Sample records for quantitative biology volume

  1. Quantitative proteomics in biological research.

    PubMed

    Wilm, Matthias

    2009-10-01

    Proteomics has enabled the direct investigation of biological material, at first through the analysis of individual proteins, then of lysates from cell cultures, and finally of extracts from tissues and biopsies from entire organisms. Its latest manifestation - quantitative proteomics - allows deeper insight into biological systems. This article reviews the different methods used to extract quantitative information from mass spectra. It follows the technical developments aimed toward global proteomics, the attempt to characterize every expressed protein in a cell by at least one peptide. When applications of the technology are discussed, the focus is placed on yeast biology. In particular, differential quantitative proteomics, the comparison between an experiment and its control, is very discriminating for proteins involved in the process being studied. When trying to understand biological processes on a molecular level, differential quantitative proteomics tends to give a clearer picture than global transcription analyses. As a result, MS has become an even more indispensable tool for biochemically motivated biological research.

  2. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.D.; Siniscalco, M.

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  3. Applications of Microfluidics in Quantitative Biology.

    PubMed

    Bai, Yang; Gao, Meng; Wen, Lingling; He, Caiyun; Chen, Yuan; Liu, Chenli; Fu, Xiongfei; Huang, Shuqiang

    2018-05-01

    Quantitative biology is dedicated to taking advantage of quantitative reasoning and advanced engineering technologies to make biology more predictable. Microfluidics, as an emerging technique, provides new approaches to precisely control fluidic conditions on small scales and collect data in high-throughput and quantitative manners. In this review, the authors present the relevant applications of microfluidics to quantitative biology based on two major categories (channel-based microfluidics and droplet-based microfluidics), and their typical features. We also envision some other microfluidic techniques that may not be employed in quantitative biology right now, but have great potential in the near future. © 2017 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Quantitative biology: where modern biology meets physical sciences.

    PubMed

    Shekhar, Shashank; Zhu, Lian; Mazutis, Linas; Sgro, Allyson E; Fai, Thomas G; Podolski, Marija

    2014-11-05

    Quantitative methods and approaches have been playing an increasingly important role in cell biology in recent years. They involve making accurate measurements to test a predefined hypothesis in order to compare experimental data with predictions generated by theoretical models, an approach that has benefited physicists for decades. Building quantitative models in experimental biology not only has led to discoveries of counterintuitive phenomena but has also opened up novel research directions. To make the biological sciences more quantitative, we believe a two-pronged approach needs to be taken. First, graduate training needs to be revamped to ensure biology students are adequately trained in physical and mathematical sciences and vice versa. Second, students of both the biological and the physical sciences need to be provided adequate opportunities for hands-on engagement with the methods and approaches necessary to be able to work at the intersection of the biological and physical sciences. We present the annual Physiology Course organized at the Marine Biological Laboratory (Woods Hole, MA) as a case study for a hands-on training program that gives young scientists the opportunity not only to acquire the tools of quantitative biology but also to develop the necessary thought processes that will enable them to bridge the gap between these disciplines. © 2014 Shekhar, Zhu, Mazutis, Sgro, Fai, and Podolski. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. A method for three-dimensional quantitative observation of the microstructure of biological samples

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Chen, Dieyan; Ma, Wanyun; Wu, Hongxin; Ji, Liang; Sun, Jialin; Lv, Danyu; Zhang, Lu; Li, Ying; Tian, Ning; Zheng, Jinggao; Zhao, Fengying

    2009-07-01

    Contemporary biology has developed into the era of cell biology and molecular biology, and people try to study the mechanism of all kinds of biological phenomena at the microcosmic level now. Accurate description of the microstructure of biological samples is exigent need from many biomedical experiments. This paper introduces a method for 3-dimensional quantitative observation on the microstructure of vital biological samples based on two photon laser scanning microscopy (TPLSM). TPLSM is a novel kind of fluorescence microscopy, which has excellence in its low optical damage, high resolution, deep penetration depth and suitability for 3-dimensional (3D) imaging. Fluorescent stained samples were observed by TPLSM, and afterward the original shapes of them were obtained through 3D image reconstruction. The spatial distribution of all objects in samples as well as their volumes could be derived by image segmentation and mathematic calculation. Thus the 3-dimensionally and quantitatively depicted microstructure of the samples was finally derived. We applied this method to quantitative analysis of the spatial distribution of chromosomes in meiotic mouse oocytes at metaphase, and wonderful results came out last.

  6. Teaching quantitative biology: goals, assessments, and resources

    PubMed Central

    Aikens, Melissa L.; Dolan, Erin L.

    2014-01-01

    More than a decade has passed since the publication of BIO2010, calling for an increased emphasis on quantitative skills in the undergraduate biology curriculum. In that time, relatively few papers have been published that describe educational innovations in quantitative biology or provide evidence of their effects on students. Using a “backward design” framework, we lay out quantitative skill and attitude goals, assessment strategies, and teaching resources to help biologists teach more quantitatively. Collaborations between quantitative biologists and education researchers are necessary to develop a broader and more appropriate suite of assessment tools, and to provide much-needed evidence on how particular teaching strategies affect biology students' quantitative skill development and attitudes toward quantitative work. PMID:25368425

  7. Quantitative Analysis of the Trends Exhibited by the Three Interdisciplinary Biological Sciences: Biophysics, Bioinformatics, and Systems Biology.

    PubMed

    Kang, Jonghoon; Park, Seyeon; Venkat, Aarya; Gopinath, Adarsh

    2015-12-01

    New interdisciplinary biological sciences like bioinformatics, biophysics, and systems biology have become increasingly relevant in modern science. Many papers have suggested the importance of adding these subjects, particularly bioinformatics, to an undergraduate curriculum; however, most of their assertions have relied on qualitative arguments. In this paper, we will show our metadata analysis of a scientific literature database (PubMed) that quantitatively describes the importance of the subjects of bioinformatics, systems biology, and biophysics as compared with a well-established interdisciplinary subject, biochemistry. Specifically, we found that the development of each subject assessed by its publication volume was well described by a set of simple nonlinear equations, allowing us to characterize them quantitatively. Bioinformatics, which had the highest ratio of publications produced, was predicted to grow between 77% and 93% by 2025 according to the model. Due to the large number of publications produced in bioinformatics, which nearly matches the number published in biochemistry, it can be inferred that bioinformatics is almost equal in significance to biochemistry. Based on our analysis, we suggest that bioinformatics be added to the standard biology undergraduate curriculum. Adding this course to an undergraduate curriculum will better prepare students for future research in biology.

  8. Quantitative cell biology: the essential role of theory.

    PubMed

    Howard, Jonathon

    2014-11-05

    Quantitative biology is a hot area, as evidenced by the recent establishment of institutes, graduate programs, and conferences with that name. But what is quantitative biology? What should it be? And how can it contribute to solving the big questions in biology? The past decade has seen very rapid development of quantitative experimental techniques, especially at the single-molecule and single-cell levels. In this essay, I argue that quantitative biology is much more than just the quantitation of these experimental results. Instead, it should be the application of the scientific method by which measurement is directed toward testing theories. In this view, quantitative biology is the recognition that theory and models play critical roles in biology, as they do in physics and engineering. By tying together experiment and theory, quantitative biology promises a deeper understanding of underlying mechanisms, when the theory works, or to new discoveries, when it does not. © 2014 Howard. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Abstracts of papers presented at the LVIII Cold Spring Harbor Symposium on quantitative Biology: DNA and chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains the abstracts of oral and poster presentations made at the LVIII Cold Spring Harbor Symposium on Quantitative Biology entitles DNA & Chromosomes. The meeting was held June 2--June 9, 1993 at Cold Spring Harbor, New York.

  10. 1, 2, 3, 4: infusing quantitative literacy into introductory biology.

    PubMed

    Speth, Elena Bray; Momsen, Jennifer L; Moyerbrailean, Gregory A; Ebert-May, Diane; Long, Tammy M; Wyse, Sara; Linton, Debra

    2010-01-01

    Biology of the twenty-first century is an increasingly quantitative science. Undergraduate biology education therefore needs to provide opportunities for students to develop fluency in the tools and language of quantitative disciplines. Quantitative literacy (QL) is important for future scientists as well as for citizens, who need to interpret numeric information and data-based claims regarding nearly every aspect of daily life. To address the need for QL in biology education, we incorporated quantitative concepts throughout a semester-long introductory biology course at a large research university. Early in the course, we assessed the quantitative skills that students bring to the introductory biology classroom and found that students had difficulties in performing simple calculations, representing data graphically, and articulating data-driven arguments. In response to students' learning needs, we infused the course with quantitative concepts aligned with the existing course content and learning objectives. The effectiveness of this approach is demonstrated by significant improvement in the quality of students' graphical representations of biological data. Infusing QL in introductory biology presents challenges. Our study, however, supports the conclusion that it is feasible in the context of an existing course, consistent with the goals of college biology education, and promotes students' development of important quantitative skills.

  11. 1, 2, 3, 4: Infusing Quantitative Literacy into Introductory Biology

    PubMed Central

    Momsen, Jennifer L.; Moyerbrailean, Gregory A.; Ebert-May, Diane; Long, Tammy M.; Wyse, Sara; Linton, Debra

    2010-01-01

    Biology of the twenty-first century is an increasingly quantitative science. Undergraduate biology education therefore needs to provide opportunities for students to develop fluency in the tools and language of quantitative disciplines. Quantitative literacy (QL) is important for future scientists as well as for citizens, who need to interpret numeric information and data-based claims regarding nearly every aspect of daily life. To address the need for QL in biology education, we incorporated quantitative concepts throughout a semester-long introductory biology course at a large research university. Early in the course, we assessed the quantitative skills that students bring to the introductory biology classroom and found that students had difficulties in performing simple calculations, representing data graphically, and articulating data-driven arguments. In response to students' learning needs, we infused the course with quantitative concepts aligned with the existing course content and learning objectives. The effectiveness of this approach is demonstrated by significant improvement in the quality of students' graphical representations of biological data. Infusing QL in introductory biology presents challenges. Our study, however, supports the conclusion that it is feasible in the context of an existing course, consistent with the goals of college biology education, and promotes students' development of important quantitative skills. PMID:20810965

  12. A transformative model for undergraduate quantitative biology education.

    PubMed

    Usher, David C; Driscoll, Tobin A; Dhurjati, Prasad; Pelesko, John A; Rossi, Louis F; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B

    2010-01-01

    The BIO2010 report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3) creating a new interdisciplinary major, quantitative biology, designed for students interested in solving complex biological problems using advanced mathematical approaches. To develop the bio-calculus sections, the Department of Mathematical Sciences revised its three-semester calculus sequence to include differential equations in the first semester and, rather than using examples traditionally drawn from application domains that are most relevant to engineers, drew models and examples heavily from the life sciences. The curriculum of the B.S. degree in Quantitative Biology was designed to provide students with a solid foundation in biology, chemistry, and mathematics, with an emphasis on preparation for research careers in life sciences. Students in the program take core courses from biology, chemistry, and physics, though mathematics, as the cornerstone of all quantitative sciences, is given particular prominence. Seminars and a capstone course stress how the interplay of mathematics and biology can be used to explain complex biological systems. To initiate these academic changes required the identification of barriers and the implementation of solutions.

  13. A Transformative Model for Undergraduate Quantitative Biology Education

    PubMed Central

    Driscoll, Tobin A.; Dhurjati, Prasad; Pelesko, John A.; Rossi, Louis F.; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B.

    2010-01-01

    The BIO2010 report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3) creating a new interdisciplinary major, quantitative biology, designed for students interested in solving complex biological problems using advanced mathematical approaches. To develop the bio-calculus sections, the Department of Mathematical Sciences revised its three-semester calculus sequence to include differential equations in the first semester and, rather than using examples traditionally drawn from application domains that are most relevant to engineers, drew models and examples heavily from the life sciences. The curriculum of the B.S. degree in Quantitative Biology was designed to provide students with a solid foundation in biology, chemistry, and mathematics, with an emphasis on preparation for research careers in life sciences. Students in the program take core courses from biology, chemistry, and physics, though mathematics, as the cornerstone of all quantitative sciences, is given particular prominence. Seminars and a capstone course stress how the interplay of mathematics and biology can be used to explain complex biological systems. To initiate these academic changes required the identification of barriers and the implementation of solutions. PMID:20810949

  14. Integrating Quantitative Thinking into an Introductory Biology Course Improves Students' Mathematical Reasoning in Biological Contexts

    ERIC Educational Resources Information Center

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course…

  15. Quantitative stem cell biology: the threat and the glory.

    PubMed

    Pollard, Steven M

    2016-11-15

    Major technological innovations over the past decade have transformed our ability to extract quantitative data from biological systems at an unprecedented scale and resolution. These quantitative methods and associated large datasets should lead to an exciting new phase of discovery across many areas of biology. However, there is a clear threat: will we drown in these rivers of data? On 18th July 2016, stem cell biologists gathered in Cambridge for the 5th annual Cambridge Stem Cell Symposium to discuss 'Quantitative stem cell biology: from molecules to models'. This Meeting Review provides a summary of the data presented by each speaker, with a focus on quantitative techniques and the new biological insights that are emerging. © 2016. Published by The Company of Biologists Ltd.

  16. On the Edge of Mathematics and Biology Integration: Improving Quantitative Skills in Undergraduate Biology Education

    ERIC Educational Resources Information Center

    Feser, Jason; Vasaly, Helen; Herrera, Jose

    2013-01-01

    In this paper, the authors describe how two institutions are helping their undergraduate biology students build quantitative competencies. Incorporation of quantitative skills and reasoning in biology are framed through a discussion of two cases that both concern introductory biology courses, but differ in the complexity of the mathematics and the…

  17. Infusion of Quantitative and Statistical Concepts into Biology Courses Does Not Improve Quantitative Literacy

    ERIC Educational Resources Information Center

    Beck, Christopher W.

    2018-01-01

    Multiple national reports have pushed for the integration of quantitative concepts into the context of disciplinary science courses. The aim of this study was to evaluate the quantitative and statistical literacy of biology students and explore learning gains when those skills were taught implicitly in the context of biology. I examined gains in…

  18. Quantitative Phase Imaging in a Volume Holographic Microscope

    NASA Astrophysics Data System (ADS)

    Waller, Laura; Luo, Yuan; Barbastathis, George

    2010-04-01

    We demonstrate a method for quantitative phase imaging in a Volume Holographic Microscope (VHM) from a single exposure, describe the properties of the system and show experimental results. The VHM system uses a multiplexed volume hologram (VH) to laterally separate images from different focal planes. This 3D intensity information is then used to solve the transport of intensity (TIE) equation and recover phase quantitatively. We discuss the modifications to the technique that were made in order to give accurate results.

  19. High-Content Screening for Quantitative Cell Biology.

    PubMed

    Mattiazzi Usaj, Mojca; Styles, Erin B; Verster, Adrian J; Friesen, Helena; Boone, Charles; Andrews, Brenda J

    2016-08-01

    High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Integrating quantitative thinking into an introductory biology course improves students' mathematical reasoning in biological contexts.

    PubMed

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students' understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students' inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students' biology learning.

  1. Integrating Quantitative Thinking into an Introductory Biology Course Improves Students’ Mathematical Reasoning in Biological Contexts

    PubMed Central

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students’ apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students’ understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students’ inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students’ biology learning. PMID:24591504

  2. Development of a Biological Science Quantitative Reasoning Exam (BioSQuaRE)

    PubMed Central

    Stanhope, Liz; Ziegler, Laura; Haque, Tabassum; Le, Laura; Vinces, Marcelo; Davis, Gregory K.; Zieffler, Andrew; Brodfuehrer, Peter; Preest, Marion; M. Belitsky, Jason; Umbanhowar, Charles; Overvoorde, Paul J.

    2017-01-01

    Multiple reports highlight the increasingly quantitative nature of biological research and the need to innovate means to ensure that students acquire quantitative skills. We present a tool to support such innovation. The Biological Science Quantitative Reasoning Exam (BioSQuaRE) is an assessment instrument designed to measure the quantitative skills of undergraduate students within a biological context. The instrument was developed by an interdisciplinary team of educators and aligns with skills included in national reports such as BIO2010, Scientific Foundations for Future Physicians, and Vision and Change. Undergraduate biology educators also confirmed the importance of items included in the instrument. The current version of the BioSQuaRE was developed through an iterative process using data from students at 12 postsecondary institutions. A psychometric analysis of these data provides multiple lines of evidence for the validity of inferences made using the instrument. Our results suggest that the BioSQuaRE will prove useful to faculty and departments interested in helping students acquire the quantitative competencies they need to successfully pursue biology, and useful to biology students by communicating the importance of quantitative skills. We invite educators to use the BioSQuaRE at their own institutions. PMID:29196427

  3. Quantitative biology of single neurons

    PubMed Central

    Eberwine, James; Lovatt, Ditte; Buckley, Peter; Dueck, Hannah; Francis, Chantal; Kim, Tae Kyung; Lee, Jaehee; Lee, Miler; Miyashiro, Kevin; Morris, Jacqueline; Peritz, Tiina; Schochet, Terri; Spaethling, Jennifer; Sul, Jai-Yoon; Kim, Junhyong

    2012-01-01

    The building blocks of complex biological systems are single cells. Fundamental insights gained from single-cell analysis promise to provide the framework for understanding normal biological systems development as well as the limits on systems/cellular ability to respond to disease. The interplay of cells to create functional systems is not well understood. Until recently, the study of single cells has concentrated primarily on morphological and physiological characterization. With the application of new highly sensitive molecular and genomic technologies, the quantitative biochemistry of single cells is now accessible. PMID:22915636

  4. Development of a Biological Science Quantitative Reasoning Exam (BioSQuaRE)

    ERIC Educational Resources Information Center

    Stanhope, Liz; Ziegler, Laura; Haque, Tabassum; Le, Laura; Vinces, Marcelo; Davis, Gregory K.; Zieffler, Andrew; Brodfuehrer, Peter; Preest, Marion; Belitsky, Jason M.; Umbanhowar, Charles, Jr.; Overvoorde, Paul J.

    2017-01-01

    Multiple reports highlight the increasingly quantitative nature of biological research and the need to innovate means to ensure that students acquire quantitative skills. We present a tool to support such innovation. The Biological Science Quantitative Reasoning Exam (BioSQuaRE) is an assessment instrument designed to measure the quantitative…

  5. Using Active Learning to Teach Concepts and Methods in Quantitative Biology.

    PubMed

    Waldrop, Lindsay D; Adolph, Stephen C; Diniz Behn, Cecilia G; Braley, Emily; Drew, Joshua A; Full, Robert J; Gross, Louis J; Jungck, John A; Kohler, Brynja; Prairie, Jennifer C; Shtylla, Blerta; Miller, Laura A

    2015-11-01

    This article provides a summary of the ideas discussed at the 2015 Annual Meeting of the Society for Integrative and Comparative Biology society-wide symposium on Leading Students and Faculty to Quantitative Biology through Active Learning. It also includes a brief review of the recent advancements in incorporating active learning approaches into quantitative biology classrooms. We begin with an overview of recent literature that shows that active learning can improve students' outcomes in Science, Technology, Engineering and Math Education disciplines. We then discuss how this approach can be particularly useful when teaching topics in quantitative biology. Next, we describe some of the recent initiatives to develop hands-on activities in quantitative biology at both the graduate and the undergraduate levels. Throughout the article we provide resources for educators who wish to integrate active learning and technology into their classrooms. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  6. Pushing quantitation limits in micro UHPLC-MS/MS analysis of steroid hormones by sample dilution using high volume injection.

    PubMed

    Márta, Zoltán; Bobály, Balázs; Fekete, Jenő; Magda, Balázs; Imre, Tímea; Mészáros, Katalin Viola; Szabó, Pál Tamás

    2016-09-10

    Ultratrace analysis of sample components requires excellent analytical performance in terms of limits of quantitation (LoQ). Micro UHPLC coupling with sensitive tandem mass spectrometry provides state of the art solutions for such analytical problems. Decreased column volume in micro LC limits the injectable sample volume. However, if analyte concentration is extremely low, it might be necessary to inject high sample volumes. This is particularly critical for strong sample solvents and weakly retained analytes, which are often the case when preparing biological samples (protein precipitation, sample extraction, etc.). In that case, high injection volumes may cause band broadening, peak distortion or even elution in dead volume. In this study, we evaluated possibilities of high volume injection onto microbore RP-LC columns, when sample solvent is diluted. The presented micro RP-LC-MS/MS method was optimized for the analysis of steroid hormones from human plasma after protein precipitation with organic solvents. A proper sample dilution procedure helps to increase the injection volume without compromising peak shapes. Finally, due to increased injection volume, the limit of quantitation can be decreased by a factor of 2-5, depending on the analytes and the experimental conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Online interactive teaching modules enhance quantitative proficiency of introductory biology students.

    PubMed

    Thompson, Katerina V; Nelson, Kären C; Marbach-Ad, Gili; Keller, Michael; Fagan, William F

    2010-01-01

    There is widespread agreement within the scientific and education communities that undergraduate biology curricula fall short in providing students with the quantitative and interdisciplinary problem-solving skills they need to obtain a deep understanding of biological phenomena and be prepared fully to contribute to future scientific inquiry. MathBench Biology Modules were designed to address these needs through a series of interactive, Web-based modules that can be used to supplement existing course content across the biological sciences curriculum. The effect of the modules was assessed in an introductory biology course at the University of Maryland. Over the course of the semester, students showed significant increases in quantitative skills that were independent of previous math course work. Students also showed increased comfort with solving quantitative problems, whether or not they ultimately arrived at the correct answer. A survey of spring 2009 graduates indicated that those who had experienced MathBench in their course work had a greater appreciation for the role of mathematics in modern biology than those who had not used MathBench. MathBench modules allow students from diverse educational backgrounds to hone their quantitative skills, preparing them for more complex mathematical approaches in upper-division courses.

  8. SSBD: a database of quantitative data of spatiotemporal dynamics of biological phenomena

    PubMed Central

    Tohsato, Yukako; Ho, Kenneth H. L.; Kyoda, Koji; Onami, Shuichi

    2016-01-01

    Motivation: Rapid advances in live-cell imaging analysis and mathematical modeling have produced a large amount of quantitative data on spatiotemporal dynamics of biological objects ranging from molecules to organisms. There is now a crucial need to bring these large amounts of quantitative biological dynamics data together centrally in a coherent and systematic manner. This will facilitate the reuse of this data for further analysis. Results: We have developed the Systems Science of Biological Dynamics database (SSBD) to store and share quantitative biological dynamics data. SSBD currently provides 311 sets of quantitative data for single molecules, nuclei and whole organisms in a wide variety of model organisms from Escherichia coli to Mus musculus. The data are provided in Biological Dynamics Markup Language format and also through a REST API. In addition, SSBD provides 188 sets of time-lapse microscopy images from which the quantitative data were obtained and software tools for data visualization and analysis. Availability and Implementation: SSBD is accessible at http://ssbd.qbic.riken.jp. Contact: sonami@riken.jp PMID:27412095

  9. SSBD: a database of quantitative data of spatiotemporal dynamics of biological phenomena.

    PubMed

    Tohsato, Yukako; Ho, Kenneth H L; Kyoda, Koji; Onami, Shuichi

    2016-11-15

    Rapid advances in live-cell imaging analysis and mathematical modeling have produced a large amount of quantitative data on spatiotemporal dynamics of biological objects ranging from molecules to organisms. There is now a crucial need to bring these large amounts of quantitative biological dynamics data together centrally in a coherent and systematic manner. This will facilitate the reuse of this data for further analysis. We have developed the Systems Science of Biological Dynamics database (SSBD) to store and share quantitative biological dynamics data. SSBD currently provides 311 sets of quantitative data for single molecules, nuclei and whole organisms in a wide variety of model organisms from Escherichia coli to Mus musculus The data are provided in Biological Dynamics Markup Language format and also through a REST API. In addition, SSBD provides 188 sets of time-lapse microscopy images from which the quantitative data were obtained and software tools for data visualization and analysis. SSBD is accessible at http://ssbd.qbic.riken.jp CONTACT: sonami@riken.jp. © The Author 2016. Published by Oxford University Press.

  10. Online Interactive Teaching Modules Enhance Quantitative Proficiency of Introductory Biology Students

    PubMed Central

    Nelson, Kären C.; Marbach-Ad, Gili; Keller, Michael; Fagan, William F.

    2010-01-01

    There is widespread agreement within the scientific and education communities that undergraduate biology curricula fall short in providing students with the quantitative and interdisciplinary problem-solving skills they need to obtain a deep understanding of biological phenomena and be prepared fully to contribute to future scientific inquiry. MathBench Biology Modules were designed to address these needs through a series of interactive, Web-based modules that can be used to supplement existing course content across the biological sciences curriculum. The effect of the modules was assessed in an introductory biology course at the University of Maryland. Over the course of the semester, students showed significant increases in quantitative skills that were independent of previous math course work. Students also showed increased comfort with solving quantitative problems, whether or not they ultimately arrived at the correct answer. A survey of spring 2009 graduates indicated that those who had experienced MathBench in their course work had a greater appreciation for the role of mathematics in modern biology than those who had not used MathBench. MathBench modules allow students from diverse educational backgrounds to hone their quantitative skills, preparing them for more complex mathematical approaches in upper-division courses. PMID:20810959

  11. Quantitative Genetic Interactions Reveal Layers of Biological Modularity

    PubMed Central

    Beltrao, Pedro; Cagney, Gerard; Krogan, Nevan J.

    2010-01-01

    In the past, biomedical research has embraced a reductionist approach, primarily focused on characterizing the individual components that comprise a system of interest. Recent technical developments have significantly increased the size and scope of data describing biological systems. At the same time, advances in the field of systems biology have evoked a broader view of how the underlying components are interconnected. In this essay, we discuss how quantitative genetic interaction mapping has enhanced our view of biological systems, allowing a deeper functional interrogation at different biological scales. PMID:20510918

  12. New Trends in Biology Teaching, Volume III.

    ERIC Educational Resources Information Center

    Heller, R.

    In this third volume of the United Nations Educational, Scientific and Cultural Organizations's (UNESCO) series on "New Trends in Biology Teaching," a total of 32 papers (mostly published during the period from 1967 to 1970 in leading biology-teaching periodicals of the world) is compiled for the purpose of promoting information exchange. The…

  13. New Trends in Biology Teaching. Volume II.

    ERIC Educational Resources Information Center

    Heller, R.

    The papers presented in this second volume were either written specially for it, or were published in leading biology teaching periodicals of the world in 1966 and 1967. The first section deals with the principles of biology teaching, its purpose, its implication in everyday life, and the social responsibilities of its teachers. The second section…

  14. Sender–receiver systems and applying information theory for quantitative synthetic biology

    PubMed Central

    Barcena Menendez, Diego; Senthivel, Vivek Raj; Isalan, Mark

    2015-01-01

    Sender–receiver (S–R) systems abound in biology, with communication systems sending information in various forms. Information theory provides a quantitative basis for analysing these processes and is being applied to study natural genetic, enzymatic and neural networks. Recent advances in synthetic biology are providing us with a wealth of artificial S–R systems, giving us quantitative control over networks with a finite number of well-characterised components. Combining the two approaches can help to predict how to maximise signalling robustness, and will allow us to make increasingly complex biological computers. Ultimately, pushing the boundaries of synthetic biology will require moving beyond engineering the flow of information and towards building more sophisticated circuits that interpret biological meaning. PMID:25282688

  15. Simultaneous Quantitation of Atenolol, Metoprolol, and Propranolol in Biological Matrices Via LC/MS

    DTIC Science & Technology

    2005-05-01

    Simultaneous Quantitation of Atenolol, Metoprolol , and Propranolol in Biological Matrices Via LC/MS Robert D. Johnson Russell J. Lewis Civil...authorized 1 SIMULTANEOUS QUANTITATION OF ATENOLOL, METOPROLOL , AND PROPRANOLOL IN BIOLOGICAL MATRICES VIA LC/MS INTRODUCTION The Federal Aviation...detect beta-blocker compounds such as atenolol, metoprolol , or propranolol in the submitted biological samples. In forensic toxicol- ogy laboratories

  16. Toward Integration: From Quantitative Biology to Mathbio-Biomath?

    PubMed Central

    de Pillis, Lisette; Findley, Ann; Joplin, Karl; Pelesko, John; Nelson, Karen; Thompson, Katerina; Usher, David; Watkins, Joseph

    2010-01-01

    In response to the call of BIO2010 for integrating quantitative skills into undergraduate biology education, 30 Howard Hughes Medical Institute (HHMI) Program Directors at the 2006 HHMI Program Directors Meeting established a consortium to investigate, implement, develop, and disseminate best practices resulting from the integration of math and biology. With the assistance of an HHMI-funded mini-grant, led by Karl Joplin of East Tennessee State University, and support in institutional HHMI grants at Emory and University of Delaware, these institutions held a series of summer institutes and workshops to document progress toward and address the challenges of implementing a more quantitative approach to undergraduate biology education. This report summarizes the results of the four summer institutes (2007–2010). The group developed four draft white papers, a wiki site, and a listserv. One major outcome of these meetings is this issue of CBE—Life Sciences Education, which resulted from proposals at our 2008 meeting and a January 2009 planning session. Many of the papers in this issue emerged from or were influenced by these meetings. PMID:20810946

  17. Understanding the heterogeneity in volume overload and fluid distribution in decompensated heart failure is key to optimal volume management: role for blood volume quantitation.

    PubMed

    Miller, Wayne L; Mullan, Brian P

    2014-06-01

    This study sought to quantitate total blood volume (TBV) in patients hospitalized for decompensated chronic heart failure (DCHF) and to determine the extent of volume overload, and the magnitude and distribution of blood volume and body water changes following diuretic therapy. The accurate assessment and management of volume overload in patients with DCHF remains problematic. TBV was measured by a radiolabeled-albumin dilution technique with intravascular volume, pre-to-post-diuretic therapy, evaluated at hospital admission and at discharge. Change in body weight in relation to quantitated TBV was used to determine interstitial volume contribution to total fluid loss. Twenty-six patients were prospectively evaluated. Two patients had normal TBV at admission. Twenty-four patients were hypervolemic with TBV (7.4 ± 1.6 liters) increased by +39 ± 22% (range, +9.5% to +107%) above the expected normal volume. With diuresis, TBV decreased marginally (+30 ± 16%). Body weight declined by 6.9 ± 5.2 kg, and fluid intake/fluid output was a net negative 8.4 ± 5.2 liters. Interstitial compartment fluid loss was calculated at 6.2 ± 4.0 liters, accounting for 85 ± 15% of the total fluid reduction. TBV analysis demonstrated a wide range in the extent of intravascular overload. Dismissal measurements revealed marginally reduced intravascular volume post-diuretic therapy despite large reductions in body weight. Mobilization of interstitial fluid to the intravascular compartment with diuresis accounted for this disparity. Intravascular volume, however, remained increased at dismissal. The extent, composition, and distribution of volume overload are highly variable in DCHF, and this variability needs to be taken into account in the approach to individualized therapy. TBV quantitation, particularly serial measurements, can facilitate informed volume management with respect to a goal of treating to euvolemia. Copyright © 2014 American College of Cardiology Foundation. Published

  18. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model.

    PubMed

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit

    2017-02-01

    To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  19. Development and Assessment of Modules to Integrate Quantitative Skills in Introductory Biology Courses

    PubMed Central

    Hoffman, Kathleen; Leupen, Sarah; Dowell, Kathy; Kephart, Kerrie; Leips, Jeff

    2016-01-01

    Redesigning undergraduate biology courses to integrate quantitative reasoning and skill development is critical to prepare students for careers in modern medicine and scientific research. In this paper, we report on the development, implementation, and assessment of stand-alone modules that integrate quantitative reasoning into introductory biology courses. Modules are designed to improve skills in quantitative numeracy, interpreting data sets using visual tools, and making inferences about biological phenomena using mathematical/statistical models. We also examine demographic/background data that predict student improvement in these skills through exposure to these modules. We carried out pre/postassessment tests across four semesters and used student interviews in one semester to examine how students at different levels approached quantitative problems. We found that students improved in all skills in most semesters, although there was variation in the degree of improvement among skills from semester to semester. One demographic variable, transfer status, stood out as a major predictor of the degree to which students improved (transfer students achieved much lower gains every semester, despite the fact that pretest scores in each focus area were similar between transfer and nontransfer students). We propose that increased exposure to quantitative skill development in biology courses is effective at building competency in quantitative reasoning. PMID:27146161

  20. Development and Assessment of Modules to Integrate Quantitative Skills in Introductory Biology Courses.

    PubMed

    Hoffman, Kathleen; Leupen, Sarah; Dowell, Kathy; Kephart, Kerrie; Leips, Jeff

    2016-01-01

    Redesigning undergraduate biology courses to integrate quantitative reasoning and skill development is critical to prepare students for careers in modern medicine and scientific research. In this paper, we report on the development, implementation, and assessment of stand-alone modules that integrate quantitative reasoning into introductory biology courses. Modules are designed to improve skills in quantitative numeracy, interpreting data sets using visual tools, and making inferences about biological phenomena using mathematical/statistical models. We also examine demographic/background data that predict student improvement in these skills through exposure to these modules. We carried out pre/postassessment tests across four semesters and used student interviews in one semester to examine how students at different levels approached quantitative problems. We found that students improved in all skills in most semesters, although there was variation in the degree of improvement among skills from semester to semester. One demographic variable, transfer status, stood out as a major predictor of the degree to which students improved (transfer students achieved much lower gains every semester, despite the fact that pretest scores in each focus area were similar between transfer and nontransfer students). We propose that increased exposure to quantitative skill development in biology courses is effective at building competency in quantitative reasoning. © 2016 K. Hoffman, S. Leupen, et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Infusing Quantitative Approaches throughout the Biological Sciences Curriculum

    ERIC Educational Resources Information Center

    Thompson, Katerina V.; Cooke, Todd J.; Fagan, William F.; Gulick, Denny; Levy, Doron; Nelson, Kären C.; Redish, Edward F.; Smith, Robert F.; Presson, Joelle

    2013-01-01

    A major curriculum redesign effort at the University of Maryland is infusing all levels of our undergraduate biological sciences curriculum with increased emphasis on interdisciplinary connections and quantitative approaches. The curriculum development efforts have largely been guided by recommendations in the National Research Council's "Bio…

  2. Biological Dynamics Markup Language (BDML): an open format for representing quantitative biological dynamics data

    PubMed Central

    Kyoda, Koji; Tohsato, Yukako; Ho, Kenneth H. L.; Onami, Shuichi

    2015-01-01

    Motivation: Recent progress in live-cell imaging and modeling techniques has resulted in generation of a large amount of quantitative data (from experimental measurements and computer simulations) on spatiotemporal dynamics of biological objects such as molecules, cells and organisms. Although many research groups have independently dedicated their efforts to developing software tools for visualizing and analyzing these data, these tools are often not compatible with each other because of different data formats. Results: We developed an open unified format, Biological Dynamics Markup Language (BDML; current version: 0.2), which provides a basic framework for representing quantitative biological dynamics data for objects ranging from molecules to cells to organisms. BDML is based on Extensible Markup Language (XML). Its advantages are machine and human readability and extensibility. BDML will improve the efficiency of development and evaluation of software tools for data visualization and analysis. Availability and implementation: A specification and a schema file for BDML are freely available online at http://ssbd.qbic.riken.jp/bdml/. Contact: sonami@riken.jp Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:25414366

  3. Biological Dynamics Markup Language (BDML): an open format for representing quantitative biological dynamics data.

    PubMed

    Kyoda, Koji; Tohsato, Yukako; Ho, Kenneth H L; Onami, Shuichi

    2015-04-01

    Recent progress in live-cell imaging and modeling techniques has resulted in generation of a large amount of quantitative data (from experimental measurements and computer simulations) on spatiotemporal dynamics of biological objects such as molecules, cells and organisms. Although many research groups have independently dedicated their efforts to developing software tools for visualizing and analyzing these data, these tools are often not compatible with each other because of different data formats. We developed an open unified format, Biological Dynamics Markup Language (BDML; current version: 0.2), which provides a basic framework for representing quantitative biological dynamics data for objects ranging from molecules to cells to organisms. BDML is based on Extensible Markup Language (XML). Its advantages are machine and human readability and extensibility. BDML will improve the efficiency of development and evaluation of software tools for data visualization and analysis. A specification and a schema file for BDML are freely available online at http://ssbd.qbic.riken.jp/bdml/. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  4. Toward Integration: From Quantitative Biology to Mathbio-Biomath?

    ERIC Educational Resources Information Center

    Marsteller, Pat; de Pillis, Lisette; Findley, Ann; Joplin, Karl; Pelesko, John; Nelson, Karen; Thompson, Katerina; Usher, David; Watkins, Joseph

    2010-01-01

    In response to the call of "BIO2010" for integrating quantitative skills into undergraduate biology education, 30 Howard Hughes Medical Institute (HHMI) Program Directors at the 2006 HHMI Program Directors Meeting established a consortium to investigate, implement, develop, and disseminate best practices resulting from the integration of math and…

  5. Handbook of Parenting. Volume 2: Biology and Ecology of Parenting.

    ERIC Educational Resources Information Center

    Bornstein, Marc H., Ed.

    Concerned with social settings and correlates of parenting, this volume, the second of four volumes on parenting deals specifically with the biology and the ecology of parenting. The volume consists of 12 chapters as follows: (1) "Hormonal Basis of Parenting in Mammals" (Jay S. Rosenblatt); (2) "Parenting in Primates" (Kim A.…

  6. A Transformative Model for Undergraduate Quantitative Biology Education

    ERIC Educational Resources Information Center

    Usher, David C.; Driscoll, Tobin A.; Dhurjati, Prasad; Pelesko, John A.; Rossi, Louis F.; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B.

    2010-01-01

    The "BIO2010" report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3)…

  7. Quantitative measures of healthy aging and biological age

    PubMed Central

    Kim, Sangkyu; Jazwinski, S. Michal

    2015-01-01

    Numerous genetic and non-genetic factors contribute to aging. To facilitate the study of these factors, various descriptors of biological aging, including ‘successful aging’ and ‘frailty’, have been put forth as integrative functional measures of aging. A separate but related quantitative approach is the ‘frailty index’, which has been operationalized and frequently used. Various frailty indices have been constructed. Although based on different numbers and types of health variables, frailty indices possess several common properties that make them useful across different studies. We have been using a frailty index termed FI34 based on 34 health variables. Like other frailty indices, FI34 increases non-linearly with advancing age and is a better indicator of biological aging than chronological age. FI34 has a substantial genetic basis. Using FI34, we found elevated levels of resting metabolic rate linked to declining health in nonagenarians. Using FI34 as a quantitative phenotype, we have also found a genomic region on chromosome 12 that is associated with healthy aging and longevity. PMID:26005669

  8. A Checklist for Successful Quantitative Live Cell Imaging in Systems Biology

    PubMed Central

    Sung, Myong-Hee

    2013-01-01

    Mathematical modeling of signaling and gene regulatory networks has provided unique insights about systems behaviors for many cell biological problems of medical importance. Quantitative single cell monitoring has a crucial role in advancing systems modeling of molecular networks. However, due to the multidisciplinary techniques that are necessary for adaptation of such systems biology approaches, dissemination to a wide research community has been relatively slow. In this essay, I focus on some technical aspects that are often under-appreciated, yet critical in harnessing live cell imaging methods to achieve single-cell-level understanding and quantitative modeling of molecular networks. The importance of these technical considerations will be elaborated with examples of successes and shortcomings. Future efforts will benefit by avoiding some pitfalls and by utilizing the lessons collectively learned from recent applications of imaging in systems biology. PMID:24709701

  9. Prospects and challenges of quantitative phase imaging in tumor cell biology

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi

    2016-03-01

    Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

  10. Quantitation of mandibular symphysis volume as a source of bone grafting.

    PubMed

    Verdugo, Fernando; Simonian, Krikor; Smith McDonald, Roberto; Nowzari, Hessam

    2010-06-01

    Autogenous intramembranous bone graft present several advantages such as minimal resorption and high concentration of bone morphogenetic proteins. A method for measuring the amount of bone that can be harvested from the symphysis area has not been reported in real patients. The aim of the present study was to intrasurgically quantitate the volume of the symphysis bone graft that can be safely harvested in live patients and compare it with AutoCAD (version 16.0, Autodesk, Inc., San Rafael, CA, USA) tomographic calculations. AutoCAD software program quantitated symphysis bone graft in 40 patients using computerized tomographies. Direct intrasurgical measurements were recorded thereafter and compared with AutoCAD data. The bone volume was measured at the recipient sites of a subgroup of 10 patients, 6 months post sinus augmentation. The volume of bone graft measured by AutoCAD averaged 1.4 mL (SD 0.6 mL, range: 0.5-2.7 mL). The volume of bone graft measured intrasurgically averaged 2.3 mL (SD 0.4 mL, range 1.7-2.8 mL). The statistical difference between the two measurement methods was significant. The bone volume measured at the recipient sites 6 months post sinus augmentation averaged 1.9 mL (SD 0.3 mL, range 1.3-2.6 mL) with a mean loss of 0.4 mL. AutoCAD did not overestimate the volume of bone that can be safely harvested from the mandibular symphysis. The use of the design software program may improve surgical treatment planning prior to sinus augmentation.

  11. Biological characteristics of crucian by quantitative inspection method

    NASA Astrophysics Data System (ADS)

    Chu, Mengqi

    2015-04-01

    Biological characteristics of crucian by quantitative inspection method Through quantitative inspection method , the biological characteristics of crucian was preliminary researched. Crucian , Belongs to Cypriniformes, Cyprinidae, Carassius auratus, is a kind of main plant-eating omnivorous fish,like Gregarious, selection and ranking. Crucian are widely distributed, perennial water all over the country all have production. Determine the indicators of crucian in the experiment, to understand the growth, reproduction situation of crucian in this area . Using the measured data (such as the scale length ,scale size and wheel diameter and so on) and related functional to calculate growth of crucian in any one year.According to the egg shape, color, weight ,etc to determine its maturity, with the mean egg diameter per 20 eggs and the number of eggs per 0.5 grams, to calculate the relative and absolute fecundity of the fish .Measured crucian were female puberty. Based on the relation between the scale diameter and length and the information, linear relationship between crucian scale diameter and length: y=1.530+3.0649. From the data, the fertility and is closely relative to the increase of age. The older, the more mature gonad development. The more amount of eggs. In addition, absolute fecundity increases with the pituitary gland.Through quantitative check crucian bait food intake by the object, reveals the main food, secondary foods, and chance food of crucian ,and understand that crucian degree of be fond of of all kinds of bait organisms.Fish fertility with weight gain, it has the characteristics of species and populations, and at the same tmes influenced by the age of the individual, body length, body weight, environmental conditions (especially the nutrition conditions), and breeding habits, spawning times factors and the size of the egg. After a series of studies of crucian biological character, provide the ecological basis for local crucian's feeding, breeding

  12. Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D)

    PubMed Central

    Li, Weizhe; Germain, Ronald N.

    2017-01-01

    Organ homeostasis, cellular differentiation, signal relay, and in situ function all depend on the spatial organization of cells in complex tissues. For this reason, comprehensive, high-resolution mapping of cell positioning, phenotypic identity, and functional state in the context of macroscale tissue structure is critical to a deeper understanding of diverse biological processes. Here we report an easy to use method, clearing-enhanced 3D (Ce3D), which generates excellent tissue transparency for most organs, preserves cellular morphology and protein fluorescence, and is robustly compatible with antibody-based immunolabeling. This enhanced signal quality and capacity for extensive probe multiplexing permits quantitative analysis of distinct, highly intermixed cell populations in intact Ce3D-treated tissues via 3D histo-cytometry. We use this technology to demonstrate large-volume, high-resolution microscopy of diverse cell types in lymphoid and nonlymphoid organs, as well as to perform quantitative analysis of the composition and tissue distribution of multiple cell populations in lymphoid tissues. Combined with histo-cytometry, Ce3D provides a comprehensive strategy for volumetric quantitative imaging and analysis that bridges the gap between conventional section imaging and disassociation-based techniques. PMID:28808033

  13. Handbook of Parenting. Volume 2: Biology and Ecology of Parenting. Second Edition.

    ERIC Educational Resources Information Center

    Bornstein, Marc H., Ed.

    Concerned with social settings and correlates of parenting, this volume, the second of five volumes on parenting, deals specifically with the biological and the contextual influences on parenting. The volume consists of the following 12 chapters: (1) "The Evolution of Parenting and Evolutionary Approaches to Childrearing" (David F.…

  14. Quantitative mass spectrometry of unconventional human biological matrices

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  15. Review of Department of Defense Education Activity (DoDEA) Schools. Volume II: Quantitative Analysis of Educational Quality. IDA Paper.

    ERIC Educational Resources Information Center

    Anderson, Lowell Bruce; Bracken, Jerome; Bracken, Marilyn C.

    This volume compiles, and presents in integrated form, the Institute for Defense Analyses' (IDA) quantitative analysis of educational quality provided by the Department of Defense's dependent schools. It covers the quantitative aspects of volume 1 in greater detail and presents some analyses deemed too technical for that volume. The first task in…

  16. Development and Assessment of Modules to Integrate Quantitative Skills in Introductory Biology Courses

    ERIC Educational Resources Information Center

    Hoffman, Kathleen; Leupen, Sarah; Dowell, Kathy; Kephart, Kerrie; Leips, Jeff

    2016-01-01

    Redesigning undergraduate biology courses to integrate quantitative reasoning and skill development is critical to prepare students for careers in modern medicine and scientific research. In this paper, we report on the development, implementation, and assessment of stand-alone modules that integrate quantitative reasoning into introductory…

  17. Biphasic dose responses in biology, toxicology and medicine: accounting for their generalizability and quantitative features.

    PubMed

    Calabrese, Edward J

    2013-11-01

    The most common quantitative feature of the hormetic-biphasic dose response is its modest stimulatory response which at maximum is only 30-60% greater than control values, an observation that is consistently independent of biological model, level of organization (i.e., cell, organ or individual), endpoint measured, chemical/physical agent studied, or mechanism. This quantitative feature suggests an underlying "upstream" mechanism common across biological systems, therefore basic and general. Hormetic dose response relationships represent an estimate of the peak performance of integrative biological processes that are allometrically based. Hormetic responses reflect both direct stimulatory or overcompensation responses to damage induced by relatively low doses of chemical or physical agents. The integration of the hormetic dose response within an allometric framework provides, for the first time, an explanation for both the generality and the quantitative features of the hormetic dose response. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology.

    PubMed

    Rao, Rohit T; Scherholz, Megerle L; Hartmanshenn, Clara; Bae, Seul-A; Androulakis, Ioannis P

    2017-12-05

    The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.

  19. Quantitative computational models of molecular self-assembly in systems biology

    PubMed Central

    Thomas, Marcus; Schwartz, Russell

    2017-01-01

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally. PMID:28535149

  20. Quantitative computational models of molecular self-assembly in systems biology.

    PubMed

    Thomas, Marcus; Schwartz, Russell

    2017-05-23

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.

  1. Quantitation and detection of vanadium in biologic and pollution materials

    NASA Technical Reports Server (NTRS)

    Gordon, W. A.

    1974-01-01

    A review is presented of special considerations and methodology for determining vanadium in biological and air pollution materials. In addition to descriptions of specific analysis procedures, general sections are included on quantitation of analysis procedures, sample preparation, blanks, and methods of detection of vanadium. Most of the information presented is applicable to the determination of other trace elements in addition to vanadium.

  2. Cerebral Blood Volume ASPECTS Is the Best Predictor of Clinical Outcome in Acute Ischemic Stroke: A Retrospective, Combined Semi-Quantitative and Quantitative Assessment.

    PubMed

    Padroni, Marina; Bernardoni, Andrea; Tamborino, Carmine; Roversi, Gloria; Borrelli, Massimo; Saletti, Andrea; De Vito, Alessandro; Azzini, Cristiano; Borgatti, Luca; Marcello, Onofrio; d'Esterre, Christopher; Ceruti, Stefano; Casetta, Ilaria; Lee, Ting-Yim; Fainardi, Enrico

    2016-01-01

    The capability of CT perfusion (CTP) Alberta Stroke Program Early CT Score (ASPECTS) to predict outcome and identify ischemia severity in acute ischemic stroke (AIS) patients is still questioned. 62 patients with AIS were imaged within 8 hours of symptom onset by non-contrast CT, CT angiography and CTP scans at admission and 24 hours. CTP ASPECTS was calculated on the affected hemisphere using cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) maps by subtracting 1 point for any abnormalities visually detected or measured within multiple cortical circular regions of interest according to previously established thresholds. MTT-CBV ASPECTS was considered as CTP ASPECTS mismatch. Hemorrhagic transformation (HT), recanalization status and reperfusion grade at 24 hours, final infarct volume at 7 days and modified Rankin scale (mRS) at 3 months after onset were recorded. Semi-quantitative and quantitative CTP ASPECTS were highly correlated (p<0.00001). CBF, CBV and MTT ASPECTS were higher in patients with no HT and mRS ≤ 2 and inversely associated with final infarct volume and mRS (p values: from p<0.05 to p<0.00001). CTP ASPECTS mismatch was slightly associated with radiological and clinical outcomes (p values: from p<0.05 to p<0.02) only if evaluated quantitatively. A CBV ASPECTS of 9 was the optimal semi-quantitative value for predicting outcome. Our findings suggest that visual inspection of CTP ASPECTS recognizes infarct and ischemic absolute values. Semi-quantitative CBV ASPECTS, but not CTP ASPECTS mismatch, represents a strong prognostic indicator, implying that core extent is the main determinant of outcome, irrespective of penumbra size.

  3. Cerebral Blood Volume ASPECTS Is the Best Predictor of Clinical Outcome in Acute Ischemic Stroke: A Retrospective, Combined Semi-Quantitative and Quantitative Assessment

    PubMed Central

    Padroni, Marina; Bernardoni, Andrea; Tamborino, Carmine; Roversi, Gloria; Borrelli, Massimo; Saletti, Andrea; De Vito, Alessandro; Azzini, Cristiano; Borgatti, Luca; Marcello, Onofrio; d’Esterre, Christopher; Ceruti, Stefano; Casetta, Ilaria; Lee, Ting-Yim; Fainardi, Enrico

    2016-01-01

    Introduction The capability of CT perfusion (CTP) Alberta Stroke Program Early CT Score (ASPECTS) to predict outcome and identify ischemia severity in acute ischemic stroke (AIS) patients is still questioned. Methods 62 patients with AIS were imaged within 8 hours of symptom onset by non-contrast CT, CT angiography and CTP scans at admission and 24 hours. CTP ASPECTS was calculated on the affected hemisphere using cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) maps by subtracting 1 point for any abnormalities visually detected or measured within multiple cortical circular regions of interest according to previously established thresholds. MTT-CBV ASPECTS was considered as CTP ASPECTS mismatch. Hemorrhagic transformation (HT), recanalization status and reperfusion grade at 24 hours, final infarct volume at 7 days and modified Rankin scale (mRS) at 3 months after onset were recorded. Results Semi-quantitative and quantitative CTP ASPECTS were highly correlated (p<0.00001). CBF, CBV and MTT ASPECTS were higher in patients with no HT and mRS≤2 and inversely associated with final infarct volume and mRS (p values: from p<0.05 to p<0.00001). CTP ASPECTS mismatch was slightly associated with radiological and clinical outcomes (p values: from p<0.05 to p<0.02) only if evaluated quantitatively. A CBV ASPECTS of 9 was the optimal semi-quantitative value for predicting outcome. Conclusions Our findings suggest that visual inspection of CTP ASPECTS recognizes infarct and ischemic absolute values. Semi-quantitative CBV ASPECTS, but not CTP ASPECTS mismatch, represents a strong prognostic indicator, implying that core extent is the main determinant of outcome, irrespective of penumbra size. PMID:26824672

  4. Studying Biology to Understand Risk: Dosimetry Models and Quantitative Adverse Outcome Pathways

    EPA Science Inventory

    Confidence in the quantitative prediction of risk is increased when the prediction is based to as great an extent as possible on the relevant biological factors that constitute the pathway from exposure to adverse outcome. With the first examples now over 40 years old, physiologi...

  5. Manipulating biological agents and cells in micro-scale volumes for applications in medicine

    PubMed Central

    Tasoglu, Savas; Gurkan, Umut Atakan; Wang, ShuQi

    2013-01-01

    Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development. PMID:23575660

  6. Quantitative characterization of genetic parts and circuits for plant synthetic biology.

    PubMed

    Schaumberg, Katherine A; Antunes, Mauricio S; Kassaw, Tessema K; Xu, Wenlong; Zalewski, Christopher S; Medford, June I; Prasad, Ashok

    2016-01-01

    Plant synthetic biology promises immense technological benefits, including the potential development of a sustainable bio-based economy through the predictive design of synthetic gene circuits. Such circuits are built from quantitatively characterized genetic parts; however, this characterization is a significant obstacle in work with plants because of the time required for stable transformation. We describe a method for rapid quantitative characterization of genetic plant parts using transient expression in protoplasts and dual luciferase outputs. We observed experimental variability in transient-expression assays and developed a mathematical model to describe, as well as statistical normalization methods to account for, this variability, which allowed us to extract quantitative parameters. We characterized >120 synthetic parts in Arabidopsis and validated our method by comparing transient expression with expression in stably transformed plants. We also tested >100 synthetic parts in sorghum (Sorghum bicolor) protoplasts, and the results showed that our method works in diverse plant groups. Our approach enables the construction of tunable gene circuits in complex eukaryotic organisms.

  7. Evaluation of Bacillus oleronius as a Biological Indicator for Terminal Sterilization of Large-Volume Parenterals.

    PubMed

    Izumi, Masamitsu; Fujifuru, Masato; Okada, Aki; Takai, Katsuya; Takahashi, Kazuhiro; Udagawa, Takeshi; Miyake, Makoto; Naruyama, Shintaro; Tokuda, Hiroshi; Nishioka, Goro; Yoden, Hikaru; Aoki, Mitsuo

    2016-01-01

    In the production of large-volume parenterals in Japan, equipment and devices such as tanks, pipework, and filters used in production processes are exhaustively cleaned and sterilized, and the cleanliness of water for injection, drug materials, packaging materials, and manufacturing areas is well controlled. In this environment, the bioburden is relatively low, and less heat resistant compared with microorganisms frequently used as biological indicators such as Geobacillus stearothermophilus (ATCC 7953) and Bacillus subtilis 5230 (ATCC 35021). Consequently, the majority of large-volume parenteral solutions in Japan are manufactured under low-heat sterilization conditions of F0 <2 min, so that loss of clarity of solutions and formation of degradation products of constituents are minimized. Bacillus oleronius (ATCC 700005) is listed as a biological indicator in "Guidance on the Manufacture of Sterile Pharmaceutical Products Produced by Terminal Sterilization" (guidance in Japan, issued in 2012). In this study, we investigated whether B. oleronius is an appropriate biological indicator of the efficacy of low-heat, moist-heat sterilization of large-volume parenterals. Specifically, we investigated the spore-forming ability of this microorganism in various cultivation media and measured the D-values and z-values as parameters of heat resistance. The D-values and z-values changed depending on the constituents of large-volume parenteral products. Also, the spores from B. oleronius showed a moist-heat resistance that was similar to or greater than many of the spore-forming organisms isolated from Japanese parenteral manufacturing processes. Taken together, these results indicate that B. oleronius is suitable as a biological indicator for sterility assurance of large-volume parenteral solutions subjected to low-heat, moist-heat terminal sterilization. © PDA, Inc. 2016.

  8. Physiologic basis for understanding quantitative dehydration assessment.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W; Charkoudian, Nisha; Sawka, Michael N

    2013-03-01

    Dehydration (body water deficit) is a physiologic state that can have profound implications for human health and performance. Unfortunately, dehydration can be difficult to assess, and there is no single, universal gold standard for decision making. In this article, we review the physiologic basis for understanding quantitative dehydration assessment. We highlight how phenomenologic interpretations of dehydration depend critically on the type (dehydration compared with volume depletion) and magnitude (moderate compared with severe) of dehydration, which in turn influence the osmotic (plasma osmolality) and blood volume-dependent compensatory thresholds for antidiuretic and thirst responses. In particular, we review new findings regarding the biological variation in osmotic responses to dehydration and discuss how this variation can help provide a quantitative and clinically relevant link between the physiology and phenomenology of dehydration. Practical measures with empirical thresholds are provided as a starting point for improving the practice of dehydration assessment.

  9. Gender, Math Confidence, and Grit: Relationships with Quantitative Skills and Performance in an Undergraduate Biology Course.

    PubMed

    Flanagan, K M; Einarson, J

    2017-01-01

    In a world filled with big data, mathematical models, and statistics, the development of strong quantitative skills is becoming increasingly critical for modern biologists. Teachers in this field must understand how students acquire quantitative skills and explore barriers experienced by students when developing these skills. In this study, we examine the interrelationships among gender, grit, and math confidence for student performance on a pre-post quantitative skills assessment and overall performance in an undergraduate biology course. Here, we show that females significantly underperformed relative to males on a quantitative skills assessment at the start of term. However, females showed significantly higher gains over the semester, such that the gender gap in performance was nearly eliminated by the end of the semester. Math confidence plays an important role in the performance on both the pre and post quantitative skills assessments and overall performance in the course. The effect of grit on student performance, however, is mediated by a student's math confidence; as math confidence increases, the positive effect of grit decreases. Consequently, the positive impact of a student's grittiness is observed most strongly for those students with low math confidence. We also found grit to be positively associated with the midterm score and the final grade in the course. Given the relationships established in this study among gender, grit, and math confidence, we provide "instructor actions" from the literature that can be applied in the classroom to promote the development of quantitative skills in light of our findings. © 2017 K. M. Flanagan and J. Einarson. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http

  10. Epigenetics meets mathematics: towards a quantitative understanding of chromatin biology.

    PubMed

    Steffen, Philipp A; Fonseca, João P; Ringrose, Leonie

    2012-10-01

    How fast? How strong? How many? So what? Why do numbers matter in biology? Chromatin binding proteins are forever in motion, exchanging rapidly between bound and free pools. How do regulatory systems whose components are in constant flux ensure stability and flexibility? This review explores the application of quantitative and mathematical approaches to mechanisms of epigenetic regulation. We discuss methods for measuring kinetic parameters and protein quantities in living cells, and explore the insights that have been gained by quantifying and modelling dynamics of chromatin binding proteins. Copyright © 2012 WILEY Periodicals, Inc.

  11. Quantitative characterization of nanoparticle agglomeration within biological media

    NASA Astrophysics Data System (ADS)

    Hondow, Nicole; Brydson, Rik; Wang, Peiyi; Holton, Mark D.; Brown, M. Rowan; Rees, Paul; Summers, Huw D.; Brown, Andy

    2012-07-01

    Quantitative analysis of nanoparticle dispersion state within biological media is essential to understanding cellular uptake and the roles of diffusion, sedimentation, and endocytosis in determining nanoparticle dose. The dispersion of polymer-coated CdTe/ZnS quantum dots in water and cell growth medium with and without fetal bovine serum was analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. Characterization by TEM of samples prepared by plunge freezing the blotted solutions into liquid ethane was sensitive to the dispersion state of the quantum dots and enabled measurement of agglomerate size distributions even in the presence of serum proteins where DLS failed. In addition, TEM showed a reduced packing fraction of quantum dots per agglomerate when dispersed in biological media and serum compared to just water, highlighting the effect of interactions between the media, serum proteins, and the quantum dots. The identification of a heterogeneous distribution of quantum dots and quantum dot agglomerates in cell growth medium and serum by TEM will enable correlation with the previously reported optical metrology of in vitro cellular uptake of this quantum dot dispersion. In this paper, we present a comparative study of TEM and DLS and show that plunge-freeze TEM provides a robust assessment of nanoparticle agglomeration state.

  12. Three-Dimensional Photography for Quantitative Assessment of Penile Volume-Loss Deformities in Peyronie's Disease.

    PubMed

    Margolin, Ezra J; Mlynarczyk, Carrie M; Mulhall, John P; Stember, Doron S; Stahl, Peter J

    2017-06-01

    Non-curvature penile deformities are prevalent and bothersome manifestations of Peyronie's disease (PD), but the quantitative metrics that are currently used to describe these deformities are inadequate and non-standardized, presenting a barrier to clinical research and patient care. To introduce erect penile volume (EPV) and percentage of erect penile volume loss (percent EPVL) as novel metrics that provide detailed quantitative information about non-curvature penile deformities and to study the feasibility and reliability of three-dimensional (3D) photography for measurement of quantitative penile parameters. We constructed seven penis models simulating deformities found in PD. The 3D photographs of each model were captured in triplicate by four observers using a 3D camera. Computer software was used to generate automated measurements of EPV, percent EPVL, penile length, minimum circumference, maximum circumference, and angle of curvature. The automated measurements were statistically compared with measurements obtained using water-displacement experiments, a tape measure, and a goniometer. Accuracy of 3D photography for average measurements of all parameters compared with manual measurements; inter-test, intra-observer, and inter-observer reliabilities of EPV and percent EPVL measurements as assessed by the intraclass correlation coefficient. The 3D images were captured in a median of 52 seconds (interquartile range = 45-61). On average, 3D photography was accurate to within 0.3% for measurement of penile length. It overestimated maximum and minimum circumferences by averages of 4.2% and 1.6%, respectively; overestimated EPV by an average of 7.1%; and underestimated percent EPVL by an average of 1.9%. All inter-test, inter-observer, and intra-observer intraclass correlation coefficients for EPV and percent EPVL measurements were greater than 0.75, reflective of excellent methodologic reliability. By providing highly descriptive and reliable measurements of

  13. Risk Factors for Chronic Subdural Hematoma Recurrence Identified Using Quantitative Computed Tomography Analysis of Hematoma Volume and Density.

    PubMed

    Stavrinou, Pantelis; Katsigiannis, Sotirios; Lee, Jong Hun; Hamisch, Christina; Krischek, Boris; Mpotsaris, Anastasios; Timmer, Marco; Goldbrunner, Roland

    2017-03-01

    Chronic subdural hematoma (CSDH), a common condition in elderly patients, presents a therapeutic challenge with recurrence rates of 33%. We aimed to identify specific prognostic factors for recurrence using quantitative analysis of hematoma volume and density. We retrospectively reviewed radiographic and clinical data of 227 CSDHs in 195 consecutive patients who underwent evacuation of the hematoma through a single burr hole, 2 burr holes, or a mini-craniotomy. To examine the relationship between hematoma recurrence and various clinical, radiologic, and surgical factors, we used quantitative image-based analysis to measure the hematoma and trapped air volumes and the hematoma densities. Recurrence of CSDH occurred in 35 patients (17.9%). Multivariate logistic regression analysis revealed that the percentage of hematoma drained and postoperative CSDH density were independent risk factors for recurrence. All 3 evacuation methods were equally effective in draining the hematoma (71.7% vs. 73.7% vs. 71.9%) without observable differences in postoperative air volume captured in the subdural space. Quantitative image analysis provided evidence that percentage of hematoma drained and postoperative CSDH density are independent prognostic factors for subdural hematoma recurrence. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Closing the Loop: Involving Faculty in the Assessment of Scientific and Quantitative Reasoning Skills of Biology Majors

    ERIC Educational Resources Information Center

    Hurney, Carol A.; Brown, Justin; Griscom, Heather Peckham; Kancler, Erika; Wigtil, Clifton J.; Sundre, Donna

    2011-01-01

    The development of scientific and quantitative reasoning skills in undergraduates majoring in science, technology, engineering, and mathematics (STEM) is an objective of many courses and curricula. The Biology Department at James Madison University (JMU) assesses these essential skills in graduating biology majors by using a multiple-choice exam…

  15. Reshaping Plant Biology: Qualitative and Quantitative Descriptors for Plant Morphology

    PubMed Central

    Balduzzi, Mathilde; Binder, Brad M.; Bucksch, Alexander; Chang, Cynthia; Hong, Lilan; Iyer-Pascuzzi, Anjali S.; Pradal, Christophe; Sparks, Erin E.

    2017-01-01

    An emerging challenge in plant biology is to develop qualitative and quantitative measures to describe the appearance of plants through the integration of mathematics and biology. A major hurdle in developing these metrics is finding common terminology across fields. In this review, we define approaches for analyzing plant geometry, topology, and shape, and provide examples for how these terms have been and can be applied to plants. In leaf morphological quantifications both geometry and shape have been used to gain insight into leaf function and evolution. For the analysis of cell growth and expansion, we highlight the utility of geometric descriptors for understanding sepal and hypocotyl development. For branched structures, we describe how topology has been applied to quantify root system architecture to lend insight into root function. Lastly, we discuss the importance of using morphological descriptors in ecology to assess how communities interact, function, and respond within different environments. This review aims to provide a basic description of the mathematical principles underlying morphological quantifications. PMID:28217137

  16. Connecting qualitative observation and quantitative measurement for enhancing quantitative literacy in plant anatomy course

    NASA Astrophysics Data System (ADS)

    Nuraeni, E.; Rahmat, A.

    2018-05-01

    Forming of cognitive schemes of plant anatomy concepts is performed by processing of qualitative and quantitative data obtained from microscopic observations. To enhancing student’s quantitative literacy, strategy of plant anatomy course was modified by adding the task to analyze quantitative data produced by quantitative measurement of plant anatomy guided by material course. Participant in this study was 24 biology students and 35 biology education students. Quantitative Literacy test, complex thinking in plant anatomy test and questioner used to evaluate the course. Quantitative literacy capability data was collected by quantitative literacy test with the rubric from the Association of American Colleges and Universities, Complex thinking in plant anatomy by test according to Marzano and questioner. Quantitative literacy data are categorized according to modified Rhodes and Finley categories. The results showed that quantitative literacy of biology education students is better than biology students.

  17. Flexible automated approach for quantitative liquid handling of complex biological samples.

    PubMed

    Palandra, Joe; Weller, David; Hudson, Gary; Li, Jeff; Osgood, Sarah; Hudson, Emily; Zhong, Min; Buchholz, Lisa; Cohen, Lucinda H

    2007-11-01

    A fully automated protein precipitation technique for biological sample preparation has been developed for the quantitation of drugs in various biological matrixes. All liquid handling during sample preparation was automated using a Hamilton MicroLab Star Robotic workstation, which included the preparation of standards and controls from a Watson laboratory information management system generated work list, shaking of 96-well plates, and vacuum application. Processing time is less than 30 s per sample or approximately 45 min per 96-well plate, which is then immediately ready for injection onto an LC-MS/MS system. An overview of the process workflow is discussed, including the software development. Validation data are also provided, including specific liquid class data as well as comparative data of automated vs manual preparation using both quality controls and actual sample data. The efficiencies gained from this automated approach are described.

  18. Automated quantitative assessment of proteins' biological function in protein knowledge bases.

    PubMed

    Mayr, Gabriele; Lepperdinger, Günter; Lackner, Peter

    2008-01-01

    Primary protein sequence data are archived in databases together with information regarding corresponding biological functions. In this respect, UniProt/Swiss-Prot is currently the most comprehensive collection and it is routinely cross-examined when trying to unravel the biological role of hypothetical proteins. Bioscientists frequently extract single entries and further evaluate those on a subjective basis. In lieu of a standardized procedure for scoring the existing knowledge regarding individual proteins, we here report about a computer-assisted method, which we applied to score the present knowledge about any given Swiss-Prot entry. Applying this quantitative score allows the comparison of proteins with respect to their sequence yet highlights the comprehension of functional data. pfs analysis may be also applied for quality control of individual entries or for database management in order to rank entry listings.

  19. Statistical issues in the comparison of quantitative imaging biomarker algorithms using pulmonary nodule volume as an example.

    PubMed

    Obuchowski, Nancy A; Barnhart, Huiman X; Buckler, Andrew J; Pennello, Gene; Wang, Xiao-Feng; Kalpathy-Cramer, Jayashree; Kim, Hyun J Grace; Reeves, Anthony P

    2015-02-01

    Quantitative imaging biomarkers are being used increasingly in medicine to diagnose and monitor patients' disease. The computer algorithms that measure quantitative imaging biomarkers have different technical performance characteristics. In this paper we illustrate the appropriate statistical methods for assessing and comparing the bias, precision, and agreement of computer algorithms. We use data from three studies of pulmonary nodules. The first study is a small phantom study used to illustrate metrics for assessing repeatability. The second study is a large phantom study allowing assessment of four algorithms' bias and reproducibility for measuring tumor volume and the change in tumor volume. The third study is a small clinical study of patients whose tumors were measured on two occasions. This study allows a direct assessment of six algorithms' performance for measuring tumor change. With these three examples we compare and contrast study designs and performance metrics, and we illustrate the advantages and limitations of various common statistical methods for quantitative imaging biomarker studies. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging of biological cells

    NASA Astrophysics Data System (ADS)

    Di, Jianglei; Song, Yu; Xi, Teli; Zhang, Jiwei; Li, Ying; Ma, Chaojie; Wang, Kaiqiang; Zhao, Jianlin

    2017-11-01

    Biological cells are usually transparent with a small refractive index gradient. Digital holographic interferometry can be used in the measurement of biological cells. We propose a dual-wavelength common-path digital holographic microscopy for the quantitative phase imaging of biological cells. In the proposed configuration, a parallel glass plate is inserted in the light path to create the lateral shearing, and two lasers with different wavelengths are used as the light source to form the dual-wavelength composite digital hologram. The information of biological cells for different wavelengths is separated and extracted in the Fourier domain of the hologram, and then combined to a shorter wavelength in the measurement process. This method could improve the system's temporal stability and reduce speckle noises simultaneously. Mouse osteoblastic cells and peony pollens are measured to show the feasibility of this method.

  1. WE-B-304-02: Treatment Planning Evaluation and Optimization Should Be Biologically and Not Dose/volume Based

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deasy, J.

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning bymore » the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations.« less

  2. WE-B-304-01: Treatment Planning Evaluation and Optimization Should Be Dose/volume and Not Biologically Based

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, C.

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning bymore » the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations.« less

  3. Quantitation of zolpidem in biological fluids by electro-driven microextraction combined with HPLC-UV analysis.

    PubMed

    Yaripour, Saeid; Mohammadi, Ali; Esfanjani, Isa; Walker, Roderick B; Nojavan, Saeed

    2018-01-01

    In this study, for the first time, an electro-driven microextraction method named electromembrane extraction combined with a simple high performance liquid chromatography and ultraviolet detection was developed and validated for the quantitation of zolpidem in biological samples. Parameters influencing electromembrane extraction were evaluated and optimized. The membrane consisted of 2-ethylhexanol immobilized in the pores of a hollow fiber. As a driving force, a 150 V electric field was applied to facilitate the analyte migration from the sample matrix to an acceptor solution through a supported liquid membrane. The pHs of donor and acceptor solutions were optimized to 6.0 and 2.0, respectively. The enrichment factor was obtained >75 within 15 minutes. The effect of carbon nanotubes (as solid nano-sorbents) on the membrane performance and EME efficiency was evaluated. The method was linear over the range of 10-1000 ng/mL for zolpidem (R 2 >0.9991) with repeatability ( %RSD) between 0.3 % and 7.3 % ( n = 3). The limits of detection and quantitation were 3 and 10 ng/mL, respectively. The sensitivity of HPLC-UV for the determination of zolpidem was enhanced by electromembrane extraction. Finally, the method was employed for the quantitation of zolpidem in biological samples with relative recoveries in the range of 60-79 %.

  4. Quantitative model analysis with diverse biological data: applications in developmental pattern formation.

    PubMed

    Pargett, Michael; Umulis, David M

    2013-07-15

    Mathematical modeling of transcription factor and signaling networks is widely used to understand if and how a mechanism works, and to infer regulatory interactions that produce a model consistent with the observed data. Both of these approaches to modeling are informed by experimental data, however, much of the data available or even acquirable are not quantitative. Data that is not strictly quantitative cannot be used by classical, quantitative, model-based analyses that measure a difference between the measured observation and the model prediction for that observation. To bridge the model-to-data gap, a variety of techniques have been developed to measure model "fitness" and provide numerical values that can subsequently be used in model optimization or model inference studies. Here, we discuss a selection of traditional and novel techniques to transform data of varied quality and enable quantitative comparison with mathematical models. This review is intended to both inform the use of these model analysis methods, focused on parameter estimation, and to help guide the choice of method to use for a given study based on the type of data available. Applying techniques such as normalization or optimal scaling may significantly improve the utility of current biological data in model-based study and allow greater integration between disparate types of data. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. 23.4% saline decreases brain tissue volume in severe hepatic encephalopathy as assessed by a quantitative computed tomography marker

    PubMed Central

    Liotta, Eric M; Lizza, Bryan D; Romanova, Anna L; Guth, James C; Berman, Michael D; Carroll, Timothy J; Francis, Brandon; Ganger, Daniel; Ladner, Daniela P; Maas, Matthew B; Naidech, Andrew M

    2016-01-01

    Objective Cerebral edema is common in severe hepatic encephalopathy and may be life-threatening. Bolus 23.4% hypertonic saline (HTS) improves surveillance neuromonitoring scores, although its mechanism of action is not clearly established. We investigated the hypothesis that bolus HTS decreases cerebral edema in severe hepatic encephalopathy utilizing a quantitative technique to measure brain and CSF volume changes. Design Retrospective analysis of serial computed tomography (CT) scans and clinical data for a case-control series was performed. Setting Intensive care units of a tertiary care hospital. Patients Patients with severe hepatic encephalopathy treated with 23.4% HTS and control patients who did not receive 23.4% HTS. Methods We used clinically obtained CT scans to measure volumes of the ventricles, intracranial CSF, and brain using a previously validated semi-automated technique (Analyze Direct; Overland Park, KS). Volumes before and after 23.4% HTS were compared with Wilcoxon signed-rank test. Associations between total CSF volume, ventricular volume, serum sodium, and Glasgow Coma Scale Scores were assessed using Spearman correlation. Results Eleven patients with 18 administrations of 23.4% HTS met inclusion criteria. Total CSF (median 47.6 [35.1–69.4] to 61.9 [47.7–87.0] mL, p<0.001) and ventricular volumes (median 8.0 [6.9–9.5] to 9.2 [7.8–11.9] mL, p=0.002) increased and Glasgow Coma Scale Scores improved (median 4 [3–6] to 7 [6–9], p=0.008) after 23.4% HTS. In contrast, total CSF and ventricular volumes decreased in untreated control patients. Serum sodium increase was associated with increase in total CSF volume (r=0.83, p<0.001) and change in total CSF volume was associated with ventricular volume change (r=0.86, p<0.001). Conclusions Total CSF and ventricular volumes increased after 23.4% HTS, consistent with a reduction in brain tissue volume. Total CSF and ventricular volume change may be useful quantitative measures to assess

  6. In Situ Biological Treatment Test at Kelly Air Force Base. Volume 2. Field Test Results and Cost Model

    DTIC Science & Technology

    1987-07-01

    Groundwater." Developments in Industrial Microbiology, Volume 24, pp. 225-234. Society of Industrial Microbiology, Arlington, Virginia. 18. Product ...ESL-TR-85-52 cv) VOLUME II CN IN SITU BIOLOGICAL TREATMENT TEST AT KELLY AIR FORCE BASE, VOLUME !1: FIELD TEST RESULTS AND COST MODEL R.S. WETZEL...Kelly Air Force Base, Volume II: Field Test Results and Cost Model (UNCLASSIFIED) 12 PERSONAL AUTHOR(S) Roger S. Wetzel, Connie M. Durst, Donald H

  7. A method for operative quantitative interpretation of multispectral images of biological tissues

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2013-10-01

    A method for operative retrieval of spatial distributions of biophysical parameters of a biological tissue by using a multispectral image of it has been developed. The method is based on multiple regressions between linearly independent components of the diffuse reflection spectrum of the tissue and unknown parameters. Possibilities of the method are illustrated by an example of determining biophysical parameters of the skin (concentrations of melanin, hemoglobin and bilirubin, blood oxygenation, and scattering coefficient of the tissue). Examples of quantitative interpretation of the experimental data are presented.

  8. Introduction to the Symposium "Leading Students and Faculty to Quantitative Biology through Active Learning".

    PubMed

    Waldrop, Lindsay D; Miller, Laura A

    2015-11-01

    The broad aim of this symposium and set of associated papers is to motivate the use of inquiry-based, active-learning teaching techniques in undergraduate quantitative biology courses. Practical information, resources, and ready-to-use classroom exercises relevant to physicists, mathematicians, biologists, and engineers are presented. These resources can be used to address the lack of preparation of college students in STEM fields entering the workforce by providing experience working on interdisciplinary and multidisciplinary problems in mathematical biology in a group setting. Such approaches can also indirectly help attract and retain under-represented students who benefit the most from "non-traditional" learning styles and strategies, including inquiry-based, collaborative, and active learning. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  9. Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy.

    PubMed

    Doblas, Ana; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Saavedra, Genaro; Garcia-Sucerquia, Jorge

    2014-04-01

    The advantages of using a telecentric imaging system in digital holographic microscopy (DHM) to study biological specimens are highlighted. To this end, the performances of nontelecentric DHM and telecentric DHM are evaluated from the quantitative phase imaging (QPI) point of view. The evaluated stability of the microscope allows single-shot QPI in DHM by using telecentric imaging systems. Quantitative phase maps of a section of the head of the drosophila melanogaster fly and of red blood cells are obtained via single-shot DHM with no numerical postprocessing. With these maps we show that the use of telecentric DHM provides larger field of view for a given magnification and permits more accurate QPI measurements with less number of computational operations.

  10. Physiological frailty index (PFI): quantitative in-life estimate of individual biological age in mice.

    PubMed

    Antoch, Marina P; Wrobel, Michelle; Kuropatwinski, Karen K; Gitlin, Ilya; Leonova, Katerina I; Toshkov, Ilia; Gleiberman, Anatoli S; Hutson, Alan D; Chernova, Olga B; Gudkov, Andrei V

    2017-03-19

    The development of healthspan-extending pharmaceuticals requires quantitative estimation of age-related progressive physiological decline. In humans, individual health status can be quantitatively assessed by means of a frailty index (FI), a parameter which reflects the scale of accumulation of age-related deficits. However, adaptation of this methodology to animal models is a challenging task since it includes multiple subjective parameters. Here we report a development of a quantitative non-invasive procedure to estimate biological age of an individual animal by creating physiological frailty index (PFI). We demonstrated the dynamics of PFI increase during chronological aging of male and female NIH Swiss mice. We also demonstrated acceleration of growth of PFI in animals placed on a high fat diet, reflecting aging acceleration by obesity and provide a tool for its quantitative assessment. Additionally, we showed that PFI could reveal anti-aging effect of mTOR inhibitor rapatar (bioavailable formulation of rapamycin) prior to registration of its effects on longevity. PFI revealed substantial sex-related differences in normal chronological aging and in the efficacy of detrimental (high fat diet) or beneficial (rapatar) aging modulatory factors. Together, these data introduce PFI as a reliable, non-invasive, quantitative tool suitable for testing potential anti-aging pharmaceuticals in pre-clinical studies.

  11. Quantitation of zolpidem in biological fluids by electro-driven microextraction combined with HPLC-UV analysis

    PubMed Central

    Yaripour, Saeid; Mohammadi, Ali; Esfanjani, Isa; Walker, Roderick B.; Nojavan, Saeed

    2018-01-01

    In this study, for the first time, an electro-driven microextraction method named electromembrane extraction combined with a simple high performance liquid chromatography and ultraviolet detection was developed and validated for the quantitation of zolpidem in biological samples. Parameters influencing electromembrane extraction were evaluated and optimized. The membrane consisted of 2-ethylhexanol immobilized in the pores of a hollow fiber. As a driving force, a 150 V electric field was applied to facilitate the analyte migration from the sample matrix to an acceptor solution through a supported liquid membrane. The pHs of donor and acceptor solutions were optimized to 6.0 and 2.0, respectively. The enrichment factor was obtained >75 within 15 minutes. The effect of carbon nanotubes (as solid nano-sorbents) on the membrane performance and EME efficiency was evaluated. The method was linear over the range of 10-1000 ng/mL for zolpidem (R2 >0.9991) with repeatability ( %RSD) between 0.3 % and 7.3 % (n = 3). The limits of detection and quantitation were 3 and 10 ng/mL, respectively. The sensitivity of HPLC-UV for the determination of zolpidem was enhanced by electromembrane extraction. Finally, the method was employed for the quantitation of zolpidem in biological samples with relative recoveries in the range of 60-79 %. PMID:29805344

  12. GeLC-MRM quantitation of mutant KRAS oncoprotein in complex biological samples.

    PubMed

    Halvey, Patrick J; Ferrone, Cristina R; Liebler, Daniel C

    2012-07-06

    Tumor-derived mutant KRAS (v-Ki-ras-2 Kirsten rat sarcoma viral oncogene) oncoprotein is a critical driver of cancer phenotypes and a potential biomarker for many epithelial cancers. Targeted mass spectrometry analysis by multiple reaction monitoring (MRM) enables selective detection and quantitation of wild-type and mutant KRAS proteins in complex biological samples. A recently described immunoprecipitation approach (Proc. Nat. Acad. Sci.2011, 108, 2444-2449) can be used to enrich KRAS for MRM analysis, but requires large protein inputs (2-4 mg). Here, we describe sodium dodecyl sulfate-polyacrylamide gel electrophoresis-based enrichment of KRAS in a low molecular weight (20-25 kDa) protein fraction prior to MRM analysis (GeLC-MRM). This approach reduces background proteome complexity, thus, allowing mutant KRAS to be reliably quantified in low protein inputs (5-50 μg). GeLC-MRM detected KRAS mutant variants (G12D, G13D, G12V, G12S) in a panel of cancer cell lines. GeLC-MRM analysis of wild-type and mutant was linear with respect to protein input and showed low variability across process replicates (CV = 14%). Concomitant analysis of a peptide from the highly similar HRAS and NRAS proteins enabled correction of KRAS-targeted measurements for contributions from these other proteins. KRAS peptides were also quantified in fluid from benign pancreatic cysts and pancreatic cancers at concentrations from 0.08 to 1.1 fmol/μg protein. GeLC-MRM provides a robust, sensitive approach to quantitation of mutant proteins in complex biological samples.

  13. Mapping of thermal injury in biologic tissues using quantitative pathologic techniques

    NASA Astrophysics Data System (ADS)

    Thomsen, Sharon L.

    1999-05-01

    Qualitative and quantitative pathologic techniques can be used for (1) mapping of thermal injury, (2) comparisons lesion sizes and configurations for different instruments or heating sources and (3) comparisons of treatment effects. Concentric zones of thermal damage form around a single volume heat source. The boundaries between some of these zones are distinct and measurable. Depending on the energy deposition, heating times and tissue type, the zones can include the following beginning at the hotter center and progressing to the cooler periphery: (1) tissue ablation, (2) carbonization, (3) tissue water vaporization, (4) structural protein denaturation (thermal coagulation), (5) vital enzyme protein denaturation, (6) cell membrane disruption, (7) hemorrhage, hemostasis and hyperhemia, (8) tissue necrosis and (9) wound organization and healing.

  14. Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source.

    PubMed

    Ahmad, Azeem; Dubey, Vishesh; Singh, Gyanendra; Singh, Veena; Mehta, Dalip Singh

    2016-04-01

    In this Letter, we demonstrate quantitative phase imaging of biological samples, such as human red blood cells (RBCs) and onion cells using narrow temporal frequency and wide angular frequency spectrum light source. This type of light source was synthesized by the combined effect of spatial, angular, and temporal diversity of speckle reduction technique. The importance of using low spatial and high temporal coherence light source over the broad band and narrow band light source is that it does not require any dispersion compensation mechanism for biological samples. Further, it avoids the formation of speckle or spurious fringes which arises while using narrow band light source.

  15. All biology is computational biology.

    PubMed

    Markowetz, Florian

    2017-03-01

    Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science.

  16. Atlas based brain volumetry: How to distinguish regional volume changes due to biological or physiological effects from inherent noise of the methodology.

    PubMed

    Opfer, Roland; Suppa, Per; Kepp, Timo; Spies, Lothar; Schippling, Sven; Huppertz, Hans-Jürgen

    2016-05-01

    Fully-automated regional brain volumetry based on structural magnetic resonance imaging (MRI) plays an important role in quantitative neuroimaging. In clinical trials as well as in clinical routine multiple MRIs of individual patients at different time points need to be assessed longitudinally. Measures of inter- and intrascanner variability are crucial to understand the intrinsic variability of the method and to distinguish volume changes due to biological or physiological effects from inherent noise of the methodology. To measure regional brain volumes an atlas based volumetry (ABV) approach was deployed using a highly elastic registration framework and an anatomical atlas in a well-defined template space. We assessed inter- and intrascanner variability of the method in 51 cognitively normal subjects and 27 Alzheimer dementia (AD) patients from the Alzheimer's Disease Neuroimaging Initiative by studying volumetric results of repeated scans for 17 compartments and brain regions. Median percentage volume differences of scan-rescans from the same scanner ranged from 0.24% (whole brain parenchyma in healthy subjects) to 1.73% (occipital lobe white matter in AD), with generally higher differences in AD patients as compared to normal subjects (e.g., 1.01% vs. 0.78% for the hippocampus). Minimum percentage volume differences detectable with an error probability of 5% were in the one-digit percentage range for almost all structures investigated, with most of them being below 5%. Intrascanner variability was independent of magnetic field strength. The median interscanner variability was up to ten times higher than the intrascanner variability. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Space Biology and Medicine. Volume I; Space and Its Exploration

    NASA Technical Reports Server (NTRS)

    Nicogossian, Arnauld E.; Mohler, Stanley R.; Gazenko, Oleg G.; Grigoryev, Anatoliy I.

    1993-01-01

    and a path to our common future. But for humanity to embark on this path, we need to understand ourselves in a new environment. As such, an understanding of the biological consequences of and opportunities in space flight is essential. In this, the first volume of a joint U.S./Russian series on space biology and medicine, we describe the current status of our understanding of space and present general information that will prove useful when reading subsequent volumes. Since we are witnesses to the beginning of a new era of interplanetary travel, a significant portion of the first volume will concentrate on the physical and ecological conditions that exist in near and outer space, as well as heavenly bodies from the smallest ones to the giant planets and stars. While space exploration is a comparatively recent endeavor, its foundations were laid much more than 30 years ago, and its history has been an eventful one. In the first part of this volume, Rauschenbach, Sokolskiy, and Gurjian address the "Historical Aspects of Space Exploration" from its beginnings to a present-day view of the events of the space age. The nature of space itself and its features is the focus of the second section of the volume. In the first chapter of the part, "Stars and Interstellar Space," the origin and evolution of stars, and the nature of the portions of space most distant from Earth are described by Galeev and Marochnik. In Chapter 2, Pisarenko, Logachev, and Kurt in "The Sun and Interplanetary Space" bring us to the vicinity of our own solar system and provide a description and discussion of the nearest star and its influence on the space environment that our Earth and the other planets inhabit. In our solar system there are many fascinating objects, remnants of the formation of a rather ordinary star in a rather obscure portion of the galaxy. Historical accident has caused us to be much more curious (and knowledgeable) about "The Inner Planets of the Solar System" than about any of

  18. Quantitative computer tomography analysis of post-operative subdural fluid volume predicts recurrence of chronic subdural haematoma.

    PubMed

    Xu, Fei-Fan; Chen, Jin-Hong; Leung, Gilberto Ka Kit; Hao, Shu-Yu; Xu, Long; Hou, Zong-Gang; Mao, Xiang; Shi, Guang-Zhi; Li, Jing-Sheng; Liu, Bai-Yun

    2014-01-01

    Post-operative volume of subdural fluid is considered to correlate with recurrence in chronic subdural haematoma (CSDH). Information on the applications of computer-assisted volumetric analysis in patients with CSDHs is lacking. To investigate the relationship between haematoma recurrence and longitudinal changes in subdural fluid volume using CT volumetric analysis. Fifty-four patients harbouring 64 CSDHs were studied prospectively. The association between recurrence rate and CT findings were investigated. Eleven patients (20.4%) experienced post-operative recurrence. Higher pre-operative (over 120 ml) and/or pre-discharge subdural fluid volumes (over 22 ml) were significantly associated with recurrence; the probability of non-recurrence for values below these thresholds were 92.7% and 95.2%, respectively. CSDHs with larger pre-operative (over 15.1 mm) and/or residual (over 11.7 mm) widths also had significantly increased recurrence rates. Bilateral CSDHs were not found to be more likely to recur in this series. On receiver-operating characteristic curve, the areas under curve for the magnitude of changes in subdural fluid volume were greater than a single time-point measure of either width or volume of the subdural fluid cavity. Close imaging follow-up is important for CSDH patients for recurrence prediction. Using quantitative CT volumetric analysis, strong evidence was provided that changes in the residual fluid volume during the 'self-resolution' period can be used as significantly radiological predictors of recurrence.

  19. Quantitative Neuroimaging Software for Clinical Assessment of Hippocampal Volumes on MR Imaging

    PubMed Central

    Ahdidan, Jamila; Raji, Cyrus A.; DeYoe, Edgar A.; Mathis, Jedidiah; Noe, Karsten Ø.; Rimestad, Jens; Kjeldsen, Thomas K.; Mosegaard, Jesper; Becker, James T.; Lopez, Oscar

    2015-01-01

    Background: Multiple neurological disorders including Alzheimer’s disease (AD), mesial temporal sclerosis, and mild traumatic brain injury manifest with volume loss on brain MRI. Subtle volume loss is particularly seen early in AD. While prior research has demonstrated the value of this additional information from quantitative neuroimaging, very few applications have been approved for clinical use. Here we describe a US FDA cleared software program, NeuroreaderTM, for assessment of clinical hippocampal volume on brain MRI. Objective: To present the validation of hippocampal volumetrics on a clinical software program. Method: Subjects were drawn (n = 99) from the Alzheimer Disease Neuroimaging Initiative study. Volumetric brain MR imaging was acquired in both 1.5 T (n = 59) and 3.0 T (n = 40) scanners in participants with manual hippocampal segmentation. Fully automated hippocampal segmentation and measurement was done using a multiple atlas approach. The Dice Similarity Coefficient (DSC) measured the level of spatial overlap between NeuroreaderTM and gold standard manual segmentation from 0 to 1 with 0 denoting no overlap and 1 representing complete agreement. DSC comparisons between 1.5 T and 3.0 T scanners were done using standard independent samples T-tests. Results: In the bilateral hippocampus, mean DSC was 0.87 with a range of 0.78–0.91 (right hippocampus) and 0.76–0.91 (left hippocampus). Automated segmentation agreement with manual segmentation was essentially equivalent at 1.5 T (DSC = 0.879) versus 3.0 T (DSC = 0.872). Conclusion: This work provides a description and validation of a software program that can be applied in measuring hippocampal volume, a biomarker that is frequently abnormal in AD and other neurological disorders. PMID:26484924

  20. Quantitative 3D imaging of yeast by hard X-ray tomography.

    PubMed

    Zheng, Ting; Li, Wenjie; Guan, Yong; Song, Xiangxia; Xiong, Ying; Liu, Gang; Tian, Yangchao

    2012-05-01

    Full-field hard X-ray tomography could be used to obtain three-dimensional (3D) nanoscale structures of biological samples. The image of the fission yeast, Schizosaccharomyces pombe, was clearly visualized based on Zernike phase contrast imaging technique and heavy metal staining method at a spatial resolution better than 50 nm at the energy of 8 keV. The distributions and shapes of the organelles during the cell cycle were clearly visualized and two types of organelle were distinguished. The results for cells during various phases were compared and the ratios of organelle volume to cell volume can be analyzed quantitatively. It showed that the ratios remained constant between growth and division phase and increased strongly in stationary phase, following the shape and size of two types of organelles changes. Our results demonstrated that hard X-ray microscopy was a complementary method for imaging and revealing structural information for biological samples. Copyright © 2011 Wiley Periodicals, Inc.

  1. Quantitative evaluations of mechanisms of radiofrequency interactions with biological molecules and processes.

    PubMed

    Sheppard, Asher R; Swicord, Mays L; Balzano, Quirino

    2008-10-01

    The complexity of interactions of electromagnetic fields up to 10(12) Hz with the ions, atoms, and molecules of biological systems has given rise to a large number of established and proposed biophysical mechanisms applicable over a wide range of time and distance scales, field amplitudes, frequencies, and waveforms. This review focuses on the physical principles that guide quantitative assessment of mechanisms applicable for exposures at or below the level of endogenous electric fields associated with development, wound healing, and excitation of muscles and the nervous system (generally, 1 to 10(2) V m(-1)), with emphasis on conditions where temperature increases are insignificant (<1 K). Experiment and theory demonstrate possible demodulation at membrane barriers for frequencies < or =10 MHz, but not at higher frequencies. Although signal levels somewhat below system noise can be detected, signal-to-noise ratios substantially less than 0.1 cannot be overcome by cooperativity, signal averaging, coherent detection, or by nonlinear dynamical systems. Sensory systems and possible effects on biological magnetite suggest paradigms for extreme sensitivity at lower frequencies, but there are no known radiofrequency (RF) analogues. At the molecular level, vibrational modes are so overdamped by water molecules that excitation of molecular modes below the far infrared cannot occur. Two RF mechanisms plausibly may affect biological matter under common exposure conditions. For frequencies below approximately 150 MHz, shifts in the rate of chemical reactions can be mediated by radical pairs and, at all frequencies, dielectric and resistive heating can raise temperature and increase the entropy of the affected biological system.

  2. Semi-automated 96-well liquid-liquid extraction for quantitation of drugs in biological fluids.

    PubMed

    Zhang, N; Hoffman, K L; Li, W; Rossi, D T

    2000-02-01

    A semi-automated liquid-liquid extraction (LLE) technique for biological fluid sample preparation was introduced for the quantitation of four drugs in rat plasma. All liquid transferring during the sample preparation was automated using a Tomtec Quadra 96 Model 320 liquid handling robot, which processed up to 96 samples in parallel. The samples were either in 96-deep-well plate or tube-rack format. One plate of samples can be prepared in approximately 1.5 h, and the 96-well plate is directly compatible with the autosampler of an LC/MS system. Selection of organic solvents and recoveries are discussed. Also, precision, relative error, linearity and quantitation of the semi automated LLE method are estimated for four example drugs using LC/MS/MS with a multiple reaction monitoring (MRM) approach. The applicability of this method and future directions are evaluated.

  3. Systems for Lung Volume Standardization during Static and Dynamic MDCT-based Quantitative Assessment of Pulmonary Structure and Function

    PubMed Central

    Fuld, Matthew K.; Grout, Randall; Guo, Junfeng; Morgan, John H.; Hoffman, Eric A.

    2013-01-01

    Rationale and Objectives Multidetector-row Computed Tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics) and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breath-hold at a standardized volume. Materials and Methods A computer monitored turbine-based flow meter system was developed to control patient breath-holds and facilitate static imaging at fixed percentages of the vital capacity. Due to calibration challenges with gas density changes during multi-breath xenon-CT an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. Results The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was −9 ml (−169, 151); for TLC alone 6 ml (−164, 177); for FRC alone, −23 ml (−172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject non-compliance with verbal instruction and gas leaks around the mouthpiece. Conclusion We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon-CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multi-breath wash-in xenon-CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon-CT method for assessing regional lung function, while not

  4. Systems for lung volume standardization during static and dynamic MDCT-based quantitative assessment of pulmonary structure and function.

    PubMed

    Fuld, Matthew K; Grout, Randall W; Guo, Junfeng; Morgan, John H; Hoffman, Eric A

    2012-08-01

    Multidetector-row computed tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics), and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breathhold at a standardized volume. A computer monitored turbine-based flow meter system was developed to control patient breathholds and facilitate static imaging at fixed percentages of the vital capacity. Because of calibration challenges with gas density changes during multibreath xenon CT, an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was -9 mL (-169, 151); for total lung capacity alone 6 mL (-164, 177); for functional residual capacity alone, -23 mL (-172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject noncompliance with verbal instruction and gas leaks around the mouthpiece. We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multibreath wash-in xenon CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon CT method for assessing regional lung function, although not necessarily practical for routine

  5. Measurement issues associated with quantitative molecular biology analysis of complex food matrices for the detection of food fraud.

    PubMed

    Burns, Malcolm; Wiseman, Gordon; Knight, Angus; Bramley, Peter; Foster, Lucy; Rollinson, Sophie; Damant, Andrew; Primrose, Sandy

    2016-01-07

    Following a report on a significant amount of horse DNA being detected in a beef burger product on sale to the public at a UK supermarket in early 2013, the Elliott report was published in 2014 and contained a list of recommendations for helping ensure food integrity. One of the recommendations included improving laboratory testing capacity and capability to ensure a harmonised approach for testing for food authenticity. Molecular biologists have developed exquisitely sensitive methods based on the polymerase chain reaction (PCR) or mass spectrometry for detecting the presence of particular nucleic acid or peptide/protein sequences. These methods have been shown to be specific and sensitive in terms of lower limits of applicability, but they are largely qualitative in nature. Historically, the conversion of these qualitative techniques into reliable quantitative methods has been beset with problems even when used on relatively simple sample matrices. When the methods are applied to complex sample matrices, as found in many foods, the problems are magnified resulting in a high measurement uncertainty associated with the result which may mean that the assay is not fit for purpose. However, recent advances in the technology and the understanding of molecular biology approaches have further given rise to the re-assessment of these methods for their quantitative potential. This review focuses on important issues for consideration when validating a molecular biology assay and the various factors that can impact on the measurement uncertainty of a result associated with molecular biology approaches used in detection of food fraud, with a particular focus on quantitative PCR-based and proteomics assays.

  6. Quantitative dispersion microscopy

    PubMed Central

    Fu, Dan; Choi, Wonshik; Sung, Yongjin; Yaqoob, Zahid; Dasari, Ramachandra R.; Feld, Michael

    2010-01-01

    Refractive index dispersion is an intrinsic optical property and a useful source of contrast in biological imaging studies. In this report, we present the first dispersion phase imaging of living eukaryotic cells. We have developed quantitative dispersion microscopy based on the principle of quantitative phase microscopy. The dual-wavelength quantitative phase microscope makes phase measurements at 310 nm and 400 nm wavelengths to quantify dispersion (refractive index increment ratio) of live cells. The measured dispersion of living HeLa cells is found to be around 1.088, which agrees well with that measured directly for protein solutions using total internal reflection. This technique, together with the dry mass and morphology measurements provided by quantitative phase microscopy, could prove to be a useful tool for distinguishing different types of biomaterials and studying spatial inhomogeneities of biological samples. PMID:21113234

  7. An integrative strategy for quantitative analysis of the N-glycoproteome in complex biological samples.

    PubMed

    Wang, Ji; Zhou, Chuang; Zhang, Wei; Yao, Jun; Lu, Haojie; Dong, Qiongzhu; Zhou, Haijun; Qin, Lunxiu

    2014-01-15

    The complexity of protein glycosylation makes it difficult to characterize glycosylation patterns on a proteomic scale. In this study, we developed an integrated strategy for comparatively analyzing N-glycosylation/glycoproteins quantitatively from complex biological samples in a high-throughput manner. This strategy entailed separating and enriching glycopeptides/glycoproteins using lectin affinity chromatography, and then tandem labeling them with 18O/16O to generate a mass shift of 6 Da between the paired glycopeptides, and finally analyzing them with liquid chromatography-mass spectrometry (LC-MS) and the automatic quantitative method we developed based on Mascot Distiller. The accuracy and repeatability of this strategy were first verified using standard glycoproteins; linearity was maintained within a range of 1:10-10:1. The peptide concentration ratios obtained by the self-build quantitative method were similar to both the manually calculated and theoretical values, with a standard deviation (SD) of 0.023-0.186 for glycopeptides. The feasibility of the strategy was further confirmed with serum from hepatocellular carcinoma (HCC) patients and healthy individuals; the expression of 44 glycopeptides and 30 glycoproteins were significantly different between HCC patient and control serum. This strategy is accurate, repeatable, and efficient, and may be a useful tool for identification of disease-related N-glycosylation/glycoprotein changes.

  8. Quantitative assessment of image motion blur in diffraction images of moving biological cells

    NASA Astrophysics Data System (ADS)

    Wang, He; Jin, Changrong; Feng, Yuanming; Qi, Dandan; Sa, Yu; Hu, Xin-Hua

    2016-02-01

    Motion blur (MB) presents a significant challenge for obtaining high-contrast image data from biological cells with a polarization diffraction imaging flow cytometry (p-DIFC) method. A new p-DIFC experimental system has been developed to evaluate the MB and its effect on image analysis using a time-delay-integration (TDI) CCD camera. Diffraction images of MCF-7 and K562 cells have been acquired with different speed-mismatch ratios and compared to characterize MB quantitatively. Frequency analysis of the diffraction images shows that the degree of MB can be quantified by bandwidth variations of the diffraction images along the motion direction. The analytical results were confirmed by the p-DIFC image data acquired at different speed-mismatch ratios and used to validate a method of numerical simulation of MB on blur-free diffraction images, which provides a useful tool to examine the blurring effect on diffraction images acquired from the same cell. These results provide insights on the dependence of diffraction image on MB and allow significant improvement on rapid biological cell assay with the p-DIFC method.

  9. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    NASA Astrophysics Data System (ADS)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  10. Gender, Math Confidence, and Grit: Relationships with Quantitative Skills and Performance in an Undergraduate Biology Course

    PubMed Central

    Flanagan, K. M.; Einarson, J.

    2017-01-01

    In a world filled with big data, mathematical models, and statistics, the development of strong quantitative skills is becoming increasingly critical for modern biologists. Teachers in this field must understand how students acquire quantitative skills and explore barriers experienced by students when developing these skills. In this study, we examine the interrelationships among gender, grit, and math confidence for student performance on a pre–post quantitative skills assessment and overall performance in an undergraduate biology course. Here, we show that females significantly underperformed relative to males on a quantitative skills assessment at the start of term. However, females showed significantly higher gains over the semester, such that the gender gap in performance was nearly eliminated by the end of the semester. Math confidence plays an important role in the performance on both the pre and post quantitative skills assessments and overall performance in the course. The effect of grit on student performance, however, is mediated by a student’s math confidence; as math confidence increases, the positive effect of grit decreases. Consequently, the positive impact of a student’s grittiness is observed most strongly for those students with low math confidence. We also found grit to be positively associated with the midterm score and the final grade in the course. Given the relationships established in this study among gender, grit, and math confidence, we provide “instructor actions” from the literature that can be applied in the classroom to promote the development of quantitative skills in light of our findings. PMID:28798209

  11. Exploring Phytoplankton Population Investigation Growth to Enhance Quantitative Literacy

    ERIC Educational Resources Information Center

    Baumgartner, Erin; Biga, Lindsay; Bledsoe, Karen; Dawson, James; Grammer, Julie; Howard, Ava; Snyder, Jeffrey

    2015-01-01

    Quantitative literacy is essential to biological literacy (and is one of the core concepts in "Vision and Change in Undergraduate Biology Education: A Call to Action"; AAAS 2009). Building quantitative literacy is a challenging endeavor for biology instructors. Integrating mathematical skills into biological investigations can help build…

  12. Novel Uses of In Vitro Data to Develop Quantitative Biological Activity Relationship Models for in Vivo Carcinogenicity Prediction.

    PubMed

    Pradeep, Prachi; Povinelli, Richard J; Merrill, Stephen J; Bozdag, Serdar; Sem, Daniel S

    2015-04-01

    The availability of large in vitro datasets enables better insight into the mode of action of chemicals and better identification of potential mechanism(s) of toxicity. Several studies have shown that not all in vitro assays can contribute as equal predictors of in vivo carcinogenicity for development of hybrid Quantitative Structure Activity Relationship (QSAR) models. We propose two novel approaches for the use of mechanistically relevant in vitro assay data in the identification of relevant biological descriptors and development of Quantitative Biological Activity Relationship (QBAR) models for carcinogenicity prediction. We demonstrate that in vitro assay data can be used to develop QBAR models for in vivo carcinogenicity prediction via two case studies corroborated with firm scientific rationale. The case studies demonstrate the similarities between QBAR and QSAR modeling in: (i) the selection of relevant descriptors to be used in the machine learning algorithm, and (ii) the development of a computational model that maps chemical or biological descriptors to a toxic endpoint. The results of both the case studies show: (i) improved accuracy and sensitivity which is especially desirable under regulatory requirements, and (ii) overall adherence with the OECD/REACH guidelines. Such mechanism based models can be used along with QSAR models for prediction of mechanistically complex toxic endpoints. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The physical and biological basis of quantitative parameters derived from diffusion MRI

    PubMed Central

    2012-01-01

    Diffusion magnetic resonance imaging is a quantitative imaging technique that measures the underlying molecular diffusion of protons. Diffusion-weighted imaging (DWI) quantifies the apparent diffusion coefficient (ADC) which was first used to detect early ischemic stroke. However this does not take account of the directional dependence of diffusion seen in biological systems (anisotropy). Diffusion tensor imaging (DTI) provides a mathematical model of diffusion anisotropy and is widely used. Parameters, including fractional anisotropy (FA), mean diffusivity (MD), parallel and perpendicular diffusivity can be derived to provide sensitive, but non-specific, measures of altered tissue structure. They are typically assessed in clinical studies by voxel-based or region-of-interest based analyses. The increasing recognition of the limitations of the diffusion tensor model has led to more complex multi-compartment models such as CHARMED, AxCaliber or NODDI being developed to estimate microstructural parameters including axonal diameter, axonal density and fiber orientations. However these are not yet in routine clinical use due to lengthy acquisition times. In this review, I discuss how molecular diffusion may be measured using diffusion MRI, the biological and physical bases for the parameters derived from DWI and DTI, how these are used in clinical studies and the prospect of more complex tissue models providing helpful micro-structural information. PMID:23289085

  14. Explicit tracking of uncertainty increases the power of quantitative rule-of-thumb reasoning in cell biology.

    PubMed

    Johnston, Iain G; Rickett, Benjamin C; Jones, Nick S

    2014-12-02

    Back-of-the-envelope or rule-of-thumb calculations involving rough estimates of quantities play a central scientific role in developing intuition about the structure and behavior of physical systems, for example in so-called Fermi problems in the physical sciences. Such calculations can be used to powerfully and quantitatively reason about biological systems, particularly at the interface between physics and biology. However, substantial uncertainties are often associated with values in cell biology, and performing calculations without taking this uncertainty into account may limit the extent to which results can be interpreted for a given problem. We present a means to facilitate such calculations where uncertainties are explicitly tracked through the line of reasoning, and introduce a probabilistic calculator called CALADIS, a free web tool, designed to perform this tracking. This approach allows users to perform more statistically robust calculations in cell biology despite having uncertain values, and to identify which quantities need to be measured more precisely to make confident statements, facilitating efficient experimental design. We illustrate the use of our tool for tracking uncertainty in several example biological calculations, showing that the results yield powerful and interpretable statistics on the quantities of interest. We also demonstrate that the outcomes of calculations may differ from point estimates when uncertainty is accurately tracked. An integral link between CALADIS and the BioNumbers repository of biological quantities further facilitates the straightforward location, selection, and use of a wealth of experimental data in cell biological calculations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. An integrative strategy for quantitative analysis of the N-glycoproteome in complex biological samples

    PubMed Central

    2014-01-01

    Background The complexity of protein glycosylation makes it difficult to characterize glycosylation patterns on a proteomic scale. In this study, we developed an integrated strategy for comparatively analyzing N-glycosylation/glycoproteins quantitatively from complex biological samples in a high-throughput manner. This strategy entailed separating and enriching glycopeptides/glycoproteins using lectin affinity chromatography, and then tandem labeling them with 18O/16O to generate a mass shift of 6 Da between the paired glycopeptides, and finally analyzing them with liquid chromatography-mass spectrometry (LC-MS) and the automatic quantitative method we developed based on Mascot Distiller. Results The accuracy and repeatability of this strategy were first verified using standard glycoproteins; linearity was maintained within a range of 1:10–10:1. The peptide concentration ratios obtained by the self-build quantitative method were similar to both the manually calculated and theoretical values, with a standard deviation (SD) of 0.023–0.186 for glycopeptides. The feasibility of the strategy was further confirmed with serum from hepatocellular carcinoma (HCC) patients and healthy individuals; the expression of 44 glycopeptides and 30 glycoproteins were significantly different between HCC patient and control serum. Conclusions This strategy is accurate, repeatable, and efficient, and may be a useful tool for identification of disease-related N-glycosylation/glycoprotein changes. PMID:24428921

  16. Life at the Common Denominator: Mechanistic and Quantitative Biology for the Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.

    2010-01-01

    The remarkable challenges and possibilities of the coming few decades will compel the biogeochemical and astrobiological sciences to characterize the interactions between biology and its environment in a fundamental, mechanistic, and quantitative fashion. The clear need for integrative and scalable biology-environment models is exemplified in the Earth sciences by the challenge of effectively addressing anthropogenic global change, and in the space sciences by the challenge of mounting a well-constrained yet sufficiently adaptive and inclusive search for life beyond Earth. Our understanding of the life-planet interaction is still, however, largely empirical. A variety of approaches seek to move from empirical to mechanistic descriptions. One approach focuses on the relationship between biology and energy, which is at once universal (all life requires energy), unique (life manages energy flow in a fashion not seen in abiotic systems), and amenable to characterization and quantification in thermodynamic terms. Simultaneously, a focus on energy flow addresses a critical point of interface between life and its geological, chemical, and physical environment. Characterizing and quantifying this relationship for life on Earth will support the development of integrative and predictive models for biology-environment dynamics. Understanding this relationship at its most fundamental level holds potential for developing concepts of habitability and biosignatures that can optimize astrobiological exploration strategies and are extensible to all life.

  17. High resolution gas volume change sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirckx, Joris J. J.; Aernouts, Jef E. F.; Aerts, Johan R. M.

    2007-05-15

    Changes of gas quantity in a system can be measured either by measuring pressure changes or by measuring volume changes. As sensitive pressure sensors are readily available, pressure change is the commonly used technique. In many physiologic systems, however, buildup of pressure influences the gas exchange mechanisms, thus changing the gas quantity change rate. If one wants to study the gas flow in or out of a biological gas pocket, measurements need to be done at constant pressure. In this article we present a highly sensitive sensor for quantitative measurements of gas volume change at constant pressure. The sensor ismore » based on optical detection of the movement of a droplet of fluid enclosed in a capillary. The device is easy to use and delivers gas volume data at a rate of more than 15 measurements/s and a resolution better than 0.06 {mu}l. At the onset of a gas quantity change the sensor shows a small pressure artifact of less than 15 Pa, and at constant change rates the pressure artifact is smaller than 10 Pa or 0.01% of ambient pressure.« less

  18. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters.

    PubMed

    Hadfield, J D; Nakagawa, S

    2010-03-01

    Although many of the statistical techniques used in comparative biology were originally developed in quantitative genetics, subsequent development of comparative techniques has progressed in relative isolation. Consequently, many of the new and planned developments in comparative analysis already have well-tested solutions in quantitative genetics. In this paper, we take three recent publications that develop phylogenetic meta-analysis, either implicitly or explicitly, and show how they can be considered as quantitative genetic models. We highlight some of the difficulties with the proposed solutions, and demonstrate that standard quantitative genetic theory and software offer solutions. We also show how results from Bayesian quantitative genetics can be used to create efficient Markov chain Monte Carlo algorithms for phylogenetic mixed models, thereby extending their generality to non-Gaussian data. Of particular utility is the development of multinomial models for analysing the evolution of discrete traits, and the development of multi-trait models in which traits can follow different distributions. Meta-analyses often include a nonrandom collection of species for which the full phylogenetic tree has only been partly resolved. Using missing data theory, we show how the presented models can be used to correct for nonrandom sampling and show how taxonomies and phylogenies can be combined to give a flexible framework with which to model dependence.

  19. Women are underrepresented in computational biology: An analysis of the scholarly literature in biology, computer science and computational biology.

    PubMed

    Bonham, Kevin S; Stefan, Melanie I

    2017-10-01

    While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.

  20. Women are underrepresented in computational biology: An analysis of the scholarly literature in biology, computer science and computational biology

    PubMed Central

    2017-01-01

    While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance. PMID:29023441

  1. Quantitative biological surface science: challenges and recent advances.

    PubMed

    Höök, Fredrik; Kasemo, Bengt; Grunze, Michael; Zauscher, Stefan

    2008-12-23

    Biological surface science is a broad, interdisciplinary subfield of surface science, where properties and processes at biological and synthetic surfaces and interfaces are investigated, and where biofunctional surfaces are fabricated. The need to study and to understand biological surfaces and interfaces in liquid environments provides sizable challenges as well as fascinating opportunities. Here, we report on recent progress in biological surface science that was described within the program assembled by the Biomaterial Interface Division of the Science and Technology of Materials, Interfaces and Processes (www.avs.org) during their 55th International Symposium and Exhibition held in Boston, October 19-24, 2008. The selected examples show that the rapid progress in nanoscience and nanotechnology, hand-in-hand with theory and simulation, provides increasingly sophisticated methods and tools to unravel the mechanisms and details of complex processes at biological surfaces and in-depth understanding of biomolecular surface interactions.

  2. FDG-PET-based differential uptake volume histograms: a possible approach towards definition of biological target volumes.

    PubMed

    Devic, Slobodan; Mohammed, Huriyyah; Tomic, Nada; Aldelaijan, Saad; De Blois, François; Seuntjens, Jan; Lehnert, Shirley; Faria, Sergio

    2016-06-01

    Integration of fluorine-18 fludeoxyglucose ((18)F-FDG)-positron emission tomography (PET) functional data into conventional anatomically based gross tumour volume delineation may lead to optimization of dose to biological target volumes (BTV) in radiotherapy. We describe a method for defining tumour subvolumes using (18)F-FDG-PET data, based on the decomposition of differential uptake volume histograms (dUVHs). For 27 patients with histopathologically proven non-small-cell lung carcinoma (NSCLC), background uptake values were sampled within the healthy lung contralateral to a tumour in those image slices containing tumour and then scaled by the ratio of mass densities between the healthy lung and tumour. Signal-to-background (S/B) uptake values within volumes of interest encompassing the tumour were used to reconstruct the dUVHs. These were subsequently decomposed into the minimum number of analytical functions (in the form of differential uptake values as a function of S/B) that yielded acceptable net fits, as assessed by χ(2) values. Six subvolumes consistently emerged from the fitted dUVHs over the sampled volume of interest on PET images. Based on the assumption that each function used to decompose the dUVH may correspond to a single subvolume, the intersection between the two adjacent functions could be interpreted as a threshold value that differentiates them. Assuming that the first two subvolumes spread over the tumour boundary, we concentrated on four subvolumes with the highest uptake values, and their S/B thresholds [mean ± standard deviation (SD)] were 2.88 ± 0.98, 4.05 ± 1.55, 5.48 ± 2.06 and 7.34 ± 2.89 for adenocarcinoma, 3.01 ± 0.71, 4.40 ± 0.91, 5.99 ± 1.31 and 8.17 ± 2.42 for large-cell carcinoma and 4.54 ± 2.11, 6.46 ± 2.43, 8.87 ± 5.37 and 12.11 ± 7.28 for squamous cell carcinoma, respectively. (18)F-FDG-based PET data may potentially be used to identify BTV within the tumour in

  3. Objective breast tissue image classification using Quantitative Transmission ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Malik, Bilal; Klock, John; Wiskin, James; Lenox, Mark

    2016-12-01

    Quantitative Transmission Ultrasound (QT) is a powerful and emerging imaging paradigm which has the potential to perform true three-dimensional image reconstruction of biological tissue. Breast imaging is an important application of QT and allows non-invasive, non-ionizing imaging of whole breasts in vivo. Here, we report the first demonstration of breast tissue image classification in QT imaging. We systematically assess the ability of the QT images’ features to differentiate between normal breast tissue types. The three QT features were used in Support Vector Machines (SVM) classifiers, and classification of breast tissue as either skin, fat, glands, ducts or connective tissue was demonstrated with an overall accuracy of greater than 90%. Finally, the classifier was validated on whole breast image volumes to provide a color-coded breast tissue volume. This study serves as a first step towards a computer-aided detection/diagnosis platform for QT.

  4. Biological Effects of Nonionizing Electromagnetic Radiation. Volume 7, Number 2-4, July thru December 1982.

    DTIC Science & Technology

    1983-07-01

    MICROWAVE IRRA- dichotomy in MW susceptibility between two strains DIATION ON MA%4MALIAN CELLS INCUBATED IN congenic at the H- 2 Tla region on chromosome 17...Marsden Hosp., Fulham Road, London or the system is tlerant to typically 2 )1 errors in SW 3, England); Jotes, C. H. Strahlentherapie 158(6): -he phases...A Biological Effects of Nonionizing Electromagnetic Radiation Volume VII. Number 2 -4 (July Thru Decemoer 1982) July 1983 A Digest of Current

  5. Biological evolution of replicator systems: towards a quantitative approach.

    PubMed

    Martin, Osmel; Horvath, J E

    2013-04-01

    The aim of this work is to study the features of a simple replicator chemical model of the relation between kinetic stability and entropy production under the action of external perturbations. We quantitatively explore the different paths leading to evolution in a toy model where two independent replicators compete for the same substrate. To do that, the same scenario described originally by Pross (J Phys Org Chem 17:312-316, 2004) is revised and new criteria to define the kinetic stability are proposed. Our results suggest that fast replicator populations are continually favored by the effects of strong stochastic environmental fluctuations capable to determine the global population, the former assumed to be the only acting evolution force. We demonstrate that the process is continually driven by strong perturbations only, and that population crashes may be useful proxies for these catastrophic environmental fluctuations. As expected, such behavior is particularly enhanced under very large scale perturbations, suggesting a likely dynamical footprint in the recovery patterns of new species after mass extinction events in the Earth's geological past. Furthermore, the hypothesis that natural selection always favors the faster processes may give theoretical support to different studies that claim the applicability of maximum principles like the Maximum Metabolic Flux (MMF) or Maximum Entropy Productions Principle (MEPP), seen as the main goal of biological evolution.

  6. Biological Evolution of Replicator Systems: Towards a Quantitative Approach

    NASA Astrophysics Data System (ADS)

    Martin, Osmel; Horvath, J. E.

    2013-04-01

    The aim of this work is to study the features of a simple replicator chemical model of the relation between kinetic stability and entropy production under the action of external perturbations. We quantitatively explore the different paths leading to evolution in a toy model where two independent replicators compete for the same substrate. To do that, the same scenario described originally by Pross (J Phys Org Chem 17:312-316, 2004) is revised and new criteria to define the kinetic stability are proposed. Our results suggest that fast replicator populations are continually favored by the effects of strong stochastic environmental fluctuations capable to determine the global population, the former assumed to be the only acting evolution force. We demonstrate that the process is continually driven by strong perturbations only, and that population crashes may be useful proxies for these catastrophic environmental fluctuations. As expected, such behavior is particularly enhanced under very large scale perturbations, suggesting a likely dynamical footprint in the recovery patterns of new species after mass extinction events in the Earth's geological past. Furthermore, the hypothesis that natural selection always favors the faster processes may give theoretical support to different studies that claim the applicability of maximum principles like the Maximum Metabolic Flux (MMF) or Maximum Entropy Productions Principle (MEPP), seen as the main goal of biological evolution.

  7. Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy

    PubMed Central

    Valades Cruz, Cesar Augusto; Shaban, Haitham Ahmed; Kress, Alla; Bertaux, Nicolas; Monneret, Serge; Mavrakis, Manos; Savatier, Julien; Brasselet, Sophie

    2016-01-01

    Essential cellular functions as diverse as genome maintenance and tissue morphogenesis rely on the dynamic organization of filamentous assemblies. For example, the precise structural organization of DNA filaments has profound consequences on all DNA-mediated processes including gene expression, whereas control over the precise spatial arrangement of cytoskeletal protein filaments is key for mechanical force generation driving animal tissue morphogenesis. Polarized fluorescence is currently used to extract structural organization of fluorescently labeled biological filaments by determining the orientation of fluorescent labels, however with a strong drawback: polarized fluorescence imaging is indeed spatially limited by optical diffraction, and is thus unable to discriminate between the intrinsic orientational mobility of the fluorophore labels and the real structural disorder of the labeled biomolecules. Here, we demonstrate that quantitative single-molecule polarized detection in biological filament assemblies allows not only to correct for the rotational flexibility of the label but also to image orientational order of filaments at the nanoscale using superresolution capabilities. The method is based on polarized direct stochastic optical reconstruction microscopy, using dedicated optical scheme and image analysis to determine both molecular localization and orientation with high precision. We apply this method to double-stranded DNA in vitro and microtubules and actin stress fibers in whole cells. PMID:26831082

  8. Biology. Focus on Excellence. Volume 1, Number 3.

    ERIC Educational Resources Information Center

    Penick, John E., Ed.; Bonnstetter, Ronald J.

    The 1982 Search for Excellence in Science Education project has identified 10 exemplary programs in biology. Descriptions of the programs and the criteria used in their selection are presented. Chapter 1 discusses the desired state in biology education, examining the goals of biology education and how these goals relate to biology curriculum and…

  9. Light sheet theta microscopy for rapid high-resolution imaging of large biological samples.

    PubMed

    Migliori, Bianca; Datta, Malika S; Dupre, Christophe; Apak, Mehmet C; Asano, Shoh; Gao, Ruixuan; Boyden, Edward S; Hermanson, Ola; Yuste, Rafael; Tomer, Raju

    2018-05-29

    Advances in tissue clearing and molecular labeling methods are enabling unprecedented optical access to large intact biological systems. These developments fuel the need for high-speed microscopy approaches to image large samples quantitatively and at high resolution. While light sheet microscopy (LSM), with its high planar imaging speed and low photo-bleaching, can be effective, scaling up to larger imaging volumes has been hindered by the use of orthogonal light sheet illumination. To address this fundamental limitation, we have developed light sheet theta microscopy (LSTM), which uniformly illuminates samples from the same side as the detection objective, thereby eliminating limits on lateral dimensions without sacrificing the imaging resolution, depth, and speed. We present a detailed characterization of LSTM, and demonstrate its complementary advantages over LSM for rapid high-resolution quantitative imaging of large intact samples with high uniform quality. The reported LSTM approach is a significant step for the rapid high-resolution quantitative mapping of the structure and function of very large biological systems, such as a clarified thick coronal slab of human brain and uniformly expanded tissues, and also for rapid volumetric calcium imaging of highly motile animals, such as Hydra, undergoing non-isomorphic body shape changes.

  10. Longitudinal spatial coherence gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination

    NASA Astrophysics Data System (ADS)

    Mehta, Dalip Singh; Ahmad, Azeem; Dubey, Vishesh; Singh, Veena; Butola, Ankit; Mohanty, Tonmoy; Nandi, Sreyankar

    2018-02-01

    We report longitudinal spatial coherence (LSC) gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination using laser as a light source. To accomplish this a pseudo thermal light source was synthesized by passing laser beams through an optical system, which is basically a speckle reduction system with combined effect of spatial, temporal, angular and polarisation diversity. The longitudinal spatial coherence length of such light was significantly reduced by synthesizing a pseudo thermal source with the combined effect of spatial, angular and temporal diversity. This results in a low spatially coherent (i.e., broad angular frequency spectrum) light source with narrow temporal frequency spectrum. Light from such a pseudo thermal light source was passed through an interference microscope with varying magnification, such as, 10X and 50X. The interference microscope was used for full-field OCT imaging of multilayer objects and topography of industrial objects. Experimental results of optical sectioning of multilayer biological objects with high axial-resolution less than 10μm was achieved which is comparable to broadband white light source. The synthesized light source with reduced speckles having uniform illumination on the sample, which can be very useful for fluorescence microscopy as well as quantitative phase microscopy with less phase noise. The present system does not require any dispersion compensation optical system for biological samples as a highly monochromatic light source is used.

  11. Statistical Issues in the Comparison of Quantitative Imaging Biomarker Algorithms using Pulmonary Nodule Volume as an Example

    PubMed Central

    2014-01-01

    Quantitative imaging biomarkers (QIBs) are being used increasingly in medicine to diagnose and monitor patients’ disease. The computer algorithms that measure QIBs have different technical performance characteristics. In this paper we illustrate the appropriate statistical methods for assessing and comparing the bias, precision, and agreement of computer algorithms. We use data from three studies of pulmonary nodules. The first study is a small phantom study used to illustrate metrics for assessing repeatability. The second study is a large phantom study allowing assessment of four algorithms’ bias and reproducibility for measuring tumor volume and the change in tumor volume. The third study is a small clinical study of patients whose tumors were measured on two occasions. This study allows a direct assessment of six algorithms’ performance for measuring tumor change. With these three examples we compare and contrast study designs and performance metrics, and we illustrate the advantages and limitations of various common statistical methods for QIB studies. PMID:24919828

  12. First experiences with model based iterative reconstructions influence on quantitative plaque volume and intensity measurements in coronary computed tomography angiography.

    PubMed

    Precht, H; Kitslaar, P H; Broersen, A; Gerke, O; Dijkstra, J; Thygesen, J; Egstrup, K; Lambrechtsen, J

    2017-02-01

    Investigate the influence of adaptive statistical iterative reconstruction (ASIR) and the model-based IR (Veo) reconstruction algorithm in coronary computed tomography angiography (CCTA) images on quantitative measurements in coronary arteries for plaque volumes and intensities. Three patients had three independent dose reduced CCTA performed and reconstructed with 30% ASIR (CTDI vol at 6.7 mGy), 60% ASIR (CTDI vol 4.3 mGy) and Veo (CTDI vol at 1.9 mGy). Coronary plaque analysis was performed for each measured CCTA volumes, plaque burden and intensities. Plaque volume and plaque burden show a decreasing tendency from ASIR to Veo as median volume for ASIR is 314 mm 3 and 337 mm 3 -252 mm 3 for Veo and plaque burden is 42% and 44% for ASIR to 39% for Veo. The lumen and vessel volume decrease slightly from 30% ASIR to 60% ASIR with 498 mm 3 -391 mm 3 for lumen volume and vessel volume from 939 mm 3 to 830 mm 3 . The intensities did not change overall between the different reconstructions for either lumen or plaque. We found a tendency of decreasing plaque volumes and plaque burden but no change in intensities with the use of low dose Veo CCTA (1.9 mGy) compared to dose reduced ASIR CCTA (6.7 mGy & 4.3 mGy), although more studies are warranted. Copyright © 2016 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  13. Optimization of Evans blue quantitation in limited rat tissue samples

    PubMed Central

    Wang, Hwai-Lee; Lai, Ted Weita

    2014-01-01

    Evans blue dye (EBD) is an inert tracer that measures plasma volume in human subjects and vascular permeability in animal models. Quantitation of EBD can be difficult when dye concentration in the sample is limited, such as when extravasated dye is measured in the blood-brain barrier (BBB) intact brain. The procedure described here used a very small volume (30 µl) per sample replicate, which enabled high-throughput measurements of the EBD concentration based on a standard 96-well plate reader. First, ethanol ensured a consistent optic path length in each well and substantially enhanced the sensitivity of EBD fluorescence spectroscopy. Second, trichloroacetic acid (TCA) removed false-positive EBD measurements as a result of biological solutes and partially extracted EBD into the supernatant. Moreover, a 1:2 volume ratio of 50% TCA ([TCA final] = 33.3%) optimally extracted EBD from the rat plasma protein-EBD complex in vitro and in vivo, and 1:2 and 1:3 weight-volume ratios of 50% TCA optimally extracted extravasated EBD from the rat brain and liver, respectively, in vivo. This procedure is particularly useful in the detection of EBD extravasation into the BBB-intact brain, but it can also be applied to detect dye extravasation into tissues where vascular permeability is less limiting. PMID:25300427

  14. Optimization of Evans blue quantitation in limited rat tissue samples

    NASA Astrophysics Data System (ADS)

    Wang, Hwai-Lee; Lai, Ted Weita

    2014-10-01

    Evans blue dye (EBD) is an inert tracer that measures plasma volume in human subjects and vascular permeability in animal models. Quantitation of EBD can be difficult when dye concentration in the sample is limited, such as when extravasated dye is measured in the blood-brain barrier (BBB) intact brain. The procedure described here used a very small volume (30 µl) per sample replicate, which enabled high-throughput measurements of the EBD concentration based on a standard 96-well plate reader. First, ethanol ensured a consistent optic path length in each well and substantially enhanced the sensitivity of EBD fluorescence spectroscopy. Second, trichloroacetic acid (TCA) removed false-positive EBD measurements as a result of biological solutes and partially extracted EBD into the supernatant. Moreover, a 1:2 volume ratio of 50% TCA ([TCA final] = 33.3%) optimally extracted EBD from the rat plasma protein-EBD complex in vitro and in vivo, and 1:2 and 1:3 weight-volume ratios of 50% TCA optimally extracted extravasated EBD from the rat brain and liver, respectively, in vivo. This procedure is particularly useful in the detection of EBD extravasation into the BBB-intact brain, but it can also be applied to detect dye extravasation into tissues where vascular permeability is less limiting.

  15. Phase calibration target for quantitative phase imaging with ptychography.

    PubMed

    Godden, T M; Muñiz-Piniella, A; Claverley, J D; Yacoot, A; Humphry, M J

    2016-04-04

    Quantitative phase imaging (QPI) utilizes refractive index and thickness variations that lead to optical phase shifts. This gives contrast to images of transparent objects. In quantitative biology, phase images are used to accurately segment cells and calculate properties such as dry mass, volume and proliferation rate. The fidelity of the measured phase shifts is of critical importance in this field. However to date, there has been no standardized method for characterizing the performance of phase imaging systems. Consequently, there is an increasing need for protocols to test the performance of phase imaging systems using well-defined phase calibration and resolution targets. In this work, we present a candidate for a standardized phase resolution target, and measurement protocol for the determination of the transfer of spatial frequencies, and sensitivity of a phase imaging system. The target has been carefully designed to contain well-defined depth variations over a broadband range of spatial frequencies. In order to demonstrate the utility of the target, we measure quantitative phase images on a ptychographic microscope, and compare the measured optical phase shifts with Atomic Force Microscopy (AFM) topography maps and surface profile measurements from coherence scanning interferometry. The results show that ptychography has fully quantitative nanometer sensitivity in optical path differences over a broadband range of spatial frequencies for feature sizes ranging from micrometers to hundreds of micrometers.

  16. Quantitative analysis of three-dimensional biological cells using interferometric microscopy

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Wax, Adam

    2011-06-01

    Live biological cells are three-dimensional microscopic objects that constantly adjust their sizes, shapes and other biophysical features. Wide-field digital interferometry (WFDI) is a holographic technique that is able to record the complex wavefront of the light which has interacted with in-vitro cells in a single camera exposure, where no exogenous contrast agents are required. However, simple quasi-three-dimensional holographic visualization of the cell phase profiles need not be the end of the process. Quantitative analysis should permit extraction of numerical parameters which are useful for cytology or medical diagnosis. Using a transmission-mode setup, the phase profile represents the multiplication between the integral refractive index and the thickness of the sample. These coupled variables may not be distinct when acquiring the phase profiles of dynamic cells. Many morphological parameters which are useful for cell biologists are based on the cell thickness profile rather than on its phase profile. We first overview methods to decouple the cell thickness and its refractive index using the WFDI-based phase profile. Then, we present a whole-cell-imaging approach which is able to extract useful numerical parameters on the cells even in cases where decoupling of cell thickness and refractive index is not possible or desired.

  17. Quantitative CT: technique dependence of volume estimation on pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Colsher, James; Amurao, Maxwell; Samei, Ehsan

    2012-03-01

    Current estimation of lung nodule size typically relies on uni- or bi-dimensional techniques. While new three-dimensional volume estimation techniques using MDCT have improved size estimation of nodules with irregular shapes, the effect of acquisition and reconstruction parameters on accuracy (bias) and precision (variance) of the new techniques has not been fully investigated. To characterize the volume estimation performance dependence on these parameters, an anthropomorphic chest phantom containing synthetic nodules was scanned and reconstructed with protocols across various acquisition and reconstruction parameters. Nodule volumes were estimated by a clinical lung analysis software package, LungVCAR. Precision and accuracy of the volume assessment were calculated across the nodules and compared between protocols via a generalized estimating equation analysis. Results showed that the precision and accuracy of nodule volume quantifications were dependent on slice thickness, with different dependences for different nodule characteristics. Other parameters including kVp, pitch, and reconstruction kernel had lower impact. Determining these technique dependences enables better volume quantification via protocol optimization and highlights the importance of consistent imaging parameters in sequential examinations.

  18. Methods for quantitative measurement of tooth wear using the area and volume of virtual model cusps.

    PubMed

    Kim, Soo-Hyun; Park, Young-Seok; Kim, Min-Kyoung; Kim, Sulhee; Lee, Seung-Pyo

    2018-04-01

    Clinicians must examine tooth wear to make a proper diagnosis. However, qualitative methods of measuring tooth wear have many disadvantages. Therefore, this study aimed to develop and evaluate quantitative parameters using the cusp area and volume of virtual dental models. The subjects of this study were the same virtual models that were used in our former study. The same age group classification and new tooth wear index (NTWI) scoring system were also reused. A virtual occlusal plane was generated with the highest cusp points and lowered vertically from 0.2 to 0.8 mm to create offset planes. The area and volume of each cusp was then measured and added together. In addition to the former analysis, the differential features of each cusp were analyzed. The scores of the new parameters differentiated the age and NTWI groups better than those analyzed in the former study. The Spearman ρ coefficients between the total area and the area of each cusp also showed higher scores at the levels of 0.6 mm (0.6A) and 0.8A. The mesiolingual cusp (MLC) showed a statistically significant difference ( P <0.01) from the other cusps in the paired t -test. Additionally, the MLC exhibited the highest percentage of change at 0.6A in some age and NTWI groups. Regarding the age groups, the MLC showed the highest score in groups 1 and 2. For the NTWI groups, the MLC was not significantly different in groups 3 and 4. These results support the proposal that the lingual cusp exhibits rapid wear because it serves as a functional cusp. Although this study has limitations due to its cross-sectional nature, it suggests better quantitative parameters and analytical tools for the characteristics of cusp wear.

  19. Methods for quantitative measurement of tooth wear using the area and volume of virtual model cusps

    PubMed Central

    2018-01-01

    Purpose Clinicians must examine tooth wear to make a proper diagnosis. However, qualitative methods of measuring tooth wear have many disadvantages. Therefore, this study aimed to develop and evaluate quantitative parameters using the cusp area and volume of virtual dental models. Methods The subjects of this study were the same virtual models that were used in our former study. The same age group classification and new tooth wear index (NTWI) scoring system were also reused. A virtual occlusal plane was generated with the highest cusp points and lowered vertically from 0.2 to 0.8 mm to create offset planes. The area and volume of each cusp was then measured and added together. In addition to the former analysis, the differential features of each cusp were analyzed. Results The scores of the new parameters differentiated the age and NTWI groups better than those analyzed in the former study. The Spearman ρ coefficients between the total area and the area of each cusp also showed higher scores at the levels of 0.6 mm (0.6A) and 0.8A. The mesiolingual cusp (MLC) showed a statistically significant difference (P<0.01) from the other cusps in the paired t-test. Additionally, the MLC exhibited the highest percentage of change at 0.6A in some age and NTWI groups. Regarding the age groups, the MLC showed the highest score in groups 1 and 2. For the NTWI groups, the MLC was not significantly different in groups 3 and 4. These results support the proposal that the lingual cusp exhibits rapid wear because it serves as a functional cusp. Conclusions Although this study has limitations due to its cross-sectional nature, it suggests better quantitative parameters and analytical tools for the characteristics of cusp wear. PMID:29770241

  20. Assessment and Management of Volume Overload and Congestion in Chronic Heart Failure: Can Measuring Blood Volume Provide New Insights?

    PubMed

    Miller, Wayne L

    2017-01-01

    Volume overload and fluid congestion remain primary clinical challenges in the assessment and management of patients with chronic heart failure (HF). The pathophysiology of volume regulation is complex, and the simple concept of passive intravascular fluid accumulation is not adequate. The dynamics of interstitial and intravascular fluid compartment interactions and fluid redistribution from venous splanchnic beds to the central pulmonary circulation need to be taken into account in strategies of volume management. Clinical bedside evaluations and right heart hemodynamic assessments can alert of changes in volume status, but only the quantitative measurement of total blood volume can help identify the heterogeneity in plasma volume and red blood cell mass that are features of volume overload in chronic HF. The quantitative assessment of intravascular volume is an effective tool to help guide individualized, appropriate therapy. Not all volume overload is the same, and the measurement of intravascular volume identifies heterogeneity to guide tailored therapy.

  1. Tested Studies for Laboratory Teaching. Proceedings of the Workshop/Conference of the Association for Biology Laboratory Education (ABLE) (16th, Atlanta, Georgia, June 7-11, 1994). Volume 16.

    ERIC Educational Resources Information Center

    Goldman, Corey A., Ed.

    The focus of the Association for Biology Laboratory Education (ABLE) is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceedings volume contains 17 papers on the topics of cell and molecular biology, genetics, and…

  2. Preservation of Liquid Biological Samples

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi (Inventor); Nimmagudda, Ramalingeshwara R. (Inventor)

    2000-01-01

    The present invention provides a method of preserving a liquid biological sample, comprising the step of: contacting said liquid biological sample with a preservative comprising, sodium benzoate in an amount of at least about 0.15% of the sample (weight/volume) and citric acid in an amount of at least about 0.025% of the sample (weight/volume).

  3. Biologic lung volume reduction in advanced upper lobe emphysema: phase 2 results.

    PubMed

    Criner, Gerard J; Pinto-Plata, Victor; Strange, Charlie; Dransfield, Mark; Gotfried, Mark; Leeds, William; McLennan, Geoffrey; Refaely, Yael; Tewari, Sanjiv; Krasna, Mark; Celli, Bartolome

    2009-05-01

    Biologic lung volume reduction (BioLVR) is a new endobronchial treatment for advanced emphysema that reduces lung volume through tissue remodeling. Assess the safety and therapeutic dose of BioLVR hydrogel in upper lobe predominant emphysema. Open-labeled, multicenter phase 2 dose-ranging studies were performed with BioLVR hydrogel administered to eight subsegmental sites (four in each upper lobe) involving: (1) low-dose treatment (n = 28) with 10 ml per site (LD); and (2) high-dose treatment (n = 22) with 20 ml per site (HD). Safety was assessed by the incidence of serious medical complications. Efficacy was assessed by change from baseline in pulmonary function tests, dyspnea score, 6-minute walk distance, and health-related quality of life. After treatment there were no deaths and four serious treatment-related complications. A reduction in residual volume to TLC ratio at 12 weeks (primary efficacy outcome) was achieved with both LD (-6.4 +/- 9.3%; P = 0.002) and HD (-5.5 +/- 9.4%; P = 0.028) treatments. Improvements in pulmonary function in HD (6 mo: DeltaFEV(1) = +15.6%; P = 0.002; DeltaFVC = +9.1%; P = 0.034) were greater than in LD patients (6 mo: DeltaFEV(1) = +6.7%; P = 0.021; DeltaFVC = +5.1%; P = 0.139). LD- and HD-treated groups both demonstrated improved symptom scores and health-related quality of life. BioLVR improves physiology and functional outcomes up to 6 months with an acceptable safety profile in upper lobe predominant emphysema. Overall improvement was greater and responses more durable with 20 ml per site than 10 ml per site dosing. Clinical trial registered with www.clinicaltrials.gov (NCT 00435253 and NCT 00515164).

  4. A Pilot Study of Quantitative MRI Measurements of Ventricular Volume and Cortical Atrophy for the Differential Diagnosis of Normal Pressure Hydrocephalus

    PubMed Central

    Moore, Dana W.; Kovanlikaya, Ilhami; Heier, Linda A.; Raj, Ashish; Huang, Chaorui; Chu, King-Wai; Relkin, Norman R.

    2012-01-01

    Current radiologic diagnosis of normal pressure hydrocephalus (NPH) requires a subjective judgment of whether lateral ventricular enlargement is disproportionate to cerebral atrophy based on visual inspection of brain images. We investigated whether quantitative measurements of lateral ventricular volume and total cortical thickness (a correlate of cerebral atrophy) could be used to more objectively distinguish NPH from normal controls (NC), Alzheimer's (AD), and Parkinson's disease (PD). Volumetric MRIs were obtained prospectively from patients with NPH (n = 5), PD (n = 5), and NC (5). Additional NC (n = 5) and AD patients (n = 10) from the ADNI cohort were examined. Although mean ventricular volume was significantly greater in the NPH group than all others, the range of values overlapped those of the AD group. Individuals with NPH could be better distinguished when ventricular volume and total cortical thickness were considered in combination. This pilot study suggests that volumetric MRI measurements hold promise for improving NPH differential diagnosis. PMID:21860791

  5. Space Biology and Medicine. Volume 4; Health, Performance, and Safety of Space Crews

    NASA Technical Reports Server (NTRS)

    Dietlein, Lawrence F. (Editor); Pestov, Igor D. (Editor)

    2004-01-01

    Volume IV is devoted to examining the medical and associated organizational measures used to maintain the health of space crews and to support their performance before, during, and after space flight. These measures, collectively known as the medical flight support system, are important contributors to the safety and success of space flight. The contributions of space hardware and the spacecraft environment to flight safety and mission success are covered in previous volumes of the Space Biology and Medicine series. In Volume IV, we address means of improving the reliability of people who are required to function in the unfamiliar environment of space flight as well as the importance of those who support the crew. Please note that the extensive collaboration between Russian and American teams for this volume of work resulted in a timeframe of publication longer than originally anticipated. Therefore, new research or insights may have emerged since the authors composed their chapters and references. This volume includes a list of authors' names and addresses should readers seek specifics on new information. At least three groups of factors act to perturb human physiological homeostasis during space flight. All have significant influence on health, psychological, and emotional status, tolerance, and work capacity. The first and most important of these factors is weightlessness, the most specific and radical change in the ambient environment; it causes a variety of functional and structural changes in human physiology. The second group of factors precludes the constraints associated with living in the sealed, confined environment of spacecraft. Although these factors are not unique to space flight, the limitations they entail in terms of an uncomfortable environment can diminish the well-being and performance of crewmembers in space. The third group of factors includes the occupational and social factors associated with the difficult, critical nature of the

  6. Quantitative tomographic measurements of opaque multiphase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDTmore » and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.« less

  7. Clinostats and centrifuges: Their use, value, and limitations in gravitational biological research; Symposium, Washington, Oct. 19, 1991, Report

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor); Todd, Paul (Editor); Powers, Janet V. (Editor)

    1992-01-01

    The present volume addresses physical phenomena and effects associated with clinostat and centrifuge operations as well as their physiological effects. Particular attention is given to the simulation of the gravity conditions on the ground, the internal dynamics of slowly rotating biological systems, and qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. Also discussed are the development and use of centrifuges in gravitational biology, the use of centrifuges in plant gravitational biology and a comparison of ground-based and flight experiment results, the ability of clinostat to mimic the effect of microgravity on plant cells and organs, and the impact of altered gravity conditions on early EGF-induced signal transduction in human epidermal A431 cells.

  8. Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone Systems

    DTIC Science & Technology

    2017-10-26

    1 FINAL REPORT Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone...Systems Energy and Water Projects Project Number: EW-201152 ERDC-CERL 26 October 2017 2 TABLE OF CONTENTS ACKNOWLEDGEMENTS...16 3.2.1 Energy Usage (Quantitative

  9. New Materials for Biological Fuel Cells

    DTIC Science & Technology

    2012-04-01

    polymer electrolyte membrane ( PEM ), to the membrane-less biological fuel cell (center figure) where the two electrodes are submerged in the same... PEM . MT15_4p166_173.indd 171 4/10/2012 3:46:31 PM REVIEW New materials for biological fuel cells APRIL 2012 | VOLUME 15 | NUMBER 4172 These...ISSN:1369 7021 © Elsevier Ltd 2012APRIL 2012 | VOLUME 15 | NUMBER 4166 New materials for biological fuel cells Over the last decade, there has

  10. BIOLOGICAL FOUNDATIONS OF LANGUAGE.

    ERIC Educational Resources Information Center

    LENNEBERG, ERIC H.

    THE RELATIONSHIP BETWEEN BIOLOGY AND LANGUAGE IS EXPLORED IN THIS VOLUME. THE AUTHOR BELIEVES THAT "LANGUAGE IS THE MANIFESTATION OF SPECIES-SPECIFIC COGNITIVE PROPENSITIES. IT IS THE CONSEQUENCE OF THE BIOLOGICAL PECULIARITIES THAT MAKE A HUMAN TYPE OF COGNITION POSSIBLE." IN ATTEMPTING TO "REINSTATE THE CONCEPT OF THE BIOLOGICAL BASIS OF…

  11. Qualitative, semi-quantitative, and quantitative simulation of the osmoregulation system in yeast

    PubMed Central

    Pang, Wei; Coghill, George M.

    2015-01-01

    In this paper we demonstrate how Morven, a computational framework which can perform qualitative, semi-quantitative, and quantitative simulation of dynamical systems using the same model formalism, is applied to study the osmotic stress response pathway in yeast. First the Morven framework itself is briefly introduced in terms of the model formalism employed and output format. We then built a qualitative model for the biophysical process of the osmoregulation in yeast, and a global qualitative-level picture was obtained through qualitative simulation of this model. Furthermore, we constructed a Morven model based on existing quantitative model of the osmoregulation system. This model was then simulated qualitatively, semi-quantitatively, and quantitatively. The obtained simulation results are presented with an analysis. Finally the future development of the Morven framework for modelling the dynamic biological systems is discussed. PMID:25864377

  12. Quantitative assessment of fatty infiltration and muscle volume of the rotator cuff muscles using 3-dimensional 2-point Dixon magnetic resonance imaging.

    PubMed

    Matsumura, Noboru; Oguro, Sota; Okuda, Shigeo; Jinzaki, Masahiro; Matsumoto, Morio; Nakamura, Masaya; Nagura, Takeo

    2017-10-01

    In patients with rotator cuff tears, muscle degeneration is known to be a predictor of irreparable tears and poor outcomes after surgical repair. Fatty infiltration and volume of the whole muscles constituting the rotator cuff were quantitatively assessed using 3-dimensional 2-point Dixon magnetic resonance imaging. Ten shoulders with a partial-thickness tear, 10 shoulders with an isolated supraspinatus tear, and 10 shoulders with a massive tear involving supraspinatus and infraspinatus were compared with 10 control shoulders after matching age and sex. With segmentation of muscle boundaries, the fat fraction value and the volume of the whole rotator cuff muscles were computed. After reliabilities were determined, differences in fat fraction, muscle volume, and fat-free muscle volume were evaluated. Intra-rater and inter-rater reliabilities were regarded as excellent for fat fraction and muscle volume. Tendon rupture adversely increased the fat fraction value of the respective rotator cuff muscle (P < .002). In the massive tear group, muscle volume was significantly decreased in the infraspinatus (P = .035) and increased in the teres minor (P = .039). With subtraction of fat volume, a significant decrease of fat-free volume of the supraspinatus muscle became apparent with a massive tear (P = .003). Three-dimensional measurement could evaluate fatty infiltration and muscular volume with excellent reliabilities. The present study showed that chronic rupture of the tendon adversely increases the fat fraction of the respective muscle and indicates that the residual capacity of the rotator cuff muscles might be overestimated in patients with severe fatty infiltration. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  13. Quantitative Glycomics Strategies*

    PubMed Central

    Mechref, Yehia; Hu, Yunli; Desantos-Garcia, Janie L.; Hussein, Ahmed; Tang, Haixu

    2013-01-01

    The correlations between protein glycosylation and many biological processes and diseases are increasing the demand for quantitative glycomics strategies enabling sensitive monitoring of changes in the abundance and structure of glycans. This is currently attained through multiple strategies employing several analytical techniques such as capillary electrophoresis, liquid chromatography, and mass spectrometry. The detection and quantification of glycans often involve labeling with ionic and/or hydrophobic reagents. This step is needed in order to enhance detection in spectroscopic and mass spectrometric measurements. Recently, labeling with stable isotopic reagents has also been presented as a very viable strategy enabling relative quantitation. The different strategies available for reliable and sensitive quantitative glycomics are herein described and discussed. PMID:23325767

  14. Quantitative evolutionary design

    PubMed Central

    Diamond, Jared

    2002-01-01

    The field of quantitative evolutionary design uses evolutionary reasoning (in terms of natural selection and ultimate causation) to understand the magnitudes of biological reserve capacities, i.e. excesses of capacities over natural loads. Ratios of capacities to loads, defined as safety factors, fall in the range 1.2-10 for most engineered and biological components, even though engineered safety factors are specified intentionally by humans while biological safety factors arise through natural selection. Familiar examples of engineered safety factors include those of buildings, bridges and elevators (lifts), while biological examples include factors of bones and other structural elements, of enzymes and transporters, and of organ metabolic performances. Safety factors serve to minimize the overlap zone (resulting in performance failure) between the low tail of capacity distributions and the high tail of load distributions. Safety factors increase with coefficients of variation of load and capacity, with capacity deterioration with time, and with cost of failure, and decrease with costs of initial construction, maintenance, operation, and opportunity. Adaptive regulation of many biological systems involves capacity increases with increasing load; several quantitative examples suggest sublinear increases, such that safety factors decrease towards 1.0. Unsolved questions include safety factors of series systems, parallel or branched pathways, elements with multiple functions, enzyme reaction chains, and equilibrium enzymes. The modest sizes of safety factors imply the existence of costs that penalize excess capacities. Those costs are likely to involve wasted energy or space for large or expensive components, but opportunity costs of wasted space at the molecular level for minor components. PMID:12122135

  15. Using Live-Crown Ratio to Control Wood Quality: An Example of Quantitative Silviculture

    Treesearch

    Thomas J. Dean

    1999-01-01

    Quantitative silviculture is the application of biological relationships in meeting specific, quantitative management objectives. It is a two-sided approach requiring the identification and application of biological relationships. An example of quantitative silviculture is presented that uses a relationship between average-live crown ratio and relative stand density...

  16. Assessing biological effects from highway-runoff constituents

    USGS Publications Warehouse

    Buckler, Denny R.; Granato, Gregory E.

    1999-01-01

    local ecosystem were reviewed to provide information on (1) the suitability of the existing data for a quantitative national synthesis, (2) the methods available to study the effects of highway runoff on local ecosystems, and (3) the potential for adverse effects on the roadside environment and receiving waters. Although many biological studies have been done, the use of different methods and a general lack of sufficient documentation precludes a quantitative national synthesis on the basis of the existing data. The Federal Highway Administration, the U.S. Environmental Protection Agency, the U.S. Geological Survey, the Intergovernmental Task Force on Monitoring Water Quality, and the National Resources Conservation Service all have developed and documented methods for assessing the effects of contaminants on ecosystems in receiving waters. These published methods can be used to formulate a set of protocols to provide consistent information from highway-runoff studies. Review of the literature indicates (qualitatively) that highway runoff (even from highways with high traffic volume) may not usually be acutely toxic. Tissue analysis and community assessments, however, indicate effects from highway- runoff sediments near discharge points (even from sites near highways with relatively low traffic volumes). At many sites, elevated concentrations of highway-runoff constituents were measured in tissues of species associated with aquatic sediments. Community assessments also indicate decreases in the diversity and productivity of aquatic ecosystems at some sites receiving highway runoff. These results are not definitive, however, and depend on many site-specific criteria that were not sufficiently documented in most of the studies reviewed.

  17. SYSTEMS BIOLOGY MODEL DEVELOPMENT AND APPLICATION

    EPA Science Inventory

    System biology models holistically describe, in a quantitative fashion, the relationships between different levels of a biologic system. Relationships between individual components of a system are delineated. System biology models describe how the components of the system inter...

  18. Will Quantitative Proteomics Redefine Some of the Key Concepts in Skeletal Muscle Physiology?

    PubMed

    Gizak, Agnieszka; Rakus, Dariusz

    2016-01-11

    Molecular and cellular biology methodology is traditionally based on the reasoning called "the mechanistic explanation". In practice, this means identifying and selecting correlations between biological processes which result from our manipulation of a biological system. In theory, a successful application of this approach requires precise knowledge about all parameters of a studied system. However, in practice, due to the systems' complexity, this requirement is rarely, if ever, accomplished. Typically, it is limited to a quantitative or semi-quantitative measurements of selected parameters (e.g., concentrations of some metabolites), and a qualitative or semi-quantitative description of expression/post-translational modifications changes within selected proteins. A quantitative proteomics approach gives a possibility of quantitative characterization of the entire proteome of a biological system, in the context of the titer of proteins as well as their post-translational modifications. This enables not only more accurate testing of novel hypotheses but also provides tools that can be used to verify some of the most fundamental dogmas of modern biology. In this short review, we discuss some of the consequences of using quantitative proteomics to verify several key concepts in skeletal muscle physiology.

  19. Enantioselective reductive transformation of climbazole: A concept towards quantitative biodegradation assessment in anaerobic biological treatment processes.

    PubMed

    Brienza, Monica; Chiron, Serge

    2017-06-01

    An efficient chiral method-based using liquid chromatography-high resolution-mass spectrometry analytical method has been validated for the determination of climbazole (CBZ) enantiomers in wastewater and sludge with quantification limits below the 1 ng/L and 2 ng/g range, respectively. On the basis of this newly developed analytical method, the stereochemistry of CBZ was investigated over time in sludge biotic and sterile batch experiments under anoxic dark and light conditions and during wastewater biological treatment by subsurface flow constructed wetlands. CBZ stereoselective degradation was exclusively observed under biotic conditions, confirming the specificity of enantiomeric fraction variations to biodegradation processes. Abiotic CBZ enantiomerization was insignificant at circumneutral pH and CBZ was always biotransformed into CBZ-alcohol due to the specific and enantioselective reduction of the ketone function of CBZ into a secondary alcohol function. This transformation was almost quantitative and biodegradation gave good first order kinetic fit for both enantiomers. The possibility to apply the Rayleigh equation to enantioselective CBZ biodegradation processes was investigated. The results of enantiomeric enrichment allowed for a quantitative assessment of in situ biodegradation processes due to a good fit (R 2  > 0.96) of the anoxic/anaerobic CBZ biodegradation to the Rayleigh dependency in all the biotic microcosms and was also applied in subsurface flow constructed wetlands. This work extended the concept of applying the Rayleigh equation towards quantitative biodegradation assessment of organic contaminants to enantioselective processes operating under anoxic/anaerobic conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Qualitative, semi-quantitative, and quantitative simulation of the osmoregulation system in yeast.

    PubMed

    Pang, Wei; Coghill, George M

    2015-05-01

    In this paper we demonstrate how Morven, a computational framework which can perform qualitative, semi-quantitative, and quantitative simulation of dynamical systems using the same model formalism, is applied to study the osmotic stress response pathway in yeast. First the Morven framework itself is briefly introduced in terms of the model formalism employed and output format. We then built a qualitative model for the biophysical process of the osmoregulation in yeast, and a global qualitative-level picture was obtained through qualitative simulation of this model. Furthermore, we constructed a Morven model based on existing quantitative model of the osmoregulation system. This model was then simulated qualitatively, semi-quantitatively, and quantitatively. The obtained simulation results are presented with an analysis. Finally the future development of the Morven framework for modelling the dynamic biological systems is discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Tested Studies for Laboratory Teaching. Proceedings of the Workshop/Conference of the Association for Biology Laboratory Education (ABLE) (12th, Springfield, Missouri, June 4-8, 1990). Volume 12.

    ERIC Educational Resources Information Center

    Goldman, Corey A., Ed.

    The focus of the Association for Biology Laboratory Education (ABLE) is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceedings volume includes 13 papers: "Non-Radioactive DNA Hybridization Experiments for the…

  2. Shape component analysis: structure-preserving dimension reduction on biological shape spaces.

    PubMed

    Lee, Hao-Chih; Liao, Tao; Zhang, Yongjie Jessica; Yang, Ge

    2016-03-01

    Quantitative shape analysis is required by a wide range of biological studies across diverse scales, ranging from molecules to cells and organisms. In particular, high-throughput and systems-level studies of biological structures and functions have started to produce large volumes of complex high-dimensional shape data. Analysis and understanding of high-dimensional biological shape data require dimension-reduction techniques. We have developed a technique for non-linear dimension reduction of 2D and 3D biological shape representations on their Riemannian spaces. A key feature of this technique is that it preserves distances between different shapes in an embedded low-dimensional shape space. We demonstrate an application of this technique by combining it with non-linear mean-shift clustering on the Riemannian spaces for unsupervised clustering of shapes of cellular organelles and proteins. Source code and data for reproducing results of this article are freely available at https://github.com/ccdlcmu/shape_component_analysis_Matlab The implementation was made in MATLAB and supported on MS Windows, Linux and Mac OS. geyang@andrew.cmu.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Multi-observation PET image analysis for patient follow-up quantitation and therapy assessment

    NASA Astrophysics Data System (ADS)

    David, S.; Visvikis, D.; Roux, C.; Hatt, M.

    2011-09-01

    In positron emission tomography (PET) imaging, an early therapeutic response is usually characterized by variations of semi-quantitative parameters restricted to maximum SUV measured in PET scans during the treatment. Such measurements do not reflect overall tumor volume and radiotracer uptake variations. The proposed approach is based on multi-observation image analysis for merging several PET acquisitions to assess tumor metabolic volume and uptake variations. The fusion algorithm is based on iterative estimation using a stochastic expectation maximization (SEM) algorithm. The proposed method was applied to simulated and clinical follow-up PET images. We compared the multi-observation fusion performance to threshold-based methods, proposed for the assessment of the therapeutic response based on functional volumes. On simulated datasets the adaptive threshold applied independently on both images led to higher errors than the ASEM fusion and on clinical datasets it failed to provide coherent measurements for four patients out of seven due to aberrant delineations. The ASEM method demonstrated improved and more robust estimation of the evaluation leading to more pertinent measurements. Future work will consist in extending the methodology and applying it to clinical multi-tracer datasets in order to evaluate its potential impact on the biological tumor volume definition for radiotherapy applications.

  4. Risk analysis for veterinary biologicals released into the environment.

    PubMed

    Silva, S V; Samagh, B S; Morley, R S

    1995-12-01

    All veterinary biologicals licensed in Canada must be shown to be pure, potent, safe and effective. A risk-based approach is used to evaluate the safety of all biologicals, whether produced by conventional methods or by molecular biological techniques. Traditionally, qualitative risk assessment methods have been used for this purpose. More recently, quantitative risk assessment has become available for complex issues. The quantitative risk assessment method uses "scenario tree analysis' to predict the likelihood of various outcomes and their respective impacts. The authors describe the quantitative risk assessment approach which is used within the broader context of risk analysis (i.e. risk assessment, risk management and risk communication) to develop recommendations for the field release of veterinary biologicals. The general regulatory framework for the licensing of veterinary biologicals in Canada is also presented.

  5. The Next Frontier: Quantitative Biochemistry in Living Cells.

    PubMed

    Honigmann, Alf; Nadler, André

    2018-01-09

    Researchers striving to convert biology into an exact science foremost rely on structural biology and biochemical reconstitution approaches to obtain quantitative data. However, cell biological research is moving at an ever-accelerating speed into areas where these approaches lose much of their edge. Intrinsically unstructured proteins and biochemical interaction networks composed of interchangeable, multivalent, and unspecific interactions pose unique challenges to quantitative biology, as do processes that occur in discrete cellular microenvironments. Here we argue that a conceptual change in our way of conducting biochemical experiments is required to take on these new challenges. We propose that reconstitution of cellular processes in vitro should be much more focused on mimicking the cellular environment in vivo, an approach that requires detailed knowledge of the material properties of cellular compartments, essentially requiring a material science of the cell. In a similar vein, we suggest that quantitative biochemical experiments in vitro should be accompanied by corresponding experiments in vivo, as many newly relevant cellular processes are highly context-dependent. In essence, this constitutes a call for chemical biologists to convert their discipline from a proof-of-principle science to an area that could rightfully be called quantitative biochemistry in living cells. In this essay, we discuss novel techniques and experimental strategies with regard to their potential to fulfill such ambitious aims.

  6. Tested Studies for Laboratory Teaching. Proceedings. Workshop/Conference of the Association for Biology Laboratory Education (ABLE) (11th, Fredericton, New Brunswick, Canada, June 12-16, 1989). Volume 11.

    ERIC Educational Resources Information Center

    Goldman, Corey A., Ed.

    The focus of the Association for Biology Laboratory Education (ABLE) is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceedings volume contains 10 papers: "Investigating Fungi Which Cause Rot and Decay" (J. A Johnson);…

  7. Volume dependency for culture of fungi from respiratory secretions and increased sensitivity of Aspergillus quantitative PCR.

    PubMed

    Fraczek, Marcin G; Kirwan, Marie B; Moore, Caroline B; Morris, Julie; Denning, David W; Richardson, Malcolm D

    2014-02-01

    Diagnosis of aspergillosis is often difficult. We compared fungal yields from respiratory specimens using the Health Protection Agency standard culture method (BSOP57), a higher volume undiluted culture method Mycology Reference Centre Manchester (MRCM) and Aspergillus quantitative real time polymerase chain reaction (qPCR). Sputum, bronchial aspirate and bronchoalveolar lavage (BAL) samples (total 23) were collected from aspergillosis patients. One fraction of all samples was cultured using the MRCM method, one BSOP57 and one was used for qPCR. The recovery rate for fungi was significantly higher by MRCM (87%) than by BSOP57 (8.7%) from all 23 specimens. Sputum samples were 44% positive by MRCM compared to no fungi isolated (0%) by BSOP57. Bronchial aspirates were 75% positive by MRCM and 0% by BSOP57. BAL samples were positive in 20% by MRCM and 10% by BSOP57. qPCR was always more sensitive than culture (95.6%) from all samples. In general, over 100 mould colonies (81 Aspergillus fumigatus) were grown using the MRCM method compared with only one colony from BSOP57. This study provides a reference point for standardisation of respiratory sample processing in diagnostic laboratories. Culture from higher volume undiluted respiratory specimens has a much higher yield for Aspergillus than BSOP57. qPCR is much more sensitive than culture and the current UK method requires revision. © 2013 Blackwell Verlag GmbH.

  8. Quantitative Determination of Fluorinated Alkyl Substances by Large-Volume-Injection LC/MS/MS—Characterization of Municipal Wastewaters

    PubMed Central

    Schultz, Melissa M.; Barofsky, Douglas F.; Field, Jennifer A.

    2008-01-01

    A quantitative method was developed for the determination of fluorinated alkyl substances in municipal wastewater influents and effluents. The method consisted of centrifugation followed by large-volume injection (500 μL) of the supernatant onto a liquid chromatograph with a reverse-phase column and detection by electrospray ionization, and tandem mass spectrometry (LC/MS/MS). The fluorinated analytes studied include perfluoroalkyl sulfonates, fluorotelomer sulfonates, perfluorocarboxylates, and select fluorinated alkyl sulfonamides. Recoveries of the fluorinated analytes from wastewater treatment plant (WWTP) raw influents and final effluent ranged from 77% – 96% and 80% – 99%, respectively. The lower limit of quantitation ranged from 0.5 to 3.0 ng/L depending on the analyte. The method was applied to flow-proportional composites of raw influent and final effluent collected over a 24 hr period from ten WWTPs nationwide. Fluorinated alkyl substances were observed in wastewater at all treatment plants and each plant exhibited unique distributions of fluorinated alkyl substances despite similarities in treatment processes. In nine out of the ten plants sampled, at least one class of fluorinated alkyl substances exhibited increased concentrations in the effluent as compared to the influent concentrations. In some instances, decreases in certain fluorinated analyte concentrations were observed and attributed to sorption to sludge. PMID:16433363

  9. A feeling for the numbers in biology

    PubMed Central

    Phillips, Rob; Milo, Ron

    2009-01-01

    Although the quantitative description of biological systems has been going on for centuries, recent advances in the measurement of phenomena ranging from metabolism to gene expression to signal transduction have resulted in a new emphasis on biological numeracy. This article describes the confluence of two different approaches to biological numbers. First, an impressive array of quantitative measurements make it possible to develop intuition about biological numbers ranging from how many gigatons of atmospheric carbon are fixed every year in the process of photosynthesis to the number of membrane transporters needed to provide sugars to rapidly dividing Escherichia coli cells. As a result of the vast array of such quantitative data, the BioNumbers web site has recently been developed as a repository for biology by the numbers. Second, a complementary and powerful tradition of numerical estimates familiar from the physical sciences and canonized in the so-called “Fermi problems” calls for efforts to estimate key biological quantities on the basis of a few foundational facts and simple ideas from physics and chemistry. In this article, we describe these two approaches and illustrate their synergism in several particularly appealing case studies. These case studies reveal the impact that an emphasis on numbers can have on important biological questions. PMID:20018695

  10. Quantitative gene expression deregulation in mantle-cell lymphoma: correlation with clinical and biologic factors.

    PubMed

    Kienle, Dirk; Katzenberger, Tiemo; Ott, German; Saupe, Doreen; Benner, Axel; Kohlhammer, Holger; Barth, Thomas F E; Höller, Sylvia; Kalla, Jörg; Rosenwald, Andreas; Müller-Hermelink, Hans Konrad; Möller, Peter; Lichter, Peter; Döhner, Hartmut; Stilgenbauer, Stephan

    2007-07-01

    There is evidence for a direct role of quantitative gene expression deregulation in mantle-cell lymphoma (MCL) pathogenesis. Our aim was to investigate gene expression associations with other pathogenic factors and the significance of gene expression in a multivariate survival analysis. Quantitative expression of 20 genes of potential relevance for MCL prognosis and pathogenesis were analyzed using real-time reverse transcriptase polymerase chain reaction and correlated with clinical and genetic factors, tumor morphology, and Ki-67 index in 65 MCL samples. Genomic losses at the loci of TP53, RB1, and P16 were associated with reduced transcript levels of the respective genes, indicating a gene-dosage effect as the pathomechanism. Analysis of gene expression correlations between the candidate genes revealed a separation into two clusters, one dominated by proliferation activators, another by proliferation inhibitors and regulators of apoptosis. Whereas only weak associations were identified between gene expression and clinical parameters or blastoid morphology, several genes were correlated closely with the Ki-67 index, including the short CCND1 variant (positive correlation) and RB1, ATM, P27, and BMI (negative correlation). In multivariate survival analysis, expression levels of MYC, MDM2, EZH2, and CCND1 were the strongest prognostic factors independently of tumor proliferation and clinical factors. These results indicate a pathogenic contribution of several gene transcript levels to the biology and clinical course of MCL. Genes can be differentiated into factors contributing to proliferation deregulation, either by enhancement or loss of inhibition, and proliferation-independent factors potentially contributing to MCL pathogenesis by apoptosis impairment.

  11. A real-time RT-PCR assay for molecular identification and quantitation of feline morbillivirus RNA from biological specimens.

    PubMed

    De Luca, Eliana; Crisi, Paolo Emidio; Di Domenico, Marco; Malatesta, Daniela; Vincifori, Giacomo; Di Tommaso, Morena; Di Guardo, Giovanni; Di Francesco, Gabriella; Petrini, Antonio; Savini, Giovanni; Boari, Andrea; Lorusso, Alessio

    2018-05-03

    The aim of this study was to develop a real-time RT-PCR to detect and quantitate feline morbillivirus (FeMV) RNA in biological samples. Primers and probe were targeted on a conserved region of FeMV P/V/C gene. To validate the assay with field samples, a total number of specimens of cats have been recruited including 264 urine and blood samples and compared with a generic RT-PCR targeting the L protein encoding gene of morbilliviruses. In addition, 385 tissue samples from 35 carcasses of cats have been also employed. RNA titres were low in all tested samples. Results also indicated the absence of cross-reaction with related morbilliviruses and existing pathogens of cats. In tissues with low levels of FeMV RNA, the presence of viral antigen was also evidenced by immunohistochemistry targeting the N viral protein. This newly described assay allows for a rapid, accurate and reliable quantitative detection of FeMV RNA that can be applied for diagnostics and research studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Quantitative and qualitative MR-imaging assessment of vastus medialis muscle volume loss in asymptomatic patients after anterior cruciate ligament reconstruction.

    PubMed

    Marcon, Magda; Ciritsis, Bernhard; Laux, Christoph; Nanz, Daniel; Fischer, Michael A; Andreisek, Gustav; Ulbrich, Erika J

    2015-08-01

    To quantitatively and qualitatively assess vastus medialis muscle atrophy in asymptomatic patients with anterior cruciate ligament reconstruction, using the nonoperated leg as control. Prospective Institutional Review Board approved study with written informed patient consent. Thirty-three asymptomatic patients (men, 21; women,12) with ACL-reconstruction underwent MR imaging of both legs (axial T1-weighted spin-echo and 3D spoiled dual gradient-echo sequences). Muscle volume and average fat-signal fraction (FSF) of the vastus medialis muscles were measured. Additionally, Goutallier classification was used to classify fatty muscle degeneration. Significant side differences were evaluated using the Wilcoxon test and, between volumes and FSF, using student t-tests with P-value < 0.05 and < 0.025, respectively. The muscle volume was significantly smaller in the operated (mean ± SD, 430.6 ± 119.6 cm(3) ; range, 197.3 to 641.7 cm(3) ) than in the nonoperated leg (479.5 ± 124.8 cm(3) ; 261.4 to 658.9 cm(3) ) (P < 0.001). Corresponding FSF was 6.3 ± 1.5% (3.9 to 9.2%) and 5.8 ± 0.9% (4.0 to 7.4%), respectively, with a nonsignificant (P > 0.025) difference. The relative muscle-volume and FSF differences were -10.1 ± 8.6% (7.1 to -30.1%) and 10.9 ± 29.4% (39.7 to 40.1%). The qualitative assessment revealed no significant differences (P > 0.1). A significant muscle volume loss of the vastus medialis muscle does exist in asymptomatic patients with ACL-reconstruction, but without fatty degeneration. © 2014 Wiley Periodicals, Inc.

  13. A method for volume determination of the orbit and its contents by high resolution axial tomography and quantitative digital image analysis.

    PubMed Central

    Cooper, W C

    1985-01-01

    The various congenital and acquired conditions which alter orbital volume are reviewed. Previous investigative work to determine orbital capacity is summarized. Since these studies were confined to postmortem evaluations, the need for a technique to measure orbital volume in the living state is presented. A method for volume determination of the orbit and its contents by high-resolution axial tomography and quantitative digital image analysis is reported. This procedure has proven to be accurate (the discrepancy between direct and computed measurements ranged from 0.2% to 4%) and reproducible (greater than 98%). The application of this method to representative clinical problems is presented and discussed. The establishment of a diagnostic system versatile enough to expand the usefulness of computerized axial tomography and polytomography should add a new dimension to ophthalmic investigation and treatment. Images FIGURE 8 FIGURE 9 FIGURE 10 A FIGURE 10 B FIGURE 11 A FIGURE 11 B FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 FIGURE 20 FIGURE 21 FIGURE 22 FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 A FIGURE 26 B FIGURE 27 FIGURE 28 FIGURE 29 FIGURE 30 FIGURE 31 FIGURE 32 PMID:3938582

  14. Quantitation of mandibular ramus volume as a source of bone grafting.

    PubMed

    Verdugo, Fernando; Simonian, Krikor; Smith McDonald, Roberto; Nowzari, Hessam

    2009-10-01

    When alveolar atrophy impairs dental implant placement, ridge augmentation using mandibular ramus graft may be considered. In live patients, however, an accurate calculation of the amount of bone that can be safely harvested from the ramus has not been reported. The use of a software program to perform these calculations can aid in preventing surgical complications. The aim of the present study was to intra-surgically quantify the volume of the ramus bone graft that can be safely harvested in live patients, and compare it to presurgical computerized tomographic calculations. The AutoCAD software program quantified ramus bone graft in 40 consecutive patients from computerized tomographies. Direct intra-surgical measurements were recorded thereafter and compared to software data (n = 10). In these 10 patients, the bone volume was also measured at the recipient sites 6 months post-sinus augmentation. The mandibular second and third molar areas provided the thickest cortical graft averaging 2.8 +/- 0.6 mm. The thinnest bone was immediately posterior to the third molar (1.9 +/- 0.3 mm). The volume of ramus bone graft measured by AutoCAD averaged 0.8 mL (standard deviation [SD] 0.2 mL, range: 0.4-1.2 mL). The volume of bone graft measured intra-surgically averaged 2.5 mL (SD 0.4 mL, range: 1.8-3.0 mL). The difference between the two measurement methods was significant (p < 0.001). The bone volume measured 6 months post-sinus augmentation averaged 2.2 mL (SD 0.4 mL, range: 1.6-2.8 mL) with a mean loss of 0.3 mL in volume. The mandibular second molar area provided the thickest cortical graft. A cortical plate of 2.8 mm in average at combined second and third molar areas provided 2.5 mL particulated volume. The use of a design software program can improve surgical treatment planning prior to ramus bone grafting. The AutoCAD software program did not overestimate the volume of bone that can be safely harvested from the mandibular ramus.

  15. Integrating Quantitative Skills in Introductory Ecology: Investigations of Wild Bird Feeding Preferences

    ERIC Educational Resources Information Center

    Small, Christine J.; Newtoff, Kiersten N.

    2013-01-01

    Undergraduate biology education is undergoing dramatic changes, emphasizing student training in the "tools and practices" of science, particularly quantitative and problem-solving skills. We redesigned a freshman ecology lab to emphasize the importance of scientific inquiry and quantitative reasoning in biology. This multi-week investigation uses…

  16. Tested Studies for Laboratory Teaching. Proceedings of the Workshop/Conference of the Association for Biology Laboratory Education (ABLE) (14th, Las Vegas, Nevada, June 2-6, 1992). Volume 14.

    ERIC Educational Resources Information Center

    Goldman, Corey A., Ed.

    The focus of the Association for Biology Laboratory Education (ABLE) is to improve undergraduate biology laboratory experiences by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceedings volume contains 11 papers: "A Practical Guide to the Use of Cellular Slime Molds for…

  17. Tested Studies for Laboratory Teaching. Proceedings of the Workshop/Conference of the Association for Biology Laboratory Education (ABLE) (15th, Toronto, Ontario, Canada, June 8-12, 1993). Volume 15.

    ERIC Educational Resources Information Center

    Goldman, Corey A., Ed.

    The focus of the Association for Biology Laboratory Education (ABLE) is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceedings volume contains 18 papers: "Human DNA Fingerprinting by Polymerase Chain Reaction" (M. V.…

  18. Perspectives in biological physics: the nDDB project for a neutron Dynamics Data Bank for biological macromolecules.

    PubMed

    Rusevich, Leonid; García Sakai, Victoria; Franzetti, Bruno; Johnson, Mark; Natali, Francesca; Pellegrini, Eric; Peters, Judith; Pieper, Jörg; Weik, Martin; Zaccai, Giuseppe

    2013-07-01

    Neutron spectroscopy provides experimental data on time-dependent trajectories, which can be directly compared to molecular dynamics simulations. Its importance in helping us to understand biological macromolecules at a molecular level is demonstrated by the results of a literature survey over the last two to three decades. Around 300 articles in refereed journals relate to neutron scattering studies of biological macromolecular dynamics, and the results of the survey are presented here. The scope of the publications ranges from the general physics of protein and solvent dynamics, to the biologically relevant dynamics-function relationships in live cells. As a result of the survey we are currently setting up a neutron Dynamics Data Bank (nDDB) with the aim to make the neutron data on biological systems widely available. This will benefit, in particular, the MD simulation community to validate and improve their force fields. The aim of the database is to expose and give easy access to a body of experimental data to the scientific community. The database will be populated with as much of the existing data as possible. In the future it will give value, as part of a bigger whole, to high throughput data, as well as more detailed studies. A range and volume of experimental data will be of interest in determining how quantitatively MD simulations can reproduce trends across a range of systems and to what extent such trends may depend on sample preparation and data reduction and analysis methods. In this context, we strongly encourage researchers in the field to deposit their data in the nDDB.

  19. A step towards removing plasma volume variance from the Athlete's Biological Passport: The use of biomarkers to describe vascular volumes from a simple blood test.

    PubMed

    Lobigs, Louisa M; Sottas, Pierre-Edouard; Bourdon, Pitre C; Nikolovski, Zoran; El-Gingo, Mohamed; Varamenti, Evdokia; Peeling, Peter; Dawson, Brian; Schumacher, Yorck O

    2018-02-01

    The haematological module of the Athlete's Biological Passport (ABP) has significantly impacted the prevalence of blood manipulations in elite sports. However, the ABP relies on a number of concentration-based markers of erythropoiesis, such as haemoglobin concentration ([Hb]), which are influenced by shifts in plasma volume (PV). Fluctuations in PV contribute to the majority of biological variance associated with volumetric ABP markers. Our laboratory recently identified a panel of common chemistry markers (from a simple blood test) capable of describing ca 67% of PV variance, presenting an applicable method to account for volume shifts within anti-doping practices. Here, this novel PV marker was included into the ABP adaptive model. Over a six-month period (one test per month), 33 healthy, active males provided blood samples and performed the CO-rebreathing method to record PV (control). In the final month participants performed a single maximal exercise effort to promote a PV shift (mean PV decrease -17%, 95% CI -9.75 to -18.13%). Applying the ABP adaptive model, individualized reference limits for [Hb] and the OFF-score were created, with and without the PV correction. With the PV correction, an average of 66% of [Hb] within-subject variance is explained, narrowing the predicted reference limits, and reducing the number of atypical ABP findings post-exercise. Despite an increase in sensitivity there was no observed loss of specificity with the addition of the PV correction. The novel PV marker presented here has the potential to improve the ABP's rate of correct doping detection by removing the confounding effects of PV variance. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Quantitative reactive modeling and verification.

    PubMed

    Henzinger, Thomas A

    Formal verification aims to improve the quality of software by detecting errors before they do harm. At the basis of formal verification is the logical notion of correctness , which purports to capture whether or not a program behaves as desired. We suggest that the boolean partition of software into correct and incorrect programs falls short of the practical need to assess the behavior of software in a more nuanced fashion against multiple criteria. We therefore propose to introduce quantitative fitness measures for programs, specifically for measuring the function, performance, and robustness of reactive programs such as concurrent processes. This article describes the goals of the ERC Advanced Investigator Project QUAREM. The project aims to build and evaluate a theory of quantitative fitness measures for reactive models. Such a theory must strive to obtain quantitative generalizations of the paradigms that have been success stories in qualitative reactive modeling, such as compositionality, property-preserving abstraction and abstraction refinement, model checking, and synthesis. The theory will be evaluated not only in the context of software and hardware engineering, but also in the context of systems biology. In particular, we will use the quantitative reactive models and fitness measures developed in this project for testing hypotheses about the mechanisms behind data from biological experiments.

  1. Quantitative magnetic resonance imaging in traumatic brain injury.

    PubMed

    Bigler, E D

    2001-04-01

    Quantitative neuroimaging has now become a well-established method for analyzing magnetic resonance imaging in traumatic brain injury (TBI). A general review of studies that have examined quantitative changes following TBI is presented. The consensus of quantitative neuroimaging studies is that most brain structures demonstrate changes in volume or surface area after injury. The patterns of atrophy are consistent with the generalized nature of brain injury and diffuse axonal injury. Various clinical caveats are provided including how quantitative neuroimaging findings can be used clinically and in predicting rehabilitation outcome. The future of quantitative neuroimaging also is discussed.

  2. Quantitative secondary electron detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Jyoti; Joy, David C.; Nayak, Subuhadarshi

    Quantitative Secondary Electron Detection (QSED) using the array of solid state devices (SSD) based electron-counters enable critical dimension metrology measurements in materials such as semiconductors, nanomaterials, and biological samples (FIG. 3). Methods and devices effect a quantitative detection of secondary electrons with the array of solid state detectors comprising a number of solid state detectors. An array senses the number of secondary electrons with a plurality of solid state detectors, counting the number of secondary electrons with a time to digital converter circuit in counter mode.

  3. Universal structural parameter to quantitatively predict metallic glass properties

    DOE PAGES

    Ding, Jun; Cheng, Yong-Qiang; Sheng, Howard; ...

    2016-12-12

    Quantitatively correlating the amorphous structure in metallic glasses (MGs) with their physical properties has been a long-sought goal. Here we introduce flexibility volume' as a universal indicator, to bridge the structural state the MG is in with its properties, on both atomic and macroscopic levels. The flexibility volume combines static atomic volume with dynamics information via atomic vibrations that probe local configurational space and interaction between neighbouring atoms. We demonstrate that flexibility volume is a physically appropriate parameter that can quantitatively predict the shear modulus, which is at the heart of many key properties of MGs. Moreover, the new parametermore » correlates strongly with atomic packing topology, and also with the activation energy for thermally activated relaxation and the propensity for stress-driven shear transformations. These correlations are expected to be robust across a very wide range of MG compositions, processing conditions and length scales.« less

  4. Fostering synergy between cell biology and systems biology.

    PubMed

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  5. Mapping Bone Mineral Density Obtained by Quantitative Computed Tomography to Bone Volume Fraction

    NASA Technical Reports Server (NTRS)

    Pennline, James A.; Mulugeta, Lealem

    2017-01-01

    Methods for relating or mapping estimates of volumetric Bone Mineral Density (vBMD) obtained by Quantitative Computed Tomography to Bone Volume Fraction (BVF) are outlined mathematically. The methods are based on definitions of bone properties, cited experimental studies and regression relations derived from them for trabecular bone in the proximal femur. Using an experimental range of values in the intertrochanteric region obtained from male and female human subjects, age 18 to 49, the BVF values calculated from four different methods were compared to the experimental average and numerical range. The BVF values computed from the conversion method used data from two sources. One source provided pre bed rest vBMD values in the intertrochanteric region from 24 bed rest subject who participated in a 70 day study. Another source contained preflight vBMD values from 18 astronauts who spent 4 to 6 months on the ISS. To aid the use of a mapping from BMD to BVF, the discussion includes how to formulate them for purpose of computational modeling. An application of the conversions would be used to aid in modeling of time varying changes in vBMD as it relates to changes in BVF via bone remodeling and/or modeling.

  6. Direct Measurement of Proximal Isovelocity Surface Area by Real-Time Three-Dimensional Color Doppler for Quantitation of Aortic Regurgitant Volume: An In Vitro Validation

    PubMed Central

    Pirat, Bahar; Little, Stephen H.; Igo, Stephen R.; McCulloch, Marti; Nosé, Yukihiko; Hartley, Craig J.; Zoghbi, William A.

    2012-01-01

    Objective The proximal isovelocity surface area (PISA) method is useful in the quantitation of aortic regurgitation (AR). We hypothesized that actual measurement of PISA provided with real-time 3-dimensional (3D) color Doppler yields more accurate regurgitant volumes than those estimated by 2-dimensional (2D) color Doppler PISA. Methods We developed a pulsatile flow model for AR with an imaging chamber in which interchangeable regurgitant orifices with defined shapes and areas were incorporated. An ultrasonic flow meter was used to calculate the reference regurgitant volumes. A total of 29 different flow conditions for 5 orifices with different shapes were tested at a rate of 72 beats/min. 2D PISA was calculated as 2π r2, and 3D PISA was measured from 8 equidistant radial planes of the 3D PISA. Regurgitant volume was derived as PISA × aliasing velocity × time velocity integral of AR/peak AR velocity. Results Regurgitant volumes by flow meter ranged between 12.6 and 30.6 mL/beat (mean 21.4 ± 5.5 mL/beat). Regurgitant volumes estimated by 2D PISA correlated well with volumes measured by flow meter (r = 0.69); however, a significant underestimation was observed (y = 0.5x + 0.6). Correlation with flow meter volumes was stronger for 3D PISA-derived regurgitant volumes (r = 0.83); significantly less underestimation of regurgitant volumes was seen, with a regression line close to identity (y = 0.9x + 3.9). Conclusion Direct measurement of PISA is feasible, without geometric assumptions, using real-time 3D color Doppler. Calculation of aortic regurgitant volumes with 3D color Doppler using this methodology is more accurate than conventional 2D method with hemispheric PISA assumption. PMID:19168322

  7. Direct measurement of proximal isovelocity surface area by real-time three-dimensional color Doppler for quantitation of aortic regurgitant volume: an in vitro validation.

    PubMed

    Pirat, Bahar; Little, Stephen H; Igo, Stephen R; McCulloch, Marti; Nosé, Yukihiko; Hartley, Craig J; Zoghbi, William A

    2009-03-01

    The proximal isovelocity surface area (PISA) method is useful in the quantitation of aortic regurgitation (AR). We hypothesized that actual measurement of PISA provided with real-time 3-dimensional (3D) color Doppler yields more accurate regurgitant volumes than those estimated by 2-dimensional (2D) color Doppler PISA. We developed a pulsatile flow model for AR with an imaging chamber in which interchangeable regurgitant orifices with defined shapes and areas were incorporated. An ultrasonic flow meter was used to calculate the reference regurgitant volumes. A total of 29 different flow conditions for 5 orifices with different shapes were tested at a rate of 72 beats/min. 2D PISA was calculated as 2pi r(2), and 3D PISA was measured from 8 equidistant radial planes of the 3D PISA. Regurgitant volume was derived as PISA x aliasing velocity x time velocity integral of AR/peak AR velocity. Regurgitant volumes by flow meter ranged between 12.6 and 30.6 mL/beat (mean 21.4 +/- 5.5 mL/beat). Regurgitant volumes estimated by 2D PISA correlated well with volumes measured by flow meter (r = 0.69); however, a significant underestimation was observed (y = 0.5x + 0.6). Correlation with flow meter volumes was stronger for 3D PISA-derived regurgitant volumes (r = 0.83); significantly less underestimation of regurgitant volumes was seen, with a regression line close to identity (y = 0.9x + 3.9). Direct measurement of PISA is feasible, without geometric assumptions, using real-time 3D color Doppler. Calculation of aortic regurgitant volumes with 3D color Doppler using this methodology is more accurate than conventional 2D method with hemispheric PISA assumption.

  8. Space Biology Initiative. Trade Studies, volume 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The six studies which are the subjects of this report are entitled: Design Modularity and Commonality; Modification of Existing Hardware (COTS) vs. New Hardware Build Cost Analysis; Automation Cost vs. Crew Utilization; Hardware Miniaturization versus Cost; Space Station Freedom/Spacelab Modules Compatibility vs. Cost; and Prototype Utilization in the Development of Space Hardware. The product of these six studies was intended to provide a knowledge base and methodology that enables equipment produced for the Space Biology Initiative program to meet specific design and functional requirements in the most efficient and cost effective form consistent with overall mission integration parameters. Each study promulgates rules of thumb, formulas, and matrices that serves as a handbook for the use and guidance of designers and engineers in design, development, and procurement of Space Biology Initiative (SBI) hardware and software.

  9. Space Biology Initiative. Trade Studies, volume 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The six studies which are addressed are entitled: Design Modularity and Commonality; Modification of Existing Hardware (COTS) vs. New Hardware Build Cost Analysis; Automation Cost vs. Crew Utilization; Hardware Miniaturization versus Cost; Space Station Freedom/Spacelab Modules Compatibility vs. Cost; and Prototype Utilization in the Development of Space Hardware. The product of these six studies was intended to provide a knowledge base and methodology that enables equipment produced for the Space Biology Initiative program to meet specific design and functional requirements in the most efficient and cost effective form consistent with overall mission integration parameters. Each study promulgates rules of thumb, formulas, and matrices that serves has a handbook for the use and guidance of designers and engineers in design, development, and procurement of Space Biology Initiative (SBI) hardware and software.

  10. [Progress in stable isotope labeled quantitative proteomics methods].

    PubMed

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2013-06-01

    Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.

  11. Measurement of the volume growth rate of single budding yeast with the MOSFET-based microfluidic Coulter counter

    PubMed Central

    Sun, Jiashu; Stowers, Chris C.; Boczko, Erik M.

    2012-01-01

    We report on measurements of the volume growth rate of ten individual budding yeast cells using a recently developed MOSFET-based microfluidic Coulter counter. The MOSFET-based microfluidic Coulter counter is very sensitive, provides signals that are immune from the baseline drift, and can work with cell culture media of complex composition. These desirable features allow us to directly measure the volume growth rate of single cells of Saccharomyces cerevisiae LYH3865 strain budding yeast in YNB culture media over a whole cell cycle. Results indicate that all budding yeast follow a sigmoid volume growth profile with reduced growth rates at the initial stage before the bud emerges and the final stage after the daughter gets mature. Analysis of the data indicates that even though all piecewise linear, Gomperitz, and Hill’s function models can fit the global growth profile equally well, the data strongly support local exponential growth phenomenon. Accurate volume growth measurements are important for applications in systems biology where quantitative parameters are required for modeling and simulation. PMID:20717618

  12. Measurement of the volume growth rate of single budding yeast with the MOSFET-based microfluidic Coulter counter.

    PubMed

    Sun, Jiashu; Stowers, Chris C; Boczko, Erik M; Li, Deyu

    2010-11-07

    We report on measurements of the volume growth rate of ten individual budding yeast cells using a recently developed MOSFET-based microfluidic Coulter counter. The MOSFET-based microfluidic Coulter counter is very sensitive, provides signals that are immune from the baseline drift, and can work with cell culture media of complex composition. These desirable features allow us to directly measure the volume growth rate of single cells of Saccharomyces cerevisiae LYH3865 strain budding yeast in YNB culture media over a whole cell cycle. Results indicate that all budding yeast follow a sigmoid volume growth profile with reduced growth rates at the initial stage before the bud emerges and the final stage after the daughter gets mature. Analysis of the data indicates that even though all piecewise linear, Gomperitz, and Hill's function models can fit the global growth profile equally well, the data strongly support local exponential growth phenomenon. Accurate volume growth measurements are important for applications in systems biology where quantitative parameters are required for modeling and simulation.

  13. Comparison of traditional and molecular analytical methods for detecting biological agents in raw and drinking water following ultrafiltration

    USGS Publications Warehouse

    Francy, D.S.; Bushon, R.N.; Brady, A.M.G.; Bertke, E.E.; Kephart, C.M.; Likirdopulos, C.A.; Mailot, B.E.; Schaefer, F. W.; Lindquist, H.D. Alan

    2009-01-01

    Aims: To compare the performance of traditional methods to quantitative polymerase chain reaction (qPCR) for detecting five biological agents in large-volume drinking-water samples concentrated by ultrafiltration (UF). Methods and Results: Drinking-water samples (100 l) were seeded with Bacillus anthracis, Cryptospordium parvum, Francisella tularensis, Salmonella Typhi, and Vibrio cholerae and concentrated by UF. Recoveries by traditional methods were variable between samples and between some replicates; recoveries were not determined by qPCR. Francisella tularensis and V. cholerae were detected in all 14 samples after UF, B. anthracis was detected in 13, and C. parvum was detected in 9 out of 14 samples. Numbers found by qPCR after UF were significantly or nearly related to those found by traditional methods for all organisms except for C. parvum. A qPCR assay for S. Typhi was not available. Conclusions: qPCR can be used to rapidly detect biological agents after UF as well as traditional methods, but additional work is needed to improve qPCR assays for several biological agents, determine recoveries by qPCR, and expand the study to other areas. Significance and Impact of the Study: To our knowledge, this is the first study to compare the use of traditional and qPCR methods to detect biological agents in large-volume drinking-water samples. ?? 2009 The Society for Applied Microbiology.

  14. Correlative Instrumental Neutron Activation Analysis, Light Microscopy, Transmission Electron Microscopy, and X-ray Microanalysis for Qualitative and Quantitative Detection of Colloidal Gold Spheres in Biological Specimens

    NASA Astrophysics Data System (ADS)

    Hillyer, Julián F.; Albrecht, Ralph M.

    1998-10-01

    : Colloidal gold, conjugated to ligands or antibodies, is routinely used as a label for the detection of cell structures by light (LM) and electron microscopy (EM). To date, several methods to count the number of colloidal gold labels have been employed with limited success. Instrumental neutron activation analysis (INAA), a physical method for the analysis of the elemental composition of materials, can be used to provide a quantitative index of gold accumulation in bulk specimens. Given that gold is not naturally found in biological specimens in any substantial amount and that colloidal gold and ligand conjugates can be prepared to yield uniform bead sizes, the amount of label can be calculated in bulk biological samples by INAA. Here we describe the use of INAA, LM, transmission EM, and X-ray microanalysis (EDX) in a model to determine both distribution (localization) and amount of colloidal gold at the organ, tissue, cellular, and ultrastructural levels in whole animal systems following administration. In addition, the sensitivity for gold in biological specimens by INAA is compared with that of inductively coupled plasma mass spectrometry (ICP-MS). The correlative use of INAA, LM, TEM, and EDX can be useful, for example, in the quantitative and qualitative tracking of various labeled molecular species following administration in vivo.

  15. Quantitative nanoparticle tracking: applications to nanomedicine.

    PubMed

    Huang, Feiran; Dempsey, Christopher; Chona, Daniela; Suh, Junghae

    2011-06-01

    Particle tracking is an invaluable technique to extract quantitative and qualitative information regarding the transport of nanomaterials through complex biological environments. This technique can be used to probe the dynamic behavior of nanoparticles as they interact with and navigate through intra- and extra-cellular barriers. In this article, we focus on the recent developments in the application of particle-tracking technology to nanomedicine, including the study of synthetic and virus-based materials designed for gene and drug delivery. Specifically, we cover research where mean square displacements of nanomaterial transport were explicitly determined in order to quantitatively assess the transport of nanoparticles through biological environments. Particle-tracking experiments can provide important insights that may help guide the design of more intelligent and effective diagnostic and therapeutic nanoparticles.

  16. Quantitative Detection and Biological Propagation of Scrapie Seeding Activity In Vitro Facilitate Use of Prions as Model Pathogens for Disinfection

    PubMed Central

    Pritzkow, Sandra; Wagenführ, Katja; Daus, Martin L.; Boerner, Susann; Lemmer, Karin; Thomzig, Achim; Mielke, Martin; Beekes, Michael

    2011-01-01

    Prions are pathogens with an unusually high tolerance to inactivation and constitute a complex challenge to the re-processing of surgical instruments. On the other hand, however, they provide an informative paradigm which has been exploited successfully for the development of novel broad-range disinfectants simultaneously active also against bacteria, viruses and fungi. Here we report on the development of a methodological platform that further facilitates the use of scrapie prions as model pathogens for disinfection. We used specifically adapted serial protein misfolding cyclic amplification (PMCA) for the quantitative detection, on steel wires providing model carriers for decontamination, of 263K scrapie seeding activity converting normal protease-sensitive into abnormal protease-resistant prion protein. Reference steel wires carrying defined amounts of scrapie infectivity were used for assay calibration, while scrapie-contaminated test steel wires were subjected to fifteen different procedures for disinfection that yielded scrapie titre reductions of ≤101- to ≥105.5-fold. As confirmed by titration in hamsters the residual scrapie infectivity on test wires could be reliably deduced for all examined disinfection procedures, from our quantitative seeding activity assay. Furthermore, we found that scrapie seeding activity present in 263K hamster brain homogenate or multiplied by PMCA of scrapie-contaminated steel wires both triggered accumulation of protease-resistant prion protein and was further propagated in a novel cell assay for 263K scrapie prions, i.e., cerebral glial cell cultures from hamsters. The findings from our PMCA- and glial cell culture assays revealed scrapie seeding activity as a biochemically and biologically replicative principle in vitro, with the former being quantitatively linked to prion infectivity detected on steel wires in vivo. When combined, our in vitro assays provide an alternative to titrations of biological scrapie infectivity

  17. A Quantitative Gas Chromatographic Ethanol Determination.

    ERIC Educational Resources Information Center

    Leary, James J.

    1983-01-01

    Describes a gas chromatographic experiment for the quantitative determination of volume percent ethanol in water ethanol solutions. Background information, procedures, and typical results are included. Accuracy and precision of results are both on the order of two percent. (JN)

  18. Positioning Genomics in Biology Education: Content Mapping of Undergraduate Biology Textbooks†

    PubMed Central

    Wernick, Naomi L. B.; Ndung’u, Eric; Haughton, Dominique; Ledley, Fred D.

    2014-01-01

    Biological thought increasingly recognizes the centrality of the genome in constituting and regulating processes ranging from cellular systems to ecology and evolution. In this paper, we ask whether genomics is similarly positioned as a core concept in the instructional sequence for undergraduate biology. Using quantitative methods, we analyzed the order in which core biological concepts were introduced in textbooks for first-year general and human biology. Statistical analysis was performed using self-organizing map algorithms and conventional methods to identify clusters of terms and their relative position in the books. General biology textbooks for both majors and nonmajors introduced genome-related content after text related to cell biology and biological chemistry, but before content describing higher-order biological processes. However, human biology textbooks most often introduced genomic content near the end of the books. These results suggest that genomics is not yet positioned as a core concept in commonly used textbooks for first-year biology and raises questions about whether such textbooks, or courses based on the outline of these textbooks, provide an appropriate foundation for understanding contemporary biological science. PMID:25574293

  19. Positioning genomics in biology education: content mapping of undergraduate biology textbooks.

    PubMed

    Wernick, Naomi L B; Ndung'u, Eric; Haughton, Dominique; Ledley, Fred D

    2014-12-01

    Biological thought increasingly recognizes the centrality of the genome in constituting and regulating processes ranging from cellular systems to ecology and evolution. In this paper, we ask whether genomics is similarly positioned as a core concept in the instructional sequence for undergraduate biology. Using quantitative methods, we analyzed the order in which core biological concepts were introduced in textbooks for first-year general and human biology. Statistical analysis was performed using self-organizing map algorithms and conventional methods to identify clusters of terms and their relative position in the books. General biology textbooks for both majors and nonmajors introduced genome-related content after text related to cell biology and biological chemistry, but before content describing higher-order biological processes. However, human biology textbooks most often introduced genomic content near the end of the books. These results suggest that genomics is not yet positioned as a core concept in commonly used textbooks for first-year biology and raises questions about whether such textbooks, or courses based on the outline of these textbooks, provide an appropriate foundation for understanding contemporary biological science.

  20. Three-Dimensional Analysis of Long-Term Midface Volume Change After Vertical Vector Deep-Plane Rhytidectomy.

    PubMed

    Jacono, Andrew A; Malone, Melanie H; Talei, Benjamin

    2015-07-01

    Facial aging is a complicated process that includes volume loss and soft tissue descent. This study provides quantitative 3-dimensional (3D) data on the long-term effect of vertical vector deep-plane rhytidectomy on restoring volume to the midface. To determine if primary vertical vector deep-plane rhytidectomy resulted in long-term volume change in the midface. We performed a prospective study on patients undergoing primary vertical vector deep-plane rhytidectomy to quantitate 3D volume changes in the midface. Quantitative analysis of volume changes was made using the Vectra 3D imaging software (Canfield Scientific, Inc, Fairfield, New Jersey) at a minimum follow-up of 1 year. Forty-three patients (86 hemifaces) were analyzed. The average volume gained in each hemi-midface after vertical vector deep-plane rhytidectomy was 3.2 mL. Vertical vector deep-plane rhytidectomy provides significant long-term augmentation of volume in the midface. These quantitative data demonstrate that some midface volume loss is related to gravitational descent of the cheek fat compartments and that vertical vector deep-plane rhytidectomy may obviate the need for other volumization procedures such as autologous fat grafting in selected cases. 4 Therapeutic. © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  1. Cryo-FIB-SEM serial milling and block face imaging: Large volume structural analysis of biological tissues preserved close to their native state.

    PubMed

    Vidavsky, Netta; Akiva, Anat; Kaplan-Ashiri, Ifat; Rechav, Katya; Addadi, Lia; Weiner, Steve; Schertel, Andreas

    2016-12-01

    Many important biological questions can be addressed by studying in 3D large volumes of intact, cryo fixed hydrated tissues (⩾10,000μm 3 ) at high resolution (5-20nm). This can be achieved using serial FIB milling and block face surface imaging under cryo conditions. Here we demonstrate the unique potential of the cryo-FIB-SEM approach using two extensively studied model systems; sea urchin embryos and the tail fin of zebrafish larvae. We focus in particular on the environment of mineral deposition sites. The cellular organelles, including mitochondria, Golgi, ER, nuclei and nuclear pores are made visible by the image contrast created by differences in surface potential of different biochemical components. Auto segmentation and/or volume rendering of the image stacks and 3D reconstruction of the skeleton and the cellular environment, provides a detailed view of the relative distribution in space of the tissue/cellular components, and thus of their interactions. Simultaneous acquisition of secondary and back-scattered electron images adds additional information. For example, a serial view of the zebrafish tail reveals the presence of electron dense mineral particles inside mitochondrial networks extending more than 20μm in depth in the block. Large volume imaging using cryo FIB SEM, as demonstrated here, can contribute significantly to the understanding of the structures and functions of diverse biological tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A Study Assessing the Potential of Negative Effects in Interdisciplinary Math–Biology Instruction

    PubMed Central

    Madlung, Andreas; Bremer, Martina; Himelblau, Edward; Tullis, Alexa

    2011-01-01

    There is increasing enthusiasm for teaching approaches that combine mathematics and biology. The call for integrating more quantitative work in biology education has led to new teaching tools that improve quantitative skills. Little is known, however, about whether increasing interdisciplinary work can lead to adverse effects, such as the development of broader but shallower skills or the possibility that math anxiety causes some students to disengage in the classroom, or, paradoxically, to focus so much on the mathematics that they lose sight of its application for the biological concepts in the center of the unit at hand. We have developed and assessed an integrative learning module and found disciplinary learning gains to be equally strong in first-year students who actively engaged in embedded quantitative calculations as in those students who were merely presented with quantitative data in the context of interpreting biological and biostatistical results. When presented to advanced biology students, our quantitative learning tool increased test performance significantly. We conclude from our study that the addition of mathematical calculations to the first year and advanced biology curricula did not hinder overall student learning, and may increase disciplinary learning and data interpretation skills in advanced students. PMID:21364099

  3. New Method for Quantitation of Lipid Droplet Volume From Light Microscopic Images With an Application to Determination of PAT Protein Density on the Droplet Surface.

    PubMed

    Dejgaard, Selma Y; Presley, John F

    2018-06-01

    Determination of lipid droplet (LD) volume has depended on direct measurement of the diameter of individual LDs, which is not possible when LDs are small or closely apposed. To overcome this problem, we describe a new method in which a volume-fluorescence relationship is determined from automated analysis of calibration samples containing well-resolved LDs. This relationship is then used to estimate total cellular droplet volume in experimental samples, where the LDs need not be individually resolved, or to determine the volumes of individual LDs. We describe quantitatively the effects of various factors, including image noise, LD crowding, and variation in LD composition on the accuracy of this method. We then demonstrate this method by utilizing it to address a scientifically interesting question, to determine the density of green fluorescent protein (GFP)-tagged Perilipin-Adipocyte-Tail (PAT) proteins on the LD surface. We find that PAT proteins cover only a minority of the LD surface, consistent with models in which they primarily serve as scaffolds for binding of regulatory proteins and enzymes, but inconsistent with models in which their major function is to sterically block access to the droplet surface.

  4. Current trends in quantitative proteomics - an update.

    PubMed

    Li, H; Han, J; Pan, J; Liu, T; Parker, C E; Borchers, C H

    2017-05-01

    Proteins can provide insights into biological processes at the functional level, so they are very promising biomarker candidates. The quantification of proteins in biological samples has been routinely used for the diagnosis of diseases and monitoring the treatment. Although large-scale protein quantification in complex samples is still a challenging task, a great amount of effort has been made to advance the technologies that enable quantitative proteomics. Seven years ago, in 2009, we wrote an article about the current trends in quantitative proteomics. In writing this current paper, we realized that, today, we have an even wider selection of potential tools for quantitative proteomics. These tools include new derivatization reagents, novel sampling formats, new types of analyzers and scanning techniques, and recently developed software to assist in assay development and data analysis. In this review article, we will discuss these innovative methods, and their current and potential applications in proteomics. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Target-responsive DNAzyme cross-linked hydrogel for visual quantitative detection of lead.

    PubMed

    Huang, Yishun; Ma, Yanli; Chen, Yahong; Wu, Xuemeng; Fang, Luting; Zhu, Zhi; Yang, Chaoyong James

    2014-11-18

    Because of the severe health risks associated with lead pollution, rapid, sensitive, and portable detection of low levels of Pb(2+) in biological and environmental samples is of great importance. In this work, a Pb(2+)-responsive hydrogel was prepared using a DNAzyme and its substrate as cross-linker for rapid, sensitive, portable, and quantitative detection of Pb(2+). Gold nanoparticles (AuNPs) were first encapsulated in the hydrogel as an indicator for colorimetric analysis. In the absence of lead, the DNAzyme is inactive, and the substrate cross-linker maintains the hydrogel in the gel form. In contrast, the presence of lead activates the DNAzyme to cleave the substrate, decreasing the cross-linking density of the hydrogel and resulting in dissolution of the hydrogel and release of AuNPs for visual detection. As low as 10 nM Pb(2+) can be detected by the naked eye. Furthermore, to realize quantitative visual detection, a volumetric bar-chart chip (V-chip) was used for quantitative readout of the hydrogel system by replacing AuNPs with gold-platinum core-shell nanoparticles (Au@PtNPs). The Au@PtNPs released from the hydrogel upon target activation can efficiently catalyze the decomposition of H2O2 to generate a large volume of O2. The gas pressure moves an ink bar in the V-chip for portable visual quantitative detection of lead with a detection limit less than 5 nM. The device was able to detect lead in digested blood with excellent accuracy. The method developed can be used for portable lead quantitation in many applications. Furthermore, the method can be further extended to portable visual quantitative detection of a variety of targets by replacing the lead-responsive DNAzyme with other DNAzymes.

  6. Quantitative agreement between [(15)O]H2O PET and model free QUASAR MRI-derived cerebral blood flow and arterial blood volume.

    PubMed

    Heijtel, D F R; Petersen, E T; Mutsaerts, H J M M; Bakker, E; Schober, P; Stevens, M F; van Berckel, B N M; Majoie, C B L M; Booij, J; van Osch, M J P; van Bavel, E T; Boellaard, R; Lammertsma, A A; Nederveen, A J

    2016-04-01

    The purpose of this study was to assess whether there was an agreement between quantitative cerebral blood flow (CBF) and arterial cerebral blood volume (CBVA) measurements by [(15)O]H2O positron emission tomography (PET) and model-free QUASAR MRI. Twelve healthy subjects were scanned within a week in separate MRI and PET imaging sessions, after which quantitative and qualitative agreement between both modalities was assessed for gray matter, white matter and whole brain region of interests (ROI). The correlation between CBF measurements obtained with both modalities was moderate to high (r(2): 0.28-0.60, P < 0.05), although QUASAR significantly underestimated CBF by 30% (P < 0.001). CBVA was moderately correlated (r(2): 0.28-0.43, P < 0.05), with QUASAR yielding values that were only 27% of the [(15)O]H2O-derived values (P < 0.001). Group-wise voxel statistics identified minor areas with significant contrast differences between [(15)O]H2O PET and QUASAR MRI, indicating similar qualitative CBVA and CBF information by both modalities. In conclusion, the results of this study demonstrate that QUASAR MRI and [(15)O]H2O PET provide similar CBF and CBVA information, but with systematic quantitative discrepancies. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Quantitative Relationships Between Net Volume Change and Fabric Properties During Soil Evolution

    NASA Technical Reports Server (NTRS)

    Chadwick, O. A.; Nettleton, W. D.

    1993-01-01

    The state of soil evolution can be charted by net long-term volume and elemental mass changes for individual horizons compared with parent material. Volume collapse or dilation depends on relative elemental mass fluxes associated with losses form or additions to soil horizons.

  8. Age estimation from canine volumes.

    PubMed

    De Angelis, Danilo; Gaudio, Daniel; Guercini, Nicola; Cipriani, Filippo; Gibelli, Daniele; Caputi, Sergio; Cattaneo, Cristina

    2015-08-01

    Techniques for estimation of biological age are constantly evolving and are finding daily application in the forensic radiology field in cases concerning the estimation of the chronological age of a corpse in order to reconstruct the biological profile, or of a living subject, for example in cases of immigration of people without identity papers from a civil registry. The deposition of teeth secondary dentine and consequent decrease of pulp chamber in size are well known as aging phenomena, and they have been applied to the forensic context by the development of age estimation procedures, such as Kvaal-Solheim and Cameriere methods. The present study takes into consideration canines pulp chamber volume related to the entire teeth volume, with the aim of proposing new regression formulae for age estimation using 91 cone beam computerized scans and a freeware open-source software, in order to permit affordable reproducibility of volumes calculation.

  9. Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST.

    PubMed

    Mulder, Emma R; de Jong, Remko A; Knol, Dirk L; van Schijndel, Ronald A; Cover, Keith S; Visser, Pieter J; Barkhof, Frederik; Vrenken, Hugo

    2014-05-15

    -year μL volume change, with LoA of ±218 μL for FreeSurfer, ±319 μL for expert manual delineation, and ±333 μL for FIRST. Approximate p-values indicated that reproducibility was better for FreeSurfer than for manual or FIRST, and that manual and FIRST did not differ. Inclusion of failed automated segmentations led to worsening of reproducibility of both automated methods for 1-year raw and percentage volume change. Quantitative reproducibility values of 1-year microliter and percentage hippocampal volume change were roughly similar between expert manual outlining, FIRST and FreeSurfer, but FreeSurfer reproducibility was statistically significantly superior to both manual outlining and FIRST after exclusion of failed segmentations. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET.

    PubMed

    Hatt, M; Lamare, F; Boussion, N; Turzo, A; Collet, C; Salzenstein, F; Roux, C; Jarritt, P; Carson, K; Cheze-Le Rest, C; Visvikis, D

    2007-06-21

    Accurate volume of interest (VOI) estimation in PET is crucial in different oncology applications such as response to therapy evaluation and radiotherapy treatment planning. The objective of our study was to evaluate the performance of the proposed algorithm for automatic lesion volume delineation; namely the fuzzy hidden Markov chains (FHMC), with that of current state of the art in clinical practice threshold based techniques. As the classical hidden Markov chain (HMC) algorithm, FHMC takes into account noise, voxel intensity and spatial correlation, in order to classify a voxel as background or functional VOI. However the novelty of the fuzzy model consists of the inclusion of an estimation of imprecision, which should subsequently lead to a better modelling of the 'fuzzy' nature of the object of interest boundaries in emission tomography data. The performance of the algorithms has been assessed on both simulated and acquired datasets of the IEC phantom, covering a large range of spherical lesion sizes (from 10 to 37 mm), contrast ratios (4:1 and 8:1) and image noise levels. Both lesion activity recovery and VOI determination tasks were assessed in reconstructed images using two different voxel sizes (8 mm3 and 64 mm3). In order to account for both the functional volume location and its size, the concept of % classification errors was introduced in the evaluation of volume segmentation using the simulated datasets. Results reveal that FHMC performs substantially better than the threshold based methodology for functional volume determination or activity concentration recovery considering a contrast ratio of 4:1 and lesion sizes of <28 mm. Furthermore differences between classification and volume estimation errors evaluated were smaller for the segmented volumes provided by the FHMC algorithm. Finally, the performance of the automatic algorithms was less susceptible to image noise levels in comparison to the threshold based techniques. The analysis of both

  11. Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology

    EPA Science Inventory

    A quantitative adverse outcome pathway (qAOP) consists of one or more biologically based, computational models describing key event relationships linking a molecular initiating event (MIE) to an adverse outcome. A qAOP provides quantitative, dose–response, and time-course p...

  12. Systems cell biology

    PubMed Central

    Mast, Fred D.; Ratushny, Alexander V.

    2014-01-01

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology. PMID:25225336

  13. Quantitative CT characterization of pediatric lung development using routine clinical imaging

    PubMed Central

    Stein, Jill M.; Walkup, Laura L.; Brody, Alan S.; Fleck, Robert J.

    2016-01-01

    Background The use of quantitative CT analysis in children is limited by lack of normal values of lung parenchymal attenuation. These characteristics are important because normal lung development yields significant parenchymal attenuation changes as children age. Objective To perform quantitative characterization of normal pediatric lung parenchymal X-ray CT attenuation under routine clinical conditions in order to establish a baseline comparison to that seen in pathological lung conditions. Materials and methods We conducted a retrospective query of normal CT chest examinations in children ages 0–7 years from 2004 to 2014 using standard clinical protocol. During these examinations semi-automated lung parenchymal segmentation was performed to measure lung volume and mean lung attenuation. Results We analyzed 42 CT examinations in 39 children, ages 3 days to 83 months (mean ± standard deviation [SD] = 42±27 months). Lung volume ranged 0.10–1.72 liters (L). Mean lung attenuation was much higher in children younger than 12 months, with values as high as −380 Hounsfield units (HU) in neonates (lung volume 0.10 L). Lung volume decreased to approximately −650 HU by age 2 years (lung volume 0.47 L), with subsequently slower exponential decrease toward a relatively constant value of −860 HU as age and lung volume increased. Conclusion Normal lung parenchymal X-ray CT attenuation decreases with increasing lung volume and age; lung attenuation decreases rapidly in the first 2 years of age and more slowly thereafter. This change in normal lung attenuation should be taken into account as quantitative CT methods are translated to pediatric pulmonary imaging. PMID:27576458

  14. QUANTITATIVE PROCEDURES FOR NEUROTOXICOLOGY RISK ASSESSMENT

    EPA Science Inventory

    In this project, previously published information on biologically based dose-response model for brain development was used to quantitatively evaluate critical neurodevelopmental processes, and to assess potential chemical impacts on early brain development. This model has been ex...

  15. Peripheral Intravenous Volume Assessment (PIVA) for Quantitating Volume Overload in Patients Hospitalized with Acute Decompensated Heart Failure-a Pilot Study.

    PubMed

    Miles, Merrick; Alvis, Bret D; Hocking, Kyle; Baudenbacher, Franz; Guth, Christy; Lindenfeld, JoAann; Brophy, Colleen; Eagle, Susan

    2018-05-16

    To determine the feasibility of Peripheral Intravenous Volume Assessment (PIVA) of venous waveforms for assessing volume overload in patients admitted to the hospital with acute decompensated heart failure (ADHF). Venous waveforms were captured from a peripheral intravenous catheter in subjects admitted for ADHF and healthy age-matched controls. Admission PIVA signal, brain natriuretic peptide, and chest radiographic measurements were related to the net volume removed during diuresis. ADHF patients had a significantly greater PIVA signal on admission compared to the control group (P=0.0013, n=18). At discharge, ADHF patients had a PIVA signal similar to the control group. PIVA signal, not BNP or chest radiographic measures, accurately predicted the amount of volume removed during diuresis (R 2 =0.781, n=14). PIVA signal at time of discharge greater than 0.20, demonstrated 83.3% 120-day readmission rate. This study demonstrates the feasibility of PIVA for assessment of volume overload in patients admitted to the hospital with ADHF. Copyright © 2018. Published by Elsevier Inc.

  16. [Methods of quantitative proteomics].

    PubMed

    Kopylov, A T; Zgoda, V G

    2007-01-01

    In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.

  17. Warping of a computerized 3-D atlas to match brain image volumes for quantitative neuroanatomical and functional analysis

    NASA Astrophysics Data System (ADS)

    Evans, Alan C.; Dai, Weiqian; Collins, D. Louis; Neelin, Peter; Marrett, Sean

    1991-06-01

    We describe the implementation, experience and preliminary results obtained with a 3-D computerized brain atlas for topographical and functional analysis of brain sub-regions. A volume-of-interest (VOI) atlas was produced by manual contouring on 64 adjacent 2 mm-thick MRI slices to yield 60 brain structures in each hemisphere which could be adjusted, originally by global affine transformation or local interactive adjustments, to match individual MRI datasets. We have now added a non-linear deformation (warp) capability (Bookstein, 1989) into the procedure for fitting the atlas to the brain data. Specific target points are identified in both atlas and MRI spaces which define a continuous 3-D warp transformation that maps the atlas on to the individual brain image. The procedure was used to fit MRI brain image volumes from 16 young normal volunteers. Regional volume and positional variability were determined, the latter in such a way as to assess the extent to which previous linear models of brain anatomical variability fail to account for the true variation among normal individuals. Using a linear model for atlas deformation yielded 3-D fits of the MRI data which, when pooled across subjects and brain regions, left a residual mis-match of 6 - 7 mm as compared to the non-linear model. The results indicate a substantial component of morphometric variability is not accounted for by linear scaling. This has profound implications for applications which employ stereotactic coordinate systems which map individual brains into a common reference frame: quantitative neuroradiology, stereotactic neurosurgery and cognitive mapping of normal brain function with PET. In the latter case, the combination of a non-linear deformation algorithm would allow for accurate measurement of individual anatomic variations and the inclusion of such variations in inter-subject averaging methodologies used for cognitive mapping with PET.

  18. Quantitative Assessment of Proliferative Effects of Oral Vanadium on Pancreatic Islet Volumes and Beta Cell Numbers of Diabetic Rats.

    PubMed

    Pirmoradi, Leila; Noorafshan, Ali; Safaee, Akbar; Dehghani, Gholam Abbas

    2016-01-01

    Oral vanadyl sulfate (vanadium) induces normoglycemia, proliferates beta cells and prevents pancreatic islet atrophy in streptozotocin-induced diabetic rats. Soteriological method is used to quantitate the proliferative effects of vanadium on beta-cell numbers and islet volumes of normal and diabetic rats. Adult male Sprague-Dawley rats were made diabetic with intravenous streptozotocin injection (40 mg/kg). Normal and diabetic rats were divided into four groups. While control normal and diabetic (CD) groups used water, vanadium-treated normal (VTN) and diabetic (VTD) groups used solutions containing vanadyl sulfate (0.5-1 mg/mL, VOSO4+5H2O). Tail blood samples were used to measure blood glucose (BG) and plasma insulin. Two months after treatment, rats were sacrificed, pancreata prepared, and stereology method was used to quantitatively evaluate total beta cell numbers (TBCN) and total islet volumes (TISVOL). Normoglycemia persisted in VTN with significantly decreased plasma insulin (0.19±0.08 vs. 0.97±0.27 ng/dL, P<0.002). The respective high BG (532±49 vs. 144±46 mg/dL, P<0.0001) and reduced plasma insulin (0.26±0.15 vs. 0.54±0.19 ng/dL, P<0.002) seen in CD were reversed in VTD during vanadium treatment or withdrawal. While the induction of diabetes, compared to their control, significantly decreased TISVOL (1.9±0.2 vs. 3.03±0.6 mm3, P<0.003) and TBCN (0.99±0.1 vs. 3.2±0.2 x 106, P<0.003), vanadium treatment significantly increased TISVOL (2.9±0.8 and 4.07±1.0 mm3, P<0.003) and TBCN (1.5±0.3 and 3.8±0.6 x 106, P<0.03). Two-month oral vanadium therapy in STZ-diabetic rats ameliorated hyperglycemia by partially restoring plasma insulin. This action was through proliferative actions of vanadium in preventing islet atrophy by increasing beta-cell numbers.

  19. Integrating quantitative PCR and Bayesian statistics in quantifying human adenoviruses in small volumes of source water.

    PubMed

    Wu, Jianyong; Gronewold, Andrew D; Rodriguez, Roberto A; Stewart, Jill R; Sobsey, Mark D

    2014-02-01

    Rapid quantification of viral pathogens in drinking and recreational water can help reduce waterborne disease risks. For this purpose, samples in small volume (e.g. 1L) are favored because of the convenience of collection, transportation and processing. However, the results of viral analysis are often subject to uncertainty. To overcome this limitation, we propose an approach that integrates Bayesian statistics, efficient concentration methods, and quantitative PCR (qPCR) to quantify viral pathogens in water. Using this approach, we quantified human adenoviruses (HAdVs) in eighteen samples of source water collected from six drinking water treatment plants. HAdVs were found in seven samples. In the other eleven samples, HAdVs were not detected by qPCR, but might have existed based on Bayesian inference. Our integrated approach that quantifies uncertainty provides a better understanding than conventional assessments of potential risks to public health, particularly in cases when pathogens may present a threat but cannot be detected by traditional methods. © 2013 Elsevier B.V. All rights reserved.

  20. On the limitations of standard statistical modeling in biological systems: a full Bayesian approach for biology.

    PubMed

    Gomez-Ramirez, Jaime; Sanz, Ricardo

    2013-09-01

    One of the most important scientific challenges today is the quantitative and predictive understanding of biological function. Classical mathematical and computational approaches have been enormously successful in modeling inert matter, but they may be inadequate to address inherent features of biological systems. We address the conceptual and methodological obstacles that lie in the inverse problem in biological systems modeling. We introduce a full Bayesian approach (FBA), a theoretical framework to study biological function, in which probability distributions are conditional on biophysical information that physically resides in the biological system that is studied by the scientist. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Volume measurement of the leg with the depth camera for quantitative evaluation of edema

    NASA Astrophysics Data System (ADS)

    Kiyomitsu, Kaoru; Kakinuma, Akihiro; Takahashi, Hiroshi; Kamijo, Naohiro; Ogawa, Keiko; Tsumura, Norimichi

    2017-02-01

    Volume measurement of the leg is important in the evaluation of leg edema. Recently, method for measurement by using a depth camera is proposed. However, many depth cameras are expensive. Therefore, we propose a method using Microsoft Kinect. We obtain a point cloud of the leg by Kinect Fusion technique and calculate the volume. We measured the volume of leg for three healthy students during three days. In each measurement, the increase of volume was confirmed from morning to evening. It is known that the volume of leg is increased in doing office work. Our experimental results meet this expectation.

  2. Measurement of lung expansion with computed tomography and comparison with quantitative histology.

    PubMed

    Coxson, H O; Mayo, J R; Behzad, H; Moore, B J; Verburgt, L M; Staples, C A; Paré, P D; Hogg, J C

    1995-11-01

    The total and regional lung volumes were estimated from computed tomography (CT), and the pleural pressure gradient was determined by using the milliliters of gas per gram of tissue estimated from the X-ray attenuation values and the pressure-volume curve of the lung. The data show that CT accurately estimated the volume of the resected lobe but overestimated its weight by 24 +/- 19%. The volume of gas per gram of tissue was less in the gravity-dependent regions due to a pleural pressure gradient of 0.24 +/- 0.08 cmH2O/cm of descent in the thorax. The proportion of tissue to air obtained with CT was similar to that obtained by quantitative histology. We conclude that the CT scan can be used to estimate total and regional lung volumes and that measurements of the proportions of tissue and air within the thorax by CT can be used in conjunction with quantitative histology to evaluate lung structure.

  3. Quantitative evaluation of the voice range profile in patients with voice disorder.

    PubMed

    Ikeda, Y; Masuda, T; Manako, H; Yamashita, H; Yamamoto, T; Komiyama, S

    1999-01-01

    In 1953, Calvet first displayed the fundamental frequency (pitch) and sound pressure level (intensity) of a voice on a two-dimensional plane and created a voice range profile. This profile has been used to evaluate clinically various vocal disorders, although such evaluations to date have been subjective without quantitative assessment. In the present study, a quantitative system was developed to evaluate the voice range profile utilizing a personal computer. The area of the voice range profile was defined as the voice volume. This volume was analyzed in 137 males and 175 females who were treated for various dysphonias at Kyushu University between 1984 and 1990. Ten normal subjects served as controls. The voice volume in cases with voice disorders significantly decreased irrespective of the disease and sex. Furthermore, cases having better improvement after treatment showed a tendency for the voice volume to increase. These findings illustrated the voice volume as a useful clinical test for evaluating voice control in cases with vocal disorders.

  4. Calibration of Wide-Field Deconvolution Microscopy for Quantitative Fluorescence Imaging

    PubMed Central

    Lee, Ji-Sook; Wee, Tse-Luen (Erika); Brown, Claire M.

    2014-01-01

    Deconvolution enhances contrast in fluorescence microscopy images, especially in low-contrast, high-background wide-field microscope images, improving characterization of features within the sample. Deconvolution can also be combined with other imaging modalities, such as confocal microscopy, and most software programs seek to improve resolution as well as contrast. Quantitative image analyses require instrument calibration and with deconvolution, necessitate that this process itself preserves the relative quantitative relationships between fluorescence intensities. To ensure that the quantitative nature of the data remains unaltered, deconvolution algorithms need to be tested thoroughly. This study investigated whether the deconvolution algorithms in AutoQuant X3 preserve relative quantitative intensity data. InSpeck Green calibration microspheres were prepared for imaging, z-stacks were collected using a wide-field microscope, and the images were deconvolved using the iterative deconvolution algorithms with default settings. Afterwards, the mean intensities and volumes of microspheres in the original and the deconvolved images were measured. Deconvolved data sets showed higher average microsphere intensities and smaller volumes than the original wide-field data sets. In original and deconvolved data sets, intensity means showed linear relationships with the relative microsphere intensities given by the manufacturer. Importantly, upon normalization, the trend lines were found to have similar slopes. In original and deconvolved images, the volumes of the microspheres were quite uniform for all relative microsphere intensities. We were able to show that AutoQuant X3 deconvolution software data are quantitative. In general, the protocol presented can be used to calibrate any fluorescence microscope or image processing and analysis procedure. PMID:24688321

  5. Focus issue: series on computational and systems biology.

    PubMed

    Gough, Nancy R

    2011-09-06

    The application of computational biology and systems biology is yielding quantitative insight into cellular regulatory phenomena. For the month of September, Science Signaling highlights research featuring computational approaches to understanding cell signaling and investigation of signaling networks, a series of Teaching Resources from a course in systems biology, and various other articles and resources relevant to the application of computational biology and systems biology to the study of signal transduction.

  6. Radiometry in medicine and biology

    NASA Astrophysics Data System (ADS)

    Nahm, Kie-Bong; Choi, Eui Y.

    2012-10-01

    Diagnostics in medicine plays a critical role in helping medical professionals deliver proper diagnostic decisions. Most samples in this trade are of the human origin and a great portion of methodologies practiced in biology labs is shared in clinical diagnostic laboratories as well. Most clinical tests are quantitative in nature and recent increase in interests in preventive medicine requires the determination of minimal concentration of target analyte: they exist in small quantities at the early stage of various diseases. Radiometry or the use of optical radiation is the most trusted and reliable means of converting biologic concentrations into quantitative physical quantities. Since optical energy is readily available in varying energies (or wavelengths), the appropriate combination of light and the sample absorption properties provides reliable information about the sample concentration through Beer-Lambert law to a decent precision. In this article, the commonly practiced techniques in clinical and biology labs are reviewed from the standpoint of radiometry.

  7. Systems cell biology.

    PubMed

    Mast, Fred D; Ratushny, Alexander V; Aitchison, John D

    2014-09-15

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology. © 2014 Mast et al.

  8. Scanning transmission ion microscopy mass measurements for quantitative trace element analysis within biological samples and validation using atomic force microscopy thickness measurements

    NASA Astrophysics Data System (ADS)

    Devès, Guillaume; Cohen-Bouhacina, Touria; Ortega, Richard

    2004-10-01

    We used the nuclear microprobe techniques, micro-PIXE (particle-induced X-ray emission), micro-RBS (Rutherford backscattering spectrometry) and scanning transmission ion microscopy (STIM) in order to perform the characterization of trace element content and spatial distribution within biological samples (dehydrated cultured cells, tissues). The normalization of PIXE results was usually expressed in terms of sample dry mass as determined by micro-RBS recorded simultaneously to micro-PIXE. However, the main limit of RBS mass measurement is the sample mass loss occurring during irradiation and which could be up to 30% of the initial sample mass. We present here a new methodology for PIXE normalization and quantitative analysis of trace element within biological samples based on dry mass measurement performed by mean of STIM. The validation of STIM cell mass measurements was obtained in comparison with AFM sample thickness measurements. Results indicated the reliability of STIM mass measurement performed on biological samples and suggested that STIM should be performed for PIXE normalization. Further information deriving from direct confrontation of AFM and STIM analysis could as well be obtained, like in situ measurements of cell specific gravity within cells compartment (nucleolus and cytoplasm).

  9. Regenerate Healing Outcomes in Unilateral Mandibular Distraction Osteogenesis Using Quantitative Histomorphometry

    PubMed Central

    Schwarz, Daniel A.; Arman, Krikor G.; Kakwan, Mehreen S.; Jamali, Ameen M.; Elmeligy, Ayman A.; Buchman, Steven R.

    2015-01-01

    Background The authors’ goal was to ascertain regenerate bone-healing metrics using quantitative histomorphometry at a single consolidation period. Methods Rats underwent either mandibular distraction osteogenesis (n=7) or partially reduced fractures (n=7); their contralateral mandibles were used as controls (n=11). External fixators were secured and unilateral osteotomies performed, followed by either mandibular distraction osteogenesis (4 days’ latency, then 0.3 mm every 12 hours for 8 days; 5.1 mm) or partially reduced fractures (fixed immediately postoperatively; 2.1 mm); both groups underwent 4 weeks of consolidation. After tissue processing, bone volume/tissue volume ratio, osteoid volume/tissue volume ratio, and osteocyte count per high-power field were analyzed by means of quantitative histomorphometry. Results Contralateral mandibles had statistically greater bone volume/tissue volume ratio and osteocyte count per high-power field compared with both mandibular distraction osteogenesis and partially reduced fractures by almost 50 percent, whereas osteoid volume/tissue volume ratio was statistically greater in both mandibular distraction osteogenesis specimens and partially reduced fractures compared with contralateral mandibles. No statistical difference in bone volume/tissue volume ratio, osteoid volume/tissue volume ratio, or osteocyte count per high-power field was found between mandibular distraction osteogenesis specimens and partially reduced fractures. Conclusions The authors’ findings demonstrate significantly decreased bone quantity and maturity in mandibular distraction osteogenesis specimens and partially reduced fractures compared with contralateral mandibles using the clinically analogous protocols. If these results are extrapolated clinically, treatment strategies may require modification to ensure reliable, predictable, and improved outcomes. PMID:20463629

  10. 2006 In Vitro Biology Meeting. Volume 42

    DTIC Science & Technology

    2006-04-25

    industry. Production of elite stock plants for small fruit and vegetable crops is a secondary area of activity . Clonal propagation of coniferous forest...Biotechnology, Inc. 11:45 P-18 Transgenic Expression and Recovery of Biologically Active Recombinant Human Insulin from Arabidopsis thaliana Oilseeds...Mangadlao, University of the Philippines SECONDARY PRODUCTS AND BIOTECHNOLOGY Moderator: Mitchell L. Wise, USDA/ARS 2:30 pm - 3:30 pm Plant Interactive

  11. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNAmore » populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.« less

  12. Quantitative imaging biomarker ontology (QIBO) for knowledge representation of biomedical imaging biomarkers.

    PubMed

    Buckler, Andrew J; Liu, Tiffany Ting; Savig, Erica; Suzek, Baris E; Ouellette, M; Danagoulian, J; Wernsing, G; Rubin, Daniel L; Paik, David

    2013-08-01

    A widening array of novel imaging biomarkers is being developed using ever more powerful clinical and preclinical imaging modalities. These biomarkers have demonstrated effectiveness in quantifying biological processes as they occur in vivo and in the early prediction of therapeutic outcomes. However, quantitative imaging biomarker data and knowledge are not standardized, representing a critical barrier to accumulating medical knowledge based on quantitative imaging data. We use an ontology to represent, integrate, and harmonize heterogeneous knowledge across the domain of imaging biomarkers. This advances the goal of developing applications to (1) improve precision and recall of storage and retrieval of quantitative imaging-related data using standardized terminology; (2) streamline the discovery and development of novel imaging biomarkers by normalizing knowledge across heterogeneous resources; (3) effectively annotate imaging experiments thus aiding comprehension, re-use, and reproducibility; and (4) provide validation frameworks through rigorous specification as a basis for testable hypotheses and compliance tests. We have developed the Quantitative Imaging Biomarker Ontology (QIBO), which currently consists of 488 terms spanning the following upper classes: experimental subject, biological intervention, imaging agent, imaging instrument, image post-processing algorithm, biological target, indicated biology, and biomarker application. We have demonstrated that QIBO can be used to annotate imaging experiments with standardized terms in the ontology and to generate hypotheses for novel imaging biomarker-disease associations. Our results established the utility of QIBO in enabling integrated analysis of quantitative imaging data.

  13. Effects of reduced return activated sludge flows and volume on anaerobic zone performance for a septic wastewater biological phosphorus removal system.

    PubMed

    Magro, Daniel; Elias, Steven L; Randall, Andrew Amis

    2005-01-01

    Enhanced biological phosphorous removal (EBPR) performance was found to be adequate with reduced return-activated sludge (RAS) flows (50% of available RAS) to the anaerobic tank and smaller-than-typical anaerobic zone volume (1.08 hours hydraulic retention time [HRT]). Three identical parallel biological nutrient removal pilot plants were fed with strong, highly fermented (160 mg/L volatile fatty acids [VFAs]), domestic and industrial wastewater from a full-scale wastewater treatment facility. The pilot plants were operated at 100, 50, 40, and 25% RAS (percent of available RAS) flows to the anaerobic tank, with the remaining RAS to the anoxic tank. In addition, varying anaerobic HRT (1.08 and 1.5 hours) and increased hydraulic loading (35% increase) were examined. The study was divided into four phases, and the effect of these process variations on EBPR were studied by having one different variable between two identical systems. The most significant conclusion was that returning part of the RAS to the anaerobic zone did not decrease EBPR performance; instead, it changed the location of phosphorous release and uptake. Bringing less RAS to the anaerobic and more to the anoxic tank decreased anaerobic phosphorus release and increased anoxic phosphorus release (or decreased anoxic phosphorus uptake). Equally important is that, with VFA-rich influent wastewater, excessive anaerobic volume was shown to hurt overall phosphorus removal, even when it resulted in increased anaerobic phosphorus release.

  14. The mathematics of cancer: integrating quantitative models.

    PubMed

    Altrock, Philipp M; Liu, Lin L; Michor, Franziska

    2015-12-01

    Mathematical modelling approaches have become increasingly abundant in cancer research. The complexity of cancer is well suited to quantitative approaches as it provides challenges and opportunities for new developments. In turn, mathematical modelling contributes to cancer research by helping to elucidate mechanisms and by providing quantitative predictions that can be validated. The recent expansion of quantitative models addresses many questions regarding tumour initiation, progression and metastases as well as intra-tumour heterogeneity, treatment responses and resistance. Mathematical models can complement experimental and clinical studies, but also challenge current paradigms, redefine our understanding of mechanisms driving tumorigenesis and shape future research in cancer biology.

  15. Comparative characteristics of quantitative indexes for 18F-FDG uptake and metabolic volume in sequentially obtained PET/MRI and PET/CT.

    PubMed

    Lee, Soo Jin; Paeng, Jin Chul; Goo, Jin Mo; Lee, Jeong Min; Cheon, Gi Jeong; Lee, Dong Soo; Chung, June-Key; Kang, Keon Wook

    2017-04-01

    The purpose of this study was to compare quantitative indexes for fluorine-18 fluorodeoxyglucose uptake and metabolic volume between PET/MRI and PET/CT. Sixty-six patients with solid tumors (32 with lung cancer and 34 with pancreatic cancer) who underwent sequential fluorine-18 fluorodeoxyglucose PET/MRI and PET/CT were retrospectively enrolled. On PET images, maximum and peak standardized uptake values (SUVmax and SUVpeak, respectively), and maximum tumor-to-liver ratio (TLRmax) were measured. Metabolic tumor volume (MTV) and total-lesion glycolysis (TLG) with margin thresholds of 50% SUVmax and SUV 2.5 (MTV50%, MTV2.5; TLG50%, TLG2.5, respectively) were compared between PET/MRI and PET/CT, with patients classified into two groups using imaging protocol (the PET/MRI-first and PET/CT-first groups). There were significant correlations of all tested indexes between PET/MRI and PET/CT (r=0.867-0.987, P<0.001). SUVmax and SUVpeak were lower on PET/MRI regardless of imaging protocol (P<0.001 in the PET/MRI-first group). In contrast, TLRmax exhibited reverse results between the PET/MRI-first and PET/CT-first groups. MTV50% and TLG values varied between PET/MRI and PET/CT, as well as between the PET/MRI-first and PET/CT-first groups. However, MTV2.5 was relatively robust against imaging protocol and modality. There are significant correlations of the quantitative indexes between PET/MRI and PET/CT. However, uptake indexes of SUVmax and SUVpeak are lower on PET/MRI than on PET/CT, and volumetric indexes of MTV50% and TLG values also exhibited significant differences. It may be suggested that TLRmax and MTV2.5 are relatively more appropriate indexes than others when PET/MRI and PET/CT are used interchangeably.

  16. Quantitative real-time imaging of glutathione

    USDA-ARS?s Scientific Manuscript database

    Glutathione plays many important roles in biological processes; however, the dynamic changes of glutathione concentrations in living cells remain largely unknown. Here, we report a reversible reaction-based fluorescent probe—designated as RealThiol (RT)—that can quantitatively monitor the real-time ...

  17. Clinical application of a light-pen computer system for quantitative angiography

    NASA Technical Reports Server (NTRS)

    Alderman, E. L.

    1975-01-01

    The paper describes an angiographic analysis system which uses a video disk for recording and playback, a light-pen for data input, minicomputer processing, and an electrostatic printer/plotter for hardcopy output. The method is applied to quantitative analysis of ventricular volumes, sequential ventriculography for assessment of physiologic and pharmacologic interventions, analysis of instantaneous time sequence of ventricular systolic and diastolic events, and quantitation of segmental abnormalities. The system is shown to provide the capability for computation of ventricular volumes and other measurements from operator-defined margins by greatly reducing the tedium and errors associated with manual planimetry.

  18. e-Biologics: Fabrication of Sustainable Electronics with "Green" Biological Materials.

    PubMed

    Lovley, Derek R

    2017-06-27

    The growing ubiquity of electronic devices is increasingly consuming substantial energy and rare resources for materials fabrication, as well as creating expansive volumes of toxic waste. This is not sustainable. Electronic biological materials (e-biologics) that are produced with microbes, or designed with microbial components as the guide for synthesis, are a potential green solution. Some e-biologics can be fabricated from renewable feedstocks with relatively low energy inputs, often while avoiding the harsh chemicals used for synthesizing more traditional electronic materials. Several are completely free of toxic components, can be readily recycled, and offer unique features not found in traditional electronic materials in terms of size, performance, and opportunities for diverse functionalization. An appropriate investment in the concerted multidisciplinary collaborative research required to identify and characterize e-biologics and to engineer materials and devices based on e-biologics could be rewarded with a new "green age" of sustainable electronic materials and devices. Copyright © 2017 Lovley.

  19. Matter, Motion, and Man, Volume III.

    ERIC Educational Resources Information Center

    Montag, Betty Jo

    Volume Three of the three-volume experimental program in general science attempts to provide preparation for the new approaches in biology, chemistry, and physics and to give those who will not continue in science a realistic way of understanding themselves, the world, and the role of science in society. Chapters on embryology, the body systems,…

  20. Quantitative analysis of biological tissues using Fourier transform-second-harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Ambekar Ramachandra Rao, Raghu; Mehta, Monal R.; Toussaint, Kimani C., Jr.

    2010-02-01

    We demonstrate the use of Fourier transform-second-harmonic generation (FT-SHG) imaging of collagen fibers as a means of performing quantitative analysis of obtained images of selected spatial regions in porcine trachea, ear, and cornea. Two quantitative markers, preferred orientation and maximum spatial frequency are proposed for differentiating structural information between various spatial regions of interest in the specimens. The ear shows consistent maximum spatial frequency and orientation as also observed in its real-space image. However, there are observable changes in the orientation and minimum feature size of fibers in the trachea indicating a more random organization. Finally, the analysis is applied to a 3D image stack of the cornea. It is shown that the standard deviation of the orientation is sensitive to the randomness in fiber orientation. Regions with variations in the maximum spatial frequency, but with relatively constant orientation, suggest that maximum spatial frequency is useful as an independent quantitative marker. We emphasize that FT-SHG is a simple, yet powerful, tool for extracting information from images that is not obvious in real space. This technique can be used as a quantitative biomarker to assess the structure of collagen fibers that may change due to damage from disease or physical injury.

  1. Monitoring cell morphology during necrosis and apoptosis by quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Mugnano, Martina; Calabuig, Alejandro; Grilli, Simonetta; Miccio, Lisa; Ferraro, Pietro

    2015-05-01

    Cellular morphology changes and volume alterations play significant roles in many biological processes and they are mirrors of cell functions. In this paper, we propose the Digital Holographic microscope (DH) as a non-invasive imaging technique for a rapid and accurate extraction of morphological information related to cell death. In particular, we investigate the morphological variations that occur during necrosis and apoptosis. The study of necrosis is extremely important because it is often associated with unwarranted loss of cells in human pathologies such as ischemia, trauma, and some forms of neurodegeneration; therefore, a better elucidation in terms of cell morphological changes could pave the way for new treatments. Also, apoptosis is extremely important because it's involved in cancer, both in its formation and in medical treatments. Because the inability to initiate apoptosis enhances tumour formation, current cancer treatments target this pathway. Within this framework, we have developed a transmission off-axis DH apparatus integrated with a micro incubator for investigation of living cells in a temperature and CO2 controlled environment. We employ DH to analyse the necrosis cell death induced by laser light (wavelength 473 nm, light power 4 mW). We have chosen as cellular model NIH 3T3 mouse embryonic fibroblasts because their adhesive features such as morphological changes, and the time needed to adhere and spread have been well characterized in the literature. We have monitored cell volume changes and morphological alterations in real time in order to study the necrosis process accurately and quantitatively. Cell volume changes were evaluated from the measured phase changes of light transmitted through cells. Our digital holographic experiments showed that after exposure of cells to laser light for 90-120 min., they swell and then take on a balloon-like shape until the plasma membrane ruptures and finally the cell volume decreases. Furthermore, we

  2. Analysis of arsenical metabolites in biological samples.

    PubMed

    Hernandez-Zavala, Araceli; Drobna, Zuzana; Styblo, Miroslav; Thomas, David J

    2009-11-01

    Quantitation of iAs and its methylated metabolites in biological samples provides dosimetric information needed to understand dose-response relations. Here, methods are described for separation of inorganic and mono-, di-, and trimethylated arsenicals by thin layer chromatography. This method has been extensively used to track the metabolism of the radionuclide [(73)As] in a variety of in vitro assay systems. In addition, a hydride generation-cryotrapping-gas chromatography-atomic absorption spectrometric method is described for the quantitation of arsenicals in biological samples. This method uses pH-selective hydride generation to differentiate among arsenicals containing trivalent or pentavalent arsenic.

  3. Past, Present, and Future of Critical Quantitative Research in Higher Education

    ERIC Educational Resources Information Center

    Wells, Ryan S.; Stage, Frances K.

    2014-01-01

    This chapter discusses the evolution of the critical quantitative paradigm with an emphasis on extending this approach to new populations and new methods. Along with this extension of critical quantitative work, however, come continued challenges and tensions for researchers. This chapter recaps and responds to each chapter in the volume, and…

  4. Detection of Legionella by cultivation and quantitative real-time polymerase chain reaction in biological waste water treatment plants in Norway.

    PubMed

    Lund, Vidar; Fonahn, Wenche; Pettersen, Jens Erik; Caugant, Dominique A; Ask, Eirik; Nysaeter, Ase

    2014-09-01

    Cases of Legionnaires' disease associated with biological treatment plants (BTPs) have been reported in six countries between 1997 and 2010. However, knowledge about the occurrence of Legionella in BTPs is scarce. Hence, we undertook a qualitative and quantitative screening for Legionella in BTPs treating waste water from municipalities and industries in Norway, to assess the transmission potential of Legionella from these installations. Thirty-three plants from different industries were sampled four times within 1 year. By cultivation, 21 (16%) of 130 analyses were positive for Legionella species and 12 (9%) of 130 analyses were positive for Legionella pneumophila. By quantitative real-time polymerase chain reaction (PCR), 433 (99%) of 437 analyses were positive for Legionella species and 218 (46%) of 470 analyses were positive for L. pneumophila. This survey indicates that PCR could be the preferable method for detection of Legionella in samples from BTPs. Sequence types of L. pneumophila associated with outbreaks in Norway were not identified from the BTPs. We showed that a waste water treatment plant with an aeration basin can produce high concentrations of Legionella. Therefore, these plants should be considered as a possible source of community-acquired Legionella infections.

  5. Quantitative coronary plaque analysis predicts high-risk plaque morphology on coronary computed tomography angiography: results from the ROMICAT II trial.

    PubMed

    Liu, Ting; Maurovich-Horvat, Pál; Mayrhofer, Thomas; Puchner, Stefan B; Lu, Michael T; Ghemigian, Khristine; Kitslaar, Pieter H; Broersen, Alexander; Pursnani, Amit; Hoffmann, Udo; Ferencik, Maros

    2018-02-01

    Semi-automated software can provide quantitative assessment of atherosclerotic plaques on coronary CT angiography (CTA). The relationship between established qualitative high-risk plaque features and quantitative plaque measurements has not been studied. We analyzed the association between quantitative plaque measurements and qualitative high-risk plaque features on coronary CTA. We included 260 patients with plaque who underwent coronary CTA in the Rule Out Myocardial Infarction/Ischemia Using Computer Assisted Tomography (ROMICAT) II trial. Quantitative plaque assessment and qualitative plaque characterization were performed on a per coronary segment basis. Quantitative coronary plaque measurements included plaque volume, plaque burden, remodeling index, and diameter stenosis. In qualitative analysis, high-risk plaque was present if positive remodeling, low CT attenuation plaque, napkin-ring sign or spotty calcium were detected. Univariable and multivariable logistic regression analyses were performed to assess the association between quantitative and qualitative high-risk plaque assessment. Among 888 segments with coronary plaque, high-risk plaque was present in 391 (44.0%) segments by qualitative analysis. In quantitative analysis, segments with high-risk plaque had higher total plaque volume, low CT attenuation plaque volume, plaque burden and remodeling index. Quantitatively assessed low CT attenuation plaque volume (odds ratio 1.12 per 1 mm 3 , 95% CI 1.04-1.21), positive remodeling (odds ratio 1.25 per 0.1, 95% CI 1.10-1.41) and plaque burden (odds ratio 1.53 per 0.1, 95% CI 1.08-2.16) were associated with high-risk plaque. Quantitative coronary plaque characteristics (low CT attenuation plaque volume, positive remodeling and plaque burden) measured by semi-automated software correlated with qualitative assessment of high-risk plaque features.

  6. WE-B-304-03: Biological Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orton, C.

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning bymore » the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations.« less

  7. Quantitative detection of type A staphylococcal enterotoxin by Laurell electroimmunodiffusion.

    PubMed

    Gasper, E; Heimsch, R C; Anderson, A W

    1973-03-01

    The detection of staphylococcal enterotoxin A by the quantitative technique of electroimmunodiffusion is described. High dilutions of type-specific rabbit antiserum were used in 1% agarose gels, 1 mm thick, and prepared in 0.05-mug barbital buffer, pH 8.6. Volumes of 10 muliters containing 1.5 to 10 ng of toxin were electrophoresed out of 4-mm diameter wells at 5 mA/cm width of gel. The precipitin cones formed were made visible by first immersing the agarose gels in 0.2 M NaCl and then overlaying the surface with the purified globulin fraction of sheep serum against rabbit globulin, followed by soaking of the gels in 1% aqueous cadmium acetate and staining with 0.1% thiazine red in 1% glacial acetic acid. Fully extended cones, 4 to 23 mm in length depending on toxin concentration and antiserum dilution, were developed in 2 to 5 h of electrophoresis, and visualization was achieved within 2 to 3 h. Because the method is qualitative, quantitative, simple, rapid, and sensitive, it offers a practical tool for the detection of small amounts of bacterial toxins in contaminated foods. The method should also qualify as a sensitive detection device in biochemical procedures which attempt to trace, detect, and identify biological substances in nanogram quantities, provided these substances are antigenic and capable of forming a precipitate with their specific antibodies.

  8. Three-dimensional ordered-subset expectation maximization iterative protocol for evaluation of left ventricular volumes and function by quantitative gated SPECT: a dynamic phantom study.

    PubMed

    Ceriani, Luca; Ruberto, Teresa; Delaloye, Angelika Bischof; Prior, John O; Giovanella, Luca

    2010-03-01

    The purposes of this study were to characterize the performance of a 3-dimensional (3D) ordered-subset expectation maximization (OSEM) algorithm in the quantification of left ventricular (LV) function with (99m)Tc-labeled agent gated SPECT (G-SPECT), the QGS program, and a beating-heart phantom and to optimize the reconstruction parameters for clinical applications. A G-SPECT image of a dynamic heart phantom simulating the beating left ventricle was acquired. The exact volumes of the phantom were known and were as follows: end-diastolic volume (EDV) of 112 mL, end-systolic volume (ESV) of 37 mL, and stroke volume (SV) of 75 mL; these volumes produced an LV ejection fraction (LVEF) of 67%. Tomographic reconstructions were obtained after 10-20 iterations (I) with 4, 8, and 16 subsets (S) at full width at half maximum (FWHM) gaussian postprocessing filter cutoff values of 8-15 mm. The QGS program was used for quantitative measurements. Measured values ranged from 72 to 92 mL for EDV, from 18 to 32 mL for ESV, and from 54 to 63 mL for SV, and the calculated LVEF ranged from 65% to 76%. Overall, the combination of 10 I, 8 S, and a cutoff filter value of 10 mm produced the most accurate results. The plot of the measures with respect to the expectation maximization-equivalent iterations (I x S product) revealed a bell-shaped curve for the LV volumes and a reverse distribution for the LVEF, with the best results in the intermediate range. In particular, FWHM cutoff values exceeding 10 mm affected the estimation of the LV volumes. The QGS program is able to correctly calculate the LVEF when used in association with an optimized 3D OSEM algorithm (8 S, 10 I, and FWHM of 10 mm) but underestimates the LV volumes. However, various combinations of technical parameters, including a limited range of I and S (80-160 expectation maximization-equivalent iterations) and low cutoff values (< or =10 mm) for the gaussian postprocessing filter, produced results with similar accuracies and

  9. Quantitative proteomics in Giardia duodenalis-Achievements and challenges.

    PubMed

    Emery, Samantha J; Lacey, Ernest; Haynes, Paul A

    2016-08-01

    Giardia duodenalis (syn. G. lamblia and G. intestinalis) is a protozoan parasite of vertebrates and a major contributor to the global burden of diarrheal diseases and gastroenteritis. The publication of multiple genome sequences in the G. duodenalis species complex has provided important insights into parasite biology, and made post-genomic technologies, including proteomics, significantly more accessible. The aims of proteomics are to identify and quantify proteins present in a cell, and assign functions to them within the context of dynamic biological systems. In Giardia, proteomics in the post-genomic era has transitioned from reliance on gel-based systems to utilisation of a diverse array of techniques based on bottom-up LC-MS/MS technologies. Together, these have generated crucial foundations for subcellular proteomes, elucidated intra- and inter-assemblage isolate variation, and identified pathways and markers in differentiation, host-parasite interactions and drug resistance. However, in Giardia, proteomics remains an emerging field, with considerable shortcomings evident from the published research. These include a bias towards assemblage A, a lack of emphasis on quantitative analytical techniques, and limited information on post-translational protein modifications. Additionally, there are multiple areas of research for which proteomic data is not available to add value to published transcriptomic data. The challenge of amalgamating data in the systems biology paradigm necessitates the further generation of large, high-quality quantitative datasets to accurately model parasite biology. This review surveys the current proteomic research available for Giardia and evaluates their technical and quantitative approaches, while contextualising their biological insights into parasite pathology, isolate variation and eukaryotic evolution. Finally, we propose areas of priority for the generation of future proteomic data to explore fundamental questions in Giardia

  10. Quantitative Assessment of Proliferative Effects of Oral Vanadium on Pancreatic Islet Volumes and Beta Cell Numbers of Diabetic Rats

    PubMed Central

    Pirmoradi, Leila; Noorafshan, Ali; Safaee, Akbar; Dehghani, Gholam Abbas

    2016-01-01

    Background: Oral vanadyl sulfate (vanadium) induces normoglycemia, proliferates beta cells and prevents pancreatic islet atrophy in streptozotocin-induced diabetic rats. Soteriological method is used to quantitate the proliferative effects of vanadium on beta-cell numbers and islet volumes of normal and diabetic rats. Methods: Adult male Sprague-Dawley rats were made diabetic with intravenous streptozotocin injection (40 mg/kg). Normal and diabetic rats were divided into four groups. While control normal and diabetic (CD) groups used water, vanadium-treated normal (VTN) and diabetic (VTD) groups used solutions containing vanadyl sulfate (0.5-1 mg/mL, VOSO4+5H2O). Tail blood samples were used to measure blood glucose (BG) and plasma insulin. Two months after treatment, rats were sacrificed, pancreata prepared, and stereology method was used to quantitatively evaluate total beta cell numbers (TBCN) and total islet volumes (TISVOL). Results: Normoglycemia persisted in VTN with significantly decreased plasma insulin (0.190.08 vs. 0.970.27 ng/dL, P<0.002). The respective high BG (53249 vs. 14446 mg/dL, P<0.0001) and reduced plasma insulin (0.260.15 vs. 0.540.19 ng/dL, P<0.002) seen in CD were reversed in VTD during vanadium treatment or withdrawal. While the induction of diabetes, compared to their control, significantly decreased TISVOL (1.90.2 vs. 3.030.6 mm3, P<0.003) and TBCN (0.990.1 vs. 3.20.2 x 106, P<0.003), vanadium treatment significantly increased TISVOL (2.90.8 and 4.071.0 mm3, P<0.003) and TBCN (1.50.3 and 3.80.6 x 106, P<0.03). Conclusion: Two-month oral vanadium therapy in STZ-diabetic rats ameliorated hyperglycemia by partially restoring plasma insulin. This action was through proliferative actions of vanadium in preventing islet atrophy by increasing beta-cell numbers. PMID:26459400

  11. Fluid Volume Overload and Congestion in Heart Failure: Time to Reconsider Pathophysiology and How Volume Is Assessed.

    PubMed

    Miller, Wayne L

    2016-08-01

    Volume regulation, assessment, and management remain basic issues in patients with heart failure. The discussion presented here is directed at opening a reassessment of the pathophysiology of congestion in congestive heart failure and the methods by which we determine volume overload status. Peer-reviewed historical and contemporary literatures are reviewed. Volume overload and fluid congestion remain primary issues for patients with chronic heart failure. The pathophysiology is complex, and the simple concept of intravascular fluid accumulation is not adequate. The dynamics of interstitial and intravascular fluid compartment interactions and fluid redistribution from venous splanchnic beds to central pulmonary circulation need to be taken into account in strategies of volume management. Clinical bedside evaluations and right heart hemodynamic assessments can alert clinicians of changes in volume status, but only the quantitative measurement of total blood volume can help identify the heterogeneity in plasma volume and red blood cell mass that are features of volume overload in patients with chronic heart failure and help guide individualized, appropriate therapy-not all volume overload is the same. © 2016 American Heart Association, Inc.

  12. Liquid-phase microextraction for rapid AP-MALDI and quantitation of nortriptyline in biological matrices.

    PubMed

    Wu, Hui-Fen; Ku, Hsin-Yi; Yen, Jyh-Hao

    2008-07-01

    A liquid-phase microextraction (LPME) method using a micropipette with disposable tips was demonstrated for coupling to atmospheric pressure MALDI-MS (AP-MALDI/MS) as a concentrating probe for rapid analysis and quantitative determination of nortriptyline drug from biological matrices including human urine and human plasma. This technique was named as micropipette extraction (MPE). The best optimized parameters of MPE coupled to AP-MALDI/MS experiments were extraction solvent, toluene; extraction time, 5 min; sample agitation rate, 480 rpm; sample pH, 7; salt concentration, 30%; hole size of micropipette tips, 0.61 mm (id); and matrix concentration, 1000 ppm using alpha-cyano-4-hydroxycinnamic acid (CHCA) as a matrix. Three detection modes of AP-MALDI/MS analysis including full scan, selective ion monitor (SIM), and selective reaction monitor (SRM) of MS/MS were also compared for the MPE performance. The results clearly demonstrated that the MS/MS method provides a wider linear range and lower LODs but poor RSDs than the full scan and SIM methods. The LOD values for the MPE under SIM and MS/MS modes in water, urine, and plasma were 6.26, 47.5, and 94.9 nM, respectively. The enrichment factors (EFs) of this current approach were 36.5-43.0 fold in water. In addition, compared to single drop microextraction (SDME) and LPME using a dual gauge microsyringe with a hollow fiber (LPME-HF) technique, the LODs acquired by the MPE method under MS/MS modes were comparable to those of LPME-HF and SDME but it is more convenient than both methods. The advantages of this novel method are simple, easy to use, low cost, and no contamination between experiments since disposable tips were used for the micropipettes. The MPE has the potential to be widely used in the future because it only requires a simple micropipette to perform all extraction processes. We believe that this technique can be a powerful tool for MALDI/MS analysis of biological samples and clinical applications.

  13. A Study Assessing the Potential of Negative Effects in Interdisciplinary Math-Biology Instruction

    ERIC Educational Resources Information Center

    Madlung, Andreas; Bremer, Martina; Himelblau, Edward; Tullis, Alexa

    2011-01-01

    There is increasing enthusiasm for teaching approaches that combine mathematics and biology. The call for integrating more quantitative work in biology education has led to new teaching tools that improve quantitative skills. Little is known, however, about whether increasing interdisciplinary work can lead to adverse effects, such as the…

  14. Toward best practices in data processing and analysis for intact biotherapeutics by MS in quantitative bioanalysis.

    PubMed

    Kellie, John F; Kehler, Jonathan R; Karlinsey, Molly Z; Summerfield, Scott G

    2017-12-01

    Typically, quantitation of biotherapeutics from biological matrices by LC-MS is based on a surrogate peptide approach to determine molecule concentration. Recent efforts have focused on quantitation of the intact protein molecules or larger mass subunits of monoclonal antibodies. To date, there has been limited guidance for large or intact protein mass quantitation for quantitative bioanalysis. Intact- and subunit-level analyses of biotherapeutics from biological matrices are performed at 12-25 kDa mass range with quantitation data presented. Linearity, bias and other metrics are presented along with recommendations made on the viability of existing quantitation approaches. This communication is intended to start a discussion around intact protein data analysis and processing, recognizing that other published contributions will be required.

  15. Identification of common coexpression modules based on quantitative network comparison.

    PubMed

    Jo, Yousang; Kim, Sanghyeon; Lee, Doheon

    2018-06-13

    Finding common molecular interactions from different samples is essential work to understanding diseases and other biological processes. Coexpression networks and their modules directly reflect sample-specific interactions among genes. Therefore, identification of common coexpression network or modules may reveal the molecular mechanism of complex disease or the relationship between biological processes. However, there has been no quantitative network comparison method for coexpression networks and we examined previous methods for other networks that cannot be applied to coexpression network. Therefore, we aimed to propose quantitative comparison methods for coexpression networks and to find common biological mechanisms between Huntington's disease and brain aging by the new method. We proposed two similarity measures for quantitative comparison of coexpression networks. Then, we performed experiments using known coexpression networks. We showed the validity of two measures and evaluated threshold values for similar coexpression network pairs from experiments. Using these similarity measures and thresholds, we quantitatively measured the similarity between disease-specific and aging-related coexpression modules and found similar Huntington's disease-aging coexpression module pairs. We identified similar Huntington's disease-aging coexpression module pairs and found that these modules are related to brain development, cell death, and immune response. It suggests that up-regulated cell signalling related cell death and immune/ inflammation response may be the common molecular mechanisms in the pathophysiology of HD and normal brain aging in the frontal cortex.

  16. Quantitative determination of 5-hydroxy-N-methylpyrrolidone in urine for biological monitoring of N-methylpyrrolidone exposure.

    PubMed

    Ligocka, D; Lison, D; Haufroid, V

    2002-10-05

    The aim of this work was to validate a sensitive method for quantitative analysis of 5-hydroxy-N-methylpyrrolidone (5-HNMP) in urine. This compound has been recommended as a marker for biological monitoring of N-methylpyrrolidone (NMP) exposure. Different solvents and alternative methods of extraction including liquid-liquid extraction (LLE) on Chem Elut and solid-phase extraction (SPE) on Oasis HLB columns were tested. The most efficient extraction of 5-HNMP in urine was LLE with Chem Elut columns and dichloromethane as a solvent (consistently 22% of recovery). The urinary extracts were derivatized by bis(trimethylsilyl)trifluoroacetamide and analysed by gas chromatography-mass spectrometry (GC-MS) with tetradeutered 5-HNMP as an internal standard. The detection limit of this method is 0.017 mg/l urine with an intraassay precision of 1.6-2.6%. The proposed method of extraction is simple and reproducible. Four different m/z signal ratios of TMS-5-HNMP and tetralabelled TMS-5-HNMP have been validated and could be indifferently used in case of unexpected impurities from urine matrix. Copyright 2002 Elsevier Science B.V.

  17. Contribution of flow-volume curves to the detection of central airway obstruction*

    PubMed Central

    Raposo, Liliana Bárbara Perestrelo de Andrade e; Bugalho, António; Gomes, Maria João Marques

    2013-01-01

    OBJECTIVE: To assess the sensitivity and specificity of flow-volume curves in detecting central airway obstruction (CAO), and to determine whether their quantitative and qualitative criteria are associated with the location, type and degree of obstruction. METHODS: Over a four-month period, we consecutively evaluated patients with bronchoscopy indicated. Over a one-week period, all patients underwent clinical evaluation, flow-volume curve, bronchoscopy, and completed a dyspnea scale. Four reviewers, blinded to quantitative and clinical data, and bronchoscopy results, classified the morphology of the curves. A fifth reviewer determined the morphological criteria, as well as the quantitative criteria. RESULTS: We studied 82 patients, 36 (44%) of whom had CAO. The sensitivity and specificity of the flow-volume curves in detecting CAO were, respectively, 88.9% and 91.3% (quantitative criteria) and 30.6% and 93.5% (qualitative criteria). The most prevalent quantitative criteria in our sample were FEF50%/FIF50% ≥ 1, in 83% of patients, and FEV1/PEF ≥ 8 mL . L–1 . min–1, in 36%, both being associated with the type, location, and degree of obstruction (p < 0.05). There was concordance among the reviewers as to the presence of CAO. There is a relationship between the degree of obstruction and dyspnea. CONCLUSIONS: The quantitative criteria should always be calculated for flow-volume curves in order to detect CAO, because of the low sensitivity of the qualitative criteria. Both FEF50%/FIF50% ≥ 1 and FEV1/PEF ≥ 8 mL . L–1 . min–1 were associated with the location, type and degree of obstruction. PMID:24068266

  18. e-Biologics: Fabrication of Sustainable Electronics with “Green” Biological Materials

    PubMed Central

    2017-01-01

    ABSTRACT The growing ubiquity of electronic devices is increasingly consuming substantial energy and rare resources for materials fabrication, as well as creating expansive volumes of toxic waste. This is not sustainable. Electronic biological materials (e-biologics) that are produced with microbes, or designed with microbial components as the guide for synthesis, are a potential green solution. Some e-biologics can be fabricated from renewable feedstocks with relatively low energy inputs, often while avoiding the harsh chemicals used for synthesizing more traditional electronic materials. Several are completely free of toxic components, can be readily recycled, and offer unique features not found in traditional electronic materials in terms of size, performance, and opportunities for diverse functionalization. An appropriate investment in the concerted multidisciplinary collaborative research required to identify and characterize e-biologics and to engineer materials and devices based on e-biologics could be rewarded with a new “green age” of sustainable electronic materials and devices. PMID:28655820

  19. Volumic visual perception: principally novel concept

    NASA Astrophysics Data System (ADS)

    Petrov, Valery

    1996-01-01

    The general concept of volumic view (VV) as a universal property of space is introduced. VV exists in every point of the universe where electromagnetic (EM) waves can reach and a point or a quasi-point receiver (detector) of EM waves can be placed. Classification of receivers is given for the first time. They are classified into three main categories: biological, man-made non-biological, and mathematically specified hypothetical receivers. The principally novel concept of volumic perception is introduced. It differs chiefly from the traditional concept which traces back to Euclid and pre-Euclidean times and much later to Leonardo da Vinci and Giovanni Battista della Porta's discoveries and practical stereoscopy as introduced by C. Wheatstone. The basic idea of novel concept is that humans and animals acquire volumic visual data flows in series rather than in parallel. In this case the brain is free from extremely sophisticated real time parallel processing of two volumic visual data flows in order to combine them. Such procedure seems hardly probable even for humans who are unable to combine two primitive static stereoscopic images in one quicker than in a few seconds. Some people are unable to perform this procedure at all.

  20. Water Vapor Uptake of Ultrathin Films of Biologically Derived Nanocrystals: Quantitative Assessment with Quartz Crystal Microbalance and Spectroscopic Ellipsometry.

    PubMed

    Niinivaara, Elina; Faustini, Marco; Tammelin, Tekla; Kontturi, Eero

    2015-11-10

    Despite the relevance of water interactions, explicit analysis of vapor adsorption on biologically derived surfaces is often difficult. Here, a system was introduced to study the vapor uptake on a native polysaccharide surface; namely, cellulose nanocrystal (CNC) ultrathin films were examined with a quartz crystal microbalance with dissipation monitoring (QCM-D) and spectroscopic ellipsometry (SE). A significant mass uptake of water vapor by the CNC films was detected using the QCM-D upon increasing relative humidity. In addition, thickness changes proportional to changes in relative humidity were detected using SE. Quantitative analysis of the results attained indicated that in preference to being soaked by water at the point of hydration each individual CNC in the film became enveloped by a 1 nm thick layer of adsorbed water vapor, resulting in the detected thickness response.

  1. The next generation of training for Arabidopsis researchers: bioinformatics and quantitative biology

    USDA-ARS?s Scientific Manuscript database

    It has been more than 50 years since Arabidopsis (Arabidopsis thaliana) was first introduced as a model organism to understand basic processes in plant biology. A well-organized scientific community has used this small reference plant species to make numerous fundamental plant biology discoveries (P...

  2. NanoDrop Microvolume Quantitation of Nucleic Acids

    PubMed Central

    Desjardins, Philippe; Conklin, Deborah

    2010-01-01

    Biomolecular assays are continually being developed that use progressively smaller amounts of material, often precluding the use of conventional cuvette-based instruments for nucleic acid quantitation for those that can perform microvolume quantitation. The NanoDrop microvolume sample retention system (Thermo Scientific NanoDrop Products) functions by combining fiber optic technology and natural surface tension properties to capture and retain minute amounts of sample independent of traditional containment apparatus such as cuvettes or capillaries. Furthermore, the system employs shorter path lengths, which result in a broad range of nucleic acid concentration measurements, essentially eliminating the need to perform dilutions. Reducing the volume of sample required for spectroscopic analysis also facilitates the inclusion of additional quality control steps throughout many molecular workflows, increasing efficiency and ultimately leading to greater confidence in downstream results. The need for high-sensitivity fluorescent analysis of limited mass has also emerged with recent experimental advances. Using the same microvolume sample retention technology, fluorescent measurements may be performed with 2 μL of material, allowing fluorescent assays volume requirements to be significantly reduced. Such microreactions of 10 μL or less are now possible using a dedicated microvolume fluorospectrometer. Two microvolume nucleic acid quantitation protocols will be demonstrated that use integrated sample retention systems as practical alternatives to traditional cuvette-based protocols. First, a direct A260 absorbance method using a microvolume spectrophotometer is described. This is followed by a demonstration of a fluorescence-based method that enables reduced-volume fluorescence reactions with a microvolume fluorospectrometer. These novel techniques enable the assessment of nucleic acid concentrations ranging from 1 pg/ μL to 15,000 ng/ μL with minimal consumption of

  3. Social networks to biological networks: systems biology of Mycobacterium tuberculosis.

    PubMed

    Vashisht, Rohit; Bhardwaj, Anshu; Osdd Consortium; Brahmachari, Samir K

    2013-07-01

    Contextualizing relevant information to construct a network that represents a given biological process presents a fundamental challenge in the network science of biology. The quality of network for the organism of interest is critically dependent on the extent of functional annotation of its genome. Mostly the automated annotation pipelines do not account for unstructured information present in volumes of literature and hence large fraction of genome remains poorly annotated. However, if used, this information could substantially enhance the functional annotation of a genome, aiding the development of a more comprehensive network. Mining unstructured information buried in volumes of literature often requires manual intervention to a great extent and thus becomes a bottleneck for most of the automated pipelines. In this review, we discuss the potential of scientific social networking as a solution for systematic manual mining of data. Focusing on Mycobacterium tuberculosis, as a case study, we discuss our open innovative approach for the functional annotation of its genome. Furthermore, we highlight the strength of such collated structured data in the context of drug target prediction based on systems level analysis of pathogen.

  4. Structural Brain Anomalies and Chronic Pain: A Quantitative Meta-Analysis of Gray Matter Volume

    PubMed Central

    Smallwood, Rachel F.; Laird, Angela R.; Ramage, Amy E.; Parkinson, Amy L.; Lewis, Jeffrey; Clauw, Daniel J.; Williams, David A.; Schmidt-Wilcke, Tobias; Farrell, Michael J.; Eickhoff, Simon B.; Robin, Donald A.

    2016-01-01

    The diversity of chronic pain syndromes and the methods employed to study them make integrating experimental findings challenging. This study performed coordinate-based meta-analyses using voxel-based morphometry imaging results to examine gray matter volume (GMV) differences between chronic pain patients and healthy controls. There were 12 clusters where GMV was decreased in patients compared with controls, including many regions thought to be part of the “pain matrix” of regions involved in pain perception, but also including many other regions that are not commonly regarded as pain-processing areas. The right hippocampus and parahippocampal gyrus were the only regions noted to have increased GMV in patients. Functional characterizations were implemented using the BrainMap database to determine which behavioral domains were significantly represented in these regions. The most common behavioral domains associated with these regions were cognitive, affective, and perceptual domains. Because many of these regions are not classically connected with pain and because there was such significance in functionality outside of perception, it is proposed that many of these regions are related to the constellation of comorbidities of chronic pain, such as fatigue and cognitive and emotional impairments. Further research into the mechanisms of GMV changes could provide a perspective on these findings. Perspective Quantitative meta-analyses revealed structural differences between brains of individuals with chronic pain and healthy controls. These differences may be related to comorbidities of chronic pain. PMID:23685185

  5. Partitioning and lipophilicity in quantitative structure-activity relationships.

    PubMed Central

    Dearden, J C

    1985-01-01

    The history of the relationship of biological activity to partition coefficient and related properties is briefly reviewed. The dominance of partition coefficient in quantitation of structure-activity relationships is emphasized, although the importance of other factors is also demonstrated. Various mathematical models of in vivo transport and binding are discussed; most of these involve partitioning as the primary mechanism of transport. The models describe observed quantitative structure-activity relationships (QSARs) well on the whole, confirming that partitioning is of key importance in in vivo behavior of a xenobiotic. The partition coefficient is shown to correlate with numerous other parameters representing bulk, such as molecular weight, volume and surface area, parachor and calculated indices such as molecular connectivity; this is especially so for apolar molecules, because for polar molecules lipophilicity factors into both bulk and polar or hydrogen bonding components. The relationship of partition coefficient to chromatographic parameters is discussed, and it is shown that such parameters, which are often readily obtainable experimentally, can successfully supplant partition coefficient in QSARs. The relationship of aqueous solubility with partition coefficient is examined in detail. Correlations are observed, even with solid compounds, and these can be used to predict solubility. The additive/constitutive nature of partition coefficient is discussed extensively, as are the available schemes for the calculation of partition coefficient. Finally the use of partition coefficient to provide structural information is considered. It is shown that partition coefficient can be a valuable structural tool, especially if the enthalpy and entropy of partitioning are available. PMID:3905374

  6. Digital biology and chemistry.

    PubMed

    Witters, Daan; Sun, Bing; Begolo, Stefano; Rodriguez-Manzano, Jesus; Robles, Whitney; Ismagilov, Rustem F

    2014-09-07

    This account examines developments in "digital" biology and chemistry within the context of microfluidics, from a personal perspective. Using microfluidics as a frame of reference, we identify two areas of research within digital biology and chemistry that are of special interest: (i) the study of systems that switch between discrete states in response to changes in chemical concentration of signals, and (ii) the study of single biological entities such as molecules or cells. In particular, microfluidics accelerates analysis of switching systems (i.e., those that exhibit a sharp change in output over a narrow range of input) by enabling monitoring of multiple reactions in parallel over a range of concentrations of signals. Conversely, such switching systems can be used to create new kinds of microfluidic detection systems that provide "analog-to-digital" signal conversion and logic. Microfluidic compartmentalization technologies for studying and isolating single entities can be used to reconstruct and understand cellular processes, study interactions between single biological entities, and examine the intrinsic heterogeneity of populations of molecules, cells, or organisms. Furthermore, compartmentalization of single cells or molecules in "digital" microfluidic experiments can induce switching in a range of reaction systems to enable sensitive detection of cells or biomolecules, such as with digital ELISA or digital PCR. This "digitizing" offers advantages in terms of robustness, assay design, and simplicity because quantitative information can be obtained with qualitative measurements. While digital formats have been shown to improve the robustness of existing chemistries, we anticipate that in the future they will enable new chemistries to be used for quantitative measurements, and that digital biology and chemistry will continue to provide further opportunities for measuring biomolecules, understanding natural systems more deeply, and advancing molecular and

  7. Common biology of craving across legal and illegal drugs - a quantitative meta-analysis of cue-reactivity brain response.

    PubMed

    Kühn, Simone; Gallinat, Jürgen

    2011-04-01

    The present quantitative meta-analysis set out to test whether cue-reactivity responses in humans differ across drugs of abuse and whether these responses constitute the biological basis of drug craving as a core psychopathology of addiction. By means of activation likelihood estimation, we investigated the concurrence of brain regions activated by cue-induced craving paradigms across studies on nicotine, alcohol and cocaine addicts. Furthermore, we analysed the concurrence of brain regions positively correlated with self-reported craving in nicotine and alcohol studies. We found direct overlap between nicotine, alcohol and cocaine cue reactivity in the ventral striatum. In addition, regions of close proximity were observed in the anterior cingulate cortex (ACC; nicotine and cocaine) and amygdala (alcohol, nicotine and cocaine). Brain regions of concurrence in drug cue-reactivity paradigms that overlapped with brain regions of concurrence in self-reported craving correlations were found in the ACC, ventral striatum and right pallidum (for alcohol). This first quantitative meta-analysis on drug cue reactivity identifies brain regions underlying nicotine, alcohol and cocaine dependency, i.e. the ventral striatum. The ACC, right pallidum and ventral striatum were related to drug cue reactivity as well as self-reported craving, suggesting that this set of brain regions constitutes the core circuit of drug craving in nicotine and alcohol addiction. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  8. Scanning transmission electron microscopy through-focal tilt-series on biological specimens.

    PubMed

    Trepout, Sylvain; Messaoudi, Cédric; Perrot, Sylvie; Bastin, Philippe; Marco, Sergio

    2015-10-01

    Since scanning transmission electron microscopy can produce high signal-to-noise ratio bright-field images of thick (≥500 nm) specimens, this tool is emerging as the method of choice to study thick biological samples via tomographic approaches. However, in a convergent-beam configuration, the depth of field is limited because only a thin portion of the specimen (from a few nanometres to tens of nanometres depending on the convergence angle) can be imaged in focus. A method known as through-focal imaging enables recovery of the full depth of information by combining images acquired at different levels of focus. In this work, we compare tomographic reconstruction with the through-focal tilt-series approach (a multifocal series of images per tilt angle) with reconstruction with the classic tilt-series acquisition scheme (one single-focus image per tilt angle). We visualised the base of the flagellum in the protist Trypanosoma brucei via an acquisition and image-processing method tailored to obtain quantitative and qualitative descriptors of reconstruction volumes. Reconstructions using through-focal imaging contained more contrast and more details for thick (≥500 nm) biological samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology

    ERIC Educational Resources Information Center

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory,…

  10. Coupling biology and oceanography in models.

    PubMed

    Fennel, W; Neumann, T

    2001-08-01

    The dynamics of marine ecosystems, i.e. the changes of observable chemical-biological quantities in space and time, are driven by biological and physical processes. Predictions of future developments of marine systems need a theoretical framework, i.e. models, solidly based on research and understanding of the different processes involved. The natural way to describe marine systems theoretically seems to be the embedding of chemical-biological models into circulation models. However, while circulation models are relatively advanced the quantitative theoretical description of chemical-biological processes lags behind. This paper discusses some of the approaches and problems in the development of consistent theories and indicates the beneficial potential of the coupling of marine biology and oceanography in models.

  11. Scientific Research in British Universities and Colleges 1969-70, Volume II, Biological Sciences.

    ERIC Educational Resources Information Center

    Department of Education and Science, London (England).

    This annual publication aims to provide a brief summary of active research topics in British universities and other institutions. This volume, the second of a three-volume series, is divided into broad subject fields and the university/college entries are arranged alphabetically within them. Also included within this volume on the biological…

  12. Metabolic modelling in the development of cell factories by synthetic biology

    PubMed Central

    Jouhten, Paula

    2012-01-01

    Cell factories are commonly microbial organisms utilized for bioconversion of renewable resources to bulk or high value chemicals. Introduction of novel production pathways in chassis strains is the core of the development of cell factories by synthetic biology. Synthetic biology aims to create novel biological functions and systems not found in nature by combining biology with engineering. The workflow of the development of novel cell factories with synthetic biology is ideally linear which will be attainable with the quantitative engineering approach, high-quality predictive models, and libraries of well-characterized parts. Different types of metabolic models, mathematical representations of metabolism and its components, enzymes and metabolites, are useful in particular phases of the synthetic biology workflow. In this minireview, the role of metabolic modelling in synthetic biology will be discussed with a review of current status of compatible methods and models for the in silico design and quantitative evaluation of a cell factory. PMID:24688669

  13. Quantitative evaluation of high intensity signal on MIP images of carotid atherosclerotic plaques from routine TOF-MRA reveals elevated volumes of intraplaque hemorrhage and lipid rich necrotic core.

    PubMed

    Yamada, Kiyofumi; Song, Yan; Hippe, Daniel S; Sun, Jie; Dong, Li; Xu, Dongxiang; Ferguson, Marina S; Chu, Baocheng; Hatsukami, Thomas S; Chen, Min; Zhou, Cheng; Yuan, Chun

    2012-11-29

    Carotid intraplaque hemorrhage (IPH) and lipid rich necrotic core (LRNC) have been associated with accelerated plaque growth, luminal narrowing, future surface disruption and development of symptomatic events. The aim of this study was to evaluate the quantitative relationships between high intensity signals (HIS) in the plaque on TOF-MRA and IPH or LRNC volumes as measured by multicontrast weighted CMR. Seventy six patients with a suspected carotid artery stenosis or carotid plaque by ultrasonography underwent multicontrast carotid CMR. HIS presence and volume were measured from TOF-MRA MIP images while IPH and LRNC volumes were separately measured from multicontrast CMR. For detecting IPH, HIS on MIP images overall had high specificity (100.0%, 95% CI: 93.0 - 100.0%) but relatively low sensitivity (32%, 95% CI: 20.8 - 47.9%). However, the sensitivity had a significant increasing relationship with underlying IPH volume (p = 0.033) and degree of stenosis (p = 0.022). Mean IPH volume was 2.7 times larger in those with presence of HIS than in those without (142.8 ± 97.7 mm(3) vs. 53.4 ± 56.3 mm(3), p = 0.014). Similarly, mean LRNC volume was 3.4 times larger in those with HIS present (379.8 ± 203.4 mm(3) vs. 111.3 ± 122.7 mm(3), p = 0.001). There was a strong correlation between the volume of the HIS region and the IPH volume measured from multicontrast CMR (r = 0.96, p < 0.001). MIP images are easily reformatted from three minute, routine, clinical TOF sequences. High intensity signals in carotid plaque on TOF-MRA MIP images are associated with increased intraplaque hemorrhage and lipid-rich necrotic core volumes. The technique is most sensitive in patients with moderate to severe stenosis.

  14. Quantitating Human Optic Disc Topography

    NASA Astrophysics Data System (ADS)

    Graebel, William P.; Cohan, Bruce E.; Pearch, Andrew C.

    1980-07-01

    A method is presented for quantitatively expressing the topography of the human optic disc, applicable in a clinical setting to the diagnosis and management of glaucoma. Pho-tographs of the disc illuminated by a pattern of fine, high contrast parallel lines are digitized. From the measured deviation of the lines as they traverse the disc surface, disc topography is calculated, using the principles of optical sectioning. The quantitators applied to express this topography have the the following advantages : sensitivity to disc shape; objectivity; going beyond the limits of cup-disc ratio estimates and volume calculations; perfect generality in a mathematical sense; an inherent scheme for determining a non-subjective reference frame to compare different discs or the same disc over time.

  15. The Math–Biology Values Instrument: Development of a Tool to Measure Life Science Majors’ Task Values of Using Math in the Context of Biology

    PubMed Central

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students’ personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math–Biology Values Instrument (MBVI), an 11-item college-level self-­report instrument grounded in expectancy-value theory, to measure life science students’ interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student’s value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math–biology values and understand how math–biology values are related to students’ achievement and decisions to pursue more advanced quantitative-based courses. PMID:28747355

  16. Quantitative real-time in vivo detection of magnetic nanoparticles by their nonlinear magnetization

    NASA Astrophysics Data System (ADS)

    Nikitin, M. P.; Torno, M.; Chen, H.; Rosengart, A.; Nikitin, P. I.

    2008-04-01

    A novel method of highly sensitive quantitative detection of magnetic nanoparticles (MP) in biological tissues and blood system has been realized and tested in real time in vivo experiments. The detection method is based on nonlinear magnetic properties of MP and the related device can record a very small relative variation of nonlinear magnetic susceptibility up to 10-8 at room temperature, providing sensitivity of several nanograms of MP in 0.1ml volume. Real-time quantitative in vivo measurements of dynamics of MP concentration in blood flow have been performed. A catheter that carried the blood flow of a rat passed through the measuring device. After an MP injection, the quantity of MP in the circulating blood was continuously recorded. The method has also been used to evaluate the MP distribution between rat's organs. Its sensitivity was compared with detection of the radioactive MP based on isotope of Fe59. The comparison of magnetic and radioactive signals in the rat's blood and organ samples demonstrated similar sensitivity for both methods. However, the proposed magnetic method is much more convenient as it is safe, less expensive, and provides real-time measurements in vivo. Moreover, the sensitivity of the method can be further improved by optimization of the device geometry.

  17. Quantitative Cryo-Scanning Transmission Electron Microscopy of Biological Materials.

    PubMed

    Elbaum, Michael

    2018-05-11

    Electron tomography provides a detailed view into the 3D structure of biological cells and tissues. Physical fixation by vitrification of the aqueous medium provides the most faithful preservation of biological specimens in the native, fully hydrated state. Cryo-microscopy is challenging, however, because of the sensitivity to electron irradiation and due to the weak electron scattering of organic material. Tomography is even more challenging because of the dependence on multiple exposures of the same area. Tomographic imaging is typically performed in wide-field transmission electron microscopy (TEM) mode with phase contrast generated by defocus. Scanning transmission electron microscopy (STEM) is an alternative mode based on detection of scattering from a focused probe beam, without imaging optics following the specimen. While careful configuration of the illumination and detectors is required to generate useful contrast, STEM circumvents the major restrictions of phase contrast TEM to very thin specimens and provides a signal that is more simply interpreted in terms of local composition and density. STEM has gained popularity in recent years for materials science. The extension of STEM to cryomicroscopy and tomography of cells and macromolecules is summarized herein. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Health-related quality of life of Portuguese children and adolescents according to their biological maturation and volume of physical activity.

    PubMed

    Garcia, Catarina; Teles, Júlia; Barrigas, Carlos; Fragoso, Isabel

    2018-06-01

    The purpose of this study was to analyze the relationship between biological maturation and health-related quality of life (HRQoL) in Portuguese children and adolescents of both sexes when the effect of chronological age (CA) and volume of physical activity (VPA) were removed. HRQoL, biological maturation, CA, and VPA were assessed in 750 children and adolescents, 11-17 years old, from 3 schools in Lisbon, Portugal. The KIDSCREEN-52 was used to assess HRQoL. Maturity indicator was bone age (BA), using Tanner-Whitehouse III method (TW3). The participants were classified into three different maturity categories: late, on time, and early maturers. VPA was assessed by questionnaire (RAPIL II). An analysis of covariance (ANCOVA), using the CA and the VPA as covariates was completed. The level of significance was set at p ≤ 0.05. Analysis of covariance suggested an influence of biological maturation in physical well-being dimension in both sexes, with early-maturing girls and boys having worst perception. Maturity groups were also influent in moods and emotions for girls. CA seems to be particularly important in self-perception and parent relation and home life for girls and in school environment for boys. Biological maturation and CA have relevant impact on some HRQoL dimensions. These variables, due to their nature and effect should be considered particularly when working with specific domains of HRQoL as physical well-being in both sexes, moods and emotions and self-perception and parent relation and home life for girls and in school environment for boys.

  19. BASIC Simulation Programs; Volumes I and II. Biology, Earth Science, Chemistry.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    Computer programs which teach concepts and processes related to biology, earth science, and chemistry are presented. The seven biology problems deal with aspects of genetics, evolution and natural selection, gametogenesis, enzymes, photosynthesis, and the transport of material across a membrane. Four earth science problems concern climates, the…

  20. Quantitative prediction of phase transformations in silicon during nanoindentation

    NASA Astrophysics Data System (ADS)

    Zhang, Liangchi; Basak, Animesh

    2013-08-01

    This paper establishes the first quantitative relationship between the phases transformed in silicon and the shape characteristics of nanoindentation curves. Based on an integrated analysis using TEM and unit cell properties of phases, the volumes of the phases emerged in a nanoindentation are formulated as a function of pop-out size and depth of nanoindentation impression. This simple formula enables a fast, accurate and quantitative prediction of the phases in a nanoindentation cycle, which has been impossible before.

  1. Stroke onset time estimation from multispectral quantitative magnetic resonance imaging in a rat model of focal permanent cerebral ischemia.

    PubMed

    McGarry, Bryony L; Rogers, Harriet J; Knight, Michael J; Jokivarsi, Kimmo T; Sierra, Alejandra; Gröhn, Olli Hj; Kauppinen, Risto A

    2016-08-01

    Quantitative T2 relaxation magnetic resonance imaging allows estimation of stroke onset time. We aimed to examine the accuracy of quantitative T1 and quantitative T2 relaxation times alone and in combination to provide estimates of stroke onset time in a rat model of permanent focal cerebral ischemia and map the spatial distribution of elevated quantitative T1 and quantitative T2 to assess tissue status. Permanent middle cerebral artery occlusion was induced in Wistar rats. Animals were scanned at 9.4T for quantitative T1, quantitative T2, and Trace of Diffusion Tensor (Dav) up to 4 h post-middle cerebral artery occlusion. Time courses of differentials of quantitative T1 and quantitative T2 in ischemic and non-ischemic contralateral brain tissue (ΔT1, ΔT2) and volumes of tissue with elevated T1 and T2 relaxation times (f1, f2) were determined. TTC staining was used to highlight permanent ischemic damage. ΔT1, ΔT2, f1, f2, and the volume of tissue with both elevated quantitative T1 and quantitative T2 (V(Overlap)) increased with time post-middle cerebral artery occlusion allowing stroke onset time to be estimated. V(Overlap) provided the most accurate estimate with an uncertainty of ±25 min. At all times-points regions with elevated relaxation times were smaller than areas with Dav defined ischemia. Stroke onset time can be determined by quantitative T1 and quantitative T2 relaxation times and tissue volumes. Combining quantitative T1 and quantitative T2 provides the most accurate estimate and potentially identifies irreversibly damaged brain tissue. © 2016 World Stroke Organization.

  2. Learning Systems Biology: Conceptual Considerations toward a Web-Based Learning Platform

    ERIC Educational Resources Information Center

    Emmert-Streib, Frank; Dehmer, Matthias; Lyardet, Fernando

    2013-01-01

    Within recent years, there is an increasing need to train students, from biology and beyond, in quantitative methods that are relevant to cope with data-driven biology. Systems Biology is such a field that places a particular focus on the functional aspect of biology and molecular interacting processes. This paper deals with the conceptual design…

  3. Biological Databases for Human Research

    PubMed Central

    Zou, Dong; Ma, Lina; Yu, Jun; Zhang, Zhang

    2015-01-01

    The completion of the Human Genome Project lays a foundation for systematically studying the human genome from evolutionary history to precision medicine against diseases. With the explosive growth of biological data, there is an increasing number of biological databases that have been developed in aid of human-related research. Here we present a collection of human-related biological databases and provide a mini-review by classifying them into different categories according to their data types. As human-related databases continue to grow not only in count but also in volume, challenges are ahead in big data storage, processing, exchange and curation. PMID:25712261

  4. Comparison of Methods for miRNA Extraction from Plasma and Quantitative Recovery of RNA from Cerebrospinal Fluid

    PubMed Central

    McAlexander, Melissa A.; Phillips, Maggie J.; Witwer, Kenneth W.

    2013-01-01

    Interest in extracellular RNA (exRNA) has intensified as evidence accumulates that these molecules may be useful as indicators of a wide variety of biological conditions. To establish specific exRNA molecules as clinically relevant biomarkers, reproducible recovery from biological samples and reliable measurements of the isolated RNA are paramount. Toward these ends, careful and rigorous comparisons of technical procedures are needed at all steps from sample handling to RNA isolation to RNA measurement protocols. In the investigations described in this methods paper, RT-qPCR was used to examine the apparent recovery of specific endogenous miRNAs and a spiked-in synthetic RNA from blood plasma samples. RNA was isolated using several widely used RNA isolation kits, with or without the addition of glycogen as a carrier. Kits examined included total RNA isolation systems that have been commercially available for several years and commonly adapted for extraction of biofluid RNA, as well as more recently introduced biofluids-specific RNA methods. Our conclusions include the following: some RNA isolation methods appear to be superior to others for the recovery of RNA from biological fluids; addition of a carrier molecule seems to be beneficial for some but not all isolation methods; and quantitative recovery of RNA is observed from increasing volumes of cerebrospinal fluid. PMID:23720669

  5. Fast Identification of Biological Pathways Associated with a Quantitative Trait Using Group Lasso with Overlaps

    PubMed Central

    Silver, Matt; Montana, Giovanni

    2012-01-01

    Where causal SNPs (single nucleotide polymorphisms) tend to accumulate within biological pathways, the incorporation of prior pathways information into a statistical model is expected to increase the power to detect true associations in a genetic association study. Most existing pathways-based methods rely on marginal SNP statistics and do not fully exploit the dependence patterns among SNPs within pathways. We use a sparse regression model, with SNPs grouped into pathways, to identify causal pathways associated with a quantitative trait. Notable features of our “pathways group lasso with adaptive weights” (P-GLAW) algorithm include the incorporation of all pathways in a single regression model, an adaptive pathway weighting procedure that accounts for factors biasing pathway selection, and the use of a bootstrap sampling procedure for the ranking of important pathways. P-GLAW takes account of the presence of overlapping pathways and uses a novel combination of techniques to optimise model estimation, making it fast to run, even on whole genome datasets. In a comparison study with an alternative pathways method based on univariate SNP statistics, our method demonstrates high sensitivity and specificity for the detection of important pathways, showing the greatest relative gains in performance where marginal SNP effect sizes are small. PMID:22499682

  6. Biological applications of nanobiotechnology.

    PubMed

    de Morais, Michele Greque; Martins, Vilásia Guimarães; Steffens, Daniela; Pranke, Patricia; da Costa, Jorge Alberto Vieira

    2014-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices derived from engineering, physics, chemistry, and biology. Nanotechnology has opened up by rapid advances in science and technology, creating new opportunities for advances in the fields of medicine, electronics, foods, and the environment. Nanoscale structures and materials (nanoparticles, nanowires, nanofibers, nanotubes) have been explored in many biological applications (biosensing, biological separation, molecular imaging, anticancer therapy) because their novel properties and functions differ drastically from their bulk counterparts. Their high volume/surface ratio, improved solubility, and multifunctionality open many new possibilities. The objective of this review is to describe the potential benefits and impacts of the nanobiotechnology in different areas.

  7. Multiplexed, quantitative, and targeted metabolite profiling by LC-MS/MRM.

    PubMed

    Wei, Ru; Li, Guodong; Seymour, Albert B

    2014-01-01

    Targeted metabolomics, which focuses on a subset of known metabolites representative of biologically relevant metabolic pathways, is a valuable tool to discover biomarkers and link disease phenotypes to underlying mechanisms or therapeutic modes of action. A key advantage of targeted metabolomics, compared to discovery metabolomics, is its immediate readiness for extracting biological information derived from known metabolites and quantitative measurements. However, simultaneously analyzing hundreds of endogenous metabolites presents a challenge due to their diverse chemical structures and properties. Here we report a method which combines different chromatographic separation conditions, optimal ionization polarities, and the most sensitive triple-quadrupole MS-based data acquisition mode, multiple reaction monitoring (MRM), to quantitatively profile 205 endogenous metabolites in 10 min.

  8. Biology=Sinh Vat.

    ERIC Educational Resources Information Center

    Hung, Nguyen Manh, Ed.

    This volume contains 32 biology self-study learning packets designed primarily for Indochinese students in grades 9 to 12. The materials could be used by "English as a Second Language" teachers who may/may not speak one of the Indochinese languages, or by mainstream teachers who have a number of low-English-proficiency Indochinese students in…

  9. Quantitative imaging as cancer biomarker

    NASA Astrophysics Data System (ADS)

    Mankoff, David A.

    2015-03-01

    The ability to assay tumor biologic features and the impact of drugs on tumor biology is fundamental to drug development. Advances in our ability to measure genomics, gene expression, protein expression, and cellular biology have led to a host of new targets for anticancer drug therapy. In translating new drugs into clinical trials and clinical practice, these same assays serve to identify patients most likely to benefit from specific anticancer treatments. As cancer therapy becomes more individualized and targeted, there is an increasing need to characterize tumors and identify therapeutic targets to select therapy most likely to be successful in treating the individual patient's cancer. Thus far assays to identify cancer therapeutic targets or anticancer drug pharmacodynamics have been based upon in vitro assay of tissue or blood samples. Advances in molecular imaging, particularly PET, have led to the ability to perform quantitative non-invasive molecular assays. Imaging has traditionally relied on structural and anatomic features to detect cancer and determine its extent. More recently, imaging has expanded to include the ability to image regional biochemistry and molecular biology, often termed molecular imaging. Molecular imaging can be considered an in vivo assay technique, capable of measuring regional tumor biology without perturbing it. This makes molecular imaging a unique tool for cancer drug development, complementary to traditional assay methods, and a potentially powerful method for guiding targeted therapy in clinical trials and clinical practice. The ability to quantify, in absolute measures, regional in vivo biologic parameters strongly supports the use of molecular imaging as a tool to guide therapy. This review summarizes current and future applications of quantitative molecular imaging as a biomarker for cancer therapy, including the use of imaging to (1) identify patients whose tumors express a specific therapeutic target; (2) determine

  10. 4D PET iterative deconvolution with spatiotemporal regularization for quantitative dynamic PET imaging.

    PubMed

    Reilhac, Anthonin; Charil, Arnaud; Wimberley, Catriona; Angelis, Georgios; Hamze, Hasar; Callaghan, Paul; Garcia, Marie-Paule; Boisson, Frederic; Ryder, Will; Meikle, Steven R; Gregoire, Marie-Claude

    2015-09-01

    Quantitative measurements in dynamic PET imaging are usually limited by the poor counting statistics particularly in short dynamic frames and by the low spatial resolution of the detection system, resulting in partial volume effects (PVEs). In this work, we present a fast and easy to implement method for the restoration of dynamic PET images that have suffered from both PVE and noise degradation. It is based on a weighted least squares iterative deconvolution approach of the dynamic PET image with spatial and temporal regularization. Using simulated dynamic [(11)C] Raclopride PET data with controlled biological variations in the striata between scans, we showed that the restoration method provides images which exhibit less noise and better contrast between emitting structures than the original images. In addition, the method is able to recover the true time activity curve in the striata region with an error below 3% while it was underestimated by more than 20% without correction. As a result, the method improves the accuracy and reduces the variability of the kinetic parameter estimates calculated from the corrected images. More importantly it increases the accuracy (from less than 66% to more than 95%) of measured biological variations as well as their statistical detectivity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  11. Systems biology, adverse outcome pathways, and ecotoxicology in the 21st century

    EPA Science Inventory

    While many definitions of systems biology exist, the majority of these contain most (if not all) of the following elements: global measurements of biological molecules to the extent technically feasible, dynamic measurements of key biological molecules to establish quantitative r...

  12. Universality and predictability in molecular quantitative genetics.

    PubMed

    Nourmohammad, Armita; Held, Torsten; Lässig, Michael

    2013-12-01

    Molecular traits, such as gene expression levels or protein binding affinities, are increasingly accessible to quantitative measurement by modern high-throughput techniques. Such traits measure molecular functions and, from an evolutionary point of view, are important as targets of natural selection. We review recent developments in evolutionary theory and experiments that are expected to become building blocks of a quantitative genetics of molecular traits. We focus on universal evolutionary characteristics: these are largely independent of a trait's genetic basis, which is often at least partially unknown. We show that universal measurements can be used to infer selection on a quantitative trait, which determines its evolutionary mode of conservation or adaptation. Furthermore, universality is closely linked to predictability of trait evolution across lineages. We argue that universal trait statistics extends over a range of cellular scales and opens new avenues of quantitative evolutionary systems biology. Copyright © 2013. Published by Elsevier Ltd.

  13. Comparative study of standard space and real space analysis of quantitative MR brain data.

    PubMed

    Aribisala, Benjamin S; He, Jiabao; Blamire, Andrew M

    2011-06-01

    To compare the robustness of region of interest (ROI) analysis of magnetic resonance imaging (MRI) brain data in real space with analysis in standard space and to test the hypothesis that standard space image analysis introduces more partial volume effect errors compared to analysis of the same dataset in real space. Twenty healthy adults with no history or evidence of neurological diseases were recruited; high-resolution T(1)-weighted, quantitative T(1), and B(0) field-map measurements were collected. Algorithms were implemented to perform analysis in real and standard space and used to apply a simple standard ROI template to quantitative T(1) datasets. Regional relaxation values and histograms for both gray and white matter tissues classes were then extracted and compared. Regional mean T(1) values for both gray and white matter were significantly lower using real space compared to standard space analysis. Additionally, regional T(1) histograms were more compact in real space, with smaller right-sided tails indicating lower partial volume errors compared to standard space analysis. Standard space analysis of quantitative MRI brain data introduces more partial volume effect errors biasing the analysis of quantitative data compared to analysis of the same dataset in real space. Copyright © 2011 Wiley-Liss, Inc.

  14. Quantifying Golgi structure using EM: combining volume-SEM and stereology for higher throughput.

    PubMed

    Ferguson, Sophie; Steyer, Anna M; Mayhew, Terry M; Schwab, Yannick; Lucocq, John Milton

    2017-06-01

    Investigating organelles such as the Golgi complex depends increasingly on high-throughput quantitative morphological analyses from multiple experimental or genetic conditions. Light microscopy (LM) has been an effective tool for screening but fails to reveal fine details of Golgi structures such as vesicles, tubules and cisternae. Electron microscopy (EM) has sufficient resolution but traditional transmission EM (TEM) methods are slow and inefficient. Newer volume scanning EM (volume-SEM) methods now have the potential to speed up 3D analysis by automated sectioning and imaging. However, they produce large arrays of sections and/or images, which require labour-intensive 3D reconstruction for quantitation on limited cell numbers. Here, we show that the information storage, digital waste and workload involved in using volume-SEM can be reduced substantially using sampling-based stereology. Using the Golgi as an example, we describe how Golgi populations can be sensed quantitatively using single random slices and how accurate quantitative structural data on Golgi organelles of individual cells can be obtained using only 5-10 sections/images taken from a volume-SEM series (thereby sensing population parameters and cell-cell variability). The approach will be useful in techniques such as correlative LM and EM (CLEM) where small samples of cells are treated and where there may be variable responses. For Golgi study, we outline a series of stereological estimators that are suited to these analyses and suggest workflows, which have the potential to enhance the speed and relevance of data acquisition in volume-SEM.

  15. Changes in the planning target volume and liver volume dose based on the selected respiratory phase in respiratory-gated radiation therapy for a hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Baek, Seong-Min

    2013-11-01

    The aim of this study was to quantitatively analyze the changes in the planning target volume (PTV) and liver volume dose based on the respiratory phase to identify the optimal respiratory phase for respiratory-gated radiation therapy for a hepatocellular carcinoma (HCC). Based on the standardized procedure for respiratory-gated radiation therapy, we performed a 4-dimensional computed tomography simulation for 0 ˜ 90%, 30 ˜ 70%, and 40 ˜ 60% respiratory phases to assess the respiratory stability (S R ) and the defined PTV i for each respiratory phase i. A treatment plan was established, and the changes in the PTV i and dose volume of the liver were quantitatively analyzed. Most patients (91.5%) passed the respiratory stability test (S R = 0.111 ± 0.015). With standardized respiration training exercises, we were able to minimize the overall systematic error caused by irregular respiration. Furthermore, a quantitative analysis to identify the optimal respiratory phase revealed that when a short respiratory phase (40 ˜ 60%) was used, the changes in the PTV were concentrated inside the center line; thus, we were able to obtain both a PTV margin accounting for respiration and a uniform radiation dose within the PTV.

  16. QUANTITATIVE PLUTONIUM MICRODISTRIBUTION IN BONE TISSUE OF VERTEBRA FROM A MAYAK WORKER

    PubMed Central

    Lyovkina, Yekaterina V.; Miller, Scott C.; Romanov, Sergey A.; Krahenbuhl, Melinda P.; Belosokhov, Maxim V.

    2010-01-01

    The purpose was to obtain quantitative data on plutonium microdistribution in different structural elements of human bone tissue for local dose assessment and dosimetric models validation. A sample of the thoracic vertebra was obtained from a former Mayak worker with a rather high plutonium burden. Additional information was obtained on occupational and exposure history, medical history, and measured plutonium content in organs. Plutonium was detected in bone sections from its fission tracks in polycarbonate film using neutron-induced autoradiography. Quantitative analysis of randomly selected microscopic fields on one of the autoradiographs was performed. Data included fission fragment tracks in different bone tissue and surface areas. Quantitative information on plutonium microdistribution in human bone tissue was obtained for the first time. From these data, quantitative relationship of plutonium decays in bone volume to decays on bone surface in cortical and trabecular fractions were defined as 2.0 and 0.4, correspondingly. The measured quantitative relationship of decays in bone volume to decays on bone surface does not coincide with recommended models for the cortical bone fraction by the International Commission on Radiological Protection. Biokinetic model parameters of extrapulmonary compartments might need to be adjusted after expansion of the data set on quantitative plutonium microdistribution in other bone types in human as well as other cases with different exposure patterns and types of plutonium. PMID:20838087

  17. A Novel HPLC Method for the Concurrent Analysis and Quantitation of Seven Water-Soluble Vitamins in Biological Fluids (Plasma and Urine): A Validation Study and Application

    PubMed Central

    Grotzkyj Giorgi, Margherita; Howland, Kevin; Martin, Colin; Bonner, Adrian B.

    2012-01-01

    An HPLC method was developed and validated for the concurrent detection and quantitation of seven water-soluble vitamins (C, B1, B2, B5, B6, B9, B12) in biological matrices (plasma and urine). Separation was achieved at 30°C on a reversed-phase C18-A column using combined isocratic and linear gradient elution with a mobile phase consisting of 0.01% TFA aqueous and 100% methanol. Total run time was 35 minutes. Detection was performed with diode array set at 280 nm. Each vitamin was quantitatively determined at its maximum wavelength. Spectral comparison was used for peak identification in real samples (24 plasma and urine samples from abstinent alcohol-dependent males). Interday and intraday precision were <4% and <7%, respectively, for all vitamins. Recovery percentages ranged from 93% to 100%. PMID:22536136

  18. A novel HPLC method for the concurrent analysis and quantitation of seven water-soluble vitamins in biological fluids (plasma and urine): a validation study and application.

    PubMed

    Giorgi, Margherita Grotzkyj; Howland, Kevin; Martin, Colin; Bonner, Adrian B

    2012-01-01

    An HPLC method was developed and validated for the concurrent detection and quantitation of seven water-soluble vitamins (C, B(1), B(2), B(5), B(6), B(9), B(12)) in biological matrices (plasma and urine). Separation was achieved at 30°C on a reversed-phase C18-A column using combined isocratic and linear gradient elution with a mobile phase consisting of 0.01% TFA aqueous and 100% methanol. Total run time was 35 minutes. Detection was performed with diode array set at 280 nm. Each vitamin was quantitatively determined at its maximum wavelength. Spectral comparison was used for peak identification in real samples (24 plasma and urine samples from abstinent alcohol-dependent males). Interday and intraday precision were <4% and <7%, respectively, for all vitamins. Recovery percentages ranged from 93% to 100%.

  19. Quantitative phase imaging of biological cells and tissues using singleshot white light interference microscopy and phase subtraction method for extended range of measurement

    NASA Astrophysics Data System (ADS)

    Mehta, Dalip Singh; Sharma, Anuradha; Dubey, Vishesh; Singh, Veena; Ahmad, Azeem

    2016-03-01

    We present a single-shot white light interference microscopy for the quantitative phase imaging (QPI) of biological cells and tissues. A common path white light interference microscope is developed and colorful white light interferogram is recorded by three-chip color CCD camera. The recorded white light interferogram is decomposed into the red, green and blue color wavelength component interferograms and processed it to find out the RI for different color wavelengths. The decomposed interferograms are analyzed using local model fitting (LMF)" algorithm developed for reconstructing the phase map from single interferogram. LMF is slightly off-axis interferometric QPI method which is a single-shot method that employs only a single image, so it is fast and accurate. The present method is very useful for dynamic process where path-length changes at millisecond level. From the single interferogram a wavelength-dependent quantitative phase imaging of human red blood cells (RBCs) are reconstructed and refractive index is determined. The LMF algorithm is simple to implement and is efficient in computation. The results are compared with the conventional phase shifting interferometry and Hilbert transform techniques.

  20. Quantitative power Doppler ultrasound measures of peripheral joint synovitis in poor prognosis early rheumatoid arthritis predict radiographic progression.

    PubMed

    Sreerangaiah, Dee; Grayer, Michael; Fisher, Benjamin A; Ho, Meilien; Abraham, Sonya; Taylor, Peter C

    2016-01-01

    To assess the value of quantitative vascular imaging by power Doppler US (PDUS) as a tool that can be used to stratify patient risk of joint damage in early seropositive RA while still biologic naive but on synthetic DMARD treatment. Eighty-five patients with seropositive RA of <3 years duration had clinical, laboratory and imaging assessments at 0 and 12 months. Imaging assessments consisted of radiographs of the hands and feet, two-dimensional (2D) high-frequency and PDUS imaging of 10 MCP joints that were scored for erosions and vascularity and three-dimensional (3D) PDUS of MCP joints and wrists that were scored for vascularity. Severe deterioration on radiographs and ultrasonography was seen in 45 and 28% of patients, respectively. The 3D power Doppler volume and 2D vascularity scores were the most useful US predictors of deterioration. These variables were modelled in two equations that estimate structural damage over 12 months. The equations had a sensitivity of 63.2% and specificity of 80.9% for predicting radiographic structural damage and a sensitivity of 54.2% and specificity of 96.7% for predicting structural damage on ultrasonography. In seropositive early RA, quantitative vascular imaging by PDUS has clinical utility in predicting which patients will derive benefit from early use of biologic therapy. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Monitoring and quantitative assessment of tumor burden using in vivo bioluminescence imaging

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Chi; Hwang, Jeng-Jong; Ting, Gann; Tseng, Yun-Long; Wang, Shyh-Jen; Whang-Peng, Jaqueline

    2007-02-01

    In vivo bioluminescence imaging (BLI) is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating tumor growth. In this study, the kinetic of tumor growth has been assessed in C26 colon carcinoma bearing BALB/c mouse model. The ability of BLI to noninvasively quantitate the growth of subcutaneous tumors transplanted with C26 cells genetically engineered to stably express firefly luciferase and herpes simplex virus type-1 thymidine kinase (C26/ tk-luc). A good correlation ( R2=0.998) of photon emission to the cell number was found in vitro. Tumor burden and tumor volume were monitored in vivo over time by quantitation of photon emission using Xenogen IVIS 50 and standard external caliper measurement, respectively. At various time intervals, tumor-bearing mice were imaged to determine the correlation of in vivo BLI to tumor volume. However, a correlation of BLI to tumor volume was observed when tumor volume was smaller than 1000 mm 3 ( R2=0.907). γ Scintigraphy combined with [ 131I]FIAU was another imaging modality used for verifying the previous results. In conclusion, this study showed that bioluminescence imaging is a powerful and quantitative tool for the direct assay to monitor tumor growth in vivo. The dual reporter genes transfected tumor-bearing animal model can be applied in the evaluation of the efficacy of new developed anti-cancer drugs.

  2. Price-volume multifractal analysis of the Moroccan stock market

    NASA Astrophysics Data System (ADS)

    El Alaoui, Marwane

    2017-11-01

    In this paper, we analyzed price-volume multifractal cross-correlations of Moroccan Stock Exchange. We chose the period from January 1st 2000 to January 20th 2017 to investigate the multifractal behavior of price change and volume change series. Then, we used multifractal detrended cross-correlations analysis method (MF-DCCA) and multifractal detrended fluctuation analysis (MF-DFA) to analyze the series. We computed bivariate generalized Hurst exponent, Rényi exponent and spectrum of singularity for each pair of indices to measure quantitatively cross-correlations. Furthermore, we used detrended cross-correlations coefficient (DCCA) and cross-correlation test (Q(m)) to analyze cross-correlation quantitatively and qualitatively. By analyzing results, we found existence of price-volume multifractal cross-correlations. The spectrum width has a strong multifractal cross-correlation. We remarked that volume change series is anti-persistent when we analyzed the generalized Hurst exponent for all moments q. The cross-correlation test showed the presence of a significant cross-correlation. However, DCCA coefficient had a small positive value, which means that the level of correlation is not very significant. Finally, we analyzed sources of multifractality and their degree of contribution in the series.

  3. From gross anatomy to the nanomorphome: stereological tools provide a paradigm for advancing research in quantitative morphomics

    PubMed Central

    Mayhew, Terry M; Lucocq, John M

    2015-01-01

    The terms morphome and morphomics are not new but, recently, a group of morphologists and cell biologists has given them clear definitions and emphasised their integral importance in systems biology. By analogy to other ‘-omes’, the morphome refers to the distribution of matter within 3-dimensional (3D) space. It equates to the totality of morphological features within a biological system (virus, single cell, multicellular organism or populations thereof) and morphomics is the systematic study of those structures. Morphomics research has the potential to generate ‘big data’ because it includes all imaging techniques at all levels of achievable resolution and all structural scales from gross anatomy and medical imaging, via optical and electron microscopy, to molecular characterisation. As with other ‘-omics’, quantification is an important part of morphomics and, because biological systems exist and operate in 3D space, precise descriptions of form, content and spatial relationships require the quantification of structure in 3D. Revealing and quantifying structural detail inside the specimen is achieved currently in two main ways: (i) by some form of reconstruction from serial physical or tomographic slices or (ii) by using randomly-sampled sections and simple test probes (points, lines, areas, volumes) to derive stereological estimates of global and/or individual quantities. The latter include volumes, surfaces, lengths and numbers of interesting features and spatial relationships between them. This article emphasises the value of stereological design, sampling principles and estimation tools as a template for combining with alternative imaging techniques to tackle the ‘big data’ issue and advance knowledge and understanding of the morphome. The combination of stereology, TEM and immunogold cytochemistry provides a practical illustration of how this has been achieved in the sub-field of nanomorphomics. Applying these quantitative tools

  4. A highly addressable static droplet array enabling digital control of a single droplet at pico-volume resolution.

    PubMed

    Jeong, Heon-Ho; Lee, Byungjin; Jin, Si Hyung; Jeong, Seong-Geun; Lee, Chang-Soo

    2016-04-26

    Droplet-based microfluidics enabling exquisite liquid-handling has been developed for diagnosis, drug discovery and quantitative biology. Compartmentalization of samples into a large number of tiny droplets is a great approach to perform multiplex assays and to improve reliability and accuracy using a limited volume of samples. Despite significant advances in microfluidic technology, individual droplet handling in pico-volume resolution is still a challenge in obtaining more efficient and varying multiplex assays. We present a highly addressable static droplet array (SDA) enabling individual digital manipulation of a single droplet using a microvalve system. In a conventional single-layer microvalve system, the number of microvalves required is dictated by the number of operation objects; thus, individual trap-and-release on a large-scale 2D array format is highly challenging. By integrating double-layer microvalves, we achieve a "balloon" valve that preserves the pressure-on state under released pressure; this valve can allow the selective releasing and trapping of 7200 multiplexed pico-droplets using only 1 μL of sample without volume loss. This selectivity and addressability completely arranged only single-cell encapsulated droplets from a mixture of droplet compositions via repetitive selective trapping and releasing. Thus, it will be useful for efficient handling of miniscule volumes of rare or clinical samples in multiplex or combinatory assays, and the selective collection of samples.

  5. Value of Quantitative Collateral Scoring on CT Angiography in Patients with Acute Ischemic Stroke.

    PubMed

    Boers, A M M; Sales Barros, R; Jansen, I G H; Berkhemer, O A; Beenen, L F M; Menon, B K; Dippel, D W J; van der Lugt, A; van Zwam, W H; Roos, Y B W E M; van Oostenbrugge, R J; Slump, C H; Majoie, C B L M; Marquering, H A

    2018-06-01

    Many studies have emphasized the relevance of collateral flow in patients presenting with acute ischemic stroke. Our aim was to evaluate the relationship of the quantitative collateral score on baseline CTA with the outcome of patients with acute ischemic stroke and test whether the timing of the CTA acquisition influences this relationship. From the Multicenter Randomized Clinical Trial of Endovascular Treatment of Acute Ischemic Stroke in the Netherlands (MR CLEAN) data base, all baseline thin-slice CTA images of patients with acute ischemic stroke with intracranial large-vessel occlusion were retrospectively collected. The quantitative collateral score was calculated as the ratio of the vascular appearance of both hemispheres and was compared with the visual collateral score. Primary outcomes were 90-day mRS score and follow-up infarct volume. The relation with outcome and the association with treatment effect were estimated. The influence of the CTA acquisition phase on the relation of collateral scores with outcome was determined. A total of 442 patients were included. The quantitative collateral score strongly correlated with the visual collateral score (ρ = 0.75) and was an independent predictor of mRS (adjusted odds ratio = 0.81; 95% CI, .77-.86) and follow-up infarct volume (exponent β = 0.88; P < .001) per 10% increase. The quantitative collateral score showed areas under the curve of 0.71 and 0.69 for predicting functional independence (mRS 0-2) and follow-up infarct volume of >90 mL, respectively. We found significant interaction of the quantitative collateral score with the endovascular therapy effect in unadjusted analysis on the full ordinal mRS scale ( P = .048) and on functional independence ( P = .049). Modification of the quantitative collateral score by acquisition phase on outcome was significant (mRS: P = .004; follow-up infarct volume: P < .001) in adjusted analysis. Automated quantitative collateral scoring in patients with acute ischemic

  6. Simultaneous serum nicotine, cotinine, and trans-3'-hydroxycotinine quantitation with minimal sample volume for tobacco exposure status of solid organ transplant patients.

    PubMed

    Shu, Irene; Wang, Ping

    2013-06-01

    Concentrations of nicotine and its metabolites in blood are indicative of patients' current tobacco exposure, and their quantifications have been clinically applied to multiple assessments including demonstration of abstinence prior to heart-lung transplantation. For the purpose of transplant evaluation, the laboratory work up is extensive; thereby an assay with minimal sample volume is preferred. We developed and validated a rapid LC-MS/MS assay to simultaneously quantitate nicotine and its major metabolites, Cotinine and trans-3'-OH-cotinine (3-OH-Cot), in serum. 100μL of serum was spiked with deuterated internal standards and extracted by Oasis HLB solid phase extraction cartridge. Nicotine and metabolites in the reconstituted serum extract were separated by Agilent Eclipse XDB-C8 3.5μm 2.1mm×50mm HPLC column within 4.7min, and quantified by MS/MS with positive mode electrospray ionization and multiple reaction monitoring. Ion suppression was insignificant, and extraction efficiency was 79-110% at 50ng/mL for all compounds. Limit of detection was 1.0ng/mL for nicotine and 3-OH-Cot, and <0.5ng/mL for Cotinine. Linearity ranges for nicotine, cotinine and 3-OH-Cot were 2-100, 2-1000, and 5-1000ng/mL with recoveries of 86-115%. Within-day and twenty-day imprecision at nicotine/cotinine/3-OH-Cot levels of 22/150/90, 37/250/150, and 50/800/500ng/mL were all 1.1-6.5%. The reconstituted serum extracts were stable for at least 7 days stored in the HPLC autosampler at 5°C. Our method correlates well with alternative LC-MS/MS methods. We successfully developed and validated an LC-MS/MS assay to quantitate concentrations of nicotine and its metabolites in serum with minimal sample volume to assess tobacco exposure of heart-lung transplant patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Tested Studies for Laboratory Teaching. Proceedings of the Workshop/Conference of the Association for Biology Laboratory Education (ABLE) (7th, Las Vegas, Nevada, June 3-7, 1985; 8th, Ithaca, New York, June 16-20, 1986). Volume 7/8.

    ERIC Educational Resources Information Center

    Goldman, Corey A., Ed.; Hauta, P. Lynn, Ed.

    The focus of the Association for Biology Laboratory Education (ABLE) is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceeding volume contains 12 papers: "Experimental Design and Testing: Hatching and Development in…

  8. The Quantitative Methods Boot Camp: Teaching Quantitative Thinking and Computing Skills to Graduate Students in the Life Sciences

    PubMed Central

    Stefan, Melanie I.; Gutlerner, Johanna L.; Born, Richard T.; Springer, Michael

    2015-01-01

    The past decade has seen a rapid increase in the ability of biologists to collect large amounts of data. It is therefore vital that research biologists acquire the necessary skills during their training to visualize, analyze, and interpret such data. To begin to meet this need, we have developed a “boot camp” in quantitative methods for biology graduate students at Harvard Medical School. The goal of this short, intensive course is to enable students to use computational tools to visualize and analyze data, to strengthen their computational thinking skills, and to simulate and thus extend their intuition about the behavior of complex biological systems. The boot camp teaches basic programming using biological examples from statistics, image processing, and data analysis. This integrative approach to teaching programming and quantitative reasoning motivates students’ engagement by demonstrating the relevance of these skills to their work in life science laboratories. Students also have the opportunity to analyze their own data or explore a topic of interest in more detail. The class is taught with a mixture of short lectures, Socratic discussion, and in-class exercises. Students spend approximately 40% of their class time working through both short and long problems. A high instructor-to-student ratio allows students to get assistance or additional challenges when needed, thus enhancing the experience for students at all levels of mastery. Data collected from end-of-course surveys from the last five offerings of the course (between 2012 and 2014) show that students report high learning gains and feel that the course prepares them for solving quantitative and computational problems they will encounter in their research. We outline our course here which, together with the course materials freely available online under a Creative Commons License, should help to facilitate similar efforts by others. PMID:25880064

  9. The quantitative methods boot camp: teaching quantitative thinking and computing skills to graduate students in the life sciences.

    PubMed

    Stefan, Melanie I; Gutlerner, Johanna L; Born, Richard T; Springer, Michael

    2015-04-01

    The past decade has seen a rapid increase in the ability of biologists to collect large amounts of data. It is therefore vital that research biologists acquire the necessary skills during their training to visualize, analyze, and interpret such data. To begin to meet this need, we have developed a "boot camp" in quantitative methods for biology graduate students at Harvard Medical School. The goal of this short, intensive course is to enable students to use computational tools to visualize and analyze data, to strengthen their computational thinking skills, and to simulate and thus extend their intuition about the behavior of complex biological systems. The boot camp teaches basic programming using biological examples from statistics, image processing, and data analysis. This integrative approach to teaching programming and quantitative reasoning motivates students' engagement by demonstrating the relevance of these skills to their work in life science laboratories. Students also have the opportunity to analyze their own data or explore a topic of interest in more detail. The class is taught with a mixture of short lectures, Socratic discussion, and in-class exercises. Students spend approximately 40% of their class time working through both short and long problems. A high instructor-to-student ratio allows students to get assistance or additional challenges when needed, thus enhancing the experience for students at all levels of mastery. Data collected from end-of-course surveys from the last five offerings of the course (between 2012 and 2014) show that students report high learning gains and feel that the course prepares them for solving quantitative and computational problems they will encounter in their research. We outline our course here which, together with the course materials freely available online under a Creative Commons License, should help to facilitate similar efforts by others.

  10. Context Dependence of Students' Views about the Role of Equations in Understanding Biology

    ERIC Educational Resources Information Center

    Watkins, Jessica; Elby, Andrew

    2013-01-01

    Students' epistemological views about biology--their ideas about what "counts" as learning and understanding biology--play a role in how they approach their courses and respond to reforms. As introductory biology courses incorporate more physics and quantitative reasoning, student attitudes about the role of equations in biology become…

  11. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tittmann, B. R.; Xi, X.

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which weremore » sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical

  12. Graphic Representation of Carbon Dioxide Equilibria in Biological Systems.

    ERIC Educational Resources Information Center

    Kindig, Neal B.; Filley, Giles F.

    1983-01-01

    The log C-pH diagram is a useful means of displaying quantitatively the many variables (including temperature) that determine acid-base equilibria in biological systems. Presents the diagram as extended to open/closed biological systems and derives a new water-ion balance method for determining equilibrium pH. (JN)

  13. A disposable sampling device to collect volume-measured DBS directly from a fingerprick onto DBS paper.

    PubMed

    Lenk, Gabriel; Sandkvist, Sören; Pohanka, Anton; Stemme, Göran; Beck, Olof; Roxhed, Niclas

    2015-01-01

    DBS samples collected from a fingerprick typically vary in volume and homogeneity and hence make an accurate quantitative analysis of DBS samples difficult. We report a prototype which first defines a precise liquid volume and subsequently stores it to a conventional DBS matrix. Liquid volumes of 2.2 µl ± 7.1% (n = 21) for deionized water and 6.1 µl ± 8.8% (n = 15) for whole blood have been successfully metered and stored in DBS paper. The new method of collecting a defined volume of blood by DBS sampling has the potential to reduce assay bias for the quantitative evaluation of DBS samples while maintaining the simplicity of conventional DBS sampling.

  14. Student perception of relevance of biology content to everyday life: A study in higher education biology courses

    NASA Astrophysics Data System (ADS)

    Himschoot, Agnes Rose

    The purpose of this mixed method case study was to examine the effects of methods of instruction on students' perception of relevance in higher education non-biology majors' courses. Nearly ninety percent of all students in a liberal arts college are required to take a general biology course. It is proposed that for many of those students, this is the last science course they will take for life. General biology courses are suspected of discouraging student interest in biology with large enrollment, didactic instruction, covering a huge amount of content in one semester, and are charged with promoting student disengagement with biology by the end of the course. Previous research has been aimed at increasing student motivation and interest in biology as measured by surveys and test results. Various methods of instruction have been tested and show evidence of improved learning gains. This study focused on students' perception of relevance of biology content to everyday life and the methods of instruction that increase it. A quantitative survey was administered to assess perception of relevance pre and post instruction over three topics typically taught in a general biology course. A second quantitative survey of student experiences during instruction was administered to identify methods of instruction used in the course lecture and lab. While perception of relevance dropped in the study, qualitative focus groups provided insight into the surprising results by identifying topics that are more relevant than the ones chosen for the study, conveying the affects of the instructor's personal and instructional skills on student engagement, explanation of how active engagement during instruction promotes understanding of relevance, the roll of laboratory in promoting students' understanding of relevance as well as identifying external factors that affect student engagement. The study also investigated the extent to which gender affected changes in students' perception of

  15. Computational Skills for Biology Students

    ERIC Educational Resources Information Center

    Gross, Louis J.

    2008-01-01

    This interview with Distinguished Science Award recipient Louis J. Gross highlights essential computational skills for modern biology, including: (1) teaching concepts listed in the Math & Bio 2010 report; (2) illustrating to students that jobs today require quantitative skills; and (3) resources and materials that focus on computational skills.

  16. Comparison of semi-quantitative and quantitative dynamic contrast-enhanced MRI evaluations of vertebral marrow perfusion in a rat osteoporosis model.

    PubMed

    Zhu, Jingqi; Xiong, Zuogang; Zhang, Jiulong; Qiu, Yuyou; Hua, Ting; Tang, Guangyu

    2017-11-14

    This study aims to investigate the technical feasibility of semi-quantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of longitudinal changes of marrow perfusion in a rat osteoporosis model, using bone mineral density (BMD) measured by micro-computed tomography (micro-CT) and histopathology as the gold standards. Fifty rats were randomly assigned to the control group (n=25) and ovariectomy (OVX) group whose bilateral ovaries were excised (n=25). Semi-quantitative and quantitative DCE-MRI, micro-CT, and histopathological examinations were performed on lumbar vertebrae at baseline and 3, 6, 9, and 12 weeks after operation. The differences between the two groups in terms of semi-quantitative DCE-MRI parameter (maximum enhancement, E max ), quantitative DCE-MRI parameters (volume transfer constant, K trans ; interstitial volume, V e ; and efflux rate constant, K ep ), micro-CT parameter (BMD), and histopathological parameter (microvessel density, MVD) were compared at each of the time points using an independent-sample t test. The differences in these parameters between baseline and other time points in each group were assessed via Bonferroni's multiple comparison test. A Pearson correlation analysis was applied to assess the relationships between DCE-MRI, micro-CT, and histopathological parameters. In the OVX group, the E max values decreased significantly compared with those of the control group at weeks 6 and 9 (p=0.003 and 0.004, respectively). The K trans values decreased significantly compared with those of the control group from week 3 (p<0.05). However, the V e values decreased significantly only at week 9 (p=0.032), and no difference in the K ep was found between two groups. The BMD values of the OVX group decreased significantly compared with those of the control group from week 3 (p<0.05). Transmission electron microscopy showed tighter gaps between vascular endothelial cells with swollen mitochondria

  17. Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells.

    PubMed

    Nygate, Yoav N; Singh, Gyanendra; Barnea, Itay; Shaked, Natan T

    2018-06-01

    We present a new technique for obtaining simultaneous multimodal quantitative phase and fluorescence microscopy of biological cells, providing both quantitative phase imaging and molecular specificity using a single camera. Our system is based on an interferometric multiplexing module, externally positioned at the exit of an optical microscope. In contrast to previous approaches, the presented technique allows conventional fluorescence imaging, rather than interferometric off-axis fluorescence imaging. We demonstrate the presented technique for imaging fluorescent beads and live biological cells.

  18. Assessment of volume reduction effect after lung lobectomy for cancer.

    PubMed

    Ueda, Kazuhiro; Murakami, Junichi; Sano, Fumiho; Hayashi, Masataro; Kobayashi, Taiga; Kunihiro, Yoshie; Hamano, Kimikazu

    2015-07-01

    Lung lobectomy results in an unexpected improvement of the remaining lung function in some patients with moderate-to-severe emphysema. Because the lung function is the main limiting factor for therapeutic decision making in patients with lung cancer, it may be advantageous to identify patients who may benefit from the volume reduction effect, particularly those with a poor functional reserve. We measured the regional distribution of the emphysematous lung and normal lung using quantitative computed tomography in 84 patients undergoing lung lobectomy for cancer between January 2010 and December 2012. The volume reduction effect was diagnosed using a combination of radiologic and spirometric parameters. Eight patients (10%) were favorably affected by the volume reduction effect. The forced expiratory volume in one second increased postoperatively in these eight patients, whereas the forced vital capacity was unchanged, thus resulting in an improvement of the airflow obstruction postoperatively. This improvement was not due to a compensatory expansion of the remaining lung but was associated with a relative decrease in the forced end-expiratory lung volume. According to a multivariate analysis, airflow obstruction and the forced end-expiratory lung volume were independent predictors of the volume reduction effect. A combined assessment using spirometry and quantitative computed tomography helped to characterize the respiratory dynamics underlying the volume reduction effect, thus leading to the identification of novel predictors of a volume reduction effect after lobectomy for cancer. Verification of our results by a large-scale prospective study may help to extend the indications for lobectomy in patients with oncologically resectable lung cancer who have a marginal pulmonary function. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization.

    PubMed

    West, Geoffrey B; Brown, James H

    2005-05-01

    Life is the most complex physical phenomenon in the Universe, manifesting an extraordinary diversity of form and function over an enormous scale from the largest animals and plants to the smallest microbes and subcellular units. Despite this many of its most fundamental and complex phenomena scale with size in a surprisingly simple fashion. For example, metabolic rate scales as the 3/4-power of mass over 27 orders of magnitude, from molecular and intracellular levels up to the largest organisms. Similarly, time-scales (such as lifespans and growth rates) and sizes (such as bacterial genome lengths, tree heights and mitochondrial densities) scale with exponents that are typically simple powers of 1/4. The universality and simplicity of these relationships suggest that fundamental universal principles underly much of the coarse-grained generic structure and organisation of living systems. We have proposed a set of principles based on the observation that almost all life is sustained by hierarchical branching networks, which we assume have invariant terminal units, are space-filling and are optimised by the process of natural selection. We show how these general constraints explain quarter power scaling and lead to a quantitative, predictive theory that captures many of the essential features of diverse biological systems. Examples considered include animal circulatory systems, plant vascular systems, growth, mitochondrial densities, and the concept of a universal molecular clock. Temperature considerations, dimensionality and the role of invariants are discussed. Criticisms and controversies associated with this approach are also addressed.

  20. CADDIS Volume 4. Data Analysis: Biological and Environmental Data Requirements

    EPA Pesticide Factsheets

    Overview of PECBO Module, using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, methods for inferring environmental conditions, statistical scripts in module.

  1. Design Criteria for Microbiological Facilities at Fort Detrick. Volume II: Design Criteria

    ERIC Educational Resources Information Center

    Army Biological Labs., Fort Detrick, MD. Industrial Health and Safety Div.

    Volume II of a two-volume manual of design criteria, based primarily on biological safety considerations. It is prepared for the use of architect-engineers in designing new or modified microbiological facilities for Fort Detrick, Maryland. Volume II is divided into the following sections: (1) architectural, (2) heating, ventilating, and air…

  2. Determination of nickel in water, food, and biological samples by electrothermal atomic absorption spectrometry after preconcentration on modified carbon nanotubes.

    PubMed

    Taher, Mohammad Ali; Mazaheri, Lida; Ashkenani, Hamid; Mohadesi, Alireza; Afzali, Daryoush

    2014-01-01

    A new and sensitive SPE method using modified carbon nanotubes for extraction and preconcentration, and electrothermal atomic absorption spectrometric determination of nickel (Ni) in real samples at ng/L levels was investigated. First, multiwalled carbon nanotubes were oxidized with concentrated HNO3, then modified with 2-(5-bormo-2-pyridylazo)-5-diethylaminophenol reagent. The adsorption was achieved quantitatively on a modified carbon nanotubes column in a pH range of 6.5 to 8.5; the adsorbed Ni(II) ions were then desorbed by passing 5.0 mL of 1 M HNO3. The effects of analytical parameters, including pH of the solution, eluent type and volume, sample volume, flow rate of the eluent, and matrix ions, were investigated for optimization of the presented procedure. The enrichment factor was 180, and the LOD for Ni was 4.9 ng/L. The method was applied to the determination of Ni in water, food, and biological samples, and reproducible results were obtained.

  3. Liquid Chromatography-Mass Spectrometry-based Quantitative Proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Fang; Liu, Tao; Qian, Weijun

    2011-07-22

    Liquid chromatography-mass spectrometry (LC-MS)-based quantitative proteomics has become increasingly applied for a broad range of biological applications due to growing capabilities for broad proteome coverage and good accuracy in quantification. Herein, we review the current LC-MS-based quantification methods with respect to their advantages and limitations, and highlight their potential applications.

  4. Quantitative DIC microscopy using an off-axis self-interference approach.

    PubMed

    Fu, Dan; Oh, Seungeun; Choi, Wonshik; Yamauchi, Toyohiko; Dorn, August; Yaqoob, Zahid; Dasari, Ramachandra R; Feld, Michael S

    2010-07-15

    Traditional Normarski differential interference contrast (DIC) microscopy is a very powerful method for imaging nonstained biological samples. However, one of its major limitations is the nonquantitative nature of the imaging. To overcome this problem, we developed a quantitative DIC microscopy method based on off-axis sample self-interference. The digital holography algorithm is applied to obtain quantitative phase gradients in orthogonal directions, which leads to a quantitative phase image through a spiral integration of the phase gradients. This method is practically simple to implement on any standard microscope without stringent requirements on polarization optics. Optical sectioning can be obtained through enlarged illumination NA.

  5. Quantitative analysis of multiple sclerosis: a feasibility study

    NASA Astrophysics Data System (ADS)

    Li, Lihong; Li, Xiang; Wei, Xinzhou; Sturm, Deborah; Lu, Hongbing; Liang, Zhengrong

    2006-03-01

    Multiple Sclerosis (MS) is an inflammatory and demyelinating disorder of the central nervous system with a presumed immune-mediated etiology. For treatment of MS, the measurements of white matter (WM), gray matter (GM), and cerebral spinal fluid (CSF) are often used in conjunction with clinical evaluation to provide a more objective measure of MS burden. In this paper, we apply a new unifying automatic mixture-based algorithm for segmentation of brain tissues to quantitatively analyze MS. The method takes into account the following effects that commonly appear in MR imaging: 1) The MR data is modeled as a stochastic process with an inherent inhomogeneity effect of smoothly varying intensity; 2) A new partial volume (PV) model is built in establishing the maximum a posterior (MAP) segmentation scheme; 3) Noise artifacts are minimized by a priori Markov random field (MRF) penalty indicating neighborhood correlation from tissue mixture. The volumes of brain tissues (WM, GM) and CSF are extracted from the mixture-based segmentation. Experimental results of feasibility studies on quantitative analysis of MS are presented.

  6. [Quantitative data analysis for live imaging of bone.

    PubMed

    Seno, Shigeto

    Bone tissue is a hard tissue, it was difficult to observe the interior of the bone tissue alive. With the progress of microscopic technology and fluorescent probe technology in recent years, it becomes possible to observe various activities of various cells forming bone society. On the other hand, the quantitative increase in data and the diversification and complexity of the images makes it difficult to perform quantitative analysis by visual inspection. It has been expected to develop a methodology for processing microscopic images and data analysis. In this article, we introduce the research field of bioimage informatics which is the boundary area of biology and information science, and then outline the basic image processing technology for quantitative analysis of live imaging data of bone.

  7. Biology Undergraduates' Misconceptions about Genetic Drift

    ERIC Educational Resources Information Center

    Andrews, T. M.; Price, R. M.; Mead, L. S.; McElhinny, T. L.; Thanukos, A.; Perez, K. E.; Herreid, C. F.; Terry, D. R.; Lemons, P. P.

    2012-01-01

    This study explores biology undergraduates' misconceptions about genetic drift. We use qualitative and quantitative methods to describe students' definitions, identify common misconceptions, and examine differences before and after instruction on genetic drift. We identify and describe five overarching categories that include 16 distinct…

  8. Neuroanatomical correlates of biological motion detection.

    PubMed

    Gilaie-Dotan, Sharon; Kanai, Ryota; Bahrami, Bahador; Rees, Geraint; Saygin, Ayse P

    2013-02-01

    Biological motion detection is both commonplace and important, but there is great inter-individual variability in this ability, the neural basis of which is currently unknown. Here we examined whether the behavioral variability in biological motion detection is reflected in brain anatomy. Perceptual thresholds for detection of biological motion and control conditions (non-biological object motion detection and motion coherence) were determined in a group of healthy human adults (n=31) together with structural magnetic resonance images of the brain. Voxel based morphometry analyzes revealed that gray matter volumes of left posterior superior temporal sulcus (pSTS) and left ventral premotor cortex (vPMC) significantly predicted individual differences in biological motion detection, but showed no significant relationship with performance on the control tasks. Our study reveals a neural basis associated with the inter-individual variability in biological motion detection, reliably linking the neuroanatomical structure of left pSTS and vPMC with biological motion detection performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. S-Nitrosothiol measurements in biological systems⋄

    PubMed Central

    Gow, Andrew; Doctor, Allan; Mannick, Joan; Gaston, Benjamin

    2007-01-01

    S-Nitrosothiol (SNO) cysteine modifications are regulated signaling reactions that dramatically affect, and are affected by, protein conformation. The lability of the S-NO bond can make SNO-modified proteins cumbersome to measure accurately. Here, we review methodologies for detecting SNO modifications in biology. There are three caveats. 1) Many assays for biological SNOs are used near the limit of detection: standard curves must be in the biologically relevant concentration range. 2) The assays that are most reliable are those that modify SNO protein or peptide chemistry the least. 3) Each result should be quantitatively validated using more than one assay. Improved assays are needed and are in development. PMID:17379583

  10. Petri net modelling of biological networks.

    PubMed

    Chaouiya, Claudine

    2007-07-01

    Mathematical modelling is increasingly used to get insights into the functioning of complex biological networks. In this context, Petri nets (PNs) have recently emerged as a promising tool among the various methods employed for the modelling and analysis of molecular networks. PNs come with a series of extensions, which allow different abstraction levels, from purely qualitative to more complex quantitative models. Noteworthily, each of these models preserves the underlying graph, which depicts the interactions between the biological components. This article intends to present the basics of the approach and to foster the potential role PNs could play in the development of the computational systems biology.

  11. Superolateral Hoffa's fat pad (SHFP) oedema and patellar cartilage volume loss: quantitative analysis using longitudinal data from the Foundation for the National Institute of Health (FNIH) Osteoarthritis Biomarkers Consortium.

    PubMed

    Haj-Mirzaian, Arya; Guermazi, Ali; Hafezi-Nejad, Nima; Sereni, Christopher; Hakky, Michael; Hunter, David J; Zikria, Bashir; Roemer, Frank W; Demehri, Shadpour

    2018-04-12

    To determine the association of superolateral Hoffa's fat pad (SHFP) oedema and patellofemoral joint structural damage in participants of Foundation for the National Institute of Health Osteoarthritis Biomarkers Consortium study. Baseline and 24-month MRIs of 600 subjects were assessed. The presence of SHFP oedema (using 0-3 grading scale) and patellar morphology metrics were determined using baseline MRI. Quantitative patellar cartilage volume and semi-quantitative MRI osteoarthritis knee score (MOAKS) variables were extracted. The associations between SHFP oedema and patellar cartilage damage, bone marrow lesion (BML), osteophyte and morphology were evaluated in cross-sectional model. In longitudinal analysis, the associations between oedema and cartilage volume loss (defined using reliable change index) and MOAKS worsening were evaluated. In cross-sectional evaluations, the presence of SHFP oedema was associated with simultaneous lateral patellar cartilage/BML defects and inferior-medial patellar osteophyte size. A significant positive correlation between the degree of patella alta and SHFP oedema was detected (r = 0.259, p < 0.001). The presence of oedema was associated with 24-month cartilage volume loss (odds ratio (OR) 2.11, 95% confidence interval 1.46-3.06) and medial patellar BML size (OR 1.92 (1.15-3.21)) and number (OR 2.50 (1.29-4.88)) worsening. The optimal cut-off value for the grade of baseline SHFP oedema regarding both presence and worsening of patellar structural damage was ≥ 1 (presence of any SHFP hyperintensity). The presence of SHFP oedema could be considered as a predictor of future patellar cartilage loss and BML worsening, and an indicator of simultaneous cartilage, BML and osteophyte defects. • SHFP oedema was associated with simultaneous lateral patellar OA-related structural damage. • SHFP oedema was associated with longitudinal patellar cartilage loss over 24 months. • SHFP oedema could be considered as indicator and predictor

  12. The volume change during solidification

    NASA Technical Reports Server (NTRS)

    Rittich, M.

    1985-01-01

    The liquid-solid phase transformation of solidifying metallic melts is accompanied by a volume change Delta-Vm. This volume change produces a gravity-independent microscopic flow near the solidification front. In a ground-based laboratory, solidification processes are also affected by convection due to temperature and concentration gradients. A quantitative evaluation of the effects of these flows on the formation of structure requires reproducible values of Delta-Vm. Alloys with Delta-Vm = 0 would be best suited for such an evaluation, while alloys with a constant value for Delta-Vm are still usable. Another requirement is related to a solidus-liquidus interval which is as small as possible. One-phase alloys, which would be particularly well suited, could not be found. For these reasons, alloys which solidify in two phases, as for example eutectics, have been considered, taking into account the Al-Ge system. Attention is given to the volume change at the melting point, the measurement of this change, the volume change at solidification, and applications to terrestrial technology.

  13. Repeatability of quantitative FDG-PET/CT and contrast-enhanced CT in recurrent ovarian carcinoma: test-retest measurements for tumor FDG uptake, diameter, and volume.

    PubMed

    Rockall, Andrea G; Avril, Norbert; Lam, Raymond; Iannone, Robert; Mozley, P David; Parkinson, Christine; Bergstrom, Donald; Sala, Evis; Sarker, Shah-Jalal; McNeish, Iain A; Brenton, James D

    2014-05-15

    Repeatability of baseline FDG-PET/CT measurements has not been tested in ovarian cancer. This dual-center, prospective study assessed variation in tumor 2[18F]fluoro-2-deoxy-D-glucose (FDG) uptake, tumor diameter, and tumor volume from sequential FDG-PET/CT and contrast-enhanced computed tomography (CECT) in patients with recurrent platinum-sensitive ovarian cancer. Patients underwent two pretreatment baseline FDG-PET/CT (n = 21) and CECT (n = 20) at two clinical sites with different PET/CT instruments. Patients were included if they had at least one target lesion in the abdomen with a standardized uptake value (SUV) maximum (SUVmax) of ≥ 2.5 and a long axis diameter of ≥ 15 mm. Two independent reading methods were used to evaluate repeatability of tumor diameter and SUV uptake: on site and at an imaging clinical research organization (CRO). Tumor volume reads were only performed by CRO. In each reading set, target lesions were independently measured on sequential imaging. Median time between FDG-PET/CT was two days (range 1-7). For site reads, concordance correlation coefficients (CCC) for SUVmean, SUVmax, and tumor diameter were 0.95, 0.94, and 0.99, respectively. Repeatability coefficients were 16.3%, 17.3%, and 8.8% for SUVmean, SUVmax, and tumor diameter, respectively. Similar results were observed for CRO reads. Tumor volume CCC was 0.99 with a repeatability coefficient of 28.1%. There was excellent test-retest repeatability for FDG-PET/CT quantitative measurements across two sites and two independent reading methods. Cutoff values for determining change in SUVmean, SUVmax, and tumor volume establish limits to determine metabolic and/or volumetric response to treatment in platinum-sensitive relapsed ovarian cancer. ©2014 American Association for Cancer Research.

  14. Quantitative estimation of global patterns of surface ocean biological productivity and its seasonal variation on timescales from centuries to millennia

    NASA Astrophysics Data System (ADS)

    Loubere, Paul; Fariduddin, Mohammad

    1999-03-01

    We present a quantitative method, based on the relative abundances of benthic foraminifera in deep-sea sediments, for estimating surface ocean biological productivity over the timescale of centuries to millennia. We calibrate the method using a global data set composed of 207 samples from the Atlantic, Pacific, and Indian Oceans from a water depth range between 2300 and 3600 m. The sample set was developed so that other, potentially significant, environmental variables would be uncorrelated to overlying surface ocean productivity. A regression of assemblages against productivity yielded an r2 = 0.89 demonstrating a strong productivity signal in the faunal data. In addition, we examined assemblage response to annual variability in biological productivity (seasonality). Our data set included a range of seasonalities which we quantified into a seasonality index using the pigment color bands from the coastal zone color scanner (CZCS). The response of benthic foraminiferal assemblage composition to our seasonality index was tested with regression analysis. We obtained a statistically highly significant r2 = 0.75. Further, discriminant function analysis revealed a clear separation among sample groups based on surface ocean productivity and our seasonality index. Finally, we tested the response of benthic foraminiferal assemblages to three different modes of seasonality. We observed a distinct separation of our samples into groups representing low seasonal variability, strong seasonality with a single main productivity event in the year, and strong seasonality with multiple productivity events in the year. Reconstructing surface ocean biological productivity with benthic foraminifera will aid in modeling marine biogeochemical cycles. Also, estimating mode and range of annual seasonality will provide insight to changing oceanic processes, allowing the examination of the mechanisms causing changes in the marine biotic system over time. This article contains supplementary

  15. Reproducibility of CSF quantitative culture methods for estimating rate of clearance in cryptococcal meningitis.

    PubMed

    Dyal, Jonathan; Akampurira, Andrew; Rhein, Joshua; Morawski, Bozena M; Kiggundu, Reuben; Nabeta, Henry W; Musubire, Abdu K; Bahr, Nathan C; Williams, Darlisha A; Bicanic, Tihana; Larsen, Robert A; Meya, David B; Boulware, David R

    2016-05-01

    Quantitative cerebrospinal fluid (CSF) cultures provide a measure of disease severity in cryptococcal meningitis. The fungal clearance rate by quantitative cultures has become a primary endpoint for phase II clinical trials. This study determined the inter-assay accuracy of three different quantitative culture methodologies. Among 91 participants with meningitis symptoms in Kampala, Uganda, during August-November 2013, 305 CSF samples were prospectively collected from patients at multiple time points during treatment. Samples were simultaneously cultured by three methods: (1) St. George's 100 mcl input volume of CSF with five 1:10 serial dilutions, (2) AIDS Clinical Trials Group (ACTG) method using 1000, 100, 10 mcl input volumes, and two 1:100 dilutions with 100 and 10 mcl input volume per dilution on seven agar plates; and (3) 10 mcl calibrated loop of undiluted and 1:100 diluted CSF (loop). Quantitative culture values did not statistically differ between St. George-ACTG methods (P= .09) but did for St. George-10 mcl loop (P< .001). Repeated measures pairwise correlation between any of the methods was high (r≥0.88). For detecting sterility, the ACTG-method had the highest negative predictive value of 97% (91% St. George, 60% loop), but the ACTG-method had occasional (∼10%) difficulties in quantification due to colony clumping. For CSF clearance rate, St. George-ACTG methods did not differ overall (mean -0.05 ± 0.07 log10CFU/ml/day;P= .14) on a group level; however, individual-level clearance varied. The St. George and ACTG quantitative CSF culture methods produced comparable but not identical results. Quantitative cultures can inform treatment management strategies. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Three-dimensional quantitative flow diagnostics

    NASA Technical Reports Server (NTRS)

    Miles, Richard B.; Nosenchuck, Daniel M.

    1989-01-01

    The principles, capabilities, and practical implementation of advanced measurement techniques for the quantitative characterization of three-dimensional flows are reviewed. Consideration is given to particle, Rayleigh, and Raman scattering; fluorescence; flow marking by H2 bubbles, photochromism, photodissociation, and vibrationally excited molecules; light-sheet volume imaging; and stereo imaging. Also discussed are stereo schlieren methods, holographic particle imaging, optical tomography, acoustic and magnetic-resonance imaging, and the display of space-filling data. Extensive diagrams, graphs, photographs, sample images, and tables of numerical data are provided.

  17. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsenko, Marina A.; Xu, Zhe; Liu, Tao

    Comprehensive, quantitative information on abundances of proteins and their post-translational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labelling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification andmore » quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples, and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.« less

  18. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.

    PubMed

    Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D

    2016-01-01

    Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.

  19. Droplet microfluidics for synthetic biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gach, Philip Charles; Iwai, Kosuke; Kim, Peter Wonhee

    Here, synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to mostmore » researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.« less

  20. Droplet microfluidics for synthetic biology

    DOE PAGES

    Gach, Philip Charles; Iwai, Kosuke; Kim, Peter Wonhee; ...

    2017-08-10

    Here, synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to mostmore » researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.« less

  1. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; preparation procedure for aquatic biological material determined for trace metals

    USGS Publications Warehouse

    Hoffman, Gerald L.

    1996-01-01

    A method for the chemical preparation of tissue samples that are subsequently analyzed for 22 trace metals is described. The tissue-preparation procedure was tested with three National Institute of Standards and Technology biological standard reference materials and two National Water Quality Laboratory homogenized biological materials. A low-temperature (85 degrees Celsius) nitric acid digestion followed by the careful addition of hydrogen peroxide (30-percent solution) is used to decompose the biological material. The solutions are evaporated to incipient dryness, reconstituted with 5 percent nitric acid, and filtered. After filtration the solutions were diluted to a known volume and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-atomic emission spectrometry (ICP-AES), and cold vapor-atomic absorption spectrophotometry (CV-AAS). Many of the metals were determined by both ICP-MS and ICP-AES. This report does not provide a detailed description of the instrumental procedures and conditions used with the three types of instrumentation for the quantitation of trace metals determined in this study. Statistical data regarding recovery, accuracy, and precision for individual trace metals determined in the biological material tested are summarized.

  2. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    PubMed

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Global, quantitative and dynamic mapping of protein subcellular localization.

    PubMed

    Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg Hh

    2016-06-09

    Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology.

  4. Exploring Children's Thinking. Part 3: The Development of Quantitative Relations; Conservation (Preschool - Third Grade).

    ERIC Educational Resources Information Center

    Alward, Keith R.; Saxe, Geoffrey B.

    This unit of the Flexible Learning System (FLS), the third of a 3-volume series on children's thinking focuses on the development of quantitative relations in children between 3 and 8 years of age. The series is based on the application of Jean Piaget's work to early childhood education. Quantitative relations concerns all notions of units and…

  5. Impact of reconstruction parameters on quantitative I-131 SPECT

    NASA Astrophysics Data System (ADS)

    van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.

    2016-07-01

    Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be  <1%,-26% and 33%, respectively. The adverse effects of partial volume were significantly smaller with the Monte Carlo simulated CDR correction compared with geometric Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated CDR

  6. Cerebral edema, mass effects, and regional blood volume in man.

    PubMed

    Penn, R D; Kurtz, D

    1977-03-01

    The authors conducted quantitative analysis of computerized tomography (CT) scans to measure tumor size, cerebral edema, and regional blood volume in man. Mass lesions without edema caused a local reduction in blood volume. Cerebral edema also reduced blood volume in proportion to its severity. Consideration of the electrolyte changes and water shifts in white-matter edema suggested that the decrease in absorption coefficient seen in CT scans was due to the increase in water content. Thus, in cerebral edema separation of blood vessels as well as increased interstitial pressure decrease blood volume, and the regional differences in turn reflect pressure gradients within the brain.

  7. Control volume based hydrocephalus research; analysis of human data

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin; Wei, Timothy; Voorhees, Abram; Madsen, Joseph; Anor, Tomer

    2010-11-01

    Hydrocephalus is a neuropathophysiological disorder primarily diagnosed by increased cerebrospinal fluid volume and pressure within the brain. To date, utilization of clinical measurements have been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Pressure volume models and electric circuit analogs enforce volume conservation principles in terms of pressure. Control volume analysis, through the integral mass and momentum conservation equations, ensures that pressure and volume are accounted for using first principles fluid physics. This approach is able to directly incorporate the diverse measurements obtained by clinicians into a simple, direct and robust mechanics based framework. Clinical data obtained for analysis are discussed along with data processing techniques used to extract terms in the conservation equation. Control volume analysis provides a non-invasive, physics-based approach to extracting pressure information from magnetic resonance velocity data that cannot be measured directly by pressure instrumentation.

  8. Heat capacity measurements of sub-nanoliter volumes of liquids using bimaterial microchannel cantilevers

    NASA Astrophysics Data System (ADS)

    Khan, M. F.; Miriyala, N.; Lee, J.; Hassanpourfard, M.; Kumar, A.; Thundat, T.

    2016-05-01

    Lab-on-a-Chip compatible techniques for thermal characterization of miniaturized volumes of liquid analytes are necessary in applications such as protein blotting, DNA melting, and drug development, where samples are either rare or volume-limited. We developed a closed-chamber calorimeter based on a bimaterial microchannel cantilever (BMC) for sub-nanoliter level thermal analysis. When the liquid-filled BMC is irradiated with infrared (IR) light at a specific wavelength, the IR absorption by the liquid analyte results in localized heat generation and the subsequent deflection of the BMC, due to a thermal expansion mismatch between the constituent materials. The time constant of the deflection, which is dependent upon the heat capacity of the liquid analyte, can be directly measured by recording the time-dependent bending of the BMC. We have used the BMC to quantitatively measure the heat capacity of five volatile organic compounds. With a deflection noise level of ˜10 nm and a signal-to-noise ratio of 68:1, the BMC offers a sensitivity of 30.5 ms/(J g-1 K-1) and a resolution of 23 mJ/(g K) for ˜150 pl liquid for heat capacity measurements. This technique can be used for small-scale thermal characterization of different chemical and biological samples.

  9. Flow volume loops in patients with goiters.

    PubMed Central

    Geraghty, J G; Coveney, E C; Kiernan, M; O'Higgins, N J

    1992-01-01

    Plain radiology is the standard means of assessing upper airway obstruction in patients with goiters. Flow volume loop curves will provide additional information, because they allow a quantitative assessment of airflow dynamics in the respiratory cycle. Fifty-one patients had flow volume loops performed before and after thyroidectomy. There was a significant increase in the maximum inspiratory flow rate (3.9 +/- 0.2 versus 4.9 +/- 0.2 L/second, p less than 0.01) after thyroidectomy. Eight of twelve patients with normal tracheal radiology had improved airflow dynamics in the postoperative period. The flow volume loop curve is a simple noninvasive means of assessing airflow dynamics in patients with goiters and may be superior to conventional radiology. PMID:1731653

  10. Calibrated Peer Review for Computer-Assisted Learning of Biological Research Competencies

    ERIC Educational Resources Information Center

    Clase, Kari L.; Gundlach, Ellen; Pelaez, Nancy J.

    2010-01-01

    Recently, both science and technology faculty have been recognizing biological research competencies that are valued but rarely assessed. Some of these valued learning outcomes include scientific methods and thinking, critical assessment of primary papers, quantitative reasoning, communication, and putting biological research into a historical and…

  11. Quantitative phase imaging characterization of tumor-associated blood vessel formation on a chip

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Huang, Jing; Moses, Marsha A.

    2018-02-01

    Angiogenesis, the formation of new blood vessels from existing ones, is a biological process that has an essential role in solid tumor growth, development, and progression. Recent advances in Lab-on-a-Chip technology has created an opportunity for scientists to observe endothelial cell (EC) behaviors during the dynamic process of angiogenesis using a simple and economical in vitro platform that recapitulates in vivo blood vessel formation. Here, we use quantitative phase imaging (QPI) microscopy to continuously and non-invasively characterize the dynamic process of tumor cell-induced angiogenic sprout formation on a microfluidic chip. The live tumor cell-induced angiogenic sprouts are generated by multicellular endothelial sprouting into 3 dimensional (3D) Matrigel using human umbilical vein endothelial cells (HUVECs). By using QPI, we quantitatively measure a panel of cellular morphological and behavioral parameters of each individual EC participating in this sprouting. In this proof-of-principle study, we demonstrate that QPI is a powerful tool that can provide real-time quantitative analysis of biological processes in in vitro 3D biomimetic devices, which, in turn, can improve our understanding of the biology underlying functional tissue engineering.

  12. Quantitation of pilsicainide in microscale samples of human biological fluids using liquid chromatography-tandem mass spectrometry.

    PubMed

    Shimizu, Mikiko; Hashiguchi, Masayuki; Shiga, Tsuyoshi; Nakamura, Koichi; Tamura, Hiro-omi; Mochizuki, Mayumi

    2015-03-15

    This paper describes a sensitive, reliable method to determine pilsicainide (PLC) levels in microscale sample volumes of human biological fluids using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI). PLC and quinidine as an internal standard were extracted with diethylether from 0.1mL of alkalinized biological fluids. The extract was injected into an analytical column (l-column 2 ODS, 75mm×2.1mm i.d.). The mobile phase for separation consisted of 5mM ammonium acetate (pH 4.5)/methanol (4:1, v/v) and was delivered at a flow rate of 0.2mL/min. The drift voltage was 100V. The sampling aperture was heated at 120°C and the shield temperature was 260°C. The ion transitions used to monitor analytes were m/z 273→m/z 110 for PLC and m/z 325→m/z 79 for quinidine. The total time for chromatographic separation was less than 8min. The validated concentration ranges of this method for PLC were 5-2000ng/mL in plasma, 5-500ng/mL in ultrafiltered plasma solution, and 25-2000ng/mL in urine. Mean recoveries of PLC in plasma, ultrafiltered plasma solution, and urine were 93.2-99.7%, 91.4-100.6%, and 93.9-104.7%, respectively. Intra- and interday coefficients of variation for PLC were less than 6.0% and 4.3% in plasma, 6.1% and 3.7% in ultrafiltered plasma solution, and 5.4% and 2.5% in urine at the above concentration ranges, respectively. The lower limit of quantification for PLC in plasma, ultrafiltered plasma solution, and urine were 5ng/mL, 5ng/mL, and 25ng/mL, respectively. This method can be applied to pharmacokinetic study and therapeutic drug monitoring in special populations such as neonates, infants, and the elderly by making effective use of residual samples used for general clinical laboratory testing. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Chemoenzymatic method for glycomics: isolation, identification, and quantitation

    PubMed Central

    Yang, Shuang; Rubin, Abigail; Eshghi, Shadi Toghi; Zhang, Hui

    2015-01-01

    Over the past decade, considerable progress has been made with respect to the analytical methods for analysis of glycans from biological sources. Regardless of the specific methods that are used, glycan analysis includes isolation, identification, and quantitation. Derivatization is indispensable to increase their identification. Derivatization of glycans can be performed by permethylation or carbodiimide coupling / esterification. By introducing a fluorophore or chromophore at their reducing end, glycans can be separated by electrophoresis or chromatography. The fluorogenically labeled glycans can be quantitated using fluorescent detection. The recently developed approaches using solid-phase such as glycoprotein immobilization for glycan extraction and on-tissue glycan mass spectrometry imaging demonstrate advantages over methods performed in solution. Derivatization of sialic acids is favorably implemented on the solid support using carbodiimide coupling, and the released glycans can be further modified at the reducing end or permethylated for quantitative analysis. In this review, methods for glycan isolation, identification, and quantitation are discussed. PMID:26390280

  14. Innovation Abstracts, Volume XVI, 1994.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1994-01-01

    This volume of 30 one- to two-page abstracts highlights a variety of innovative approaches to teaching and learning in the community college. Topics covered in the abstracts include: (1) music in the biology classroom; (2) pairing English as a second language and freshman composition students in writing activities; (3) moot court exercises in…

  15. Teaching Biology through Statistics: Application of Statistical Methods in Genetics and Zoology Courses

    ERIC Educational Resources Information Center

    Colon-Berlingeri, Migdalisel; Burrowes, Patricia A.

    2011-01-01

    Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the…

  16. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    PubMed

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  17. Genome Scale Modeling in Systems Biology: Algorithms and Resources

    PubMed Central

    Najafi, Ali; Bidkhori, Gholamreza; Bozorgmehr, Joseph H.; Koch, Ina; Masoudi-Nejad, Ali

    2014-01-01

    In recent years, in silico studies and trial simulations have complemented experimental procedures. A model is a description of a system, and a system is any collection of interrelated objects; an object, moreover, is some elemental unit upon which observations can be made but whose internal structure either does not exist or is ignored. Therefore, any network analysis approach is critical for successful quantitative modeling of biological systems. This review highlights some of most popular and important modeling algorithms, tools, and emerging standards for representing, simulating and analyzing cellular networks in five sections. Also, we try to show these concepts by means of simple example and proper images and graphs. Overall, systems biology aims for a holistic description and understanding of biological processes by an integration of analytical experimental approaches along with synthetic computational models. In fact, biological networks have been developed as a platform for integrating information from high to low-throughput experiments for the analysis of biological systems. We provide an overview of all processes used in modeling and simulating biological networks in such a way that they can become easily understandable for researchers with both biological and mathematical backgrounds. Consequently, given the complexity of generated experimental data and cellular networks, it is no surprise that researchers have turned to computer simulation and the development of more theory-based approaches to augment and assist in the development of a fully quantitative understanding of cellular dynamics. PMID:24822031

  18. Ferromagnetic resonance for the quantification of superparamagnetic iron oxide nanoparticles in biological materials

    PubMed Central

    Gamarra, Lionel F; daCosta-Filho, Antonio J; Mamani, Javier B; de Cassia Ruiz, Rita; Pavon, Lorena F; Sibov, Tatiana T; Vieira, Ernanni D; Silva, André C; Pontuschka, Walter M; Amaro, Edson

    2010-01-01

    The aim of the present work is the presentation of a quantification methodology for the control of the amount of superparamagnetic iron oxide nanoparticles (SPIONs) administered in biological materials by means of the ferromagnetic resonance technique (FMR) applied to studies both in vivo and in vitro. The in vivo study consisted in the analysis of the elimination and biodistribution kinetics of SPIONs after intravenous administration in Wistar rats. The results were corroborated by X-ray fluorescence. For the in vitro study, a quantitative analysis of the concentration of SPIONs bound to the specific AC133 monoclonal antibodies was carried out in order to detect the expression of the antigenic epitopes (CD133) in stem cells from human umbilical cord blood. In both studies FMR has proven to be an efficient technique for the SPIONs quantification per volume unit (in vivo) or per labeled cell (in vitro). PMID:20463936

  19. A general method for bead-enhanced quantitation by flow cytometry

    PubMed Central

    Montes, Martin; Jaensson, Elin A.; Orozco, Aaron F.; Lewis, Dorothy E.; Corry, David B.

    2009-01-01

    Flow cytometry provides accurate relative cellular quantitation (percent abundance) of cells from diverse samples, but technical limitations of most flow cytometers preclude accurate absolute quantitation. Several quantitation standards are now commercially available which, when added to samples, permit absolute quantitation of CD4+ T cells. However, these reagents are limited by their cost, technical complexity, requirement for additional software and/or limited applicability. Moreover, few studies have validated the use of such reagents in complex biological samples, especially for quantitation of non-T cells. Here we show that addition to samples of known quantities of polystyrene fluorescence standardization beads permits accurate quantitation of CD4+ T cells from complex cell samples. This procedure, here termed single bead-enhanced cytofluorimetry (SBEC), was equally capable of enumerating eosinophils as well as subcellular fragments of apoptotic cells, moieties with very different optical and fluorescent characteristics. Relative to other proprietary products, SBEC is simple, inexpensive and requires no special software, suggesting that the method is suitable for the routine quantitation of most cells and other particles by flow cytometry. PMID:17067632

  20. Tracing molecular dephasing in biological tissue

    NASA Astrophysics Data System (ADS)

    Mokim, M.; Carruba, C.; Ganikhanov, F.

    2017-10-01

    We demonstrate the quantitative spectroscopic characterization and imaging of biological tissue using coherent time-domain microscopy with a femtosecond resolution. We identify tissue constituents and perform dephasing time (T2) measurements of characteristic Raman active vibrations. This was shown in subcutaneous mouse fat embedded within collagen rich areas of the dermis and the muscle connective tissue. The demonstrated equivalent spectral resolution (<0.3 cm-1) is an order of magnitude better compared to commonly used frequency-domain methods for characterization of biological media. This provides with the important dimensions and parameters in biological media characterization and can become an effective tool in detecting minute changes in the bio-molecular composition and environment that is critical for molecular level diagnosis.

  1. Quantitation of aortic and mitral regurgitation in the pediatric population: evaluation by radionuclide angiocardiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurwitz, R.A.; Treves, S.; Freed, M.

    The ability to quantitate aortic (AR) or mitral regurgitation (MR), or both, by radionuclide angiocardiography was evaluated in children and young adults at rest and during isometric exercise. Regurgitation was estimated by determining the ratio of left ventricular stroke volume to right ventricular stroke volume obtained during equilibrium ventriculography. The radionuclide measurement was compared with results of cineangiography, with good correlation between both studies in 47 of 48 patients. Radionuclide stroke volume ratio was used to classify severity: the group with equivocal regurgitation differed from the group with mild regurgitation (p less than 0.02); patients with mild regurgitation differed frommore » those with moderate regurgitation (p less than 0.001); and those with moderate regurgitation differed from those with severe regurgitation (p less than 0.01). The stroke volume ratio was responsive to isometric exercise, remaining constant or increasing in 16 of 18 patients. After surgery to correct regurgitation, the stroke volume ratio significantly decreased from preoperative measurements in all 7 patients evaluated. Results from the present study demonstrate that a stroke volume ratio greater than 2.0 is compatible with moderately severe regurgitation and that a ratio greater than 3.0 suggests the presence of severe regurgitation. Thus, radionuclide angiocardiography should be useful for noninvasive quantitation of AR or MR, or both, helping define the course of young patients with left-side valvular regurgitation.« less

  2. Prognostic Value of the Amount of Bleeding After Aneurysmal Subarachnoid Hemorrhage: A Quantitative Volumetric Study.

    PubMed

    Lagares, Alfonso; Jiménez-Roldán, Luis; Gomez, Pedro A; Munarriz, Pablo M; Castaño-León, Ana M; Cepeda, Santiago; Alén, José F

    2015-12-01

    Quantitative estimation of the hemorrhage volume associated with aneurysm rupture is a new tool of assessing prognosis. To determine the prognostic value of the quantitative estimation of the amount of bleeding after aneurysmal subarachnoid hemorrhage, as well the relative importance of this factor related to other prognostic indicators, and to establish a possible cut-off value of volume of bleeding related to poor outcome. A prospective cohort of 206 patients consecutively admitted with the diagnosis of aneurysmal subarachnoid hemorrhage to Hospital 12 de Octubre were included in the study. Subarachnoid, intraventricular, intracerebral, and total bleeding volumes were calculated using analytic software. For assessing factors related to prognosis, univariate and multivariate analysis (logistic regression) were performed. The relative importance of factors in determining prognosis was established by calculating their proportion of explained variation. Maximum Youden index was calculated to determine the optimal cut point for subarachnoid and total bleeding volume. Variables independently related to prognosis were clinical grade at admission, age, and the different bleeding volumes. The proportion of variance explained is higher for subarachnoid bleeding. The optimal cut point related to poor prognosis is a volume of 20 mL both for subarachnoid and total bleeding. Volumetric measurement of subarachnoid or total bleeding volume are both independent prognostic factors in patients with aneurysmal subarachnoid hemorrhage. A volume of more than 20 mL of blood in the initial noncontrast computed tomography is related to a clear increase in poor outcome risk. : aSAH, aneurysmal subarachnoid hemorrhage.

  3. Stable isotope dimethyl labelling for quantitative proteomics and beyond

    PubMed Central

    Hsu, Jue-Liang; Chen, Shu-Hui

    2016-01-01

    Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644970

  4. EM Algorithm for Mapping Quantitative Trait Loci in Multivalent Tetraploids

    USDA-ARS?s Scientific Manuscript database

    Multivalent tetraploids that include many plant species, such as potato, sugarcane and rose, are of paramount importance to agricultural production and biological research. Quantitative trait locus (QTL) mapping in multivalent tetraploids is challenged by their unique cytogenetic properties, such ...

  5. Epicardial Fat Volume and Aortic Stiffness in Healthy Individuals: A Quantitative Cardiac Magnetic Resonance Study.

    PubMed

    Homsi, R; Thomas, D; Gieseke, J; Meier-Schroers, M; Dabir, D; Kuetting, D; Luetkens, J A; Marx, C; Schild, H H; Sprinkart, A

    2016-09-01

    cardiovascular risk. • EFV and PWV can be assessed in a single CMR exam.• EFV and aortic stiffness are both associated with cardiovascular risk.• EFV correlates with aortic stiffness, possibly due to similar pro-inflammatory mechanisms. Citation Format: • Homsi R, Thomas D, Gieseke J et al. Epicardial Fat Volume and Aortic Stiffness in Healthy Individuals: A Quantitative Cardiac Magnetic Resonance Study. Fortschr Röntgenstr 2016; 188: 853 - 858. © Georg Thieme Verlag KG Stuttgart · New York.

  6. An engineering design approach to systems biology.

    PubMed

    Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A

    2017-07-17

    Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.

  7. Global, quantitative and dynamic mapping of protein subcellular localization

    PubMed Central

    Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg HH

    2016-01-01

    Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology. DOI: http://dx.doi.org/10.7554/eLife.16950.001 PMID:27278775

  8. Science Library of Test Items. Volume Twenty-Three. Geology (Part One). Free Response Testing Program.

    ERIC Educational Resources Information Center

    Hopley, Ken; And Others

    The first of several planned volumes of Free Response Test Items contains geology questions developed by the Assessment and Evaluation Unit of the New South Wales Department of Education. Two additional geology volumes and biology and chemistry volumes are in preparation. The questions in this volume were written and reviewed by practicing…

  9. Quantitative high dynamic range beam profiling for fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly withinmore » the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.« less

  10. Quantitative imaging of aggregated emulsions.

    PubMed

    Penfold, Robert; Watson, Andrew D; Mackie, Alan R; Hibberd, David J

    2006-02-28

    Noise reduction, restoration, and segmentation methods are developed for the quantitative structural analysis in three dimensions of aggregated oil-in-water emulsion systems imaged by fluorescence confocal laser scanning microscopy. Mindful of typical industrial formulations, the methods are demonstrated for concentrated (30% volume fraction) and polydisperse emulsions. Following a regularized deconvolution step using an analytic optical transfer function and appropriate binary thresholding, novel application of the Euclidean distance map provides effective discrimination of closely clustered emulsion droplets with size variation over at least 1 order of magnitude. The a priori assumption of spherical nonintersecting objects provides crucial information to combat the ill-posed inverse problem presented by locating individual particles. Position coordinates and size estimates are recovered with sufficient precision to permit quantitative study of static geometrical features. In particular, aggregate morphology is characterized by a novel void distribution measure based on the generalized Apollonius problem. This is also compared with conventional Voronoi/Delauney analysis.

  11. Statistical design of quantitative mass spectrometry-based proteomic experiments.

    PubMed

    Oberg, Ann L; Vitek, Olga

    2009-05-01

    We review the fundamental principles of statistical experimental design, and their application to quantitative mass spectrometry-based proteomics. We focus on class comparison using Analysis of Variance (ANOVA), and discuss how randomization, replication and blocking help avoid systematic biases due to the experimental procedure, and help optimize our ability to detect true quantitative changes between groups. We also discuss the issues of pooling multiple biological specimens for a single mass analysis, and calculation of the number of replicates in a future study. When applicable, we emphasize the parallels between designing quantitative proteomic experiments and experiments with gene expression microarrays, and give examples from that area of research. We illustrate the discussion using theoretical considerations, and using real-data examples of profiling of disease.

  12. Introduction to Northeast Pacific Shark Biology, Research, and Conservation, Part B.

    PubMed

    Larson, Shawn E; Lowry, Dayv

    Sharks are iconic, sometimes apex, predators found in every ocean. Because of their ecological role as predators and concern over the stability of their populations, there has been an increasing amount of work focused on shark conservation around the world in recent decades. The populations of sharks that reside in the Northeast Pacific (NEP) Ocean bordering the west coast of the United States reside in one of the most economically and ecologically important oceanic regions in the world. Volume 78 of Advances in Marine Biology (AMB) is a companion to Volume 77, which focused primarily on NEP shark biodiversity, organismal biology, and ecology. Volume 78 highlights fisheries and the conservation implications of fisheries management; shark population modelling and the conservation impacts of these models given that many life history metrics of NEP sharks necessary to accurately run these models are still unknown; the value of captive sharks to the biology, outreach, and conservation of NEP sharks; and the conservation value of citizen science and shark ecotourism. Together these volumes encapsulate the current state of the knowledge for sharks in the NEP and lay the foundation for protecting, managing, and learning from these species in the face evolving natural conditions and societal opinions. © 2017 Elsevier Ltd All rights reserved.

  13. Quantitative Analysis of Cell Nucleus Organisation

    PubMed Central

    Shiels, Carol; Adams, Niall M; Islam, Suhail A; Stephens, David A; Freemont, Paul S

    2007-01-01

    There are almost 1,300 entries for higher eukaryotes in the Nuclear Protein Database. The proteins' subcellular distribution patterns within interphase nuclei can be complex, ranging from diffuse to punctate or microspeckled, yet they all work together in a coordinated and controlled manner within the three-dimensional confines of the nuclear volume. In this review we describe recent advances in the use of quantitative methods to understand nuclear spatial organisation and discuss some of the practical applications resulting from this work. PMID:17676980

  14. Reflecting on Graphs: Attributes of Graph Choice and Construction Practices in Biology

    ERIC Educational Resources Information Center

    Angra, Aakanksha; Gardner, Stephanie M.

    2017-01-01

    Undergraduate biology education reform aims to engage students in scientific practices such as experimental design, experimentation, and data analysis and communication. Graphs are ubiquitous in the biological sciences, and creating effective graphical representations involves quantitative and disciplinary concepts and skills. Past studies…

  15. Dynamics of biological systems: role of systems biology in medical research.

    PubMed

    Assmus, Heike E; Herwig, Ralf; Cho, Kwang-Hyun; Wolkenhauer, Olaf

    2006-11-01

    Cellular systems are networks of interacting components that change with time in response to external and internal events. Studying the dynamic behavior of these networks is the basis for an understanding of cellular functions and disease mechanisms. Quantitative time-series data leading to meaningful models can improve our knowledge of human physiology in health and disease, and aid the search for earlier diagnoses, better therapies and a healthier life. The advent of systems biology is about to take the leap into clinical research and medical applications. This review emphasizes the importance of a dynamic view and understanding of cell function. We discuss the potential for computer-aided mathematical modeling of biological systems in medical research with examples from some of the major therapeutic areas: cancer, cardiovascular, diabetic and neurodegenerative medicine.

  16. Relationship between Plaque Echo, Thickness and Neovascularization Assessed by Quantitative and Semi-quantitative Contrast-Enhanced Ultrasonography in Different Stenosis Groups.

    PubMed

    Song, Yan; Feng, Jun; Dang, Ying; Zhao, Chao; Zheng, Jie; Ruan, Litao

    2017-12-01

    The aim of this study was to determine the relationship between plaque echo, thickness and neovascularization in different stenosis groups using quantitative and semi-quantitative contrast-enhanced ultrasound (CEUS) in patients with carotid atherosclerosis plaque. A total of 224 plaques were divided into mild stenosis (<50%; 135 plaques, 60.27%), moderate stenosis (50%-69%; 39 plaques, 17.41%) and severe stenosis (70%-99%; 50 plaques, 22.32%) groups. Quantitative and semi-quantitative methods were used to assess plaque neovascularization and determine the relationship between plaque echo, thickness and neovascularization. Correlation analysis revealed no relationship of neovascularization with plaque echo in the groups using either quantitative or semi-quantitative methods. Furthermore, there was no correlation of neovascularization with plaque thickness using the semi-quantitative method. The ratio of areas under the curve (RAUC) was negatively correlated with plaque thickness (r = -0.317, p = 0.001) in the mild stenosis group. With the quartile method, plaque thickness of the mild stenosis group was divided into four groups, with significant differences between the 1.5-2.2 mm and ≥3.5 mm groups (p = 0.002), 2.3-2.8 mm and ≥3.5 mm groups (p <0.001) and 2.9-3.4 mm and ≥3.5 mm groups (p <0.001). Both semi-quantitative and quantitative CEUS methods characterizing neovascularization of plaque are equivalent with respect to assessing relationships between neovascularization, echogenicity and thickness. However, the quantitative method could fail for plaque <3.5 mm because of motion artifacts. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  17. Developing High-Frequency Quantitative Ultrasound Techniques to Characterize Three-Dimensional Engineered Tissues

    NASA Astrophysics Data System (ADS)

    Mercado, Karla Patricia E.

    Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.

  18. High-throughput quantitation of amino acids in rat and mouse biological matrices using stable isotope labeling and UPLC-MS/MS analysis.

    PubMed

    Takach, Edward; O'Shea, Thomas; Liu, Hanlan

    2014-08-01

    Quantifying amino acids in biological matrices is typically performed using liquid chromatography (LC) coupled with fluorescent detection (FLD), requiring both derivatization and complete baseline separation of all amino acids. Due to its high specificity and sensitivity, the use of UPLC-MS/MS eliminates the derivatization step and allows for overlapping amino acid retention times thereby shortening the analysis time. Furthermore, combining UPLC-MS/MS with stable isotope labeling (e.g., isobaric tag for relative and absolute quantitation, i.e., iTRAQ) of amino acids enables quantitation while maintaining sensitivity, selectivity and speed of analysis. In this study, we report combining UPLC-MS/MS analysis with iTRAQ labeling of amino acids resulting in the elution and quantitation of 44 amino acids within 5 min demonstrating the speed and convenience of this assay over established approaches. This chromatographic analysis time represented a 5-fold improvement over the conventional HPLC-MS/MS method developed in our laboratory. In addition, the UPLC-MS/MS method demonstrated improvements in both specificity and sensitivity without loss of precision. In comparing UPLC-MS/MS and HPLC-MS/MS results of 32 detected amino acids, only 2 amino acids exhibited imprecision (RSD) >15% using UPLC-MS/MS, while 9 amino acids exhibited RSD >15% using HPLC-MS/MS. Evaluating intra- and inter-assay precision over 3 days, the quantitation range for 32 detected amino acids in rat plasma was 0.90-497 μM, with overall mean intra-day precision of less than 15% and mean inter-day precision of 12%. This UPLC-MS/MS assay was successfully implemented for the quantitative analysis of amino acids in rat and mouse plasma, along with mouse urine and tissue samples, resulting in the following concentration ranges: 0.98-431 μM in mouse plasma for 32 detected amino acids; 0.62-443 μM in rat plasma for 32 detected amino acids; 0.44-8590μM in mouse liver for 33 detected amino acids; 0.61-1241

  19. Partial volume correction of PET-imaged tumor heterogeneity using expectation maximization with a spatially varying point spread function

    PubMed Central

    Barbee, David L; Flynn, Ryan T; Holden, James E; Nickles, Robert J; Jeraj, Robert

    2010-01-01

    Tumor heterogeneities observed in positron emission tomography (PET) imaging are frequently compromised of partial volume effects which may affect treatment prognosis, assessment, or future implementations such as biologically optimized treatment planning (dose painting). This paper presents a method for partial volume correction of PET-imaged heterogeneous tumors. A point source was scanned on a GE Discover LS at positions of increasing radii from the scanner’s center to obtain the spatially varying point spread function (PSF). PSF images were fit in three dimensions to Gaussian distributions using least squares optimization. Continuous expressions were devised for each Gaussian width as a function of radial distance, allowing for generation of the system PSF at any position in space. A spatially varying partial volume correction (SV-PVC) technique was developed using expectation maximization (EM) and a stopping criterion based on the method’s correction matrix generated for each iteration. The SV-PVC was validated using a standard tumor phantom and a tumor heterogeneity phantom, and was applied to a heterogeneous patient tumor. SV-PVC results were compared to results obtained from spatially invariant partial volume correction (SINV-PVC), which used directionally uniform three dimensional kernels. SV-PVC of the standard tumor phantom increased the maximum observed sphere activity by 55 and 40% for 10 and 13 mm diameter spheres, respectively. Tumor heterogeneity phantom results demonstrated that as net changes in the EM correction matrix decreased below 35%, further iterations improved overall quantitative accuracy by less than 1%. SV-PVC of clinically observed tumors frequently exhibited changes of ±30% in regions of heterogeneity. The SV-PVC method implemented spatially varying kernel widths and automatically determined the number of iterations for optimal restoration, parameters which are arbitrarily chosen in SINV-PVC. Comparing SV-PVC to SINV

  20. Quantitative interpretation of Great Lakes remote sensing data

    NASA Technical Reports Server (NTRS)

    Shook, D. F.; Salzman, J.; Svehla, R. A.; Gedney, R. T.

    1980-01-01

    The paper discusses the quantitative interpretation of Great Lakes remote sensing water quality data. Remote sensing using color information must take into account (1) the existence of many different organic and inorganic species throughout the Great Lakes, (2) the occurrence of a mixture of species in most locations, and (3) spatial variations in types and concentration of species. The radiative transfer model provides a potential method for an orderly analysis of remote sensing data and a physical basis for developing quantitative algorithms. Predictions and field measurements of volume reflectances are presented which show the advantage of using a radiative transfer model. Spectral absorptance and backscattering coefficients for two inorganic sediments are reported.

  1. Ordinary differential equations with applications in molecular biology.

    PubMed

    Ilea, M; Turnea, M; Rotariu, M

    2012-01-01

    Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances

  2. Status and trends of the nation's biological resources

    USGS Publications Warehouse

    Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    This report is a comprehensive summary of the status and trends of our nation’s biological resources. The report describes the major processes and factors affecting biological resources, and it treats regional status and trends. Authors of the chapters and boxes in this two-volume report were drawn from federal and state agencies, universities, and private organizations, reflecting the U.S. Geological Survey’s national partnership approach to providing comprehensive, reliable information about our biological resources. Following scientific tradition, each chapter and box was peer-reviewed by anonymous scientific reviewers.

  3. [Measurement of intracranial hematoma volume by personal computer].

    PubMed

    DU, Wanping; Tan, Lihua; Zhai, Ning; Zhou, Shunke; Wang, Rui; Xue, Gongshi; Xiao, An

    2011-01-01

    To explore the method for intracranial hematoma volume measurement by the personal computer. Forty cases of various intracranial hematomas were measured by the computer tomography with quantitative software and personal computer with Photoshop CS3 software, respectively. the data from the 2 methods were analyzed and compared. There was no difference between the data from the computer tomography and the personal computer (P>0.05). The personal computer with Photoshop CS3 software can measure the volume of various intracranial hematomas precisely, rapidly and simply. It should be recommended in the clinical medicolegal identification.

  4. Intracellular subsurface imaging using a hybrid shear-force feedback/scanning quantitative phase microscopy technique

    NASA Astrophysics Data System (ADS)

    Edward, Kert

    Quantitative phase microscopy (QPM) allows for the imaging of translucent or transparent biological specimens without the need for exogenous contrast agents. This technique is usually applied towards the investigation of simple cells such as red blood cells which are typically enucleated and can be considered to be homogenous. However, most biological cells are nucleated and contain other interesting intracellular organelles. It has been established that the physical characteristics of certain subsurface structures such as the shape and roughness of the nucleus is well correlated with onset and progress of pathological conditions such as cancer. Although the acquired quantitative phase information of biological cells contains surface information as well as coupled subsurface information, the latter has been ignored up until now. A novel scanning quantitative phase imaging system unencumbered by 2pi ambiguities is hereby presented. This system is incorporated into a shear-force feedback scheme which allows for simultaneous phase and topography determination. It will be shown how subsequent image processing of these two data sets allows for the extraction of the subsurface component in the phase data and in vivo cell refractometry studies. Both fabricated samples and biological cells ranging from rat fibroblast cells to malaria infected human erythrocytes were investigated as part of this research. The results correlate quite well with that obtained via other microscopy techniques.

  5. Second-harmonic diffraction from holographic volume grating.

    PubMed

    Nee, Tsu-Wei

    2006-10-01

    The full polarization property of holographic volume-grating enhanced second-harmonic diffraction (SHD) is investigated theoretically. The nonlinear coefficient is derived from a simple atomic model of the material. By using a simple volume-grating model, the SHD fields and Mueller matrices are first derived. The SHD phase-mismatching effect for a thick sample is analytically investigated. This theory is justified by fitting with published experimental SHD data of thin-film samples. The SHD of an existing polymethyl methacrylate (PMMA) holographic 2-mm-thick volume-grating sample is investigated. This sample has two strong coupling linear diffraction peaks and five SHD peaks. The splitting of SHD peaks is due to the phase-mismatching effect. The detector sensitivity and laser power needed to measure these peak signals are quantitatively estimated.

  6. Biological Effects of Electromagnetic Radiation. Volume II, Number 4.

    DTIC Science & Technology

    1975-12-01

    Physics Group and professor of electrical engineering, is investigating the limiting of such lines or im— began the two year study after serving on an...Agric. For., Tokyo, Japan), and disturbances in erection , ejaculation , and/or T. Kobaymshi , 0. Mamiya, H. Tamiya , K. Sasaki , and orgasm ...life and physical sciences. The Current state of ORAL VARIATION OF EXTREMELY LOW FREQUENCY 11 -~ ~~ H Biological Ef f e c ts Electromagnet ic

  7. Systems biology and mechanics of growth.

    PubMed

    Eskandari, Mona; Kuhl, Ellen

    2015-01-01

    In contrast to inert systems, living biological systems have the advantage to adapt to their environment through growth and evolution. This transfiguration is evident during embryonic development, when the predisposed need to grow allows form to follow function. Alterations in the equilibrium state of biological systems breed disease and mutation in response to environmental triggers. The need to characterize the growth of biological systems to better understand these phenomena has motivated the continuum theory of growth and stimulated the development of computational tools in systems biology. Biological growth in development and disease is increasingly studied using the framework of morphoelasticity. Here, we demonstrate the potential for morphoelastic simulations through examples of volume, area, and length growth, inspired by tumor expansion, chronic bronchitis, brain development, intestine formation, plant shape, and myopia. We review the systems biology of living systems in light of biochemical and optical stimuli and classify different types of growth to facilitate the design of growth models for various biological systems within this generic framework. Exploring the systems biology of growth introduces a new venue to control and manipulate embryonic development, disease progression, and clinical intervention. © 2015 Wiley Periodicals, Inc.

  8. Droplet microfluidics for synthetic biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gach, PC; Iwai, K; Kim, PW

    2017-01-01

    © 2017 The Royal Society of Chemistry. Synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselvesmore » expensive and thus inaccessible to most researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.« less

  9. Accurate high-speed liquid handling of very small biological samples.

    PubMed

    Schober, A; Günther, R; Schwienhorst, A; Döring, M; Lindemann, B F

    1993-08-01

    Molecular biology techniques require the accurate pipetting of buffers and solutions with volumes in the microliter range. Traditionally, hand-held pipetting devices are used to fulfill these requirements, but many laboratories have also introduced robotic workstations for the handling of liquids. Piston-operated pumps are commonly used in manually as well as automatically operated pipettors. These devices cannot meet the demands for extremely accurate pipetting of very small volumes at the high speed that would be necessary for certain applications (e.g., in sequencing projects with high throughput). In this paper we describe a technique for the accurate microdispensation of biochemically relevant solutions and suspensions with the aid of a piezoelectric transducer. It is suitable for liquids of a viscosity between 0.5 and 500 milliPascals. The obtainable drop sizes range from 5 picoliters to a few nanoliters with up to 10,000 drops per second. Liquids can be dispensed in single or accumulated drops to handle a wide volume range. The system proved to be excellently suitable for the handling of biological samples. It did not show any detectable negative impact on the biological function of dissolved or suspended molecules or particles.

  10. Image registration and analysis for quantitative myocardial perfusion: application to dynamic circular cardiac CT.

    PubMed

    Isola, A A; Schmitt, H; van Stevendaal, U; Begemann, P G; Coulon, P; Boussel, L; Grass, M

    2011-09-21

    Large area detector computed tomography systems with fast rotating gantries enable volumetric dynamic cardiac perfusion studies. Prospectively, ECG-triggered acquisitions limit the data acquisition to a predefined cardiac phase and thereby reduce x-ray dose and limit motion artefacts. Even in the case of highly accurate prospective triggering and stable heart rate, spatial misalignment of the cardiac volumes acquired and reconstructed per cardiac cycle may occur due to small motion pattern variations from cycle to cycle. These misalignments reduce the accuracy of the quantitative analysis of myocardial perfusion parameters on a per voxel basis. An image-based solution to this problem is elastic 3D image registration of dynamic volume sequences with variable contrast, as it is introduced in this contribution. After circular cone-beam CT reconstruction of cardiac volumes covering large areas of the myocardial tissue, the complete series is aligned with respect to a chosen reference volume. The results of the registration process and the perfusion analysis with and without registration are evaluated quantitatively in this paper. The spatial alignment leads to improved quantification of myocardial perfusion for three different pig data sets.

  11. Biological Remediation of Petroleum Contaminants

    NASA Astrophysics Data System (ADS)

    Kuhad, Ramesh Chander; Gupta, Rishi

    Large volumes of hazardous wastes are generated in the form of oily sludges and contaminated soils during crude oil transportation and processing. Although many physical, chemical and biological treatment technologies are available for petroleum contaminants petroleum contaminants in soil, biological methods have been considered the most cost-effective. Practical biological remediation methods typically involve direct use of the microbes naturally occurring in the contaminated environment and/or cultured indigenous or modified microorganisms. Environmental and nutritional factors, including the properties of the soil, the chemical structure of the hydrocarbon(s), oxygen, water, nutrient availability, pH, temperature, and contaminant bioavailability, can significantly affect the rate and the extent of hydrocarbon biodegradation hydrocarbon biodegradation by microorganisms in contaminated soils. This chapter concisely discusses the major aspects of bioremediation of petroleum contaminants.

  12. Quantitative study of FORC diagrams in thermally corrected Stoner- Wohlfarth nanoparticles systems

    NASA Astrophysics Data System (ADS)

    De Biasi, E.; Curiale, J.; Zysler, R. D.

    2016-12-01

    The use of FORC diagrams is becoming increasingly popular among researchers devoted to magnetism and magnetic materials. However, a thorough interpretation of this kind of diagrams, in order to achieve quantitative information, requires an appropriate model of the studied system. For that reason most of the FORC studies are used for a qualitative analysis. In magnetic systems thermal fluctuations "blur" the signatures of the anisotropy, volume and particle interactions distributions, therefore thermal effects in nanoparticles systems conspire against a proper interpretation and analysis of these diagrams. Motivated by this fact, we have quantitatively studied the degree of accuracy of the information extracted from FORC diagrams for the special case of single-domain thermal corrected Stoner- Wohlfarth (easy axes along the external field orientation) nanoparticles systems. In this work, the starting point is an analytical model that describes the behavior of a magnetic nanoparticles system as a function of field, anisotropy, temperature and measurement time. In order to study the quantitative degree of accuracy of our model, we built FORC diagrams for different archetypical cases of magnetic nanoparticles. Our results show that from the quantitative information obtained from the diagrams, under the hypotheses of the proposed model, is possible to recover the features of the original system with accuracy above 95%. This accuracy is improved at low temperatures and also it is possible to access to the anisotropy distribution directly from the FORC coercive field profile. Indeed, our simulations predict that the volume distribution plays a secondary role being the mean value and its deviation the only important parameters. Therefore it is possible to obtain an accurate result for the inversion and interaction fields despite the features of the volume distribution.

  13. Identification of ginseng root using quantitative X-ray microtomography.

    PubMed

    Ye, Linlin; Xue, Yanling; Wang, Yudan; Qi, Juncheng; Xiao, Tiqiao

    2017-07-01

    The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ , and three-dimensional quantitative imaging properties. The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

  14. Two schemes for quantitative photoacoustic tomography based on Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yubin; Yuan, Zhen, E-mail: zhenyuan@umac.mo

    Purpose: The aim of this study was to develop novel methods for photoacoustically determining the optical absorption coefficient of biological tissues using Monte Carlo (MC) simulation. Methods: In this study, the authors propose two quantitative photoacoustic tomography (PAT) methods for mapping the optical absorption coefficient. The reconstruction methods combine conventional PAT with MC simulation in a novel way to determine the optical absorption coefficient of biological tissues or organs. Specifically, the authors’ two schemes were theoretically and experimentally examined using simulations, tissue-mimicking phantoms, ex vivo, and in vivo tests. In particular, the authors explored these methods using several objects withmore » different absorption contrasts embedded in turbid media and by using high-absorption media when the diffusion approximation was not effective at describing the photon transport. Results: The simulations and experimental tests showed that the reconstructions were quantitatively accurate in terms of the locations, sizes, and optical properties of the targets. The positions of the recovered targets were accessed by the property profiles, where the authors discovered that the off center error was less than 0.1 mm for the circular target. Meanwhile, the sizes and quantitative optical properties of the targets were quantified by estimating the full width half maximum of the optical absorption property. Interestingly, for the reconstructed sizes, the authors discovered that the errors ranged from 0 for relatively small-size targets to 26% for relatively large-size targets whereas for the recovered optical properties, the errors ranged from 0% to 12.5% for different cases. Conclusions: The authors found that their methods can quantitatively reconstruct absorbing objects of different sizes and optical contrasts even when the diffusion approximation is unable to accurately describe the photon propagation in biological tissues. In particular

  15. Radiation dose-volume effects in the esophagus.

    PubMed

    Werner-Wasik, Maria; Yorke, Ellen; Deasy, Joseph; Nam, Jiho; Marks, Lawrence B

    2010-03-01

    Publications relating esophageal radiation toxicity to clinical variables and to quantitative dose and dose-volume measures derived from three-dimensional conformal radiotherapy for non-small-cell lung cancer are reviewed. A variety of clinical and dosimetric parameters have been associated with acute and late toxicity. Suggestions for future studies are presented. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Quantitative detection of powdered activated carbon in wastewater treatment plant effluent by thermogravimetric analysis (TGA).

    PubMed

    Krahnstöver, Therese; Plattner, Julia; Wintgens, Thomas

    2016-09-15

    For the elimination of potentially harmful micropollutants, powdered activated carbon (PAC) adsorption is applied in many wastewater treatment plants (WWTP). This holds the risk of PAC leakage into the WWTP effluent and desorption of contaminants into natural water bodies. In order to assess a potential PAC leakage, PAC concentrations below several mg/L have to be detected in the WWTP effluent. None of the methods that are used for water analysis today are able to differentiate between activated carbon and solid background matrix. Thus, a selective, quantitative and easily applicable method is still needed for the detection of PAC residues in wastewater. In the present study, a method was developed to quantitatively measure the PAC content in wastewater by using filtration and thermogravimetric analysis (TGA), which is a well-established technique for the distinction between different solid materials. For the sample filtration, quartz filters with a temperature stability up to 950 °C were used. This allowed for sensitive and well reproducible measurements, as the TGA was not affected by the presence of the filter. The sample's mass fractions were calculated by integrating the mass decrease rate obtained by TGA in specific, clearly identifiable peak areas. A two-step TGA heating method consisting of N2 and O2 atmospheres led to a good differentiation between PAC and biological background matrix, thanks to the reduction of peak overlapping. A linear correlation was found between a sample's PAC content and the corresponding peak areas under N2 and O2, the sample volume and the solid mass separated by filtration. Based on these findings, various wastewater samples from different WWTPs were then analyzed by TGA with regard to their PAC content. It was found that, compared to alternative techniques such as measurement of turbidity or total suspended solids, the newly developed TGA method allows for a quantitative and selective detection of PAC concentrations down to 0

  17. Quantitative Proteomic Analysis of Replicative and Nonreplicative Forms Reveals Important Insights into Chromatin Biology of Trypanosoma cruzi.

    PubMed

    Leandro de Jesus, Teresa Cristina; Calderano, Simone Guedes; Vitorino, Francisca Nathalia de Luna; Llanos, Ricardo Pariona; Lopes, Mariana de Camargo; de Araújo, Christiane Bezerra; Thiemann, Otavio Henrique; Reis, Marcelo da Silva; Elias, Maria Carolina; Chagas da Cunha, Julia Pinheiro

    2017-01-01

    replicative state in trypanosomes involves an increase of chromatin associated proteins content. We discuss in details, the qualitative and quantitative implication of this chromatin set in trypanosome chromatin biology. Because trypanosomes are early-branching organisms, this data can boost our understanding of chromatin-associated processes in other cell types. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Quantitative Imaging in Cancer Clinical Trials

    PubMed Central

    Yankeelov, Thomas E.; Mankoff, David A.; Schwartz, Lawrence H.; Lieberman, Frank S.; Buatti, John M.; Mountz, James M.; Erickson, Bradley J.; Fennessy, Fiona M.M.; Huang, Wei; Kalpathy-Cramer, Jayashree; Wahl, Richard L.; Linden, Hannah M.; Kinahan, Paul; Zhao, Binsheng; Hylton, Nola M.; Gillies, Robert J.; Clarke, Laurence; Nordstrom, Robert; Rubin, Daniel L.

    2015-01-01

    As anti-cancer therapies designed to target specific molecular pathways have been developed, it has become critical to develop methods to assess the response induced by such agents. While traditional, anatomic CT and MRI exams are useful in many settings, there is increasing evidence that these methods cannot answer the fundamental biological and physiological questions essential for assessment and, eventually, prediction of treatment response in the clinical trial setting, especially in the critical period soon after treatment is initiated. To optimally apply advances in quantitative imaging methods to trials of targeted cancer therapy, new infrastructure improvements are needed that incorporate these emerging techniques into the settings where they are most likely to have impact. In this review, we first elucidate the needs for therapeutic response assessment in the era of molecularly targeted therapy and describe how quantitative imaging can most effectively provide scientifically and clinically relevant data. We then describe the tools and methods required to apply quantitative imaging and provide concrete examples of work making these advances practically available for routine application in clinical trials. We conclude by proposing strategies to surmount barriers to wider incorporation of these quantitative imaging methods into clinical trials and, eventually, clinical practice. Our goal is to encourage and guide the oncology community to deploy standardized quantitative imaging techniques in clinical trials to further personalize care for cancer patients, and to provide a more efficient path for the development of improved targeted therapies. PMID:26773162

  19. Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials

    PubMed Central

    Dalecki, Diane; Mercado, Karla P.; Hocking, Denise C.

    2015-01-01

    Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fabrication and post-implantation. Ultrasound techniques are rapid, non-invasive, non-destructive and can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, high-frequency quantitative ultrasound techniques can enable volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation. This review provides an overview of ultrasound imaging, quantitative ultrasound techniques, and elastography, with representative examples of applications of these ultrasound-based techniques to the field of tissue engineering. PMID:26581347

  20. MRI Volume Fusion Based on 3D Shearlet Decompositions.

    PubMed

    Duan, Chang; Wang, Shuai; Wang, Xue Gang; Huang, Qi Hong

    2014-01-01

    Nowadays many MRI scans can give 3D volume data with different contrasts, but the observers may want to view various contrasts in the same 3D volume. The conventional 2D medical fusion methods can only fuse the 3D volume data layer by layer, which may lead to the loss of interframe correlative information. In this paper, a novel 3D medical volume fusion method based on 3D band limited shearlet transform (3D BLST) is proposed. And this method is evaluated upon MRI T2* and quantitative susceptibility mapping data of 4 human brains. Both the perspective impression and the quality indices indicate that the proposed method has a better performance than conventional 2D wavelet, DT CWT, and 3D wavelet, DT CWT based fusion methods.

  1. Quantitation of permethylated N-glycans through multiple-reaction monitoring (MRM) LC-MS/MS.

    PubMed

    Zhou, Shiyue; Hu, Yunli; DeSantos-Garcia, Janie L; Mechref, Yehia

    2015-04-01

    The important biological roles of glycans and their implications in disease development and progression have created a demand for the development of sensitive quantitative glycomics methods. Quantitation of glycans existing at low abundance is still analytically challenging. In this study, an N-linked glycans quantitation method using multiple-reaction monitoring (MRM) on a triple quadrupole instrument was developed. Optimum normalized collision energy (CE) for both sialylated and fucosylated N-glycan was determined to be 30%, whereas it was found to be 35% for either fucosylated or sialylated N-glycans. The optimum CE for mannose and complex type N-glycan was determined to be 35%. Additionally, the use of three transitions was shown to facilitate reliable quantitation. A total of 88 N-glycan compositions in human blood serum were quantified using this MRM approach. Reliable detection and quantitation of these glycans was achieved when the equivalence of 0.005 μL of blood serum was analyzed. Accordingly, N-glycans down to the 100th of a μL level can be reliably quantified in pooled human blood serum, spanning a dynamic concentration range of three orders of magnitude. MRM was also effectively utilized to quantitatively compare the expression of N-glycans derived from brain-targeting breast carcinoma cells (MDA-MB-231BR) and metastatic breast cancer cells (MDA-MB-231). Thus, the described MRM method of permethylated N-glycan enables a rapid and reliable identification and quantitation of glycans derived from glycoproteins purified or present in complex biological samples.

  2. Quantitation of Permethylated N-Glycans through Multiple-Reaction Monitoring (MRM) LC-MS/MS

    PubMed Central

    Zhou, Shiyue; Hu, Yunli; DeSantos-Garcia, Janie L.; Mechref, Yehia

    2015-01-01

    The important biological roles of glycans and their implications in disease development and progression have created a demand for the development of sensitive quantitative glycomics methods. Quantitation of glycans existing at low abundance is still analytically challenging. In this study, an N-linked glycans quantitation method using multiple reaction monitoring (MRM) on a triple quadrupole instrument was developed. Optimum normalized collision energy (CE) for both sialylated and fucosylated N-glycan structures was determined to be 30% while it was found to be 35% for either fucosylated or sialylated structures The optimum CE for mannose and complex type N-glycan structures was determined to be 35%. Additionally, the use of three transitions was shown to facilitate reliable quantitation. A total of 88 N-glycan structures in human blood serum were quantified using this MRM approach. Reliable detection and quantitation of these structures was achieved when the equivalence of 0.005 μL of blood serum was analyzed. Accordingly, N-glycans down to the 100th of a μL level can be reliably quantified in pooled human blood serum, spanning a dynamic concentration range of three orders of magnitudes. MRM was also effectively utilized to quantitatively compare the expression of N-glycans derived from brain-targeting breast carcinoma cells (MDA-MB-231BR) and metastatic breast cancer cells (MDA-MB-231). Thus, the described MRM method of permethylated N-glycan structures enables a rapid and reliable identification and quantitation of glycans derived from glycoproteins purified or present in complex biological samples. PMID:25698222

  3. Quantitation of Permethylated N-Glycans through Multiple-Reaction Monitoring (MRM) LC-MS/MS

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyue; Hu, Yunli; DeSantos-Garcia, Janie L.; Mechref, Yehia

    2015-04-01

    The important biological roles of glycans and their implications in disease development and progression have created a demand for the development of sensitive quantitative glycomics methods. Quantitation of glycans existing at low abundance is still analytically challenging. In this study, an N-linked glycans quantitation method using multiple-reaction monitoring (MRM) on a triple quadrupole instrument was developed. Optimum normalized collision energy (CE) for both sialylated and fucosylated N-glycan was determined to be 30%, whereas it was found to be 35% for either fucosylated or sialylated N-glycans. The optimum CE for mannose and complex type N-glycan was determined to be 35%. Additionally, the use of three transitions was shown to facilitate reliable quantitation. A total of 88 N-glycan compositions in human blood serum were quantified using this MRM approach. Reliable detection and quantitation of these glycans was achieved when the equivalence of 0.005 μL of blood serum was analyzed. Accordingly, N-glycans down to the 100th of a μL level can be reliably quantified in pooled human blood serum, spanning a dynamic concentration range of three orders of magnitude. MRM was also effectively utilized to quantitatively compare the expression of N-glycans derived from brain-targeting breast carcinoma cells (MDA-MB-231BR) and metastatic breast cancer cells (MDA-MB-231). Thus, the described MRM method of permethylated N-glycan enables a rapid and reliable identification and quantitation of glycans derived from glycoproteins purified or present in complex biological samples.

  4. Teaching Statistics in Biology: Using Inquiry-based Learning to Strengthen Understanding of Statistical Analysis in Biology Laboratory Courses

    PubMed Central

    2008-01-01

    There is an increasing need for students in the biological sciences to build a strong foundation in quantitative approaches to data analyses. Although most science, engineering, and math field majors are required to take at least one statistics course, statistical analysis is poorly integrated into undergraduate biology course work, particularly at the lower-division level. Elements of statistics were incorporated into an introductory biology course, including a review of statistics concepts and opportunity for students to perform statistical analysis in a biological context. Learning gains were measured with an 11-item statistics learning survey instrument developed for the course. Students showed a statistically significant 25% (p < 0.005) increase in statistics knowledge after completing introductory biology. Students improved their scores on the survey after completing introductory biology, even if they had previously completed an introductory statistics course (9%, improvement p < 0.005). Students retested 1 yr after completing introductory biology showed no loss of their statistics knowledge as measured by this instrument, suggesting that the use of statistics in biology course work may aid long-term retention of statistics knowledge. No statistically significant differences in learning were detected between male and female students in the study. PMID:18765754

  5. Teaching statistics in biology: using inquiry-based learning to strengthen understanding of statistical analysis in biology laboratory courses.

    PubMed

    Metz, Anneke M

    2008-01-01

    There is an increasing need for students in the biological sciences to build a strong foundation in quantitative approaches to data analyses. Although most science, engineering, and math field majors are required to take at least one statistics course, statistical analysis is poorly integrated into undergraduate biology course work, particularly at the lower-division level. Elements of statistics were incorporated into an introductory biology course, including a review of statistics concepts and opportunity for students to perform statistical analysis in a biological context. Learning gains were measured with an 11-item statistics learning survey instrument developed for the course. Students showed a statistically significant 25% (p < 0.005) increase in statistics knowledge after completing introductory biology. Students improved their scores on the survey after completing introductory biology, even if they had previously completed an introductory statistics course (9%, improvement p < 0.005). Students retested 1 yr after completing introductory biology showed no loss of their statistics knowledge as measured by this instrument, suggesting that the use of statistics in biology course work may aid long-term retention of statistics knowledge. No statistically significant differences in learning were detected between male and female students in the study.

  6. Mammalian synthetic biology for studying the cell

    PubMed Central

    Mathur, Melina; Xiang, Joy S.

    2017-01-01

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. PMID:27932576

  7. Mammalian synthetic biology for studying the cell.

    PubMed

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  8. Gender, Math Confidence, and Grit: Relationships with Quantitative Skills and Performance in an Undergraduate Biology Course

    ERIC Educational Resources Information Center

    Flanagan, K. M.; Einarson, J.

    2017-01-01

    In a world filled with big data, mathematical models, and statistics, the development of strong quantitative skills is becoming increasingly critical for modern biologists. Teachers in this field must understand how students acquire quantitative skills and explore barriers experienced by students when developing these skills. In this study, we…

  9. Reconciling transport models across scales: The role of volume exclusion

    NASA Astrophysics Data System (ADS)

    Taylor, P. R.; Yates, C. A.; Simpson, M. J.; Baker, R. E.

    2015-10-01

    Diffusive transport is a universal phenomenon, throughout both biological and physical sciences, and models of diffusion are routinely used to interrogate diffusion-driven processes. However, most models neglect to take into account the role of volume exclusion, which can significantly alter diffusive transport, particularly within biological systems where the diffusing particles might occupy a significant fraction of the available space. In this work we use a random walk approach to provide a means to reconcile models that incorporate crowding effects on different spatial scales. Our work demonstrates that coarse-grained models incorporating simplified descriptions of excluded volume can be used in many circumstances, but that care must be taken in pushing the coarse-graining process too far.

  10. “It’s my blood”: ethical complexities in the use, storage and export of biological samples: perspectives from South African research participants

    PubMed Central

    2014-01-01

    Background The use of biological samples in research raises a number of ethical issues in relation to consent, storage, export, benefit sharing and re-use of samples. Participant perspectives have been explored in North America and Europe, with only a few studies reported in Africa. The amount of research being conducted in Africa is growing exponentially with volumes of biological samples being exported from the African continent. In order to investigate the perspectives of African research participants, we conducted a study at research sites in the Western Cape and Gauteng, South Africa. Methods Data were collected using a semi-structured questionnaire that captured both quantitative and qualitative information at 6 research sites in South Africa. Interviews were conducted in English and Afrikaans. Data were analysed both quantitatively and qualitatively. Results Our study indicates that while the majority of participants were supportive of providing samples for research, serious concerns were voiced about future use, benefit sharing and export of samples. While researchers view the provision of biosamples as a donation, participants believe that they still have ownership rights and are therefore in favour of benefit sharing. Almost half of the participants expressed a desire to be re-contacted for consent for future use of their samples. Interesting opinions were expressed with respect to export of samples. Conclusions Eliciting participant perspectives is an important part of community engagement in research involving biological sample collection, export, storage and future use. A tiered consent process appears to be more acceptable to participants in this study. Eliciting opinions of researchers and research ethics committee (REC) members would contribute multiple perspectives. Further research is required to interrogate the concept of ownership and the consent process in research involving biological samples. PMID:24447822

  11. Optical Ptychographic Microscope for Quantitative Bio-Mechanical Imaging

    NASA Astrophysics Data System (ADS)

    Anthony, Nicholas; Cadenazzi, Guido; Nugent, Keith; Abbey, Brian

    The role that mechanical forces play in biological processes such as cell movement and death is becoming of significant interest to further develop our understanding of the inner workings of cells. The most common method used to obtain stress information is photoelasticity which maps a samples birefringence, or its direction dependent refractive indices, using polarized light. However this method only provides qualitative data and for stress information to be useful quantitative data is required. Ptychography is a method for quantitatively determining the phase of a samples complex transmission function. The technique relies upon the collection of multiple overlapping coherent diffraction patterns from laterally displaced points on the sample. The overlap of measurement points provides complementary information that significantly aids in the reconstruction of the complex wavefield exiting the sample and allows for quantitative imaging of weakly interacting specimens. Here we describe recent advances at La Trobe University Melbourne on achieving quantitative birefringence mapping using polarized light ptychography with applications in cell mechanics. Australian Synchrotron, ARC Centre of Excellence for Advanced Molecular Imaging.

  12. Biology of high single doses of IORT: RBE, 5 R's, and other biological aspects.

    PubMed

    Herskind, Carsten; Ma, Lin; Liu, Qi; Zhang, Bo; Schneider, Frank; Veldwijk, Marlon R; Wenz, Frederik

    2017-01-19

    Intraoperative radiotherapy differs from conventional, fractionated radiotherapy in several aspects that may influence its biological effect. The radiation quality influences the relative biologic effectiveness (RBE), and the role of the five R's of radiotherapy (reassortment, repair, reoxygenation, repopulation, radiosensitivity) is different. Furthermore, putative special biological effects and the small volume receiving a high single dose may be important. The present review focuses on RBE, repair, and repopulation, and gives an overview of the other factors that potentially contribute to the efficacy. The increased RBE should be taken into account for low-energy X-rays while evidence of RBE < 1 for high-energy electrons at higher doses is presented. Various evidence supports a hypothesis that saturation of the primary DNA double-strand break (DSB) repair mechanisms leads to increasing use of an error-prone backup repair system leading to genomic instability that may contribute to inactivate tumour cells at high single doses. Furthermore, the elimination of repopulation of residual tumour cells in the tumour bed implies that some patients are likely to have very few residual tumour cells which may be cured even by low doses to the tumour bed. The highly localised dose distribution of IORT has the potential to inactivate tumour cells while sparing normal tissue by minimising the volume exposed to high doses. Whether special effects of high single doses also contribute to the efficacy will require further experimental and clinical studies.

  13. The developmental genetics of biological robustness

    PubMed Central

    Mestek Boukhibar, Lamia; Barkoulas, Michalis

    2016-01-01

    Background Living organisms are continuously confronted with perturbations, such as environmental changes that include fluctuations in temperature and nutrient availability, or genetic changes such as mutations. While some developmental systems are affected by such challenges and display variation in phenotypic traits, others continue consistently to produce invariable phenotypes despite perturbation. This ability of a living system to maintain an invariable phenotype in the face of perturbations is termed developmental robustness. Biological robustness is a phenomenon observed across phyla, and studying its mechanisms is central to deciphering the genotype–phenotype relationship. Recent work in yeast, animals and plants has shown that robustness is genetically controlled and has started to reveal the underlying mechinisms behind it. Scope and Conclusions Studying biological robustness involves focusing on an important property of developmental traits, which is the phenotypic distribution within a population. This is often neglected because the vast majority of developmental biology studies instead focus on population aggregates, such as trait averages. By drawing on findings in animals and yeast, this Viewpoint considers how studies on plant developmental robustness may benefit from strict definitions of what is the developmental system of choice and what is the relevant perturbation, and also from clear distinctions between gene effects on the trait mean and the trait variance. Recent advances in quantitative developmental biology and high-throughput phenotyping now allow the design of targeted genetic screens to identify genes that amplify or restrict developmental trait variance and to study how variation propagates across different phenotypic levels in biological systems. The molecular characterization of more quantitative trait loci affecting trait variance will provide further insights into the evolution of genes modulating developmental robustness. The

  14. Australian Biology Test Item Bank, Years 11 and 12. Volume II: Year 12.

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Sewell, Jeffrey J., Ed.

    This document consists of test items which are applicable to biology courses throughout Australia (irrespective of course materials used); assess key concepts within course statement (for both core and optional studies); assess a wide range of cognitive processes; and are relevant to current biological concepts. These items are arranged under…

  15. Australian Biology Test Item Bank, Years 11 and 12. Volume I: Year 11.

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Sewell, Jeffrey J., Ed.

    This document consists of test items which are applicable to biology courses throughout Australia (irrespective of course materials used); assess key concepts within course statement (for both core and optional studies); assess a wide range of cognitive processes; and are relevant to current biological concepts. These items are arranged under…

  16. Commission on Undergraduate Education in the Biological Sciences Newsletter, Volume 7 Number 4.

    ERIC Educational Resources Information Center

    Commission on Undergraduate Education in the Biological Sciences, Washington, DC.

    Three articles in this newsletter describe investigative laboratory programs; two in marine or coastal biology (Hopkins Marine Station and the Bahamas field station of Earlham College), and the other a botany course at Colorado College. In all cases undergraduate students are expected to plan and conduct biological research, after being presented…

  17. A microfluidic platform for precision small-volume sample processing and its use to size separate biological particles with an acoustic microdevice [Precision size separation of biological particles in small-volume samples by an acoustic microfluidic system

    DOE PAGES

    Fong, Erika J.; Huang, Chao; Hamilton, Julie; ...

    2015-11-23

    Here, a major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15–1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection,more » system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing.« less

  18. Mammographic quantitative image analysis and biologic image composition for breast lesion characterization and classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drukker, Karen, E-mail: kdrukker@uchicago.edu; Giger, Maryellen L.; Li, Hui

    2014-03-15

    Purpose: To investigate whether biologic image composition of mammographic lesions can improve upon existing mammographic quantitative image analysis (QIA) in estimating the probability of malignancy. Methods: The study population consisted of 45 breast lesions imaged with dual-energy mammography prior to breast biopsy with final diagnosis resulting in 10 invasive ductal carcinomas, 5 ductal carcinomain situ, 11 fibroadenomas, and 19 other benign diagnoses. Analysis was threefold: (1) The raw low-energy mammographic images were analyzed with an established in-house QIA method, “QIA alone,” (2) the three-compartment breast (3CB) composition measure—derived from the dual-energy mammography—of water, lipid, and protein thickness were assessed, “3CBmore » alone”, and (3) information from QIA and 3CB was combined, “QIA + 3CB.” Analysis was initiated from radiologist-indicated lesion centers and was otherwise fully automated. Steps of the QIA and 3CB methods were lesion segmentation, characterization, and subsequent classification for malignancy in leave-one-case-out cross-validation. Performance assessment included box plots, Bland–Altman plots, and Receiver Operating Characteristic (ROC) analysis. Results: The area under the ROC curve (AUC) for distinguishing between benign and malignant lesions (invasive and DCIS) was 0.81 (standard error 0.07) for the “QIA alone” method, 0.72 (0.07) for “3CB alone” method, and 0.86 (0.04) for “QIA+3CB” combined. The difference in AUC was 0.043 between “QIA + 3CB” and “QIA alone” but failed to reach statistical significance (95% confidence interval [–0.17 to + 0.26]). Conclusions: In this pilot study analyzing the new 3CB imaging modality, knowledge of the composition of breast lesions and their periphery appeared additive in combination with existing mammographic QIA methods for the distinction between different benign and malignant lesion types.« less

  19. Monitoring of environmental UV radiation by biological dosimeters

    NASA Astrophysics Data System (ADS)

    Rontó, Gy.; Bérces, A.; Gróf, P.; Fekete, A.; Kerékgyártó, T.; Gáspár, S.; Stick, C.

    As a consequence of the stratospheric ozone layer depletion biological systems can be damaged due to increased UV-B radiation. The aim of biological dosimetry is to establish a quantitative basis for the risk assessment of the biosphere. DNA is the most important target molecule of biological systems having special sensitivity against short wavelength components of the environmental radiation. Biological dosimeters are usually simple organisms, or components of them, modeling the cellular DNA. Phage T7 and polycrystalline uracil biological dosimeters have been developed and used in our laboratory for monitoring the environmental radiation in different radiation conditions (from the polar to equatorial regions). Comparisons with Robertson-Berger (RB) meter data, as well as with model calculation data weighted by the corresponding spectral sensitivities of the dosimeters are presented. Suggestion is given how to determine the trend of the increase in the biological risk due to ozone depletion.

  20. Subcortical intelligence: caudate volume predicts IQ in healthy adults.

    PubMed

    Grazioplene, Rachael G; G Ryman, Sephira; Gray, Jeremy R; Rustichini, Aldo; Jung, Rex E; DeYoung, Colin G

    2015-04-01

    This study examined the association between size of the caudate nuclei and intelligence. Based on the central role of the caudate in learning, as well as neuroimaging studies linking greater caudate volume to better attentional function, verbal ability, and dopamine receptor availability, we hypothesized the existence of a positive association between intelligence and caudate volume in three large independent samples of healthy adults (total N = 517). Regression of IQ onto bilateral caudate volume controlling for age, sex, and total brain volume indicated a significant positive correlation between caudate volume and intelligence, with a comparable magnitude of effect across each of the three samples. No other subcortical structures were independently associated with IQ, suggesting a specific biological link between caudate morphology and intelligence. © 2014 Wiley Periodicals, Inc.

  1. Biology Labs That Work: The Best of How-To-Do-Its. Volume II.

    ERIC Educational Resources Information Center

    Black, Suzanne, Ed.; Moore, Randy, Ed.; Haugen, Heidi, Ed.

    This selected collection of How-To-Do-It articles published in the American Biology Teacher during the past six years presents experiments that can be conducted safely under properly trained and responsible teacher supervision. Contents include: (1) "General Biology and the Nature of Science"; (2) "Cells and Molecules"; (3) "Microbes and Fungi";…

  2. Quantitative Microplate-Based Respirometry with Correction for Oxygen Diffusion

    PubMed Central

    2009-01-01

    Respirometry using modified cell culture microplates offers an increase in throughput and a decrease in biological material required for each assay. Plate based respirometers are susceptible to a range of diffusion phenomena; as O2 is consumed by the specimen, atmospheric O2 leaks into the measurement volume. Oxygen also dissolves in and diffuses passively through the polystyrene commonly used as a microplate material. Consequently the walls of such respirometer chambers are not just permeable to O2 but also store substantial amounts of gas. O2 flux between the walls and the measurement volume biases the measured oxygen consumption rate depending on the actual [O2] gradient. We describe a compartment model-based correction algorithm to deconvolute the biological oxygen consumption rate from the measured [O2]. We optimize the algorithm to work with the Seahorse XF24 extracellular flux analyzer. The correction algorithm is biologically validated using mouse cortical synaptosomes and liver mitochondria attached to XF24 V7 cell culture microplates, and by comparison to classical Clark electrode oxygraph measurements. The algorithm increases the useful range of oxygen consumption rates, the temporal resolution, and durations of measurements. The algorithm is presented in a general format and is therefore applicable to other respirometer systems. PMID:19555051

  3. The quantitative and condition-dependent Escherichia coli proteome

    PubMed Central

    Schmidt, Alexander; Kochanowski, Karl; Vedelaar, Silke; Ahrné, Erik; Volkmer, Benjamin; Callipo, Luciano; Knoops, Kèvin; Bauer, Manuel; Aebersold, Ruedi; Heinemann, Matthias

    2016-01-01

    Measuring precise concentrations of proteins can provide insights into biological processes. Here, we use efficient protein extraction and sample fractionation and state-of-the-art quantitative mass spectrometry techniques to generate a comprehensive, condition-dependent protein abundance map of Escherichia coli. We measure cellular protein concentrations for 55% of predicted E. coli genes (>2300 proteins) under 22 different experimental conditions and identify methylation and N-terminal protein acetylations previously not known to be prevalent in bacteria. We uncover system-wide proteome allocation, expression regulation, and post-translational adaptations. These data provide a valuable resource for the systems biology and broader E. coli research communities. PMID:26641532

  4. Quantitative impact of pediatric sinus surgery on facial growth.

    PubMed

    Senior, B; Wirtschafter, A; Mai, C; Becker, C; Belenky, W

    2000-11-01

    To quantitatively evaluate the long-term impact of sinus surgery on paranasal sinus development in the pediatric patient. Longitudinal review of eight pediatric patients treated with unilateral sinus surgery for periorbital or orbital cellulitis with an average follow-up of 6.9 years. Control subjects consisted of two groups, 9 normal adult patients with no computed tomographic evidence of sinusitis and 10 adult patients with scans consistent with sinusitis and a history of sinus-related symptoms extending to childhood. Application of computed tomography (CT) volumetrics, a technique allowing for precise calculation of volumes using thinly cut CT images, to the study and control groups. Paired Student t test analyses of side-to-side volume comparisons in the normal patients, patients with sinusitis, and patients who had surgery revealed no statistically significant differences. Comparisons between the orbital volumes of patients who did and did not have surgery revealed a statistically significant increase in orbital volume in patients who had surgery. Only minimal changes in facial volume measurements have been found, confirming clinical impressions that sinus surgery in children is safe and without significant cosmetic sequelae.

  5. Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jinn-Liang, E-mail: jinnliu@mail.nhcue.edu.tw; Eisenberg, Bob, E-mail: beisenbe@rush.edu

    2014-12-14

    A Poisson-Nernst-Planck-Fermi (PNPF) theory is developed for studying ionic transport through biological ion channels. Our goal is to deal with the finite size of particle using a Fermi like distribution without calculating the forces between the particles, because they are both expensive and tricky to compute. We include the steric effect of ions and water molecules with nonuniform sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of water molecules in an inhomogeneous aqueous electrolyte. Including the finite volume of water and the voids between particles is an important new part ofmore » the theory presented here. Fermi like distributions of all particle species are derived from the volume exclusion of classical particles. Volume exclusion and the resulting saturation phenomena are especially important to describe the binding and permeation mechanisms of ions in a narrow channel pore. The Gibbs free energy of the Fermi distribution reduces to that of a Boltzmann distribution when these effects are not considered. The classical Gibbs entropy is extended to a new entropy form — called Gibbs-Fermi entropy — that describes mixing configurations of all finite size particles and voids in a thermodynamic system where microstates do not have equal probabilities. The PNPF model describes the dynamic flow of ions, water molecules, as well as voids with electric fields and protein charges. The model also provides a quantitative mean-field description of the charge/space competition mechanism of particles within the highly charged and crowded channel pore. The PNPF results are in good accord with experimental currents recorded in a 10{sup 8}-fold range of Ca{sup 2+} concentrations. The results illustrate the anomalous mole fraction effect, a signature of L-type calcium channels. Moreover, numerical results concerning water density, dielectric permittivity, void volume, and steric energy provide

  6. Severe impingement of lumbar disc replacements increases the functional biological activity of polyethylene wear debris.

    PubMed

    Baxter, Ryan M; Macdonald, Daniel W; Kurtz, Steven M; Steinbeck, Marla J

    2013-06-05

    Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume of particles in all

  7. Severe Impingement of Lumbar Disc Replacements Increases the Functional Biological Activity of Polyethylene Wear Debris

    PubMed Central

    Baxter, Ryan M.; MacDonald, Daniel W.; Kurtz, Steven M.; Steinbeck, Marla J.

    2013-01-01

    Background: Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. Methods: The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Results: Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume

  8. Quantitative genetics in natural populations: Means of monitoring natural biological processes

    Treesearch

    Brook G. Milligan

    2001-01-01

    One of the goals of conservation biology is to maintain the integrity of natural processes in populations of rare plants. In the short term one of the main concerns is often whether the mating system of rare plants is disrupted, for example, by fragmentation. In the long term one of the main concerns is often whether small isolated populations maintain enough genetic...

  9. A phantom for quantitation of partial volume effects in ECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullani, N.A.

    1989-02-01

    A special phantom has been designed, built and tested to measure the quantitative recovery of ECT data from the heart as a function of the size of the object and the angulation of a 1 cm thick simulated myocardium inclined with respect to the image plane. The phantom consists of five objects of 0.5, 1.0, 1.5. 2.0, and 3.0 cm width and six 1 cm thick strips inclined at 0, 30, 45, 60, 90, and -90 degrees with respect to the axial direction. Recovery coefficients for different object sizes and simulated 1 cm thick myocardium inclined at different angles canmore » be obtained from a single scan. Adequacy of axial sampling can be observed visually by creating the long axis view of the phantom.« less

  10. Systems Biology in Immunology – A Computational Modeling Perspective

    PubMed Central

    Germain, Ronald N.; Meier-Schellersheim, Martin; Nita-Lazar, Aleksandra; Fraser, Iain D. C.

    2011-01-01

    Systems biology is an emerging discipline that combines high-content, multiplexed measurements with informatic and computational modeling methods to better understand biological function at various scales. Here we present a detailed review of the methods used to create computational models and conduct simulations of immune function, We provide descriptions of the key data gathering techniques employed to generate the quantitative and qualitative data required for such modeling and simulation and summarize the progress to date in applying these tools and techniques to questions of immunological interest, including infectious disease. We include comments on what insights modeling can provide that complement information obtained from the more familiar experimental discovery methods used by most investigators and why quantitative methods are needed to eventually produce a better understanding of immune system operation in health and disease. PMID:21219182

  11. Quantitative multimodality imaging in cancer research and therapy.

    PubMed

    Yankeelov, Thomas E; Abramson, Richard G; Quarles, C Chad

    2014-11-01

    Advances in hardware and software have enabled the realization of clinically feasible, quantitative multimodality imaging of tissue pathophysiology. Earlier efforts relating to multimodality imaging of cancer have focused on the integration of anatomical and functional characteristics, such as PET-CT and single-photon emission CT (SPECT-CT), whereas more-recent advances and applications have involved the integration of multiple quantitative, functional measurements (for example, multiple PET tracers, varied MRI contrast mechanisms, and PET-MRI), thereby providing a more-comprehensive characterization of the tumour phenotype. The enormous amount of complementary quantitative data generated by such studies is beginning to offer unique insights into opportunities to optimize care for individual patients. Although important technical optimization and improved biological interpretation of multimodality imaging findings are needed, this approach can already be applied informatively in clinical trials of cancer therapeutics using existing tools. These concepts are discussed herein.

  12. Techniques for quantitative LC-MS/MS analysis of protein therapeutics: advances in enzyme digestion and immunocapture.

    PubMed

    Fung, Eliza N; Bryan, Peter; Kozhich, Alexander

    2016-04-01

    LC-MS/MS has been investigated to quantify protein therapeutics in biological matrices. The protein therapeutics is digested by an enzyme to generate surrogate peptide(s) before LC-MS/MS analysis. One challenge is isolating protein therapeutics in the presence of large number of endogenous proteins in biological matrices. Immunocapture, in which a capture agent is used to preferentially bind the protein therapeutics over other proteins, is gaining traction. The protein therapeutics is eluted for digestion and LC-MS/MS analysis. One area of tremendous potential for immunocapture-LC-MS/MS is to obtain quantitative data where ligand-binding assay alone is not sufficient, for example, quantitation of antidrug antibody complexes. Herein, we present an overview of recent advance in enzyme digestion and immunocapture applicable to protein quantitation.

  13. SU-E-J-242: Volume-Dependence of Quantitative Imaging Features From CT and CE-CT Images of NSCLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fave, X; Fried, D; UT Health Science Center Graduate School of Biomedical Sciences, Houston, TX

    Purpose: To determine whether tumor volume plays a significant role in the values obtained for texture features when they are extracted from computed tomography (CT) images of non-small cell lung cancer (NSCLC). We also sought to identify whether features can be reliably measured at all volumes or if a minimum volume threshold should be recommended. Methods: Eleven features were measured on 40 CT and 32 contrast-enhanced CT (CECT) patient images for this study. Features were selected for their prognostic/diagnostic value in previous publications. Direct correlations between these textures and volume were evaluated using the Spearman correlation coefficient. Any texture thatmore » the Wilcoxon rank-sum test was used to compare the variation above and below a volume cutoff. Four different volume thresholds (5, 10, 15, and 20 cm{sup 3}) were tested. Results: Four textures were found to be significantly correlated with volume in both the CT and CE-CT images. These were busyness, coarseness, gray-level nonuniformity, and run-length nonuniformity with correlation coefficients of 0.92, −0.96, 0.94, and 0.98 for the CT images and 0.95, −0.97, 0.98, and 0.98 for the CE-CT images. After volume normalization, the correlation coefficients decreased substantially. For the data obtained from the CT images, the results of the Wilcoxon rank-sum test were significant when volume thresholds of 5–15 cm3 were used. No volume threshold was shown to be significant for the CE-CT data. Conclusion: Equations for four features that have been used in several published studies were found to be volume-dependent. Future studies should consider implementing normalization factors or removing these features entirely to prevent this potential source of redundancy or bias. This work was supported in part by National Cancer Institute grant R03CA178495-01. Xenia Fave is a recipient of the American Association of Physicists in Medicine Graduate Fellowship.« less

  14. Quantitative estimation of a ratio of intracranial cerebrospinal fluid volume to brain volume based on segmentation of CT images in patients with extra-axial hematoma.

    PubMed

    Nguyen, Ha Son; Patel, Mohit; Li, Luyuan; Kurpad, Shekar; Mueller, Wade

    2017-02-01

    Background Diminishing volume of intracranial cerebrospinal fluid (CSF) in patients with space-occupying masses have been attributed to unfavorable outcome associated with reduction of cerebral perfusion pressure and subsequent brain ischemia. Objective The objective of this article is to employ a ratio of CSF volume to brain volume for longitudinal assessment of space-volume relationships in patients with extra-axial hematoma and to determine variability of the ratio among patients with different types and stages of hematoma. Patients and methods In our retrospective study, we reviewed 113 patients with surgical extra-axial hematomas. We included 28 patients (age 61.7 +/- 17.7 years; 19 males, nine females) with an acute epidural hematoma (EDH) ( n = 5) and subacute/chronic subdural hematoma (SDH) ( n = 23). We excluded 85 patients, in order, due to acute SDH ( n = 76), concurrent intraparenchymal pathology ( n = 6), and bilateral pathology ( n = 3). Noncontrast CT images of the head were obtained using a CT scanner (2004 GE LightSpeed VCT CT system, tube voltage 140 kVp, tube current 310 mA, 5 mm section thickness) preoperatively, postoperatively (3.8 ± 5.8 hours from surgery), and at follow-up clinic visit (48.2 ± 27.7 days after surgery). Each CT scan was loaded into an OsiriX (Pixmeo, Switzerland) workstation to segment pixels based on radiodensity properties measured in Hounsfield units (HU). Based on HU values from -30 to 100, brain, CSF spaces, vascular structures, hematoma, and/or postsurgical fluid were segregated from bony structures, and subsequently hematoma and/or postsurgical fluid were manually selected and removed from the images. The remaining images represented overall brain volume-containing only CSF spaces, vascular structures, and brain parenchyma. Thereafter, the ratio between the total number of voxels representing CSF volume (based on values between 0 and 15 HU) to the total number of voxels

  15. Brain volume reductions in adolescent heavy drinkers.

    PubMed

    Squeglia, Lindsay M; Rinker, Daniel A; Bartsch, Hauke; Castro, Norma; Chung, Yoonho; Dale, Anders M; Jernigan, Terry L; Tapert, Susan F

    2014-07-01

    Brain abnormalities in adolescent heavy drinkers may result from alcohol exposure, or stem from pre-existing neural features. This longitudinal morphometric study investigated 40 healthy adolescents, ages 12-17 at study entry, half of whom (n=20) initiated heavy drinking over the 3-year follow-up. Both assessments included high-resolution magnetic resonance imaging. FreeSurfer was used to segment brain volumes, which were measured longitudinally using the newly developed quantitative anatomic regional change analysis (QUARC) tool. At baseline, participants who later transitioned into heavy drinking showed smaller left cingulate, pars triangularis, and rostral anterior cingulate volume, and less right cerebellar white matter volumes (p<.05), compared to continuous non-using teens. Over time, participants who initiated heavy drinking showed significantly greater volume reduction in the left ventral diencephalon, left inferior and middle temporal gyrus, and left caudate and brain stem, compared to substance-naïve youth (p<.05). Findings suggest pre-existing volume differences in frontal brain regions in future drinkers and greater brain volume reduction in subcortical and temporal regions after alcohol use was initiated. This is consistent with literature showing pre-existing cognitive deficits on tasks recruited by frontal regions, as well as post-drinking consequences on brain regions involved in language and spatial tasks. Published by Elsevier Ltd.

  16. Analytical-Based Partial Volume Recovery in Mouse Heart Imaging

    NASA Astrophysics Data System (ADS)

    Dumouchel, Tyler; deKemp, Robert A.

    2011-02-01

    Positron emission tomography (PET) is a powerful imaging modality that has the ability to yield quantitative images of tracer activity. Physical phenomena such as photon scatter, photon attenuation, random coincidences and spatial resolution limit quantification potential and must be corrected to preserve the accuracy of reconstructed images. This study focuses on correcting the partial volume effects that arise in mouse heart imaging when resolution is insufficient to resolve the true tracer distribution in the myocardium. The correction algorithm is based on fitting 1D profiles through the myocardium in gated PET images to derive myocardial contours along with blood, background and myocardial activity. This information is interpolated onto a 2D grid and convolved with the tomograph's point spread function to derive regional recovery coefficients enabling partial volume correction. The point spread function was measured by placing a line source inside a small animal PET scanner. PET simulations were created based on noise properties measured from a reconstructed PET image and on the digital MOBY phantom. The algorithm can estimate the myocardial activity to within 5% of the truth when different wall thicknesses, backgrounds and noise properties are encountered that are typical of healthy FDG mouse scans. The method also significantly improves partial volume recovery in simulated infarcted tissue. The algorithm offers a practical solution to the partial volume problem without the need for co-registered anatomic images and offers a basis for improved quantitative 3D heart imaging.

  17. Reproducibility and quantitation of amplicon sequencing-based detection

    PubMed Central

    Zhou, Jizhong; Wu, Liyou; Deng, Ye; Zhi, Xiaoyang; Jiang, Yi-Huei; Tu, Qichao; Xie, Jianping; Van Nostrand, Joy D; He, Zhili; Yang, Yunfeng

    2011-01-01

    To determine the reproducibility and quantitation of the amplicon sequencing-based detection approach for analyzing microbial community structure, a total of 24 microbial communities from a long-term global change experimental site were examined. Genomic DNA obtained from each community was used to amplify 16S rRNA genes with two or three barcode tags as technical replicates in the presence of a small quantity (0.1% wt/wt) of genomic DNA from Shewanella oneidensis MR-1 as the control. The technical reproducibility of the amplicon sequencing-based detection approach is quite low, with an average operational taxonomic unit (OTU) overlap of 17.2%±2.3% between two technical replicates, and 8.2%±2.3% among three technical replicates, which is most likely due to problems associated with random sampling processes. Such variations in technical replicates could have substantial effects on estimating β-diversity but less on α-diversity. A high variation was also observed in the control across different samples (for example, 66.7-fold for the forward primer), suggesting that the amplicon sequencing-based detection approach could not be quantitative. In addition, various strategies were examined to improve the comparability of amplicon sequencing data, such as increasing biological replicates, and removing singleton sequences and less-representative OTUs across biological replicates. Finally, as expected, various statistical analyses with preprocessed experimental data revealed clear differences in the composition and structure of microbial communities between warming and non-warming, or between clipping and non-clipping. Taken together, these results suggest that amplicon sequencing-based detection is useful in analyzing microbial community structure even though it is not reproducible and quantitative. However, great caution should be taken in experimental design and data interpretation when the amplicon sequencing-based detection approach is used for quantitative

  18. A Curriculum Activities Guide to Water Pollution and Environmental Studies, Volume II - Appendices.

    ERIC Educational Resources Information Center

    Hershey, John T., Ed.; And Others

    This publication, Volume II of a two volume set of water pollution studies, contains seven appendices which support the studies. Appendix 1, Water Quality Parameters, consolidates the technical aspects of water quality including chemical, biological, computer program, and equipment information. Appendix 2, Implementation, outlines techniques…

  19. Quantitative analysis of the right auricle with 256-slice computed tomography.

    PubMed

    Li, Cai-Ying; Gao, Bu-Lang; Pan, Tong; Xiang, Cheng; Zhang, Xue-Jing; Liu, Xiao-Wei; Fan, Qiong-Ying

    2017-04-01

    To quantitatively measure the morphology parameters of the right auricle with 256-slice multidetector computed tomography angiography (MDCTA) in healthy people. A retrospective analysis of 200 patients who had undergone coronary MDCTA with negative findings was performed. The raw imaging data were reconstructed and the right auricular volume, right atrial volume, right auricle height, base long and short axes, base perimeter and area, normal angle, and distance were quantitatively measured. Men had significantly (P < 0.05) greater values than women in the right auricular volume (13.3 ± 4.0 vs. 11.7 ± 3.7 mL) and height (33.0 ± 5.0 vs. 30.5 ± 5.2 mm), the base long axis (34.4 ± 4.1 vs. 33.2 ± 3.9 mm), area (787.6 ± 177.6 vs. 771.0 ± 143.2 mm 2 ) and perimeter (119.2 ± 17.5 vs. 115.0 ± 13.0), and the normal distance (22.4 ± 6.6 vs. 20.2 ± 6.7 mm). The normal 95 % reference range for the right auricular parameters was put forward. The right auricular parameters had a good correlation with the right atrium volume, aortic diameter, the body weight, height, and body surface area but a bad correlation with the vertebral body height. Significantly (P < 0.05) greater values were found in the normal angle and distance in subjects below than over 40 years of age. No other significant (P > 0.05) difference existed in the other right auricular parameters. Quantitative measurements of the right auricle can help us get a good understanding of the right auricular morphology and its relationship with surrounding structures and are helpful for cardiac interventions of electrophysiology and radiofrequency ablation.

  20. Quantitative analyses for elucidating mechanisms of cell fate commitment in the mouse blastocyst

    NASA Astrophysics Data System (ADS)

    Saiz, Néstor; Kang, Minjung; Puliafito, Alberto; Schrode, Nadine; Xenopoulos, Panagiotis; Lou, Xinghua; Di Talia, Stefano; Hadjantonakis, Anna-Katerina

    2015-03-01

    In recent years we have witnessed a shift from qualitative image analysis towards higher resolution, quantitative analyses of imaging data in developmental biology. This shift has been fueled by technological advances in both imaging and analysis software. We have recently developed a tool for accurate, semi-automated nuclear segmentation of imaging data from early mouse embryos and embryonic stem cells. We have applied this software to the study of the first lineage decisions that take place during mouse development and established analysis pipelines for both static and time-lapse imaging experiments. In this paper we summarize the conclusions from these studies to illustrate how quantitative, single-cell level analysis of imaging data can unveil biological processes that cannot be revealed by traditional qualitative studies.

  1. Heat capacity measurements of sub-nanoliter volumes of liquids using bimaterial microchannel cantilevers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M. F.; Miriyala, N.; Hassanpourfard, M.

    Lab-on-a-Chip compatible techniques for thermal characterization of miniaturized volumes of liquid analytes are necessary in applications such as protein blotting, DNA melting, and drug development, where samples are either rare or volume-limited. We developed a closed-chamber calorimeter based on a bimaterial microchannel cantilever (BMC) for sub-nanoliter level thermal analysis. When the liquid-filled BMC is irradiated with infrared (IR) light at a specific wavelength, the IR absorption by the liquid analyte results in localized heat generation and the subsequent deflection of the BMC, due to a thermal expansion mismatch between the constituent materials. The time constant of the deflection, which ismore » dependent upon the heat capacity of the liquid analyte, can be directly measured by recording the time-dependent bending of the BMC. We have used the BMC to quantitatively measure the heat capacity of five volatile organic compounds. With a deflection noise level of ∼10 nm and a signal-to-noise ratio of 68:1, the BMC offers a sensitivity of 30.5 ms/(J g{sup −1 }K{sup −1}) and a resolution of 23 mJ/(g K) for ∼150 pl liquid for heat capacity measurements. This technique can be used for small-scale thermal characterization of different chemical and biological samples.« less

  2. Characterization of breast lesion using T1-perfusion magnetic resonance imaging: Qualitative vs. quantitative analysis.

    PubMed

    Thakran, S; Gupta, P K; Kabra, V; Saha, I; Jain, P; Gupta, R K; Singh, A

    2018-06-14

    The objective of this study was to quantify the hemodynamic parameters using first pass analysis of T 1 -perfusion magnetic resonance imaging (MRI) data of human breast and to compare these parameters with the existing tracer kinetic parameters, semi-quantitative and qualitative T 1 -perfusion analysis in terms of lesion characterization. MRI of the breast was performed in 50 women (mean age, 44±11 [SD] years; range: 26-75) years with a total of 15 benign and 35 malignant breast lesions. After pre-processing, T 1 -perfusion MRI data was analyzed using qualitative approach by two radiologists (visual inspection of the kinetic curve into types I, II or III), semi-quantitative (characterization of kinetic curve types using empirical parameters), generalized-tracer-kinetic-model (tracer kinetic parameters) and first pass analysis (hemodynamic-parameters). Chi-squared test, t-test, one-way analysis-of-variance (ANOVA) using Bonferroni post-hoc test and receiver-operating-characteristic (ROC) curve were used for statistical analysis. All quantitative parameters except leakage volume (Ve), qualitative (type-I and III) and semi-quantitative curves (type-I and III) provided significant differences (P<0.05) between benign and malignant lesions. Kinetic parameters, particularly volume transfer coefficient (K trans ) provided a significant difference (P<0.05) between all grades except grade-II vs III. The hemodynamic parameter (relative-leakage-corrected-breast-blood-volume [rBBVcorr) provided a statistically significant difference (P<0.05) between all grades. It also provided highest sensitivity and specificity among all parameters in differentiation between different grades of malignant breast lesions. Quantitative parameters, particularly rBBVcorr and K trans provided similar sensitivity and specificity in differentiating benign from malignant breast lesions for this cohort. Moreover, rBBVcorr provided better differentiation between different grades of malignant breast

  3. Quantile-based permutation thresholds for quantitative trait loci hotspots.

    PubMed

    Neto, Elias Chaibub; Keller, Mark P; Broman, Andrew F; Attie, Alan D; Jansen, Ritsert C; Broman, Karl W; Yandell, Brian S

    2012-08-01

    Quantitative trait loci (QTL) hotspots (genomic locations affecting many traits) are a common feature in genetical genomics studies and are biologically interesting since they may harbor critical regulators. Therefore, statistical procedures to assess the significance of hotspots are of key importance. One approach, randomly allocating observed QTL across the genomic locations separately by trait, implicitly assumes all traits are uncorrelated. Recently, an empirical test for QTL hotspots was proposed on the basis of the number of traits that exceed a predetermined LOD value, such as the standard permutation LOD threshold. The permutation null distribution of the maximum number of traits across all genomic locations preserves the correlation structure among the phenotypes, avoiding the detection of spurious hotspots due to nongenetic correlation induced by uncontrolled environmental factors and unmeasured variables. However, by considering only the number of traits above a threshold, without accounting for the magnitude of the LOD scores, relevant information is lost. In particular, biologically interesting hotspots composed of a moderate to small number of traits with strong LOD scores may be neglected as nonsignificant. In this article we propose a quantile-based permutation approach that simultaneously accounts for the number and the LOD scores of traits within the hotspots. By considering a sliding scale of mapping thresholds, our method can assess the statistical significance of both small and large hotspots. Although the proposed approach can be applied to any type of heritable high-volume "omic" data set, we restrict our attention to expression (e)QTL analysis. We assess and compare the performances of these three methods in simulations and we illustrate how our approach can effectively assess the significance of moderate and small hotspots with strong LOD scores in a yeast expression data set.

  4. Use of computed tomography to assess volume change after endoscopic orbital decompression for Graves' ophthalmopathy.

    PubMed

    Schiff, Bradley A; McMullen, Caitlin P; Farinhas, Joaquim; Jackman, Alexis H; Hagiwara, Mari; McKellop, Jason; Lui, Yvonne W

    2015-01-01

    Orbital decompression is frequently performed in the management of patients with sight-threatening and disfiguring Graves' ophthalmopathy. The quantitative measurements of the change in orbital volume after orbital decompression procedures are not definitively known. Furthermore, the quantitative effect of septal deviation on volume change has not been previously analyzed. To provide quantitative measurement of orbital volume change after medial and inferior endoscopic decompression and describe a straightforward method of measuring this change using open-source technologies. A secondary objective was to assess the effect of septal deviation on orbital volume change. A retrospective review was performed on all patients undergoing medial and inferior endoscopic orbital decompression for Graves' ophthalmopathy at a tertiary care academic medical center. Pre-operative and post-operative orbital volumes were calculated from computed tomography (CT) data using a semi-automated segmenting technique and Osirix™, an open-source DICOM reader. Data were collected for pre-operative and post-operative orbital volumes, degree of septal deviation, time to follow-up scan, and individual patient Hertel scores. Nine patients (12 orbits) were imaged before and after decompression. Mean pre-operative orbital volume was 26.99 cm(3) (SD=2.86 cm(3)). Mean post-operative volume was 33.07 cm(3) (SD=3.96 cm(3)). The mean change in volume was 6.08 cm(3) (SD=2.31 cm(3)). The mean change in Hertel score was 4.83 (SD=0.75). Regression analysis of change in volume versus follow-up time to imaging indicates that follow-up time to imaging has little effect on change in volume (R=-0.2), and overall mean maximal septal deviation toward the operative side was -0.5mm. Negative values were attributed to deviation away form the operative site. A significant correlation was demonstrated between change in orbital volume and septal deviation distance site (R=0.66), as well as between change in orbital

  5. Biological imaging in radiation therapy: role of positron emission tomography.

    PubMed

    Nestle, Ursula; Weber, Wolfgang; Hentschel, Michael; Grosu, Anca-Ligia

    2009-01-07

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.

  6. Improved Protein Arrays for Quantitative Systems Analysis of the Dynamics of Signaling Pathway Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chin-Rang

    Astronauts and workers in nuclear plants who repeatedly exposed to low doses of ionizing radiation (IR, <10 cGy) are likely to incur specific changes in signal transduction and gene expression in various tissues of their body. Remarkable advances in high throughput genomics and proteomics technologies enable researchers to broaden their focus from examining single gene/protein kinetics to better understanding global gene/protein expression profiling and biological pathway analyses, namely Systems Biology. An ultimate goal of systems biology is to develop dynamic mathematical models of interacting biological systems capable of simulating living systems in a computer. This Glue Grant is to complementmore » Dr. Boothman’s existing DOE grant (No. DE-FG02-06ER64186) entitled “The IGF1/IGF-1R-MAPK-Secretory Clusterin (sCLU) Pathway: Mediator of a Low Dose IR-Inducible Bystander Effect” to develop sensitive and quantitative proteomic technology that suitable for low dose radiobiology researches. An improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states for systems biology modeling is presented. The signals are amplified by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots and show the good linearity that is impossible for the signals of HRP-amplification. Therefore this improved protein array technology is suitable to detect weak responses of low dose radiation. Software is developed to facilitate the quantitative readout of signaling network activities. Kinetics of EGFRvIII mutant signaling was analyzed to quantify cross-talks between EGFR and other signaling pathways.« less

  7. Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy.

    PubMed

    Haustein, Elke; Schwille, Petra

    2003-02-01

    Fluorescence correlation spectroscopy (FCS) extracts information about molecular dynamics from the tiny fluctuations that can be observed in the emission of small ensembles of fluorescent molecules in thermodynamic equilibrium. Employing a confocal setup in conjunction with highly dilute samples, the average number of fluorescent particles simultaneously within the measurement volume (approximately 1 fl) is minimized. Among the multitude of chemical and physical parameters accessible by FCS are local concentrations, mobility coefficients, rate constants for association and dissociation processes, and even enzyme kinetics. As any reaction causing an alteration of the primary measurement parameters such as fluorescence brightness or mobility can be monitored, the application of this noninvasive method to unravel processes in living cells is straightforward. Due to the high spatial resolution of less than 0.5 microm, selective measurements in cellular compartments, e.g., to probe receptor-ligand interactions on cell membranes, are feasible. Moreover, the observation of local molecular dynamics provides access to environmental parameters such as local oxygen concentrations, pH, or viscosity. Thus, this versatile technique is of particular attractiveness for researchers striving for quantitative assessment of interactions and dynamics of small molecular quantities in biologically relevant systems.

  8. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound

    PubMed Central

    Mercado, Karla P.; Helguera, María; Hocking, Denise C.

    2015-01-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13–47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices. PMID:25517512

  9. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound.

    PubMed

    Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane

    2015-07-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.

  10. [Diagnostic value of quantitative pharmacokinetic parameters and relative quantitative pharmacokinetic parameters in breast lesions with dynamic contrast-enhanced MRI].

    PubMed

    Sun, T T; Liu, W H; Zhang, Y Q; Li, L H; Wang, R; Ye, Y Y

    2017-08-01

    Objective: To explore the differential between the value of dynamic contrast-enhanced MRI quantitative pharmacokinetic parameters and relative pharmacokinetic quantitative parameters in breast lesions. Methods: Retrospective analysis of 255 patients(262 breast lesions) who was obtained by clinical palpation , ultrasound or full-field digital mammography , and then all lessions were pathologically confirmed in Zhongda Hospital, Southeast University from May 2012 to May 2016. A 3.0 T MRI scanner was used to obtain the quantitative MR pharmacokinetic parameters: volume transfer constant (K(trans)), exchange rate constant (k(ep))and extravascular extracellular volume fraction (V(e)). And measured the quantitative pharmacokinetic parameters of normal glands tissues which on the same side of the same level of the lesions; and then calculated the value of relative pharmacokinetic parameters: rK(rans)、rk(ep) and rV(e).To explore the diagnostic value of two pharmacokinetic parameters in differential diagnosis of benign and malignant breast lesions using receiver operating curves and model of logistic regression. Results: (1)There were significant differences between benign lesions and malignant lesions in K(trans) and k(ep) ( t =15.489, 15.022, respectively, P <0.05), there were no significant differences between benign lesions and malignant lesions in V(e)( t =-2.346, P >0.05). The areas under the ROC curve(AUC)of K(trans), k(ep) and V(e) between malignant and benign lesions were 0.933, 0.948 and 0.387, the sensitivity of K(trans), k(ep) and V(e) were 77.1%, 85.0%, 51.0% , and the specificity of K(trans), k(ep) and V(e) were 96.3%, 93.6%, 60.8% for the differential diagnosis of breast lesions if taken the maximum Youden's index as cut-off. (2)There were significant differences between benign lesions and malignant lesions in rK(trans), rk(ep) and rV(e) ( t =14.177, 11.726, 2.477, respectively, P <0.05). The AUC of rK(trans), rk(ep) and rV(e) between malignant and benign

  11. Learning Quantitative Sequence-Function Relationships from Massively Parallel Experiments

    NASA Astrophysics Data System (ADS)

    Atwal, Gurinder S.; Kinney, Justin B.

    2016-03-01

    A fundamental aspect of biological information processing is the ubiquity of sequence-function relationships—functions that map the sequence of DNA, RNA, or protein to a biochemically relevant activity. Most sequence-function relationships in biology are quantitative, but only recently have experimental techniques for effectively measuring these relationships been developed. The advent of such "massively parallel" experiments presents an exciting opportunity for the concepts and methods of statistical physics to inform the study of biological systems. After reviewing these recent experimental advances, we focus on the problem of how to infer parametric models of sequence-function relationships from the data produced by these experiments. Specifically, we retrace and extend recent theoretical work showing that inference based on mutual information, not the standard likelihood-based approach, is often necessary for accurately learning the parameters of these models. Closely connected with this result is the emergence of "diffeomorphic modes"—directions in parameter space that are far less constrained by data than likelihood-based inference would suggest. Analogous to Goldstone modes in physics, diffeomorphic modes arise from an arbitrarily broken symmetry of the inference problem. An analytically tractable model of a massively parallel experiment is then described, providing an explicit demonstration of these fundamental aspects of statistical inference. This paper concludes with an outlook on the theoretical and computational challenges currently facing studies of quantitative sequence-function relationships.

  12. Quantitative assessment of primary mitral regurgitation using left ventricular volumes obtained with new automated three-dimensional transthoracic echocardiographic software: A comparison with 3-Tesla cardiac magnetic resonance.

    PubMed

    Levy, Franck; Marechaux, Sylvestre; Iacuzio, Laura; Schouver, Elie Dan; Castel, Anne Laure; Toledano, Manuel; Rusek, Stephane; Dor, Vincent; Tribouilloy, Christophe; Dreyfus, Gilles

    2018-03-30

    Quantitative assessment of primary mitral regurgitation (MR) using left ventricular (LV) volumes obtained with three-dimensional transthoracic echocardiography (3D TTE) recently showed encouraging results. Nevertheless, 3D TTE is not incorporated into everyday practice, as current LV chamber quantification software products are time consuming. To investigate the accuracy and reproducibility of new automated fast 3D TTE software (HeartModel A.I. ; Philips Healthcare, Andover, MA, USA) for the quantification of LV volumes and MR severity in patients with isolated degenerative primary MR; and to compare regurgitant volume (RV) obtained with 3D TTE with a cardiac magnetic resonance (CMR) reference. Fifty-three patients (37 men; mean age 64±12 years) with at least mild primary isolated MR, and having comprehensive 3D TTE and CMR studies within 24h, were eligible for inclusion. MR RV was calculated using the proximal isovelocity surface area (PISA) method and the volumetric method (total LV stroke volume minus aortic stroke volume) with either CMR or 3D TTE. Inter- and intraobserver reproducibility of 3D TTE was excellent (coefficient of variation≤10%) for LV volumes. MR RV was similar using CMR and 3D TTE (57±23mL vs 56±28mL; P=0.22), but was significantly higher using the PISA method (69±30mL; P<0.05 compared with CMR and 3D TTE). The PISA method consistently overestimated MR RV compared with CMR (bias 12±21mL), while no significant bias was found between 3D TTE and CMR (bias 2±14mL). Concordance between echocardiography and CMR was higher using 3D TTE MR grading (intraclass correlation coefficient [ICC]=0.89) than with PISA MR grading (ICC=0.78). Complete agreement with CMR grading was more frequent with 3D TTE than with the PISA method (76% vs 63%). 3D TTE RV assessment using the new generation of automated software correlates well with CMR in patients with isolated degenerative primary MR. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. [The validation of kit of reagents for quantitative detection of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode].

    PubMed

    Sil'veĭstrova, O Iu; Domonova, É A; Shipulina, O Iu

    2014-04-01

    The validation of kit of reagents destined to detection and quantitative evaluation of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode was implemented. The comparison was made against international WHO standard--The first WHO international standard for human cytomegalovirus to implement measures the kit of reagents "AmpliSens CMV-screen/monitor-FL" and standard sample of enterprise DNA HCMV (The central research institute of epidemiology of Rospotrebnadzor) was applied. The fivefold dilution of international WHO standard and standard sample of enterprise were carried out in concentrations of DNA HCMV from 106 to 102. The arrangement of polymerase chain reaction and analysis of results were implemented using programed amplifier with system of detection of fluorescent signal in real-time mode "Rotor-Gene Q" ("Qiagen", Germany). In the total of three series of experiments, all stages of polymerase chain reaction study included, the coefficient of translation of quantitative evaluation of DNA HCMV from copy/ml to ME/ml equal to 0.6 was introduced for this kit of reagents.

  14. Evolutionary cell biology: two origins, one objective.

    PubMed

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley

    2014-12-02

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.

  15. Quantitative Magnetic Resonance Imaging Volumetry of Facial Muscles in Healthy Patients with Facial Palsy

    PubMed Central

    Volk, Gerd F.; Karamyan, Inna; Klingner, Carsten M.; Reichenbach, Jürgen R.

    2014-01-01

    Background: Magnetic resonance imaging (MRI) has not yet been established systematically to detect structural muscular changes after facial nerve lesion. The purpose of this pilot study was to investigate quantitative assessment of MRI muscle volume data for facial muscles. Methods: Ten healthy subjects and 5 patients with facial palsy were recruited. Using manual or semiautomatic segmentation of 3T MRI, volume measurements were performed for the frontal, procerus, risorius, corrugator supercilii, orbicularis oculi, nasalis, zygomaticus major, zygomaticus minor, levator labii superioris, orbicularis oris, depressor anguli oris, depressor labii inferioris, and mentalis, as well as for the masseter and temporalis as masticatory muscles for control. Results: All muscles except the frontal (identification in 4/10 volunteers), procerus (4/10), risorius (6/10), and zygomaticus minor (8/10) were identified in all volunteers. Sex or age effects were not seen (all P > 0.05). There was no facial asymmetry with exception of the zygomaticus major (larger on the left side; P = 0.012). The exploratory examination of 5 patients revealed considerably smaller muscle volumes on the palsy side 2 months after facial injury. One patient with chronic palsy showed substantial muscle volume decrease, which also occurred in another patient with incomplete chronic palsy restricted to the involved facial area. Facial nerve reconstruction led to mixed results of decreased but also increased muscle volumes on the palsy side compared with the healthy side. Conclusions: First systematic quantitative MRI volume measures of 5 different clinical presentations of facial paralysis are provided. PMID:25289366

  16. A quantitative image cytometry technique for time series or population analyses of signaling networks.

    PubMed

    Ozaki, Yu-ichi; Uda, Shinsuke; Saito, Takeshi H; Chung, Jaehoon; Kubota, Hiroyuki; Kuroda, Shinya

    2010-04-01

    Modeling of cellular functions on the basis of experimental observation is increasingly common in the field of cellular signaling. However, such modeling requires a large amount of quantitative data of signaling events with high spatio-temporal resolution. A novel technique which allows us to obtain such data is needed for systems biology of cellular signaling. We developed a fully automatable assay technique, termed quantitative image cytometry (QIC), which integrates a quantitative immunostaining technique and a high precision image-processing algorithm for cell identification. With the aid of an automated sample preparation system, this device can quantify protein expression, phosphorylation and localization with subcellular resolution at one-minute intervals. The signaling activities quantified by the assay system showed good correlation with, as well as comparable reproducibility to, western blot analysis. Taking advantage of the high spatio-temporal resolution, we investigated the signaling dynamics of the ERK pathway in PC12 cells. The QIC technique appears as a highly quantitative and versatile technique, which can be a convenient replacement for the most conventional techniques including western blot, flow cytometry and live cell imaging. Thus, the QIC technique can be a powerful tool for investigating the systems biology of cellular signaling.

  17. Racial Differences in Quantitative Measures of Area and Volumetric Breast Density

    PubMed Central

    McCarthy, Anne Marie; Keller, Brad M.; Pantalone, Lauren M.; Hsieh, Meng-Kang; Synnestvedt, Marie; Conant, Emily F.; Armstrong, Katrina; Kontos, Despina

    2016-01-01

    Abstract Background: Increased breast density is a strong risk factor for breast cancer and also decreases the sensitivity of mammographic screening. The purpose of our study was to compare breast density for black and white women using quantitative measures. Methods: Breast density was assessed among 5282 black and 4216 white women screened using digital mammography. Breast Imaging-Reporting and Data System (BI-RADS) density was obtained from radiologists’ reports. Quantitative measures for dense area, area percent density (PD), dense volume, and volume percent density were estimated using validated, automated software. Breast density was categorized as dense or nondense based on BI-RADS categories or based on values above and below the median for quantitative measures. Logistic regression was used to estimate the odds of having dense breasts by race, adjusted for age, body mass index (BMI), age at menarche, menopause status, family history of breast or ovarian cancer, parity and age at first birth, and current hormone replacement therapy (HRT) use. All statistical tests were two-sided. Results: There was a statistically significant interaction of race and BMI on breast density. After accounting for age, BMI, and breast cancer risk factors, black women had statistically significantly greater odds of high breast density across all quantitative measures (eg, PD nonobese odds ratio [OR] = 1.18, 95% confidence interval [CI] = 1.02 to 1.37, P = .03, PD obese OR = 1.26, 95% CI = 1.04 to 1.53, P = .02). There was no statistically significant difference in BI-RADS density by race. Conclusions: After accounting for age, BMI, and other risk factors, black women had higher breast density than white women across all quantitative measures previously associated with breast cancer risk. These results may have implications for risk assessment and screening. PMID:27130893

  18. FIXED DOSE COMBINATIONS WITH SELECTIVE BETA-BLOCKERS: QUANTITATIVE DETERMINATION IN BIOLOGICAL FLUIDS.

    PubMed

    Mahu, Ştefania Corina; Hăncianu, Monica; Agoroaei, Luminiţa; Grigoriu, Ioana Cezara; Strugaru, Anca Monica; Butnaru, Elena

    2015-01-01

    Hypertension is one of the most common causes of death, a complex and incompletely controlled disease for millions of patients. Metoprolol, bisoprolol, nebivolol and atenolol are selective beta-blockers frequently used in the management of arterial hypertension, alone or in fixed combination with other substances. This study presents the most used analytical methods for simultaneous determination in biological fluids of fixed combinations containing selective beta-blockers. Articles in Pub-Med, Science Direct and Wiley Journals databases published between years 2004-2014 were reviewed. Methods such as liquid chromatography--mass spectrometry--mass spectrometry (LC-MS/MS), high performance liquid chromatography (HPLC) or high performance liquid chromatography--mass spectrometry (HPLC-MS) were used for determination of fixed combination with beta-blockers in human plasma, rat plasma and human breast milk. LC-MS/MS method was used for simultaneous determination of fixed combinations of metoprolol with simvastatin, hydrochlorothiazide or ramipril, combinations of nebivolol and valsartan, or atenolol and amlodipine. Biological samples were processed by protein precipitation techniques or by liquid-liquid extraction. For the determination of fixed dose combinations of felodipine and metoprolol in rat plasma liquid chromatography--electrospray ionization--mass spectrometry (LC-ESI-MS/MS) was applied, using phenacetin as internal standard. HPLC-MS method was applied for the determination of bisoprolol and hydrochlorothiazide in human plasma. For the determination of atenolol and chlorthalidone from human breast milk and human plasma the HPLC method was used. The analytical methods were validated according to the specialized guidelines, and were applied to biological samples, thing that confirms the permanent concern of researchers in this field.

  19. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-07-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications.

  20. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy.

    PubMed

    Gimenez, Y; Busser, B; Trichard, F; Kulesza, A; Laurent, J M; Zaun, V; Lux, F; Benoit, J M; Panczer, G; Dugourd, P; Tillement, O; Pelascini, F; Sancey, L; Motto-Ros, V

    2016-07-20

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications.

  1. Fractal-like Distributions over the Rational Numbers in High-throughput Biological and Clinical Data

    NASA Astrophysics Data System (ADS)

    Trifonov, Vladimir; Pasqualucci, Laura; Dalla-Favera, Riccardo; Rabadan, Raul

    2011-12-01

    Recent developments in extracting and processing biological and clinical data are allowing quantitative approaches to studying living systems. High-throughput sequencing (HTS), expression profiles, proteomics, and electronic health records (EHR) are some examples of such technologies. Extracting meaningful information from those technologies requires careful analysis of the large volumes of data they produce. In this note, we present a set of fractal-like distributions that commonly appear in the analysis of such data. The first set of examples are drawn from a HTS experiment. Here, the distributions appear as part of the evaluation of the error rate of the sequencing and the identification of tumorogenic genomic alterations. The other examples are obtained from risk factor evaluation and analysis of relative disease prevalence and co-mordbidity as these appear in EHR. The distributions are also relevant to identification of subclonal populations in tumors and the study of quasi-species and intrahost diversity of viral populations.

  2. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-01-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications. PMID:27435424

  3. Environmental toxicology and risk assessment: Seventh volume

    USGS Publications Warehouse

    Little, Edward E.; Greenberg, Bruce M.; DeLonay, Aaron J.

    1998-01-01

    This publication, Environmental Toxicology and Risk Assessment: Seventh Volume, contains papers presented at the Seventh Symposium on Toxicology and Risk Assessment: Ultraviolet Radiation and the Environment, held 7-9 April, 1997 in St. Louis, MO. The symposium, the 24th in a series on environmental toxicology, was sponsored by Committee E-47. Edward E. Little, of the U.S. Geological Survey/Biological Services Division in Columbia, MO, presided as chairman of the symposium. Bruce M. Greenberg, with the Department of Biology at the University of Waterloo in Ontario, Canada, and Aaron J. DeLonay, also with the U.S. Geological Service/Biological Services Division in Columbia, MO, served as co-chairmen of the symposium. Each of these men served as editor of the resulting publication.

  4. Biological Effects of Nonionizing Electromagnetic Radiation. Volume IV. Number 3.

    DTIC Science & Technology

    1980-03-01

    lines that produce EMR. perimental evidence on human health effects due to electromagnetic field exposures from high-voltage transmission lines is...1311, Mrch YOW that a permissible occupational exposure level to The biologic effects of electromagnetic fields on MW and RF radiation of 500 PW/cm 2...along with the principal physical param- eters of exposure . 6402 REGULATING POSSIBLE HEALTH EFFECTS FROM AC TRANSMISSION LINE ELECTROMAGNETIC FIELDS

  5. Peroxisystem: harnessing systems cell biology to study peroxisomes.

    PubMed

    Schuldiner, Maya; Zalckvar, Einat

    2015-04-01

    In recent years, high-throughput experimentation with quantitative analysis and modelling of cells, recently dubbed systems cell biology, has been harnessed to study the organisation and dynamics of simple biological systems. Here, we suggest that the peroxisome, a fascinating dynamic organelle, can be used as a good candidate for studying a complete biological system. We discuss several aspects of peroxisomes that can be studied using high-throughput systematic approaches and be integrated into a predictive model. Such approaches can be used in the future to study and understand how a more complex biological system, like a cell and maybe even ultimately a whole organism, works. © 2015 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  6. Translating human biology (introduction to special issue).

    PubMed

    Brewis, Alexandra A; Mckenna, James J

    2015-01-01

    Introducing a special issue on "Translating Human Biology," we pose two basic questions: Is human biology addressing the most critical challenges facing our species? How can the processes of translating our science be improved and innovated? We analyze articles published in American Journal of Human Biology from 2004-2013, and find there is very little human biological consideration of issues related to most of the core human challenges such as water, energy, environmental degradation, or conflict. There is some focus on disease, and considerable focus on food/nutrition. We then introduce this special volume with reference to the following articles that provide exemplars for the process of how translation and concern for broader context and impacts can be integrated into research. Human biology has significant unmet potential to engage more fully in translation for the public good, through consideration of the topics we focus on, the processes of doing our science, and the way we present our domain expertise. © 2014 Wiley Periodicals, Inc.

  7. High performance liquid chromatographic assay for the quantitation of total glutathione in plasma

    NASA Technical Reports Server (NTRS)

    Abukhalaf, Imad K.; Silvestrov, Natalia A.; Menter, Julian M.; von Deutsch, Daniel A.; Bayorh, Mohamed A.; Socci, Robin R.; Ganafa, Agaba A.

    2002-01-01

    A simple and widely used homocysteine HPLC procedure was applied for the HPLC identification and quantitation of glutathione in plasma. The method, which utilizes SBDF as a derivatizing agent utilizes only 50 microl of sample volume. Linear quantitative response curve was generated for glutathione over a concentration range of 0.3125-62.50 micromol/l. Linear regression analysis of the standard curve exhibited correlation coefficient of 0.999. Limit of detection (LOD) and limit of quantitation (LOQ) values were 5.0 and 15 pmol, respectively. Glutathione recovery using this method was nearly complete (above 96%). Intra-assay and inter-assay precision studies reflected a high level of reliability and reproducibility of the method. The applicability of the method for the quantitation of glutathione was demonstrated successfully using human and rat plasma samples.

  8. Absolute quantitation of isoforms of post-translationally modified proteins in transgenic organism.

    PubMed

    Li, Yaojun; Shu, Yiwei; Peng, Changchao; Zhu, Lin; Guo, Guangyu; Li, Ning

    2012-08-01

    Post-translational modification isoforms of a protein are known to play versatile biological functions in diverse cellular processes. To measure the molar amount of each post-translational modification isoform (P(isf)) of a target protein present in the total protein extract using mass spectrometry, a quantitative proteomic protocol, absolute quantitation of isoforms of post-translationally modified proteins (AQUIP), was developed. A recombinant ERF110 gene overexpression transgenic Arabidopsis plant was used as the model organism for demonstration of the proof of concept. Both Ser-62-independent (14)N-coded synthetic peptide standards and (15)N-coded ERF110 protein standard isolated from the heavy nitrogen-labeled transgenic plants were employed simultaneously to determine the concentration of all isoforms (T(isf)) of ERF110 in the whole plant cell lysate, whereas a pair of Ser-62-dependent synthetic peptide standards were used to quantitate the Ser-62 phosphosite occupancy (R(aqu)). The P(isf) was finally determined by integrating the two empirically measured variables using the following equation: P(isf) = T(isf) · R(aqu). The absolute amount of Ser-62-phosphorylated isoform of ERF110 determined using AQUIP was substantiated with a stable isotope labeling in Arabidopsis-based relative and accurate quantitative proteomic approach. The biological role of the Ser-62-phosphorylated isoform was demonstrated in transgenic plants.

  9. Novel genetic loci associated with hippocampal volume.

    PubMed

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-18

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r g =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.

  10. Novel genetic loci associated with hippocampal volume

    PubMed Central

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H.; Beiser, Alexa; Bernard, Manon; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Gutman, Boris A.; Hass, Johanna; Haukvik, Unn K.; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N.; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liewald, David C. M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre F.; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; McKay, David R.; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C.; Nyquist, Paul; Loohuis, Loes M. Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Sämann, Philipp G.; Saremi, Arvin; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J.; Van der Meer, Dennis; Van Donkelaar, Marjolein M. J.; Van Eijk, Kristel R.; Van Erp, Theo G. M.; Van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L.; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; De Craen, Anton J. M.; De Geus, Eco J. C.; De Jager, Philip L.; De Zubicaray, Greig I.; Deary, Ian J.; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O.; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Göring, Harald H. H.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K.; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Choon; Hoekstra, Pieter J.; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Jack Jr, Clifford R.; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G.; Jukema, J. Wouter; Kahn, René S.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Nöthen, Markus M.; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R.; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hilkka; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G.; Hernández, Maria C. Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J. A.; Van Haren, Neeltje E. M.; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N.; Vellas, Bruno; Veltman, Dick J.; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, Ronald H.; Zonderman, Alan B.; Martin, Nicholas G.; Van Duijn, Cornelia M.; Wright, Margaret J.; Longstreth, W. T.; Schumann, Gunter; Grabe, Hans J.; Franke, Barbara; Launer, Lenore J.; Medland, Sarah E.; Seshadri, Sudha; Thompson, Paul M.; Ikram, M. Arfan

    2017-01-01

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg=−0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness. PMID:28098162

  11. Assessing agreement between preclinical magnetic resonance imaging and histology: An evaluation of their image qualities and quantitative results

    PubMed Central

    Elschner, Cindy; Korn, Paula; Hauptstock, Maria; Schulz, Matthias C.; Range, Ursula; Jünger, Diana; Scheler, Ulrich

    2017-01-01

    One consequence of demographic change is the increasing demand for biocompatible materials for use in implants and prostheses. This is accompanied by a growing number of experimental animals because the interactions between new biomaterials and its host tissue have to be investigated. To evaluate novel materials and engineered tissues the use of non-destructive imaging modalities have been identified as a strategic priority. This provides the opportunity for studying interactions repeatedly with individual animals, along with the advantages of reduced biological variability and decreased number of laboratory animals. However, histological techniques are still the golden standard in preclinical biomaterial research. The present article demonstrates a detailed method comparison between histology and magnetic resonance imaging. This includes the presentation of their image qualities as well as the detailed statistical analysis for assessing agreement between quantitative measures. Exemplarily, the bony ingrowth of tissue engineered bone substitutes for treatment of a cleft-like maxillary bone defect has been evaluated. By using a graphical concordance analysis the mean difference between MRI results and histomorphometrical measures has been examined. The analysis revealed a slightly but significant bias in the case of the bone volume (biasHisto−MRI:Bone volume=2.40 %, p<0.005) and a clearly significant deviation for the remaining defect width (biasHisto−MRI:Defect width=−6.73 %, p≪0.005). But the study although showed a considerable effect of the analyzed section position to the quantitative result. It could be proven, that the bias of the data sets was less originated due to the imaging modalities, but mainly on the evaluation of different slice positions. The article demonstrated that method comparisons not always need the use of an independent animal study, additionally. PMID:28666026

  12. Assessing signal-to-noise in quantitative proteomics: multivariate statistical analysis in DIGE experiments.

    PubMed

    Friedman, David B

    2012-01-01

    All quantitative proteomics experiments measure variation between samples. When performing large-scale experiments that involve multiple conditions or treatments, the experimental design should include the appropriate number of individual biological replicates from each condition to enable the distinction between a relevant biological signal from technical noise. Multivariate statistical analyses, such as principal component analysis (PCA), provide a global perspective on experimental variation, thereby enabling the assessment of whether the variation describes the expected biological signal or the unanticipated technical/biological noise inherent in the system. Examples will be shown from high-resolution multivariable DIGE experiments where PCA was instrumental in demonstrating biologically significant variation as well as sample outliers, fouled samples, and overriding technical variation that would not be readily observed using standard univariate tests.

  13. Quantitative phase-contrast digital holographic microscopy for cell dynamic evaluation

    NASA Astrophysics Data System (ADS)

    Yu, Lingfeng; Mohanty, Samarendra; Berns, Michael W.; Chen, Zhongping

    2009-02-01

    The laser microbeam uses lasers to alter and/or to ablate intracellular organelles and cellular and tissue samples, and, today, has become an important tool for cell biologists to study the molecular mechanism of complex biological systems by removing individual cells or sub-cellular organelles. However, absolute quantitation of the localized alteration/damage to transparent phase objects, such as the cell membrane or chromosomes, was not possible using conventional phase-contrast or differential interference contrast microscopy. We report the development of phase-contrast digital holographic microscopy for quantitative evaluation of cell dynamic changes in real time during laser microsurgery. Quantitative phase images are recorded during the process of laser microsurgery and thus, the dynamic change in phase can be continuously evaluated. Out-of-focus organelles are re-focused by numerical reconstruction algorithms.

  14. A Quantitative Analysis of the Relationship between Medicare Payment and Service Volume for Glaucoma Procedures from 2005 through 2009.

    PubMed

    Gong, Dan; Jun, Lin; Tsai, James C

    2015-05-01

    To calculate the association between Medicare payment and service volume for 6 commonly performed glaucoma procedures. Retrospective, longitudinal database study. A 100% dataset of all glaucoma procedures performed on Medicare Part B beneficiaries within the United States from 2005 to 2009. Fixed-effects regression model using Medicare Part B carrier data for all 50 states and the District of Columbia, controlling for time-invariant carrier-specific characteristics, national trends in glaucoma service volume, Medicare beneficiary population, number of ophthalmologists, and income per capita. Payment-volume elasticities, defined as the percent change in service volume per 1% change in Medicare payment, for laser trabeculoplasty (Current Procedural Terminology [CPT] code 65855), trabeculectomy without previous surgery (CPT code 66170), trabeculectomy with previous surgery (CPT code 66172), aqueous shunt to reservoir (CPT code 66180), laser iridotomy (CPT code 66761), and scleral reinforcement with graft (CPT code 67255). The payment-volume elasticity was nonsignificant for 4 of 6 procedures studied: laser trabeculoplasty (elasticity, -0.27; 95% confidence interval [CI], -1.31 to 0.77; P = 0.61), trabeculectomy without previous surgery (elasticity, -0.42; 95% CI, -0.85 to 0.01; P = 0.053), trabeculectomy with previous surgery (elasticity, -0.28; 95% CI, -0.83 to 0.28; P = 0.32), and aqueous shunt to reservoir (elasticity, -0.47; 95% CI, -3.32 to 2.37; P = 0.74). Two procedures yielded significant associations between Medicare payment and service volume. For laser iridotomy, the payment-volume elasticity was -1.06 (95% CI, -1.39 to -0.72; P < 0.001): for every 1% decrease in CPT code 66761 payment, laser iridotomy service volume increased by 1.06%. For scleral reinforcement with graft, the payment-volume elasticity was -2.92 (95% CI, -5.72 to -0.12; P = 0.041): for every 1% decrease in CPT code 67255 payment, scleral reinforcement with graft service volume increased by

  15. Retrospective Analysis of a Classical Biological Control Programme

    USDA-ARS?s Scientific Manuscript database

    1. Classical biological control has been a key technology in the management of invasive arthropod pests globally for over 120 years, yet rigorous quantitative evaluations of programme success or failure are rare. Here, I used life table and matrix model analyses, and life table response experiments ...

  16. US and Russian Cooperation in Space Biology and Medicine

    NASA Technical Reports Server (NTRS)

    Sawin, C.F.; Hanson, S.I.; House, N.G.; Pestov, I.D.

    2009-01-01

    This slide presentation concerns the 5th volume of a joint publication that describes the cooperation between the United States and Russia in research into space biology and medicine. Each of the chapters is briefly summarized.

  17. Fast vaporization solid phase microextraction and ion mobility spectrometry: A new approach for determination of creatinine in biological fluids.

    PubMed

    Jafari, Mostafa; Ebrahimzadeh, Homeira; Banitaba, Mohamma Hossein

    2015-11-01

    In this work a rapid and simple method for creatinine determination in urine and plasma samples based on aqueous derivatization of creatinine and complete vaporization of sample (as low as 10 µL), followed by ion mobility spectrometry analysis has been proposed. The effect of four important parameters (extraction temperature, total volume of solution, desorption temperature and extraction time) on ion mobility signal has been studied. Under the optimized conditions, the quantitative response of ion mobility spectrometry for creatinine was linear in the range of 0-500 mg L(-1) with a detection limit of 0.6 mg L(-1) in urine and 0-250 mg L(-1) with a detection limit of 2.6 mg L(-1) in plasma sample. The limit of quantitation of creatinine was 2.1 mg L(-1) and 8.7 mg L(-1) in urine and plasma samples, respectively. The relative standard deviation of the method was found to be 13%. The method was successfully applied to the analysis of creatinine in biological samples, showing recoveries from 92% to 104% in urine and 101-110% in plasma samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Quantitative analysis to guide orphan drug development.

    PubMed

    Lesko, L J

    2012-08-01

    The development of orphan drugs for rare diseases has made impressive strides in the past 10 years. There has been a surge in orphan drug designations, but new drug approvals have not kept up. This article presents a three-pronged hierarchical strategy for quantitative analysis of data at the descriptive, mechanistic, and systems levels of the biological system that could represent a standardized and rational approach to orphan drug development. Examples are provided to illustrate the concept.

  19. Light-assisted drying (LAD) of small volume biologics: a comparison of two IR light sources

    NASA Astrophysics Data System (ADS)

    Young, Madison A.; Van Vorst, Matthew; Elliott, Gloria D.; Trammell, Susan R.

    2016-03-01

    Protein therapeutics have been developed to treat diseases ranging from arthritis and psoriasis to cancer. A challenge in the development of protein-based drugs is maintaining the protein in the folded state during processing and storage. We are developing a novel processing method, light-assisted drying (LAD), to dehydrate proteins suspended in a sugar (trehalose) solution for storage at supra-zero temperatures. Our technique selectively heats the water in small volume samples using near-IR light to speed dehydration which prevents sugar crystallization that can damage embedded proteins. In this study, we compare the end moisture content (EMC) as a function of processing time of samples dried with two different light sources, Nd:YAG (1064 nm) and Thulium fiber (1850 nm) lasers. EMC is the ratio of water to dry weight in a sample and the lower the EMC the higher the possible storage temperature. LAD with the 1064 and 1850 nm lasers yielded 78% and 65% lower EMC, respectively, than standard air-drying. After 40 minutes of LAD with 1064 and 1850 nm sources, EMCs of 0.27+/-.27 and 0.15+/-.05 gH2O/gDryWeight were reached, which are near the desired value of 0.10 gH2O/gDryWeight that enables storage in a glassy state without refrigeration. LAD is a promising new technique for the preparation of biologics for anhydrous preservation.

  20. Bringing the physical sciences into your cell biology research

    PubMed Central

    Robinson, Douglas N.; Iglesias, Pablo A.

    2012-01-01

    Historically, much of biology was studied by physicists and mathematicians. With the advent of modern molecular biology, a wave of researchers became trained in a new scientific discipline filled with the language of genes, mutants, and the central dogma. These new molecular approaches have provided volumes of information on biomolecules and molecular pathways from the cellular to the organismal level. The challenge now is to determine how this seemingly endless list of components works together to promote the healthy function of complex living systems. This effort requires an interdisciplinary approach by investigators from both the biological and the physical sciences. PMID:23112230

  1. Bringing the physical sciences into your cell biology research.

    PubMed

    Robinson, Douglas N; Iglesias, Pablo A

    2012-11-01

    Historically, much of biology was studied by physicists and mathematicians. With the advent of modern molecular biology, a wave of researchers became trained in a new scientific discipline filled with the language of genes, mutants, and the central dogma. These new molecular approaches have provided volumes of information on biomolecules and molecular pathways from the cellular to the organismal level. The challenge now is to determine how this seemingly endless list of components works together to promote the healthy function of complex living systems. This effort requires an interdisciplinary approach by investigators from both the biological and the physical sciences.

  2. Towards quantitative mass spectrometry-based metabolomics in microbial and mammalian systems.

    PubMed

    Kapoore, Rahul Vijay; Vaidyanathan, Seetharaman

    2016-10-28

    Metabolome analyses are a suite of analytical approaches that enable us to capture changes in the metabolome (small molecular weight components, typically less than 1500 Da) in biological systems. Mass spectrometry (MS) has been widely used for this purpose. The key challenge here is to be able to capture changes in a reproducible and reliant manner that is representative of the events that take place in vivo Typically, the analysis is carried out in vitro, by isolating the system and extracting the metabolome. MS-based approaches enable us to capture metabolomic changes with high sensitivity and resolution. When developing the technique for different biological systems, there are similarities in challenges and differences that are specific to the system under investigation. Here, we review some of the challenges in capturing quantitative changes in the metabolome with MS based approaches, primarily in microbial and mammalian systems.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Author(s).

  3. Exploring Nectar Biology To Learn about Pollinators.

    ERIC Educational Resources Information Center

    LaBare, Kelly M.; Broyles, Steven B.; Klotz, R. Lawrence

    2000-01-01

    Discusses the importance of studying nectar biology. Describes how to extract nectar from various flowers, measure nectar volume, determine sugar concentration, and determine caloric value per nectar sample. These data are then related to hummingbird energetics to determine how many flowers are required to supply the pollinator with its caloric…

  4. Metals handbook. Volume 12: Fractography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    ASM International has published this handbook in response to the growing interest in the science of fractography, the result of improved methods of preparing specimens, advances in photographic techniques and equipment, refinement of the scanning electron microscope, and the introduction of quantitative fractography. The book covers all aspects of fracture examination and interpretation, including electron and quantitative fractography. The text is accompanied by line drawings, graphs, and photographic illustrations of fracture surfaces and microstructural features. Articles explain and illustrate the principal modes of fracture and the effects of loading history, environment, and materials quality on fracture appearance. An atlas ofmore » fractographs constitutes the second half of the volume and contains more than 1300 fractographs, including a collection of ferrous and nonferrous alloy parts. Supplemental illustrations of failed metal-matrix composites, resin-matrix composites, polymers, and electronic materials are provided.« less

  5. Generating standardized image data for testing and calibrating quantification of volumes, surfaces, lengths, and object counts in fibrous and porous materials using X-ray microtomography.

    PubMed

    Jiřík, Miroslav; Bartoš, Martin; Tomášek, Petr; Malečková, Anna; Kural, Tomáš; Horáková, Jana; Lukáš, David; Suchý, Tomáš; Kochová, Petra; Hubálek Kalbáčová, Marie; Králíčková, Milena; Tonar, Zbyněk

    2018-06-01

    Quantification of the structure and composition of biomaterials using micro-CT requires image segmentation due to the low contrast and overlapping radioopacity of biological materials. The amount of bias introduced by segmentation procedures is generally unknown. We aim to develop software that generates three-dimensional models of fibrous and porous structures with known volumes, surfaces, lengths, and object counts in fibrous materials and to provide a software tool that calibrates quantitative micro-CT assessments. Virtual image stacks were generated using the newly developed software TeIGen, enabling the simulation of micro-CT scans of unconnected tubes, connected tubes, and porosities. A realistic noise generator was incorporated. Forty image stacks were evaluated using micro-CT, and the error between the true known and estimated data was quantified. Starting with geometric primitives, the error of the numerical estimation of surfaces and volumes was eliminated, thereby enabling the quantification of volumes and surfaces of colliding objects. Analysis of the sensitivity of the thresholding upon parameters of generated testing image sets revealed the effects of decreasing resolution and increasing noise on the accuracy of the micro-CT quantification. The size of the error increased with decreasing resolution when the voxel size exceeded 1/10 of the typical object size, which simulated the effect of the smallest details that could still be reliably quantified. Open-source software for calibrating quantitative micro-CT assessments by producing and saving virtually generated image data sets with known morphometric data was made freely available to researchers involved in morphometry of three-dimensional fibrillar and porous structures in micro-CT scans. © 2018 Wiley Periodicals, Inc.

  6. Advances and Computational Tools towards Predictable Design in Biological Engineering

    PubMed Central

    2014-01-01

    The design process of complex systems in all the fields of engineering requires a set of quantitatively characterized components and a method to predict the output of systems composed by such elements. This strategy relies on the modularity of the used components or the prediction of their context-dependent behaviour, when parts functioning depends on the specific context. Mathematical models usually support the whole process by guiding the selection of parts and by predicting the output of interconnected systems. Such bottom-up design process cannot be trivially adopted for biological systems engineering, since parts function is hard to predict when components are reused in different contexts. This issue and the intrinsic complexity of living systems limit the capability of synthetic biologists to predict the quantitative behaviour of biological systems. The high potential of synthetic biology strongly depends on the capability of mastering this issue. This review discusses the predictability issues of basic biological parts (promoters, ribosome binding sites, coding sequences, transcriptional terminators, and plasmids) when used to engineer simple and complex gene expression systems in Escherichia coli. A comparison between bottom-up and trial-and-error approaches is performed for all the discussed elements and mathematical models supporting the prediction of parts behaviour are illustrated. PMID:25161694

  7. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Jicheng; Gaffrey, Matthew J.; Qian, Wei-Jun

    Protein cysteine thiols play a crucial role in redox signaling, regulation of enzymatic activity and protein function, and maintaining redox homeostasis in living systems. The unique chemical reactivity of thiol groups makes cysteine susceptible to oxidative modifications by reactive oxygen and nitrogen species to form a broad array of reversible and irreversible protein post-translational modifications (PTMs). The reversible modifications in particular are one of the major components of redox signaling and are involved in regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in health and diseases has been increasingly recognized. Herein,more » we review the recent advances of quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including the general considerations of sample processing, various chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for addressing specific biological questions. Although some technological limitations remain, redox proteomics is paving the way towards a better understanding of redox signaling and regulation in human health and diseases.« less

  8. A monoclonal antibody based elisa for quantitation of human leukaemia inhibitory factor.

    PubMed

    Taupin, J L; Gualde, N; Moreau, J F

    1997-02-01

    The authors report on the development of a new sandwich enzyme-linked immunoabsorbent assay (ELISA) for the quantitation of the human cytokine leukaemia inhibitory factor/human interleukin for DA cells (LIF/HILDA) with high accuracy and sensitivity (23 pg/ml), in less than 5 h and in various biological fluids. The antibodies used in this assay were raised against recombinant glycosylated LIF expressed in vivo following inoculation of recombinant vaccinia viruses, and screened with the biologically active cytokine in a flow cytometry assay using cells expressing a membrane-bound form of LIF. Furthermore, this home-made assay was compared with two commercially available ELISA kits. The results led to the conclusion that these three assays are far from being equivalent between each other, in terms of sensitivity towards non-glycosylated vs glycosylated LIF. Two major parameters must be incriminated: the glycosylation status of the LIF molecule used as the calibrator, and the binding characteristics of the monoclonal antibodies used to set up these assays toward LIF derived from Escherichia coli or from eukaryotic cells. This points out the importance of these parameters for the design of ELISAs meant for the quantitation of glycosylated cytokines in biological fluids.

  9. EDITORIAL: Physical Biology

    NASA Astrophysics Data System (ADS)

    Roscoe, Jane

    2004-06-01

    Physical Biology is a new peer-reviewed publication from Institute of Physics Publishing. Launched in 2004, the journal will foster the integration of biology with the traditionally more quantitative fields of physics, chemistry, computer science and other math-based disciplines. Its primary aim is to further the understanding of biological systems at all levels of complexity, ranging from the role of structure and dynamics of a single molecule to cellular networks and organisms. The journal encourages the development of a new biology-driven physics based on the extraordinary and increasingly rich data arising in biology, and provides research directions for those involved in the creation of novel bio-engineered systems. Physical Biology will publish a stimulating combination of full length research articles, communications, perspectives, reviews and tutorials from a wide range of disciplines covering topics such as: Single-molecule studies and nanobiotechnology Molecular interactions and protein folding Charge transfer and photobiology Ion channels; structure, function and ion regulation Molecular motors and force generation Subcellular processes Biological networks and neural systems Modeling aspects of molecular and cell biology Cell-cell signaling and interaction Biological patterns and development Evolutionary processes Novel tools and methods in physical biology Experts in the areas encompassed by the journal's scope have been appointed to the Editorial Scientific Committee and the composition of the Committee will be updated regularly to reflect the developments in this new and exciting field. Physical Biology is free online to everyone in 2004; you are invited to take advantage of this offer by visiting the journal homepage at http://physbio.iop.org This special print edition of Physical Biology is a combination of issues 1 and 2 of this electronic-only journal and it brings together an impressive range of articles in the fields covered, including a popular

  10. What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents.

    PubMed

    Mazzini, Virginia; Craig, Vincent S J

    2017-10-01

    The importance of electrolyte solutions cannot be overstated. Beyond the ionic strength of electrolyte solutions the specific nature of the ions present is vital in controlling a host of properties. Therefore ion specificity is fundamentally important in physical chemistry, engineering and biology. The observation that the strengths of the effect of ions often follows well established series suggests that a single predictive and quantitative description of specific-ion effects covering a wide range of systems is possible. Such a theory would revolutionise applications of physical chemistry from polymer precipitation to drug design. Current approaches to understanding specific-ion effects involve consideration of the ions themselves, the solvent and relevant interfaces and the interactions between them. Here we investigate the specific-ion effects trends of standard partial molar volumes and electrostrictive volumes of electrolytes in water and eleven non-aqueous solvents. We choose these measures as they relate to bulk properties at infinite dilution, therefore they are the simplest electrolyte systems. This is done to test the hypothesis that the ions alone exhibit a specific-ion effect series that is independent of the solvent and unrelated to surface properties. The specific-ion effects trends of standard partial molar volumes and normalised electrostrictive volumes examined in this work show a fundamental ion-specific series that is reproduced across the solvents, which is the Hofmeister series for anions and the reverse lyotropic series for cations, supporting the hypothesis. This outcome is important in demonstrating that ion specificity is observed at infinite dilution and demonstrates that the complexity observed in the manifestation of specific-ion effects in a very wide range of systems is due to perturbations of solvent, surfaces and concentration on the underlying fundamental series. This knowledge will guide a general understanding of specific

  11. Evolutionary cell biology: Two origins, one objective

    PubMed Central

    Lynch, Michael; Field, Mark C.; Goodson, Holly V.; Malik, Harmit S.; Pereira-Leal, José B.; Roos, David S.; Turkewitz, Aaron P.; Sazer, Shelley

    2014-01-01

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology. PMID:25404324

  12. Quantitative chest computed tomography as a means of predicting exercise performance in severe emphysema.

    PubMed

    Crausman, R S; Ferguson, G; Irvin, C G; Make, B; Newell, J D

    1995-06-01

    We assessed the value of quantitative high-resolution computed tomography (CT) as a diagnostic and prognostic tool in smoking-related emphysema. We performed an inception cohort study of 14 patients referred with emphysema. The diagnosis of emphysema was based on a compatible history, physical examination, chest radiograph, CT scan of the lung, and pulmonary physiologic evaluation. As a group, those who underwent exercise testing were hyperinflated (percentage predicted total lung capacity +/- standard error of the mean = 133 +/- 9%), and there was evidence of air trapping (percentage predicted respiratory volume = 318 +/- 31%) and airflow limitation (forced expiratory volume in 1 sec [FEV1] = 40 +/- 7%). The exercise performance of the group was severely limited (maximum achievable workload = 43 +/- 6%) and was characterized by prominent ventilatory, gas exchange, and pulmonary vascular abnormalities. The quantitative CT index was markedly elevated in all patients (76 +/- 9; n = 14; normal < 4). There were correlations between this quantitative CT index and measures of airflow limitation (FEV1 r2 = .34, p = 09; FEV1/forced vital capacity r2 = .46, p = .04) and between maximum workload achieved (r2 = .93, p = .0001) and maximum oxygen utilization (r2 = .83, p = .0007). Quantitative chest CT assessment of disease severity is correlated with the degree of airflow limitation and exercise impairment in pulmonary emphysema.

  13. Towards quantitative condition assessment of biodiversity outcomes: Insights from Australian marine protected areas.

    PubMed

    Addison, Prue F E; Flander, Louisa B; Cook, Carly N

    2017-08-01

    Protected area management effectiveness (PAME) evaluation is increasingly undertaken to evaluate governance, assess conservation outcomes and inform evidence-based management of protected areas (PAs). Within PAME, quantitative approaches to assess biodiversity outcomes are now emerging, where biological monitoring data are directly assessed against quantitative (numerically defined) condition categories (termed quantitative condition assessments). However, more commonly qualitative condition assessments are employed in PAME, which use descriptive condition categories and are evaluated largely with expert judgement that can be subject to a range of biases, such as linguistic uncertainty and overconfidence. Despite the benefits of increased transparency and repeatability of evaluations, quantitative condition assessments are rarely used in PAME. To understand why, we interviewed practitioners from all Australian marine protected area (MPA) networks, which have access to long-term biological monitoring data and are developing or conducting PAME evaluations. Our research revealed that there is a desire within management agencies to implement quantitative condition assessment of biodiversity outcomes in Australian MPAs. However, practitioners report many challenges in transitioning from undertaking qualitative to quantitative condition assessments of biodiversity outcomes, which are hampering progress. Challenges include a lack of agency capacity (staff numbers and money), knowledge gaps, and diminishing public and political support for PAs. We point to opportunities to target strategies that will assist agencies overcome these challenges, including new decision support tools, approaches to better finance conservation efforts, and to promote more management relevant science. While a single solution is unlikely to achieve full evidence-based conservation, we suggest ways for agencies to target strategies and advance PAME evaluations toward best practice. Copyright

  14. Subsurface imaging and cell refractometry using quantitative phase/ shear-force feedback microscopy

    NASA Astrophysics Data System (ADS)

    Edward, Kert; Farahi, Faramarz

    2009-10-01

    Over the last few years, several novel quantitative phase imaging techniques have been developed for the study of biological cells. However, many of these techniques are encumbered by inherent limitations including 2π phase ambiguities and diffraction limited spatial resolution. In addition, subsurface information in the phase data is not exploited. We hereby present a novel quantitative phase imaging system without 2 π ambiguities, which also allows for subsurface imaging and cell refractometry studies. This is accomplished by utilizing simultaneously obtained shear-force topography information. We will demonstrate how the quantitative phase and topography data can be used for subsurface and cell refractometry analysis and will present results for a fabricated structure and a malaria infected red blood cell.

  15. Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo

    NASA Astrophysics Data System (ADS)

    McVeigh, Patrick Z.; Mallia, Rupananda J.; Veilleux, Israel; Wilson, Brian C.

    2013-04-01

    In recent years numerous studies have shown the potential advantages of molecular imaging in vitro and in vivo using contrast agents based on surface enhanced Raman scattering (SERS), however the low throughput of traditional point-scanned imaging methodologies have limited their use in biological imaging. In this work we demonstrate that direct widefield Raman imaging based on a tunable filter is capable of quantitative multiplex SERS imaging in vivo, and that this imaging is possible with acquisition times which are orders of magnitude lower than achievable with comparable point-scanned methodologies. The system, designed for small animal imaging, has a linear response from (0.01 to 100 pM), acquires typical in vivo images in <10 s, and with suitable SERS reporter molecules is capable of multiplex imaging without compensation for spectral overlap. To demonstrate the utility of widefield Raman imaging in biological applications, we show quantitative imaging of four simultaneous SERS reporter molecules in vivo with resulting probe quantification that is in excellent agreement with known quantities (R2>0.98).

  16. Simulated linear test applied to quantitative proteomics.

    PubMed

    Pham, T V; Jimenez, C R

    2016-09-01

    Omics studies aim to find significant changes due to biological or functional perturbation. However, gene and protein expression profiling experiments contain inherent technical variation. In discovery proteomics studies where the number of samples is typically small, technical variation plays an important role because it contributes considerably to the observed variation. Previous methods place both technical and biological variations in tightly integrated mathematical models that are difficult to adapt for different technological platforms. Our aim is to derive a statistical framework that allows the inclusion of a wide range of technical variability. We introduce a new method called the simulated linear test, or the s-test, that is easy to implement and easy to adapt for different models of technical variation. It generates virtual data points from the observed values according to a pre-defined technical distribution and subsequently employs linear modeling for significance analysis. We demonstrate the flexibility of the proposed approach by deriving a new significance test for quantitative discovery proteomics for which missing values have been a major issue for traditional methods such as the t-test. We evaluate the result on two label-free (phospho) proteomics datasets based on ion-intensity quantitation. Available at http://www.oncoproteomics.nl/software/stest.html : t.pham@vumc.nl. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Quantitative changes in proteins responsible for flavonoid and anthocyanin biosynthesis in strawberry fruit at different ripening stages: A targeted quantitative proteomic investigation employing multiple reaction monitoring.

    PubMed

    Song, Jun; Du, Lina; Li, Li; Kalt, Wilhelmina; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, Ying; Zhang, ZhaoQi; Li, XiHong

    2015-06-03

    To better understand the regulation of flavonoid and anthocyanin biosynthesis, a targeted quantitative proteomic investigation employing LC-MS with multiple reaction monitoring was conducted on two strawberry cultivars at three ripening stages. This quantitative proteomic workflow was improved through an OFFGEL electrophoresis to fractionate peptides from total protein digests. A total of 154 peptide transitions from 47 peptides covering 21 proteins and isoforms related to anthocyanin biosynthesis were investigated. The normalized protein abundance, which was measured using isotopically-labeled standards, was significantly changed concurrently with increased anthocyanin content and advanced fruit maturity. The protein abundance of phenylalanine ammonia-lyase; anthocyanidin synthase, chalcone isomerase; flavanone 3-hydroxylase; dihydroflavonol 4-reductase, UDP-glucose:flavonoid-3-O-glucosyltransferase, cytochrome c and cytochrome C oxidase subunit 2, was all significantly increased in fruit of more advanced ripeness. An interaction between cultivar and maturity was also shown with respect to chalcone isomerase. The good correlation between protein abundance and anthocyanin content suggested that a metabolic control point may exist for anthocyanin biosynthesis. This research provides insights into the process of anthocyanin formation in strawberry fruit at the level of protein concentration and reveals possible candidates in the regulation of anthocyanin formation during fruit ripening. To gain insight into the molecular mechanisms contributing to flavonoids and anthocyanin biosynthesis and regulation of strawberry fruit during ripening is challenging due to limited molecular biology tools and established hypothesis. Our targeted proteomic approach employing LC-MS/MS analysis and MRM technique to quantify proteins in relation to flavonoids and anthocyanin biosynthesis and regulation in strawberry fruit during fruit ripening is novel. The identification of peptides

  18. Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes.

    PubMed

    Petasis, Doros T; Hendrich, Michael P

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.

  19. Quantitative Ultrasound Backscatter for Pulsed Cavitational Ultrasound Therapy—Histotripsy

    PubMed Central

    Wang, Tzu-Yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L.; Fowlkes, J. Brian; Rothman, Edward D.; Roberts, William W.; Cain, Charles A.

    2011-01-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs. This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology. Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated. PMID:19750596

  20. Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy- histotripsy.

    PubMed

    Wang, Tzu-yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L; Fowlkes, J Brian; Rothman, Edward D; Roberts, William W; Cain, Charles A

    2009-05-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs.This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology.Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated.