Sabine; Kiefer, Falk; Noori, Hamid R; Sommer, Wolfgang H; Reischl, Gerald; la Fougère, Christian; Mann, Karl; Spanagel, Rainer; Hansson, Anita C

    2017-01-01

    Blockade of the μ-opioid receptor (MOR) by naltrexone reduces relapse risk in a subpopulation of alcohol-dependent patients. Previous positron-emission-tomography (PET) studies using the MOR ligand [11C]carfentanil have found increased MOR availability in abstinent alcoholics, which may reflect either increased MOR expression or lower endogenous ligand concentration. To differentiate between both effects, we investigated two cohorts of alcoholic subjects using either post-mortem or clinical PET analysis. Post-mortem brain tissue of alcohol-dependent subjects and controls (N=43/group) was quantitatively analyzed for MOR ([3H]DAMGO)-binding sites and OPRM1 mRNA in striatal regions. [11C]carfentanil PET was performed in detoxified, medication free alcohol-dependent patients (N=38), followed by a randomized controlled study of naltrexone versus placebo and follow-up for 1 year (clinical trial number: NCT00317031). Because the functional OPRM1 variant rs1799971:A>G affects the ligand binding, allele carrier status was considered in the analyses. MOR-binding sites were reduced by 23–51% in post-mortem striatal tissue of alcoholics. In the PET study, a significant interaction of OPRM1 genotype, binding potential (BPND) for [11C]carfentanil in the ventral striatum, and relapse risk was found. Particularly in G-allele carriers, lower striatal BPND was associated with a higher relapse risk. Interestingly, this effect was more pronounced in the naltrexone treatment group. Reduced MOR is interpreted as a neuroadaptation to an alcohol-induced release of endogenous ligands in patients with severe alcoholism. Low MOR availability may explain the ineffectiveness of naltrexone treatment in this subpopulation. Finally, low MOR-binding sites are proposed as a molecular marker for a negative disease course. PMID:27510425

  7. Single-molecule force spectroscopy study of interactions between angiotensin II type 1 receptor and different biased ligands in living cells.

    PubMed

    Li, Wenhui; Xu, Jiachao; Kou, Xiaolong; Zhao, Rong; Zhou, Wei; Fang, Xiaohong

    2018-05-01

    Angiotensin II type 1 receptor (AT1R), a typical G protein-coupled receptor, plays a key role in regulating many cardiovascular functions. Different ligands can bind with AT1R to selectively activate either G protein (Gq) or β-arrestin (β-arr) pathway, or both pathways, but the molecular mechanism is not clear yet. In this work, we used, for the first time, atomic force microscopy-based single molecule force spectroscopy (SMFS) to study the interactions of AT1R with three types of ligands, balanced ligand, Gq-biased ligand, and β-arr-biased ligand, in living cells. The results revealed their difference in binding force and binding stability. The complex of the Gq-biased ligand-AT1R overcame two energy barriers with an intermediate state during dissociation, whereas that of β-arr-biased ligand-AT1R complex overcame one energy barrier. This indicated that AT1R had different ligand-binding conformational substates and underwent different structural changes to activate downstream signaling pathways with variable agonist efficacies. Quantitative analysis of AT1R-ligand binding in living cells at the single-molecule level offers a new tool to study the molecular mechanism of AT1R biased activation. Graphical Abstract Single-molecule force measurement on the living cell expressing AT1R-eGFP with a ligand modified AFM tip (left), the dynamic force spectra of β-arrestin biased ligands-AT1R (middle), and Gq-biased ligands-AT1R (right). The complexes of β-arr-biased ligand-AT1R overcame one energy barrier, with one linear region in the spectra, whereas the Gq-biased ligand-AT1R complexes overcame two energy barriers with two linear regions.

  8. Changes in Binding of [(123)I]CLINDE, a High-Affinity Translocator Protein 18 kDa (TSPO) Selective Radioligand in a Rat Model of Traumatic Brain Injury.

    PubMed

    Donat, Cornelius K; Gaber, Khaled; Meixensberger, Jürgen; Brust, Peter; Pinborg, Lars H; Hansen, Henrik H; Mikkelsen, Jens D

    2016-06-01

    After traumatic brain injury (TBI), secondary injuries develop, including neuroinflammatory processes that contribute to long-lasting impairments. These secondary injuries represent potential targets for treatment and diagnostics. The translocator protein 18 kDa (TSPO) is expressed in activated microglia cells and upregulated in response to brain injury and therefore a potential biomarker of the neuroinflammatory processes. Second-generation radioligands of TSPO, such as [(123)I]CLINDE, have a higher signal-to-noise ratio as the prototype ligand PK11195. [(123)I]CLINDE has been employed in human studies using single-photon emission computed tomography to image the neuroinflammatory response after stroke. In this study, we used the same tracer in a rat model of TBI to determine changes in TSPO expression. Adult Sprague-Dawley rats were subjected to moderate controlled cortical impact injury and sacrificed at 6, 24, 72 h and 28 days post surgery. TSPO expression was assessed in brain sections employing [(123)I]CLINDE in vitro autoradiography. From 24 h to 28 days post surgery, injured animals exhibited a marked and time-dependent increase in [(123)I]CLINDE binding in the ipsilateral motor, somatosensory and parietal cortex, as well as in the hippocampus and thalamus. Interestingly, binding was also significantly elevated in the contralateral M1 motor cortex following TBI. Craniotomy without TBI caused a less marked increase in [(123)I]CLINDE binding, restricted to the ipsilateral hemisphere. Radioligand binding was consistent with an increase in TSPO mRNA expression and CD11b immunoreactivity at the contusion site. This study demonstrates the applicability of [(123)I]CLINDE for detailed regional and quantitative assessment of glial activity in experimental models of TBI.

  9. Application of solid-phase microextraction in the investigation of protein binding of pharmaceuticals.

    PubMed

    Theodoridis, Georgios

    2006-01-18

    Protein-drug interactions of seven common pharmaceuticals were studied using solid-phase microextraction (SPME). SPME can be used in such investigations on the condition that no analyte depletion occurs. In multi-compartment systems (e.g. a proteinaceous matrix) only the free portion of the analyte is able to partition into the SPME fiber. In addition if no sample depletion occurs, the bound drug-free drug equilibria are not disturbed. In the present study seven pharmaceuticals (quinine, quinidine, naproxen, ciprofloxacin, haloperidol, paclitaxel and nortriptyline) were assayed by SPME. For quantitative purposes SPME was validated first in the absence of proteins. Calibration curves were constructed for each drug by HPLC-fluorescence and HPLC-UV analysis. SPME was combined to HPLC off-line, desorption occurring in HPLC inserts filled with 200 microL methanol. Binding of each drug to human serum albumin was studied independently. Experimental results were in agreement with literature data and ultrafiltration experiments, indicating the feasibility of the method for such bioanalytical purposes.

  10. Thermodynamic study of dihydrogen phosphate dimerisation and complexation with novel urea- and thiourea-based receptors.

    PubMed

    Bregović, Nikola; Cindro, Nikola; Frkanec, Leo; Užarević, Krunoslav; Tomišić, Vladislav

    2014-11-24

    Complexation of dihydrogen phosphate by novel thiourea and urea receptors in acetonitrile and dimethyl sulfoxide was studied in detail by an integrated approach by using several methods (isothermal titration calorimetry, ESI-MS, and (1)H NMR and UV spectroscopy). Thermodynamic investigations into H2PO4(-) dimerisation, which is a process that has been frequently recognised, but rarely quantitatively described, were carried out as well. The corresponding equilibrium was taken into account in the anion-binding studies, which enabled reliable determination of the complexation thermodynamic quantities. In both solvents the thiourea derivatives exhibited considerably higher binding affinities with respect to those containing the urea moiety. In acetonitrile, 1:1 and 2:1 (anion/receptor) complexes formed, whereas in dimethyl sulfoxide only the significantly less stable complexes of 1:1 stoichiometry were detected. The solvent effects on the thermodynamic parameters of dihydrogen phosphate dimerisation and complexation reactions are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Quantitative measurement of cell membrane receptor internalization by the nanoluciferase reporter: Using the G protein-coupled receptor RXFP3 as a model.

    PubMed

    Liu, Yu; Song, Ge; Shao, Xiao-Xia; Liu, Ya-Li; Guo, Zhan-Yun

    2015-02-01

    Nanoluciferase (NanoLuc) is a newly developed small luciferase reporter with the brightest bioluminescence to date. In the present work, we developed NanoLuc as a sensitive bioluminescent reporter to measure quantitatively the internalization of cell membrane receptors, based on the pH dependence of the reporter activity. The G protein-coupled receptor RXFP3, the cognate receptor of relaxin-3/INSL7, was used as a model receptor. We first generated stable HEK293T cells that inducibly coexpressed a C-terminally NanoLuc-tagged human RXFP3 and a C-terminally enhanced green fluorescent protein (EGFP)-tagged human RXFP3. The C-terminal EGFP-tag and NanoLuc-tag had no detrimental effects on the ligand-binding potency and intracellular trafficking of RXFP3. Based on the fluorescence of the tagged EGFP reporter, the ligand-induced RXFP3 internalization was visualized directly under a fluorescence microscope. Based on the bioluminescence of the tagged NanoLuc reporter, the ligand-induced RXFP3 internalization was measured quantitatively by a convenient bioluminescent assay. Coexpression of an EGFP-tagged inactive [E141R]RXFP3 had no detrimental effect on the ligand-binding potency and ligand-induced internalization of the NanoLuc-tagged wild-type RXFP3, suggesting that the mutant RXFP3 and wild-type RXFP3 worked independently. The present bioluminescent internalization assay could be extended to other G protein-coupled receptors and other cell membrane receptors to study ligand-receptor and receptor-receptor interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. DNA Binding Mode Transitions of Escherichia coli HUαβ: Evidence for Formation of a Bent DNA – Protein Complex on Intact, Linear Duplex DNA

    PubMed Central

    Koh, Junseock; Saecker, Ruth M.; Record, M. Thomas

    2008-01-01

    Escherichia coli HUαβ, a major nucleoid associated protein (NAP), organizes the DNA chromosome and facilitates numerous DNA transactions. Using isothermal titration calorimetry (ITC), fluorescence resonance energy transfer (FRET) and a series of DNA lengths (8, 15, 34, 38 and 160 base pairs) we establish that HUαβ interacts with duplex DNA using three different nonspecific binding modes. Both the HU to DNA mole ratio ([HU]/[DNA]) and DNA length dictate the dominant HU binding mode. On sufficiently long DNA (≥ 34 base pairs), at low [HU]/[DNA], HU populates a noncooperative 34 bp binding mode with a binding constant of 2.1 (± 0.4) × 106 M−1, and a binding enthalpy of +7.7 (± 0.6) kcal/mol at 15 °C and 0.15 M Na+. With increasing [HU]/[DNA], HU bound in the noncooperative 34 bp mode progressively converts to two cooperative (ω ~ 20) modes with site sizes of 10 bp and 6 bp. These latter modes exhibit smaller binding constants (1.1 (± 0.2) × 105 M−1 for the 10 bp mode, 3.5 (± 1.4) × 104 M−1 for the 6 bp mode) and binding enthalpies (4.2 (± 0.3) kcal/mol for the 10 bp mode, −1.6 (±0.3) kcal/mol for the 6 bp mode). As DNA length increases to 34 bp or more at low [HU]/[DNA], the small modes are replaced by the 34 bp binding mode. FRET data demonstrate that the 34 bp mode bends DNA by 143 ± 6° whereas the 6 and 10 bp modes do not. The model proposed in this study provides a novel quantitative and comprehensive framework for reconciling previous structural and solution studies of HU, including single molecule (force extension measurement, AFM), fluorescence, and electrophoretic gel mobility shift assays. In particular, it explains how HU condenses or extends DNA depending on the relative concentrations of HU and DNA. PMID:18657548

  13. Development of quantitative radioactive methodologies on paper to determine important lateral-flow immunoassay parameters.

    PubMed

    Mosley, Garrett L; Nguyen, Phuong; Wu, Benjamin M; Kamei, Daniel T

    2016-08-07

    The lateral-flow immunoassay (LFA) is a well-established diagnostic technology that has recently seen significant advancements due in part to the rapidly expanding fields of paper diagnostics and paper-fluidics. As LFA-based diagnostics become more complex, it becomes increasingly important to quantitatively determine important parameters during the design and evaluation process. However, current experimental methods for determining these parameters have certain limitations when applied to LFA systems. In this work, we describe our novel methods of combining paper and radioactive measurements to determine nanoprobe molarity, the number of antibodies per nanoprobe, and the forward and reverse rate constants for nanoprobe binding to immobilized target on the LFA test line. Using a model LFA system that detects for the presence of the protein transferrin (Tf), we demonstrate the application of our methods, which involve quantitative experimentation and mathematical modeling. We also compare the results of our rate constant experiments with traditional experiments to demonstrate how our methods more appropriately capture the influence of the LFA environment on the binding interaction. Our novel experimental approaches can therefore more efficiently guide the research process for LFA design, leading to more rapid advancement of the field of paper-based diagnostics.

  14. Using metal-ligand binding characteristics to predict metal toxicity: quantitative ion character-activity relationships (QICARs).

    PubMed Central

    Newman, M C; McCloskey, J T; Tatara, C P

    1998-01-01

    Ecological risk assessment can be enhanced with predictive models for metal toxicity. Modelings of published data were done under the simplifying assumption that intermetal trends in toxicity reflect relative metal-ligand complex stabilities. This idea has been invoked successfully since 1904 but has yet to be applied widely in quantitative ecotoxicology. Intermetal trends in toxicity were successfully modeled with ion characteristics reflecting metal binding to ligands for a wide range of effects. Most models were useful for predictive purposes based on an F-ratio criterion and cross-validation, but anomalous predictions did occur if speciation was ignored. In general, models for metals with the same valence (i.e., divalent metals) were better than those combining mono-, di-, and trivalent metals. The softness parameter (sigma p) and the absolute value of the log of the first hydrolysis constant ([symbol: see text] log KOH [symbol: see text]) were especially useful in model construction. Also, delta E0 contributed substantially to several of the two-variable models. In contrast, quantitative attempts to predict metal interactions in binary mixtures based on metal-ligand complex stabilities were not successful. PMID:9860900

  15. The intracellular domain of teneurin-1 induces the activity of microphthalmia-associated transcription factor (MITF) by binding to transcriptional repressor HINT1.

    PubMed

    Schöler, Jonas; Ferralli, Jacqueline; Thiry, Stéphane; Chiquet-Ehrismann, Ruth

    2015-03-27

    Teneurins are large type II transmembrane proteins that are necessary for the normal development of the CNS. Although many studies highlight the significance of teneurins, especially during development, there is only limited information known about the molecular mechanisms of function. Previous studies have shown that the N-terminal intracellular domain (ICD) of teneurins can be cleaved at the membrane and subsequently translocates to the nucleus, where it can influence gene transcription. Because teneurin ICDs do not contain any intrinsic DNA binding sequences, interaction partners are required to affect transcription. Here, we identified histidine triad nucleotide binding protein 1 (HINT1) as a human teneurin-1 ICD interaction partner in a yeast two-hybrid screen. This interaction was confirmed in human cells, where HINT1 is known to inhibit the transcription of target genes by directly binding to transcription factors at the promoter. In a whole transcriptome analysis of BS149 glioblastoma cells overexpressing the teneurin-1 ICD, several microphthalmia-associated transcription factor (MITF) target genes were found to be up-regulated. Directly comparing the transcriptomes of MITF versus TEN1-ICD-overexpressing BS149 cells revealed 42 co-regulated genes, including glycoprotein non-metastatic b (GPNMB). Using real-time quantitative PCR to detect endogenous GPNMB expression upon overexpression of MITF and HINT1 as well as promoter reporter assays using GPNMB promoter constructs, we could demonstrate that the teneurin-1 ICD binds HINT1, thus switching on MITF-dependent transcription of GPNMB. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Molecular dynamics simulations on the effect of size and shape on the interactions between negative Au18(SR)14, Au102(SR)44 and Au144(SR)60 nanoparticles in physiological saline.

    PubMed

    Villareal, Oscar D; Rodriguez, Roberto A; Yu, Lili; Wambo, Thierry O

    2016-08-20

    Molecular dynamics simulations employing all-atom force fields have become a reliable way to study binding interactions quantitatively for a wide range of systems. In this work, we employ two recently developed methods for the calculation of dissociation constants K D between gold nanoparticles (AuNPs) of different sizes in a near-physiological environment through the potential of mean force (PMF) formalism: the method of geometrical restraints developed by Woo et al. and formalized by Gumbart et al. and the method of hybrid Steered Molecular Dynamics (hSMD). Obtaining identical results (within the margin of error) from both approaches on the negatively charged Au 18 (SR) 14 NP, functionalized by the negatively charged 4-mercapto-benzoate (pMBA) ligand, we draw parallels between their energetic and entropic interactions. By applying the hSMD method on Au 102 (SR) 44 and Au 144 (SR) 60 , both of them near-spherical in shape and functionalized by pMBA, we study the effects of size and shape on the binding interactions. Au 18 binds weakly with K D = 13 mM as a result of two opposing effects: its large surface curvature hindering the formation of salt bridges, and its large ligand density on preferential orientations favoring their formation. On the other hand, Au 102 binds more strongly with K D = 30 μM and Au 144 binds the strongest with K D = 3.2 nM .

  17. An Evaluation of the Binding Strength of Okra Gum and the Drug Release Characteristics of Tablets Prepared from It.

    PubMed

    Hussain, Amjad; Qureshi, Farah; Abbas, Nasir; Arshad, Muhammad Sohail; Ali, Ejaz

    2017-06-02

    The aim of this study is to evaluate the adhesion ability of okra gum, which is gaining popularity as a tablet binder. For this purpose, gum was extracted from okra pods, and the binding strength of different concentrations (1%, 3%, and 5%) was determined quantitatively. Additionally, naproxen sodium tablets were prepared by using okra gum as a binder and were evaluated for their properties including hardness, friability, disintegration time, and dissolution rate. The binding strength values were compared with that of pre-gelatinized starch, a commonly used tablet binder. The results from universal testing machine indicate that the binding strengths of all dispersions of okra increase as the concentration increases from 1% to 5% and ranges from 2.5 to 4.5 N, which are almost twice a high as those of pre-gelatinized starch. The tablets prepared with okra gum have shown good mechanical strength with hardness values of 7-8.5 kg/cm² and a friability <1%, comparable to tablets prepared with starch. The disintegration time was longer (7.50 min with okra gum and 5.05 min with starch paste), and the drug release from these tablets was slower than the formulations with starch. The higher binding ability of okra gum probably linked with its chemical composition as it mainly contains galactose, rhamnose, and galacturonic acid. This study concludes that okra gum is a better binder than pre-gelatinized starch, it might be explored in future for introduction as a cost-effective binder in the pharmaceutical industry.

  18. Establishment and characterization of a new and stable collagen-binding assay for the assessment of von Willebrand factor activity

    PubMed Central

    Ni, Y; Nesrallah, J; Agnew, M; Geske, F J; Favaloro, E J

    2013-01-01

    Introduction Laboratory diagnosis of von Willebrand disease (VWD) requires determination of both von Willebrand factor (VWF) protein levels and activity. Current VWF activity tests include the ristocetin cofactor assay and the collagen-binding assay (VWF:CB). The goal of this investigation is to characterize a new collagen-binding assay and to determine its effectiveness in identifying VWD. Methods Analytical studies were carried out to characterize the performance of a new VWF:CB ELISA. Additionally, samples from a normal population were tested as were well-characterized type 1 and type 2 VWD samples. Results Repeatability and within-laboratory precision studies resulted in coefficients of variation (CVs) of ≤11%. A linear range of 1–354% (0.01–3.54 IU/mL) was determined, along with a limit of detection and a lower limit of quantitation of 1.6% and 4.0% (0.016 and 0.04 IU/mL), respectively. Samples tested from apparently healthy individuals resulted in a normal range of 54–217% (0.54–2.17 IU/mL). Known VWD type 1 and type 2 samples were also analyzed by the ELISA, with 99% of samples having VWF:CB below the normal reference range and an estimated 96% sensitivity and 87% specificity using a VWF collagen-binding/antigen cutoff ratio of 0.50. Conclusion This new VWF:CB ELISA provides an accurate measure of collagen-binding activity that aids in the diagnosis and differentiation of type 1 from type 2 VWD. PMID:23107512

  19. Photothermal quantitative phase imaging of living cells with nanoparticles utilizing a cost-efficient setup

    NASA Astrophysics Data System (ADS)

    Turko, Nir A.; Isbach, Michael; Ketelhut, Steffi; Greve, Burkhard; Schnekenburger, Jürgen; Shaked, Natan T.; Kemper, Björn

    2017-02-01

    We explored photothermal quantitative phase imaging (PTQPI) of living cells with functionalized nanoparticles (NPs) utilizing a cost-efficient setup based on a cell culture microscope. The excitation light was modulated by a mechanical chopper wheel with low frequencies. Quantitative phase imaging (QPI) was performed with Michelson interferometer-based off-axis digital holographic microscopy and a standard industrial camera. We present results from PTQPI observations on breast cancer cells that were incubated with functionalized gold NPs binding to the epidermal growth factor receptor. Moreover, QPI was used to quantify the impact of the NPs and the low frequency light excitation on cell morphology and viability.

  20. Quantitative ultrasound molecular imaging by modeling the binding kinetics of targeted contrast agent

    NASA Astrophysics Data System (ADS)

    Turco, Simona; Tardy, Isabelle; Frinking, Peter; Wijkstra, Hessel; Mischi, Massimo

    2017-03-01

    Ultrasound molecular imaging (USMI) is an emerging technique to monitor diseases at the molecular level by the use of novel targeted ultrasound contrast agents (tUCA). These consist of microbubbles functionalized with targeting ligands with high-affinity for molecular markers of specific disease processes, such as cancer-related angiogenesis. Among the molecular markers of angiogenesis, the vascular endothelial growth factor receptor 2 (VEGFR2) is recognized to play a major role. In response, the clinical-grade tUCA BR55 was recently developed, consisting of VEGFR2-targeting microbubbles which can flow through the entire circulation and accumulate where VEGFR2 is over-expressed, thus causing selective enhancement in areas of active angiogenesis. Discrimination between bound and free microbubbles is crucial to assess cancer angiogenesis. Currently, this is done non-quantitatively by looking at the late enhancement, about 10 min after injection, or by calculation of the differential targeted enhancement, requiring the application of a high-pressure ultrasound (US) burst to destroy all the microbubbles in the acoustic field and isolate the signal coming only from bound microbubbles. In this work, we propose a novel method based on mathematical modeling of the binding kinetics during the tUCA first pass, thus reducing the acquisition time and with no need for a destructive US burst. Fitting time-intensity curves measured with USMI by the proposed model enables the assessment of cancer angiogenesis at both the vascular and molecular levels. This is achieved by estimation of quantitative parameters related to the microvascular architecture and microbubble binding. The proposed method was tested in 11 prostate-tumor bearing rats by performing USMI after injection of BR55, and showed good agreement with current USMI methods. The novel information provided by the proposed method, possibly combined with the current non-quantitative methods, may bring deeper insight into cancer angiogenesis, and thus potentially improve cancer diagnosis and management.

  1. Receptor Binding Sites for Substance P, but not Substance K or Neuromedin K, are Expressed in High Concentrations by Arterioles, Venules, and Lymph Nodules in Surgical Specimens Obtained from Patients with Ulcerative Colitis and Crohn Disease

    NASA Astrophysics Data System (ADS)

    Mantyh, Christopher R.; Gates, Troy S.; Zimmerman, Robert P.; Welton, Mark L.; Passaro, Edward P.; Vigna, Steven R.; Maggio, John E.; Kruger, Lawrence; Mantyh, Patrick W.

    1988-05-01

    Several lines of evidence indicate that tachykinin neuropeptides [substance P (SP), substance K (SK), and neuromedin K (NK)] play a role in regulating the inflammatory and immune responses. To test this hypothesis in a human inflammatory disease, quantitative receptor autoradiography was used to examine possible abnormalities in tachykinin binding sites in surgical specimens from patients with inflammatory bowel disease. Surgical specimens of colon were obtained from patients with ulcerative colitis (n = 4) and Crohn disease (n = 4). Normal tissue was obtained from uninvolved areas of extensive resections for carcinoma (n = 6). In all cases, specimens were obtained <5 min after removal to minimize influences associated with degradation artifacts and were processed for quantitative receptor autoradiography by using 125I-labeled Bolton--Hunter conjugates of NK, SK, and SP. In the normal colon a low concentration of SP receptor binding sites is expressed by submucosal arterioles and venules and a moderate concentration is expressed by the external circular muscle, whereas SK receptor binding sites are expressed in low concentrations by the external circular and longitudinal muscle. In contrast, specific NK binding sites were not observed in any area of the human colon. In colon tissue obtained from ulcerative colitis and Crohn disease patients, however, very high concentrations of SP receptor binding sites are expressed by arterioles and venules located in the submucosa, muscularis mucosa, external circular muscle, external longitudinal muscle, and serosa. In addition, very high concentrations of SP receptor binding sites are expressed within the germinal center of lymph nodules, whereas the concentrations of SP and SK binding sites expressed by the external muscle layers are not altered significantly. These results demonstrate that receptor binding sites for SP, but not SK or NK, are ectopically expressed in high concentrations (1000-2000 times normal) by cells involved in mediating inflammatory and immune responses. These data suggest that SP may be involved in the pathophysiology of inflammatory bowel disease and might provide some insight into the interaction between the nervous system and the regulation of inflammation and the immune response in human inflammatory disease.

  2. Receptor binding of somatostatin-14 and somatostatin-28 in rat brain: differential modulation by nucleotides and ions.

    PubMed

    Srikant, C B; Dahan, A; Craig, C

    1990-02-04

    The tissue-selective binding of the two principal bioactive forms of somatostatin, somatostatin-14 (SS-14) and somatostatin-28 (SS-28), their ability to modulate cAMP-dependent and -independent regulation of post-receptor events to different degrees and the documentation of specific labelling of SS receptor subtypes with SS-28 but not SS-14 in discrete regions of rat brain suggest the existence of distinct SS-14 and SS-28 binding sites. Receptor binding of SS-14 ligands has been shown to be modulated by nucleotides and ions, but the effect of these agents on SS-28 binding has not been studied. In the present study we investigated the effects of adenine and guanine nucleotides as well as monovalent and divalent cations on rat brain SS receptors quantitated with radioiodinated analogs of SS-14 ([125I-Tyr11]SS14, referred to in this paper as SS-14) and SS-28 ([Leu8, D-Trp22, 125I-Tyr25] SS-28, referred to as LTT* SS-28) in order to determine if distinct receptor sites for SS-14 and SS-28 could be distinguished on the basis of their modulation by nucleotides and ions. GTP as well as ATP exerted a dose-dependent inhibition (over a concentration range of 10(-7)-10(-3) M) of the binding of the two radioligands. The nucleotide inhibition of binding resulted in a decrease the Bmax of the SS receptors, the binding affinity remaining unaltered. GTP (10(-4) M) decreased the Bmax of LTT* SS-28 binding sites to a greater extent than ATP (145 +/- 10 and 228 +/- 16 respectively, compared to control value of 320 +/- 20 pmol mg-1). Under identical conditions GTP was less effective than ATP in reducing the number of T* SS-14 binding sites (Bmax = 227 +/- 8 and 182 +/- 15, respectively, compared to 340 +/- 15 pmol mg-1 in the absence of nucleotides). Monovalent cations inhibited the binding of both radioligands, Li+ and Na+ inhibited the binding of T* SS-14 to a greater extent than K+. The effect of divalent cations on the other hand was varied. At low concentration (2 mM) Mg2+, Ba2+, Mn2+, Ca2+ and Co2+ augmented the binding of both T* SS-14 and LTT* SS-28, while higher than 4 mM Co2+ inhibited binding of both ligands. LTT* SS-28 binding was reduced in the presence of high concentrations of Ba2+ and Mn2+ also. Interestingly Ca2+ at higher than 10 mM preferentially inhibited LTT* SS-28 binding and increased the affinity of SS-14 but not SS-28 for LTT* SS-28 binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. The structure-activity relationship of inhibitors of serotonin uptake and receptor binding

    NASA Astrophysics Data System (ADS)

    Hansch, Corwin; Caldwell, Jonathan

    1991-10-01

    An analysis of five different datasets of inhibitors of serotonin uptake has yielded quantitative structure/ activity relationships (QSARs) which delineate the role of steric and hydrophobic properties essential for inhibition by phenylethylamine-type analogues.

  4. Test/QA Plan for Verification of Microcystin Test Kits

    EPA Science Inventory

    Microcystin test kits are used to quantitatively measure total microcystin in recreational waters. These test kits are based on enzyme-linked immunosorbent assays (ELISA) with antibodies that bind specifically to microcystins or phosphate activity inhibition where the phosphatas...

  5. Quantitative analyses of bifunctional molecules.

    PubMed

    Braun, Patrick D; Wandless, Thomas J

    2004-05-11

    Small molecules can be discovered or engineered to bind tightly to biologically relevant proteins, and these molecules have proven to be powerful tools for both basic research and therapeutic applications. In many cases, detailed biophysical analyses of the intermolecular binding events are essential for improving the activity of the small molecules. These interactions can often be characterized as straightforward bimolecular binding events, and a variety of experimental and analytical techniques have been developed and refined to facilitate these analyses. Several investigators have recently synthesized heterodimeric molecules that are designed to bind simultaneously with two different proteins to form ternary complexes. These heterodimeric molecules often display compelling biological activity; however, they are difficult to characterize. The bimolecular interaction between one protein and the heterodimeric ligand (primary dissociation constant) can be determined by a number of methods. However, the interaction between that protein-ligand complex and the second protein (secondary dissociation constant) is more difficult to measure due to the noncovalent nature of the original protein-ligand complex. Consequently, these heterodimeric compounds are often characterized in terms of their activity, which is an experimentally dependent metric. We have developed a general quantitative mathematical model that can be used to measure both the primary (protein + ligand) and secondary (protein-ligand + protein) dissociation constants for heterodimeric small molecules. These values are largely independent of the experimental technique used and furthermore provide a direct measure of the thermodynamic stability of the ternary complexes that are formed. Fluorescence polarization and this model were used to characterize the heterodimeric molecule, SLFpYEEI, which binds to both FKBP12 and the Fyn SH2 domain, demonstrating that the model is useful for both predictive as well as ex post facto analytical applications.

  6. Human Leukocyte Antigen (HLA) B27 Allotype-Specific Binding and Candidate Arthritogenic Peptides Revealed through Heuristic Clustering of Data-independent Acquisition Mass Spectrometry (DIA-MS) Data*

    PubMed Central

    Schittenhelm, Ralf B.; Sivaneswaran, Saranjah; Lim Kam Sian, Terry C. C.; Croft, Nathan P.; Purcell, Anthony W.

    2016-01-01

    Expression of HLA-B27 is strongly associated with ankylosing spondylitis (AS) and other spondyloarthropathies. While this is true for the majority of HLA-B27 allotypes, HLA-B*27:06 and HLA-B*27:09 are not associated with AS. These two subtypes contain polymorphisms that are ideally positioned to influence the bound peptide repertoire. The existence of disease-inducing peptides (so-called arthritogenic peptides) has therefore been proposed that are exclusively presented by disease-associated HLA-B27 allotypes. However, we have recently demonstrated that this segregation of allotype-bound peptides is not the case and that many peptides that display sequence features predicted to favor binding to disease-associated subtypes are also capable of being presented naturally by protective alleles. To further probe more subtle quantitative changes in peptide presentation, we have used a combination of data-independent acquisition (DIA) and multiple reaction monitoring (MRM) mass spectrometry to quantify the abundance of 1646 HLA-B27 restricted peptides across the eight most frequent HLA-B27 allotypes (HLA-B*27:02-HLA-B*27:09). We utilized K means cluster analysis to group peptides with similar allelic binding preferences across the eight HLA-B27 allotypes, which enabled us to identify the most-stringent binding characteristics for each HLA-B27 allotype and further refined their existing consensus-binding motifs. Moreover, a thorough analysis of this quantitative dataset led to the identification of 26 peptides, which are presented in lower abundance by HLA-B*27:06 and HLA-B*27:09 compared with disease-associated HLA-B27 subtypes. Although these differences were observed to be very subtle, these 26 peptides might encompass the sought-after arthritogenic peptide(s). PMID:26929215

  7. Synthesis and characterization of iodinated tetrahydroquinolines targeting the G protein-coupled estrogen receptor GPR30.

    PubMed

    Ramesh, Chinnasamy; Nayak, Tapan K; Burai, Ritwik; Dennis, Megan K; Hathaway, Helen J; Sklar, Larry A; Prossnitz, Eric R; Arterburn, Jeffrey B

    2010-02-11

    A series of iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines was synthesized as potential targeted imaging agents for the G protein-coupled estrogen receptor GPR30. The affinity and specificity of binding to GPR30 versus the classical estrogen receptors ER alpha/beta and functional responses associated with ligand-binding were determined. Selected iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines exhibited IC(50) values lower than 20 nM in competitive binding studies with GPR30-expressing human endometrial cancer cells. These compounds functioned as antagonists of GPR30 and blocked estrogen-induced PI3K activation and calcium mobilization. The tributylstannyl precursors of selected compounds were radiolabeled with (125)I using the iodogen method. In vivo biodistribution studies in female ovariectomized athymic (NCr) nu/nu mice bearing GPR30-expressing human endometrial tumors revealed GPR30-mediated uptake of the radiotracer ligands in tumor, adrenal, and reproductive organs. Biodistribution and quantitative SPECT/CT studies revealed structurally related differences in the pharmacokinetic profiles, target tissue uptake, and metabolism of the radiolabeled compounds as well as differences in susceptibility to deiodination. The high lipophilicity of the compounds adversely affects the in vivo biodistribution and clearance of these radioligands and suggests that further optimization of this parameter may lead to improved targeting characteristics.

  8. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification.

    PubMed

    Andreatta, Massimo; Karosiene, Edita; Rasmussen, Michael; Stryhn, Anette; Buus, Søren; Nielsen, Morten

    2015-11-01

    A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4(+) T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1 .

  9. A new liquid chromatography-mass spectrometry-based method to quantitate exogenous recombinant transferrin in cerebrospinal fluid: a potential approach for pharmacokinetic studies of transferrin-based therapeutics in the central nervous systems.

    PubMed

    Wang, Shunhai; Bobst, Cedric E; Kaltashov, Igor A

    2015-01-01

    Transferrin (Tf) is an 80 kDa iron-binding protein that is viewed as a promising drug carrier to target the central nervous system as a result of its ability to penetrate the blood-brain barrier. Among the many challenges during the development of Tf-based therapeutics, the sensitive and accurate quantitation of the administered Tf in cerebrospinal fluid (CSF) remains particularly difficult because of the presence of abundant endogenous Tf. Herein, we describe the development of a new liquid chromatography-mass spectrometry-based method for the sensitive and accurate quantitation of exogenous recombinant human Tf in rat CSF. By taking advantage of a His-tag present in recombinant Tf and applying Ni affinity purification, the exogenous human serum Tf can be greatly enriched from rat CSF, despite the presence of the abundant endogenous protein. Additionally, we applied a newly developed (18)O-labeling technique that can generate internal standards at the protein level, which greatly improved the accuracy and robustness of quantitation. The developed method was investigated for linearity, accuracy, precision, and lower limit of quantitation, all of which met the commonly accepted criteria for bioanalytical method validation.

  10. Quantitative HDL Proteomics Identifies Peroxiredoxin-6 as a Biomarker of Human Abdominal Aortic Aneurysm

    PubMed Central

    Burillo, Elena; Jorge, Inmaculada; Martínez-López, Diego; Camafeita, Emilio; Blanco-Colio, Luis Miguel; Trevisan-Herraz, Marco; Ezkurdia, Iakes; Egido, Jesús; Michel, Jean-Baptiste; Meilhac, Olivier; Vázquez, Jesús; Martin-Ventura, Jose Luis

    2016-01-01

    High-density lipoproteins (HDLs) are complex protein and lipid assemblies whose composition is known to change in diverse pathological situations. Analysis of the HDL proteome can thus provide insight into the main mechanisms underlying abdominal aortic aneurysm (AAA) and potentially detect novel systemic biomarkers. We performed a multiplexed quantitative proteomics analysis of HDLs isolated from plasma of AAA patients (N = 14) and control study participants (N = 7). Validation was performed by western-blot (HDL), immunohistochemistry (tissue), and ELISA (plasma). HDL from AAA patients showed elevated expression of peroxiredoxin-6 (PRDX6), HLA class I histocompatibility antigen (HLA-I), retinol-binding protein 4, and paraoxonase/arylesterase 1 (PON1), whereas α-2 macroglobulin and C4b-binding protein were decreased. The main pathways associated with HDL alterations in AAA were oxidative stress and immune-inflammatory responses. In AAA tissue, PRDX6 colocalized with neutrophils, vascular smooth muscle cells, and lipid oxidation. Moreover, plasma PRDX6 was higher in AAA (N = 47) than in controls (N = 27), reflecting increased systemic oxidative stress. Finally, a positive correlation was recorded between PRDX6 and AAA diameter. The analysis of the HDL proteome demonstrates that redox imbalance is a major mechanism in AAA, identifying the antioxidant PRDX6 as a novel systemic biomarker of AAA. PMID:27934969

  11. Dissection of a nuclear localization signal.

    PubMed

    Hodel, M R; Corbett, A H; Hodel, A E

    2001-01-12

    The regulated process of protein import into the nucleus of a eukaryotic cell is mediated by specific nuclear localization signals (NLSs) that are recognized by protein import receptors. This study seeks to decipher the energetic details of NLS recognition by the receptor importin alpha through quantitative analysis of variant NLSs. The relative importance of each residue in two monopartite NLS sequences was determined using an alanine scanning approach. These measurements yield an energetic definition of a monopartite NLS sequence where a required lysine residue is followed by two other basic residues in the sequence K(K/R)X(K/R). In addition, the energetic contributions of the second basic cluster in a bipartite NLS ( approximately 3 kcal/mol) as well as the energy of inhibition of the importin alpha importin beta-binding domain ( approximately 3 kcal/mol) were also measured. These data allow the generation of an energetic scale of nuclear localization sequences based on a peptide's affinity for the importin alpha-importin beta complex. On this scale, a functional NLS has a binding constant of approximately 10 nm, whereas a nonfunctional NLS has a 100-fold weaker affinity of 1 microm. Further correlation between the current in vitro data and in vivo function will provide the foundation for a comprehensive quantitative model of protein import.

  12. Quantitative In Vivo Fluorescence Cross-Correlation Analyses Highlight the Importance of Competitive Effects in the Regulation of Protein-Protein Interactions

    PubMed Central

    Sadaie, Wakako; Harada, Yoshie; Matsuda, Michiyuki

    2014-01-01

    Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)–Ras–extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction. PMID:24958104

  13. Characterization and localization of arginine vasotocin receptors in the brain and kidney of an amphibian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, S.K.

    1987-01-01

    Because arginine vasotocin (AVT) activates male sexual behaviors in the rough-skinned newt (Taricha granulosa), quantitative autoradiography with radiolabeled arginine vasopressin (/sup 3/H-AVP) was used to localize and characterize putative AVT receptors in the brain of this amphibian. Binding of /sup 3/H-AVP to sites within the medial pallium was saturable, specific, reversible, of high affinity and low capacity. These binding sites appear to represent authentic central nervous system receptors for AVT. Furthermore, ligand specificity for the binding sites in this amphibian differs from that reported for AVP binding sites in rat brains. Dense concentrations of specific binding sites were located inmore » the olfactory nerve as it entered the olfactory bulb within the medial pallium, dorsal pallium, and amygdala pars lateralis of the telencephalon, and in the tegmental region of the medulla. Concentrations of binding sites differed significantly among various brain regions. A comparison of male and female newts collected during the breeding season revealed no sexual dimorphism. These areas may represent site(s) of action where AVT elicits sexual behaviors in male T. granulosa.« less

  14. sc-PDB: a database for identifying variations and multiplicity of 'druggable' binding sites in proteins.

    PubMed

    Meslamani, Jamel; Rognan, Didier; Kellenberger, Esther

    2011-05-01

    The sc-PDB database is an annotated archive of druggable binding sites extracted from the Protein Data Bank. It contains all-atoms coordinates for 8166 protein-ligand complexes, chosen for their geometrical and physico-chemical properties. The sc-PDB provides a functional annotation for proteins, a chemical description for ligands and the detailed intermolecular interactions for complexes. The sc-PDB now includes a hierarchical classification of all the binding sites within a functional class. The sc-PDB entries were first clustered according to the protein name indifferent of the species. For each cluster, we identified dissimilar sites (e.g. catalytic and allosteric sites of an enzyme). SCOPE AND APPLICATIONS: The classification of sc-PDB targets by binding site diversity was intended to facilitate chemogenomics approaches to drug design. In ligand-based approaches, it avoids comparing ligands that do not share the same binding site. In structure-based approaches, it permits to quantitatively evaluate the diversity of the binding site definition (variations in size, sequence and/or structure). The sc-PDB database is freely available at: http://bioinfo-pharma.u-strasbg.fr/scPDB.

  15. Studies of Single Biomolecules, DNA Conformational Dynamics, and Protein Binding

    DTIC Science & Technology

    2008-07-11

    Nucleotide Base pairs Hydrogen bonds FIG. 1: Ladder structure of DNA showing the Watson - Crick bonding of the bases A, T, G, and C which are suspended by a...protected against unwanted action of chemicals and proteins. The three-dimensional structure of DNA is the famed Watson - Crick double-helix, the equilibrium...quantitative analysis [88]. [1] A. Kornberg and T. A. Baker, DNA Replication (W. H. Freeman, New York, 1992). [2] J. D. Watson and F. H. C. Crick

  16. Microlocalization and Quantitation of Risk Associated Elements in Gleason Graded Prostate Tissue

    DTIC Science & Technology

    2006-03-01

    with NADC and NADH as studied by electrospray ionization mass spectrometry and 11B NMR spectroscopy , J. Mass Spectrom. 38 (2003) 632–640. [19] D.H. Kim...spectrometry and 11B NMR spectroscopy . J Mass Spectrom 38: 632 – 640 Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta...232 – 235 Semmelhack MF, Campagna SR, Hwa C, Federle MJ, Bassler BL (2004) Boron binding with the quorum sensing signal AI-2 and analogues . Org Lett 6

  17. Engineered domain-based assays to identify individual antibodies in oligoclonal combinations targeting the same protein.

    PubMed

    Meng, Q; Garcia-Rodriguez, C; Manzanarez, G; Silberg, M A; Conrad, F; Bettencourt, J; Pan, X; Breece, T; To, R; Li, M; Lee, D; Thorner, L; Tomic, M T; Marks, J D

    2012-11-15

    Quantitation of individual monoclonal antibodies (mAbs) within a combined antibody drug product is required for preclinical and clinical drug development. We have developed two antitoxins, XOMA 3B and XOMA 3E, each consisting of three mAbs that neutralize type B and type E botulinum neurotoxin (BoNT/B and BoNT/E) to treat serotype B and E botulism. To develop mAb-specific binding assays for each antitoxin, we mapped the epitopes of the six mAbs. Each mAb bound an epitope on either the BoNT light chain (LC) or translocation domain (H(N)). Epitope mapping data were used to design LC-H(N) domains with orthogonal mutations to make them specific for only one mAb in either XOMA 3B or XOMA 3E. Mutant LC-H(N) domains were cloned, expressed, and purified from Escherichia coli. Each mAb bound only to its specific domain with affinity comparable to the binding to holotoxin. Further engineering of domains allowed construction of enzyme-linked immunosorbent assays (ELISAs) that could characterize the integrity, binding affinity, and identity of each of the six mAbs in XOMA 3B and 3E without interference from the three BoNT/A mAbs in XOMA 3AB. Such antigen engineering is a general method allowing quantitation and characterization of individual mAbs in a mAb cocktail that bind the same protein. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Quantifying domain-ligand affinities and specificities by high-throughput holdup assay

    PubMed Central

    Vincentelli, Renaud; Luck, Katja; Poirson, Juline; Polanowska, Jolanta; Abdat, Julie; Blémont, Marilyne; Turchetto, Jeremy; Iv, François; Ricquier, Kevin; Straub, Marie-Laure; Forster, Anne; Cassonnet, Patricia; Borg, Jean-Paul; Jacob, Yves; Masson, Murielle; Nominé, Yves; Reboul, Jérôme; Wolff, Nicolas; Charbonnier, Sebastian; Travé, Gilles

    2015-01-01

    Many protein interactions are mediated by small linear motifs interacting specifically with defined families of globular domains. Quantifying the specificity of a motif requires measuring and comparing its binding affinities to all its putative target domains. To this aim, we developed the high-throughput holdup assay, a chromatographic approach that can measure up to a thousand domain-motif equilibrium binding affinities per day. Extracts of overexpressed domains are incubated with peptide-coated resins and subjected to filtration. Binding affinities are deduced from microfluidic capillary electrophoresis of flow-throughs. After benchmarking the approach on 210 PDZ-peptide pairs with known affinities, we determined the affinities of two viral PDZ-binding motifs derived from Human Papillomavirus E6 oncoproteins for 209 PDZ domains covering 79% of the human PDZome. We obtained exquisite sequence-dependent binding profiles, describing quantitatively the PDZome recognition specificity of each motif. This approach, applicable to many categories of domain-ligand interactions, has a wide potential for quantifying the specificities of interactomes. PMID:26053890

  19. Assays for the determination of the activity of DNA nucleases based on the fluorometric properties of the YOYO dye.

    PubMed

    Fernández-Sierra, Mónica; Quiñones, Edwin

    2015-03-15

    Here we characterize the fluorescence of the YOYO dye as a tool for studying DNA-protein interactions in real time and present two continuous YOYO-based assays for sensitively monitoring the kinetics of DNA digestion by λ-exonuclease and the endonuclease EcoRV. The described assays rely on the different fluorescence intensities between single- and double-stranded DNA-YOYO complexes, allowing straightforward determination of nuclease activity and quantitative determination of reaction products. The assays were also employed to assess the effect of single-stranded DNA-binding proteins on the λ-exonuclease reaction kinetics, showing that the extreme thermostable single-stranded DNA-binding protein (ET-SSB) significantly reduced the reaction rate, while the recombination protein A (RecA) displayed no effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A CHEMO-BIOLOGICAL STUDY OF THE RELATIONS OF PEPSIN TO SO-CALLED ANTI-PEPSIN

    PubMed Central

    Hamburger, Walter W.

    1911-01-01

    1. Fresh and inactivated animal serum under proper conditions will bind pepsin quantitatively in weak acid solution and will prevent it from digesting proteid even after the addition of free hydrochloric acid in excess. 2. This binding and inactivation of pepsin cannot be considered as due to a specific anti-pepsin. 3. The phenomenon has been named pepsin deviation in analogy with the deviation described for other ferments, notably trypsin. 4. The ability of animal serum to deviate pepsin has been responsible for most, if not all, of the published accounts of anti-pepsin. 5. By the use of a technique elaborated to control pepsin deviation, it has been found impossible to demonstrate normal anti-pepsin in the blood serum of the dog, cat, guinea pig, beef, horse, rabbit, and of man. PMID:19867495

  1. Molecular cloning and tissue distribution of peroxisome proliferator-activated receptor-alpha (PPARα) and gamma (PPARγ) in the pigeon (Columba livia domestica).

    PubMed

    Xie, P; Yuan, C; Wang, C; Zou, X-T; Po, Z; Tong, H-B; Zou, J-M

    2014-01-01

    1. Peroxisome proliferator-activated receptors (PPAR) are involved in lipid metabolism through transcriptional regulation of target gene expression. The objective of the current study was to clone and characterise the PPARα and PPARγ genes in pigeon. 2. The full-length of 1941-bp PPARα and 1653-bp PPARγ were cloned from pigeons. The two genes were predicted to encode 468 and 475 amino acids, respectively. Both proteins contained two C4-type zinc fingers, a nuclear hormone receptor DNA-binding region signature and a HOLI domain (ligand binding domain of hormone receptors), and had high identities with other corresponding avian genes. 3. Using quantitative real-time PCR, pigeon PPARα gene expression was shown to be high in kidney, liver, gizzard and duodenum whereas PPARγ was predominantly expressed in adipose tissue.

  2. Neonicotinoid Binding, Toxicity and Expression of Nicotinic Acetylcholine Receptor Subunits in the Aphid Acyrthosiphon pisum

    PubMed Central

    Taillebois, Emiliane; Beloula, Abdelhamid; Quinchard, Sophie; Jaubert-Possamai, Stéphanie; Daguin, Antoine; Servent, Denis; Tagu, Denis

    2014-01-01

    Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT). Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16±0.04 nM and 41.7±5.9 nM) and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008±0.002 nM and 1.135±0.213 nM). Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml) and TMX (LC50 = 0.034 µg/ml) were more toxic than CLT (LC50 = 0.118 µg/ml). The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies. PMID:24801634

  3. Candida albicans Adheres to Chitin by Recognizing N-acetylglucosamine (GlcNAc).

    PubMed

    Ishijima, Sanae A; Yamada, Tsuyoshi; Maruyama, Naho; Abe, Shigeru

    2017-01-01

    The binding of Candida albicans cells to chitin was examined in a cell-binding assay. Microscopic observations indicated that both living and heat-killed Candida cells bound to chitin-coated substrates. C. albicans preferentially bound to chitin-coated plastic plates over chitosan-coated and uncoated plates. We prepared 125 I-labeled Candida cells for quantitative analysis of their binding to chitin. Heat-killed 125 I-labeled Candida cells bound to chitin-coated plates in a time-dependent manner until 1.5 hours after start of incubation at 4℃. The binding of 125 I-labeled Candida cells to chitin-coated plates was inhibited by adding unlabeled living or unlabeled heat-killed Candida cells. The binding of Candida to chitin was also reduced by addition of 25 mg/ml chitin or chitosan up to 10%. N-acetylglucosamine (GlcNAc), which is a constituent of chitin, inhibited binding of Candida to chitin in a dose-dependent manner between 12.5 and 200 mM. Glucosamine, which is a constituent of chitosan, showed no such inhibitory effect. These findings suggest that the binding of Candida to chitin may be mediated by recognition of GlcNAc.

  4. Vitelline envelope of Bufo arenarum: biochemical and biological characterization.

    PubMed

    Barisone, Gustavo A; Hedrick, Jerry L; Cabada, Marcelo O

    2002-04-01

    Vitelline envelopes (VEs) of Bufo arenarum were isolated in order to study their composition and their role in fertilization. VEs are composed of four glycoproteins, with molecular masses of 120, 75, 41, and 38 kDa. To characterize its biological properties, we quantitatively determined sperm-VE binding and the induction of the acrosome reaction. Heterologous binding of B. arenarum sperm to Xenopus laevis VE components was observed with about one-third the efficiency of homologous binding. Equivalent binding of X. laevis sperm to the B. arenarum VE was observed. When B. arenarum sperm were incubated with fluorescein isothiocyanate-labeled VE, the labeled glycoproteins bound to the anterior end of the sperm head, showing a lateral distribution. Induction of the acrosome reaction was evaluated by incubating sperm in hypotonic saline media with VE glycoproteins. VEs induced the acrosome reaction in a time- and concentration-dependent manner. The acrosome reaction was maximal after 10 min. The half-maximal effect was obtained at a glycoprotein concentration of 1 microg/ml. Specificity was determined using fertilization envelope glycoproteins, which failed to induce the acrosome reaction. The B. arenarum VE is biochemically similar to other egg envelopes. It also seems that its biological properties are similar to other species in regard to sperm binding and induction of the acrosome reaction. However, as far as we are aware, this is the first observation of the VE inducing the sperm acrosome reaction in amphibians. The relatively small differences observed in heterologous sperm-VE binding in X. laevis and B. arenarum are inconsistent with the current paradigm that species specificity in fertilization is regulated at the sperm-VE binding step.

  5. Carbohydrate Recognition by an Architecturally Complex α-N-Acetylglucosaminidase from Clostridium perfringens

    PubMed Central

    Ficko-Blean, Elizabeth; Stuart, Christopher P.; Suits, Michael D.; Cid, Melissa; Tessier, Matthew; Woods, Robert J.; Boraston, Alisdair B.

    2012-01-01

    CpGH89 is a large multimodular enzyme produced by the human and animal pathogen Clostridium perfringens. The catalytic activity of this exo-α-d-N-acetylglucosaminidase is directed towards a rare carbohydrate motif, N-acetyl-β-d-glucosamine-α-1,4-d-galactose, which is displayed on the class III mucins deep within the gastric mucosa. In addition to the family 89 glycoside hydrolase catalytic module this enzyme has six modules that share sequence similarity to the family 32 carbohydrate-binding modules (CBM32s), suggesting the enzyme has considerable capacity to adhere to carbohydrates. Here we suggest that two of the modules, CBM32-1 and CBM32-6, are not functional as carbohydrate-binding modules (CBMs) and demonstrate that three of the CBMs, CBM32-3, CBM32-4, and CBM32-5, are indeed capable of binding carbohydrates. CBM32-3 and CBM32-4 have a novel binding specificity for N-acetyl-β-d-glucosamine-α-1,4-d-galactose, which thus complements the specificity of the catalytic module. The X-ray crystal structure of CBM32-4 in complex with this disaccharide reveals a mode of recognition that is based primarily on accommodation of the unique bent shape of this sugar. In contrast, as revealed by a series of X-ray crystal structures and quantitative binding studies, CBM32-5 displays the structural and functional features of galactose binding that is commonly associated with CBM family 32. The functional CBM32s that CpGH89 contains suggest the possibility for multivalent binding events and the partitioning of this enzyme to highly specific regions within the gastrointestinal tract. PMID:22479408

  6. Multi-Ligand-Binding Flavoprotein Dodecin as a Key Element for Reversible Surface Modification in Nano-biotechnology.

    PubMed

    Gutiérrez Sánchez, Cristina; Su, Qiang; Schönherr, Holger; Grininger, Martin; Nöll, Gilbert

    2015-01-01

    In this paper the multiple (re)programming of protein-DNA nanostructures comprising generation, deletion, and reprogramming on the same flavin-DNA-modified surface is introduced. This work is based on a systematic study of the binding affinity of the multi-ligand-binding flavoprotein dodecin on flavin-terminated DNA monolayers by surface plasmon resonance and quartz crystal microbalance with dissipation (QCM-D) measurements, surface plasmon fluorescence spectroscopy (SPFS), and dynamic AFM force spectroscopy. Depending on the flavin surface coverage, a single apododecin is captured by one or more surface-immobilized flavins. The corresponding complex binding and unbinding rate constants kon(QCM) = 7.7 × 10(3) M(-1)·s(-1) and koff(QCM) = 4.5 × 10(-3) s(-1) (Kd(QCM) = 580 nM) were determined by QCM and were found to be in agreement with values for koff determined by SPFS and force spectroscopy. Even though a single apododecin-flavin bond is relatively weak, stable dodecin monolayers were formed on flavin-DNA-modified surfaces at high flavin surface coverage due to multivalent interactions between apododecin bearing six binding pockets and the surface-bound flavin-DNA ligands. If bi- or multivalent flavin ligands are adsorbed on dodecin monolayers, stable sandwich-type surface-DNA-flavin-apododecin-flavin ligand arrays are obtained. Nevertheless, the apododecin flavin complex is easily and quantitatively disassembled by flavin reduction. Binding and release of apododecin are reversible processes, which can be carried out alternatingly several times to release one type of ligand by an external redox trigger and subsequently replace it with a different ligand. Hence the versatile concept of reprogrammable functional biointerfaces with the multi-ligand-binding flavoprotein dodecin is demonstrated.

  7. Hydropathic analysis and biological evaluation of stilbene derivatives as colchicine site microtubule inhibitors with anti-leukemic activity

    PubMed Central

    TRIPATHI, ASHUTOSH; DURRANT, DAVID; LEE, RAY M.; BARUCHELLO, RICCARDO; ROMAGNOLI, ROMEO; SIMONI, DANIELE; KELLOGG, GLEN E.

    2009-01-01

    The crucial role of the microtubule in the cell division has identified tubulin as a target for the development of therapeutics for cancer; in particular tubulin is a target for antineoplastic agents that act by interfering with the dynamic stability of microtubules. A molecular modeling study was carried out to accurately represent the complex structure and the binding mode of a new class of stilbene-based tubulin inhibitors that bind at the αβ-tubulin colchicine site. Computational docking along with HINT score analysis fitted these inhibitors into the colchicine site and revealed detailed structure-activity information useful for inhibitor design. Quantitative analysis of the results was in good agreement with the in vitro antiproliferative activity of these derivatives (ranging from 3 nM to 100 μM) such that calculated and measured free energies of binding correlate with an r2 of 0.89 (standard error ± 0.85 kcal mol−1). This correlation suggests that the activity of unknown compounds may be predicted. PMID:19912057

  8. Paradoxical enhancement of chemoreceptor detection sensitivity by a sensory adaptation enzyme

    PubMed Central

    Han, Xue-Sheng; Dahlquist, Frederick W.; Parkinson, John S.

    2017-01-01

    A sensory adaptation system that tunes chemoreceptor sensitivity enables motile Escherichia coli cells to track chemical gradients with high sensitivity over a wide dynamic range. Sensory adaptation involves feedback control of covalent receptor modifications by two enzymes: CheR, a methyltransferase, and CheB, a methylesterase. This study describes a CheR function that opposes the signaling consequences of its catalytic activity. In the presence of CheR, a variety of mutant serine chemoreceptors displayed up to 40-fold enhanced detection sensitivity to chemoeffector stimuli. This response enhancement effect did not require the known catalytic activity of CheR, but did involve a binding interaction between CheR and receptor molecules. Response enhancement was maximal at low CheR:receptor stoichiometry and quantitative analyses argued against a reversible binding interaction that simply shifts the ON–OFF equilibrium of receptor signaling complexes. Rather, a short-lived CheR binding interaction appears to promote a long-lasting change in receptor molecules, either a covalent modification or conformation that enhances their response to attractant ligands. PMID:28827352

  9. Towards the identification of alkaline phosphatase binding ligands in Li-Dan-Hua-Shi pills: A Box-Behnken design optimized affinity selection approach tandem with UHPLC-Q-TOF/MS analysis.

    PubMed

    Tao, Yi; Huang, Surun; Gu, Xianghui; Li, Weidong; Cai, Baochang

    2018-05-30

    Alkaline phosphatase conjugated magnetic microspheres were synthesized via amide reaction, and employed as an effective adsorbent in affinity selection of binding ligands followed by UHPLC-Q-TOF/MS analysis. The analytical validity of the developed approach was evaluated under optimized conditions and the following figures of merit were obtained: linearity, 0.01-0.5 g L -1 with good determination coefficients (R 2  = 0.9992); limits of detection (LODs), 0.003 g L -1 ; and limits of quantitation (LOQ), 0.01 g L -1 . The precision (RSD%) of the proposed affinity selection approach was studied based on intra-day (0.8%) and inter-day (1.3%) precisions. Finally, the adsorbent was successfully applied to identification of binding ligands in Li-Dan-Hua-Shi pills and good recoveries were obtained in the range from 96.9 to 99.4% (RSDs 1.6-3.0%). Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Different roles suggested by sex-biased expression and pheromone binding affinity among three pheromone binding proteins in the pink rice borer, Sesamia inferens (Walker) (Lepidoptera: Noctuidae).

    PubMed

    Jin, Jun-Yan; Li, Zhao-Qun; Zhang, Ya-Nan; Liu, Nai-Yong; Dong, Shuang-Lin

    2014-07-01

    Pheromone binding proteins (PBPs) are thought to bind and transport hydrophobic sex pheromone molecules across the aqueous sensillar lymph to specific pheromone receptors on the dendritic membrane of olfactory neurons. A maximum of 3 PBP genes have been consistently identified in noctuid species, and each of them shares high identity with its counterparts in other species within the family. The functionality differences of the 3 proteins are poorly understood. In the present study, 3 PBP cDNAs (SinfPBP1, 2, 3) were identified from the pink rice borer, Sesamia inferens, for the first time. The quantitative real-time PCR indicated that the 3 PBPs displayed similar temporal but very different sex related expression profiles. Expression of SinfPBP1 and SinfPBP2 were highly and moderately male biased, respectively, while SinfPBP3 was slightly female biased, as SinfPBPs were expressed at very different levels (PBP1>PBP2≫PBP3) in male antennae, but at similar levels in female antennae. Furthermore, the 3 SinfPBPs displayed different ligand binding profiles in fluorescence competitive binding assays. SinfPBP1 exhibited high and similar binding affinities to all 3 sex pheromone components (Ki=0.72-1.60 μM), while SinfPBP2 showed selective binding to the alcohol and aldehyde components (Ki=0.78-1.71 μM), and SinfPBP3 showed no obvious binding to the 3 sex pheromone components. The results suggest that SinfPBP1 plays a major role in the reception of female sex pheromones in S. inferens, while SinfPBP3 plays a least role (if any) and SinfPBP2 functions as a recognizer of alcohol and aldehyde components. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Universality and predictability in molecular quantitative genetics.

    PubMed

    Nourmohammad, Armita; Held, Torsten; Lässig, Michael

    2013-12-01

    Molecular traits, such as gene expression levels or protein binding affinities, are increasingly accessible to quantitative measurement by modern high-throughput techniques. Such traits measure molecular functions and, from an evolutionary point of view, are important as targets of natural selection. We review recent developments in evolutionary theory and experiments that are expected to become building blocks of a quantitative genetics of molecular traits. We focus on universal evolutionary characteristics: these are largely independent of a trait's genetic basis, which is often at least partially unknown. We show that universal measurements can be used to infer selection on a quantitative trait, which determines its evolutionary mode of conservation or adaptation. Furthermore, universality is closely linked to predictability of trait evolution across lineages. We argue that universal trait statistics extends over a range of cellular scales and opens new avenues of quantitative evolutionary systems biology. Copyright © 2013. Published by Elsevier Ltd.

  12. A Colorimetric Microplate Assay for DNA-Binding Activity of His-Tagged MutS Protein.

    PubMed

    Banasik, Michał; Sachadyn, Paweł

    2016-09-01

    A simple microplate method was designed for rapid testing DNA-binding activity of proteins. The principle of the assay involves binding of tested DNA by his-tagged protein immobilized on a nickel-coated ELISA plate, following colorimetric detection of biotinylated DNA with avidin conjugated to horseradish peroxidase. The method was used to compare DNA mismatch binding activities of MutS proteins from three bacterial species. The assay required relatively low amounts of tested protein (approximately 0.5-10 pmol) and DNA (0.1-10 pmol) and a relatively short time of analysis (up to 60 min). The method is very simple to apply and convenient to test different buffer conditions of DNA-protein binding. Sensitive colorimetric detection enables naked eye observations and quantitation with an ELISA reader. The performance of the assay, which we believe is a distinguishing trait of the method, is based on two strong and specific molecular interactions: binding of a his-tagged protein to a nickel-coated microplate and binding of biotinylated DNA to avidin. In the reported experiments, the solution was used to optimize the conditions for DNA mismatch binding by MutS protein; however, the approach could be implemented to test nucleic acids interactions with any protein of interest.

  13. Mathematical modeling of vesicle drug delivery systems 2: targeted vesicle interactions with cells, tumors, and the body.

    PubMed

    Ying, Chong T; Wang, Juntian; Lamm, Robert J; Kamei, Daniel T

    2013-02-01

    Vesicles have been studied for several years in their ability to deliver drugs. Mathematical models have much potential in reducing time and resources required to engineer optimal vesicles, and this review article summarizes these models that aid in understanding the ability of targeted vesicles to bind and internalize into cancer cells, diffuse into tumors, and distribute in the body. With regard to binding and internalization, radiolabeling and surface plasmon resonance experiments can be performed to determine optimal vesicle size and the number and type of ligands conjugated. Binding and internalization properties are also inputs into a mathematical model of vesicle diffusion into tumor spheroids, which highlights the importance of the vesicle diffusion coefficient and the binding affinity of the targeting ligand. Biodistribution of vesicles in the body, along with their half-life, can be predicted with compartmental models for pharmacokinetics that include the effect of targeting ligands, and these predictions can be used in conjunction with in vivo models to aid in the design of drug carriers. Mathematical models can prove to be very useful in drug carrier design, and our hope is that this review will encourage more investigators to combine modeling with quantitative experimentation in the field of vesicle-based drug delivery.

  14. Unveiling Stability Criteria of DNA-Carbon Nanotubes Constructs by Scanning Tunneling Microscopy and Computational Modeling

    DOE PAGES

    Kilina, Svetlana; Yarotski, Dzmitry A.; Talin, A. Alec; ...

    2011-01-01

    We present a combined approach that relies on computational simulations and scanning tunneling microscopy (STM) measurements to reveal morphological properties and stability criteria of carbon nanotube-DNA (CNT-DNA) constructs. Application of STM allows direct observation of very stable CNT-DNA hybrid structures with the well-defined DNA wrapping angle of 63.4 ° and a coiling period of 3.3 nm. Using force field simulations, we determine how the DNA-CNT binding energy depends on the sequence and binding geometry of a single strand DNA. This dependence allows us to quantitatively characterize the stability of a hybrid structure with an optimal π-stacking between DNA nucleotides and themore » tube surface and better interpret STM data. Our simulations clearly demonstrate the existence of a very stable DNA binding geometry for (6,5) CNT as evidenced by the presence of a well-defined minimum in the binding energy as a function of an angle between DNA strand and the nanotube chiral vector. This novel approach demonstrates the feasibility of CNT-DNA geometry studies with subnanometer resolution and paves the way towards complete characterization of the structural and electronic properties of drug-delivering systems based on DNA-CNT hybrids as a function of DNA sequence and a nanotube chirality.« less

  15. Computational study of the inhibitory mechanism of the kinase CDK5 hyperactivity by peptide p5 and derivation of a pharmacophore

    NASA Astrophysics Data System (ADS)

    Cardone, A.; Brady, M.; Sriram, R.; Pant, H. C.; Hassan, S. A.

    2016-06-01

    The hyperactivity of the cyclic dependent kinase 5 (CDK5) induced by the activator protein p25 has been linked to a number of pathologies of the brain. The CDK5-p25 complex has thus emerged as a major therapeutic target for Alzheimer's disease (AD) and other neurodegenerative conditions. Experiments have shown that the peptide p5 reduces the CDK5-p25 activity without affecting the endogenous CDK5-p35 activity, whereas the peptide TFP5, obtained from p5, elicits similar inhibition, crosses the blood-brain barrier, and exhibits behavioral rescue of AD mice models with no toxic side effects. The molecular basis of the kinase inhibition is not currently known, and is here investigated by computer simulations. It is shown that p5 binds the kinase at the same CDK5/p25 and CDK5/p35 interfaces, and is thus a non-selective competitor of both activators, in agreement with available experimental data in vitro. Binding of p5 is enthalpically driven with an affinity estimated in the low µM range. A quantitative description of the binding site and pharmacophore is presented, and options are discussed to increase the binding affinity and selectivity in the design of drug-like compounds against AD.

  16. Annexin A5 Binds to Lipopolysaccharide and Reduces Its Endotoxin Activity

    PubMed Central

    Rand, Jacob H.; Wu, Xiao-Xuan; Lin, Elaine Y.; Griffel, Alexander; Gialanella, Philip; McKitrick, John C.

    2012-01-01

    ABSTRACT Annexin A5 (AnxA5) has a high affinity for phosphatidylserine. The protein is widely used to detect apoptotic cells because phosphatidylserine, a phospholipid that is normally present in the inner leaflets of cytoplasmic membranes, becomes translocated to the outer leaflets during programmed cell death. Here we report the novel observation that AnxA5 binds to Gram-negative bacteria via the lipid A domain of lipopolysaccharide (LPS). Binding of AnxA5 to bacteria was measured quantitatively, confirmed by fluorescence microscopy, and found to be inhibited by antibodies against lipid A. AnxA5 also bound to purified dot-blotted LPS and lipid A. Through ellipsometry, we found that the binding of AnxA5 to purified LPS was calcium dependent and rapid and showed a high affinity—characteristics similar to those of AnxA5 binding to phosphatidylserine. Initial functional studies indicated that AnxA5 can affect LPS activities. AnxA5 inhibited LPS-mediated gelation in the Limulus amebocyte lysate assay. Incubation of LPS with the protein reduced the quantity of tumor necrosis factor alpha (TNF-α) released by cultured monocytes compared to that released upon incubation with LPS alone. Initial in vivo experiments indicated that injection of mice with LPS preincubated with AnxA5 produced serum TNF-α levels lower than those seen after injection of LPS alone. These data demonstrate that AnxA5 binds to LPS and open paths to investigation of the potential biological and therapeutic implications of this interaction. PMID:22415004

  17. Binding of Substrates to the Central Pore of the Vps4 ATPase Is Autoinhibited by the Microtubule Interacting and Trafficking (MIT) Domain and Activated by MIT Interacting Motifs (MIMs).

    PubMed

    Han, Han; Monroe, Nicole; Votteler, Jörg; Shakya, Binita; Sundquist, Wesley I; Hill, Christopher P

    2015-05-22

    The endosomal sorting complexes required for transport (ESCRT) pathway drives reverse topology membrane fission events within multiple cellular pathways, including cytokinesis, multivesicular body biogenesis, repair of the plasma membrane, nuclear membrane vesicle formation, and HIV budding. The AAA ATPase Vps4 is recruited to membrane necks shortly before fission, where it catalyzes disassembly of the ESCRT-III lattice. The N-terminal Vps4 microtubule-interacting and trafficking (MIT) domains initially bind the C-terminal MIT-interacting motifs (MIMs) of ESCRT-III subunits, but it is unclear how the enzyme then remodels these substrates in response to ATP hydrolysis. Here, we report quantitative binding studies that demonstrate that residues from helix 5 of the Vps2p subunit of ESCRT-III bind to the central pore of an asymmetric Vps4p hexamer in a manner that is dependent upon the presence of flexible nucleotide analogs that can mimic multiple states in the ATP hydrolysis cycle. We also find that substrate engagement is autoinhibited by the Vps4p MIT domain and that this inhibition is relieved by binding of either Type 1 or Type 2 MIM elements, which bind the Vps4p MIT domain through different interfaces. These observations support the model that Vps4 substrates are initially recruited by an MIM-MIT interaction that activates the Vps4 central pore to engage substrates and generate force, thereby triggering ESCRT-III disassembly. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Synthesis and Evaluation of a Novel Adenosine-Ribose Probe for Global-Scale Profiling of Nucleoside and Nucleotide-Binding Proteins

    PubMed Central

    Mahajan, Shikha; Manetsch, Roman; Merkler, David J.; Stevens Jr., Stanley M.

    2015-01-01

    Proteomics is a powerful approach used for investigating the complex molecular mechanisms of disease pathogenesis and progression. An important challenge in modern protein profiling approaches involves targeting of specific protein activities in order to identify altered molecular processes associated with disease pathophysiology. Adenosine-binding proteins represent an important subset of the proteome where aberrant expression or activity changes of these proteins have been implicated in numerous human diseases. Herein, we describe an affinity-based approach for the enrichment of adenosine-binding proteins from a complex cell proteome. A novel N 6-biotinylated-8-azido-adenosine probe (AdoR probe) was synthesized, which contains a reactive group that forms a covalent bond with the target proteins, as well as a biotin tag for affinity enrichment using avidin chromatography. Probe specificity was confirmed with protein standards prior to further evaluation in a complex protein mixture consisting of a lysate derived from mouse neuroblastoma N18TG2 cells. Protein identification and relative quantitation using mass spectrometry allowed for the identification of small variations in abundance of nucleoside- and nucleotide-binding proteins in these samples where a significant enrichment of AdoR-binding proteins in the labeled proteome from the neuroblastoma cells was observed. The results from this study demonstrate the utility of this method to enrich for nucleoside- and nucleotide-binding proteins in a complex protein mixture, pointing towards a unique set of proteins that can be examined in the context of further understanding mechanisms of disease, or fundamental biological processes in general. PMID:25671571

  19. Disclosure of key stereoelectronic factors for efficient H2 binding and cleavage in the active site of [NiFe]-hydrogenases.

    PubMed

    Bruschi, Maurizio; Tiberti, Matteo; Guerra, Alessandro; De Gioia, Luca

    2014-02-05

    A comparative analysis of a series of DFT models of [NiFe]-hydrogenases, ranging from minimal NiFe clusters to very large systems including both the first and second coordination sphere of the bimetallic cofactor, was carried out with the aim of unraveling which stereoelectronic properties of the active site of [NiFe]-hydrogenases are crucial for efficient H2 binding and cleavage. H2 binding to the Ni-SIa redox state is energetically favored (by 4.0 kcal mol(-1)) only when H2 binds to Ni, the NiFe metal cluster is in a low spin state, and the Ni cysteine ligands have a peculiar seesaw coordination geometry, which in the enzyme is stabilized by the protein environment. The influence of the Ni coordination geometry on the H2 binding affinity was then quantitatively evaluated and rationalized analyzing frontier molecular orbitals and populations. Several plausible reaction pathways leading to H2 cleavage were also studied. It turned out that a two-step pathway, where H2 cleavage takes place on the Ni-SIa redox state of the enzyme, is characterized by very low reaction barriers and favorable reaction energies. More importantly, the seesaw coordination geometry of Ni was found to be a key feature for facile H2 cleavage. The discovery of the crucial influence of the Ni coordination geometry on H2 binding and activation in the active site of [NiFe]-hydrogenases could be exploited in the design of novel biomimetic synthetic catalysts.

  20. Rates and equilibrium constants of the ligand-induced conformational transition of an HCN ion channel protein domain determined by DEER spectroscopy.

    PubMed

    Collauto, Alberto; DeBerg, Hannah A; Kaufmann, Royi; Zagotta, William N; Stoll, Stefan; Goldfarb, Daniella

    2017-06-14

    Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.

  1. Binding of Substrates to the Central Pore of the Vps4 ATPase Is Autoinhibited by the Microtubule Interacting and Trafficking (MIT) Domain and Activated by MIT Interacting Motifs (MIMs)*

    PubMed Central

    Han, Han; Monroe, Nicole; Votteler, Jörg; Shakya, Binita; Sundquist, Wesley I.; Hill, Christopher P.

    2015-01-01

    The endosomal sorting complexes required for transport (ESCRT) pathway drives reverse topology membrane fission events within multiple cellular pathways, including cytokinesis, multivesicular body biogenesis, repair of the plasma membrane, nuclear membrane vesicle formation, and HIV budding. The AAA ATPase Vps4 is recruited to membrane necks shortly before fission, where it catalyzes disassembly of the ESCRT-III lattice. The N-terminal Vps4 microtubule-interacting and trafficking (MIT) domains initially bind the C-terminal MIT-interacting motifs (MIMs) of ESCRT-III subunits, but it is unclear how the enzyme then remodels these substrates in response to ATP hydrolysis. Here, we report quantitative binding studies that demonstrate that residues from helix 5 of the Vps2p subunit of ESCRT-III bind to the central pore of an asymmetric Vps4p hexamer in a manner that is dependent upon the presence of flexible nucleotide analogs that can mimic multiple states in the ATP hydrolysis cycle. We also find that substrate engagement is autoinhibited by the Vps4p MIT domain and that this inhibition is relieved by binding of either Type 1 or Type 2 MIM elements, which bind the Vps4p MIT domain through different interfaces. These observations support the model that Vps4 substrates are initially recruited by an MIM-MIT interaction that activates the Vps4 central pore to engage substrates and generate force, thereby triggering ESCRT-III disassembly. PMID:25833946

  2. Sex steroid hormones in relation to Barrett's esophagus: an analysis of the FINBAR Study.

    PubMed

    Cook, M B; Wood, S; Hyland, P L; Caron, P; Drahos, J; Falk, R T; Pfeiffer, R M; Dawsey, S M; Abnet, C C; Taylor, P R; Guillemette, C; Murray, L J; Anderson, L A

    2017-03-01

    Previously, we observed strong positive associations between circulating concentrations of free testosterone and free dihydrotestosterone (DHT) in relation to Barrett's esophagus in a US male military population. To replicate these findings, we conducted a second study of sex steroid hormones and Barrett's esophagus in the Factors Influencing the Barrett/Adenocarcinoma Relationship (FINBAR) Study based in Northern Ireland and Ireland. We used mass spectrometry to quantitate EDTA plasma concentrations of nine sex steroid hormones and ELISA to quantitate sex hormone-binding globulin in 177 male Barrett's esophagus cases and 185 male general population controls within the FINBAR Study. Free testosterone, free DHT, and free estradiol were estimated using standard formulas. Multivariable logistic regression estimated odds ratios (OR) and 95% confidence intervals (95%CI) of associations between exposures and Barrett's esophagus. While plasma hormone and sex hormone-binding globulin concentrations were not associated with all cases of Barrett's esophagus, we did observe positive associations with estrogens in younger men (e.g. estrone + estradiol OR continuous per ½ IQR   = 2.92, 95%CI:1.08, 7.89), and free androgens in men with higher waist-to-hip ratios (e.g. free testosterone OR continuous per ½ IQR   = 2.71, 95%CI:1.06, 6.92). Stratification by body mass index, antireflux medications, and geographic location did not materially affect the results. This study found evidence for associations between circulating sex steroid hormones and Barrett's esophagus in younger men and men with higher waist-to-hip ratios. Further studies are necessary to elucidate whether sex steroid hormones are consistently associated with esophageal adenocarcinogenesis. © 2017 American Society of Andrology and European Academy of Andrology.

  3. a Migration Well Model for the Binding of Ligands to Heme Proteins.

    NASA Astrophysics Data System (ADS)

    Beece, Daniel Kenneth

    The binding of carbon monoxide and dioxygen to heme proteins can be viewed as occurring in distinct stages: diffusion in the solvent, migration through the matrix, and occupation of the pocket before the final binding step. A model is presented which can explain the dominant kinetic behavior of several different heme protein-ligand systems. The model assumes that a ligand molecule in the solvent sequentially encounters discrete energy barriers on the way to the binding site. The rate to surmount each barrier is distributed, except for the pseudofirst order rate corresponding to the step into the protein from the solvent. The migration through the matrix is equivalent to a small number of distinct jumps. Quantitative analysis of the data permit estimates of the barrier heights, preexponentials and solvent coupling factors for each rate. A migration coefficient and a matrix occupation factor are defined.

  4. Switchable cucurbituril-bipyridine beacons.

    PubMed

    Sinha, Mantosh K; Reany, Ofer; Parvari, Galit; Karmakar, Ananta; Keinan, Ehud

    2010-08-09

    4-Aminobipyridine derivatives form strong inclusion complexes with cucurbit[6]uril, exhibiting remarkably large enhancements in fluorescence intensity and quantum yields. The remarkable complexation-induced pK(a) shift (DeltapK(a)=3.3) highlights the strong charge-dipole interaction upon binding. The reversible binding phenomenon can be used for the design of switchable beacons that can be incorporated into cascades of binding networks. This concept is demonstrated herein by three different applications: 1) a switchable fluorescent beacon for chemical sensing of transition metals and other ligands; 2) direct measurement of binding constants between cucurbit[6]uril and various nonfluorescent guest molecules; and 3) quantitative monitoring of biocatalytic reactions and determination of their kinetic parameters. The latter application is illustrated by the hydrolysis of an amide catalyzed by penicillin G acylase and by the elimination reaction of a beta-cabamoyloxy ketone catalyzed by aldolase antibody 38C2.

  5. Aluminum binding by humus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, M.F.; Hiemstra, T.; Riemsdijk, W. van

    The need for qualitative and quantitative description of the chemical speciation of Al, in particular and other metal ions in general, is stressed by the increased mobilization of metal ions in water and soils due to acid rain deposition. In this paper we present new data of Al binding to two humic acids. These new data sets and the some previously published data will be analyzed with the NICA-Donnan model using one set of parameters to describe the Al binding to the different humic substances. Once the experimental data is described with the NICA-Donnan approach, we will show the effectmore » of Ca on Al binding and surface speciation as well as the effect of Al on the charge of the humic particles. The parameters derived from the laboratory experiments will be used to describe the variation of the field based Al partition coefficient.« less

  6. Computational Approaches to the Chemical Equilibrium Constant in Protein-ligand Binding.

    PubMed

    Montalvo-Acosta, Joel José; Cecchini, Marco

    2016-12-01

    The physiological role played by protein-ligand recognition has motivated the development of several computational approaches to the ligand binding affinity. Some of them, termed rigorous, have a strong theoretical foundation but involve too much computation to be generally useful. Some others alleviate the computational burden by introducing strong approximations and/or empirical calibrations, which also limit their general use. Most importantly, there is no straightforward correlation between the predictive power and the level of approximation introduced. Here, we present a general framework for the quantitative interpretation of protein-ligand binding based on statistical mechanics. Within this framework, we re-derive self-consistently the fundamental equations of some popular approaches to the binding constant and pinpoint the inherent approximations. Our analysis represents a first step towards the development of variants with optimum accuracy/efficiency ratio for each stage of the drug discovery pipeline. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Measuring protein-protein and protein-nucleic Acid interactions by biolayer interferometry.

    PubMed

    Sultana, Azmiri; Lee, Jeffrey E

    2015-02-02

    Biolayer interferometry (BLI) is a simple, optical dip-and-read system useful for measuring interactions between proteins, peptides, nucleic acids, small molecules, and/or lipids in real time. In BLI, a biomolecular bait is immobilized on a matrix at the tip of a fiber-optic sensor. The binding between the immobilized ligand and another molecule in an analyte solution produces a change in optical thickness at the tip and results in a wavelength shift proportional to binding. BLI provides direct binding affinities and rates of association and dissociation. This unit describes an efficient approach using streptavidin-based BLI to analyze DNA-protein and protein-protein interactions. A quantitative set of equilibrium binding affinities (K(d)) and rates of association and dissociation (k(a)/k(d)) can be measured in minutes using nanomole quantities of sample. Copyright © 2015 John Wiley & Sons, Inc.

  8. Optical tweezers reveal how proteins alter replication

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic acids. We use single molecule DNA stretching to show that the nucleocapsid protein (NC) of the yeast retrotransposon Ty3, which is likely to be an ancestor of HIV NC, has optimal nucleic acid chaperone activity with only a single zinc finger. We also show that the chaperone activity of the ORF1 protein is responsible for successful replication of the mouse LINE-1 retrotransposon. LINE-1 is also 17% of the human genome, where it generates insertion mutations and alters gene expression. Retrotransposons such as LINE-1 and Ty3 are likely to be ancestors of retroviruses such as HIV. Human APOBEC3G (A3G) inhibits HIV-1 replication via cytidine deamination of the viral ssDNA genome, as well as via a distinct deamination-independent mechanism. Efficient deamination requires rapid on-off binding kinetics, but a slow dissociation rate is required for the proposed deaminase-independent mechanism. We resolve this apparent contradiction with a new quantitative single molecule method, which shows that A3G initially binds ssDNA with fast on-off rates and subsequently converts to a slow binding mode. This suggests that oligomerization transforms A3G from a fast enzyme to a slow binding protein, which is the biophysical mechanism that allows A3G to inhibit HIV replication. A complete understanding of the mechanism of A3G-mediated antiviral activity is required to design drugs that disrupt the viral response to A3G, enhance A3G packaging inside the viral core, and other potential strategies for long-term treatment of HIV infection. We use single molecule biophysics to explore the function of proteins involved in bacterial DNA replication, endogenous retrotransposition of retroelements in eukaryotic hosts such yeast and mice, and HIV replication in human cells. Our quantitative results provide insight into protein function in a range of complex biological systems and have wide-ranging implications for human health.

  9. Quantitative theory of hydrophobic effect as a driving force of protein structure

    PubMed Central

    Perunov, Nikolay; England, Jeremy L

    2014-01-01

    Various studies suggest that the hydrophobic effect plays a major role in driving the folding of proteins. In the past, however, it has been challenging to translate this understanding into a predictive, quantitative theory of how the full pattern of sequence hydrophobicity in a protein shapes functionally important features of its tertiary structure. Here, we extend and apply such a phenomenological theory of the sequence-structure relationship in globular protein domains, which had previously been applied to the study of allosteric motion. In an effort to optimize parameters for the model, we first analyze the patterns of backbone burial found in single-domain crystal structures, and discover that classic hydrophobicity scales derived from bulk physicochemical properties of amino acids are already nearly optimal for prediction of burial using the model. Subsequently, we apply the model to studying structural fluctuations in proteins and establish a means of identifying ligand-binding and protein–protein interaction sites using this approach. PMID:24408023

  10. Cloud computing approaches for prediction of ligand binding poses and pathways.

    PubMed

    Lawrenz, Morgan; Shukla, Diwakar; Pande, Vijay S

    2015-01-22

    We describe an innovative protocol for ab initio prediction of ligand crystallographic binding poses and highly effective analysis of large datasets generated for protein-ligand dynamics. We include a procedure for setup and performance of distributed molecular dynamics simulations on cloud computing architectures, a model for efficient analysis of simulation data, and a metric for evaluation of model convergence. We give accurate binding pose predictions for five ligands ranging in affinity from 7 nM to > 200 μM for the immunophilin protein FKBP12, for expedited results in cases where experimental structures are difficult to produce. Our approach goes beyond single, low energy ligand poses to give quantitative kinetic information that can inform protein engineering and ligand design.

  11. Evaluation of galectin binding by frontal affinity chromatography (FAC).

    PubMed

    Iwaki, Jun; Hirabayashi, Jun

    2015-01-01

    Frontal affinity chromatography (FAC) is a simple and versatile procedure enabling quantitative determination of diverse biological interactions in terms of dissociation constants (K d), even though these interactions are relatively weak. The method is best applied to glycans and their binding proteins, with the analytical system operating on the basis of highly reproducible isocratic elution by liquid chromatography. Its application to galectins has been successfully developed to characterize their binding specificities in detail. As a result, their minimal requirements for recognition of disaccharides, i.e., β-galactosides, as well as characteristic features of individual galectins, have been elucidated. In this chapter, we describe standard procedures to determine the K d's for interactions between a series of standard glycans and various galectins.

  12. Gaussian Accelerated Molecular Dynamics in NAMD

    PubMed Central

    2016-01-01

    Gaussian accelerated molecular dynamics (GaMD) is a recently developed enhanced sampling technique that provides efficient free energy calculations of biomolecules. Like the previous accelerated molecular dynamics (aMD), GaMD allows for “unconstrained” enhanced sampling without the need to set predefined collective variables and so is useful for studying complex biomolecular conformational changes such as protein folding and ligand binding. Furthermore, because the boost potential is constructed using a harmonic function that follows Gaussian distribution in GaMD, cumulant expansion to the second order can be applied to recover the original free energy profiles of proteins and other large biomolecules, which solves a long-standing energetic reweighting problem of the previous aMD method. Taken together, GaMD offers major advantages for both unconstrained enhanced sampling and free energy calculations of large biomolecules. Here, we have implemented GaMD in the NAMD package on top of the existing aMD feature and validated it on three model systems: alanine dipeptide, the chignolin fast-folding protein, and the M3 muscarinic G protein-coupled receptor (GPCR). For alanine dipeptide, while conventional molecular dynamics (cMD) simulations performed for 30 ns are poorly converged, GaMD simulations of the same length yield free energy profiles that agree quantitatively with those of 1000 ns cMD simulation. Further GaMD simulations have captured folding of the chignolin and binding of the acetylcholine (ACh) endogenous agonist to the M3 muscarinic receptor. The reweighted free energy profiles are used to characterize the protein folding and ligand binding pathways quantitatively. GaMD implemented in the scalable NAMD is widely applicable to enhanced sampling and free energy calculations of large biomolecules. PMID:28034310

  13. Flortaucipir tau PET imaging in semantic variant primary progressive aphasia.

    PubMed

    Makaretz, Sara J; Quimby, Megan; Collins, Jessica; Makris, Nikos; McGinnis, Scott; Schultz, Aaron; Vasdev, Neil; Johnson, Keith A; Dickerson, Bradford C

    2017-10-06

    The semantic variant of primary progressive aphasia (svPPA) is typically associated with frontotemporal lobar degeneration (FTLD) with longTAR DNA-binding protein (TDP)-43-positive neuropil threads and dystrophic neurites (type C), and is only rarely due to a primary tauopathy or Alzheimer's disease. We undertook this study to investigate the localisation and magnitude of the presumed tau Positron Emission Tomography (PET) tracer [ 18 F]Flortaucipir (FTP; also known as T807 or AV1451) in patients with svPPA, hypothesising that most patients would not show tracer uptake different from controls. FTP and [ 11 C]Pittsburgh compound B PET imaging as well as MRI were performed in seven patients with svPPA and in 20 controls. FTP signal was analysed by visual inspection and by quantitative comparison to controls, with and without partial volume correction. All seven patients showed elevated FTP uptake in the anterior temporal lobe with a leftward asymmetry that was not observed in healthy controls. This elevated FTP signal, largely co-localised with atrophy, was evident on both visual inspection and quantitative cortical surface-based analysis. Five patients were amyloid negative, one was amyloid positive and one has an unknown amyloid status. In this series of patients with clinical profiles, structural MRI and amyloid PET imaging typical for svPPA, FTP signal was unexpectedly elevated with a spatial pattern localised to areas of atrophy. This raises questions about the possible off-target binding of this tracer to non-tau molecules associated with neurodegeneration. Further investigation with autopsy analysis will help illuminate the binding target(s) of FTP in cases of suspected FTLD-TDP neuropathology. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Quantitative analysis of glycation and its impact on antigen binding

    PubMed Central

    Mo, Jingjie; Yan, Qingrong; Sokolowska, Izabela; Lewis, Michael J.; Hu, Ping

    2018-01-01

    ABSTRACT Glycation has been observed in antibody therapeutics manufactured by the fed-batch fermentation process. It not only increases the heterogeneity of antibodies, but also potentially affects product safety and efficacy. In this study, non-glycated and glycated fractions enriched from a monoclonal antibody (mAb1) as well as glucose-stressed mAb1 were characterized using a variety of biochemical, biophysical and biological assays to determine the effects of glycation on the structure and function of mAb1. Glycation was detected at multiple lysine residues and reduced the antigen binding activity of mAb1. Heavy chain Lys100, which is located in the complementary-determining region of mAb1, had the highest levels of glycation in both stressed and unstressed samples, and glycation of this residue was likely responsible for the loss of antigen binding based on hydrogen/deuterium exchange mass spectrometry analysis. Peptide mapping and intact liquid chromatography-mass spectrometry (LC-MS) can both be used to monitor the glycation levels. Peptide mapping provides site specific glycation results, while intact LC-MS is a quicker and simpler method to quantitate the total glycation levels and is more useful for routine testing. Capillary isoelectric focusing (cIEF) can also be used to monitor glycation because glycation induces an acidic shift in the cIEF profile. As expected, total glycation measured by intact LC-MS correlated very well with the percentage of total acidic peaks or main peak measured by cIEF. In summary, we demonstrated that glycation can affect the function of a representative IgG1 mAb. The analytical characterization, as described here, should be generally applicable for other therapeutic mAbs. PMID:29436927

  15. Secreted Phosphoprotein 1 Is a Determinant of Lung Function Development in Mice

    PubMed Central

    Martin, Timothy M.; Concel, Vincent J.; Upadhyay, Swapna; Bein, Kiflai; Brant, Kelly A.; George, Leema; Mitra, Ankita; Thimraj, Tania A.; Fabisiak, James P.; Vuga, Louis J.; Fattman, Cheryl; Kaminski, Naftali; Schulz, Holger; Leikauf, George D.

    2014-01-01

    Secreted phosphoprotein 1 (Spp1) is located within quantitative trait loci associated with lung function that was previously identified by contrasting C3H/HeJ and JF1/Msf mouse strains that have extremely divergent lung function. JF1/Msf mice with diminished lung function had reduced lung SPP1 transcript and protein during the peak stage of alveologenesis (postnatal day [P]14–P28) as compared with C3H/HeJ mice. In addition to a previously identified genetic variant that altered runt-related transcription factor 2 (RUNX2) binding in the Spp1 promoter, we identified another promoter variant in a putative RUNX2 binding site that increased the DNA protein binding. SPP1 induced dose-dependent mouse lung epithelial-15 cell proliferation. Spp1(−/−) mice have decreased specific total lung capacity/body weight, higher specific compliance, and increased mean airspace chord length (Lm) compared with Spp1(+/+) mice. Microarray analysis revealed enriched gene ontogeny categories, with numerous genes associated with lung development and/or respiratory disease. Insulin-like growth factor 1, Hedgehog-interacting protein, wingless-related mouse mammary tumor virus integration site 5A, and NOTCH1 transcripts decreased in the lung of P14 Spp1(−/−) mice as determined by quantitative RT-PCR analysis. SPP1 promotes pneumocyte growth, and mice lacking SPP1 have smaller, more compliant lungs with enlarged airspace (i.e., increased Lm). Microarray analysis suggests a dysregulation of key lung developmental transcripts in gene-targeted Spp1(−/−) mice, particularly during the peak phase of alveologenesis. In addition to its known roles in lung disease, this study supports SPP1 as a determinant of lung development in mice. PMID:24816281

  16. Gaussian Accelerated Molecular Dynamics in NAMD.

    PubMed

    Pang, Yui Tik; Miao, Yinglong; Wang, Yi; McCammon, J Andrew

    2017-01-10

    Gaussian accelerated molecular dynamics (GaMD) is a recently developed enhanced sampling technique that provides efficient free energy calculations of biomolecules. Like the previous accelerated molecular dynamics (aMD), GaMD allows for "unconstrained" enhanced sampling without the need to set predefined collective variables and so is useful for studying complex biomolecular conformational changes such as protein folding and ligand binding. Furthermore, because the boost potential is constructed using a harmonic function that follows Gaussian distribution in GaMD, cumulant expansion to the second order can be applied to recover the original free energy profiles of proteins and other large biomolecules, which solves a long-standing energetic reweighting problem of the previous aMD method. Taken together, GaMD offers major advantages for both unconstrained enhanced sampling and free energy calculations of large biomolecules. Here, we have implemented GaMD in the NAMD package on top of the existing aMD feature and validated it on three model systems: alanine dipeptide, the chignolin fast-folding protein, and the M 3 muscarinic G protein-coupled receptor (GPCR). For alanine dipeptide, while conventional molecular dynamics (cMD) simulations performed for 30 ns are poorly converged, GaMD simulations of the same length yield free energy profiles that agree quantitatively with those of 1000 ns cMD simulation. Further GaMD simulations have captured folding of the chignolin and binding of the acetylcholine (ACh) endogenous agonist to the M 3 muscarinic receptor. The reweighted free energy profiles are used to characterize the protein folding and ligand binding pathways quantitatively. GaMD implemented in the scalable NAMD is widely applicable to enhanced sampling and free energy calculations of large biomolecules.

  17. Brain uptake of multivalent and multi-specific DVD-Ig proteins after systemic administration.

    PubMed

    Karaoglu Hanzatian, Denise; Schwartz, Annette; Gizatullin, Farid; Erickson, Jamie; Deng, Kangwen; Villanueva, Ruth; Stedman, Christopher; Harris, Cristina; Ghayur, Tariq; Goodearl, Andrew

    2018-05-17

    Therapeutic monoclonal antibodies and endogenous IgG antibodies show limited uptake into the central nervous system (CNS) due to the blood-brain barrier (BBB), which regulates and controls the selective and specific transport of both exogenous and endogenous materials to the brain. The use of natural transport mechanisms, such as receptor-mediated transcytosis (RMT), to deliver antibody therapeutics into the brain have been studied in rodents and monkeys. Recent successful examples include monovalent bispecific antibodies and mono- or bivalent fusion proteins; however, these formats do not have the capability to bind to both the CNS target and the BBB transport receptor in a bivalent fashion as a canonical antibody would. Dual-variable-domain immunoglobulin (DVD-Ig) proteins offer a bispecific format where monoclonal antibody-like bivalency to both the BBB receptor and the therapeutic target is preserved, enabling independent engineering of binding affinity, potency, valency, epitope and conformation, essential for successful generation of clinical candidates for CNS applications with desired drug-like properties. Each of these parameters can affect the binding and transcytosis ability mediated by different receptors on the brain endothelium differentially, allowing exploration of diverse properties. Here, we describe generation and characterization of several different DVD-Ig proteins, specific for four different CNS targets, capable of crossing the BBB through transcytosis mediated by the transferrin receptor 1 (TfR1). After systemic administration of each DVD-Ig, we used two independent methods in parallel to observe specific uptake into the brain. An electrochemiluminescent-based sensitive quantitative assay and a semi-quantitative immunohistochemistry technique were used for brain concentration determination and biodistribution/localization in brain, respectively. Significantly enhanced brain uptake and retention was observed for all TfR1 DVD-Ig proteins regardless of the CNS target or the systemic administration route selected.

  18. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction

    PubMed Central

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K.; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G.; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.

    2017-01-01

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. PMID:27899623

  19. Molecular modeling on structure-function analysis of human progesterone receptor modulators.

    PubMed

    Pal, Ria; Islam, Md Ataul; Hossain, Tabassum; Saha, Achintya

    2011-01-01

    Considering the significance of progesterone receptor (PR) modulators, the present study is explored to envisage the biophoric signals for binding to selective PR subtype-A using ligand-based quantitative structure activity relationship (QSAR) and pharmacophore space modeling studies on nonsteroidal substituted quinoline and cyclocymopol monomethyl ether derivatives. Consensus QSAR models (Training set (Tr): n(Tr)=100, R(2) (pred)=0.702; test set (Ts): n(Ts)=30, R(2) (pred)=0.705, R(2) (m)=0.635; validation set (Vs): n(Vs)=40, R(2) (pred)=0.715, R(2) (m)=0.680) suggest that molecular topology, atomic polarizability and electronegativity, atomic mass and van der Waals volume of the ligands have influence on the presence of functional atoms (F, Cl, N and O) and consequently contribute significant relations on ligand binding affinity. Receptor independent space modeling study (Tr: n(Tr)=26, Q(2)=0.927; Ts: n(Ts)=60, R(2) (pred)=0.613, R(2) (m)=0.545; Vs: n(Vs)=84, R(2) (pred)=0.611, R(2) (m)=0.507) indicates the importance of aromatic ring, hydrogen bond donor, molecular hydrophobicity and steric influence for receptor binding. The structure-function characterization is adjudged with the receptor-based docking study, explaining the significance of the mapped molecular attributes for ligand-receptor interaction in the catalytic cleft of PR-A.

  20. Atom-based 3D-QSAR, induced fit docking, and molecular dynamics simulations study of thieno[2,3-b]pyridines negative allosteric modulators of mGluR5.

    PubMed

    Vijaya Prabhu, Sitrarasu; Singh, Sanjeev Kumar

    2018-05-28

    Atom-based three dimensional-quantitative structure-activity relationship (3D-QSAR) model was developed on the basis of 5-point pharmacophore hypothesis (AARRR) with two hydrogen bond acceptors (A) and three aromatic rings for the derivatives of thieno[2,3-b]pyridine, which modulates the activity to inhibit the mGluR5 receptor. Generation of a highly predictive 3D-QSAR model was performed using the alignment of predicted pharmacophore hypothesis for the training set (R 2  = 0.84, SD = 0.26, F = 45.8, N = 29) and test set (Q 2  = 0.74, RMSE = 0.235, Pearson-R = 0.94, N = 9). The best pharmacophore hypothesis AARRR was selected, and developed three dimensional-quantitative structure activity relationship (3D-QSAR) model also supported the outcome of this study by means of favorable and unfavorable electron withdrawing group and hydrophobic regions of most active compound 42d and least active compound 18b. Following, induced fit docking and binding free energy calculations reveals the reliable binding orientation of the compounds. Finally, molecular dynamics simulations for 100 ns were performed to depict the protein-ligand stability. We anticipate that the resulted outcome could be supportive to discover potent negative allosteric modulators for metabotropic glutamate receptor 5 (mGluR5).

  1. Theoretical Characterization of the Spectral Density of the Water-Soluble Chlorophyll-Binding Protein from Combined Quantum Mechanics/Molecular Mechanics Molecular Dynamics Simulations.

    PubMed

    Rosnik, Andreana M; Curutchet, Carles

    2015-12-08

    Over the past decade, both experimentalists and theorists have worked to develop methods to describe pigment-protein coupling in photosynthetic light-harvesting complexes in order to understand the molecular basis of quantum coherence effects observed in photosynthesis. Here we present an improved strategy based on the combination of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations and excited-state calculations to predict the spectral density of electronic-vibrational coupling. We study the water-soluble chlorophyll-binding protein (WSCP) reconstituted with Chl a or Chl b pigments as the system of interest and compare our work with data obtained by Pieper and co-workers from differential fluorescence line-narrowing spectra (Pieper et al. J. Phys. Chem. B 2011, 115 (14), 4042-4052). Our results demonstrate that the use of QM/MM MD simulations where the nuclear positions are still propagated at the classical level leads to a striking improvement of the predicted spectral densities in the middle- and high-frequency regions, where they nearly reach quantitative accuracy. This demonstrates that the so-called "geometry mismatch" problem related to the use of low-quality structures in QM calculations, not the quantum features of pigments high-frequency motions, causes the failure of previous studies relying on similar protocols. Thus, this work paves the way toward quantitative predictions of pigment-protein coupling and the comprehension of quantum coherence effects in photosynthesis.

  2. PET imaging of Hsp90 expression in pancreatic cancer using a new 64Cu-labeled dimeric Sansalvamide A decapeptide.

    PubMed

    Wang, Xiaohui; Zhang, Jun; Wu, Hubing; Li, Yumin; Conti, Peter S; Chen, Kai

    2018-04-24

    Heat shock protein 90 (Hsp90) plays a vital role in the progress of malignant disease and elevated Hsp90 expression has been reported in pancreatic cancer. In this study, we radiolabeled a dimeric Sansalvamide A derivative (Di-San A1) with 64 Cu, and evaluated the feasibility of using 64 Cu-Di-San A1 for PET imaging of Hsp90 expression in a mouse model of pancreatic cancer. A macrocyclic chelator NOTA (1,4,7-triazacyclononane-1,4,7-trisacetic acid) was conjugated to Di-San A1. 64 Cu-Di-San A1 was successfully prepared in a radiochemical yield > 97% with a radiochemical purity > 98%. 64 Cu-Di-San A1 is stable in PBS and mouse serum with > 92% of parent probe intact after 4 h incubation. The cell binding and uptake revealed that 64 Cu-Di-San A1 binds to Hsp90-positive PL45 pancreatic cancer cells, and the binding can be effectively blocked by an Hsp90 inhibitor (17AAG). For microPET study, 64 Cu-Di-San A1 shows good in vivo performance in terms of tumor uptake in nude mice bearing PL45 tumors. The Hsp90-specific tumor activity accumulation of 64 Cu-Di-San A1 was further demonstrated by significant reduction of PL45 tumor uptake with a pre-injected blocking dose of 17AAG. The ex vivo PET imaging and biodistribution results were consistent with the quantitative analysis of PET imaging, demonstrating good tumor-to-muscle ratio (5.35 ± 0.46) of 64 Cu-Di-San A1 at 4 h post-injection in PL45 tumor mouse xenografts. 64 Cu-Di-San A1 allows PET imaging of Hsp90 expression in PL45 tumors, which may provide a non-invasive method to quantitatively characterize Hsp90 expression in pancreatic cancer.

  3. Comparison of Calculation and Experiment Implicates Significant Electrostatic Contributions to the Binding Stability of Barnase and Barstar

    PubMed Central

    Dong, Feng; Vijayakumar, M.; Zhou, Huan-Xiang

    2003-01-01

    The contributions of electrostatic interactions to the binding stability of barnase and barstar were studied by the Poisson-Boltzmann model with three different protocols: a), the dielectric boundary specified as the van der Waals (vdW) surface of the protein along with a protein dielectric constant (ɛp) of 4; b), the dielectric boundary specified as the molecular (i.e., solvent-exclusion (SE)) surface along with ɛp = 4; and c), “SE + ɛp = 20.” The “vdW + ɛp = 4” and “SE + ɛp = 20” protocols predicted an overall electrostatic stabilization whereas the “SE + ɛp = 4” protocol predicted an overall electrostatic destabilization. The “vdW + ɛp = 4” protocol was most consistent with experiment. It quantitatively reproduced the observed effects of 17 mutations neutralizing charged residues lining the binding interface and the measured coupling energies of six charge pairs across the interface and reasonably rationalized the experimental ionic strength and pH dependences of the binding constant. In contrast, the “SE + ɛp = 4” protocol predicted significantly larger coupling energies of charge pairs whereas the “SE + ɛp = 20” protocol did not predict any pH dependence. This study calls for further scrutiny of the different Poisson-Boltzmann protocols and demonstrates potential danger in drawing conclusions on electrostatic contributions based on a particular calculation protocol. PMID:12829463

  4. Molecular basis for TANK recognition by TRAF1 revealed by the crystal structure of TRAF1/TANK complex.

    PubMed

    Kim, Chang Min; Jeong, Jae-Hee; Son, Young-Jin; Choi, Jun-Hyuk; Kim, Sunghwan; Park, Hyun Ho

    2017-03-01

    Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a multifunctional adaptor protein involved in important processes of cellular signaling, including innate immunity and apoptosis. TRAF family member-associated NF-kappaB activator (TANK) has been identified as a competitive intracellular inhibitor of TRAF2 function. Although TRAF recognition by various receptors has been studied extensively in the field of TRAF-mediated biology, molecular and functional details of TANK recognition and interaction with TRAF1 have not been studied. In this study, we report the crystal structure of the TRAF1/TANK peptide complex. Quantitative interaction experiments showed that TANK peptide interacts with both TRAF1 and TRAF2 with similar affinity in a micromolar range. Our structural study also reveals that TANK binds TRAF1 using a minor minimal consensus motif for TRAF binding, Px(Q/E)xT. Coordinate and structural factor were deposited in the Protein Data Bank under PDB ID code 5H10. © 2017 Federation of European Biochemical Societies.

  5. Selection and Characterization of Single Stranded DNA Aptamers for the Hormone Abscisic Acid

    PubMed Central

    Gonzalez, Victor M.; Millo, Enrico; Sturla, Laura; Vigliarolo, Tiziana; Bagnasco, Luca; Guida, Lucrezia; D'Arrigo, Cristina; De Flora, Antonio; Salis, Annalisa; Martin, Elena M.; Bellotti, Marta; Zocchi, Elena

    2013-01-01

    The hormone abscisic acid (ABA) is a small molecule involved in pivotal physiological functions in higher plants. Recently, ABA has been also identified as an endogenous hormone in mammals, regulating different cell functions including inflammatory processes, stem cell expansion, insulin release, and glucose uptake. Aptamers are short, single-stranded (ss) oligonucleotidesable to recognize target molecules with high affinity. The small size of the ABA molecule represented a challenge for aptamer development and the aim of this study was to develop specific anti-ABA DNA aptamers. Biotinylated abscisic acid (bio-ABA) was immobilized on streptavidin-coated magnetic beads. DNA aptamers against bio-ABA were selected with 7 iterative rounds of the systematic evolution of ligands by exponential enrichment method (SELEX), each round comprising incubation of the ABA-binding beads with the ssDNA sequences, DNA elution, electrophoresis, and polymerase chain reaction (PCR) amplification. The PCR product was cloned and sequenced. The binding affinity of several clones was determined using bio-ABA immobilized on streptavidin-coated plates. Aptamer 2 and aptamer 9 showed the highest binding affinity, with dissociation constants values of 0.98±0.14 μM and 0.80±0.07 μM, respectively. Aptamers 2 and 9 were also able to bind free, unmodified ABA and to discriminate between different ABA enantiomers and isomers. Our findings indicate that ssDNA aptamers can selectively bind ABA and could be used for the development of ABA quantitation assays. PMID:23971905

  6. Modulation of Conformational Equilibria in the S-Adenosylmethionine (SAM) II Riboswitch by SAM, Mg(2+), and Trimethylamine N-Oxide.

    PubMed

    McPhie, Peter; Brown, Patrick; Chen, Bin; Dayie, Theodore K; Minton, Allen P

    2016-09-13

    The dependence of the conformation of the S-adenosylmethionine (SAM) II riboswitch on the concentration of added Mg(2+) ions and SAM, individually and in mixtures, was monitored by circular dichroism (CD) spectroscopy and by measurement of the diffusion coefficient. The results are analyzed in the context of two complementary quantitative models, both of which are consistent with a single underlying physical model. Magnesium binding sites in the open state have an affinity on average higher than the affinity of those in the compact state, but formation of the compact state is accompanied by an increase in the number of binding sites. Consequently, at low Mg(2+) concentrations, Mg(2+) binds preferentially to the open state, favoring its formation, but at high concentrations, Mg(2+) binds preferentially to the compact state. The affinity of the riboswitch for SAM increases drastically with an increased level of binding of Mg(2+) to the compact pseudoknot conformation. The effect of increasing concentrations of trimethylamine N-oxide (TMAO), a well-studied molecular crowding agent, on the conformation of the riboswitch and its affinity for SAM were also monitored by CD spectroscopy and measurement of diffusion. In the absence of added Mg(2+), high concentrations of TMAO were found to induce a conformational change compatible with the formation of the pseudoknot form but have only a small effect on the affinity of the RNA for SAM.

  7. Chemical Composition of Pinus roxburghii Bark Volatile Oil and Validation of Its Anti-Inflammatory Activity Using Molecular Modelling and Bleomycin-Induced Inflammation in Albino Mice.

    PubMed

    Labib, Rola M; Youssef, Fadia S; Ashour, Mohamed L; Abdel-Daim, Mohamed M; Ross, Samir A

    2017-08-29

    The chemical composition of Pinus roxburghii bark essential oil (PRO) was qualitatively and quantitatively determined using GC/FID and GC/MS. The anti-inflammatory activity was assessed in vitro by evaluating the binding percentages on the cannabinoids and opioids receptors. Bleomycin (BLM)-induced pulmonary inflammation in albino mice was adopted to assess PRO anti-inflammatory efficacy in vivo. In silico molecular modelling of its major components was performed on human glucocorticoids receptor (GR). Seventy-five components were identified in which longifolene (33.13%) and palmitic acid (9.34%) constituted the predominant components. No binding was observed on cannabinoid receptor type 1 (CB1), whereas mild binding was observed on cannabinoid receptor type 2 (CB2), delta , kappa , and mu receptors accounting for 2.9%, 6.9%, 10.9% and 22% binding. A significant in vivo activity was evidenced by reduction of the elevated malondialdehyde (MDA), nitric oxide (NO), myeloperoxidase (MPO), interleukin-6 (IL-6), and tumor necrosis factor- α (TNF- α ) levels by 55.56%, 55.66%, 64.64%, 58.85% and 77.78% with concomitant elevation of superoxide dismutase (SOD) and catalase (CAT) activities comparable to BLM-treated group at 100 mg/kg body weight. In silico studies showed that palmitic acid exerted the fittest binding. PRO could serve as a potent anti-inflammatory natural candidate that should be supported by further clinical trials.

  8. Metallomics investigations on potential binding partners of methylmercury in tuna fish muscle tissue using complementary mass spectrometric techniques.

    PubMed

    Kutscher, Daniel J; Sanz-Medel, Alfredo; Bettmer, Jörg

    2012-08-01

    In this study, the binding behaviour of methylmercury (MeHg(+)) towards proteins is investigated. Free sulfhydryl groups in cysteine residues are known to be the most likely binding partners, due to the high affinity of mercury to sulphur. However, detailed knowledge about discrete binding sites in living organisms has been so far scarce. A metallomics approach using different methods like size-exclusion chromatography (SEC) and liquid chromatography (LC) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) as well as complementary mass spectrometric techniques (electrospray ionisation-tandem mass spectrometry, ESI-MS/MS) are combined to sequence and identify possible target proteins or peptides after enzymatic digestion. Potential targets for MeHg(+) in tuna fish muscle tissue are investigated using the certified reference material CRM464 as a model tissue. Different extraction procedures appropriate for the extraction of proteins are evaluated for their efficiency using isotope dilution analysis for the determination of total Hg in the extracts. Due to the high chemical stability of the mercury-sulphur bond, the bioconjugate can be quantitatively extracted with a combination of tris(hydroxymethyl)aminomethane (TRIS) and sodium dodecyl sulphate (SDS). Using different separation techniques such as SEC and SDS-polyacrylamide gel electrophoresis (SDS-PAGE) it can be shown that major binding occurs to a high-molecular weight protein (M(w) > 200 kDa). A potential target protein, skeletal muscle myosin heavy chain, could be identified after tryptic digestion and capillary LC-ESI-MS/MS.

  9. Multi-spectroscopic and molecular modeling approaches to elucidate the binding interaction between bovine serum albumin and darunavir, a HIV protease inhibitor

    NASA Astrophysics Data System (ADS)

    Shi, Jie-Hua; Zhou, Kai-Li; Lou, Yan-Yue; Pan, Dong-Qi

    2018-01-01

    Darunavir (DRV), a second-generation HIV protease inhibitor, is widely used across the world as an important component of HIV therapy. The interaction of DRV with bovine serum albumin (BSA), a major carrier protein, has been studied under simulated physiological conditions (pH 7.4) by multi-spectroscopic techniques in combination with molecular modeling. Fluorescence data revealed that the intrinsic fluorescence of BSA was quenched by DRV in terms of a static quenching procedure due to the formation of the DRV-BSA complex. The results indicated the presence of single weak affinity binding site ( 103 M- 1, 310 K) on protein. The thermodynamic parameters, namely enthalpy change (ΔH0), entropy change (ΔS0) and Gibbs free energy change (ΔG0) were calculated, which signified that the binding reaction was spontaneous, the main binding forces were hydrogen bonding and van der Waals forces. Importantly, competitive binding experiments with three site probes, phenylbutazone (in sub-domain IIA, site I), ibuprofen (in sub-domain IIIA, site II) and artemether (in the interface between sub-domain IIA and IIB, site II'), suggested that DRV was preferentially bound to the hydrophobic cavity in site II' of BSA, and this finding was validated by the docking results. Additionally, synchronous fluorescence, three-dimensional fluorescence and Resonance Rayleigh Scattering (RRS) spectroscopy gave qualitative information on the conformational changes of BSA upon adding DRV, while quantitative data were obtained with Fourier transform infrared spectroscopy (FT-IR).

  10. N-isopropyl-(/sup 123/I)p-iodoamphetamine: single-pass brain uptake and washout; binding to brain synaptosomes; and localization in dog and monkey brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winchell, H.S.; Horst, W.D.; Braun, L.

    1980-10-01

    The kinetics of N-isopropyl-p-(/sup 123/I)iodoamphetamine in rat brains were determined by serial measurements of brain uptake index (BUI) after intracarotid injection; also studied were its effects on amine uptake and release in rat's brain cortical synaptosomes; and its in vivo distribution in the dog and monkey. No specific localization in brain nuclei of the dog was seen, but there was progressive accumulation in the eyes. Rapid initial brain uptake in the ketamine-sedated monkey was noted, and further slow brain uptake occurred during the next 20 min but without retinal localization. High levels of brain activity were maintained for several hours.more » The quantitative initial single-pass clearance of the agent in the brain suggests its use in evaluation of regional brain perfusion. Its interaction with brain amine-binding sites suggests its possible application in studies of cerebral amine metabolism.« less

  11. Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays.

    PubMed

    Gopinath, Ashwin; Rothemund, Paul W K

    2014-12-23

    Artificial DNA nanostructures, such as DNA origami, have great potential as templates for the bottom-up fabrication of both biological and nonbiological nanodevices at a resolution unachievable by conventional top-down approaches. However, because origami are synthesized in solution, origami-templated devices cannot easily be studied or integrated into larger on-chip architectures. Electrostatic self-assembly of origami onto lithographically defined binding sites on Si/SiO2 substrates has been achieved, but conditions for optimal assembly have not been characterized, and the method requires high Mg2+ concentrations at which most devices aggregate. We present a quantitative study of parameters affecting origami placement, reproducibly achieving single-origami binding at 94±4% of sites, with 90% of these origami having an orientation within ±10° of their target orientation. Further, we introduce two techniques for converting electrostatic DNA-surface bonds to covalent bonds, allowing origami arrays to be used under a wide variety of Mg2+-free solution conditions.

  12. Friedel's salt formation in sulfoaluminate cements: A combined XRD and {sup 27}Al MAS NMR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, G.; Boccaleri, E., E-mail: enrico.boccaleri@mfn.unipmn.it; Buzzi, L.

    Four different binders based on calcium sulfoaluminate cements have been submitted to accelerated chlorination through ionic exchange on hydrated pastes, in order to investigate their ability to chemically bind chloride ions that might reduce chloride penetration. The composition of hydrated cements before and after the treatment was evaluated by means of an X-Ray Diffraction–{sup 27}Al Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy combined study, allowing to take into account even partially amorphous phases and to make quantitative assumption on the relative abundance of the different aluminium-containing phases. It was found that low SO{sub 3} Sulfoaluminate–Portland ternary systems are the mostmore » effective in binding chloride ions and the active role played by different members of the AFm family in chloride uptake was confirmed. Moreover, a peculiar behavior related to the formation of Friedel's salt in different pH conditions was also established for the different cements.« less

  13. 3D-QSAR and molecular docking studies on HIV protease inhibitors

    NASA Astrophysics Data System (ADS)

    Tong, Jianbo; Wu, Yingji; Bai, Min; Zhan, Pei

    2017-02-01

    In order to well understand the chemical-biological interactions governing their activities toward HIV protease activity, QSAR models of 34 cyclic-urea derivatives with inhibitory HIV were developed. The quantitative structure activity relationship (QSAR) model was built by using comparative molecular similarity indices analysis (CoMSIA) technique. And the best CoMSIA model has rcv2, rncv2 values of 0.586 and 0.931 for cross-validated and non-cross-validated. The predictive ability of CoMSIA model was further validated by a test set of 7 compounds, giving rpred2 value of 0.973. Docking studies were used to find the actual conformations of chemicals in active site of HIV protease, as well as the binding mode pattern to the binding site in protease enzyme. The information provided by 3D-QSAR model and molecular docking may lead to a better understanding of the structural requirements of 34 cyclic-urea derivatives and help to design potential anti-HIV protease molecules.

  14. A Quantitative Method for Comparing the Brightness of Antibody-dye Reagents and Estimating Antibodies Bound per Cell.

    PubMed

    Kantor, Aaron B; Moore, Wayne A; Meehan, Stephen; Parks, David R

    2016-07-01

    We present a quantitative method for comparing the brightness of antibody-dye reagents and estimating antibodies bound per cell. The method is based on complementary binding of test and fill reagents to antibody capture microspheres. Several aliquots of antibody capture beads are stained with varying amounts of the test conjugate. The remaining binding sites on the beads are then filled with a second conjugate containing a different fluorophore. Finally, the fluorescence of the test conjugate compared to the fill conjugate is used to measure the relative brightness of the test conjugate. The fundamental assumption of the test-fill method is that if it takes X molecules of one test antibody to lower the fill signal by Y units, it will take the same X molecules of any other test antibody to give the same effect. We apply a quadratic fit to evaluate the test-fill signal relationship across different amounts of test reagent. If the fit is close to linear, we consider the test reagent to be suitable for quantitative evaluation of antibody binding. To calibrate the antibodies bound per bead, a PE conjugate with 1 PE molecule per antibody is used as a test reagent and the fluorescence scale is calibrated with Quantibrite PE beads. When the fluorescence per antibody molecule has been determined for a particular conjugate, that conjugate can be used for measurement of antibodies bound per cell. This provides comparisons of the brightness of different conjugates when conducted on an instrument whose statistical photoelectron (Spe) scales are known. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  15. Kinetics of Cd(ii) adsorption and desorption on ferrihydrite: experiments and modeling.

    PubMed

    Liang, Yuzhen; Tian, Lei; Lu, Yang; Peng, Lanfang; Wang, Pei; Lin, Jingyi; Cheng, Tao; Dang, Zhi; Shi, Zhenqing

    2018-05-15

    The kinetics of Cd(ii) adsorption/desorption on ferrihydrite is an important process affecting the fate, transport, and bioavailability of Cd(ii) in the environment, which was rarely systematically studied and understood at quantitative levels. In this work, a combination of stirred-flow kinetic experiments, batch adsorption equilibrium experiments, high-resolution transmission electron microscopy (HR-TEM), and mechanistic kinetic modeling were used to study the kinetic behaviors of Cd(ii) adsorption/desorption on ferrihydrite. HR-TEM images showed the open, loose, and sponge-like structure of ferrihydrite. The batch adsorption equilibrium experiments revealed that higher pH and initial metal concentration increased Cd(ii) adsorption on ferrihydrite. The stirred-flow kinetic results demonstrated the increased adsorption rate and capacity as a result of the increased pH, influent concentration, and ferrihydrite concentration. The mechanistic kinetic model successfully described the kinetic behaviors of Cd(ii) during the adsorption and desorption stages under various chemistry conditions. The model calculations showed that the adsorption rate coefficients varied as a function of solution chemistry, and the relative contributions of the weak and strong ferrihydrite sites for Cd(ii) binding varied with time at different pH and initial metal concentrations. Our model is able to quantitatively assess the contributions of each individual ferrihydrite binding site to the overall Cd(ii) adsorption/desorption kinetics. This study provided insights into the dynamic behavior of Cd(ii) and a predictive modeling tool for Cd(ii) adsorption/desorption kinetics when ferrihydrite is present, which may be helpful for the risk assessment and management of Cd contaminated sites.

  16. Quantifying transient binding of ISWI chromatin remodelers in living cells by pixel-wise photobleaching profile evolution analysis.

    PubMed

    Erdel, Fabian; Rippe, Karsten

    2012-11-20

    Interactions between nuclear proteins and chromatin frequently occur on the time scale of seconds and below. These transient binding events are important for the fast identification of target sites as concluded from our previous analysis of the human chromatin remodelers Snf2H and Snf2L from the imitation switch (ISWI) family. Both ATP-driven molecular motor proteins are able to translocate nucleosomes along the DNA and appear to exert this activity only on a small number of nucleosomes to which they bind more tightly. For mechanistic studies, one needs to distinguish such translocation reactions or other long-lived interactions associated with conformational changes and/or ATP hydrolysis from nonproductive chromatin sampling during target search. These processes can be separated by measuring the duration of nucleosome binding with subsecond time resolution. To reach this goal, we have developed a fluorescence bleaching technique termed pixel-wise photobleaching profile evolution analysis (3PEA). It exploits the inherent time structure of confocal microscopy images and yields millisecond resolution. 3PEA represents a generally applicable approach to quantitate transient chromatin interactions in the 2- to 500-ms time regime within only ∼1 s needed for a measurement. The green autofluorescent protein (GFP)-tagged Snf2H and Snf2L and the inactive Snf2L+13 splice variant were studied by 3PEA in comparison to the isolated GFP or red autofluorescent protein and a GFP pentamer. Our results reveal that the residence time for transient chromatin binding of Snf2H and Snf2L is <2 ms, and strongly support the view that ISWI-type remodelers are only rarely active in unperturbed cells during G1 phase.

  17. 3D QSAR studies on binding affinities of coumarin natural products for glycosomal GAPDH of Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Menezes, Irwin R. A.; Lopes, Julio C. D.; Montanari, Carlos A.; Oliva, Glaucius; Pavão, Fernando; Castilho, Marcelo S.; Vieira, Paulo C.; Pupo, M.^onica T.

    2003-05-01

    Drug design strategies based on Comparative Molecular Field Analysis (CoMFA) have been used to predict the activity of new compounds. The major advantage of this approach is that it permits the analysis of a large number of quantitative descriptors and uses chemometric methods such as partial least squares (PLS) to correlate changes in bioactivity with changes in chemical structure. Because it is often difficult to rationalize all variables affecting the binding affinity of compounds using CoMFA solely, the program GRID was used to describe ligands in terms of their molecular interaction fields, MIFs. The program VolSurf that is able to compress the relevant information present in 3D maps into a few descriptors can treat these GRID fields. The binding affinities of a new set of compounds consisting of 13 coumarins, for one of which the three-dimensional ligand-enzyme bound structure is known, were studied. A final model based on the mentioned programs was independently validated by synthesizing and testing new coumarin derivatives. By relying on our knowledge of the real physical data (i.e., combining crystallographic and binding affinity results), it is also shown that ligand-based design agrees with structure-based design. The compound with the highest binding affinity was the coumarin chalepin, isolated from Rutaceae species, with an IC50 value of 55.5 μM towards the enzyme glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) from glycosomes of the parasite Trypanosoma cruzi, the causative agent of Chagas' disease. The proposed models from GRID MIFs have revealed the importance of lipophilic interactions in modulating the inhibition, but without excluding the dependence on stereo-electronic properties as found from CoMFA fields.

  18. The Glycan Microarray Story from Construction to Applications.

    PubMed

    Hyun, Ji Young; Pai, Jaeyoung; Shin, Injae

    2017-04-18

    Not only are glycan-mediated binding processes in cells and organisms essential for a wide range of physiological processes, but they are also implicated in various pathological processes. As a result, elucidation of glycan-associated biomolecular interactions and their consequences is of great importance in basic biological research and biomedical applications. In 2002, we and others were the first to utilize glycan microarrays in efforts aimed at the rapid analysis of glycan-associated recognition events. Because they contain a number of glycans immobilized in a dense and orderly manner on a solid surface, glycan microarrays enable multiple parallel analyses of glycan-protein binding events while utilizing only small amounts of glycan samples. Therefore, this microarray technology has become a leading edge tool in studies aimed at elucidating roles played by glycans and glycan binding proteins in biological systems. In this Account, we summarize our efforts on the construction of glycan microarrays and their applications in studies of glycan-associated interactions. Immobilization strategies of functionalized and unmodified glycans on derivatized glass surfaces are described. Although others have developed immobilization techniques, our efforts have focused on improving the efficiencies and operational simplicity of microarray construction. The microarray-based technology has been most extensively used for rapid analysis of the glycan binding properties of proteins. In addition, glycan microarrays have been employed to determine glycan-protein interactions quantitatively, detect pathogens, and rapidly assess substrate specificities of carbohydrate-processing enzymes. More recently, the microarrays have been employed to identify functional glycans that elicit cell surface lectin-mediated cellular responses. Owing to these efforts, it is now possible to use glycan microarrays to expand the understanding of roles played by glycans and glycan binding proteins in biological systems.

  19. SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers.

    PubMed

    Zanivan, Sara; Maione, Federica; Hein, Marco Y; Hernández-Fernaud, Juan Ramon; Ostasiewicz, Pawel; Giraudo, Enrico; Mann, Matthias

    2013-12-01

    Proteomics has been successfully used for cell culture on dishes, but more complex cellular systems have proven to be challenging and so far poorly approached with proteomics. Because of the complexity of the angiogenic program, we still do not have a complete understanding of the molecular mechanisms involved in this process, and there have been no in depth quantitative proteomic studies. Plating endothelial cells on matrigel recapitulates aspects of vessel growth, and here we investigate this mechanism by using a spike-in SILAC quantitative proteomic approach. By comparing proteomic changes in primary human endothelial cells morphogenesis on matrigel to general adhesion mechanisms in cells spreading on culture dish, we pinpoint pathways and proteins modulated by endothelial cells. The cell-extracellular matrix adhesion proteome depends on the adhesion substrate, and a detailed proteomic profile of the extracellular matrix secreted by endothelial cells identified CLEC14A as a matrix component, which binds to MMRN2. We verify deregulated levels of these proteins during tumor angiogenesis in models of multistage carcinogenesis. This is the most in depth quantitative proteomic study of endothelial cell morphogenesis, which shows the potential of applying high accuracy quantitative proteomics to in vitro models of vessel growth to shed new light on mechanisms that accompany pathological angiogenesis. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000359.

  20. A Quantitative Raman Spectroscopic Signal for Metal–Phosphodiester Interactions in Solution†

    PubMed Central

    Christian, Eric L.; Anderson, Vernon E.; Carey, Paul R.; Harris, Michael E.

    2011-01-01

    Accurate identification and quantification of metal ion–phosphodiester interactions are essential for understanding the role of metal ions as determinants of three-dimensional folding of large RNAs and as cofactors in the active sites of both RNA and protein phosphodiesterases. Accomplishing this goal is difficult due to the dynamic and complex mixture of direct and indirect interactions formed with nucleic acids and other phosphodiesters in solution. To address this issue, Raman spectroscopy has been used to measure changes in bond vibrational energies due to metal interactions. However, the contributions of inner-sphere, H-bonding, and electrostatic interactions to the Raman spectrum of phosphoryl oxygens have not been analyzed quantitatively. Here, we report that all three forms of metal ion interaction result in attenuation of the Raman signal for the symmetric vibration of the nonbridging phosphate oxygens (νsPO2−), while only inner-sphere coordination gives rise to an apparent shift of νsPO2− to higher wavenumbers (νsPO2−M) in solution. Formation of νsPO2−M is shown to be both dependent on metal ion identity and an accurate measure of site-specific metal ion binding. In addition, the spectroscopic parameter reflecting the energetic difference between νsPO2− and νsPO2−M (ΔνM) is largely insensitive to changes in phosphodiester structure but strongly dependent on the absolute electronegativity and hardness of the interacting metal ion. Together, these studies provide strong experimental support for the use of νsPO2−M and ΔνM as general spectroscopic features for the quantitative analysis of metal binding affinity and the identification of metal ions associated with phosphodiesters in solution. PMID:20180599

Top