Science.gov

Sample records for quantitative biome reconstruction

  1. Quantitative biome reconstruction using modern and late Quaternary pollen data from the southern part of the Russian Far East

    NASA Astrophysics Data System (ADS)

    Mokhova, Lyudmila; Tarasov, Pavel; Bazarova, Valentina; Klimin, Mikhail

    2009-12-01

    In this study we present a recent compilation of 286 modern surface pollen spectra from the southern part of the Russian Far East (42-54°N, 131-141°E) and use it to test the biome reconstruction method. Seventy terrestrial pollen taxa were assigned to plant functional types and then classified to eight regional biomes. When applied to 286 surface pollen spectra, the method assigns about 70% (201 sites) of the samples to the cool mixed forest biome, 17% - to the taiga, 2% - to the cool conifer forest, 3% - to the temperate deciduous forest, and 7% - to the steppe. The steppe reconstruction is characteristic of the pollen spectra from the agricultural areas around Lake Khanka. A visual comparison shows good agreement between pollen-derived biomes and actual vegetation distribution in the region. However, pollen and botanical data, compared with the potential vegetation distribution simulated from the modern climate dataset using the BIOME1 model, demonstrate that spatial distribution of cool mixed forest is underrepresented in the model simulation. The model sets the mean temperature of the coldest month of -15 °C as the factor limiting distribution of the temperate deciduous broadleaf taxa, while vegetation and pollen data from the region demonstrate that this limit should be lowered to -26 °C. Application of the method to the Gur 3-99 pollen record (50°00 'N, 137°03 'E) demonstrates that tundra vegetation predominated around the site prior to 14 ka BP (1 ka = 1000 cal. years). However, the local presence of boreal trees and mixed forest-tundra vegetation is suggested by relatively high taiga scores. Soon after 14 ka BP the scores of taiga become slightly higher than tundra scores. During 11.4-10.5 ka BP a cool conifer forest is reconstructed. Establishment of the full interglacial conditions is marked by the onset of cool mixed forest by 10.5 ka BP. Between 10.3 and 2.5 ka BP the scores of temperate deciduous forest are close to those of cool mixed forest and

  2. Global middle Pliocene biome reconstruction: A data/model synthesis

    NASA Astrophysics Data System (ADS)

    Haywood, Alan M.; Valdes, Paul J.; Francis, Jane E.; Sellwood, Bruce W.

    2002-12-01

    The middle Pliocene warm interval (ca. 3 Ma BP) has been extensively studied. However, our knowledge concerning the global distribution of middle Pliocene biomes remains far from complete. This paper presents the results from a "first attempt" at simulating the distribution of different mid-Pliocene biomes using an advanced numerical general circulation climate model (Hadley Centre Atmospheric Model Version 3) and the BIOME 4 vegetation model. The modeling indicates that during the middle Pliocene the geographical coverage of tundra type biomes may have been significantly reduced compared with the present day in the Northern Hemisphere. High-latitude forests expand in the place of tundra forms of vegetation. Total area covered by forest increases for the Pliocene case compared with the present day. Arid deserts become less prevalent in the Pliocene scenario and are replaced by tropical xerophytic shrublands and savanna-type vegetation. These results compare favorably with geological data in general and with the U.S. Geological Survey's PRISM2 middle Pliocene vegetation reconstruction, although data/model inconsistencies are apparent. Although some of these inconsistencies relate to the weaknesses of the climate and biome model employed, others identify deficiencies in the extant geological data set or the interpretation of this data. This modeled biome reconstruction will serve as a useful vehicle for aiding in future comparisons between geological data on middle Pliocene biomes and model predictions.

  3. Biomes.

    ERIC Educational Resources Information Center

    Web Feet K-8, 2001

    2001-01-01

    This annotated subject guide to Web sites and additional resources focuses on biomes. Specifies age levels for resources that include Web sites, CD-ROMs and software, videos, books, audios, and magazines; includes professional resources; and presents a relevant class activity. (LRW)

  4. Reconstructed Arctic biome and soil distributions: implications for the late Quaternary permafrost subsystem

    NASA Astrophysics Data System (ADS)

    Hendricks, A.; Saito, K.; Bigelow, N. H.; Walsh, J. E.

    2013-12-01

    As part of a larger project exploring permafrost distribution in the Arctic and Beringia region, we are updating BIOME4 model outputs and pollen maps for 21ka (ka = thousand years ago), 6ka, and 0ka time periods. Vegetation is a key control for permafrost distribution as it can affect the surface conditions controlling permafrost in high latitudes. BIOME4 is a coupled biogeography and biogeochemical model that simulates the global equilibrium distribution of biomes. BIOME4 was initially run with two historical climatologies for the 20th century, one of which is a more current climatology not used in previous BIOME4 runs, to obtain a general 'present day' view of the biome distributions. The updated climatology shows advances in the tree line in northern Alaska, but both climatologies generally agree on evergreen and deciduous taiga/montane forest locations. Using PMIP3/CMIP5 global circulation model climate and soil data as well as prescribed carbon dioxide concentrations, we ran the BIOME4 model for each time period. 21ka reconstructions based on the BIOME4 model output show various types of tundra widespread across the region, as far south as 40°N. This differs from present day where modeled tundra is generally limited to northern areas poleward of 70°N, the southernmost extent being ~60°N. However, when compared to real-world data provided by the updated BIOME 6000 global palaeovegetation map, preliminary 21ka tundra biomes differ in coverage. The model places shrub tundras in the focus region where we know graminoid or steppe type tundra existed. The discrepancy appears to arise from soil moisture content that was not changed in the BIOME4 runs for the different time periods, implying that soil water content may be very important in obtaining correct biome distributions in the Arctic. In particular, the modeling results suggest that moisture may be a critical feature determining the distribution of shrubby vs. herbaceous tundra. We know from lake level

  5. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years

    USGS Publications Warehouse

    Marchant, R.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J. H.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.B.; Cleef, A.M.; Duivenvoorden, J.F.; Flenley, J.R.; De Oliveira, P.; Van Geel, B.; Graf, K.J.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.C.S.; Horn, S.P.; Islebe, G.A.; Kuhry, P.; Ledru, M.

    2009-01-01

    The biomisation method is used to reconstruct Latin American vegetation at 6000±500 and 18 000±1000 radiocarbon years before present (14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation. At 6000±500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000±500 14C yr BP reconstruction are comparatively small. Patterns of change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America also show a change in biome assignment to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded. At 18 000±1000 14C yr BP 61 samples from 34 sites record vegetation that reflects a generally cool and dry environment. Cool grass/shrubland prevalent in southeast Brazil, Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate

  6. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years

    USGS Publications Warehouse

    Marchant, R.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J. H.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.B.; Cleef, A.M.; Duivenvoorden, J.F.; Flenley, J.R.; De Oliveira, P.; Van Geel, B.; Graf, K.J.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.C.S.; Horn, S.P.; Islebe, G.A.; Kuhry, P.; Ledru, M.-P.; Mayle, F.E.; Leyden, B.W.; Lozano-Garcia, S.; Melief, A.B.M.; Moreno, P.; Moar, N.T.; Prieto, A.; Van Reenen, G. B.; Salgado-Labouriau, M. L.; Schasignbitz, F.; Schreve-Brinkman, E. J.; Wille, M.

    2009-01-01

    The biomisation method is used to reconstruct Latin American vegetation at 6000±500 and 18 000±1000 radiocarbon years before present (14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation.

    At 6000±500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000±500 14C yr BP reconstruction are comparatively small. Patterns of change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America also show a change in biome assignment to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded.

    At 18 000±1000 14C yr BP 61 samples from 34 sites record vegetation that reflects a generally cool and dry environment. Cool grass/shrubland prevalent in southeast Brazil, Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site

  7. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago

    USGS Publications Warehouse

    Marchant, R.; Cleef, A.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.; Duivenvoorden, J.; Flenley, J.; De Oliveira, P.; Van Gee, B.; Graf, K.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.; Horn, S.; Kuhry, P.; Ledru, M.-P.; Mayle, F.; Leyden, B.; Lozano-Garcia, S.; Melief, A.M.; Moreno, P.; Moar, N.T.; Prieto, A.; Van Reenen, G.; Salgado-Labouriau, M.; Schabitz, F.; Schreve-Brinkman, E. J.; Wille, M.

    2009-01-01

    The biomisation method is used to reconstruct Latin American vegetation at 6000??500 and 18 000??1000 radiocarbon years before present ( 14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation. At 6000??500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000??500 14C yr BP reconstruction are comparatively small; change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America show a change in biome assignment, but to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded. At 18 000??1000 14C yr BP 61 samples from 34 sites record vegetation reflecting a generally cool and dry environment. Cool grass/shrubland is prevalent in southeast Brazil whereas Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate rain

  8. Quantitative comparison of the in situ microbial communities in different biomes

    SciTech Connect

    White, D.C. |; Ringelberg, D.B.; Palmer, R.J.

    1995-12-31

    A system to define microbial communities in different biomes requires the application of non-traditional methodology. Classical microbiological methods have severe limitations for the analysis of environmental samples. Pure-culture isolation, biochemical testing, and/or enumeration by direct microscopic counting are not well suited for the estimation of total biomass or the assessment of community composition within environmental samples. Such methods provide little insight into the in situ phenotypic activity of the extant microbiota since these techniques are dependent on microbial growth and thus select against many environmental microorganisms which are non- culturable under a wide range of conditions. It has been repeatedly documented in the literature that viable counts or direct counts of bacteria attached to sediment grains are difficult to quantitative and may grossly underestimate the extent of the existing community. The traditional tests provide little indication of the in situ nutritional status or for evidence of toxicity within the microbial community. A more recent development (MIDI Microbial Identification System), measure free and ester-linked fatty acids from isolated microorganisms. Bacterial isolates are identified by comparing their fatty acid profiles to the MIKI database which contains over 8000 entries. The application of the MIKI system to the analysis of environmental samples however, has significant drawbacks. The MIDI system was developed to identify clinical microorganisms and requires their isolation and culture on trypticase soy agar at 27{degrees}C. Since many isolates are unable to grow at these restrictive growth conditions, the system does not lend itself to identification of some environmental organisms. A more applicable methodology for environmental microbial analysis is based on the liquid extrication and separation of microbial lipids from environmental samples, followed by quantitative analysis using gas chromatography/

  9. A quantitative assessment of a terrestrial biosphere model's data needs across North American biomes

    NASA Astrophysics Data System (ADS)

    Dietze, Michael C.; Serbin, Shawn P.; Davidson, Carl; Desai, Ankur R.; Feng, Xiaohui; Kelly, Ryan; Kooper, Rob; LeBauer, David; Mantooth, Joshua; McHenry, Kenton; Wang, Dan

    2014-03-01

    Terrestrial biosphere models are designed to synthesize our current understanding of how ecosystems function, test competing hypotheses of ecosystem function against observations, and predict responses to novel conditions such as those expected under climate change. Reducing uncertainties in such models can improve both basic scientific understanding and our predictive capacity, but rarely are ecosystem models employed in the design of field campaigns. We provide a synthesis of carbon cycle uncertainty analyses conducted using the Predictive Ecosystem Analyzer ecoinformatics workflow with the Ecosystem Demography model v2. This work is a synthesis of multiple projects, using Bayesian data assimilation techniques to incorporate field data and trait databases across temperate forests, grasslands, agriculture, short rotation forestry, boreal forests, and tundra. We report on a number of data needs that span a wide array of diverse biomes, such as the need for better constraint on growth respiration, mortality, stomatal conductance, and water uptake. We also identify data needs that are biome specific, such as photosynthetic quantum efficiency at high latitudes. We recommend that future data collection efforts balance the bias of past measurements toward aboveground processes in temperate biomes with the sensitivities of different processes as represented by ecosystem models. ©2014. American Geophysical Union. All Rights Reserved.

  10. Biomes of western North America at 18,000, 6000 and 0 14C yr BP reconstructed from pollen and packrat midden data

    USGS Publications Warehouse

    Thompson, R.S.; Anderson, K.H.

    2000-01-01

    A new compilation of pollen and packrat midden data from western North America provides a refined reconstruction of the composition and distribution of biomes in western North America for today and for 6000 and 18,000 radiocarbon years before present (14C yr BP). Modern biomes in western North America are adequately portrayed by pollen assemblages from lakes and bogs. Forest biomes in western North America share many taxa in their pollen spectra and it can be difficult to discriminate among these biomes. Plant macrofossils from packrat middens provide reliable identification of modern biomes from arid and semiarid regions, and this may also be true in similar environments in other parts of the world. However, a weighting factor for trees and shrubs must be used to reliably reconstruct modern biomes from plant macrofossils. A new biome, open conifer woodland, which includes eurythermic conifers and steppe plants, was defined to categorize much of the current and past vegetation of the semiarid interior of western North America. At 6000 14C yr BP, the forest biomes of the coastal Pacific North-west and the desert biomes of the South-west were in near-modern positions. Biomes in the interior Pacific North-west differed from those of today in that taiga prevailed in modern cool/cold mixed forests. Steppe was present in areas occupied today by open conifer woodland in the northern Great Basin, while in the central and southern Rocky Mountains forests grew where steppe grows today. During the mid-Holocene, cool conifer forests were expanded in the Rocky Mountains (relative to today) but contracted in the Sierra Nevada. These differences from the forests of today imply different climatic histories in these two regions between 6000 14C yr BP and today. At 18,000 14C yr BP, deserts were absent from the South-west and the coverage of open conifer woodland was greatly expanded relative to today. Steppe and tundra were present in much of the region now covered by forests in

  11. Towards reconstructing herbaceous biome dynamics and associated precipitation in Africa: insights from the classification of grass morphological traits

    NASA Astrophysics Data System (ADS)

    Pasturel, Marine; Alexandre, Anne; Novello, Alice; Moctar Dieye, Amadou; Wele, Abdoulaye; Paradis, Laure; Hely, Christelle

    2014-05-01

    Inter-tropical herbaceous ecosystems occupy a 1/5th of terrestrial surface, a half of the African continent, and are expected to extend in the next decades. Dynamic of these ecosystems is simulated with poor accuracy by Dynamic Global Vegetation Models (DGVMs). One of the bias results from the fact that the diversity of the grass layer dominating these herbaceous ecosystems is poorly taken into account. Mean annual precipitation and the length of the dry season are the main constrains of the dynamics of these ecosystems. Conversely, changes in vegetation affect the water cycle. Inaccuracy in herbaceous ecosystem simulation thus impacts simulations of the water cycle (including precipitation) and vice versa. In order to increase our knowledge of the relationships between grass morphological traits, taxonomy, biomes and climatic niches in Western and South Africa, a 3-step methodology was followed: i) values of culm height, leaf length and width of dominant grass species from Senegal were gathered from flora and clustered using the Partition Around Medoids (PAM) method; ii) trait group ability to sign climatic domains and biomes was assessed using Kruskal-Wallis tests; iii) genericity and robustness of the trait groups were evaluated through their application to Chadian and South African botanical datasets. Results show that 8 grass trait groups are present either in Senegal, Chad or South Africa. These 8 trait groups are distributed along mean annual precipitation and dry season length gradients. The combination of three of them allow to discriminate mean annual precipitation domains (<250, 250-600, 600-1000 and >1000 mm) and herbaceous biomes (steppes, savannas, South African grasslands and Nama-Karoo). With these results in hand, grass Plant Functional Types (PFTs) of the DGMV LPJ-GUESS will be re-parameterized and particular attention will be given to the herbaceous biomass assigned to each grass trait group. Simultaneously, relationships between grass trait

  12. Resistance reconstructed estimation of total peripheral resistance from computationally derived cardiac output - biomed 2013.

    PubMed

    Hill, Labarron K; Sollers Iii, John J; Thayer, Julian F

    2013-01-01

    Efficient functioning of the peripheral vasculature is an essential component in healthy cardiovascular regulation. Alterations in this functioning have been linked to the etiology and pathophysiological course of cardiovascular disease (CVD), especially hypertension. Given its significant role in the maintenance of both healthy and pathological blood pressure, total peripheral resistance (TPR), an index of the vasoconstrictive and elastic properties of the peripheral vasculature, has received much attention in this regard. However, obtaining a reliable estimate of TPR remains a complex and costly endeavor, primarily due to the necessity for sophisticated instrumentation as well as associated limitations in deriving cardiac output (CO). We have previously described a simple estimation method for CO using only arterial blood pressure and heart rate (Hill et al, 2012). In the present study we extend this technique to the estimation of TPR using beat-to-beat blood pressure data from the same sample of 67 young (mean age = 20.04± 2.8), healthy men (n = 30) and women (n = 37). Estimated TPR (TPRest) was calculated from the computationally-derived estimate of CO and mean arterial pressure (MAP). Correlation between TPR obtained via the validated Model-Flow technique and TPRest was moderate (r =.73, p <. 000) and stronger in men (r =.78, p <. 000) compared to women (r =.66, p <. 001). These data further suggest that reconstructed measures of hemodynamic functioning may be validly and adequately estimated from limited data sources.

  13. Direct quantitative tomographic reconstruction for weakly absorbing homogeneous phase objects

    NASA Astrophysics Data System (ADS)

    Arhatari, B. D.; De Carlo, F.; Peele, A. G.

    2007-05-01

    We examine a direct filtered back projection approach that is suitable for the reconstruction of weakly absorbing homogeneous phase objects. Like recent similar approaches this method needs only one intensity image in each projection without the requirement for an intermediate step of phase retrieval. We tested the method using simulation and experimental results. Simulation results show good quantitative reconstruction which includes the correct refractive index value and distribution of the sample. However, experimental result still indicates the presence of artifacts.

  14. A pollen-based biome reconstruction over the last 3.562 million years in the Far East Russian Arctic - new insights into climate-vegetation relationships at the regional scale

    NASA Astrophysics Data System (ADS)

    Tarasov, P. E.; Andreev, A. A.; Anderson, P. M.; Lozhkin, A. V.; Leipe, C.; Haltia, E.; Nowaczyk, N. R.; Wennrich, V.; Brigham-Grette, J.; Melles, M.

    2013-12-01

    The recent and fossil pollen data obtained under the frame of the multi-disciplinary international El'gygytgyn Drilling Project represent a unique archive, which allows the testing of a range of pollen-based reconstruction approaches and the deciphering of changes in the regional vegetation and climate. In the current study we provide details of the biome reconstruction method applied to the late Pliocene and Quaternary pollen records from Lake El'gygytgyn. All terrestrial pollen taxa identified in the spectra from Lake El'gygytgyn were assigned to major vegetation types (biomes), which today occur near the lake and in the broader region of eastern and northern Asia and, thus, could be potentially present in this region during the past. When applied to the pollen spectra from the middle Pleistocene to present, the method suggests (1) a predominance of tundra during the Holocene, (2) a short interval during the marine isotope stage (MIS) 5.5 interglacial distinguished by cold deciduous forest, and (3) long phases of taiga dominance during MIS 31 and, particularly, MIS 11.3. These two latter interglacials seem to be some of the longest and warmest intervals in the study region within the past million years. During the late Pliocene-early Pleistocene interval (i.e., ~3.562-2.200 Ma), there is good correspondence between the millennial-scale vegetation changes documented in the Lake El'gygytgyn record and the alternation of cold and warm marine isotope stages, which reflect changes in the global ice volume and sea level. The biome reconstruction demonstrates changes in the regional vegetation from generally warmer/wetter environments of the earlier (i.e., Pliocene) interval towards colder/drier environments of the Pleistocene. The reconstruction indicates that the taxon-rich cool mixed and cool conifer forest biomes are mostly characteristic of the time prior to MIS G16, whereas the tundra biome becomes a prominent feature starting from MIS G6. These results

  15. Impact of reconstruction parameters on quantitative I-131 SPECT

    NASA Astrophysics Data System (ADS)

    van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.

    2016-07-01

    Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be  <1%,-26% and 33%, respectively. The adverse effects of partial volume were significantly smaller with the Monte Carlo simulated CDR correction compared with geometric Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated CDR

  16. Impact of reconstruction parameters on quantitative I-131 SPECT

    NASA Astrophysics Data System (ADS)

    van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.

    2016-07-01

    Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be  <1%,‑26% and 33%, respectively. The adverse effects of partial volume were significantly smaller with the Monte Carlo simulated CDR correction compared with geometric Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated

  17. Accuracy of quantitative reconstructions in SPECT/CT imaging

    NASA Astrophysics Data System (ADS)

    Shcherbinin, S.; Celler, A.; Belhocine, T.; van der Werf, R.; Driedger, A.

    2008-09-01

    The goal of this study was to determine the quantitative accuracy of our OSEM-APDI reconstruction method based on SPECT/CT imaging for Tc-99m, In-111, I-123, and I-131 isotopes. Phantom studies were performed on a SPECT/low-dose multislice CT system (Infinia-Hawkeye-4 slice, GE Healthcare) using clinical acquisition protocols. Two radioactive sources were centrally and peripherally placed inside an anthropometric Thorax phantom filled with non-radioactive water. Corrections for attenuation, scatter, collimator blurring and collimator septal penetration were applied and their contribution to the overall accuracy of the reconstruction was evaluated. Reconstruction with the most comprehensive set of corrections resulted in activity estimation with error levels of 3-5% for all the isotopes.

  18. Concluding Report: Quantitative Tomography Simulations and Reconstruction Algorithms

    SciTech Connect

    Aufderheide, M B; Martz, H E; Slone, D M; Jackson, J A; Schach von Wittenau, A E; Goodman, D M; Logan, C M; Hall, J M

    2002-02-01

    In this report we describe the original goals and final achievements of this Laboratory Directed Research and Development project. The Quantitative was Tomography Simulations and Reconstruction Algorithms project (99-ERD-015) funded as a multi-directorate, three-year effort to advance the state of the art in radiographic simulation and tomographic reconstruction by improving simulation and including this simulation in the tomographic reconstruction process. Goals were to improve the accuracy of radiographic simulation, and to couple advanced radiographic simulation tools with a robust, many-variable optimization algorithm. In this project, we were able to demonstrate accuracy in X-Ray simulation at the 2% level, which is an improvement of roughly a factor of 5 in accuracy, and we have successfully coupled our simulation tools with the CCG (Constrained Conjugate Gradient) optimization algorithm, allowing reconstructions that include spectral effects and blurring in the reconstructions. Another result of the project was the assembly of a low-scatter X-Ray imaging facility for use in nondestructive evaluation applications. We conclude with a discussion of future work.

  19. Quantitative analysis of the reconstruction performance of interpolants

    NASA Technical Reports Server (NTRS)

    Lansing, Donald L.; Park, Stephen K.

    1987-01-01

    The analysis presented provides a quantitative measure of the reconstruction or interpolation performance of linear, shift-invariant interpolants. The performance criterion is the mean square error of the difference between the sampled and reconstructed functions. The analysis is applicable to reconstruction algorithms used in image processing and to many types of splines used in numerical analysis and computer graphics. When formulated in the frequency domain, the mean square error clearly separates the contribution of the interpolation method from the contribution of the sampled data. The equations provide a rational basis for selecting an optimal interpolant; that is, one which minimizes the mean square error. The analysis has been applied to a selection of frequently used data splines and reconstruction algorithms: parametric cubic and quintic Hermite splines, exponential and nu splines (including the special case of the cubic spline), parametric cubic convolution, Keys' fourth-order cubic, and a cubic with a discontinuous first derivative. The emphasis in this paper is on the image-dependent case in which no a priori knowledge of the frequency spectrum of the sampled function is assumed.

  20. Quantitative image quality evaluation for cardiac CT reconstructions

    NASA Astrophysics Data System (ADS)

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.; Balhorn, William; Okerlund, Darin R.

    2016-03-01

    Maintaining image quality in the presence of motion is always desirable and challenging in clinical Cardiac CT imaging. Different image-reconstruction algorithms are available on current commercial CT systems that attempt to achieve this goal. It is widely accepted that image-quality assessment should be task-based and involve specific tasks, observers, and associated figures of merits. In this work, we developed an observer model that performed the task of estimating the percentage of plaque in a vessel from CT images. We compared task performance of Cardiac CT image data reconstructed using a conventional FBP reconstruction algorithm and the SnapShot Freeze (SSF) algorithm, each at default and optimal reconstruction cardiac phases. The purpose of this work is to design an approach for quantitative image-quality evaluation of temporal resolution for Cardiac CT systems. To simulate heart motion, a moving coronary type phantom synchronized with an ECG signal was used. Three different percentage plaques embedded in a 3 mm vessel phantom were imaged multiple times under motion free, 60 bpm, and 80 bpm heart rates. Static (motion free) images of this phantom were taken as reference images for image template generation. Independent ROIs from the 60 bpm and 80 bpm images were generated by vessel tracking. The observer performed estimation tasks using these ROIs. Ensemble mean square error (EMSE) was used as the figure of merit. Results suggest that the quality of SSF images is superior to the quality of FBP images in higher heart-rate scans.

  1. Facegram - Objective quantitative analysis in facial reconstructive surgery.

    PubMed

    Gerós, Ana; Horta, Ricardo; Aguiar, Paulo

    2016-06-01

    Evaluation of effectiveness in reconstructive plastic surgery has become an increasingly important asset in comparing and choosing the most suitable medical procedure to handle facial disfigurement. Unfortunately, traditional methods to assess the results of surgical interventions are mostly qualitative and lack information about movement dynamics. Along with this, the few existing methodologies tailored to objectively quantify surgery results are not practical in the medical field due to constraints in terms of cost, complexity and poor suitability to clinical environment. These limitations enforce an urgent need for the creation of a new system to quantify facial movement and allow for an easy interpretation by medical experts. With this in mind, we present here a novel method capable of quantitatively and objectively assess complex facial movements, using a set of morphological, static and dynamic measurements. For this purpose, RGB-D cameras are used to acquire both color and depth images, and a modified block matching algorithm, combining depth and color information, was developed to track the position of anatomical landmarks of interest. The algorithms are integrated into a user-friendly graphical interface and the analysis outcomes are organized into an innovative medical tool, named facegram. This system was developed in close collaboration with plastic surgeons and the methods were validated using control subjects and patients with facial paralysis. The system was shown to provide useful and detailed quantitative information (static and dynamic) making it an appropriate solution for objective quantitative characterization of facial movement in a clinical environment. PMID:26994664

  2. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction

    SciTech Connect

    Elschot, Mattijs; Smits, Maarten L. J.; Nijsen, Johannes F. W.; Lam, Marnix G. E. H.; Zonnenberg, Bernard A.; Bosch, Maurice A. A. J. van den; Jong, Hugo W. A. M. de; Viergever, Max A.

    2013-11-15

    Purpose: Quantitative imaging of the radionuclide distribution is of increasing interest for microsphere radioembolization (RE) of liver malignancies, to aid treatment planning and dosimetry. For this purpose, holmium-166 ({sup 166}Ho) microspheres have been developed, which can be visualized with a gamma camera. The objective of this work is to develop and evaluate a new reconstruction method for quantitative {sup 166}Ho SPECT, including Monte Carlo-based modeling of photon contributions from the full energy spectrum.Methods: A fast Monte Carlo (MC) simulator was developed for simulation of {sup 166}Ho projection images and incorporated in a statistical reconstruction algorithm (SPECT-fMC). Photon scatter and attenuation for all photons sampled from the full {sup 166}Ho energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled using precalculated convolution kernels. Phantom experiments were performed to quantitatively evaluate image contrast, image noise, count errors, and activity recovery coefficients (ARCs) of SPECT-fMC in comparison with those of an energy window-based method for correction of down-scattered high-energy photons (SPECT-DSW) and a previously presented hybrid method that combines MC simulation of photopeak scatter with energy window-based estimation of down-scattered high-energy contributions (SPECT-ppMC+DSW). Additionally, the impact of SPECT-fMC on whole-body recovered activities (A{sup est}) and estimated radiation absorbed doses was evaluated using clinical SPECT data of six {sup 166}Ho RE patients.Results: At the same noise level, SPECT-fMC images showed substantially higher contrast than SPECT-DSW and SPECT-ppMC+DSW in spheres ≥17 mm in diameter. The count error was reduced from 29% (SPECT-DSW) and 25% (SPECT-ppMC+DSW) to 12% (SPECT-fMC). ARCs in five spherical volumes of 1.96–106.21 ml were improved from 32%–63% (SPECT-DSW) and 50%–80

  3. Quantitative assessment of healthy and reconstructed cleft lip using ultrasonography

    PubMed Central

    Devadiga, Sumana; Desai, Anil Kumar; Joshi, Shamsunder; Gopalakrishnan, K.

    2016-01-01

    Purpose: This study is conducted to investigate the feasibility of echographic imaging of tissue thickness of healthy and reconstructed cleft lip. Design: Prospective study. Materials and Methods: The study was conducted in SDM Craniofacial Unit, Dharwad and was approved by Local Institutional Review Board. A total of 30 patients, age group ranging from 4 to 25 years, of which 15 postoperative unilateral cleft lip constituted the test group. The remaining 15 with no cleft deformities, no gross facial asymmetry, constituted the control group. The thickness of the mucosa, submucosa, muscle and full thickness of the upper lip were measured with the transversal images using ultrasonography at midpoint of philtrum, right and left side philtral ridges and vermillion border, at 1, 3, 6 months interval. Results: There was an increase in muscle thickness at the vermillion border (mean = 6.9 mm) and philtral ridge (5.9 mm). Equal muscle thickness were found between the normal and test group at 6 months follow-up in a relaxed position, which was statistically significant (P = 0.0404). Conclusion: Quantitative assessment of thickness and echo levels of various lip tissues are done with proper echographic calibration. Diagnostic potentials of this method for noninvasive evaluation of cleft lip reconstructions were achieved by this study. PMID:27134448

  4. The biome reconstruction approach as a tool for interpretation of past vegetation and climate changes: application to modern and fossil pollen data from Lake El'gygytgyn, Far East Russian Arctic

    NASA Astrophysics Data System (ADS)

    Tarasov, P. E.; Andreev, A. A.; Anderson, P. M.; Lozhkin, A. V.; Haltia, E.; Nowaczyk, N. R.; Wennrich, V.; Brigham-Grette, J.; Melles, M.

    2013-06-01

    The modern and fossil pollen data obtained under the framework of the multi-disciplinary international "El'gygytgyn Drilling Project" represent a unique archive that allows the testing of a range of pollen-based reconstruction approaches and the deciphering of changes in the regional vegetation and climate since ~3.58 Ma. In the current study we provide details of the biome reconstruction method applied to the late Pliocene and Quaternary pollen records from Lake El'gygytgyn. All terrestrial pollen taxa identified in the spectra from Lake El'gygytgyn were assigned to major vegetation types (biomes), which today occur near the lake and in the broader region of eastern and northern Asia and, thus, could potentially have been present in this region during the past. When applied to the modern surface pollen spectra from the lake, the method shows a dominance of the tundra biome that currently characterizes the Lake El'gygytgyn area. When applied to the pollen spectra from the middle Pleistocene to present, the method suggests (1) a predominance of tundra during the Holocene, (2) a short interval during the marine isotope stage (MIS) 5.5 interglacial distinguished by cold deciduous forest, and (3) a long phase of taiga dominance during MIS 31 and, particularly, MIS 11.3. These two latter interglacials seem to be some of the longest and warmest intervals within the past million years. During the late Pliocene-early Pleistocene interval (i.e., ~3.562-2.200 Ma), there is good correspondence between the millennial-scale vegetation changes documented in the Lake El'gygytgyn record and the alternation of cold and warm marine isotope stages, which reflect changes in the global ice volume and sea level. The biome reconstruction demonstrates changes in the regional vegetation which suggest a step-like transition from generally warmer/wetter environments of the earlier (i.e., Pliocene) interval towards colder/drier environments of the Pleistocene. The reconstruction of most of

  5. DISQOVER the Landcover - R based tools for quantitative vegetation reconstruction

    NASA Astrophysics Data System (ADS)

    Theuerkauf, Martin; Couwenberg, John; Kuparinen, Anna; Liebscher, Volkmar

    2016-04-01

    Quantitative methods have gained increasing attention in the field of vegetation reconstruction over the past decade. The DISQOVER package implements key tools in the R programming environment for statistical computing. This implementation has three main goals: 1) Provide a user-friendly, transparent, and open implementation of the methods 2) Provide full flexibility in all parameters (including the underlying pollen dispersal model) 3) Provide a sandbox for testing the sensitivity of the methods. We illustrate the possibilities of the package with tests of the REVEALS model and of the extended downscaling approach (EDA). REVEALS (Sugita 2007) is designed to translate pollen data from large lakes into regional vegetation composition. We applied REVEALSinR on pollen data from Lake Tiefer See (NE-Germany) and validated the results with historic landcover data. The results clearly show that REVEALS is sensitive to the underlying pollen dispersal model; REVEALS performs best when applied with the state of the art Lagrangian stochastic dispersal model. REVEALS applications with the conventional Gauss model can produce realistic results, but only if unrealistic pollen productivity estimates are used. The EDA (Theuerkauf et al. 2014) employs pollen data from many sites across a landscape to explore whether species distributions in the past were related to know stable patterns in the landscape, e.g. the distribution of soil types. The approach had so far only been implemented in simple settings with few taxa. Tests with EDAinR show that it produces sharp results in complex settings with many taxa as well. The DISQOVER package is open source software, available from disqover.uni-greifswald.de. This website can be used as a platform to discuss and improve quantitative methods in vegetation reconstruction. To introduce the tool we plan a short course in autumn of this year. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution

  6. QUANTITATIVE PALEOCLIMATE RECONSTRUCTIONS FROM THE MELVILLE PENINSULA, NUNAVUT, CANADA

    NASA Astrophysics Data System (ADS)

    Adams, J. K.; Finkelstein, S. A.

    2009-12-01

    : Staurosira construens var. venter from 650 to 330 yrs BP may indicate the Little Ice Age (LIA) on the Peninsula, which closely coincides temporally with proxy-based reconstructions of the LIA from Boothia Peninsula to the west. Changes consistent with recent warming of SP02 began 225 yrs BP, including increased diatom concentration and increased species richness from pre-industrial maximum of 28 to 51 species in the modern assemblage. About 160 yrs BP, species richness increases in SP04 from pre-industrial maximum of 20 to 37 species in the modern assemblage. The diatom genera Achnanthes and Cymbella diversify in the past century, while Cyclotella spp. appear in SP04 44 yrs BP and SP02 -20 yrs BP (AD 1970), indicating longer ice-free seasons. Diatom-inferred quantitative pH reconstructions using transfer functions for the two study lakes did not indicate significant change in the Holocene despite assemblage changes. The lack of sensitivity in the transfer functions may be due to the need for high taxonomic resolution when analyzing fossil and modern diatoms (particularly Fragilarioids which dominate many Arctic lakes), or pervasive human impacts in the Arctic leading to a lack of modern analogues for fossil assemblages.

  7. Quantitative reconstruction of the last interglacial vegetation and climate based on the pollen record from Lake Baikal, Russia

    NASA Astrophysics Data System (ADS)

    Tarasov, P.; Granoszewski, W.; Bezrukova, E.; Brewer, S.; Nita, M.; Abzaeva, A.; Oberhänsli, H.

    2005-11-01

    Changes in mean temperature of the coldest ( T c) and warmest month ( T w), annual precipitation ( P ann) and moisture index (α) were reconstructed from a continuous pollen record from Lake Baikal, Russia. The pollen sequence CON01-603-2 (53°57'N, 108°54'E) was recovered from a 386 m water depth in the Continent Ridge and dated to ca. 130 114.8 ky BP. This time interval covers the complete last interglacial (LI), corresponding to MIS 5e. Results of pollen analysis and pollen-based quantitative biome reconstruction show pronounced changes in the regional vegetation throughout the record. Shrubby tundra covered the area at the beginning of MIS 5e (ca. 130 128 ky), consistent with the end of the Middle Pleistocene glaciation. The late glacial climate was characterised by low winter and summer temperatures ( T c ~ -38 to -35°C and T w~11 13°C) and low annual precipitation ( P ann~300 mm). However, the wide spread of tundra vegetation suggests rather moist environments associated with low temperatures and evaporation (reconstructed α~1). Tundra was replaced by boreal conifer forest (taiga) by ca. 128 ky BP, suggesting a transition to the interglacial. Taiga-dominant phase lasted until ca. 117.4 ky BP, e.g. about 10 ky. The most favourable climate conditions occurred during the first half of the LI. P ann reached 500 mm soon after 128 ky BP. However, temperature changed more gradually. Maximum values of T c ~ -20°C and T w~16 17°C are reconstructed from about 126 ky BP. Conditions became gradually colder after ca. 121 ky BP. T c dropped to ~ -27°C and T w to ~15°C by 119.5 ky BP. The reconstructed increase in continentality was accompanied by a decrease in P ann to ~400 420 mm. However, the climate was still humid enough (α~0.9) to support growth of boreal evergreen conifers. A sharp turn towards a dry climate is reconstructed after ca. 118 ky BP, causing retreat of forest and spread of cool grass-shrub communities. Cool steppe dominated the vegetation in the

  8. Reconstruction-classification method for quantitative photoacoustic tomography.

    PubMed

    Malone, Emma; Powell, Samuel; Cox, Ben T; Arridge, Simon

    2015-01-01

    We propose a combined reconstruction-classification method for simultaneously recovering absorption and scattering in turbid media from images of absorbed optical energy. This method exploits knowledge that optical parameters are determined by a limited number of classes to iteratively improve their estimate. Numerical experiments show that the proposed approach allows for accurate recovery of absorption and scattering in two and three dimensions, and delivers superior image quality with respect to traditional reconstruction-only approaches. PMID:26662815

  9. Reconstruction-classification method for quantitative photoacoustic tomography.

    PubMed

    Malone, Emma; Powell, Samuel; Cox, Ben T; Arridge, Simon

    2015-01-01

    We propose a combined reconstruction-classification method for simultaneously recovering absorption and scattering in turbid media from images of absorbed optical energy. This method exploits knowledge that optical parameters are determined by a limited number of classes to iteratively improve their estimate. Numerical experiments show that the proposed approach allows for accurate recovery of absorption and scattering in two and three dimensions, and delivers superior image quality with respect to traditional reconstruction-only approaches.

  10. North American Biome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The North America biome includes the major ecoregions that make up the land area of Canada, the United States, Mexico, and countries in Central America. The biome is bordered to the north by the Arctic Ocean, to the east by the Atlantic Ocean, to the west and south by the Pacific Ocean, and to the s...

  11. Reconstructing palaeoclimatic variables from fossil pollen using boosted regression trees: comparison and synthesis with other quantitative reconstruction methods

    NASA Astrophysics Data System (ADS)

    Salonen, J. Sakari; Luoto, Miska; Alenius, Teija; Heikkilä, Maija; Seppä, Heikki; Telford, Richard J.; Birks, H. John B.

    2014-03-01

    We test and analyse a new calibration method, boosted regression trees (BRTs) in palaeoclimatic reconstructions based on fossil pollen assemblages. We apply BRTs to multiple Holocene and Lateglacial pollen sequences from northern Europe, and compare their performance with two commonly-used calibration methods: weighted averaging regression (WA) and the modern-analogue technique (MAT). Using these calibration methods and fossil pollen data, we present synthetic reconstructions of Holocene summer temperature, winter temperature, and water balance changes in northern Europe. Highly consistent trends are found for summer temperature, with a distinct Holocene thermal maximum at ca 8000-4000 cal. a BP, with a mean Tjja anomaly of ca +0.7 °C at 6 ka compared to 0.5 ka. We were unable to reconstruct reliably winter temperature or water balance, due to the confounding effects of summer temperature and the great between-reconstruction variability. We find BRTs to be a promising tool for quantitative reconstructions from palaeoenvironmental proxy data. BRTs show good performance in cross-validations compared with WA and MAT, can model a variety of taxon response types, find relevant predictors and incorporate interactions between predictors, and show some robustness with non-analogue fossil assemblages.

  12. Quantitative reconstruction of leukocyte subsets using DNA methylation

    PubMed Central

    2014-01-01

    Background Cell lineage-specific DNA methylation patterns distinguish normal human leukocyte subsets and can be used to detect and quantify these subsets in peripheral blood. We have developed an approach that uses DNA methylation to simultaneously quantify multiple leukocyte subsets, enabling investigation of immune modulations in virtually any blood sample including archived samples previously precluded from such analysis. Here we assess the performance characteristics and validity of this approach. Results Using Illumina Infinium HumanMethylation27 and VeraCode GoldenGate Methylation Assay microarrays, we measure DNA methylation in leukocyte subsets purified from human whole blood and identify cell lineage-specific DNA methylation signatures that distinguish human T cells, B cells, NK cells, monocytes, eosinophils, basophils and neutrophils. We employ a bioinformatics-based approach to quantify these cell types in complex mixtures, including whole blood, using DNA methylation at as few as 20 CpG loci. A reconstruction experiment confirms that the approach could accurately measure the composition of mixtures of human blood leukocyte subsets. Applying the DNA methylation-based approach to quantify the cellular components of human whole blood, we verify its accuracy by direct comparison to gold standard immune quantification methods that utilize physical, optical and proteomic characteristics of the cells. We also demonstrate that the approach is not affected by storage of blood samples, even under conditions prohibiting the use of gold standard methods. Conclusions Cell mixture distributions within peripheral blood can be assessed accurately and reliably using DNA methylation. Thus, precise immune cell differential estimates can be reconstructed using only DNA rather than whole cells. PMID:24598480

  13. Quantitative Reconstructions of 3D Chemical Nanostructures in Nanowires.

    PubMed

    Rueda-Fonseca, P; Robin, E; Bellet-Amalric, E; Lopez-Haro, M; Den Hertog, M; Genuist, Y; André, R; Artioli, A; Tatarenko, S; Ferrand, D; Cibert, J

    2016-03-01

    Energy dispersive X-ray spectrometry is used to extract a quantitative 3D composition profile of heterostructured nanowires. The analysis of hypermaps recorded along a limited number of projections, with a preliminary calibration of the signal associated with each element, is compared to the intensity profiles calculated for a model structure with successive shells of circular, elliptic, or faceted cross sections. This discrete tomographic technique is applied to II-VI nanowires grown by molecular beam epitaxy, incorporating ZnTe and CdTe and their alloys with Mn and Mg, with typical size down to a few nanometers and Mn or Mg content as low as 10%.

  14. A comparison of quantitative reconstruction techniques for PIXE-tomography analysis applied to biological samples

    NASA Astrophysics Data System (ADS)

    Beasley, D. G.; Alves, L. C.; Barberet, Ph.; Bourret, S.; Devès, G.; Gordillo, N.; Michelet, C.; Le Trequesser, Q.; Marques, A. C.; Seznec, H.; da Silva, R. C.

    2014-07-01

    The tomographic reconstruction of biological specimens requires robust algorithms, able to deal with low density contrast and low element concentrations. At the IST/ITN microprobe facility new GPU-accelerated reconstruction software, JPIXET, has been developed, which can significantly increase the speed of quantitative reconstruction of Proton Induced X-ray Emission Tomography (PIXE-T) data. It has a user-friendly graphical user interface for pre-processing, data analysis and reconstruction of PIXE-T and Scanning Transmission Ion Microscopy Tomography (STIM-T). The reconstruction of PIXE-T data is performed using either an algorithm based on a GPU-accelerated version of the Maximum Likelihood Expectation Maximisation (MLEM) method or a GPU-accelerated version of the Discrete Image Space Reconstruction Algorithm (DISRA) (Sakellariou (2001) [2]). The original DISRA, its accelerated version, and the MLEM algorithm, were compared for the reconstruction of a biological sample of Caenorhabditis elegans - a small worm. This sample was analysed at the microbeam line of the AIFIRA facility of CENBG, Bordeaux. A qualitative PIXE-T reconstruction was obtained using the CENBG software package TomoRebuild (Habchi et al. (2013) [6]). The effects of pre-processing and experimental conditions on the elemental concentrations are discussed.

  15. Comparison of reconstruction methods and quantitative accuracy in Siemens Inveon PET scanner

    NASA Astrophysics Data System (ADS)

    Ram Yu, A.; Kim, Jin Su; Kang, Joo Hyun; Moo Lim, Sang

    2015-04-01

    concentrations for radioactivity Our data collectively showed that OSEM 2D reconstruction method provides quantitatively accurate reconstructed PET data results.

  16. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion

    SciTech Connect

    Lin, Yuan Samei, Ehsan

    2014-02-15

    Purpose: In quantitative myocardial CT perfusion imaging, beam hardening effect due to dense bone and high concentration iodinated contrast agent can result in visible artifacts and inaccurate CT numbers. In this paper, an efficient polyenergetic Simultaneous Algebraic Reconstruction Technique (pSART) was presented to eliminate the beam hardening artifacts and to improve the CT quantitative imaging ability. Methods: Our algorithm made threea priori assumptions: (1) the human body is composed of several base materials (e.g., fat, breast, soft tissue, bone, and iodine); (2) images can be coarsely segmented to two types of regions, i.e., nonbone regions and noniodine regions; and (3) each voxel can be decomposed into a mixture of two most suitable base materials according to its attenuation value and its corresponding region type information. Based on the above assumptions, energy-independent accumulated effective lengths of all base materials can be fast computed in the forward ray-tracing process and be used repeatedly to obtain accurate polyenergetic projections, with which a SART-based equation can correctly update each voxel in the backward projecting process to iteratively reconstruct artifact-free images. This approach effectively reduces the influence of polyenergetic x-ray sources and it further enables monoenergetic images to be reconstructed at any arbitrarily preselected target energies. A series of simulation tests were performed on a size-variable cylindrical phantom and a realistic anthropomorphic thorax phantom. In addition, a phantom experiment was also performed on a clinical CT scanner to further quantitatively validate the proposed algorithm. Results: The simulations with the cylindrical phantom and the anthropomorphic thorax phantom showed that the proposed algorithm completely eliminated beam hardening artifacts and enabled quantitative imaging across different materials, phantom sizes, and spectra, as the absolute relative errors were reduced

  17. Quantitative evaluation study of four-dimensional gated cardiac SPECT reconstruction

    PubMed Central

    Jin, Mingwu; Yang, Yongyi; Niu, Xiaofeng; Marin, Thibault; Brankov, Jovan G.; Feng, Bing; Pretorius, P. Hendrik; King, Michael A.; Wernick, Miles N.

    2013-01-01

    In practice gated cardiac SPECT images suffer from a number of degrading factors, including distance-dependent blur, attenuation, scatter, and increased noise due to gating. Recently we proposed a motion-compensated approach for four-dimensional (4D) reconstruction for gated cardiac SPECT, and demonstrated that use of motion-compensated temporal smoothing could be effective for suppressing the increased noise due to lowered counts in individual gates. In this work we further develop this motion-compensated 4D approach by also taking into account attenuation and scatter in the reconstruction process, which are two major degrading factors in SPECT data. In our experiments we conducted a thorough quantitative evaluation of the proposed 4D method using Monte Carlo simulated SPECT imaging based on the 4D NURBS-based cardiac-torso (NCAT) phantom. In particular we evaluated the accuracy of the reconstructed left ventricular myocardium using a number of quantitative measures including regional bias-variance analyses and wall intensity uniformity. The quantitative results demonstrate that use of motion-compensated 4D reconstruction can improve the accuracy of the reconstructed myocardium, which in turn can improve the detectability of perfusion defects. Moreover, our results reveal that while traditional spatial smoothing could be beneficial, its merit would become diminished with the use of motion-compensated temporal regularization. As a preliminary demonstration, we also tested our 4D approach on patient data. The reconstructed images from both simulated and patient data demonstrated that our 4D method can improve the definition of the LV wall. PMID:19724094

  18. Holocene changes in vegetation composition in northern Europe: why quantitative pollen-based vegetation reconstructions matter

    NASA Astrophysics Data System (ADS)

    Marquer, Laurent; Gaillard, Marie-José; Sugita, Shinya; Trondman, Anna-Kari; Mazier, Florence; Nielsen, Anne Birgitte; Fyfe, Ralph M.; Odgaard, Bent Vad; Alenius, Teija; Birks, H. John B.; Bjune, Anne E.; Christiansen, Jörg; Dodson, John; Edwards, Kevin J.; Giesecke, Thomas; Herzschuh, Ulrike; Kangur, Mihkel; Lorenz, Sebastian; Poska, Anneli; Schult, Manuela; Seppä, Heikki

    2014-04-01

    We present pollen-based reconstructions of the spatio-temporal dynamics of northern European regional vegetation abundance through the Holocene. We apply the Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) model using fossil pollen records from eighteen sites within five modern biomes in the region. The eighteen sites are classified into four time-trajectory types on the basis of principal components analysis of both the REVEALS-based vegetation estimates (RVs) and the pollen percentage (PPs). The four trajectory types are more clearly separated for RVs than PPs. Further, the timing of major Holocene shifts, rates of compositional change, and diversity indices (turnover and evenness) differ between RVs and PPs. The differences are due to the reduction by REVEALS of biases in fossil pollen assemblages caused by different basin size, and inter-taxonomic differences in pollen productivity and dispersal properties. For example, in comparison to the PPs, the RVs show an earlier increase in Corylus and Ulmus in the early-Holocene and a more pronounced increase in grassland and deforested areas since the mid-Holocene. The results suggest that the influence of deforestation and agricultural activities on plant composition and abundance from Neolithic times was stronger than previously inferred from PPs. Relative to PPs, RVs show a more rapid compositional change, a largest decrease in turnover, and less variable evenness in most of northern Europe since 5200 cal yr BP. All these changes are primarily related to the strong impact of human activities on the vegetation. This study demonstrates that RV-based estimates of diversity indices, timing of shifts, and rates of change in reconstructed vegetation provide new insights into the timing and magnitude of major human disturbance on Holocene regional vegetation, features that are critical in the assessment of human impact on vegetation, land-cover, biodiversity, and climate in the past.

  19. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET.

    PubMed

    Ahn, Sangtae; Ross, Steven G; Asma, Evren; Miao, Jun; Jin, Xiao; Cheng, Lishui; Wollenweber, Scott D; Manjeshwar, Ravindra M

    2015-08-01

    Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs. PMID:26158503

  20. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET

    NASA Astrophysics Data System (ADS)

    Ahn, Sangtae; Ross, Steven G.; Asma, Evren; Miao, Jun; Jin, Xiao; Cheng, Lishui; Wollenweber, Scott D.; Manjeshwar, Ravindra M.

    2015-08-01

    Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs.

  1. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET.

    PubMed

    Ahn, Sangtae; Ross, Steven G; Asma, Evren; Miao, Jun; Jin, Xiao; Cheng, Lishui; Wollenweber, Scott D; Manjeshwar, Ravindra M

    2015-08-01

    Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs.

  2. Optimization of Bayesian Emission tomographic reconstruction for region of interest quantitation

    SciTech Connect

    Qi, Jinyi

    2003-01-10

    Region of interest (ROI) quantitation is an important task in emission tomography (e.g., positron emission tomography and single photon emission computed tomography). It is essential for exploring clinical factors such as tumor activity, growth rate, and the efficacy of therapeutic interventions. Bayesian methods based on the maximum a posteriori principle (or called penalized maximum likelihood methods) have been developed for emission image reconstructions to deal with the low signal to noise ratio of the emission data. Similar to the filter cut-off frequency in the filtered backprojection method, the smoothing parameter of the image prior in Bayesian reconstruction controls the resolution and noise trade-off and hence affects ROI quantitation. In this paper we present an approach for choosing the optimum smoothing parameter in Bayesian reconstruction for ROI quantitation. Bayesian reconstructions are difficult to analyze because the resolution and noise properties are nonlinear and object-dependent. Building on the recent progress on deriving the approximate expressions for the local impulse response function and the covariance matrix, we derived simplied theoretical expressions for the bias, the variance, and the ensemble mean squared error (EMSE) of the ROI quantitation. One problem in evaluating ROI quantitation is that the truth is often required for calculating the bias. This is overcome by using ensemble distribution of the activity inside the ROI and computing the average EMSE. The resulting expressions allow fast evaluation of the image quality for different smoothing parameters. The optimum smoothing parameter of the image prior can then be selected to minimize the EMSE.

  3. Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth

    NASA Astrophysics Data System (ADS)

    Jha, Abhinav K.; Song, Na; Caffo, Brian; Frey, Eric C.

    2015-03-01

    Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a volume of interest (VOI) in a patient image. This objective evaluation can be performed if the true value of the estimated parameter is known, i.e. we have a gold standard. However, very rarely is this gold standard known in human studies. Thus, no-gold-standard techniques to optimize and evaluate systems and algorithms in the absence of gold standard are required. In this work, we developed a no-gold-standard technique to objectively evaluate reconstruction methods used in quantitative SPECT when the parameter to be estimated is the mean activity concentration in a VOI. We studied the performance of the technique with realistic simulated image data generated from an object database consisting of five phantom anatomies with all possible combinations of five sets of organ uptakes, where each anatomy consisted of eight different organ VOIs. Results indicate that the method pro- vided accurate ranking of the reconstruction methods. We also demonstrated the application of consistency checks to test the no-gold-standard output.

  4. Biomization and quantitative climate reconstruction techniques in northwestern Mexico—With an application to four Holocene pollen sequences

    NASA Astrophysics Data System (ADS)

    Ortega-Rosas, C. I.; Guiot, J.; Peñalba, M. C.; Ortiz-Acosta, M. E.

    2008-04-01

    New paleovegetation and paleoclimatic reconstructions from the Sierra Madre Occidental (SMO) in northwestern Mexico are presented. This work involves climate and biome reconstruction using Plant Functional Types (PFT) assigned to pollen taxa. We used fossil pollen data from four Holocene peat bogs located at different altitudes (1500-2000 m) at the border region of Sonora and Chihuahua at around 28° N latitude (Ortega-Rosas, C.I. 2003. Palinología de la Ciénega de Camilo: datos para la historia de la vegetación y el clima del Holoceno medio y superior en el NW de la Sierra Madre Occidental, Sonora, Mexico. Master Thesis, Universidad Nacional Autónoma de México, México D.F.; Ortega-Rosas, C.I., Peñalba, M.C., Guiot, J. Holocene altitudinal shifts in vegetation belts and environmental changes in the Sierra Madre Occidental, Northwestern Mexico. Submitted for publication of Palaeobotany and Palynology). The closest modern pollen data come from pollen analysis across an altitudinal transect from the Sonoran Desert towards the highlands of the temperate SMO at the same latitude (Ortega-Rosas, C.I. 2003. Palinología de la Ciénega de Camilo: datos para la historia de la vegetación y el clima del Holoceno medio y superior en el NW de la Sierra Madre Occidental, Sonora, Mexico. Master Thesis, Universidad Nacional Autónoma de México, México D.F.). An additional modern pollen dataset of 400 sites across NW Mexico and the SW United States was compiled from different sources (Davis, O.K., 1995. Climate and vegetation pattern in surface samples from arid western U.S.A.: application to Holocene climatic reconstruction. Palynology 19, 95-119, North American Pollen Database, Latin-American Pollen Database, personal data, and different scientific papers). For the biomization method (Prentice, I.C., Guiot, J., Huntley, B., Jolly, D., Cheddadi, R., 1996. Reconstructing biomes from paleoecological data: a general method and its application to European pollen data at 0 and

  5. A system for quantitative morphological measurement and electronic modelling of neurons: three-dimensional reconstruction.

    PubMed

    Stockley, E W; Cole, H M; Brown, A D; Wheal, H V

    1993-04-01

    A system for accurately reconstructing neurones from optical sections taken at high magnification is described. Cells are digitised on a 68000-based microcomputer to form a database consisting of a series of linked nodes each consisting of x, y, z coordinates and an estimate of dendritic diameter. This database is used to generate three-dimensional (3-D) displays of the neurone and allows quantitative analysis of the cell volume, surface area and dendritic length. Images of the cell can be manipulated locally or transferred to an IBM 3090 mainframe where a wireframe model can be displayed on an IBM 5080 graphics terminal and rotated interactively in real time, allowing visualisation of the cell from all angles. Space-filling models can also be produced. Reconstructions can also provide morphological data for passive electrical simulations of hippocampal pyramidal cells.

  6. Quantitative Paleoenvironmental Reconstructions using Benthic Foraminifera: Overcoming the No-Analog Problem

    NASA Astrophysics Data System (ADS)

    Kouwenhoven, T. J.; Duijnstee, I. A. P.; Jannink, N. T.; Langezaal, A. M.; de Nooijer, L. J.; Schweizer, M.; van der Zwaan, G. J.

    2003-04-01

    Benthic foraminifera are used often to constrain paleoenvironments in conjunction with geochemical and sedimentological data. Taxonomy and morphology together with their inferred ecological meaning have always been important parameters in this respect. Over the past years our work has been largely dedicated to conducting experimental research and field observations on benthic foraminiferal communities in relation to their physicochemical environment. Application of this knowledge to paleoenvironmental reconstructions, however, is seriously hampered by the no-analog problem: the difference between modern and fossil assemblages in species composition and species abundance. A further major problem concerns the difficulty to use fossils to quantitatively reconstruct paleoenvironmental processes. We try to overcome these two problems by: (1) Using expert knowledge and fuzzy techniques to cluster modern and fossil taxa in (fuzzy) supra-specific ecogroups and using these ecogroups in further analyses instead of foraminiferal taxa. By doing this we overcome the fossil no-analog problem. (2) Integrating distributional data and ecological knowledge on modern foraminifera in a database. (3) Transferring the ecological relationships to the fossil assemblages. For this we use multivariate canonical ordination techniques, thus establishing quantitative relationships between modern fauna (ecogroup abundances) and environmental factors in a multidimensional ordination space. Subsequently, fossil samples are placed mathematically in the same ordination space. (4) From this quantitative paleoenvironmental estimates can be deduced. As an example we have chosen a data set gathered on a 2-monthly basis over two years in the Levantine basin, over a depth transect from 40 to 700 m. The data set contains detailed information on the ecology and cause of seasonal variability in the benthic environment. We try to apply this information to benthic foraminiferal patterns derived from Miocene

  7. Evolution of the indoor biome.

    PubMed

    Martin, Laura J; Adams, Rachel I; Bateman, Ashley; Bik, Holly M; Hawks, John; Hird, Sarah M; Hughes, David; Kembel, Steven W; Kinney, Kerry; Kolokotronis, Sergios-Orestis; Levy, Gabriel; McClain, Craig; Meadow, James F; Medina, Raul F; Mhuireach, Gwynne; Moreau, Corrie S; Munshi-South, Jason; Nichols, Lauren M; Palmer, Clare; Popova, Laura; Schal, Coby; Täubel, Martin; Trautwein, Michelle; Ugalde, Juan A; Dunn, Robert R

    2015-04-01

    Few biologists have studied the evolutionary processes at work in indoor environments. Yet indoor environments comprise approximately 0.5% of ice-free land area--an area as large as the subtropical coniferous forest biome. Here we review the emerging subfield of 'indoor biome' studies. After defining the indoor biome and tracing its deep history, we discuss some of its evolutionary dimensions. We restrict our examples to the species found in human houses--a subset of the environments constituting the indoor biome--and offer preliminary hypotheses to advance the study of indoor evolution. Studies of the indoor biome are situated at the intersection of evolutionary ecology, anthropology, architecture, and human ecology and are well suited for citizen science projects, public outreach, and large-scale international collaborations. PMID:25770744

  8. Disturbance maintains alternative biome states.

    PubMed

    Dantas, Vinícius de L; Hirota, Marina; Oliveira, Rafael S; Pausas, Juli G

    2016-01-01

    Understanding the mechanisms controlling the distribution of biomes remains a challenge. Although tropical biome distribution has traditionally been explained by climate and soil, contrasting vegetation types often occur as mosaics with sharp boundaries under very similar environmental conditions. While evidence suggests that these biomes are alternative states, empirical broad-scale support to this hypothesis is still lacking. Using community-level field data and a novel resource-niche overlap approach, we show that, for a wide range of environmental conditions, fire feedbacks maintain savannas and forests as alternative biome states in both the Neotropics and the Afrotropics. In addition, wooded grasslands and savannas occurred as alternative grassy states in the Afrotropics, depending on the relative importance of fire and herbivory feedbacks. These results are consistent with landscape scale evidence and suggest that disturbance is a general factor driving and maintaining alternative biome states and vegetation mosaics in the tropics.

  9. Applicability of a set of tomographic reconstruction algorithms for quantitative SPECT on irradiated nuclear fuel assemblies

    NASA Astrophysics Data System (ADS)

    Jacobsson Svärd, Staffan; Holcombe, Scott; Grape, Sophie

    2015-05-01

    A fuel assembly operated in a nuclear power plant typically contains 100-300 fuel rods, depending on fuel type, which become strongly radioactive during irradiation in the reactor core. For operational and security reasons, it is of interest to experimentally deduce rod-wise information from the fuel, preferably by means of non-destructive measurements. The tomographic SPECT technique offers such possibilities through its two-step application; (1) recording the gamma-ray flux distribution around the fuel assembly, and (2) reconstructing the assembly's internal source distribution, based on the recorded radiation field. In this paper, algorithms for performing the latter step and extracting quantitative relative rod-by-rod data are accounted for. As compared to application of SPECT in nuclear medicine, nuclear fuel assemblies present a much more heterogeneous distribution of internal attenuation to gamma radiation than the human body, typically with rods containing pellets of heavy uranium dioxide surrounded by cladding of a zirconium alloy placed in water or air. This inhomogeneity severely complicates the tomographic quantification of the rod-wise relative source content, and the deduction of conclusive data requires detailed modelling of the attenuation to be introduced in the reconstructions. However, as shown in this paper, simplified models may still produce valuable information about the fuel. Here, a set of reconstruction algorithms for SPECT on nuclear fuel assemblies are described and discussed in terms of their quantitative performance for two applications; verification of fuel assemblies' completeness in nuclear safeguards, and rod-wise fuel characterization. It is argued that a request not to base the former assessment on any a priori information brings constraints to which reconstruction methods that may be used in that case, whereas the use of a priori information on geometry and material content enables highly accurate quantitative assessment, which

  10. Proxy-to-proxy calibration: Increasing the temporal resolution of quantitative climate reconstructions

    PubMed Central

    von Gunten, Lucien; D'Andrea, William J.; Bradley, Raymond S.; Huang, Yongsong

    2012-01-01

    High-resolution paleoclimate reconstructions are often restricted by the difficulties of sampling geologic archives in great detail and the analytical costs of processing large numbers of samples. Using sediments from Lake Braya Sø, Greenland, we introduce a new method that provides a quantitative high-resolution paleoclimate record by combining measurements of the alkenone unsaturation index () with non-destructive scanning reflectance spectroscopic measurements in the visible range (VIS-RS). The proxy-to-proxy (PTP) method exploits two distinct calibrations: the in situ calibration of to lake water temperature and the calibration of scanning VIS-RS data to down core data. Using this approach, we produced a quantitative temperature record that is longer and has 5 times higher sampling resolution than the original time series, thereby allowing detection of temperature variability in frequency bands characteristic of the AMO over the past 7,000 years. PMID:22934132

  11. Quantitative analysis of surface atom positions in a thick crystal as determined by a reconstructed exit wave.

    PubMed

    Kawasaki, Tadahiro; Taya, Masaki; Takai, Yoshizo

    2003-01-01

    Atomic structures of an Au (110) 2 x 1 reconstructed surface were analysed quantitatively using an exit wave reconstructed by the three-dimensional Fourier filtering method in high-resolution transmission electron microscopy. To reconstruct the exit wave in a relatively thick crystal, a practical criterion was proposed in the present analysis. In the 'pseudo-exit wave' obtained by the proposed criterion, relaxation of surface atoms was clearly visible in the top three layers. The atoms' displacement was measured to be about 5-20 pm. For quantitative analysis of the atom column positions, image contrast calculations were performed using a structural model of the Au (110) reconstructed surface. Calculations confirmed that the reconstructed pseudo-exit wave could represent the atom column positions directly with an accuracy of several pm, even for a relaxed surface, provided the sample thickness was <7 nm.

  12. Biomes computed from simulated climatologies

    NASA Astrophysics Data System (ADS)

    Claussen, Martin; Esch, Monika

    1994-01-01

    The biome model of Prentice et al. (1992a) is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fur Meteorologie. This study is undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to failures in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are seen for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced C02 concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting changes in vegetation patterns due to a rapid climate change, the latter simulation has to be taken as a prediction of changes in conditions favourable for the existence of certain biomes, not as a prediction of a future distribution of biomes.[/ab

  13. Biomes computed from simulated climatologies

    SciTech Connect

    Claussen, M.; Esch, M.

    1994-01-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.

  14. Quantitative underwater 3D motion analysis using submerged video cameras: accuracy analysis and trajectory reconstruction.

    PubMed

    Silvatti, Amanda P; Cerveri, Pietro; Telles, Thiago; Dias, Fábio A S; Baroni, Guido; Barros, Ricardo M L

    2013-01-01

    In this study we aim at investigating the applicability of underwater 3D motion capture based on submerged video cameras in terms of 3D accuracy analysis and trajectory reconstruction. Static points with classical direct linear transform (DLT) solution, a moving wand with bundle adjustment and a moving 2D plate with Zhang's method were considered for camera calibration. As an example of the final application, we reconstructed the hand motion trajectories in different swimming styles and qualitatively compared this with Maglischo's model. Four highly trained male swimmers performed butterfly, breaststroke and freestyle tasks. The middle fingertip trajectories of both hands in the underwater phase were considered. The accuracy (mean absolute error) of the two calibration approaches (wand: 0.96 mm - 2D plate: 0.73 mm) was comparable to out of water results and highly superior to the classical DLT results (9.74 mm). Among all the swimmers, the hands' trajectories of the expert swimmer in the style were almost symmetric and in good agreement with Maglischo's model. The kinematic results highlight symmetry or asymmetry between the two hand sides, intra- and inter-subject variability in terms of the motion patterns and agreement or disagreement with the model. The two outcomes, calibration results and trajectory reconstruction, both move towards the quantitative 3D underwater motion analysis.

  15. Task-oriented quantitative image reconstruction in emission tomography for single- and multi-subject studies

    NASA Astrophysics Data System (ADS)

    Verhaeghe, Jeroen; Gravel, Paul; Reader, Andrew J.

    2010-12-01

    Task-based selection of image reconstruction methodology in emission tomography is a critically important step when designing a PET study. This paper concerns optimizing, given the measured data of the study only, reconstruction performance for a range of quantification tasks: finding the mean radioactivity concentration for different regions of interests (ROIs), different ROI sizes and different group sizes (i.e. the number of subjects in the PET study). At present, the variability of quantification performance of different reconstruction methods, according to both the ROI and group sizes, is largely ignored. In this paper, it is shown that both the ROI and group size have a tremendous impact on the error of the estimator for the task of ROI quantification. A study-specific, task-oriented and space-variant selection rule is proposed that selects a close to optimal estimate drawn from a series of estimates obtained by filtered backprojection (FBP) and different OSEM (ordered subset expectation maximization) iterations. The optimality criterion is to minimize an estimated mean square error (MSE), where the MSE is estimated from the data in the study using the bootstrap resampling technique. The proposed approach is appropriate for both pixel-level estimates and ROI estimates in single- and multi-subject studies. An extensive multi-trial simulation study using a 2D numerical phantom and relevant count levels shows that the proposed selection rule can produce quantitative estimates that are close to the estimates that minimize the true MSE (where the true MSE can only be obtained from many independent Monte-Carlo realizations with knowledge of the ground truth). This indicates that with the proposed selection rule one can obtain a close to optimal estimate while avoiding the critical step of selecting user-defined reconstruction settings (such as an OSEM iteration number or the choice between FBP and OSEM). In this initial 2D study, only FBP and OSEM reconstruction

  16. Regularized reconstruction in quantitative SPECT using CT side information from hybrid imaging

    NASA Astrophysics Data System (ADS)

    Dewaraja, Yuni K.; Koral, Kenneth F.; Fessler, Jeffrey A.

    2010-05-01

    A penalized-likelihood (PL) SPECT reconstruction method using a modified regularizer that accounts for anatomical boundary side information was implemented to achieve accurate estimates of both the total target activity and the activity distribution within targets. In both simulations and experimental I-131 phantom studies, reconstructions from (1) penalized likelihood employing CT-side information-based regularization (PL-CT), (2) penalized likelihood with edge preserving regularization (no CT) and (3) penalized likelihood with conventional spatially invariant quadratic regularization (no CT) were compared with (4) ordered subset expectation maximization (OSEM), which is the iterative algorithm conventionally used in clinics for quantitative SPECT. Evaluations included phantom studies with perfect and imperfect side information and studies with uniform and non-uniform activity distributions in the target. For targets with uniform activity, the PL-CT images and profiles were closest to the 'truth', avoided the edge offshoots evident with OSEM and minimized the blurring across boundaries evident with regularization without CT information. Apart from visual comparison, reconstruction accuracy was evaluated using the bias and standard deviation (STD) of the total target activity estimate and the root mean square error (RMSE) of the activity distribution within the target. PL-CT reconstruction reduced both bias and RMSE compared with regularization without side information. When compared with unregularized OSEM, PL-CT reduced RMSE and STD while bias was comparable. For targets with non-uniform activity, these improvements with PL-CT were observed only when the change in activity was matched by a change in the anatomical image and the corresponding inner boundary was also used to control the regularization. In summary, the present work demonstrates the potential of using CT side information to obtain improved estimates of the activity distribution in targets without

  17. Postoperative Quantitative Assessment of Reconstructive Tissue Status in Cutaneous Flap Model using Spatial Frequency Domain Imaging

    PubMed Central

    Yafi, Amr; Vetter, Thomas S; Scholz, Thomas; Patel, Sarin; Saager, Rolf B; Cuccia, David J; Evans, Gregory R; Durkin, Anthony J

    2010-01-01

    Background The purpose of this study is to investigate the capabilities of a novel optical wide-field imaging technology known as Spatial Frequency Domain Imaging (SFDI) to quantitatively assess reconstructive tissue status. Methods Twenty two cutaneous pedicle flaps were created on eleven rats based on the inferior epigastric vessels. After baseline measurement, all flaps underwent vascular ischemia, induced by clamping the supporting vessels for two hours (either arterio-venous or selective venous occlusions) normal saline was injected to the control flap, and hypertonic hyperoncotic saline solution to the experimental flap. Flaps were monitored for two hours after reperfusion. The SFDI system was used for quantitative assessment of flap status over the duration of the experiment. Results All flaps demonstrated a significant decline in oxy-hemoglobin and tissue oxygen saturation in response to occlusion. Total hemoglobin and deoxy-hemoglobin were markedly increased in the selective venous occlusion group. After reperfusion and the solutions were administered, oxy-hemoglobin and tissue oxygen saturation in those flaps that survived gradually returned to the baseline levels. However, flaps for which oxy-hemoglobin and tissue oxygen saturation didn’t show any signs of recovery appeared to be compromised and eventually became necrotic within 24–48 hours in both occlusion groups. Conclusion SFDI technology provides a quantitative, objective method to assess tissue status. This study demonstrates the potential of this optical technology to assess tissue perfusion in a very precise and quantitative way, enabling wide-field visualization of physiological parameters. The results of this study suggest that SFDI may provide a means for prospectively identifying dysfunctional flaps well in advance of failure. PMID:21200206

  18. Population-scale three-dimensional reconstruction and quantitative profiling of microglia arbors

    PubMed Central

    Rey-Villamizar, Nicolas; Merouane, Amine; Lu, Yanbin; Mukherjee, Amit; Trett, Kristen; Chong, Peter; Harris, Carolyn; Shain, William; Roysam, Badrinath

    2015-01-01

    Motivation: The arbor morphologies of brain microglia are important indicators of cell activation. This article fills the need for accurate, robust, adaptive and scalable methods for reconstructing 3-D microglial arbors and quantitatively mapping microglia activation states over extended brain tissue regions. Results: Thick rat brain sections (100–300 µm) were multiplex immunolabeled for IBA1 and Hoechst, and imaged by step-and-image confocal microscopy with automated 3-D image mosaicing, producing seamless images of extended brain regions (e.g. 5903 × 9874 × 229 voxels). An over-complete dictionary-based model was learned for the image-specific local structure of microglial processes. The microglial arbors were reconstructed seamlessly using an automated and scalable algorithm that exploits microglia-specific constraints. This method detected 80.1 and 92.8% more centered arbor points, and 53.5 and 55.5% fewer spurious points than existing vesselness and LoG-based methods, respectively, and the traces were 13.1 and 15.5% more accurate based on the DIADEM metric. The arbor morphologies were quantified using Scorcioni’s L-measure. Coifman’s harmonic co-clustering revealed four morphologically distinct classes that concord with known microglia activation patterns. This enabled us to map spatial distributions of microglial activation and cell abundances. Availability and implementation: Experimental protocols, sample datasets, scalable open-source multi-threaded software implementation (C++, MATLAB) in the electronic supplement, and website (www.farsight-toolkit.org). http://www.farsight-toolkit.org/wiki/Population-scale_Three-dimensional_Reconstruction_and_Quanti-tative_Profiling_of_Microglia_Arbors Contact: broysam@central.uh.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25701570

  19. An analytical approach to quantitative reconstruction of non-uniform attenuated brain SPECT.

    PubMed

    Liang, Z; Ye, J; Harrington, D P

    1994-11-01

    An analytical approach to quantitative brain SPECT (single-photon-emission computed tomography) with non-uniform attenuation is developed. The approach formulates accurately the projection-transform equation as a summation of primary- and scatter-photon contributions. The scatter contribution can be estimated using the multiple-energy-window samples and removed from the primary-energy-window data by subtraction. The approach models the primary contribution as a convolution of the attenuated source and the detector-response kernel at a constant depth from the detector with the central-ray approximation. The attenuated Radon transform of the source can be efficiently deconvolved using the depth-frequency relation. The approach inverts exactly the attenuated Radon transform by Fourier transforms and series expansions. The performance of the analytical approach was studied for both uniform- and non-uniform-attenuation cases, and compared to the conventional FBP (filtered-backprojection) method by computer simulations. A patient brain X-ray image was acquired by a CT (computed-tomography) scanner and converted to the object-specific attenuation map for 140 keV energy. The mathematical Hoffman brain phantom was used to simulate the emission source and was resized such that it was completely surrounded by the skull of the CT attenuation map. The detector-response kernel was obtained from measurements of a point source at several depths in air from a parallel-hole collimator of a SPECT camera. The projection data were simulated from the object-specific attenuating source including the depth-dependent detector response. Quantitative improvement (>5%) in reconstructing the data was demonstrated with the nonuniform attenuation compensation, as compared to the uniform attenuation correction and the conventional FBP reconstruction. The commuting time was less than 5 min on an HP/730 desktop computer for an image array of 1282*32 from 128 projections of 128*32 size. PMID

  20. 3D reconstruction and quantitative assessment method of mitral eccentric regurgitation from color Doppler echocardiography

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Ge, Yi Nan; Wang, Tian Fu; Zheng, Chang Qiong; Zheng, Yi

    2005-10-01

    Based on the two-dimensional color Doppler image in this article, multilane transesophageal rotational scanning method is used to acquire original Doppler echocardiography while echocardiogram is recorded synchronously. After filtering and interpolation, the surface rendering and volume rendering methods are performed. Through analyzing the color-bar information and the color Doppler flow image's superposition principle, the grayscale mitral anatomical structure and color-coded regurgitation velocity parameter were separated from color Doppler flow images, three-dimensional reconstruction of mitral structure and regurgitation velocity distribution was implemented separately, fusion visualization of the reconstructed regurgitation velocity distribution parameter with its corresponding 3D mitral anatomical structures was realized, which can be used in observing the position, phase, direction and measuring the jet length, area, volume, space distribution and severity level of the mitral regurgitation. In addition, in patients with eccentric mitral regurgitation, this new modality overcomes the inherent limitations of two-dimensional color Doppler flow image by depicting the full extent of the jet trajectory, the area of eccentric regurgitation on three-dimensional image was much larger than that on two-dimensional image, the area variation tendency and volume variation tendency of regurgitation have been shown in figure at different angle and different systolic phase. The study shows that three-dimensional color Doppler provides quantitative measurements of eccentric mitral regurgitation that are more accurate and reproducible than conventional color Doppler.

  1. Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study

    PubMed Central

    Han, Zhaolong; Li, Jiasong; Singh, Manmohan; Wu, Chen; Liu, Chih-hao; Wang, Shang; Idugboe, Rita; Raghunathan, Raksha; Sudheendran, Narendran; Aglyamov, Salavat R.; Twa, Michael D.; Larin, Kirill V.

    2015-01-01

    We present a systematic analysis of the accuracy of five different methods for extracting the biomechanical properties of soft samples using optical coherence elastography (OCE). OCE is an emerging noninvasive technique, which allows assessing biomechanical properties of tissues with a micrometer spatial resolution. However, in order to accurately extract biomechanical properties from OCE measurements, application of proper mechanical model is required. In this study, we utilize tissue-mimicking phantoms with controlled elastic properties and investigate the feasibilities of four available methods for reconstructing elasticity (Young’s modulus) based on OCE measurements of an air-pulse induced elastic wave. The approaches are based on the shear wave equation (SWE), the surface wave equation (SuWE), Rayleigh-Lamb frequency equation (RLFE), and finite element method (FEM), Elasticity values were compared with uniaxial mechanical testing. The results show that the RLFE and the FEM are more robust in quantitatively assessing elasticity than the other simplified models. This study provides a foundation and reference for reconstructing the biomechanical properties of tissues from OCE data, which is important for the further development of noninvasive elastography methods. PMID:25860076

  2. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    NASA Astrophysics Data System (ADS)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  3. Geomagnetic field intensity and quantitative paleorainfall reconstruction from Chinese loess using 10Be and magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Beck, W.; zhou, W.; Li, C.; Wu, Z.; White, L.; Xian, F.

    2011-12-01

    7Be is produced in the atmosphere by cosmic ray spallation reactions and carried to the ground attached to aerosols, usually encapsulated in rain or snow. Numerous studies have shown that its flux to the ground is proportional to rainfall amount. Unfortunately, with a half life of only a few weeks, this observation has little relevance for reconstruction past rainfall amounts in paleosoils. Fortunately, 7Be has a long-lived sister isotope (10Be) with a half life of ~1.5 Ma which can be used for such purposes. There are a number of complications, however. First, 10Be atmospheric production rate changes when the geomagnetic field intensity changes. Secondly, 10Be half life is long enough that 10Be which fell to the ground attached to dust some time in the past can become resuspended, meaning that there are two sources of 10Be, one meteoric, and the other recycled aeolian dust. Fortunately, we have found a method to deconvolute this knotty situation and have applied it to soils of the Chinese Loess Plateau, allowing us to reconstruct records of both geomagnetic field intensity and paleorainfall. To do so, we use the additional parameters magnetic susceptibility and coercivity to help define the inherited amount of each component, and to define what fraction of the variations in 10Be are associated with magnetic field fluctuations, versus that linked to rainfall variations. We also use a sediment age/depth model to convert 10Be concentration to 10Be flux, and finally, we use the modern 7Be vs. rainfall relationship and 10Be/7Be atmospheric production rate ratio to calculate quantitative paleorainfall rates. We have used these techniques to generate several such records ranging from the Holocene to MIS13 (Circa 525 ka BP), and will compare some of these to U-series dated speleothem records of δ18O.

  4. An analysis of quantitative measurements of drainage exudate using negative suction in 96 microtia ear reconstructions

    PubMed Central

    Xu, Zhicheng; Zhang, Ruhong; Zhang, Qun; Xu, Feng

    2012-01-01

    Negative suction drainage is commonly used for the prevention of seromas or hematomas in auricular reconstruction surgery; however, there are few reports regarding the quantitative measurement of negative suction and its relation to disposed time, patient age or microtia type. In the present study, the authors recorded the volume of suction exudate in microtia reconstruction and elaborate on the relevant details of controlling negative suction. A negative suction drainage system was applied in 96 microtia patients between 2007 and 2010. Two small polyethylene drains were inserted adjacent to the concha and the scapha, respectively. The volume of exudate was recorded for three days after surgery and was analyzed according to disposed time, patient age and microtia type. The drains were removed on the third postoperative day, when only a small amount of exudate remained. A significant change in drainage was observed over three days postoperatively, and the quantity decreased progressively on the third postoperative day. Comparison of age groups showed that the volume of drainage from adults was greater than that from children or adolescents in the first two postoperative days, regardless of whether the drains were inserted in the scapha or concha. No statistical differences were found on the third postoperative day. A comparison of drain types revealed no statistically significant differences between scapha and concha drains three days postoperatively. The analysis demonstrated that drainage quantity is related to disposed time and patient age, but not to microtia type. The authors recommend removal of suction drains on the third postoperative day. Moreover, individualized negative suction treatment according to age or microtia type provides a safe and consistent approach to achieving acceptable results and fewer complications. PMID:24294013

  5. Tropical grassy biomes: linking ecology, human use and conservation.

    PubMed

    Lehmann, Caroline E R; Parr, Catherine L

    2016-09-19

    Tropical grassy biomes (TGBs) are changing rapidly the world over through a coalescence of high rates of land-use change, global change and altered disturbance regimes that maintain the ecosystem structure and function of these biomes. Our theme issue brings together the latest research examining the characterization, complex ecology, drivers of change, and human use and ecosystem services of TGBs. Recent advances in ecology and evolution have facilitated a new perspective on these biomes. However, there continues to be controversies over their classification and state dynamics that demonstrate critical data and knowledge gaps in our quantitative understanding of these geographically dispersed regions. We highlight an urgent need to improve ecological understanding in order to effectively predict the sensitivity and resilience of TGBs under future scenarios of global change. With human reliance on TGBs increasing and their propensity for change, ecological and evolutionary understanding of these biomes is central to the dual goals of sustaining their ecological integrity and the diverse services these landscapes provide to millions of people.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. PMID:27502385

  6. Tropical grassy biomes: linking ecology, human use and conservation.

    PubMed

    Lehmann, Caroline E R; Parr, Catherine L

    2016-09-19

    Tropical grassy biomes (TGBs) are changing rapidly the world over through a coalescence of high rates of land-use change, global change and altered disturbance regimes that maintain the ecosystem structure and function of these biomes. Our theme issue brings together the latest research examining the characterization, complex ecology, drivers of change, and human use and ecosystem services of TGBs. Recent advances in ecology and evolution have facilitated a new perspective on these biomes. However, there continues to be controversies over their classification and state dynamics that demonstrate critical data and knowledge gaps in our quantitative understanding of these geographically dispersed regions. We highlight an urgent need to improve ecological understanding in order to effectively predict the sensitivity and resilience of TGBs under future scenarios of global change. With human reliance on TGBs increasing and their propensity for change, ecological and evolutionary understanding of these biomes is central to the dual goals of sustaining their ecological integrity and the diverse services these landscapes provide to millions of people.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'.

  7. Tropical grassy biomes: linking ecology, human use and conservation

    PubMed Central

    Parr, Catherine L.

    2016-01-01

    Tropical grassy biomes (TGBs) are changing rapidly the world over through a coalescence of high rates of land-use change, global change and altered disturbance regimes that maintain the ecosystem structure and function of these biomes. Our theme issue brings together the latest research examining the characterization, complex ecology, drivers of change, and human use and ecosystem services of TGBs. Recent advances in ecology and evolution have facilitated a new perspective on these biomes. However, there continues to be controversies over their classification and state dynamics that demonstrate critical data and knowledge gaps in our quantitative understanding of these geographically dispersed regions. We highlight an urgent need to improve ecological understanding in order to effectively predict the sensitivity and resilience of TGBs under future scenarios of global change. With human reliance on TGBs increasing and their propensity for change, ecological and evolutionary understanding of these biomes is central to the dual goals of sustaining their ecological integrity and the diverse services these landscapes provide to millions of people. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502385

  8. Decadally resolved quantitative temperature reconstruction spanning 5.6 ka at Kurupa Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Boldt, B. R.; Kaufman, D. S.; Briner, J. P.

    2012-12-01

    Pre-instrumental quantitative temperature records, fundamental for placing recent warming in the context of long-term, natural climate variability, are scarce in Arctic Alaska. New non-destructive high-resolution core scanning methods provide a means of constructing downcore inference models for various paleoclimate signals. Here we use visible reflectance spectroscopy (VIS-RS) to measure organic pigment (chlorophyll derivative) concentration in sediments from Kurupa Lake to quantitatively reconstruct air temperature in the north-central Brooks Range, Alaska during the past 5.6 ka. Kurupa Lake (N 68.35°, W -154.61°) is 29.7 km2, 40 m at maximum depth, and is fed by several tributaries, including meltwater from eight rapidly disappearing cirque glaciers. A 6.2-m-long core composed of finely laminated (sub-mm to 5 cm) coarse-grained clays to medium-grained silts was collected in 2010 from the primary depocenter of Kurupa Lake (depth = 34 m). The age model for the core is based on six radiocarbon ages and a Pu profile to capture the 1963 spike and 1953 onset of Pu deposition from atmospheric weapons testing. The split-core face was scanned with a Konica Minolta CM-2600d spectrometer at 2 mm intervals, corresponding to 1-2 years. The relative absorption band depth at 660-670 nm (RABD660-670) was used to quantify total sedimentary organic pigments (primarily diagenetic products of chlorophyll-a) as a proxy for primary productivity. Gridded temperature data from the NCEP reanalysis dataset were used for this study because regional weather stations in the Brooks Range are scarce and records discontinuous. The gridded data perform well in this area and are highly correlated (r = 0.88) with the instrumental record from Barrow. Mean May-through-October (warm half-year) temperature (5-year smoothed) from NCEP reanalysis data (130 years) correlates with inferred organic pigment content from Kurupa Lake (r = 0.76, p < 0.001). We chose k-fold cross-validation (k = 10) to

  9. A comparative study of the quantitative accuracy of three-dimensional reconstructions of spinal cord from serial histological sections.

    PubMed

    Duerstock, B S; Bajaj, C L; Borgens, R B

    2003-05-01

    We evaluated the accuracy of estimating the volume of biological soft tissues from their three-dimensional (3D) computer wireframe models, reconstructed from histological data sets obtained from guinea-pig spinal cords. We compared quantification from two methods of three-dimensional surface reconstruction to standard quantitative techniques, Cavalieri method employing planimetry and point counting and Geometric Best-Fitting. This involved measuring a group of spinal cord segments and test objects to evaluate the accuracy of our novel quantification approaches. Once a quantitative methodology was standardized there was no statistical difference in volume measurement of spinal segments between quantification methods. We found that our 3D surface reconstructions' ability to model precisely actual soft tissues provided an accurate volume quantification of complex anatomical structures as standard approaches of Cavalieri estimation and Geometric Best-Fitting. Additionally, 3D reconstruction quantitatively interrogates and three-dimensionally images spinal cord segments and obscured internal pathological features with approximately the same effort required for standard quantification alone.

  10. Biome representational in silico karyotyping

    PubMed Central

    Muthappan, Valliammai; Lee, Aaron Y.; Lamprecht, Tamara L.; Akileswaran, Lakshmi; Dintzis, Suzanne M.; Lee, Choli; Magrini, Vincent; Mardis, Elaine R.; Shendure, Jay; Van Gelder, Russell N.

    2011-01-01

    Metagenomic characterization of complex biomes remains challenging. Here we describe a modification of digital karyotyping—biome representational in silico karyotyping (BRISK)—as a general technique for analyzing a defined representation of all DNA present in a sample. BRISK utilizes a Type IIB DNA restriction enzyme to create a defined representation of 27-mer DNAs in a sample. Massively parallel sequencing of this representation allows for construction of high-resolution karyotypes and identification of multiple species within a biome. Application to normal human tissue demonstrated linear recovery of tags by chromosome. We apply this technique to the biome of the oral mucosa and find that greater than 25% of recovered DNA is nonhuman. DNA from 41 microbial species could be identified from oral mucosa of two subjects. Of recovered nonhuman sequences, fewer than 30% are currently annotated. We characterized seven prevalent unknown sequences by chromosome walking and find these represent novel microbial sequences including two likely derived from novel phage genomes. Application of BRISK to archival tissue from a nasopharyngeal carcinoma resulted in identification of Epstein-Barr virus infection. These results suggest that BRISK is a powerful technique for the analysis of complex microbiomes and potentially for pathogen discovery. PMID:21324882

  11. Assessment of quantitative Holocene temperature reconstructions based on multiple proxies from the sediment record of Lake Loitsana, Sokli, NE Finland

    NASA Astrophysics Data System (ADS)

    Shala, S.; Helmens, K. F.; Luoto, T. P.; Salonen, J. S.; Väliranta, M.; Weckström, J.

    2014-12-01

    Four biotic proxies (pollen, plant macrofossils chironomids and diatoms) are employed to quantitatively reconstruct variations in mean July air temperatures (Tjul) at Lake Loitsana, NE Finland, during the Holocene. The aim: assessing the reliability of these temperature reconstructions and the timing of highest Tjul. The reconstructed Tjul values are evaluated in relation to local-scale/site-specific processes associated to the Holocene lake development at Loitsana, as these factors have been shown to significantly influence the fossil assemblages found in the Lake Loitsana sediments. Our study shows that the reconstructions are influenced, at least to some extent, by local factors, and highlights the benefit of using multi-proxy data in Holocene climate reconstructions. While pollen-based temperatures follow the classical trend of gradually increasing early Holocene Tjul with a mid-Holocene maximum July warming, the aquatic/wetland assemblages reconstruct higher than present Tjul already during the early Holocene, i.e. at the peak of summer insolation. We conclude that the relatively low early Holocene July temperatures recorded by the terrestrial pollen are the result of site-specific factors possibly combined with a delayed response of the terrestrial ecosystem compared to the aquatic ecosystem.

  12. Influence of cardiac and respiratory motion on tomographic reconstructions of the heart: implications for quantitative nuclear cardiology

    SciTech Connect

    Ter-Pogossian, M.M.; Bergmann, S.R.; Sobel, B.E.

    1982-12-01

    The potential influence of physiological, periodic motions of the heart due to the cardiac cycle, the respiratory cycle, or both on quantitative image reconstruction by positron emission tomography (PET) has been largely neglected. To define their quantitative impact, cardiac PET was performed in 6 dogs after injection of /sup 11/C-palmitate under disparate conditions including: normal cardiac and respiration cycles and cardiac arrest with and without respiration. Although in vitro assay of myocardial samples demonstrated that palmitate uptake was homogeneous (coefficient of variation . 10.1%), analysis of the reconstructed images demonstrated significant heterogeneity of apparent cardiac distribution of radioactivity due to both intrinsic cardiac and respiratory motion. Image degradation due to respiratory motion was demonstrated in a healthy human volunteer as well, in whom cardiac tomography was performed with Super PETT I during breath-holding and during normal breathing. The results indicate that quantitatively significant degradation of reconstructions of true tracer distribution occurs in cardiac PET due to both intrinsic cardiac and respiratory induced motion of the heart. They suggest that avoidance of or minimization of these influences can be accomplished by gating with respect to both the cardiac cycle and respiration or by employing brief scan times during breath-holding.

  13. Movement of Viruses between Biomes

    PubMed Central

    Sano, Emiko; Carlson, Suzanne; Wegley, Linda; Rohwer, Forest

    2004-01-01

    Viruses are abundant in all known ecosystems. In the present study, we tested the possibility that viruses from one biome can successfully propagate in another. Viral concentrates were prepared from different near-shore marine sites, lake water, marine sediments, and soil. The concentrates were added to microcosms containing dissolved organic matter as a food source (after filtration to allow 100-kDa particles to pass through) and a 3% (vol/vol) microbial inoculum from a marine water sample (after filtration through a 0.45-μm-pore-size filter). Virus-like particle abundances were then monitored using direct counting. Viral populations from lake water, marine sediments, and soil were able to replicate when they were incubated with the marine microbes, showing that viruses can move between different ecosystems and propagate. These results imply that viruses can laterally transfer DNA between microbes in different biomes. PMID:15466522

  14. Biosphere 2's Marsh Biome

    NASA Technical Reports Server (NTRS)

    Molnar, Jennifer; Goodridge, Kelven

    1997-01-01

    The Marsh Biome, which was modeled after the mangroves and marshes of southwest Florida, has an area of 441.2 sq m separated into three hydrologically independent sections: the Freshwater, Oligohaline and Salt Marshes. The divisions are made based on their salinity (approximately 0, 4, and 34 ppt. respectively), but they also contain different biological communities. The Freshwater and Oligohaline Marshes are mostly filled with various grasses and several trees, while the Salt Marsh houses regions of red, black, and white mangroves (Rhizophora mangle, Avicennia germinans, and Languncularia racemosa respectively). Overall, there are an estimated 80 species of plants within the biome. Water in the Salt Marsh follows a meandering stream from the algal turf scrubbers (apparatuses that clean the water of its nutrients and heavy metals while increasing dissolved oxygen levels) which have an outlet in the Salt Marsh section near sites 4 and 5 to the Fringing Red Mangrove section. The sections of the Salt Marsh are separated by walls of concrete with openings to allow the stream to flow through. Throughout this study, conducted through the months of June and July, many conditions within the biome remained fairly constant. The temperature was within a degree or two of 25 C, mostly depending on whether the sample site was in direct sunlight or shaded. The pH throughout the Salt Marsh was 8.0 +/- 0.2, and the lower salinity waters only dropped below this soon after rains. The water rdepth and dissolved oxygen varied, however, between sites.

  15. Post-reconstruction non-local means filtering methods using CT side information for quantitative SPECT

    NASA Astrophysics Data System (ADS)

    Chun, Se Young; Fessler, Jeffrey A.; Dewaraja, Yuni K.

    2013-09-01

    Quantitative SPECT techniques are important for many applications including internal emitter therapy dosimetry where accurate estimation of total target activity and activity distribution within targets are both potentially important for dose-response evaluations. We investigated non-local means (NLM) post-reconstruction filtering for accurate I-131 SPECT estimation of both total target activity and the 3D activity distribution. We first investigated activity estimation versus number of ordered-subsets expectation-maximization (OSEM) iterations. We performed simulations using the XCAT phantom with tumors containing a uniform and a non-uniform activity distribution, and measured the recovery coefficient (RC) and the root mean squared error (RMSE) to quantify total target activity and activity distribution, respectively. We observed that using more OSEM iterations is essential for accurate estimation of RC, but may or may not improve RMSE. We then investigated various post-reconstruction filtering methods to suppress noise at high iteration while preserving image details so that both RC and RMSE can be improved. Recently, NLM filtering methods have shown promising results for noise reduction. Moreover, NLM methods using high-quality side information can improve image quality further. We investigated several NLM methods with and without CT side information for I-131 SPECT imaging and compared them to conventional Gaussian filtering and to unfiltered methods. We studied four different ways of incorporating CT information in the NLM methods: two known (NLM CT-B and NLM CT-M) and two newly considered (NLM CT-S and NLM CT-H). We also evaluated the robustness of NLM filtering using CT information to erroneous CT. NLM CT-S and NLM CT-H yielded comparable RC values to unfiltered images while substantially reducing RMSE. NLM CT-S achieved -2.7 to 2.6% increase of RC compared to no filtering and NLM CT-H yielded up to 6% decrease in RC while other methods yielded lower RCs

  16. What do we need to measure, how much, and where? A quantitative assessment of terrestrial data needs across North American biomes through data-model fusion and sampling optimization

    NASA Astrophysics Data System (ADS)

    Dietze, M. C.; Davidson, C. D.; Desai, A. R.; Feng, X.; Kelly, R.; Kooper, R.; LeBauer, D. S.; Mantooth, J.; McHenry, K.; Serbin, S. P.; Wang, D.

    2012-12-01

    Ecosystem models are designed to synthesize our current understanding of how ecosystems function and to predict responses to novel conditions, such as climate change. Reducing uncertainties in such models can thus improve both basic scientific understanding and our predictive capacity, but rarely have the models themselves been employed in the design of field campaigns. In the first part of this paper we provide a synthesis of uncertainty analyses conducted using the Predictive Ecosystem Analyzer (PEcAn) ecoinformatics workflow on the Ecosystem Demography model v2 (ED2). This work spans a number of projects synthesizing trait databases and using Bayesian data assimilation techniques to incorporate field data across temperate forests, grasslands, agriculture, short rotation forestry, boreal forests, and tundra. We report on a number of data needs that span a wide array diverse biomes, such as the need for better constraint on growth respiration. We also identify other data needs that are biome specific, such as reproductive allocation in tundra, leaf dark respiration in forestry and early-successional trees, and root allocation and turnover in mid- and late-successional trees. Future data collection needs to balance the unequal distribution of past measurements across biomes (temperate biased) and processes (aboveground biased) with the sensitivities of different processes. In the second part we present the development of a power analysis and sampling optimization module for the the PEcAn system. This module uses the results of variance decomposition analyses to estimate the further reduction in model predictive uncertainty for different sample sizes of different variables. By assigning a cost to each measurement type, we apply basic economic theory to optimize the reduction in model uncertainty for any total expenditure, or to determine the cost required to reduce uncertainty to a given threshold. Using this system we find that sampling switches among multiple

  17. Quantitative reconstruction of PIXE-tomography data for thin samples using GUPIX X-ray emission yields

    NASA Astrophysics Data System (ADS)

    Michelet, C.; Barberet, Ph.; Devès, G.; Bouguelmouna, B.; Bourret, S.; Delville, M.-H.; Le Trequesser, Q.; Gordillo, N.; Beasley, D. G.; Marques, A. C.; Farau, R.; Toko, B. R.; Campbell, J.; Maxwell, J.; Moretto, Ph.; Seznec, H.

    2015-04-01

    We present here a new development of the TomoRebuild software package, to perform quantitative Particle Induced X-ray Emission Tomography (PIXET) reconstruction. X-ray yields are obtained from the GUPIX code. The GUPIX data base is available for protons up to 5 MeV and also in the 20-100 MeV energy range, deuterons up to 6 MeV, 3He and alphas up to 12 MeV. In this version, X-ray yields are calculated for thin samples, i.e. without simulating X-ray attenuation. PIXET data reconstruction is kept as long as possible independent from Scanning Transmission Ion Microscopy Tomography (STIMT). In this way, the local mass distribution (in g/cm3) of each X-ray emitting element is reconstructed in all voxels of the analyzed volume, only from PIXET data, without the need of associated STIMT data. Only the very last step of data analysis requires STIMT data, in order to normalize PIXET data to obtain concentration distributions, in terms of normalized mass fractions (in μg/g). For this, a noise correction procedure has been designed in ImageJ. Moreover sinogram or image misalignment can be corrected, as well as the difference in beam size between the two experiments. The main features of the TomoRebuild code, user friendly design and modular C++ implementation, were kept. The software package is portable and can run on Windows and Linux operating systems. An optional user-friendly graphic interface was designed in Java, as a plugin for the ImageJ graphic software package. Reconstruction examples are presented from biological specimens of Caenorhabditis elegans - a small nematode constituting a reference model for biology studies. The reconstruction results are compared between the different codes TomoRebuild, DISRA and JPIXET, and different reconstruction methods: Filtered BackProjection (FBP) and Maximum Likelihood Expectation Maximization (MLEM).

  18. Quantitative vertical zonation of salt-marsh foraminifera for reconstructing former sea level; an example from New Jersey, USA.

    NASA Astrophysics Data System (ADS)

    Kemp, Andrew C.; Horton, Benjamin P.; Vann, David R.; Engelhart, Simon E.; Grand Pre, Candace A.; Vane, Christopher H.; Nikitina, Daria; Anisfeld, Shimon C.

    2012-10-01

    We present a quantitative technique to reconstruct sea level from assemblages of salt-marsh foraminifera using partitioning around medoids (PAM) and linear discriminant functions (LDF). The modern distribution of foraminifera was described from 62 surface samples at three salt marshes in southern New Jersey. PAM objectively estimated the number and composition of assemblages present at each site and showed that foraminifera adhered to the concept of elevation-dependent ecological zones, making them appropriate sea-level indicators. Application of PAM to a combined dataset identified five distinctive biozones occupying defined elevation ranges, which were similar to those identified elsewhere on the U.S. mid-Atlantic coast. Biozone A had high abundances of Jadammina macrescens and Trochammina inflata; biozone B was dominated by Miliammina fusca; biozone C was associated with Arenoparrella mexicana; biozone D was dominated by Tiphotrocha comprimata and biozone E was dominated by Haplophragmoides manilaensis. Foraminiferal assemblages from transitional and high salt-marsh environments occupied the narrowest elevational range and are the most precise sea-level indicators. Recognition of biozones in sequences of salt-marsh sediment using LDFs provides a probabilistic means to reconstruct sea level. We collected a core to investigate the practical application of this approach. LDFs indicated the faunal origin of 38 core samples and in cross-validation tests were accurate in 54 of 56 cases. We compared reconstructions from LDFs and a transfer function. The transfer function provides smaller error terms and can reconstruct smaller RSL changes, but LDFs are well suited to RSL reconstructions focused on larger changes and using varied assemblages. Agreement between these techniques suggests that the approach we describe can be used as an independent means to reconstruct sea level or, importantly, to check the ecological plausibility of results from other techniques.

  19. Quantitative Targeted Absolute Proteomics of Transporters and Pharmacoproteomics-Based Reconstruction of P-Glycoprotein Function in Mouse Small Intestine.

    PubMed

    Akazawa, Takanori; Uchida, Yasuo; Tachikawa, Masanori; Ohtsuki, Sumio; Terasaki, Tetsuya

    2016-07-01

    The purpose of this study was to investigate whether a pharmacokinetic model integrating in vitro mdr1a efflux activity (which we previously reported) with in vitro/in vivo differences in protein expression level can reconstruct intestinal mdr1a function. In situ intestinal permeability-surface area product ratio between wild-type and mdr1a/1b (-/-) mice is one of the parameters used to describe intestinal mdr1a function. The reconstructed ratios of six mdr1a substrates (dexamethasone, digoxin, loperamide, quinidine, verapamil, vinblastine) and one nonsubstrate (diazepam) were consistent with the observed values reported by Adachi et al. within 2.1-fold difference. Thus, intestinal mdr1a function can be reconstructed by our pharmacoproteomic modeling approach. Furthermore, we evaluated regional differences in protein expression levels of mouse intestinal transporters. Sixteen (mdr1a, mrp4, bcrp, abcg5, abcg8, glut1, 4f2hc, sglt1, lat2, pept1, mct1, slc22a18, ostβ, villin1, Na(+)/K(+)-ATPase, γ-gtp) out of 46 target molecules were detected by employing our established quantitative targeted absolute proteomics technique. The protein expression amounts of mdr1a and bcrp increased progressively from duodenum to ileum. Sglt1, lat2, and 4f2hc were highly expressed in jejunum and ileum. Mct1 and ostβ were highly expressed in ileum. The quantitative expression profiles established here should be helpful to understand and predict intestinal transporter functions. PMID:27276518

  20. A versatile pipeline for the multi-scale digital reconstruction and quantitative analysis of 3D tissue architecture

    PubMed Central

    Morales-Navarrete, Hernán; Segovia-Miranda, Fabián; Klukowski, Piotr; Meyer, Kirstin; Nonaka, Hidenori; Marsico, Giovanni; Chernykh, Mikhail; Kalaidzidis, Alexander; Zerial, Marino; Kalaidzidis, Yannis

    2015-01-01

    A prerequisite for the systems biology analysis of tissues is an accurate digital three-dimensional reconstruction of tissue structure based on images of markers covering multiple scales. Here, we designed a flexible pipeline for the multi-scale reconstruction and quantitative morphological analysis of tissue architecture from microscopy images. Our pipeline includes newly developed algorithms that address specific challenges of thick dense tissue reconstruction. Our implementation allows for a flexible workflow, scalable to high-throughput analysis and applicable to various mammalian tissues. We applied it to the analysis of liver tissue and extracted quantitative parameters of sinusoids, bile canaliculi and cell shapes, recognizing different liver cell types with high accuracy. Using our platform, we uncovered an unexpected zonation pattern of hepatocytes with different size, nuclei and DNA content, thus revealing new features of liver tissue organization. The pipeline also proved effective to analyse lung and kidney tissue, demonstrating its generality and robustness. DOI: http://dx.doi.org/10.7554/eLife.11214.001 PMID:26673893

  1. Biome Context and Lotic Ecosystem Rates

    NASA Astrophysics Data System (ADS)

    Dodds, W. K.; Rüegg, J.; Sheehan, K.; Song, C.; Ballantyne, F.; Baker, C.; Bowden, W. B.; Farrell, K.; Flinn, M. B.; Garcia, E.; Harms, T.; Jones, J.; Koenig, L.; Kominoski, J. S.; McDowell, W. H.; McMaster, D.; Parker, S.; Trentman, M. T.; Whiles, M.; Wollheim, W. M.; Argerich, A.; Penaluna, B.

    2015-12-01

    The stream biome gradient concept suggests that the biome in which a stream is embedded influences stream community structure and key ecosystem functions including primary production, community respiration, and nutrient uptake. We measured these key processes with whole-stream reach methods and smaller-scale incubations in numerous locations within stream networks across two years as part of a project on scaling ecosystem rates. Measurements were repeated across 7 biomes (tropical forest, tropical savanna, temperate deciduous forest, temperate rain forest, tallgrass prairie, boreal forest, and tundra). We found strong effects of light on primary production within and among biomes as a function of variable canopy among reaches and biomes. Community respiration and ammonium uptake were decoupled from light relative to gross primary production. Ammonium uptake rarely exhibited saturation with elevated concentrations, regardless of background concentrations or biome. We hypothesize that even though biomes exhibit major differences in gross primary production, the overall variation in community respiration and ammonium uptake is similar across biomes because respiration and uptake depend on carbon irrespective if it is derived from allochthonous or autochthonous inputs. Respiration and uptake are expected to vary depending upon factors not as tightly connected to the biome a stream is embedded in.

  2. TGS[underscore]FIT: Image reconstruction software for quantitative, low-resolution tomographic assays

    SciTech Connect

    Estep, R J

    1993-01-01

    We developed the computer program TGS[underscore]FIT to aid in researching the tomographic gamma scanner method of nondestructive assay. This software, written in C-programming, language, implements a full Beer's Law attenuation correction in reconstructing low-resolution emission tomograms. The attenuation coefficients for the corrections are obtained by reconstructing a transmission tomogram of the same resolution. The command-driven interface, combined with (crude) simulation capabilities and command file control, allows design studies to be performed in a semi-automated manner.

  3. New Image Reconstruction Methods for Accelerated Quantitative Parameter Mapping and Magnetic Resonance Angiography

    NASA Astrophysics Data System (ADS)

    Velikina, J. V.; Samsonov, A. A.

    2016-02-01

    Advanced MRI techniques often require sampling in additional (non-spatial) dimensions such as time or parametric dimensions, which significantly elongate scan time. Our purpose was to develop novel iterative image reconstruction methods to reduce amount of acquired data in such applications using prior knowledge about signal in the extra dimensions. The efforts have been made to accelerate two applications, namely, time resolved contrast enhanced MR angiography and T1 mapping. Our result demonstrate that significant acceleration (up to 27x times) may be achieved using our proposed iterative reconstruction techniques.

  4. Holocene relative sea-level change in Hiroshima Bay, Japan: A semi-quantitative reconstruction based on ostracodes

    USGS Publications Warehouse

    Yasuhara, Moriaki; Seto, Koji

    2006-01-01

    Holocene relative sea-level changes in Hiroshima Bay were reconstructed from fossil ostracodes from a core, using a semi-quantitative method. In Hiroshima Bay, relative sea level rose rapidly (about 25 m) between ca. 9000 cal yr BP and ca. 5800 cal yr BP, after which it gradually fell (about 5 m) to its present level. The peak in relative sea level occurred at ca. 5800 cal yr BP. The sea-level curve for Hiroshima Bay is similar to curves for tectonically stable areas of Japan (e.g., Osaka Bay). ?? by the Palaeontological Society of Japan.

  5. Differences in breast aesthetic outcomes due to radiation: A validated, quantitative analysis of expander-implant reconstruction

    PubMed Central

    Mioton, Lauren M; Gaido, Jessica; Small, William; Fine, Neil A; Kim, John Y

    2013-01-01

    BACKGROUND: The potential ramifications of radiation use can be of particular concern in the breast reconstruction population, in which both surgical and aesthetic outcomes are important. Presently, there remains a paucity of data detailing the influence of radiation on specific reconstruction aesthetic outcomes. OBJECTIVE: To conduct a quantitative evaluation of aesthetic outcomes for expander-implant breast reconstruction in radiated and nonradiated patients using a validated scoring scale. METHODS: A series of consecutive expander-implant breast reconstruction operations performed by the senior author between 2004 and 2012 were reviewed. Four blinded members of the Division of Plastic and Reconstructive Surgery at Northwestern University (Illinois, USA) independently rated postoperative photographs of patients’ breasts using a validated scoring scale with respect to five distinct aesthetic domains. RESULTS: Of the 206 patients meeting the inclusion criteria, 69 received radiotherapy and 137 did not. The radiated cohort had lower scores in each aesthetic domain, with significant differences in contour (1.33 versus 1.51; P=0.041) and placement (1.45 versus 1.73; P<0.001). Linear regression analysis revealed a significant association between placement scores and radiation, and radiated patients had a significantly higher overall rate of complications. DISCUSSION: Variances in scores may represent the relative difficulty of expansions and proper implant placement in irradiated tissue, with possible skin fibrosis and decreased flexibility hindering prosthesis manipulation. CONCLUSION: Radiation adversely impacts breast contour and placement, with possible negative contributions to volume, scarring and inframammary fold definition, and results in higher rates of complications. Such detailed evaluation of the impact of radiation on aesthetics will enhance the management of patient expectations. PMID:24431945

  6. Holocene biome shifts in the East Asian monsoon margin region

    NASA Astrophysics Data System (ADS)

    Dallmeyer, Anne; Claussen, Martin; Ni, Jian; Wang, Yongbo; Cao, Xianyong; Herzschuh, Ulrike

    2013-04-01

    East Asia is affected by three major atmospheric circulation systems determining the regional climate and vegetation distribution: The moisture advected by the Indian and East Asian monsoon support the growing of forest in large parts of Eastern China. The influence of the monsoon gets weaker further on the continent yielding a transition of forest to steppe and of steppe to desert in Central East Asia (e.g. Inner Mongolia) where the dry westerly winds prevail. Particularly in these transition zones, vegetation is supposed to be very sensitive to climate change and strong feedbacks are expected in case of climate and vegetation shifts due to large environmental changes (Feng et al., 2006). During mid-Holocene, cyclic variations in the Earth's orbit around the sun led to an enhancement of the Asian monsoon system probably causing strong shifts in the biome distribution. According to reconstructions, the steppe-forest margin moved to the northwest by about 500km (Yu et al., 2000) and the desert area in China and Inner Mongolia was substantially reduced compared to today (Feng et al., 2006). However, in the complex environment of Asia, the locally limited reconstructions may not portray the general vegetation change. To get a systematic overview on the spatial pattern of biome shifts in the Asian monsoon - westerly wind transition zone since mid-Holocene, we use the diagnostic vegetation model BIOME4 and force this model with climate anomalies from different transient Holocene climate simulations performed in coupled atmosphere-ocean-vegetation models. The main aims of this study are to a) get a consistent ensemble of possible changes in biome distribution since the mid-Holocene b) test the robustness of the simulated vegetation changes and quantify the differences between the models, and c) allow for a better comparison of simulated and reconstructed vegetation changes. Preliminary results confirm the general trend seen in the reconstructions. The simulations reveal

  7. Quantitative reconstruction for myocardial perfusion SPECT: an efficient approach by depth-dependent deconvolution and matrix rotation.

    PubMed

    Ye, J; Liang, Z; Harrington, D P

    1994-08-01

    An efficient reconstruction method for myocardial perfusion single-photon emission computed tomography (SPECT) has been developed which compensates simultaneously for attenuation, scatter, and resolution variation. The scattered photons in the primary-energy-window measurements are approximately removed by subtracting the weighted scatter-energy-window samples. The resolution variation is corrected by deconvolving the subtracted data with the detector-response kernel in frequency space using the depth-dependent frequency relation. The attenuated photons are compensated by recursively tracing the attenuation factors through the object-specific attenuation map. An experimental chest phantom with defects inside myocardium was used to test the method. The attenuation map of the phantom was reconstructed from transmission scans using a flat external source and a high-resolution parallel-hole collimator of a single-detector system. The detector-response kernel was approximated from measurements of a point source in air at several depths from the collimator surface. The emission data were acquired by the same detector setting. A computer simulation using similar protocols as in the experiment was performed. Both the simulation and experiment showed significant improvement in quantification with the proposed method, as compared to the conventional filtered-backprojection technique. The quantitative gain by the additional deconvolution was demonstrated. The computation time was less than 20 min on a HP/730 desktop computer for reconstruction of a 1282 x 64 array from 128 projections of 128 x 64 samples. PMID:15551566

  8. Quantitative analysis of 3D stent reconstruction from a limited number of views in cardiac rotational angiography

    NASA Astrophysics Data System (ADS)

    Perrenot, Béatrice; Vaillant, Régis; Prost, Rémy; Finet, Gérard; Douek, Philippe; Peyrin, Françoise

    2007-03-01

    Percutaneous coronary angioplasty consists in conducting a guidewire carrying a balloon and a stent through the lesion and deploying the stent by balloon inflation. A stent is a small 3D complex mesh hardly visible in X-ray images : the control of stent deployment is difficult although it is important to avoid post intervention complications. In a previous work, we proposed a method to reconstruct 3D stent images from a set of 2D cone-beam projections acquired in rotational acquisition mode. The process involves a motion compensation procedure based on the position of two markers located on the guidewire in the 2D radiographic sequence. Under the hypothesis that the stent and markers motions are identical, the method was shown to generate a negligible error. If this hypothesis is not fulfilled, a solution could be to use only the images where motion is weakest, at the detriment of having a limiter number of views. In this paper, we propose a simulation based study of the impact of a limited number of views in our context. The chain image involved in the acquisition of X-ray sequences is first modeled to simulate realistic noisy projections of stent animated by a motion close to cardiac motion. Then, the 3D stent images are reconstructed using the proposed motion compensation method from gated projections. Two gating strategies are examined to select projection in the sequences. A quantitative analysis is carried out to assess reconstruction quality as a function of noise and acquisition strategy.

  9. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China I: phytolith-based transfer functions

    NASA Astrophysics Data System (ADS)

    Lu, Hou-Yuan; Wu, Nai-Qin; Yang, Xiang-Dong; Jiang, Hui; Liu, Kam-biu; Liu, Tung-Sheng

    2006-05-01

    This study investigated the distribution of phytolith assemblages in China from surface soil samples at 243 sites along significant ecological and climatic gradients to develop transfer functions for quantitative reconstruction of palaeoenvironment. Canonical correspondence analysis (CCA) and detrended correspondence analysis (DCA) were used to determine the main environmental variables influencing phytolith distributions. The results reveal that mean annual precipitation (MAP) is the dominant variable controlling the spatial distribution of phytoliths, which accounts for 39% of the total variance. Mean annual temperature (MAT), relative humidity (Humi), and annual evaporation (VAP) are another three significant variables, accounting for 6%, 10%, and 5%, respectively, of the total variance in phytolith distributions. Transfer functions, based on weighted averaging plus partial least squares (WA-PLS), were developed for MAP ( R-boot2=0.90, root-mean-square-error of prediction (RMSEP)=148 mm), MAT ( R-boot2=0.84, RMSEP=2.52 °C), Humi ( R-boot2=0.75, RMSEP=6.36%) and VAP ( R-boot2=0.59, RMSEP=327 mm). Overall, our results confirm that phytoliths can provide reliable and robust estimates of MAP, MAT, Humi and VAP. Thus, WA-PLS is a robust calibration method for quantitative palaeoenvironmental reconstruction based on phytolith data.

  10. Acquisition of quantitative physiological data and computerized image reconstruction using a single scan TV system

    NASA Technical Reports Server (NTRS)

    Baily, N. A.

    1976-01-01

    A single-scan radiography system has been interfaced to a minicomputer, and the combined system has been used with a variety of fluoroscopic systems and image intensifiers available in clinical facilities. The system's response range is analyzed, and several applications are described. These include determination of the gray scale for typical X-ray-fluoroscopic-television chains, measurement of gallstone volume in patients, localization of markers or other small anatomical features, determinations of organ areas and volumes, computer reconstruction of tomographic sections of organs in motion, and computer reconstruction of transverse axial body sections from fluoroscopic images. It is concluded that this type of system combined with a minimum of statistical processing shows excellent capabilities for delineating small changes in differential X-ray attenuation.

  11. Microfabric reconstruction via quantitative digital petrographic image analysis for weakly foliated gneisses

    NASA Astrophysics Data System (ADS)

    Yeh, Meng-Wan; Lin, Yu-Ling; Lee, Tung-Yi; Ji, Jian-Qing

    2013-03-01

    Detection and documentation of petro-structural features such as alignment features of minerals/grains, and extraction of such spatial property data are two fundamental steps for structural geology. Such tasks were mostly carried out manually. However, manual analysis is laborious and potentially biased. These drawbacks are less obvious when the foliation is well developed and the amount of platy mineral is higher. For samples with weakly developed foliation and low platy mineral content, automatic method is required for subjective interpretation. A semi-automatic computerized method of 3D foliation orientation reconstruction via two-dimensional petrographic-shape fabric analysis from serial oriented digital microphotograph has been developed and demonstrated in this study. The foliation is reconstructed by fitting a best fitting plane to the maximum modal peaks of micro textural parameters (SPO) for different mineral groups of platy and granular minerals from each thin section on a stereonet for four coarse grained biotite gneiss samples collected along the Jialie fault, SE Tibet, China. Regardless of platy or granular mineral aggregates, the reconstructed foliations showed similar orientation within 10° angular variation to the field measurement. The 10° angular variation can be maintained if the foliations are reconstructed by consecutive thin section groupings ≦ 50° angular intervals and a horizontal thin section. The angular spread increased to 30° for thin section groupings with > 50° to 100° angular intervals with a horizontal thin section. Major advantages of the computerized photometric methods demonstrated by this study are: the reduction of human prejudice and obtaining quantified and repeatable data sets.

  12. Quantitative Temperature Reconstructions from Holocene and Late Glacial Lake Sediments in the Tropical Andes using Chironomidae (non-biting midges)

    NASA Astrophysics Data System (ADS)

    Matthews-Bird, F.; Gosling, W. D.; Brooks, S. J.; Montoya, E.; Coe, A. L.

    2014-12-01

    Chironomidae (non-biting midges) is a family of two-winged aquatic insects of the order Diptera. They are globally distributed and one of the most diverse families within aquatic ecosystems. The insects are stenotopic, and the rapid turnover of species and their ability to colonise quickly favourable habitats means chironomids are extremely sensitive to environmental change, notably temperature. Through the development of quantitative temperature inference models chironomids have become important palaeoecological tools. Proxies capable of generating independent estimates of past climate are crucial to disentangling climate signals and ecosystem response in the palaeoecological record. This project has developed the first modern environmental calibration data set in order to use chironomids from the Tropical Andes as quantitative climate proxies. Using surface sediments from c. 60 lakes from Bolivia, Peru and Ecuador we have developed an inference model capable of reconstructing temperatures, with a prediction error of 1-2°C, from fossil assemblages. Here we present the first Lateglacial and Holocene chironomid-inferred temperature reconstructions from two sites in the tropical Andes. The first record, from a high elevation (4153 m asl) lake in the Bolivian Andes, shows persistently cool temperatures for the past 15 kyr, punctuated by warm episodes in the early Holocene (9-10 kyr BP). The chironomid-inferred Holocene temperature trends from a lake sediment record on the eastern Andean flank of Ecuador (1248 m asl) spanning the last 5 millennia are synchronous with temperature changes in the NGRIP ice core record. The temperature estimates suggest along the eastern flank of the Andes, at lower latitudes (~1°S), climate closely resemble the well-established fluctuations of the Northern Hemisphere for this time period. Late-glacial climate fluctuations across South America are still disputed with some palaeoecological records suggesting evidence for Younger Dryas

  13. Image reconstruction with noise and error modelling in quantitative photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Tarvainen, Tanja; Pulkkinen, Aki; Cox, Ben T.; Kaipio, Jari P.; Arridge, Simon R.

    2016-03-01

    Quantitative photoacoustic tomography is an emerging imaging technique aimed at estimating the optical parameters inside tissue from photoacoustic images. The method proceeds from photoacoustic tomography by taking the estimated initial pressure distributions as data and estimating the absolute values of the optical parameters. Therefore, both the data and the noise of the second (optical) inverse problem are affected by the method applied to solve the first (acoustic) inverse problem. In this work, the Bayesian approach for quantitative photoacoustic tomography is taken. Modelling of noise and errors and incorporating their statistics into the solution of the inverse problem are investigated.

  14. Acquisition of quantitative physiological data and computerized image reconstruction using a single scan TV system

    NASA Technical Reports Server (NTRS)

    Baily, N. A.

    1975-01-01

    Single scan operation of television X-ray fluoroscopic systems allow both analog and digital reconstruction of tomographic sections from single plan images. This type of system combined with a minimum of statistical processing showed excellent capabilities for delineating small changes in differential X-ray attenuation. Patient dose reduction is significant when compared to normal operation or film recording. Flat screen, low light level systems were both rugged and light in weight, making them applicable for a variety of special purposes. Three dimensional information was available from the tomographic methods and the recorded data was sufficient when used with appropriate computer display devices to give representative 3D images.

  15. Quantitative reconstruction of thermal and dynamic characteristics of lava flow from surface thermal measurements

    NASA Astrophysics Data System (ADS)

    Korotkii, Alexander; Kovtunov, Dmitry; Ismail-Zadeh, Alik; Tsepelev, Igor; Melnik, Oleg

    2016-06-01

    We study a model of lava flow to determine its thermal and dynamic characteristics from thermal measurements of the lava at its surface. Mathematically this problem is reduced to solving an inverse boundary problem. Namely, using known conditions at one part of the model boundary we determine the missing condition at the remaining part of the boundary. We develop a numerical approach to the mathematical problem in the case of steady-state flow. Assuming that the temperature and the heat flow are prescribed at the upper surface of the model domain, we determine the flow characteristics in the entire model domain using a variational (adjoint) method. We have performed computations of model examples and showed that in the case of smooth input data the lava temperature and the flow velocity can be reconstructed with a high accuracy. As expected, a noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level. Also we analyse the influence of optimization methods on the solution convergence rate. The proposed method for reconstruction of physical parameters of lava flows can also be applied to other problems in geophysical fluid flows.

  16. Quantitative morphochemical characterization of the neurons in substantia nigra of rat brain and its volume reconstruction.

    PubMed

    Khudoerkov, R M; Voronkov, D N; Dikalova, Yu V

    2014-04-01

    Three cell compartments differing by size and proportion of neurons were identified by 3D reconstruction of the substantia nigra pars compacta of the rat brain based on immunohistochemical localization of tyrosine hydroxylase, a marker of dopamine neurons. Dopaminepositive neurons prevailed over dopamine-free neurons (1.45:1) in the most voluminous (75%) dorsal part, and in smaller lateral and ventral parts, inverse cell ratios were observed: 0.54:1 and 0.78:1, respectively. Morphometry characterized the substantia nigra pars compacta as a structure consisting not only of several parts, but of horizons and showed differences between the neurons both in several parts and in several layers within the part. The revealed morphochemical heterogeneity of the substantia nigra pars compacta provides better understanding of the selective damage to its structures in Parkinson's disease. PMID:24824717

  17. Quantitative Mass Density Image Reconstructed from the Complex X-Ray Refractive Index

    PubMed Central

    Mukaide, Taihei; Iida, Atsuo; Watanabe, Masatoshi; Takada, Kazuhiro; Noma, Takashi

    2015-01-01

    We demonstrate a new analytical X-ray computed tomography technique for visualizing and quantifying the mass density of materials comprised of low atomic number elements with unknown atomic ratios. The mass density was obtained from the experimentally observed ratio of the imaginary and real parts of the complex X-ray refractive index. An empirical linear relationship between the X-ray mass attenuation coefficient of the materials and X-ray energy was found for X-ray energies between 8 keV and 30 keV. The mass density image of two polymer fibers was quantified using the proposed technique using a scanning-type X-ray microbeam computed tomography system equipped with a wedge absorber. The reconstructed mass density agrees well with the calculated one. PMID:26114770

  18. 3800 Years of Quantitative Precipitation Reconstruction from the Northwest Yucatan Peninsula

    PubMed Central

    Carrillo-Bastos, Alicia; Islebe, Gerald A.; Torrescano-Valle, Nuria

    2013-01-01

    Precipitation over the last 3800 years has been reconstructed using modern pollen calibration and precipitation data. A transfer function was then performed via the linear method of partial least squares. By calculating precipitation anomalies, it is estimated that precipitation deficits were greater than surpluses, reaching 21% and <9%, respectively. The period from 50 BC to 800 AD was the driest of the record. The drought related to the abandonment of the Maya Preclassic period featured a 21% reduction in precipitation, while the drought of the Maya collapse (800 to 860 AD) featured a reduction of 18%. The Medieval Climatic Anomaly was a period of positive phases (3.8–7.6%). The Little Ice Age was a period of climatic variability, with reductions in precipitation but without deficits. PMID:24391940

  19. Assessment of diffuse coronary artery disease by quantitative analysis of coronary morphology based upon 3-D reconstruction from biplane angiograms.

    PubMed

    Wahle, A; Wellnhofer, E; Mugaragu, I; Saner, H U; Oswald, H; Fleck, E

    1995-01-01

    Quantitative evaluations on coronary vessel systems are of increasing importance in cardiovascular diagnosis, therapy planning, and surgical verification. Whereas local evaluations, such as stenosis analysis, are already available with sufficient accuracy, global evaluations of vessel segments or vessel subsystems are not yet common. Especially for the diagnosis of diffuse coronary artery diseases, the authors combined a 3D reconstruction system operating on biplane angiograms with a length/volume calculation. The 3D reconstruction results in a 3D model of the coronary vessel system, consisting of the vessel skeleton and a discrete number of contours. To obtain an utmost accurate model, the authors focussed on exact geometry determination. Several algorithms for calculating missing geometric parameters and correcting remaining geometry errors were implemented and verified. The length/volume evaluation can be performed either on single vessel segments, on a set of segments, or on subtrees. A volume model based on generalized elliptical conic sections is created for the selected segments. Volumes and lengths (measured along the vessel course) of those elements are summed up. In this way, the morphological parameters of a vessel subsystem can be set in relation to the parameters of the proximal segment supplying it. These relations allow objective assessments of diffuse coronary artery diseases.

  20. Lossless 3-D reconstruction and registration of semi-quantitative gene expression data in the mouse brain

    PubMed Central

    Enlow, Matthew A.; Ju, Tao; Kakadiaris, Ioannis A.; Carson, James P.

    2012-01-01

    As imaging, computing, and data storage technologies improve, there is an increasing opportunity for multiscale analysis of three-dimensional datasets (3-D). Such analysis enables, for example, microscale elements of multiple macroscale specimens to be compared throughout the entire macroscale specimen. Spatial comparisons require bringing datasets into co-alignment. One approach for co-alignment involves elastic deformations of data in addition to rigid alignments. The elastic deformations distort space, and if not accounted for, can distort the information at the microscale. The algorithms developed in this work address this issue by allowing multiple data points to be encoded into a single image pixel, appropriately tracking each data point to ensure lossless data mapping during elastic spatial deformation. This approach was developed and implemented for both 2-D and 3-D registration of images. Lossless reconstruction and registration was applied to semi-quantitative cellular gene expression data in the mouse brain, enabling comparison of multiple spatially registered 3-D datasets without any augmentation of the cellular data. Standard reconstruction and registration without the lossless approach resulted in errors in cellular quantities of ~ 8%. PMID:22256218

  1. Lossless 3-D reconstruction and registration of semi-quantitative gene expression data in the mouse brain.

    PubMed

    Enlow, Matthew A; Ju, Tao; Kakadiaris, Ioannis A; Carson, James P

    2011-01-01

    As imaging, computing, and data storage technologies improve, there is an increasing opportunity for multiscale analysis of three-dimensional datasets (3-D). Such analysis enables, for example, microscale elements of multiple macroscale specimens to be compared throughout the entire macroscale specimen. Spatial comparisons require bringing datasets into co-alignment. One approach for co-alignment involves elastic deformations of data in addition to rigid alignments. The elastic deformations distort space, and if not accounted for, can distort the information at the microscale. The algorithms developed in this work address this issue by allowing multiple data points to be encoded into a single image pixel, appropriately tracking each data point to ensure lossless data mapping during elastic spatial deformation. This approach was developed and implemented for both 2-D and 3D registration of images. Lossless reconstruction and registration was applied to semi-quantitative cellular gene expression data in the mouse brain, enabling comparison of multiple spatially registered 3-D datasets without any augmentation of the cellular data. Standard reconstruction and registration without the lossless approach resulted in errors in cellular quantities of ∼ 8%.

  2. Holocene local forest history at two sites in Småland, southern Sweden - insights from quantitative reconstructions using the Landscape Reconstruction Algorithm

    NASA Astrophysics Data System (ADS)

    Cui, Qiaoyu; Gaillard, Marie-José; Lemdahl, Geoffrey; Olsson, Fredrik; Sugita, Shinya

    2010-05-01

    Quantitative reconstruction of past vegetation using fossil pollen was long very problematic. It is well known that pollen percentages and pollen accumulation rates do not represent vegetation abundance properly because pollen values are influenced by many factors of which inter-taxonomic differences in pollen productivity and vegetation structure are the most important ones. It is also recognized that pollen assemblages from large sites (lakes or bogs) record the characteristics of the regional vegetation, while pollen assemblages from small sites record local features. Based on the theoretical understanding of the factors and mechanisms that affect pollen representation of vegetation, Sugita (2007a and b) proposed the Landscape Reconstruction Algorithm (LRA) to estimate vegetation abundance in percentage cover for well defined spatial scales. The LRA includes two models, REVEALS and LOVE. REVEALS estimates regional vegetation abundance at a spatial scale of 100 km x 100 km. LOVE estimates local vegetation abundance at the spatial scale of the relevant source area of pollen (RSAP sensu Sugita 1993) of the pollen site. REVEALS estimates are needed to apply LOVE in order to calculate the RSAP and the vegetation cover within the RSAP. The two models were validated theoretically and empirically. Two small bogs in southern Sweden were studied for pollen, plant macrofossil, charcoal, and coleoptera in order to reconstruct the local Holocene forest and fire history (e.g. Greisman and Gaillard 2009; Olsson et al. 2009). We applied the LOVE model in order to 1) compare the LOVE estimates with pollen percentages for a better understanding of the local forest history; 2) obtain more precise information on the local vegetation to explain between-sites differences in fire history. We used pollen records from two large lakes in Småland to obtain REVEALS estimates for twelve continuous 500-yrs time windows. Following the strategy of the Swedish VR LANDCLIM project (see Gaillard

  3. Differential axial contrast of optical sections: laser microtomography and quantitative 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Pogorelova, M. A.; Golichenkov, V. A.; Pogorelov, A. G.

    2014-03-01

    Specific features of the quantitative laser microtomography of biological samples are discussed. The method exhibits the main advantages of a confocal microscope (rapid measurement of a stack of parallel optical cross sections and accurate displacement of an object along the optical axis). A relatively high contrast is reached owing to the superposition of pairwise complementary images on neighboring cross sections. A simple and convenient algorithm for image processing does not require additional software and can be computerized using a conventional graphic editor. The applicability of the method is illustrated using volume measurements of a single cell of an early mouse embryo.

  4. Glaciers and ice sheets as a biome.

    PubMed

    Anesio, Alexandre M; Laybourn-Parry, Johanna

    2012-04-01

    The tundra is the coldest biome described in typical geography and biology textbooks. Within the cryosphere, there are large expanses of ice in the Antarctic, Arctic and alpine regions that are not regarded as being part of any biome. During the summer, there is significant melt on the surface of glaciers, ice caps and ice shelves, at which point microbial communities become active and play an important role in the cycling of carbon and other elements within the cryosphere. In this review, we suggest that it is time to recognise the cryosphere as one of the biomes of Earth. The cryospheric biome encompasses extreme environments and is typified by truncated food webs dominated by viruses, bacteria, protozoa and algae with distinct biogeographical structures.

  5. A new peat bog testate amoeba transfer function and quantitative palaeohydrological reconstructions from southern Patagonia

    NASA Astrophysics Data System (ADS)

    van Bellen, S.; Mauquoy, D.; Payne, R.; Roland, T. P.; Hughes, P. D.; Daley, T. J.; Street-Perrot, F. A.; Loader, N.

    2013-12-01

    Testate amoebae have been used extensively as proxies for environmental change and palaeoclimate reconstructions in European and North American peatlands. The presence of these micro-organisms in surface samples is generally significantly linked to the local water table depth (WTD) and preservation of the amoeba shells downcore allows for millennial length water table reconstructions. Peat bog archive records in southern Patagonia are increasingly the focus of palaeoecological research due to the possibility of detecting changes in the Southern Westerlies. These Sphagnum magellanicum-dominated peat bogs are characterised by a wide range of water table depths, from wet hollows to high hummocks (>100 cm above the water table). Here we present the first transfer function for this region along with ~2k-year palaeorecords from local peat bogs. A modern dataset (155 samples) was sampled along transects from five bogs in 2012 and 2013. Measurements of WTD, pH and conductivity were taken for all samples. The transfer function model was based on the 2012 dataset, while the 2013 samples served as an independent test set to validate the model. Besides the standard leave-one-out cross-validation, we applied leave-one-site-out and leave-one transect-out cross-validation, which are effective means of verifying the degree of clustering in the dataset. To ensure that the environmental gradient had been evenly sampled we quantified the root-mean-squared error of prediction (RMSEP) individually for segments of this gradient. Ordinations showed a clear hydrological gradient in amoeba assemblages, with the dominant Assulina muscorum at the dry end and Amphitrema wrightianum and Difflugia globulosa at the wet end. Canonical correspondence analysis showed that WTD was the most important environmental variable, accounting for 18% of the variance in amoeba assemblages. A weighted averaging-partial least squares model showed best performance in cross-validation, using the 2013 data as an

  6. Thresholds for boreal biome transitions.

    PubMed

    Scheffer, Marten; Hirota, Marina; Holmgren, Milena; Van Nes, Egbert H; Chapin, F Stuart

    2012-12-26

    Although the boreal region is warming twice as fast as the global average, the way in which the vast boreal forests and tundras may respond is poorly understood. Using satellite data, we reveal marked alternative modes in the frequency distributions of boreal tree cover. At the northern end and at the dry continental southern extremes, treeless tundra and steppe, respectively, are the only possible states. However, over a broad intermediate temperature range, these treeless states coexist with boreal forest (∼75% tree cover) and with two more open woodland states (∼20% and ∼45% tree cover). Intermediate tree covers (e.g., ∼10%, ∼30%, and ∼60% tree cover) between these distinct states are relatively rare, suggesting that they may represent unstable states where the system dwells only transiently. Mechanisms for such instabilities remain to be unraveled, but our results have important implications for the anticipated response of these ecosystems to climatic change. The data reveal that boreal forest shows no gradual decline in tree cover toward its limits. Instead, our analysis suggests that it becomes less resilient in the sense that it may more easily shift into a sparse woodland or treeless state. Similarly, the relative scarcity of the intermediate ∼10% tree cover suggests that tundra may shift relatively abruptly to a more abundant tree cover. If our inferences are correct, climate change may invoke massive nonlinear shifts in boreal biomes. PMID:23236159

  7. Thresholds for boreal biome transitions

    PubMed Central

    Scheffer, Marten; Hirota, Marina; Holmgren, Milena; Van Nes, Egbert H.; Chapin, F. Stuart

    2012-01-01

    Although the boreal region is warming twice as fast as the global average, the way in which the vast boreal forests and tundras may respond is poorly understood. Using satellite data, we reveal marked alternative modes in the frequency distributions of boreal tree cover. At the northern end and at the dry continental southern extremes, treeless tundra and steppe, respectively, are the only possible states. However, over a broad intermediate temperature range, these treeless states coexist with boreal forest (∼75% tree cover) and with two more open woodland states (∼20% and ∼45% tree cover). Intermediate tree covers (e.g., ∼10%, ∼30%, and ∼60% tree cover) between these distinct states are relatively rare, suggesting that they may represent unstable states where the system dwells only transiently. Mechanisms for such instabilities remain to be unraveled, but our results have important implications for the anticipated response of these ecosystems to climatic change. The data reveal that boreal forest shows no gradual decline in tree cover toward its limits. Instead, our analysis suggests that it becomes less resilient in the sense that it may more easily shift into a sparse woodland or treeless state. Similarly, the relative scarcity of the intermediate ∼10% tree cover suggests that tundra may shift relatively abruptly to a more abundant tree cover. If our inferences are correct, climate change may invoke massive nonlinear shifts in boreal biomes. PMID:23236159

  8. Quantitation of the reconstruction quality of a four-dimensional computed tomography process for lung cancer patients

    SciTech Connect

    Lu Wei; Parikh, Parag J.; El Naqa, Issam M.; Nystrom, Michelle M.; Hubenschmidt, James P.; Wahab, Sasha H.; Mutic, Sasa; Singh, Anurag K.; Christensen, Gary E.; Bradley, Jeffrey D.; Low, Daniel A.

    2005-04-01

    We have developed a four-dimensional computed tomography (4D CT) technique for mapping breathing motion in radiotherapy treatment planning. A multislice CT scanner (1.5 mm slices) operated in cine mode was used to acquire 12 contiguous slices in each couch position for 15 consecutive scans (0.5 s rotation, 0.25 s between scans) while the patient underwent simultaneous quantitative spirometry measurements to provide a sorting metric. The spirometry-sorted scans were used to reconstruct a 4D data set. A critical factor for 4D CT is quantifying the reconstructed data set quality which we measure by correlating the metric used relative to internal-object motion. For this study, the internal air content within the lung was used as a surrogate for internal motion measurements. Thresholding and image morphological operations were applied to delineate the air-containing tissues (lungs, trachea) from each CT slice. The Hounsfield values were converted to the internal air content (V). The relationship between the air content and spirometer-measured tidal volume ({nu}) was found to be quite linear throughout the lungs and was used to estimate the overall accuracy and precision of tidal volume-sorted 4D CT. Inspection of the CT-scan air content as a function of tidal volume showed excellent correlations (typically r>0.99) throughout the lung volume. Because of the discovered linear relationship, the ratio of internal air content to tidal volume was indicative of the fraction of air change in each couch position. Theoretically, due to air density differences within the lung and in room, the sum of these ratios would equal 1.11. For 12 patients, the mean value was 1.08{+-}0.06, indicating the high quality of spirometry-based image sorting. The residual of a first-order fit between {nu} and V was used to estimate the process precision. For all patients, the precision was better than 8%, with a mean value of 5.1%{+-}1.9%. This quantitative analysis highlights the value of using

  9. Persistent Biomechanical Alterations After ACL Reconstruction Are Associated With Early Cartilage Matrix Changes Detected by Quantitative MR

    PubMed Central

    Amano, Keiko; Pedoia, Valentina; Su, Favian; Souza, Richard B.; Li, Xiaojuan; Ma, C. Benjamin

    2016-01-01

    Background: The effectiveness of anterior cruciate ligament (ACL) reconstruction in preventing early osteoarthritis is debated. Restoring the original biomechanics may potentially prevent degeneration, but apparent pathomechanisms have yet to be described. Newer quantitative magnetic resonance (qMR) imaging techniques, specifically T1ρ and T2, offer novel, noninvasive methods of visualizing and quantifying early cartilage degeneration. Purpose: To determine the tibiofemoral biomechanical alterations before and after ACL reconstruction using magnetic resonance imaging (MRI) and to evaluate the association between biomechanics and cartilage degeneration using T1ρ and T2. Study Design: Cohort study; Level of evidence, 2. Methods: Knee MRIs of 51 individuals (mean age, 29.5 ± 8.4 years) with unilateral ACL injuries were obtained prior to surgery; 19 control subjects (mean age, 30.7 ± 5.3 years) were also scanned. Follow-up MRIs were obtained at 6 months and 1 year. Tibial position (TP), internal tibial rotation (ITR), and T1ρ and T2 were calculated using an in-house Matlab program. Student t tests, repeated measures, and regression models were used to compare differences between injured and uninjured sides, observe longitudinal changes, and evaluate correlations between TP, ITR, and T1ρ and T2. Results: TP was significantly more anterior on the injured side at all time points (P < .001). ITR was significantly increased on the injured side prior to surgery (P = .033). At 1 year, a more anterior TP was associated with elevated T1ρ (P = .002) and T2 (P = .026) in the posterolateral tibia and with decreased T2 in the central lateral femur (P = .048); ITR was associated with increased T1ρ in the posteromedial femur (P = .009). ITR at 6 months was associated with increased T1ρ at 1 year in the posteromedial tibia (P = .029). Conclusion: Persistent biomechanical alterations after ACL reconstruction are related to significant changes in cartilage T1ρ and T2 at 1 year

  10. Quantitative reconstruction of precipitation and runoff during MIS 5a, MIS 3a, and Holocene, arid China

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Li, Yu

    2016-09-01

    Marine oxygen isotope stage 5a (MIS 5a), MIS 3a, and Holocene were highlighted periods in paleoclimate studies. Many scientists have published a great number of studies in this regard, but they paid more attention to qualitative research, and there was often a lack of quantitative data. In this paper, based on chronological evidence from a paleolake in arid China, MIS 5a, MIS 3a, and Holocene lake area, the precipitation of the drainage area and the runoff of the inflowing rivers of the lake were reconstructed with ArcGIS spatial analysis software and the improved water and energy balance model which was calibrated by modern meteorological and hydrological data in the Shiyang River drainage basin. The results showed that the paleolake areas were 1824, 1124, and 628 km2 for MIS 5a, MIS 3a, and Holocene; meanwhile, the paleoprecipitation and runoff were 293.992-297.433, 271.105-274.294, and 249.431-252.373 mm and 29.103 × 108-29.496 × 108, 18.810 × 108-18.959 × 108, and 10.637 × 108-10.777 × 108 mm, respectively. The quantitative data can help us not only strengthen the understanding of paleoclimatic characteristics but also recognize the complexity and diversity of the climate system.

  11. Multivariate clinical models and quantitative dipyridamole-thallium imaging to predict cardiac morbidity and death after vascular reconstruction

    SciTech Connect

    Lette, J.; Waters, D.; Lassonde, J.; Rene, P.; Picard, M.; Laurendeau, F.; Levy, R.; Cerino, M.; Nattel, S. )

    1991-08-01

    Patients with peripheral vascular disease have a high prevalence of coronary artery disease and are at increased risk for cardiac morbidity and death after vascular reconstruction. The present study was undertaken to assess the value of 18 clinical parameters, of 7 clinical scoring systems, and of quantitative dipyridamole-thallium imaging for predicting the occurrence of postoperative myocardial infarction or cardiac death. Vascular surgery was performed in 125 patients. Thirteen postoperative cardiac events occurred, including 10 cardiac deaths and 3 nonfatal infarctions. Clinical parameters were not useful in predicting postoperative outcome. All 63 patients with normal scan results or fixed perfusion defects underwent surgery uneventfully, whereas 21% (13/62) of patients with reversible defects had a postoperative cardiac complication. By use of quantitative scintigraphic indexes we found that patients with reversible defects could be stratified into intermediate and high-risk subgroups with postoperative event rates of 5% (2/47) and 85% (11/13), respectively, despite intensive postoperative monitoring and antianginal medication. Thus in patients unable to complete a standard exercise stress test, postoperative outcome cannot be predicted clinically, whereas dipyridamole-thallium imaging successfully identified all patients who had a postoperative cardiac event. By use of quantification we found that patients with reversible defects can be stratified into an intermediate risk subgroup that can undergo surgery with minimal complication rate and a high-risk subgroup that requires coronary angiography.

  12. Biome-level biogeography of streambed microbiota.

    PubMed

    Findlay, Robert H; Yeates, Christine; Hullar, Meredith A J; Stahl, David A; Kaplan, Louis A

    2008-05-01

    A field study was conducted to determine the microbial community structures of streambed sediments across diverse geographic and climatic areas. Sediment samples were collected from three adjacent headwater forest streams within three biomes, eastern deciduous (Pennsylvania), southeastern coniferous (New Jersey), and tropical evergreen (Guanacaste, Costa Rica), to assess whether there is biome control of stream microbial community structure. Bacterial abundance, microbial biomass, and bacterial and microbial community structures were determined using classical, biochemical, and molecular methods. Microbial biomass, determined using phospholipid phosphate, was significantly greater in the southeastern coniferous biome, likely due to the smaller grain size, higher organic content, and lower levels of physical disturbance of these sediments. Microbial community structure was determined using phospholipid fatty acid (PLFA) profiles and bacterial community structure from terminal restriction fragment length polymorphism and edited (microeukaryotic PLFAs removed) PLFA profiles. Principal component analysis (PCA) was used to investigate patterns in total microbial community structure. The first principal component separated streams based on the importance of phototrophic microeukaryotes within the community, while the second separated southeastern coniferous streams from all others based on increased abundance of fungal PLFAs. PCA also indicated that within- and among-stream variations were small for tropical evergreen streams and large for southeastern coniferous streams. A similar analysis of bacterial community structure indicated that streams within biomes had similar community structures, while each biome possessed a unique streambed community, indicating strong within-biome control of stream bacterial community structure.

  13. Quantitative reconstruction of paleo-Colorado-River profiles to test river integration and uplift models

    NASA Astrophysics Data System (ADS)

    Crow, R. S.; Karlstrom, K. E.; House, K.; Block, D.; Crossey, L. J.

    2015-12-01

    Spatial and temporal distribution of paleo Colorado River (CR) deposits form a primary dataset to better understand the evolution of a continental-scale river system and quantify regional uplift. We focus on the elevations of Bouse Formation, Bullhead Alluvium, and Chemehuevi Formation outcrops in the lower CR corridor taken from published maps and ongoing regional mapping efforts and the elevations of published and newly dated strath and fill terraces in Grand Canyon (GC). Our premise is that paleoprofile reconstruction can reveal overall incision magnitude, change in incision rates through time and space, fault dampened incision, and regional tilting due to differential epeirogenic uplift. Paleoprofile geometries were determined by projecting the elevation of dated CR deposits and bedrock straths onto a longitudinal valley profile using a semi-automated GIS routine. Base and top of deposits provide information about net bedrock incision and aggradation magnitude, respectively. In the lower CR corridor, the base of the ca. 4 Ma Bullhead Alluvium is subparallel to the modern CR, where not locally subsided, and projects to near sea level indicating little bedrock incision or surface uplift since 4 Ma. In GC paleoprofiles older than ca. 100 ka are above modern river level due to prolonged bedrock incision. Incision rates in western GC of ~100 m/Ma and 160 m/Ma in eastern GC necessitate ~400 m of differential block uplift across faults in the Lake Mead area and an additional ~240 m of epeirogenic mantle-driven surface uplift in eastern GC. Bedrock incision is locally dampened by fault-related folding associated with the Hurricane and Toroweap faults, but there is little regional uplift across these structures. Ongoing efforts focus on detailed geologic mapping and improved geochronology of defined paleoprofile segments to test depositional models for the Bouse, post-Bouse / pre-Bullhead uplift models, and further constrain differential uplift rates.

  14. Models and the paleo record of biome responses to glacial climate and CO2

    SciTech Connect

    Prentice; Colin, I.; Haxeltine

    1995-06-01

    Continental-scale reconstructions of the distribution of biomes at the last glacial maximum (LGM) indicate big changes, which can primarily be explained by climate. The climate was different from today mainly because of a combination of low concentrations of CO{sub 2} and other greenhouse gases and the presence of large continental ice sheets. Atmospheric general circulation model (AGCM) simulations, driven by these factors and linked to simple biome models in {open_quotes}diagnostic{close_quotes} mode, account for the broad outlines of the changes in vegetation patterns, including encroachment of C4 grasslands and savannas on what are now tropical forests. Physiological effects of low CO{sub 2} might also have played a role by altering the partitioning of precipitation to evapotranspiration and runoff, and altering the competitive balance of C3 and C4 plants. Such effects have not been quantified until recently, with the development of integrated biome/biochemistry models like those used in the VEMAP project. In these models, vegetation composition affects the coupled C and H{sub 2}O fluxes, which in turn influence the competitive balance of the constituent plant types. The relative importance of climatic and physiological effects of CO{sub 2} on biome distributions is a key issue for the future. This is gives added impetus to research that aims to exploit the potential of palaeo, data, through global data synthesis projects like BIOME 6000, to provide objective benchmarks against which to test models of the biosphere and climate.

  15. Quantitative summer and winter temperature reconstructions from pollen and chironomid data in the Baltic-Belarus area

    NASA Astrophysics Data System (ADS)

    Veski, Siim; Seppä, Heikki; Stančikaitė, Migle; Zernitskaya, Valentina; Reitalu, Triin; Gryguc, Gražyna; Heinsalu, Atko; Stivrins, Normunds; Amon, Leeli; Vassiljev, Jüri; Heiri, Oliver

    2015-04-01

    Quantitative reconstructions based on fossil pollen and chironomids are widely used and useful for long-term climate variability estimations. The Lateglacial and early Holocene period (15-8 ka BP) in the Baltic-Belarus (BB) area between 60°-51° N was characterized by sudden shifts in climate due to various climate forcings affecting the climate of the northern hemisphere and North Atlantic, including the proximity of receding ice sheets. Climate variations in BB during the LG were eminent as the southern part of the region was ice free during the Last Glacial Maximum over 19 ka BP, whereas northern Estonia became ice free no sooner than 13 ka BP. New pollen based reconstructions of summer (May-to-August) and winter (December-to-February) temperatures between 15-8 ka BP along a S-N transect in the BB area display trends in temporal and spatial changes in climate variability. These results are completed by two chironomid-based July mean temperature reconstructions (Heiri et al. 2014). The magnitude of change compared with modern temperatures was more prominent in the northern part of BB area than in the southern part. The 4 °C winter and 2 °C summer warming at the start of GI-1 was delayed in the BB area and Lateglacial maximum temperatures were reached at ca 13.6 ka BP, being 4 °C colder than the modern mean. The Younger Dryas cooling in the area was 5 °C colder than present as inferred by all proxies (Veski et al. in press). In addition, our analyses show an early Holocene divergence in winter temperature trends with modern values reaching 1 ka earlier (10 ka BP) in southern BB compared to the northern part of the region (9 ka BP). Heiri, O., Brooks, S.J., Renssen, H., Bedford, A., Hazekamp, M., Ilyashuk, B., Jeffers, E.S., Lang, B., Kirilova, E., Kuiper, S., Millet, L., Samartin, S., Toth, M., Verbruggen, F., Watson, J.E., van Asch, N., Lammertsma, E., Amon, L., Birks, H.H., Birks, J.B., Mortensen, M.F., Hoek, W.Z., Magyari, E., Muñoz Sobrino, C., Seppä, H

  16. The underestimated biodiversity of tropical grassy biomes.

    PubMed

    Murphy, Brett P; Andersen, Alan N; Parr, Catherine L

    2016-09-19

    For decades, there has been enormous scientific interest in tropical savannahs and grasslands, fuelled by the recognition that they are a dynamic and potentially unstable biome, requiring periodic disturbance for their maintenance. However, that scientific interest has not translated into widespread appreciation of, and concern about threats to, their biodiversity. In terms of biodiversity, grassy biomes are considered poor cousins of the other dominant biome of the tropics-forests. Simple notions of grassy biomes being species-poor cannot be supported; for some key taxa, such as vascular plants, this may be valid, but for others it is not. Here, we use an analysis of existing data to demonstrate that high-rainfall tropical grassy biomes (TGBs) have vertebrate species richness comparable with that of forests, despite having lower plant diversity. The Neotropics stand out in terms of both overall vertebrate species richness and number of range-restricted vertebrate species in TGBs. Given high rates of land-cover conversion in Neotropical grassy biomes, they should be a high priority for conservation and greater inclusion in protected areas. Fire needs to be actively maintained in these systems, and in many cases re-introduced after decades of inappropriate fire exclusion. The relative intactness of TGBs in Africa and Australia make them the least vulnerable to biodiversity loss in the immediate future. We argue that, like forests, TGBs should be recognized as a critical-but increasingly threatened-store of global biodiversity.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. PMID:27502382

  17. The underestimated biodiversity of tropical grassy biomes.

    PubMed

    Murphy, Brett P; Andersen, Alan N; Parr, Catherine L

    2016-09-19

    For decades, there has been enormous scientific interest in tropical savannahs and grasslands, fuelled by the recognition that they are a dynamic and potentially unstable biome, requiring periodic disturbance for their maintenance. However, that scientific interest has not translated into widespread appreciation of, and concern about threats to, their biodiversity. In terms of biodiversity, grassy biomes are considered poor cousins of the other dominant biome of the tropics-forests. Simple notions of grassy biomes being species-poor cannot be supported; for some key taxa, such as vascular plants, this may be valid, but for others it is not. Here, we use an analysis of existing data to demonstrate that high-rainfall tropical grassy biomes (TGBs) have vertebrate species richness comparable with that of forests, despite having lower plant diversity. The Neotropics stand out in terms of both overall vertebrate species richness and number of range-restricted vertebrate species in TGBs. Given high rates of land-cover conversion in Neotropical grassy biomes, they should be a high priority for conservation and greater inclusion in protected areas. Fire needs to be actively maintained in these systems, and in many cases re-introduced after decades of inappropriate fire exclusion. The relative intactness of TGBs in Africa and Australia make them the least vulnerable to biodiversity loss in the immediate future. We argue that, like forests, TGBs should be recognized as a critical-but increasingly threatened-store of global biodiversity.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'.

  18. SU-E-I-41: Dictionary Learning Based Quantitative Reconstruction for Low-Dose Dual-Energy CT (DECT)

    SciTech Connect

    Xu, Q; Xing, L; Xiong, G; Elmore, K; Min, J

    2015-06-15

    Purpose: DECT collects two sets of projection data under higher and lower energies. With appropriates composition methods on linear attenuation coefficients, quantitative information about the object, such as density, can be obtained. In reality, one of the important problems in DECT is the radiation dose due to doubled scans. This work is aimed at establishing a dictionary learning based reconstruction framework for DECT for improved image quality while reducing the imaging dose. Methods: In our method, two dictionaries were learned respectively from the high-energy and lowenergy image datasets of similar objects under normal dose in advance. The linear attenuation coefficient was decomposed into two basis components with material based composition method. An iterative reconstruction framework was employed. Two basis components were alternately updated with DECT datasets and dictionary learning based sparse constraints. After one updating step under the dataset fidelity constraints, both high-energy and low-energy images can be obtained from the two basis components. Sparse constraints based on the learned dictionaries were applied to the high- and low-energy images to update the two basis components. The iterative calculation continues until a pre-set number of iteration was reached. Results: We evaluated the proposed dictionary learning method with dual energy images collected using a DECT scanner. We re-projected the projection data with added Poisson noise to reflect the low-dose situation. The results obtained by the proposed method were compared with that obtained using FBP based method and TV based method. It was found that the proposed approach yield better results than other methods with higher resolution and less noise. Conclusion: The use of dictionary learned from DECT images under normal dose is valuable and leads to improved results with much lower imaging dose.

  19. Quantitative reconstruction of temperature in northern Japan for the last 2000 years and the influential factors to determine climatic fluctuation

    NASA Astrophysics Data System (ADS)

    Kawahata, Hodaka; Hatta, Yoshiki; Ota, Yuki; Yoshida, Akihiro; Habu, Junko

    2016-04-01

    A coastal sedimentary core at St. 5 in Uchiura Bay in northern Japan provided an opportunity to quantitatively estimate terrestrial atmospheric temperatures (AT) using the alkenone proxy because of their strong correlation with summer sea surface temperatures (SSTs) (r2 >0.90). In other words, when we can estimate SST, we can reconstruct AT quantitatively at high time resolution (10-30 years for the last 2K). During the last two millennia, SSTs fluctuated by 4.9 °C before 20 century, reaching two maximum in 1820 AD (22.3°C) and 760 AD (22.0 °C) and two minima around 145 AD (17.4 °C) and 1080 AD (17.4 °C). The SST profile is generally consistent with those obtained from western and central Japan by us (3 sites) and from East Asia by Cook (2013) but shows some differences. Although the MWP (Medieval Warm Period) was not identified in this study because a cold climate prevailed in 990-1100 AD. Particularly low temperatures around 1000-1100 AD can be verified by historical documents from in and around the ancient capital city of Kyoto (Ishii, 2002). The reconstructed SOI (Southern Oscillation Index) data suggest that the equatorial Pacific was predominantly in an El Niño phase in 900-1200 AD. Under modern conditions, during an El Niño episode, the Pacific high is weakened, with reduced atmospheric pressure in the western North Pacific in the vicinity of Japan. This results in an enhanced Okhotsk high, which tends to be accompanied by a cold and cloudy/rainy summer in Japan. A cold climate was definitely observed in 1550-1700 AD, which almost corresponded to the LIA (Little Ice Age). A cold event around 1650 AD can be attributed to big eruptions at Komagatake. This resulted in severe cold type of famine, which is evidenced by historical documents. Because several factors, including external forcing (e.g., solar activity) and internal forcing (e.g., volcanic activity, ENSO, and the Asian monsoon), can affect the climate, we compared SST fluctuations with each of

  20. Correlation between average tissue depth data and quantitative accuracy of forensic craniofacial reconstructions measured by geometric surface comparison method.

    PubMed

    Lee, Won-Joon; Wilkinson, Caroline M; Hwang, Hyeon-Shik; Lee, Sang-Mi

    2015-05-01

    Accuracy is the most important factor supporting the reliability of forensic facial reconstruction (FFR) comparing to the corresponding actual face. A number of methods have been employed to evaluate objective accuracy of FFR. Recently, it has been attempted that the degree of resemblance between computer-generated FFR and actual face is measured by geometric surface comparison method. In this study, three FFRs were produced employing live adult Korean subjects and three-dimensional computerized modeling software. The deviations of the facial surfaces between the FFR and the head scan CT of the corresponding subject were analyzed in reverse modeling software. The results were compared with those from a previous study which applied the same methodology as this study except average facial soft tissue depth dataset. Three FFRs of this study that applied updated dataset demonstrated lesser deviation errors between the facial surfaces of the FFR and corresponding subject than those from the previous study. The results proposed that appropriate average tissue depth data are important to increase quantitative accuracy of FFR. PMID:25739646

  1. Correlation between average tissue depth data and quantitative accuracy of forensic craniofacial reconstructions measured by geometric surface comparison method.

    PubMed

    Lee, Won-Joon; Wilkinson, Caroline M; Hwang, Hyeon-Shik; Lee, Sang-Mi

    2015-05-01

    Accuracy is the most important factor supporting the reliability of forensic facial reconstruction (FFR) comparing to the corresponding actual face. A number of methods have been employed to evaluate objective accuracy of FFR. Recently, it has been attempted that the degree of resemblance between computer-generated FFR and actual face is measured by geometric surface comparison method. In this study, three FFRs were produced employing live adult Korean subjects and three-dimensional computerized modeling software. The deviations of the facial surfaces between the FFR and the head scan CT of the corresponding subject were analyzed in reverse modeling software. The results were compared with those from a previous study which applied the same methodology as this study except average facial soft tissue depth dataset. Three FFRs of this study that applied updated dataset demonstrated lesser deviation errors between the facial surfaces of the FFR and corresponding subject than those from the previous study. The results proposed that appropriate average tissue depth data are important to increase quantitative accuracy of FFR.

  2. Late Mesozoic- Cenozoic plate boundaries in the North Atlantic – Arctic: Quantitative reconstructions using Hellinger criterion in GPlates

    NASA Astrophysics Data System (ADS)

    Gaina, Carmen; Watson, Robin; Cirbus, Juraj

    2015-04-01

    Cretaceous extension that resulted in the formation of several sedimentary basins along the North American and western and southwestern Greenland margin was followed by seafloor spreading in the Labrador Sea and Baffin Bay. Controversy regarding the timing of the oldest oceanic crust in these basins spanned more than 25 years and it is still not resolved due to the complexity of the margins and non-uniqueness of potential field data interpretation. Here we revisit the geophysical data (in particular the magnetic and gravity data) available for the Labrador Sea and Baffin Bay in order to identify the age of oceanic crust and infer new parameters that can be used for quantitative kinematic reconstructions. We identify chrons 20 to 29 for the central part of the basin. For the crust formed near the extinct spreading ridge we have modelled chrons 19 to 15 assuming an ultraslow spreading rate. Oceanic crust older than chron 29 is uncertain and may be part of a transitional crust that possibly contains other type of crust or exhumed mantle. The new magnetic anomaly identifications were inverted using the Hellinger (1981) criterion of fit. In this method the magnetic data are regarded as points on two conjugate isochrons consisting of great circle segments. This method has been extensively used for kinematic reconstructions since Royer and Chang (1991) first implemented it for quantitative plate tectonics, and is now available as a new interactive tool in the open-source software GPlates (www.gplates.org). The GPlates Hellinger tool lets the user interactively generate a best-fit rotation pole to a series of segmented magnetic picks. The fitting and determination of uncertainties are based on the FORTRAN program hellinger1 (Chang, 1988; Hellinger, 1981; Hanna and Chang, 1990); Royer and Chang, 1991). Input data can be viewed and adjusted both tabularly and graphically, and the best fit can be viewed and tested on the GPlates globe. The new set of rotations and their

  3. A 6000 year, quantitative reconstruction of precipitation variability in central Washington from lake sediment oxygen isotopes and predictive models

    NASA Astrophysics Data System (ADS)

    Steinman, B. A.; Abbott, M.; Rosenmeier, M. F.; Stansell, N.

    2010-12-01

    in the climate and lake isotope system. Specifically, equifinality produces a condition of many possible climatic solutions, or the lack of a unique hydroclimatic solution, for each observed sediment isotope value. Here, we present specific estimates of precipitation changes in north-central Washington over the last 6,000 years from model simulations of sediment core δ18O values. To address the issue of equifinality, Monte Carlo simulations were conducted in which lake isotopic evolution over discrete 100 year periods was simulated in response to randomly generated changes in mean state and stochastic P, T, and RH. Modeled sediment δ18O values from each 100 year period were averaged to address the effects of transience. The resulting dataset was analyzed by multiple regression to determine a quantitative relationship, within confidence limits, between δ18O values and P rates. The resulting regression equation was applied to the lake sediment δ18O record to produce a continuous, multi-millennial, quantitative estimate of precipitation changes extending beyond regional, tree-ring based Palmer Drought Severity Index reconstructions.

  4. Can use of adaptive statistical iterative reconstruction reduce radiation dose in unenhanced head CT? An analysis of qualitative and quantitative image quality

    PubMed Central

    Heggen, Kristin Livelten; Pedersen, Hans Kristian; Andersen, Hilde Kjernlie; Martinsen, Anne Catrine T

    2016-01-01

    Background Iterative reconstruction can reduce image noise and thereby facilitate dose reduction. Purpose To evaluate qualitative and quantitative image quality for full dose and dose reduced head computed tomography (CT) protocols reconstructed using filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR). Material and Methods Fourteen patients undergoing follow-up head CT were included. All patients underwent full dose (FD) exam and subsequent 15% dose reduced (DR) exam, reconstructed using FBP and 30% ASIR. Qualitative image quality was assessed using visual grading characteristics. Quantitative image quality was assessed using ROI measurements in cerebrospinal fluid (CSF), white matter, peripheral and central gray matter. Additionally, quantitative image quality was measured in Catphan and vendor’s water phantom. Results There was no significant difference in qualitative image quality between FD FBP and DR ASIR. Comparing same scan FBP versus ASIR, a noise reduction of 28.6% in CSF and between −3.7 and 3.5% in brain parenchyma was observed. Comparing FD FBP versus DR ASIR, a noise reduction of 25.7% in CSF, and −7.5 and 6.3% in brain parenchyma was observed. Image contrast increased in ASIR reconstructions. Contrast-to-noise ratio was improved in DR ASIR compared to FD FBP. In phantoms, noise reduction was in the range of 3 to 28% with image content. Conclusion There was no significant difference in qualitative image quality between full dose FBP and dose reduced ASIR. CNR improved in DR ASIR compared to FD FBP mostly due to increased contrast, not reduced noise. Therefore, we recommend using caution if reducing dose and applying ASIR to maintain image quality. PMID:27583169

  5. Global climate and the distribution of plant biomes.

    PubMed

    Woodward, F I; Lomas, M R; Kelly, C K

    2004-10-29

    Biomes are areas of vegetation that are characterized by the same life-form. Traditional definitions of biomes have also included either geographical or climatic descriptors. This approach describes a wide range of biomes that can be correlated with characteristic climatic conditions, or climatic envelopes. The application of remote sensing technology to the frequent observation of biomes has led to a move away from the often subjective definition of biomes to one that is objective. Carefully characterized observations of life-form, by satellite, have been used to reconsider biome classification and their climatic envelopes. Five major tree biomes can be recognized by satellites based on leaf longevity and morphology: needleleaf evergreen, broadleaf evergreen, needleleaf deciduous, broadleaf cold deciduous and broadleaf drought deciduous. Observations indicate that broadleaf drought deciduous vegetation grades substantially into broadleaf evergreen vegetation. The needleleaf deciduous biome occurs in the world's coldest climates, where summer drought and therefore a drought deciduous biome are absent. Traditional biome definitions are quite static, implying no change in their life-form composition with time, within their particular climatic envelopes. However, this is not the case where there has been global ingress of grasslands and croplands into forested vegetation. The global spread of grasses, a new super-biome, was probably initiated 30-45 Myr ago by an increase in global aridity, and was driven by the natural spread of the disturbances of fire and animal grazing. These disturbances have been further extended over the Holocene era by human activities that have increased the land areas available for domestic animal grazing and for growing crops. The current situation is that grasses now occur in most, if not all biomes, and in many areas they dominate and define the biome. Croplands are also increasing, defining a new and relatively recent component to the

  6. Biome Is Where the Art Is

    ERIC Educational Resources Information Center

    Gooden, Kelly

    2005-01-01

    The author is surprised every year when fifth-grade students react to the study of biomes as if they've never given any thought to the differences across parts of the world. Sure, they've all heard of the tropical rain forest and the desert, but it seems as though they think the rest of the world is just some undefined area with climate, animals,…

  7. Blanket peat biome endangered by climate change

    NASA Astrophysics Data System (ADS)

    Gallego-Sala, Angela V.; Colin Prentice, I.

    2013-02-01

    Blanket bog is a highly distinctive biome restricted to disjunct hyperoceanic regions. It is characterized by a landscape covering of peat broken only by the steepest slopes. Plant and microbial life are adapted to anoxia, low pH and low nutrient availability. Plant productivity exceeds soil organic matter decomposition, so carbon is sequestered over time. Unique climatic requirements, including high year-round rainfall and low summer temperatures, make this biome amenable to bioclimatic modelling. However, projections of the fate of peatlands in general, and blanket bogs in particular, under climate change have been contradictory. Here we use a simple, well-founded global bioclimatic model, with climate-change projections from seven climate models, to indicate this biome's fate. We show marked shrinkage of its present bioclimatic space with only a few, restricted areas of persistence. Many blanket bog regions are thus at risk of progressive peat erosion and vegetation changes as a direct consequence of climate change. New areas suitable for blanket bog are also projected, but these are often disjunct from present areas and their location is inconsistently predicted by different climate models.

  8. The Past is a Guide to the Future? Comparing Middle Pliocene Vegetation With Predicted Biome Distributions for the 21st Century

    NASA Astrophysics Data System (ADS)

    Salzmann, U.; Haywood, A. M.; Lunt, D. J.

    2007-12-01

    The Middle Pliocene geological stage, ca. 3.6 to 2.6 million years ago, represents an interval of time in which Earth experienced greater global warmth. In order to evaluate the degree to which the Middle Pliocene can be used as a 'test bed' for future warming, we compare a newly developed Middle Pliocene biome reconstruction with simulated global biome distributions for the mid and late 21st century. The Middle Pliocene biome reconstruction is based on an internally consistent dataset of 202 palaeobotanical sites and predictions from a state-of-the-art coupled climate-vegetation model (HadAM3-TRIFFID-BIOME4), the output of which is used to provide biome estimates for data sparse regions. For the Middle Pliocene, both the vegetation reconstruction and model predictions indicate a generally warmer and moister climate than today. Evergreen taiga as well as temperate forest and grasslands shifted northward resulting in a significantly reduced area of tundra vegetation. Warm-temperate forests (with subtropical taxa) spread in Middle and Eastern Europe and tropical savannas and woodland expanded in Africa and Australia at the expense of deserts. Middle Pliocene biome distributions are compared (globally and on a regional scale) with two new predictions of equilibrium vegetation conditions for the early 21st Century (around 2020, ~ 400ppmv CO2 in the atmosphere) and end of the 21st Century (~ 560ppmv CO2 in the atmosphere), to examine similarities and discrepancies in biome distributions. Our comparison between reconstruction and prediction will contribute to a better understanding of the past and future impact of increased atmospheric CO2 on vegetation and climate.

  9. Late Quaternary and future biome simulations for Alaska and Eastern Russia

    NASA Astrophysics Data System (ADS)

    Hendricks, Amy S.

    Arctic biomes across a region including Alaska and Eastern Russia were investigated using the BIOME4 biogeochemical and biogeography vegetation model. This study investigated past (the last 21,000 years), present, and future vegetation distributions in the study area, using climate forcing from five CMIP5 models (CCSM4, GISS-E2-R, MIROC-ESM, MPI-ESM, and MRI-CGCM3). The present-day BIOME4 simulations were generally consistent with current vegetation observations in the study region characterized by evergreen and deciduous taiga and shrub tundras. Paleoclimatological simulations were compared with pollen data samples collected in the study region. Pre-industrial biome simulations are generally similar to the modern reconstruction but differ by having more shrub tundra in both Russia and Alaska to the north, as well as less deciduous taiga in Alaska. Pre-industrial simulations were in good agreement with the pollen data. Mid-Holocene simulations place shrub tundras along the Arctic coast, and in some cases along the eastern coast of Russia. Simulations for the Mid-Holocene are in good agreement with pollen-based distributions of biomes. Simulations for the Last Glacial Maximum (LGM) show that the Bering Land Bridge was covered almost entirely by cushion forb, lichen and moss tundra, shrub tundra, and graminoid tundra. Three out of the five models' climate data produce evergreen and deciduous taiga in what is now southwestern Alaska, however the pollen data does not support this. The distributions of cushion forb, lichen, and moss tundra and graminoid tundra differ noticeably between models, while shrub tundra distributions are generally similar. Future simulations of BIOME4 based on the RCP8.5 climate scenario indicate a northward shift of the treeline and a significant areal decrease of shrub tundra and graminoid tundra regions in the 21st century. Intrusions of cool mixed, deciduous, and conifer forests above 60°N, especially in southwest Alaska, were notable

  10. Reconstruction and Quantitative Characterization of Multiphase, Multiscale Three-Dimensional Microstructure of a Cast Al-Si Base Alloy

    NASA Astrophysics Data System (ADS)

    Singh, H.; Gokhale, A. M.; Mao, Y.; Tewari, A.; Sachdev, A. K.

    2009-12-01

    The serial sectioning technique is well known for the reconstruction of three-dimensional (3D) microstructures of opaque materials. In recent years, techniques also have been developed for the reconstruction of high-fidelity, large-volume segments of 3D microstructures that use montage serial sections and robot-assisted automated acquisitions of montage serial sections. This article reports the reconstruction of the multiphase, multiscale 3D microstructure of a permanent mold cast unmodified Al-12 wt pct Si-1 wt pct Ni base alloy that contains eutectic Si platelets, coarse primary polyhedral Si particles, Fe-rich script intermetallic particles, and pores. These constituents are segmented, reconstructed, rendered, and characterized in three dimensions. The estimated 3D microstrucutral attributes include the distribution of eutectic platelet thickness; the mean volume, mean surface area, and mean thickness of the eutectic Si platelets; the mean volume and the mean surface area of the polyhedral primary Si particles; and the mean number of faces, edges, and corners on the polyhedral primary Si particles.

  11. The effects of variable biome distribution on global climate.

    PubMed

    Noever, D A; Brittain, A; Matsos, H C; Baskaran, S; Obenhuber, D

    1996-01-01

    In projecting climatic adjustments to anthropogenically elevated atmospheric carbon dioxide, most global climate models fix biome distribution to current geographic conditions. Previous biome maps either remain unchanging or shift without taking into account climatic feedbacks such as radiation and temperature. We develop a model that examines the albedo-related effects of biome distribution on global temperature. The model was tested on historical biome changes since 1860 and the results fit both the observed temperature trend and order of magnitude change. The model is then used to generate an optimized future biome distribution that minimizes projected greenhouse effects on global temperature. Because of the complexity of this combinatorial search, an artificial intelligence method, the genetic algorithm, was employed. The method is to adjust biome areas subject to a constant global temperature and total surface area constraint. For regulating global temperature, oceans are found to dominate continental biomes. Algal beds are significant radiative levers as are other carbon intensive biomes including estuaries and tropical deciduous forests. To hold global temperature constant over the next 70 years this simulation requires that deserts decrease and forested areas increase. The effect of biome change on global temperature is revealed as a significant forecasting factor.

  12. Investigation of the quantitative accuracy of 3D iterative reconstruction algorithms in comparison to filtered back projection method: a phantom study

    NASA Astrophysics Data System (ADS)

    Abuhadi, Nouf; Bradley, David; Katarey, Dev; Podolyak, Zsolt; Sassi, Salem

    2014-03-01

    Introduction: Single-Photon Emission Computed Tomography (SPECT) is used to measure and quantify radiopharmaceutical distribution within the body. The accuracy of quantification depends on acquisition parameters and reconstruction algorithms. Until recently, most SPECT images were constructed using Filtered Back Projection techniques with no attenuation or scatter corrections. The introduction of 3-D Iterative Reconstruction algorithms with the availability of both computed tomography (CT)-based attenuation correction and scatter correction may provide for more accurate measurement of radiotracer bio-distribution. The effect of attenuation and scatter corrections on accuracy of SPECT measurements is well researched. It has been suggested that the combination of CT-based attenuation correction and scatter correction can allow for more accurate quantification of radiopharmaceutical distribution in SPECT studies (Bushberg et al., 2012). However, The effect of respiratory induced cardiac motion on SPECT images acquired using higher resolution algorithms such 3-D iterative reconstruction with attenuation and scatter corrections has not been investigated. Aims: To investigate the quantitative accuracy of 3D iterative reconstruction algorithms in comparison to filtered back projection (FBP) methods implemented on cardiac SPECT/CT imaging with and without CT-attenuation and scatter corrections. Also to investigate the effects of respiratory induced cardiac motion on myocardium perfusion quantification. Lastly, to present a comparison of spatial resolution for FBP and ordered subset expectation maximization (OSEM) Flash 3D together with and without respiratory induced motion, and with and without attenuation and scatter correction. Methods: This study was performed on a Siemens Symbia T16 SPECT/CT system using clinical acquisition protocols. Respiratory induced cardiac motion was simulated by imaging a cardiac phantom insert whilst moving it using a respiratory motion motor

  13. Microbes to Biomes at Berkeley Lab

    ScienceCinema

    None

    2016-07-12

    Microbes are the Earth's most abundant and diverse form of life. Berkeley Lab's Microbes to Biomes initiative -- which will take advantage of research expertise at the Joint Genome Institute, Advanced Light Source, Molecular Foundry, and the new computational science facility -- is designed to explore and reveal the interactions of microbes with one another and with their environment. Microbes power our planet’s biogeochemical cycles, provide nutrients to our plants, purify our water and are integral components in keeping the human body free of disease and may hold the key to the Earth’s future.

  14. Microbes to Biomes at Berkeley Lab

    SciTech Connect

    2015-10-28

    Microbes are the Earth's most abundant and diverse form of life. Berkeley Lab's Microbes to Biomes initiative -- which will take advantage of research expertise at the Joint Genome Institute, Advanced Light Source, Molecular Foundry, and the new computational science facility -- is designed to explore and reveal the interactions of microbes with one another and with their environment. Microbes power our planet’s biogeochemical cycles, provide nutrients to our plants, purify our water and are integral components in keeping the human body free of disease and may hold the key to the Earth’s future.

  15. Levels of Reconstruction as Complementarity in Mixed Methods Research: A Social Theory-Based Conceptual Framework for Integrating Qualitative and Quantitative Research

    PubMed Central

    Carroll, Linda J.; Rothe, J. Peter

    2010-01-01

    Like other areas of health research, there has been increasing use of qualitative methods to study public health problems such as injuries and injury prevention. Likewise, the integration of qualitative and quantitative research (mixed-methods) is beginning to assume a more prominent role in public health studies. Likewise, using mixed-methods has great potential for gaining a broad and comprehensive understanding of injuries and their prevention. However, qualitative and quantitative research methods are based on two inherently different paradigms, and their integration requires a conceptual framework that permits the unity of these two methods. We present a theory-driven framework for viewing qualitative and quantitative research, which enables us to integrate them in a conceptually sound and useful manner. This framework has its foundation within the philosophical concept of complementarity, as espoused in the physical and social sciences, and draws on Bergson’s metaphysical work on the ‘ways of knowing’. Through understanding how data are constructed and reconstructed, and the different levels of meaning that can be ascribed to qualitative and quantitative findings, we can use a mixed-methods approach to gain a conceptually sound, holistic knowledge about injury phenomena that will enhance our development of relevant and successful interventions. PMID:20948937

  16. Levels of reconstruction as complementarity in mixed methods research: a social theory-based conceptual framework for integrating qualitative and quantitative research.

    PubMed

    Carroll, Linda J; Rothe, J Peter

    2010-09-01

    Like other areas of health research, there has been increasing use of qualitative methods to study public health problems such as injuries and injury prevention. Likewise, the integration of qualitative and quantitative research (mixed-methods) is beginning to assume a more prominent role in public health studies. Likewise, using mixed-methods has great potential for gaining a broad and comprehensive understanding of injuries and their prevention. However, qualitative and quantitative research methods are based on two inherently different paradigms, and their integration requires a conceptual framework that permits the unity of these two methods. We present a theory-driven framework for viewing qualitative and quantitative research, which enables us to integrate them in a conceptually sound and useful manner. This framework has its foundation within the philosophical concept of complementarity, as espoused in the physical and social sciences, and draws on Bergson's metaphysical work on the 'ways of knowing'. Through understanding how data are constructed and reconstructed, and the different levels of meaning that can be ascribed to qualitative and quantitative findings, we can use a mixed-methods approach to gain a conceptually sound, holistic knowledge about injury phenomena that will enhance our development of relevant and successful interventions.

  17. A chrysophyte-based quantitative reconstruction of winter severity from varved lake sediments in NE Poland during the past millennium and its relationship to natural climate variability

    NASA Astrophysics Data System (ADS)

    Hernández-Almeida, I.; Grosjean, M.; Przybylak, R.; Tylmann, W.

    2015-08-01

    Chrysophyte cysts are recognized as powerful proxies of cold-season temperatures. In this paper we use the relationship between chrysophyte assemblages and the number of days below 4 °C (DB4 °C) in the epilimnion of a lake in northern Poland to develop a transfer function and to reconstruct winter severity in Poland for the last millennium. DB4 °C is a climate variable related to the length of the winter. Multivariate ordination techniques were used to study the distribution of chrysophytes from sediment traps of 37 low-land lakes distributed along a variety of environmental and climatic gradients in northern Poland. Of all the environmental variables measured, stepwise variable selection and individual Redundancy analyses (RDA) identified DB4 °C as the most important variable for chrysophytes, explaining a portion of variance independent of variables related to water chemistry (conductivity, chlorides, K, sulfates), which were also important. A quantitative transfer function was created to estimate DB4 °C from sedimentary assemblages using partial least square regression (PLS). The two-component model (PLS-2) had a coefficient of determination of Rcross2 = 0.58, with root mean squared error of prediction (RMSEP, based on leave-one-out) of 3.41 days. The resulting transfer function was applied to an annually-varved sediment core from Lake Żabińskie, providing a new sub-decadal quantitative reconstruction of DB4 °C with high chronological accuracy for the period AD 1000-2010. During Medieval Times (AD 1180-1440) winters were generally shorter (warmer) except for a decade with very long and severe winters around AD 1260-1270 (following the AD 1258 volcanic eruption). The 16th and 17th centuries and the beginning of the 19th century experienced very long severe winters. Comparison with other European cold-season reconstructions and atmospheric indices for this region indicates that large parts of the winter variability (reconstructed DB4 °C) is due to the

  18. BioMe: biologically relevant metals.

    PubMed

    Tus, Alan; Rakipovic, Alen; Peretin, Goran; Tomic, Sanja; Sikic, Mile

    2012-07-01

    In this article, we introduce BioMe (biologically relevant metals), a web-based platform for calculation of various statistical properties of metal-binding sites. Users can obtain the following statistical properties: presence of selected ligands in metal coordination sphere, distribution of coordination numbers, percentage of metal ions coordinated by the combination of selected ligands, distribution of monodentate and bidentate metal-carboxyl, bindings for ASP and GLU, percentage of particular binuclear metal centers, distribution of coordination geometry, descriptive statistics for a metal ion-donor distance and percentage of the selected metal ions coordinated by each of the selected ligands. Statistics is presented in numerical and graphical forms. The underlying database contains information about all contacts within the range of 3 Å from a metal ion found in the asymmetric crystal unit. The stored information for each metal ion includes Protein Data Bank code, structure determination method, types of metal-binding chains [protein, ribonucleic acid (RNA), deoxyribonucleic acid (DNA), water and other] and names of the bounded ligands (amino acid residue, RNA nucleotide, DNA nucleotide, water and other) and the coordination number, the coordination geometry and, if applicable, another metal(s). BioMe is on a regular weekly update schedule. It is accessible at http://metals.zesoi.fer.hr.

  19. A prospective randomised study of anatomical single-bundle versus double-bundle anterior cruciate ligament reconstruction: quantitative evaluation using an electromagnetic measurement system.

    PubMed

    Araki, Daisuke; Kuroda, Ryosuke; Kubo, Seiji; Fujita, Norifumi; Tei, Katsumasa; Nishimoto, Koji; Hoshino, Yuichi; Matsushita, Takehiko; Matsumoto, Tomoyuki; Nagamune, Koki; Kurosaka, Masahiro

    2011-03-01

    We conducted a prospective randomised study of anatomical single-bundle (A-SB group) versus double-bundle (A-DB group) anterior cruciate ligament (ACL) reconstruction using the hamstrings tendons. Twenty patients with unilateral ACL deficiency were randomised into two groups. We created the bone tunnels at the position of the original insertion of the anteromedial bundle footprint and posterolateral bundle footprint in the A-DB group and at the central position between these two bundles in the A-SB group. All of the patients were tested before ACL reconstruction and one year after surgery. The KT-1000 measurements, isokinetic muscle peak torque and heel-height difference were evaluated and the general knee condition was assessed by Lysholm score. For pre- and postoperative stability assessment, we used the six-degrees-of-freedom of knee kinematic measurement system using an electromagnetic device (the EMS) for quantitative assessment during the Lachman test and the pivot shift test. There were no significant differences in the KT-1000 measurements, isokinetic muscle peak torque, heel-height difference, and Lysholm score at one-year follow-up between these two groups. The EMS data showed there were significant differences in the acceleration of the pivot shift test between the operated knee and the contralateral normal knees in the A-SB group. In conclusion, clinical outcomes were equally good in both groups. However, the EMS data showed the anatomical double-bundle ACL reconstruction tended to be biomechanically superior to the single-bundle reconstruction.

  20. Evolution of Philodendron (Araceae) species in Neotropical biomes

    PubMed Central

    Loss-Oliveira, Leticia; Sakuragui, Cassia; Soares, Maria de Lourdes

    2016-01-01

    Philodendron is the second most diverse genus of the Araceae, a tropical monocot family with significant morphological diversity along its wide geographic distribution in the Neotropics. Although evolutionary studies of Philodendron were conducted in recent years, the phylogenetic relationship among its species remains unclear. Additionally, analyses conducted to date suggested the inclusion of all American representatives of a closely-related genus, Homalomena, within the Philodendron clade. A thorough evaluation of the phylogeny and timescale of these lineages is thus necessary to elucidate the tempo and mode of evolution of this large Neotropical genus and to unveil the biogeographic history of Philodendron evolution along the Amazonian and Atlantic rainforests as well as open dry forests of South America. To this end, we have estimated the molecular phylogeny for 68 Philodendron species, which consists of the largest sampling assembled to date aiming the study of the evolutionary affinities. We have also performed ancestral reconstruction of species distribution along biomes. Finally, we contrasted these results with the inferred timescale of Philodendron and Homalomena lineage diversification. Our estimates indicate that American Homalomena is the sister clade to Philodendron. The early diversification of Philodendron took place in the Amazon forest from Early to Middle Miocene, followed by colonization of the Atlantic forest and the savanna-like landscapes, respectively. Based on the age of the last common ancestor of Philodendron, the species of this genus diversified by rapid radiations, leading to its wide extant distribution in the Neotropical region. PMID:27042390

  1. A quantitative high-resolution summer temperature reconstruction back to AD 850 based on sedimentary pigments from Laguna Aculeo, Central Chile

    NASA Astrophysics Data System (ADS)

    von Gunten, L.; Grosjean, M.; Rein, B.; Urrutia, R.; Appleby, P.

    2009-12-01

    A quantitative high-resolution (3-5 years) austral summer DJF (December to February) temperature reconstruction for the central region of Chile back to AD 850 is presented here. We used non-destructive multi-channel in situ reflection spectrometry data from a short sediment core from Laguna Aculeo, Central Chile (33°50'S/70°54'W, 355m a.s.l.). The age model is based on 137Cs and 14C dates, and a series of seismites related to major historical earthquakes. Calibration-in-time (period AD 1901-2000, cross-validated with split periods) revealed robust correlations between local DJF temperatures (CRU TS 2.1) and total sedimentary chlorin (a proxy for biological productivity measured using the relative absorption band depth (RABD) centred in 660-670 nm RABD660;670: r=0.79, P<0.01; five-years triangular filtered) and the degree of pigment diagenesis (R660nm/670nm: r=0.82, P<0.01; five-years triangular filtered). The DJF temperature reconstructions back to AD 850 were then calculated using scaling and linear regression techniques; Root Mean Squared Error values are small (between 0.24 and 0.34°C) suggesting that most of the reconstructed decadal-scale climate variability is significant. Our data provide quantitative evidence for the presence of a Medieval Climate Anomaly (in this case, warm summers between AD 1150 and 1350; ΔT = +0.27 to +0.37°C with respect to (wrt) twentieth century) and a cool period synchronous to the ‘Little Ice Age’ starting with a sharp drop between AD 1350 and AD 1400 (-0.3°C/10 yr, decadal trend) followed by constantly cool (ΔT = -0.70 to -0.90°C wrt twentieth century) summers until AD 1750. This lake sediment-based summer temperature record for central Chile is particularly valuable as most other known natural climate archives in this area (mostly tree rings) are sensitive to winter precipitation. Instrumental DJF temperatures and the reconstruction back to AD 850 (3-year resolution)

  2. Climate-biomes, pedo-biomes and pyro-biomes: which world view explains the tropical forest - savanna boundary in South America?

    NASA Astrophysics Data System (ADS)

    Langan, Liam; Higgins, Steven; Scheiter, Simon

    2015-04-01

    Elucidating the drivers of broad vegetation formations improves our understanding of earth system functioning. The biome, defined primarily by the dominance of a particular growth strategy, is commonly employed to group vegetation into similar units. Predicting tropical forest and savanna biome boundaries in South America has proven difficult. Process based DGVMs (Dynamic global vegetation models) are our best tool to simulate vegetation patterns, make predictions for future changes and test theory, however, many DGVMs fail to accurately simulate the spatial distribution or indeed presence of the South American savanna biome which can result in large differences in modelled ecosystem structural properties. Evidence suggests fire plays a significant role in mediating these forest and savanna biome boundaries, however, fire alone does not appear to be sufficient to predict these boundaries in South America using DGVMs hinting at the presence of one or more missing environmental factors. We hypothesise that soil depth, which affects plant available water by determining maximum storage potential and influences temporal availability, may be one of these missing environmental factors. To test our hypothesis we use a novel vegetation model, the aDGVM2. This model has been specifically designed to allow plant trait strategies, constrained by trade-offs between traits, evolve based on the abiotic and biotic conditions where the resulting community trait suites are emergent properties of model dynamics. Furthermore it considers root biomass in multiple soil layers and therefore allows the consideration of alternative rooting strategies, which in turn allows us to explore in more detail the role of soil hydraulic factors in controlling biome boundary distributions. We find that changes in soil depth, interacting with fire, affect the relative dominance of tree and grass strategies and thus the presence and spatial distribution of forest and savanna biomes in South America

  3. Effects of particle size, slice thickness, and reconstruction algorithm on coronary calcium quantitation using ultrafast computed tomography

    NASA Astrophysics Data System (ADS)

    Tang, Weiyi; Detrano, Robert; Kang, Xingping; Garner, D.; Nickerson, Sharon; Desimone, P.; Mahaisavariya, Paiboon; Brundage, B.

    1994-05-01

    The recent emphasis on early diagnosis of coronary artery disease has stimulated research for a reliable and non-invasive screening method. Radiographically detectable coronary calcium has been shown to predict both pathologic and angiographic findings. Ultrafast computed tomography (UFCT), in quantifying coronary calcium, may become an accurate non-invasive method to evaluate the severity of coronary disease. The currently applied index of UFCT coronary calcium amount is the coronary calcium score of Agatston et al. This score has not been thoroughly evaluated as to its accuracy and dependence on scanning parameters. A potential drawback of the score is its dependence on predetermined CT number thresholds. In this investigation we used a chest phantom to determine the effects of particle size, slice thickness, and reconstruction algorithm on the coronary calcium score, and on the calcium mass estimated with a new method which is not dependent on thresholds.

  4. Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7 T.

    PubMed

    Fujimoto, Kyoko; Polimeni, Jonathan R; van der Kouwe, André J W; Reuter, Martin; Kober, Tobias; Benner, Thomas; Fischl, Bruce; Wald, Lawrence L

    2014-04-15

    The Magnetization-Prepared 2 Rapid Acquisition Gradient Echo (MP2RAGE) method achieves spatially uniform contrast across the entire brain between gray matter and surrounding white matter tissue and cerebrospinal fluid by rapidly acquiring data at two points during an inversion recovery, and then combining the two volumes so as to cancel out sources of intensity and contrast bias, making it useful for neuroimaging studies at ultrahigh field strengths (≥7T). To quantify the effectiveness of the MP2RAGE method for quantitative morphometric neuroimaging, we performed tissue segmentation and cerebral cortical surface reconstruction of the MP2RAGE data and compared the results with those generated from conventional multi-echo MPRAGE (MEMPRAGE) data across a group of healthy subjects. To do so, we developed a preprocessing scheme for the MP2RAGE image data to allow for automatic cortical segmentation and surface reconstruction using FreeSurfer and analysis methods to compare the positioning of the surface meshes. Using image volumes with 1mm isotropic voxels we found a scan-rescan reproducibility of cortical thickness estimates to be 0.15 mm (or 6%) for the MEMPRAGE data and a slightly lower reproducibility of 0.19 mm (or 8%) for the MP2RAGE data. We also found that the thickness estimates were systematically smaller in the MP2RAGE data, and that both the interior and exterior cortical boundaries estimated from the MP2RAGE data were consistently positioned within the corresponding boundaries estimated from the MEMPRAGE data. Therefore several measureable differences exist in the appearance of cortical gray matter and its effect on automatic segmentation methods that must be considered when choosing an acquisition or segmentation method for studies requiring cortical surface reconstructions. We propose potential extensions to the MP2RAGE method that may help to reduce or eliminate these discrepancies.

  5. Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling.

    PubMed

    Trondman, A-K; Gaillard, M-J; Mazier, F; Sugita, S; Fyfe, R; Nielsen, A B; Twiddle, C; Barratt, P; Birks, H J B; Bjune, A E; Björkman, L; Broström, A; Caseldine, C; David, R; Dodson, J; Dörfler, W; Fischer, E; van Geel, B; Giesecke, T; Hultberg, T; Kalnina, L; Kangur, M; van der Knaap, P; Koff, T; Kuneš, P; Lagerås, P; Latałowa, M; Lechterbeck, J; Leroyer, C; Leydet, M; Lindbladh, M; Marquer, L; Mitchell, F J G; Odgaard, B V; Peglar, S M; Persson, T; Poska, A; Rösch, M; Seppä, H; Veski, S; Wick, L

    2015-02-01

    We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene [around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1° × 1° spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types [evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources. PMID:25204435

  6. Detection and origin of different types of annual laminae in recent stalagmites from Zoolithencave, southern Germany: Evaluation of the potential for quantitative reconstruction of past precipitation variability

    NASA Astrophysics Data System (ADS)

    Riechelmann, Dana F. C.; Fohlmeister, Jens; Tjallingii, Rik; Jochum, Klaus Peter; Richter, Detlev K.; Brummer, Geert-Jan A.; Scholz, Denis

    2016-04-01

    An arrangement of three stalagmites from Zoolithencave (southern Germany) was analysed for different types of annual laminae using microscopic and geochemical methods. The speleothems show visible laminae (consisting of a pair of a clear and a brownish, pigmented layer) as well as fluorescent and elemental laminae. The growth periods of the speleothems were dated to AD 1800 to 1970 by detection of the 14C bomb peak, 14C-dating of a charcoal piece located below the speleothems, as well as counting of annual laminae. On the annual time-scale, the variability of Mg, Ba, and Sr is controlled by Prior Calcite Precipitation (PCP) resulting in lower values during the wet season (autumn/winter) and vice versa. Both, Y and P are enriched in the brownish, pigmented layers and are proxies for soil activity. However, both elemental concentrations are also influenced by detrital content superimposed on the signal resulting from soil activity. Proxies for detrital content are Al and Mn. Lamina thickness shows a significant correlation with the amount of precipitation of December of the previous year and January, February, March, April, May, and December of the current year (DJFMAMD) recorded at the nearby meteorological station Bamberg. Thus, lamina thickness is a proxy for past precipitation variability. This is confirmed by the good agreement with a precipitation reconstruction based on tree-ring width from the Bavarian forest. This highlights the potential of these speleothems for climate reconstruction at annual resolution (Riechelmann et al., submitted). Riechelmann, D.F.C, Fohlmeister, J., Tjallingii, R., Jochum, K.P., Richter, D.K., Brummer, G.-J. A., Scholz, D., submitted. Detection and origin of different types of annual laminae in recent stalagmites from Zoolithancave, southern Germany: Evaluation of the potential for quantitative reconstruction of past precipitation variability. Hydrology and Earth System Science Discussions.

  7. Quantitative comparison of cortical surface reconstructions from MP2RAGE and Multi-Echo MPRAGE data at 3 and 7 Tesla

    PubMed Central

    Fujimoto, Kyoko; Polimeni, Jonathan R.; van der Kouwe, Andre J. W.; Reuter, Martin; Kober, Tobias; Benner, Thomas; Fischl, Bruce; Wald, Lawrence L.

    2014-01-01

    The Magnetization-Prepared 2 Rapid Acquisition Gradient Echo (MP2RAGE) method achieves spatially uniform contrast across the entire brain between gray matter and surrounding white matter tissue and cerebrospinal fluid by rapidly acquiring data at two points during an inversion recovery, and then combining the two volumes so as to cancel out sources of intensity and contrast bias, making it useful for neuroimaging studies at ultrahigh field strengths (≥ 7 T). To quantify the effectiveness of the MP2RAGE method for quantitative morphometric neuroimaging, we performed tissue segmentation and cerebral cortical surface reconstruction of the MP2RAGE data and compared the results with those generated from conventional Multi-Echo MPRAGE (MEMPRAGE) data across a group of healthy subjects. To do so, we developed a preprocessing scheme for the MP2RAGE image data to allow for automatic cortical segmentation and surface reconstruction using FreeSurfer and analysis methods to compare positioning of the surface meshes. Using image volumes with 1 mm isotropic voxels we found a scan-rescan reproducibility of cortical thickness estimates to be 0.15 mm (or 6%) for the MEMPRAGE data and a slightly lower reproducibility of 0.19 mm (or 8%) for the MP2RAGE data. We also found that the thickness estimates were systematically smaller in the MP2RAGE data, and that both the interior and exterior cortical boundaries estimated from the MP2RAGE data were consistently positioned within the corresponding boundaries estimated from the MEMPRAGE data. Therefore several measureable differences exist in the appearance of cortical gray matter and its effect on automatic segmentation methods that must be considered when choosing an acquisition or segmentation method for studies requiring cortical surface reconstructions. We propose potential extensions to the MP2RAGE method that may help to reduce or eliminate these discrepancies. PMID:24345388

  8. Three-dimensional reconstruction and morphologic measurements of human embryonic hearts: a new diagnostic and quantitative method applicable to fetuses younger than 13 weeks of gestation

    PubMed Central

    Schleich, Jean-Marc; Dillenseger, Jean-Louis; Loeuillet, Laurence; Moulinoux, Jacques-Philippe; Almange, Claude

    2005-01-01

    Improvements in the diagnosis of congenital malformations explain the increasing early termination of pregnancies. Before 13 weeks of gestation, an accurate in vivo anatomical diagnosis cannot currently be made in all fetuses with the imaging instrumentation available. Anatomo-pathological examinations remain the gold standard to make accurate diagnoses, although they reach limits between 9 and 13 weeks of gestation. We present the first results of a methodology that can be applied routinely, using standard histological section, enabling the reconstruction, visual estimate and quantitative analysis of 13 weeks of age human embryonic cardiac structures. The cardiac blocks were fixed, included in paraffin and entirely sliced by a microtome. One slice out of 10 was topographically colored and digitized on an optical microscope. The cardiac volume was recovered by a semi-automatic realignment of the sections. Another semi-automatic procedure allowed extracting and labeling of the cardiac structures from the volume. The structures were studied with display tools, disclosing the internal and external cardiac components, and enabling the determination of size, thickness and precise position of the ventricles, atria and large vessels. This pilot study confirmed that a new 3-D reconstruction and visualization method enabled to make accurate diagnoses, including in embryos <13 weeks old. Its implementation at earlier stages of embryogenesis will provide a clearer view of cardiac development. PMID:16211458

  9. Quantitative Proteomics-Based Reconstruction and Identification of Metabolic Pathways and Membrane Transport Proteins Related to Sugar Accumulation in Developing Fruits of Pear (Pyrus communis).

    PubMed

    Reuscher, Stefan; Fukao, Yoichiro; Morimoto, Reina; Otagaki, Shungo; Oikawa, Akira; Isuzugawa, Kanji; Shiratake, Katsuhiro

    2016-03-01

    During their 6 month development, pear (Pyrus communis) fruits undergo drastic changes in their morphology and their chemical composition. To gain a better understanding of the metabolic pathways and transport processes active during fruit development, we performed a time-course analysis using mass spectrometry (MS)-based protein identification and quantification of fruit flesh tissues. After pre-fractionation of the samples, 2,841 proteins were identified. A principal component analysis (PCA) separated the samples from seven developmental stages into three distinct clusters representing the early, mid and late developmental phase. Over-representation analysis of proteins characteristic of each developmental phase revealed both expected and novel biological processes relevant at each phase. A high abundance of aquaporins was detected in samples from fruits in the cell expansion stage. We were able quantitatively to reconstruct basic metabolic pathways such as the tricarboxylic acid (TCA) cycle, which indicates sufficient coverage to reconstruct other metabolic pathways. Most of the enzymes that presumably contribute to sugar accumulation in pear fruits could be identified. Our data indicate that invertases do not play a major role in the sugar conversions in developing pear fruits. Rather, sucrose might be broken down by sucrose synthases. Further focusing on sugar transporters, we identified several putative sugar transporters from diverse families which showed developmental regulation. In conclusion, our data set comprehensively describes the proteome of developing pear fruits and provides novel insights about sugar accumulation as well as candidate genes for key reactions and transport steps.

  10. Quantitative Proteomics-Based Reconstruction and Identification of Metabolic Pathways and Membrane Transport Proteins Related to Sugar Accumulation in Developing Fruits of Pear (Pyrus communis).

    PubMed

    Reuscher, Stefan; Fukao, Yoichiro; Morimoto, Reina; Otagaki, Shungo; Oikawa, Akira; Isuzugawa, Kanji; Shiratake, Katsuhiro

    2016-03-01

    During their 6 month development, pear (Pyrus communis) fruits undergo drastic changes in their morphology and their chemical composition. To gain a better understanding of the metabolic pathways and transport processes active during fruit development, we performed a time-course analysis using mass spectrometry (MS)-based protein identification and quantification of fruit flesh tissues. After pre-fractionation of the samples, 2,841 proteins were identified. A principal component analysis (PCA) separated the samples from seven developmental stages into three distinct clusters representing the early, mid and late developmental phase. Over-representation analysis of proteins characteristic of each developmental phase revealed both expected and novel biological processes relevant at each phase. A high abundance of aquaporins was detected in samples from fruits in the cell expansion stage. We were able quantitatively to reconstruct basic metabolic pathways such as the tricarboxylic acid (TCA) cycle, which indicates sufficient coverage to reconstruct other metabolic pathways. Most of the enzymes that presumably contribute to sugar accumulation in pear fruits could be identified. Our data indicate that invertases do not play a major role in the sugar conversions in developing pear fruits. Rather, sucrose might be broken down by sucrose synthases. Further focusing on sugar transporters, we identified several putative sugar transporters from diverse families which showed developmental regulation. In conclusion, our data set comprehensively describes the proteome of developing pear fruits and provides novel insights about sugar accumulation as well as candidate genes for key reactions and transport steps. PMID:26755692

  11. BIOME: An Ecosystem Remote Sensor Based on Imaging Interferometry

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Hammer, Philip; Smith, William H.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Until recent times, optical remote sensing of ecosystem properties from space has been limited to broad band multispectral scanners such as Landsat and AVHRR. While these sensor data can be used to derive important information about ecosystem parameters, they are very limited for measuring key biogeochemical cycling parameters such as the chemical content of plant canopies. Such parameters, for example the lignin and nitrogen contents, are potentially amenable to measurements by very high spectral resolution instruments using a spectroscopic approach. Airborne sensors based on grating imaging spectrometers gave the first promise of such potential but the recent decision not to deploy the space version has left the community without many alternatives. In the past few years, advancements in high performance deep well digital sensor arrays coupled with a patented design for a two-beam interferometer has produced an entirely new design for acquiring imaging spectroscopic data at the signal to noise levels necessary for quantitatively estimating chemical composition (1000:1 at 2 microns). This design has been assembled as a laboratory instrument and the principles demonstrated for acquiring remote scenes. An airborne instrument is in production and spaceborne sensors being proposed. The instrument is extremely promising because of its low cost, lower power requirements, very low weight, simplicity (no moving parts), and high performance. For these reasons, we have called it the first instrument optimized for ecosystem studies as part of a Biological Imaging and Observation Mission to Earth (BIOME).

  12. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes.

    PubMed

    Cornelissen, Johannes H C; van Bodegom, Peter M; Aerts, Rien; Callaghan, Terry V; van Logtestijn, Richard S P; Alatalo, Juha; Chapin, F Stuart; Gerdol, Renato; Gudmundsson, Jon; Gwynn-Jones, Dylan; Hartley, Anne E; Hik, David S; Hofgaard, Annika; Jónsdóttir, Ingibjörg S; Karlsson, Staffan; Klein, Julia A; Laundre, Jim; Magnusson, Borgthor; Michelsen, Anders; Molau, Ulf; Onipchenko, Vladimir G; Quested, Helen M; Sandvik, Sylvi M; Schmidt, Inger K; Shaver, Gus R; Solheim, Bjørn; Soudzilovskaia, Nadejda A; Stenström, Anna; Tolvanen, Anne; Totland, Ørjan; Wada, Naoya; Welker, Jeffrey M; Zhao, Xinquan

    2007-07-01

    Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.

  13. Lacustrine turbidites as a tool for quantitative earthquake reconstruction: New evidence for a variable rupture mode in south central Chile

    NASA Astrophysics Data System (ADS)

    Moernaut, Jasper; Daele, Maarten Van; Heirman, Katrien; Fontijn, Karen; Strasser, Michael; Pino, Mario; Urrutia, Roberto; De Batist, Marc

    2014-03-01

    Understanding the long-term earthquake recurrence pattern at subduction zones requires continuous paleoseismic records with excellent temporal and spatial resolution and stable threshold conditions. South central Chilean lakes are typically characterized by laminated sediments providing a quasi-annual resolution. Our sedimentary data show that lacustrine turbidite sequences accurately reflect the historical record of large interplate earthquakes (among others the 2010 and 1960 events). Furthermore, we found that a turbidite's spatial extent and thickness are a function of the local seismic intensity and can be used for reconstructing paleo-intensities. Consequently, our multilake turbidite record aids in pinpointing magnitudes, rupture locations, and extent of past subduction earthquakes in south central Chile. Comparison of the lacustrine turbidite records with historical reports, a paleotsunami/subsidence record, and a marine megaturbidite record demonstrates that the Valdivia Segment is characterized by a variable rupture mode over the last 900 years including (i) full ruptures (Mw ~9.5: 1960, 1575, 1319 ± 9, 1127 ± 44), (ii) ruptures covering half of the Valdivia Segment (Mw ~9: 1837), and (iii) partial ruptures of much smaller coseismic slip and extent (Mw ~7.5-8: 1737, 1466 ± 4). Also, distant or smaller local earthquakes can leave a specific sedimentary imprint which may resolve subtle differences in seismic intensity values. For instance, the 2010 event at the Maule Segment produced higher seismic intensities toward southeastern localities compared to previous megathrust ruptures of similar size and extent near Concepción.

  14. Three-dimensional visual truth of the normal airway tree for use as a quantitative comparison to micro-CT reconstructions

    NASA Astrophysics Data System (ADS)

    Thiesse, Jacqueline; Reinhardt, Joseph M.; de Ryk, Jessica; Namati, Eman; Leinen, Jessica; Recheis, Wolfgang A.; Hoffman, Eric A.; McLennan, Geoffrey

    2005-04-01

    Mouse models are important for pulmonary research to gain insight into structure and function in normal and diseased states, thereby extending knowledge of human disease conditions. The flexibility of human disease induction into mice, due to their similar genome, along with their short gestation cycle makes mouse models highly suitable as investigative tools. Advancements in non-invasive imaging technology, with the development of micro-computed tomography (μ-CT), have aided representation of disease states in these small pulmonary system models. The generation ofμCT 3D airway reconstructions has to date provided a means to examine structural changes associated with disease. The degree of accuracy ofμCT is uncertain. Consequently, the reliability of quantitative measurements is questionable. We have developed a method of sectioning and imaging the whole mouse lung using the Large Image Microscope Array (LIMA) as the gold standard for comparison. Fixed normal mouse lungs were embedded in agarose and 250μm sections of tissue were removed while the remaining tissue block was imaged with a stereomicroscope. A complete dataset of the mouse lung was acquired in this fashion. Following planar image registration, the airways were manually segmented using an in-house built software program PASS. Amira was then used render the 3D isosurface from the segmentations. The resulting 3D model of the normal mouse airway tree developed from pathology images was then quantitatively assessed and used as the standard to compare the accuracy of structural measurements obtained from μ-CT.

  15. A direct and quantitative three-dimensional reconstruction of the internal structure of disordered mesoporous carbon with tailored pore size.

    PubMed

    Balach, Juan; Soldera, Flavio; Acevedo, Diego F; Mücklich, Frank; Barbero, César A

    2013-06-01

    A new technique that allows direct three-dimensional (3D) investigations of mesopores in carbon materials and quantitative characterization of their physical properties is reported. Focused ion beam nanotomography (FIB-nt) is performed by a serial sectioning procedure with a dual beam FIB-scanning electron microscopy instrument. Mesoporous carbons (MPCs) with tailored mesopore size are produced by carbonization of resorcinol-formaldehyde gels in the presence of a cationic surfactant as a pore stabilizer. A visual 3D morphology representation of disordered porous carbon is shown. Pore size distribution of MPCs is determined by the FIB-nt technique and nitrogen sorption isotherm methods to compare both results. The obtained MPCs exhibit pore sizes of 4.7, 7.2, and 18.3 nm, and a specific surface area of ca. 560 m(2)/g.

  16. The PRoViDE framework for the quantitative geologic analysis of reconstructed Martian terrain and outcrops

    NASA Astrophysics Data System (ADS)

    Traxler, Christoph; Hesina, Gerd; Barnes, Robert; Gupta, Sanjeev; Paar, Gerhard

    2016-04-01

    The EU-FP7 project PRoViDE (Planetary Robotics Vision Data Exploitation) assembled a major portion of the imaging data gathered so far from planetary surface missions into a unique 3D database, brought them into a spatial context and provides access to a complete set of 3D vision products. The processing chain (PRoViP) is able to generate novel 3D fusion products between HiRISE orbiter and multiple-station rover stereo imagery from NASA's Mars Exploration Rover - MER (Pancam, Navcam), and Mars Science Laboratory Curiosity - MSL (Mastcam). An important tool of the PRoViDE framework, using PRoViP multi-resolution 3D vision processing products, is called PRo3D. It is an interactive virtual environment for the scientific exploration and analysis of reconstructed Martian terrain and digital outcrop models. Data fusion is supported so that multiple models with different scales and geometric resolutions can be combined in one 3D scene. This allows studying both the large geological context, which usually is reconstructed from orbiter imagery, and small outcrop details originating from rover camera imagery. PRo3D allows the user to fluently move around and zoom to investigate features at different scales and perspectives, as well as providing various interactive analysis tools. Interpretations can be digitised directly onto the 3D surface, and simple measurements can be taken of the dimensions of the outcrop and sedimentary features. The 3D data allows for incorporation of the geometrical features of the sedimentary layers into the measurements to obtain the true dimensions of those features. Dip and strike is calculated within PRo3D from mapped bedding contacts and fracture traces, through which a best fit plane is created to derive the dip and strike vectors. Scientists can organize measurements and annotations according to their geological context in a hierarchical way. These tools have been tested on two case studies; Victoria Crater and Shaler. Victoria Crater, in the

  17. Using an Exploratory Internet Activity & Trivia Game to Teach Students about Biomes

    ERIC Educational Resources Information Center

    Richardson, Matthew L.

    2009-01-01

    Students in life science classes need an introduction to biomes, including an introduction to the concept, key biotic and abiotic features of biomes, and geographic locations of biomes. In this activity, students in seventh- and eighth-grade science classes used a directed exploratory Internet activity to learn about biomes. The author tested…

  18. Biomass allocation patterns across China's terrestrial biomes.

    PubMed

    Wang, Limei; Li, Longhui; Chen, Xi; Tian, Xin; Wang, Xiaoke; Luo, Geping

    2014-01-01

    Root to shoot ratio (RS) is commonly used to describe the biomass allocation between below- and aboveground parts of plants. Determining the key factors influencing RS and interpreting the relationship between RS and environmental factors is important for biological and ecological research. In this study, we compiled 2088 pairs of root and shoot biomass data across China's terrestrial biomes to examine variations in the RS and its responses to biotic and abiotic factors including vegetation type, soil texture, climatic variables, and stand age. The median value of RS (RSm) for grasslands, shrublands, and forests was 6.0, 0.73, and 0.23, respectively. The range of RS was considerably wide for each vegetation type. RS values for all three major vegetation types were found to be significantly correlated to mean annual precipitation (MAP) and potential water deficit index (PWDI). Mean annual temperature (MAT) also significantly affect the RS for forests and grasslands. Soil texture and forest origin altered the response of RS to climatic factors as well. An allometric formula could be used to well quantify the relationship between aboveground and belowground biomass, although each vegetation type had its own inherent allometric relationship.

  19. Future Biome Projections in Alaska and East Russia

    NASA Astrophysics Data System (ADS)

    Hendricks, A.; Saito, K.; Bigelow, N. H.; Walsh, J. E.

    2014-12-01

    We projected Arctic biomes across a region including Alaska and Eastern Russia using the BIOME4 biogeochemical and biogeography vegetation model. BIOME4, which produces an equilibrium vegetation distribution under a given climate condition, was forced by CMIP5/PMIP3 climate data considered in IPCC AR5. We are exploring vegetation and permafrost distributions during the last 21,000 years and future projections (2100 C.E.) to gain an understanding of the effects of climate shifts on this complex subsystem. When forced with the baseline climatology, compiled from the University of Delaware temperature and precipitation climatology and ERA-40 sunshine data, our biome simulations were generally consistent with current vegetation observations in the study region. The biomes in this region are mostly evergreen and deciduous taiga capped by shrub and graminoid tundras to the north. The more noticeable differences were the tree line simulated north of the Brooks Range in Alaska and evergreen taiga in southwest Alaska where we know these biomes do not exist today. The projected changes in climate conditions in the region under a RCP8.5 climate scenario (significant warming upwards of 10°C by some models, an increase in precipitation by as much as 40%, and carbon dioxide concentration reaching approximately 940 ppm) drive shifts in Arctic biomes. The tree line shifts northward while shrub tundra and graminoid tundra regions decrease significantly. An intrusion of cool mixed, deciduous, and conifer forests above 60° north, especially in southwest Alaska, were marked and were not modeled for present day. Across eastern Russia, deciduous taiga begins to overtake evergreen taiga, except along the coastal regions where evergreen taiga remains the favored biome. The implications of vegetation shifts in the Arctic are vast and include effects on snow cover, soil properties, permafrost distribution, and albedo, not to mention impacts on local fauna and people of the Artic.

  20. Generality of leaf trait relationships: A test across six biomes

    SciTech Connect

    Reich, P.B.; Ellsworth, D.S.; Walters, M.B.; Vose, J.M.; Gresham, C.; Volin, J.C.; Bowman, W.D. |

    1999-09-01

    Convergence in interspecific leaf trait relationships across diverse taxonomic groups and biomes would have important evolutionary and ecological implications. Such convergence has been hypothesized to result from trade-offs that limit the combination of plant traits for any species. Here the authors address this issue by testing for biome differences in the slope and intercept of interspecific relationships among leaf traits: longevity, net photosynthetic capacity (A{sub max}), leaf diffusive conductance (G{sub S}), specific leaf area (SLA), and nitrogen (N) status, for more than 100 species in six distinct biomes of the Americas. The six biomes were: alpine tundra-subalpine forest ecotone, cold temperate forest-prairie ecotone, montane cool temperate forest, desert shrubland, subtropical forest, and tropical rain forest. Despite large differences in climate and evolutionary history, in all biomes mass-based leaf N (N{sub mass}), SLA, G{sub S}, and A{sub max} were positively related to one another and decreased with increasing leaf life span. The relationships between pairs of leaf traits exhibited similar slopes among biomes, suggesting a predictable set of scaling relationships among key leaf morphological, chemical, and metabolic traits that are replicated globally among terrestrial ecosystems regardless of biome or vegetation type. However, the intercept (i.e., the overall elevation of regression lines) of relationships between pairs of leaf traits usually differed among biomes. With increasing aridity across sites, species had greater A{sub max} for a given level of G{sub S} and lower SLA for any given leaf life span. Using principal components analysis, most variation among species was explained by an axis related to mass-based leaf traits (A{sub max}, N, and SLA) while a second axis reflected climate, G{sub S}, and other area-based leaf traits.

  1. Diverging responses of tropical Andean biomes under future climate conditions.

    PubMed

    Tovar, Carolina; Arnillas, Carlos Alberto; Cuesta, Francisco; Buytaert, Wouter

    2013-01-01

    Observations and projections for mountain regions show a strong tendency towards upslope displacement of their biomes under future climate conditions. Because of their climatic and topographic heterogeneity, a more complex response is expected for biodiversity hotspots such as tropical mountain regions. This study analyzes potential changes in the distribution of biomes in the Tropical Andes and identifies target areas for conservation. Biome distribution models were developed using logistic regressions. These models were then coupled to an ensemble of 8 global climate models to project future distribution of the Andean biomes and their uncertainties. We analysed projected changes in extent and elevational range and identified regions most prone to change. Our results show a heterogeneous response to climate change. Although the wetter biomes exhibit an upslope displacement of both the upper and the lower boundaries as expected, most dry biomes tend to show downslope expansion. Despite important losses being projected for several biomes, projections suggest that between 74.8% and 83.1% of the current total Tropical Andes will remain stable, depending on the emission scenario and time horizon. Between 3.3% and 7.6% of the study area is projected to change, mostly towards an increase in vertical structure. For the remaining area (13.1%-17.4%), there is no agreement between model projections. These results challenge the common believe that climate change will lead to an upslope displacement of biome boundaries in mountain regions. Instead, our models project diverging responses, including downslope expansion and large areas projected to remain stable. Lastly, a significant part of the area expected to change is already affected by land use changes, which has important implications for management. This, and the inclusion of a comprehensive uncertainty analysis, will help to inform conservation strategies in the Tropical Andes, and to guide similar assessments for other

  2. Diverging responses of tropical Andean biomes under future climate conditions.

    PubMed

    Tovar, Carolina; Arnillas, Carlos Alberto; Cuesta, Francisco; Buytaert, Wouter

    2013-01-01

    Observations and projections for mountain regions show a strong tendency towards upslope displacement of their biomes under future climate conditions. Because of their climatic and topographic heterogeneity, a more complex response is expected for biodiversity hotspots such as tropical mountain regions. This study analyzes potential changes in the distribution of biomes in the Tropical Andes and identifies target areas for conservation. Biome distribution models were developed using logistic regressions. These models were then coupled to an ensemble of 8 global climate models to project future distribution of the Andean biomes and their uncertainties. We analysed projected changes in extent and elevational range and identified regions most prone to change. Our results show a heterogeneous response to climate change. Although the wetter biomes exhibit an upslope displacement of both the upper and the lower boundaries as expected, most dry biomes tend to show downslope expansion. Despite important losses being projected for several biomes, projections suggest that between 74.8% and 83.1% of the current total Tropical Andes will remain stable, depending on the emission scenario and time horizon. Between 3.3% and 7.6% of the study area is projected to change, mostly towards an increase in vertical structure. For the remaining area (13.1%-17.4%), there is no agreement between model projections. These results challenge the common believe that climate change will lead to an upslope displacement of biome boundaries in mountain regions. Instead, our models project diverging responses, including downslope expansion and large areas projected to remain stable. Lastly, a significant part of the area expected to change is already affected by land use changes, which has important implications for management. This, and the inclusion of a comprehensive uncertainty analysis, will help to inform conservation strategies in the Tropical Andes, and to guide similar assessments for other

  3. Diverging Responses of Tropical Andean Biomes under Future Climate Conditions

    PubMed Central

    Tovar, Carolina; Arnillas, Carlos Alberto; Cuesta, Francisco; Buytaert, Wouter

    2013-01-01

    Observations and projections for mountain regions show a strong tendency towards upslope displacement of their biomes under future climate conditions. Because of their climatic and topographic heterogeneity, a more complex response is expected for biodiversity hotspots such as tropical mountain regions. This study analyzes potential changes in the distribution of biomes in the Tropical Andes and identifies target areas for conservation. Biome distribution models were developed using logistic regressions. These models were then coupled to an ensemble of 8 global climate models to project future distribution of the Andean biomes and their uncertainties. We analysed projected changes in extent and elevational range and identified regions most prone to change. Our results show a heterogeneous response to climate change. Although the wetter biomes exhibit an upslope displacement of both the upper and the lower boundaries as expected, most dry biomes tend to show downslope expansion. Despite important losses being projected for several biomes, projections suggest that between 74.8% and 83.1% of the current total Tropical Andes will remain stable, depending on the emission scenario and time horizon. Between 3.3% and 7.6% of the study area is projected to change, mostly towards an increase in vertical structure. For the remaining area (13.1%–17.4%), there is no agreement between model projections. These results challenge the common believe that climate change will lead to an upslope displacement of biome boundaries in mountain regions. Instead, our models project diverging responses, including downslope expansion and large areas projected to remain stable. Lastly, a significant part of the area expected to change is already affected by land use changes, which has important implications for management. This, and the inclusion of a comprehensive uncertainty analysis, will help to inform conservation strategies in the Tropical Andes, and to guide similar assessments for

  4. Quantitative woody cover reconstructions from eastern continental Asia of the last 22 kyr reveal strong regional peculiarities

    NASA Astrophysics Data System (ADS)

    Tian, Fang; Cao, Xianyong; Dallmeyer, Anne; Ni, Jian; Zhao, Yan; Wang, Yongbo; Herzschuh, Ulrike

    2016-04-01

    We present a calibration-set based on modern pollen and satellite-based Advanced Very High Resolution Radiometer (AVHRR) observations of woody cover (including needleleaved, broadleaved and total tree cover) in eastern continental Asia, which shows good performance under cross-validation with the modern analogue technique (all the coefficients of determination between observed and predicted values are greater than 0.65). The calibration-set is used to reconstruct woody cover from a taxonomically harmonized and temporally standardized fossil pollen dataset (including 274 cores) with 500-year resolution over the last 22 kyr. The spatial range of forest has not noticeably changed in eastern continental Asia during the last 22 kyr, although woody cover has, especially at the margin of the eastern Tibetan Plateau and in the forest-steppe transition area of north-central China. Vegetation was sparse during the LGM in the present forested regions, but woody cover increased markedly at the beginning of the Bølling/Allerød period (B/A; ca. 14.5 ka BP) and again at the beginning of the Holocene (ca. 11.5 ka BP), and is related to the enhanced strength of the East Asian Summer Monsoon. Forest flourished in the mid-Holocene (ca. 8 ka BP) possibly due to favourable climatic conditions. In contrast, cover was stable in southern China (high cover) and arid central Asia (very low cover) throughout the investigated period. Forest cover increased in the north-eastern part of China during the Holocene. Comparisons of these regional pollen-based results with simulated forest cover from runs of a global climate model (for 9, 6 and 0 ka BP (ECHAM5/JSBACH ∼1.125° spatial resolution)) reveal many similarities in temporal change. The Holocene woody cover history of eastern continental Asia is different from that of other regions, likely controlled by different climatic variables, i.e. moisture in eastern continental Asia; temperature in northern Eurasia and North America.

  5. Application of a New Grain-Based Reconstruction Algorithm to Microtomography Images for Quantitative Characterization and Flow Modeling

    SciTech Connect

    Thompson, K.E.; Willson, C.S.; White, C.D.; Nyman, S.; Bhattacharya, J.; Reed, A.H.

    2006-01-18

    X-ray computed microtomography (XMT) is used for high-resolution, nondestructive imaging and has been applied successfully to geologic media. Despite the potential of XMT to aid in formation evaluation, currently it is used mostly as a research tool. One factor preventing more widespread application of XMT technology is limited accessibility to microtomography beamlines. Another factor is that computational tools for quantitative image analysis have not kept pace with the imaging technology itself. In this paper, we present a new grain-based algorithm used for network generation. The algorithm differs from other approaches because it uses the granular structure of the material as a template for creating the pore network rather than operating on the voxel set directly. With this algorithm, several advantages emerge: the algorithm is significantly faster computationally, less dependent on image resolution, and the network structure is tied to the fundamental granular structure of the material. In this paper, we present extensive validation of the algorithm using computer-generated packings. These analyses provide guidance on issues such as accuracy and voxel resolution. The algorithm is applied to two sandstone samples taken from different facies of the Frontier Formation in Wyoming, USA, and imaged using synchrotron XMT. Morphologic and flow-modeling results are presented.

  6. Evaluation of the Quantitative Accuracy of 3D Reconstruction of Edentulous Jaw Models with Jaw Relation Based on Reference Point System Alignment

    PubMed Central

    Li, Weiwei; Yuan, Fusong; Lv, Peijun; Wang, Yong; Sun, Yuchun

    2015-01-01

    Objectives To apply contact measurement and reference point system (RPS) alignment techniques to establish a method for 3D reconstruction of the edentulous jaw models with centric relation and to quantitatively evaluate its accuracy. Methods Upper and lower edentulous jaw models were clinically prepared, 10 pairs of resin cylinders with same size were adhered to axial surfaces of upper and lower models. The occlusal bases and the upper and lower jaw models were installed in the centric relation position. Faro Edge 1.8m was used to directly obtain center points of the base surface of the cylinders (contact method). Activity 880 dental scanner was used to obtain 3D data of the cylinders and the center points were fitted (fitting method). 3 pairs of center points were used to align the virtual model to centric relation. An observation coordinate system was interactively established. The straight-line distances in the X (horizontal left/right), Y (horizontal anterior/posterior), and Z (vertical) between the remaining 7 pairs of center points derived from contact method and fitting method were measured respectively and analyzed using a paired t-test. Results The differences of the straight-line distances of the remaining 7 pairs of center points between the two methods were X: 0.074 ± 0.107 mm, Y: 0.168 ± 0.176 mm, and Z: −0.003± 0.155 mm. The results of paired t-test were X and Z: p >0.05, Y: p <0.05. Conclusion By using contact measurement and the reference point system alignment technique, highly accurate reconstruction of the vertical distance and centric relation of a digital edentulous jaw model can be achieved, which meets the design and manufacturing requirements of the complete dentures. The error of horizontal anterior/posterior jaw relation was relatively large. PMID:25659133

  7. Quantitative Analysis of Cardiac Tissue Including Fibroblasts Using Three-Dimensional Confocal Microscopy and Image Reconstruction: Towards a Basis for Electrophysiological Modeling

    PubMed Central

    Schwab, Bettina C.; Seemann, Gunnar; Lasher, Richard A.; Torres, Natalia S.; Wülfers, Eike M.; Arp, Maren; Carruth, Eric D.; Bridge, John H. B.; Sachse, Frank B.

    2014-01-01

    Electrophysiological modeling of cardiac tissue is commonly based on functional and structural properties measured in experiments. Our knowledge of these properties is incomplete, in particular their remodeling in disease. Here, we introduce a methodology for quantitative tissue characterization based on fluorescent labeling, 3-D scanning confocal microscopy, image processing and reconstruction of tissue micro-structure at sub-micrometer resolution. We applied this methodology to normal rabbit ventricular tissue and tissue from hearts with myocardial infarction. Our analysis revealed that the volume fraction of fibroblasts increased from 4.83 ± 0.42% (mean ± standard deviation) in normal tissue up to 6.51 ± 0.38% in myocardium from infarcted hearts. The myocyte volume fraction decreased from 76.20 ± 9.89% in normal to 73.48 ± 8.02% adjacent to the infarct. Numerical field calculations on 3-D reconstructions of the extracellular space yielded an extracellular longitudinal conductivity of 0.264 ± 0.082 S/m with an anisotropy ratio of 2.095 ± 1.11 in normal tissue. Adjacent to the infarct, the longitudinal conductivity increased up to 0.400 ± 0.051 S/m, but the anisotropy ratio decreased to 1.295 ± 0.09. Our study indicates an increased density of gap junctions proximal to both fibroblasts and myocytes in infarcted versus normal tissue, supporting previous hypotheses of electrical coupling of fibroblasts and myocytes in infarcted hearts. We suggest that the presented methodology provides an important contribution to modeling normal and diseased tissue. Applications of the methodology include the clinical characterization of disease-associated remodeling. PMID:23340590

  8. Using the Carbon Isotope Ratios of Bison Tooth Enamel and Bone Collagen as a Quantitative Proxy for Reconstructing Grassland Vegetation and Paleotemperatures

    NASA Astrophysics Data System (ADS)

    Hoppe, K. A.; Paytan, A.; Chamberlain, P.

    2005-12-01

    The carbon isotope ratios of tissues from grazing herbivores reflect the average carbon isotope ratios of local grasslands, which vary with the abundance of cool-season (C-3) versus warm-season (C-4) grasses. Since the C-3/C-4 ratios of grasslands correlate with climate, the carbon isotope ratios of fossil grazers may serve as a proxy for reconstructing paleovegetation and paleoclimatic conditions. Analyses of fossil and subfossil bison hold particular promise for use as a proxy for paleoenvironmental conditions in North America because bison remains are abundant in Holocene and Pleistocene deposits across most of the continent. However, the accuracy and precision of paleoenvironmental reconstructions based on bison is currently uncertain because the relationship between bison isotope and the abundance of C-3 and C-4 grasses has not been precisely quantified across different environments. We have analyzed the carbon isotope ratios of tooth enamel carbonate and bone collagen from 88 modern free ranging bison ( Bison bison) from ten locations in the Central United States. The C-4 biomass at these locations ranged from less than 1 percent to 95 percent of the total grass biomass. The mean carbon isotope ratios of enamel for each population correlated well with the local abundance of C-4 grasses (R2 = 0.93, p = 0.0001) and with variations in mean annual temperatures (R2 = 0.83, p = 0.001). The mean carbon isotope ratios of collagen for each population also correlated well with the C-4 grass abundance (R2 = 0.97, p = 0.0001) and mean annual temperature (R2 = 0.84, p = 0.0002). Enamel and collagen display similar variability (mean standard deviation = 0.7 per mil), and the variability does not change with climate, habitat, or C-4 abundance. These results demonstrate that analyses of the carbon isotope ratios of fossil bison can be used as a quantitative proxy for reconstructing grassland C-3/C-4 ratios and paleotemperatures, and they will serve as a baseline for

  9. Multiband radar characterization of forest biomes

    NASA Technical Reports Server (NTRS)

    Dobson, M. Craig; Ulaby, Fawwaz T.

    1990-01-01

    The utility of airborne and orbital SAR in classification, assessment, and monitoring of forest biomes is investigated through analysis of orbital synthetic aperature radar (SAR) and multifrequency and multipolarized airborne SAR imagery relying on image tone and texture. Preliminary airborne SAR experiments and truck-mounted scatterometer observations demonstrated that the three dimensional structural complexity of a forest, and the various scales of temporal dynamics in the microwave dielectric properties of both trees and the underlying substrate would severely limit empirical or semi-empirical approaches. As a consequence, it became necessary to develop a more profound understanding of the electromagnetic properties of a forest scene and their temporal dynamics through controlled experimentation coupled with theoretical development and verification. The concatenation of various models into a physically-based composite model treating the entire forest scene became the major objective of the study as this is the key to development of a series of robust retrieval algorithms for forest biophysical properties. In order to verify the performance of the component elements of the composite model, a series of controlled laboratory and field experiments were undertaken to: (1) develop techniques to measure the microwave dielectric properties of vegetation; (2) relate the microwave dielectric properties of vegetation to more readily measured characteristics such as density and moisture content; (3) calculate the radar cross-section of leaves, and cylinders; (4) improve backscatter models for rough surfaces; and (5) relate attenuation and phase delays during propagation through canopies to canopy properties. These modeling efforts, as validated by the measurements, were incorporated within a larger model known as the Michigan Microwave Canopy Scattering (MIMICS) Model.

  10. Pleistocene climate and biome evolution modulated at orbital, millennial, and centennial time scales

    NASA Astrophysics Data System (ADS)

    Hooghiemstra, H.

    2013-05-01

    For the northern Andes we present a multi-proxy record of environmental and climatic change at millennial- to century-scale resolution of the full Pleistocene. The composite record includes the 540-m Funza core (2250-27 ka; 1050-yr resolution) from the Bogotá basin (~4°N, 2550 m asl, 2100 samples), the 58-mcd core (284-27 ka; 60-yr resolution) from the Fúquene basin (~5°N, 2540 m asl 4700 samples), and the 12-m core (last 14 ka; 25-yr resolution) from the La Cocha basin (1°N, 2780 m asl, 550 samples). At high elevations climatic variability is mainly driven by the 41-kyr component of orbital forcing changing into a dominant 100-kyr frequency during the last 0.9 Ma. High elevation intraAndean environments are mainly driven by temperature and atmospheric pCO2 while changes in moisture is an important driver of the Andean environments on the Amazonian flank. The Pleistocene is reflected by MIS 87 to 1, the last interglacial-glacial cycle by D/O-cycles 28 to 1 (and during MIS 7-6 another 15 D/O-style cycles), and the Holocene shows many events with an acceleration of climate change. Repeatedly the subpáramo shrub biome is temporarily lost suggesting vertical migration of forest exceeded the maximum migration capacity of the subpáramo biome. Continuous changes in altitidinal vegetation distribution caused mountains above ~1500 m were alternatingly covered by different biomes. Forests reached only ~125 ka modern species compositions indicating most of the Pleistocene record shows nonanalog vegetation associations, however not preventing modern ecological ranges can be applied to reconstruct past environments. Comparison with Greenland, Antarctic and marine climate records is demonstrated.

  11. The potential of pollen-based quantitative vegetation reconstructions in studies of past human settlements and use of resources - examples from Europe

    NASA Astrophysics Data System (ADS)

    Gaillard, Marie-Jose; Cui, Qiao-Yu; Lemdahl, Geoffrey; Trondman, Anna-Kari

    2015-04-01

    approach - the Landscape Reconstruction Algorithm (LRA) (3, 4) - makes it possible to estimate the cover of plant taxa or landscape units at both regional and local spatial scales using pollen records. The LRA has been tested and applied in various types of studies in Europe in particular. Examples from Europe and Scandinavia show that pollen-based quantitative reconstructions of vegetation cover, in combination with other palaeoecological records such as insect and plant macroremains, show the great potential of such studies to provide new insights on the use of landscapes and vegetation by humans in the past and its environmental consequences at both regional and local spatial scales (5, 6). These results provide a new environmental framework for the discussion and testing of hypotheses based on archaeological data. (1) Berglund, B.E. (1991) Ecological Bulletins 41: 1-495. (2) Gaillard, M.-J. et al. (1994) Review of Palaeobotany and Palynology 82: 47-73. (3) Sugita, S. (2007a) The Holocene 17: 243-257. (4) Sugita, S. (2007b) The Holocene 17: 229-241. (5) Cui, Q.-Y. et al. (2014) Ecology and Evolution, doi: 10.1002/ece3.1198 (6) Trondman, A.-K. (2014) Global Change Biology, doi: 10.1111/gcb.12737

  12. Phylogeny and cryptic diversity in geckos (Phyllopezus; Phyllodactylidae; Gekkota) from South America's open biomes.

    PubMed

    Gamble, Tony; Colli, Guarino R; Rodrigues, Miguel T; Werneck, Fernanda P; Simons, Andrew M

    2012-03-01

    The gecko genus Phyllopezus occurs across South America's open biomes: Cerrado, Seasonally Dry Tropical Forests (SDTF, including Caatinga), and Chaco. We generated a multi-gene dataset and estimated phylogenetic relationships among described Phyllopezus taxa and related species. We included exemplars from both described Phyllopezus pollicaris subspecies, P. p. pollicaris and P. p.przewalskii. Phylogenies from the concatenated data as well as species trees constructed from individual gene trees were largely congruent. All phylogeny reconstruction methods showed Bogertia lutzae as the sister species of Phyllopezus maranjonensis, rendering Phyllopezus paraphyletic. We synonymized the monotypic genus Bogertia with Phyllopezus to maintain a taxonomy that is isomorphic with phylogenetic history. We recovered multiple, deeply divergent, cryptic lineages within P. pollicaris. These cryptic lineages possessed mtDNA distances equivalent to distances among other gekkotan sister taxa. Described P. pollicaris subspecies are not reciprocally monophyletic and current subspecific taxonomy does not accurately reflect evolutionary relationships among cryptic lineages. We highlight the conservation significance of these results in light of the ongoing habitat loss in South America's open biomes.

  13. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers.

    PubMed

    Saito, Mak A; McIlvin, Matthew R; Moran, Dawn M; Goepfert, Tyler J; DiTullio, Giacomo R; Post, Anton F; Lamborg, Carl H

    2014-09-01

    Marine primary productivity is strongly influenced by the scarcity of required nutrients, yet our understanding of these nutrient limitations is informed by experimental observations with sparse geographical coverage and methodological limitations. We developed a quantitative proteomic method to directly assess nutrient stress in high-light ecotypes of the abundant cyanobacterium Prochlorococcus across a meridional transect in the central Pacific Ocean. Multiple peptide biomarkers detected widespread and overlapping regions of nutritional stress for nitrogen and phosphorus in the North Pacific Subtropical Gyre and iron in the equatorial Pacific. Quantitative protein analyses demonstrated simultaneous stress for these nutrients at biome interfaces. This application of proteomic biomarkers to diagnose ocean metabolism demonstrated Prochlorococcus actively and simultaneously deploying multiple biochemical strategies for low-nutrient conditions in the oceans. PMID:25190794

  14. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers.

    PubMed

    Saito, Mak A; McIlvin, Matthew R; Moran, Dawn M; Goepfert, Tyler J; DiTullio, Giacomo R; Post, Anton F; Lamborg, Carl H

    2014-09-01

    Marine primary productivity is strongly influenced by the scarcity of required nutrients, yet our understanding of these nutrient limitations is informed by experimental observations with sparse geographical coverage and methodological limitations. We developed a quantitative proteomic method to directly assess nutrient stress in high-light ecotypes of the abundant cyanobacterium Prochlorococcus across a meridional transect in the central Pacific Ocean. Multiple peptide biomarkers detected widespread and overlapping regions of nutritional stress for nitrogen and phosphorus in the North Pacific Subtropical Gyre and iron in the equatorial Pacific. Quantitative protein analyses demonstrated simultaneous stress for these nutrients at biome interfaces. This application of proteomic biomarkers to diagnose ocean metabolism demonstrated Prochlorococcus actively and simultaneously deploying multiple biochemical strategies for low-nutrient conditions in the oceans.

  15. Information for seasonal models of carbon fluxes in terrestrial biomes

    SciTech Connect

    King, A.W.; DeAngelis, D.L.

    1985-06-01

    This report is a compilation of information that can be used in developing seasonal carbon flux models for several principal terrestrial biome types. The information includes flux data as well as models made either to simulate such data or to deduce fluxes not directly measurable. The report is divided into three sections that examine (1) photosynthetic production, (2) litterfall, and (3) decomposition during a year. The sections on photosynthetic production and decomposition discuss a large number of models that relate the processes to basic abiotic variables in each of several biome types. The information on litterfall, however, is largely empirical phenology data. A fourth section demonstrates the application of this compiled information to a compartment model of seasonal carbon flux in terrestrial biomes. 14 figs., 12 tabs.

  16. Tropical grassy biomes: misunderstood, neglected, and under threat.

    PubMed

    Parr, Catherine L; Lehmann, Caroline E R; Bond, William J; Hoffmann, William A; Andersen, Alan N

    2014-04-01

    Tropical grassy biomes (TGBs) are globally extensive, provide critical ecosystem services, and influence the earth-atmosphere system. Yet, globally applied biome definitions ignore vegetation characteristics that are critical to their functioning and evolutionary history. Hence, TGB identification is inconsistent and misinterprets the ecological processes governing vegetation structure, with cascading negative consequences for biodiversity. Here, we discuss threats linked to the definition of TGB, the Clean Development Mechanism (CDM) and Reducing Emissions from Deforestation and Forest Degradation schemes (REDD+), and enhanced atmospheric CO2, which may facilitate future state shifts. TGB degradation is insidious and less visible than in forested biomes. With human reliance on TGBs and their propensity for woody change, ecology and evolutionary history are fundamental to not only the identification of TGBs, but also their management for future persistence.

  17. [Parameter sensitivity of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model].

    PubMed

    He, Li-hong; Wang, Hai-yan; Lei, Xiang-dong

    2016-02-01

    Model based on vegetation ecophysiological process contains many parameters, and reasonable parameter values will greatly improve simulation ability. Sensitivity analysis, as an important method to screen out the sensitive parameters, can comprehensively analyze how model parameters affect the simulation results. In this paper, we conducted parameter sensitivity analysis of BIOME-BGC model with a case study of simulating net primary productivity (NPP) of Larix olgensis forest in Wangqing, Jilin Province. First, with the contrastive analysis between field measurement data and the simulation results, we tested the BIOME-BGC model' s capability of simulating the NPP of L. olgensis forest. Then, Morris and EFAST sensitivity methods were used to screen the sensitive parameters that had strong influence on NPP. On this basis, we also quantitatively estimated the sensitivity of the screened parameters, and calculated the global, the first-order and the second-order sensitivity indices. The results showed that the BIOME-BGC model could well simulate the NPP of L. olgensis forest in the sample plot. The Morris sensitivity method provided a reliable parameter sensitivity analysis result under the condition of a relatively small sample size. The EFAST sensitivity method could quantitatively measure the impact of simulation result of a single parameter as well as the interaction between the parameters in BIOME-BGC model. The influential sensitive parameters for L. olgensis forest NPP were new stem carbon to new leaf carbon allocation and leaf carbon to nitrogen ratio, the effect of their interaction was significantly greater than the other parameter' teraction effect. PMID:27396112

  18. Convergence across biomes to a common rain-use efficiency.

    PubMed

    Huxman, Travis E; Smith, Melinda D; Fay, Philip A; Knapp, Alan K; Shaw, M Rebecca; Loik, Michael E; Smith, Stanley D; Tissue, David T; Zak, John C; Weltzin, Jake F; Pockman, William T; Sala, Osvaldo E; Haddad, Brent M; Harte, John; Koch, George W; Schwinning, Susan; Small, Eric E; Williams, David G

    2004-06-10

    Water availability limits plant growth and production in almost all terrestrial ecosystems. However, biomes differ substantially in sensitivity of aboveground net primary production (ANPP) to between-year variation in precipitation. Average rain-use efficiency (RUE; ANPP/precipitation) also varies between biomes, supposedly because of differences in vegetation structure and/or biogeochemical constraints. Here we show that RUE decreases across biomes as mean annual precipitation increases. However, during the driest years at each site, there is convergence to a common maximum RUE (RUE(max)) that is typical of arid ecosystems. RUE(max) was also identified by experimentally altering the degree of limitation by water and other resources. Thus, in years when water is most limiting, deserts, grasslands and forests all exhibit the same rate of biomass production per unit rainfall, despite differences in physiognomy and site-level RUE. Global climate models predict increased between-year variability in precipitation, more frequent extreme drought events, and changes in temperature. Forecasts of future ecosystem behaviour should take into account this convergent feature of terrestrial biomes.

  19. Anthropogenic biomes: a key contribution to earth-system science.

    PubMed

    Alessa, Lilian; Chapin, F Stuart

    2008-10-01

    Human activities now dominate most of the ice-free terrestrial surface. A recent article presents a classification and global map of human-influenced biomes of the world that provides a novel and potentially appropriate framework for projecting changes in earth-system dynamics.

  20. User's Guide to Biome Information from the United States International Biological Program (IBP). First Edition.

    ERIC Educational Resources Information Center

    Hinckley, A. Dexter; Haug, Peter T.

    This publication is a guide to the biome research conducted under the International Biological Program. The guide lists biome researchers by interest and by biome as well as a central list. A site list, map, information sources section reporting abstracts, bibliographies, journals, books, evaluations, and data books are also included. Three…

  1. Aeolian particles in marine cores as a tool for quantitative high-resolution reconstruction of upwelling favorable winds along coastal Atacama Desert, Northern Chile

    NASA Astrophysics Data System (ADS)

    Flores-Aqueveque, Valentina; Alfaro, Stéphane; Vargas, Gabriel; Rutllant, José A.; Caquineau, Sandrine

    2015-05-01

    Upwelling areas play a major role in ocean biogeochemical cycles and ultimately in global climate, especially in higly productive regions as the South Eastern Pacific. This work is based on the analysis of the aeolian lithic particles accumulated in laminated sediments off Mejillones (23°S) in the eastern boundary Humboldt Current System. It proposes a high-resolution quantitative reconstruction of the upwelling-favorable southerly wind strength in the past ∼250 years, comparing its variability with changes in organic carbon export/preserved changes to the sea bottom. The increase of the intensity and variability in fluxes of particles larger than 35 μm and 100 μm since the second half of the 19th century and during the 20th century confirms a general strengthening of southerly winds in the region. Spectral analysis on the complete time-series of yearly depositional fluxes indicates that sedimentary variability can be explained by a combination of interannual (ENSO) to decadal (PDO) oscillations similar to the ones yielded by the analysis of the Interdecadal Pacific Oscillation index. However, when applied separately to the lithic fluxes of the first and last centuries of the time-series, the method shows that relative to the one of the interannual mode of variability, the influence of the decadal mode has increased in the recent period. Based on the presence/absence of particles with sizes larger than 35/100 μm, each year of the time series is classified as a 'Low wind' (<6 m/s), 'Intermediate wind' (6-8 m/s), or 'Strong wind' (10 to >12 m/s) year. From the AD 1754-1820 period to the AD 1878-1998 one, the proportion of Low and Intermediate wind years decreased from 12% and 74% to 3% and 68%, respectively, whereas the proportion of strong wind years increased from 14% to 29%. For these periods the mean organic carbon also increased 22%, stating the strong relation between export/preservation productivity rate and southerly wind intensity. In the recent period

  2. The isotope record of short- and long-term dietary changes in sheep tooth enamel: Implications for quantitative reconstruction of paleodiets

    NASA Astrophysics Data System (ADS)

    Zazzo, A.; Balasse, M.; Passey, B. H.; Moloney, A. P.; Monahan, F. J.; Schmidt, O.

    2010-06-01

    Quantitative reconstruction of paleodiet by means of sequential sampling and carbon isotope analysis in hypsodont tooth enamel requires a precise knowledge of the isotopic enrichment between dietary carbon and carbon from enamel apatite ( ɛD-E), as well as of the timing and duration of the enamel mineralization process (amelogenesis). To better constrain these parameters, we performed a series of controlled feeding experiments on sheep ranging in age from 6 to 24 months-old. Twenty-eight lambs and 14 ewes were fed isotopically distinct diets for different periods of time, and then slaughtered, allowing the timing and rate of molar growth to be determined. High resolution sampling and stable carbon isotope analysis of breath CO 2 performed on six individuals following a diet-switch showed that 70-90% of dietary carbon had turned over in less than 24 h. Sequential sampling and carbon isotopic analysis was performed on the first (M 1) and second (M 2) lower molars of four lambs as well as on the third lower molar (M 3) of 11 ewes. The changes in diet were recorded in all molars. We found that the length of enamel matrix apposition is approximately one-quarter of the final tooth length during crown extension, and that enamel maturation spans slightly less than 3 months in M 1, and 4 months in M 2 and M 3. Portions of enamel in equilibrium with dietary carbon were used to calculate ɛD-E values. Animals on grass silage diets had values similar to previous observations, whereas animal switched to pelleted corn diets had values ca. 4‰ lower, a pattern consistent with lower methane production observed for animals fed concentrate diets. The tooth enamel forward model of Passey and Cerling (2002) closely predicted the amplitude of isotope changes recorded in tooth enamel, but slightly underestimated the rate of isotope change, suggesting that the rate of accumulation of carbonate during maturation may not be constant over time. Although stable isotope profiles in tooth

  3. Soil Acidobacterial 16S rRNA Gene Sequences Reveal Subgroup Level Differences between Savanna-Like Cerrado and Atlantic Forest Brazilian Biomes

    PubMed Central

    Catão, Elisa C. P.; Lopes, Fabyano A. C.; Araújo, Janaína F.; de Castro, Alinne P.; Barreto, Cristine C.; Bustamante, Mercedes M. C.; Quirino, Betania F.; Krüger, Ricardo H.

    2014-01-01

    16S rRNA sequences from the phylum Acidobacteria have been commonly reported from soil microbial communities, including those from the Brazilian Savanna (Cerrado) and the Atlantic Forest biomes, two biomes that present contrasting characteristics of soil and vegetation. Using 16S rRNA sequences, the present work aimed to study acidobacterial diversity and distribution in soils of Cerrado savanna and two Atlantic forest sites. PCA and phylogenetic reconstruction showed that the acidobacterial communities found in “Mata de galeria” forest soil samples from the Cerrado biome have a tendency to separate from the other Cerrado vegetation microbial communities in the direction of those found in the Atlantic Forest, which is correlated with a high abundance of Acidobacteria subgroup 2 (GP2). Environmental conditions seem to promote a negative correlation between GP2 and subgroup 1 (GP1) abundance. Also GP2 is negatively correlated to pH, but positively correlated to high Al3+ concentrations. The Cerrado soil showed the lowest Acidobacteria richness and diversity indexes of OTUs at the species and subgroups levels when compared to Atlantic Forest soils. These results suggest specificity of acidobacterial subgroups to soils of different biomes and are a starting point to understand their ecological roles, a topic that needs to be further explored. PMID:25309599

  4. Quantitative photoacoustic tomography

    PubMed Central

    Yuan, Zhen; Jiang, Huabei

    2009-01-01

    In this paper, several algorithms that allow for quantitative photoacoustic reconstruction of tissue optical, acoustic and physiological properties are described in a finite-element method based framework. These quantitative reconstruction algorithms are compared, and the merits and limitations associated with these methods are discussed. In addition, a multispectral approach is presented for concurrent reconstructions of multiple parameters including deoxyhaemoglobin, oxyhaemoglobin and water concentrations as well as acoustic speed. Simulation and in vivo experiments are used to demonstrate the effectiveness of the reconstruction algorithms presented. PMID:19581254

  5. Comparison of volumetric bone mineral density in the operated and contralateral knee after anterior cruciate ligament and reconstruction: A 1-year follow-up study using peripheral quantitative computed tomography.

    PubMed

    Mündermann, Annegret; Payer, Nina; Felmet, Gernot; Riehle, Hartmut

    2015-12-01

    The purpose of this study was to quantify changes in volumetric bone mineral density (vBMD) in the tibial plateau of the operated and contralateral leg measured using peripheral quantitative computed tomography (pQCT) before and 3, 6, and 12 months after anterior cruciate ligament (ACL) reconstruction. The ACL was reconstructed with a hamstring tendon autograft using press-fit fixation. pQCT measurements of the proximal tibia were obtained in 61 patients after ACL reconstruction, and total, cortical, and trabecular vBMD were calculated. vBMD in the operated leg decreased from baseline to 3 months (-12% [total], -11% [cortical], and -12.6% [trabecular]; p<0.001) and remained below baseline for 12 months after surgery (6 months: -9.5%, -9.4%, and -9.6%, p<0.001; 12 months: -8%, -5%, and -11%, p<0.001). vBMD in the contralateral leg was slightly reduced only 6 months after surgery. Including age and sex as covariates into the analysis did not affect the results. ACL reconstruction contributed to loss in bone mineral density within the first year after surgery. The role of factors such as time of weight-bearing, joint mechanics, post-traumatic inflammatory reactions, or genetic predisposition in modulating the development of posttraumatic knee osteoarthritis after ACL injury should be further elucidated. PMID:26123943

  6. Comparison of volumetric bone mineral density in the operated and contralateral knee after anterior cruciate ligament and reconstruction: A 1-year follow-up study using peripheral quantitative computed tomography.

    PubMed

    Mündermann, Annegret; Payer, Nina; Felmet, Gernot; Riehle, Hartmut

    2015-12-01

    The purpose of this study was to quantify changes in volumetric bone mineral density (vBMD) in the tibial plateau of the operated and contralateral leg measured using peripheral quantitative computed tomography (pQCT) before and 3, 6, and 12 months after anterior cruciate ligament (ACL) reconstruction. The ACL was reconstructed with a hamstring tendon autograft using press-fit fixation. pQCT measurements of the proximal tibia were obtained in 61 patients after ACL reconstruction, and total, cortical, and trabecular vBMD were calculated. vBMD in the operated leg decreased from baseline to 3 months (-12% [total], -11% [cortical], and -12.6% [trabecular]; p<0.001) and remained below baseline for 12 months after surgery (6 months: -9.5%, -9.4%, and -9.6%, p<0.001; 12 months: -8%, -5%, and -11%, p<0.001). vBMD in the contralateral leg was slightly reduced only 6 months after surgery. Including age and sex as covariates into the analysis did not affect the results. ACL reconstruction contributed to loss in bone mineral density within the first year after surgery. The role of factors such as time of weight-bearing, joint mechanics, post-traumatic inflammatory reactions, or genetic predisposition in modulating the development of posttraumatic knee osteoarthritis after ACL injury should be further elucidated.

  7. Quantitative reconstructions of mid- to late holocene climate and vegetation in the north-eastern altai mountains recorded in lake teletskoye

    NASA Astrophysics Data System (ADS)

    Rudaya, Natalia; Nazarova, Larisa; Novenko, Elena; Andreev, Andrei; Kalugin, Ivan; Daryin, Andrei; Babich, Valery; Li, Hong-Chun; Shilov, Pavel

    2016-06-01

    We report the first high-resolution (20-50 years) mid- to late Holocene pollen records from Lake Teletskoye, the largest lake in the Altai Mountains, in south-eastern West Siberia. Generally, the mid- to late Holocene (the last 4250 years) vegetation of the north-eastern Altai, as recorded in two studied sediment cores, is characterised by Siberian pine-spruce-fir forests that are similar to those of the present day. A relatively cool and dry interval with July temperatures lower than those of today occurred between 3.9 and 3.6 ka BP. The widespread distribution of open, steppe-like communities with Artemisia, Chenopodiaceae and Cyperaceae reflects maximum deforestation during this interval. After ca. 3.5 ka BP, the coniferous mountain taiga spread significantly, with maximum woody coverage and taiga biome scores between ca. 2.7 and 1.6 ka BP. This coincides well with the highest July temperature (approximately 1 °C higher than today) intervals. A short period of cooling about 1.3-1.4 ka BP could have been triggered by the increased volcanic activity recorded across the Northern Hemisphere. A new period of cooling started around 1100-1150 CE, with the minimum July temperatures occurring between 1450 and 1800 CE.

  8. BIOME: A browser-aware search and order system

    NASA Technical Reports Server (NTRS)

    Grubb, Jon W.; Jennings, Sarah V.; Yow, Teresa G.; Daughterty, Patricia F.

    1996-01-01

    The Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC), which is associated with NASA's Earth Observing System Data and Information System (EOSDIS), provides access to a large number of tabular and imagery datasets used in ecological and environmental research. Because of its large and diverse data holdings, the challenge for the ORNL DAAC is to help users find data of interest from the hundreds of thousands of files available at the DAAC without overwhelming them. Therefore, the ORNL DAAC developed the Biogeochemical Information Ordering Management Environment (BIOME), a search and order system for the World Wide Web (WWW). The WWW provides a new vehicle that allows a wide range of users access to the data. This paper describes the specialized attributes incorporated into BIOME that allow researchers easy access to an otherwise bewildering array of data products.

  9. BIOME: A browser-aware search and order system

    SciTech Connect

    Grubb, J.W.; Jennings, S.V.; Yow, T.G.; Daugherty, P.F.

    1996-05-01

    The Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC), which is associated with NASA`s Earth Observing System Data and Information System (EOSDIS), provides access to a large number of tabular and imagery datasets used in ecological and environmental research. Because of its large and diverse data holdings, the challenge for the ORNL DAAC is to help users find data of interest from the hundreds of thousands of files available at the DAAC without overwhelming them. Therefore, the ORNL DAAC developed the Biogeochemical Information Ordering Management Environment (BIOME), a search and order system for the World Wide Web (WWW). The WWW provides a new vehicle that allows a wide range of users access to the data. This paper describes the specialized attributes incorporated into BIOME that allow researchers easy access to an otherwise bewildering array of data products.

  10. Evaluation of the resolving potency of a novel reconstruction filter on periodontal ligament space with dental cone-beam CT: a quantitative phantom study

    NASA Astrophysics Data System (ADS)

    Houno, Yuuki; Hishikawa, Toshimitsu; Gotoh, Ken-ichi; Naitoh, Munetaka; Ariji, Eiichiro; Kodera, Yoshie

    2014-03-01

    Diagnosis of the alveolar bone condition is important for the treatment planning of periodontal disease. Especially the determination of periodontal ligament space is the most important remark because it represents the periodontal tissue support for tooth retention. However, owing to the image blur of the current cone-beam CT (CBCT) imaging technique, the periodontal ligament space is difficult to visualize. In this study, we developed an original periodontal ligament phantom (PLP) and evaluated the image quality of simulated periodontal ligament space using a novel reconstruction filter for CBCT that emphasized high frequency component. PLP was composed from two resin blocks of different materials, the bone equivalent block and the dentine equivalent block. They were assembled to make continuously changing space from 0.0 to 1.0 millimeter that mimics periodontal ligament space. PLP was placed in water and the image was obtained by using Alphard-3030 dental cone-beam CT (Asahi Roentgen Industry Co., Ltd.). Then we reconstructed the projection data with a novel reconstruction filter. The axial images were compared with conventional reconstructed images. In novel filter reconstruction images, 0.4 millimeter of the space width was steadily detected by calculation of pixel value, on the other hand 0.6 millimeter was in conventional images. With our method, the resolving potency of conebeam CT images was improved.

  11. Parameterisation of Biome BGC to assess forest ecosystems in Africa

    NASA Astrophysics Data System (ADS)

    Gautam, Sishir; Pietsch, Stephan A.

    2010-05-01

    African forest ecosystems are an important environmental and economic resource. Several studies show that tropical forests are critical to society as economic, environmental and societal resources. Tropical forests are carbon dense and thus play a key role in climate change mitigation. Unfortunately, the response of tropical forests to environmental change is largely unknown owing to insufficient spatially extensive observations. Developing regions like Africa where records of forest management for long periods are unavailable the process-based ecosystem simulation model - BIOME BGC could be a suitable tool to explain forest ecosystem dynamics. This ecosystem simulation model uses descriptive input parameters to establish the physiology, biochemistry, structure, and allocation patterns within vegetation functional types, or biomes. Undocumented parameters for larger-resolution simulations are currently the major limitations to regional modelling in African forest ecosystems. This study was conducted to document input parameters for BIOME-BGC for major natural tropical forests in the Congo basin. Based on available literature and field measurements updated values for turnover and mortality, allometry, carbon to nitrogen ratios, allocation of plant material to labile, cellulose, and lignin pools, tree morphology and other relevant factors were assigned. Daily climate input data for the model applications were generated using the statistical weather generator MarkSim. The forest was inventoried at various sites and soil samples of corresponding stands across Gabon were collected. Carbon and nitrogen in the collected soil samples were determined from soil analysis. The observed tree volume, soil carbon and soil nitrogen were then compared with the simulated model outputs to evaluate the model performance. Furthermore, the simulation using Congo Basin specific parameters and generalised BIOME BGC parameters for tropical evergreen broadleaved tree species were also

  12. Deforestation changes land-atmosphere interactions across South American biomes

    NASA Astrophysics Data System (ADS)

    Salazar, Alvaro; Katzfey, Jack; Thatcher, Marcus; Syktus, Jozef; Wong, Kenneth; McAlpine, Clive

    2016-04-01

    South American biomes are increasingly affected by land use/land cover change. However, the climatic impacts of this phenomenon are still not well understood. In this paper, we model vegetation-climate interactions with a focus on four main biomes distributed in four key regions: The Atlantic Forest, the Cerrado, the Dry Chaco, and the Chilean Matorral ecosystems. We applied a three member ensemble climate model simulation for the period 1981-2010 (30 years) at 25 km resolution over the focus regions to quantify the changes in the regional climate resulting from historical deforestation. The results of computed modelling experiments show significant changes in surface fluxes, temperature and moisture in all regions. For instance, simulated temperature changes were stronger in the Cerrado and the Chilean Matorral with an increase of between 0.7 and 1.4 °C. Changes in the hydrological cycle revealed high regional variability. The results showed consistent significant decreases in relative humidity and soil moisture, and increases in potential evapotranspiration across biomes, yet without conclusive changes in precipitation. These impacts were more significant during the dry season, which resulted to be drier and warmer after deforestation.

  13. FIFE data analysis: Testing BIOME-BGC predictions for grasslands

    NASA Technical Reports Server (NTRS)

    Hunt, E. Raymond, Jr.

    1994-01-01

    The First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) was conducted in a 15 km by 15 km research area located 8 km south of Manhattan, Kansas. The site consists primarily of native tallgrass prairie mixed with gallery oak forests and croplands. The objectives of FIFE are to better understand the role of biology in controlling the interactions between the land and the atmosphere, and to determine the value of remotely sensed data for estimating climatological parameters. The goals of FIFE are twofold: the upscale integration of models, and algorithm development for satellite remote sensing. The specific objectives of the field campaigns carried out in 1987 and 1989 were the simultaneous acquisition of satellite, atmospheric, and surface data; and the understanding of the processes controlling surface energy and mass exchange. Collected data were used to study the dynamics of various ecosystem processes (photosynthesis, evaporation and transpiration, autotrophic and heterotrophic respiration, etc.). Modelling terrestrial ecosystems at scales larger than that of a homogeneous plot led to the development of simple, generalized models of biogeochemical cycles that can be accurately applied to different biomes through the use of remotely sensed data. A model was developed called BIOME-BGC (for BioGeochemical Cycles) from a coniferous forest ecosystem model, FOREST-BGC, where a biome is considered a combination of a life forms in a specified climate. A predominately C4-photosynthetic grassland is probably the most different from a coniferous forest possible, hence the FIFE site was an excellent study area for testing BIOME-BGC. The transition from an essentially one-dimensional calculation to three-dimensional, landscape scale simulations requires the introduction of such factors as meteorology, climatology, and geomorphology. By using remotely sensed geographic information data for important model inputs, process

  14. General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types.

    PubMed

    Slot, Martijn; Kitajima, Kaoru

    2015-03-01

    Respiration is instrumental for survival and growth of plants, but increasing costs of maintenance processes with warming have the potential to change the balance between photosynthetic carbon uptake and respiratory carbon release from leaves. Climate warming may cause substantial increases of leaf respiratory carbon fluxes, which would further impact the carbon balance of terrestrial vegetation. However, downregulation of respiratory physiology via thermal acclimation may mitigate this impact. We have conducted a meta-analysis with data collected from 43 independent studies to assess quantitatively the thermal acclimation capacity of leaf dark respiration to warming of terrestrial plant species from across the globe. In total, 282 temperature contrasts were included in the meta-analysis, representing 103 species of forbs, graminoids, shrubs, trees and lianas native to arctic, boreal, temperate and tropical ecosystems. Acclimation to warming was found to decrease respiration at a set temperature in the majority of the observations, regardless of the biome of origin and growth form, but respiration was not completely homeostatic across temperatures in the majority of cases. Leaves that developed at a new temperature had a greater capacity for acclimation than those transferred to a new temperature. We conclude that leaf respiration of most terrestrial plants can acclimate to gradual warming, potentially reducing the magnitude of the positive feedback between climate and the carbon cycle in a warming world. More empirical data are, however, needed to improve our understanding of interspecific variation in thermal acclimation capacity, and to better predict patterns in respiratory carbon fluxes both within and across biomes in the face of ongoing global warming. PMID:25481817

  15. General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types.

    PubMed

    Slot, Martijn; Kitajima, Kaoru

    2015-03-01

    Respiration is instrumental for survival and growth of plants, but increasing costs of maintenance processes with warming have the potential to change the balance between photosynthetic carbon uptake and respiratory carbon release from leaves. Climate warming may cause substantial increases of leaf respiratory carbon fluxes, which would further impact the carbon balance of terrestrial vegetation. However, downregulation of respiratory physiology via thermal acclimation may mitigate this impact. We have conducted a meta-analysis with data collected from 43 independent studies to assess quantitatively the thermal acclimation capacity of leaf dark respiration to warming of terrestrial plant species from across the globe. In total, 282 temperature contrasts were included in the meta-analysis, representing 103 species of forbs, graminoids, shrubs, trees and lianas native to arctic, boreal, temperate and tropical ecosystems. Acclimation to warming was found to decrease respiration at a set temperature in the majority of the observations, regardless of the biome of origin and growth form, but respiration was not completely homeostatic across temperatures in the majority of cases. Leaves that developed at a new temperature had a greater capacity for acclimation than those transferred to a new temperature. We conclude that leaf respiration of most terrestrial plants can acclimate to gradual warming, potentially reducing the magnitude of the positive feedback between climate and the carbon cycle in a warming world. More empirical data are, however, needed to improve our understanding of interspecific variation in thermal acclimation capacity, and to better predict patterns in respiratory carbon fluxes both within and across biomes in the face of ongoing global warming.

  16. USGS: providing scientific understanding of the sagebrush biome

    USGS Publications Warehouse

    ,

    2005-01-01

    Early explorers wrote about the vast sea of sagebrush that stretched in front of them. Today, the consequences of land-use practices, invasion by exotic plants, and altered disturbance regimes have touched virtually all of these seemingly endless expanses. Increasing human populations in the western United States, the infrastructure necessary to support these populations, and a growing demand for natural resources exert a large influence. Changes within the biome have resulted in its designation as one of the most endangered ecosystems in North America.

  17. Reconstruction of Metabolic Pathways, Protein Expression, and Homeostasis Machineries across Maize Bundle Sheath and Mesophyll Chloroplasts: Large-Scale Quantitative Proteomics Using the First Maize Genome Assembly1[W][OA

    PubMed Central

    Friso, Giulia; Majeran, Wojciech; Huang, Mingshu; Sun, Qi; van Wijk, Klaas J.

    2010-01-01

    Chloroplasts in differentiated bundle sheath (BS) and mesophyll (M) cells of maize (Zea mays) leaves are specialized to accommodate C4 photosynthesis. This study provides a reconstruction of how metabolic pathways, protein expression, and homeostasis functions are quantitatively distributed across BS and M chloroplasts. This yielded new insights into cellular specialization. The experimental analysis was based on high-accuracy mass spectrometry, protein quantification by spectral counting, and the first maize genome assembly. A bioinformatics workflow was developed to deal with gene models, protein families, and gene duplications related to the polyploidy of maize; this avoided overidentification of proteins and resulted in more accurate protein quantification. A total of 1,105 proteins were assigned as potential chloroplast proteins, annotated for function, and quantified. Nearly complete coverage of primary carbon, starch, and tetrapyrole metabolism, as well as excellent coverage for fatty acid synthesis, isoprenoid, sulfur, nitrogen, and amino acid metabolism, was obtained. This showed, for example, quantitative and qualitative cell type-specific specialization in starch biosynthesis, arginine synthesis, nitrogen assimilation, and initial steps in sulfur assimilation. An extensive overview of BS and M chloroplast protein expression and homeostasis machineries (more than 200 proteins) demonstrated qualitative and quantitative differences between M and BS chloroplasts and BS-enhanced levels of the specialized chaperones ClpB3 and HSP90 that suggest active remodeling of the BS proteome. The reconstructed pathways are presented as detailed flow diagrams including annotation, relative protein abundance, and cell-specific expression pattern. Protein annotation and identification data, and projection of matched peptides on the protein models, are available online through the Plant Proteome Database. PMID:20089766

  18. Plant functional traits and soil carbon sequestration in contrasting biomes.

    PubMed

    De Deyn, Gerlinde B; Cornelissen, Johannes H C; Bardgett, Richard D

    2008-05-01

    Plant functional traits control a variety of terrestrial ecosystem processes, including soil carbon storage which is a key component of the global carbon cycle. Plant traits regulate net soil carbon storage by controlling carbon assimilation, its transfer and storage in belowground biomass, and its release from soil through respiration, fire and leaching. However, our mechanistic understanding of these processes is incomplete. Here, we present a mechanistic framework, based on the plant traits that drive soil carbon inputs and outputs, for understanding how alteration of vegetation composition will affect soil carbon sequestration under global changes. First, we show direct and indirect plant trait effects on soil carbon input and output through autotrophs and heterotrophs, and through modification of abiotic conditions, which need to be considered to determine the local carbon sequestration potential. Second, we explore how the composition of key plant traits and soil biota related to carbon input, release and storage prevail in different biomes across the globe, and address the biome-specific mechanisms by which plant trait composition may impact on soil carbon sequestration. We propose that a trait-based approach will help to develop strategies to preserve and promote carbon sequestration.

  19. Pollen-based biomes for Beringia 18,000, 6000 and 0 14C yr BP

    USGS Publications Warehouse

    Edwards, M.E.; Anderson, P.M.; Brubaker, L.B.; Ager, T.A.; Andreev, A.A.; Bigelow, N.H.; Cwynar, L.C.; Eisner, Wendy R.; Harrison, S.P.; Hu, F.-S.; Jolly, D.; Lozhkin, A.V.; MacDonald, G.M.; Mock, C.J.; Ritchie, J.C.; Sher, A.V.; Spear, R.W.; Williams, J.W.; Yu, G.

    2000-01-01

    The objective biomization method developed by Prentice et al. (1996) for Europe was extended using modern pollen samples from Beringia and then applied to fossil pollen data to reconstruct palaeovegetation patterns at 6000 and 18,000 14C yr BP. The predicted modern distribution of tundra, taiga and cool conifer forests in Alaska and north-western Canada generally corresponds well to actual vegetation patterns, although sites in regions characterized today by a mosaic of forest and tundra vegetation tend to be preferentially assigned to tundra. Siberian larch forests are delimited less well, probably due to the extreme under-representation of Larix in pollen spectra. The biome distribution across Beringia at 6000 14C yr BP was broadly similar to today, with little change in the northern forest limit, except for a possible northward-advance in the Mackenzie delta region. The western forest limit in Alaska was probably east of its modern position. At 18,000 14C yr BP the whole of Beringia was covered by tundra. However, the importance of the various plant functional types varied from site to site, supporting the idea that the vegetation cover was a mosaic of different tundra types.

  20. The past is a guide to the future? Comparing Middle Pliocene vegetation with predicted biome distributions for the twenty-first century.

    PubMed

    Salzmann, U; Haywood, A M; Lunt, D J

    2009-01-13

    During the Middle Pliocene, the Earth experienced greater global warmth compared with today, coupled with higher atmospheric CO2 concentrations. To determine the extent to which the Middle Pliocene can be used as a 'test bed' for future warming, we compare data and model-based Middle Pliocene vegetation with simulated global biome distributions for the mid- and late twenty-first century. The best agreement is found when a Middle Pliocene biome reconstruction is compared with a future scenario using 560 ppmv atmospheric CO2. In accordance with palaeobotanical data, all model simulations indicate a generally warmer and wetter climate, resulting in a northward shift of the taiga-tundra boundary and a spread of tropical savannah and woodland in Africa and Australia at the expense of deserts. Our data-model comparison reveals differences in the distribution of polar vegetation, which indicate that the high latitudes during the Middle Pliocene were still warmer than its predicted modern analogue by several degrees. However, our future scenarios do not consider multipliers associated with 'long-term' climate sensitivity. Changes in global temperature, and thus biome distributions, at higher atmospheric CO2 levels will not have reached an equilibrium state (as is the case for the Middle Pliocene) by the end of this century.

  1. Reconstruction of the paleo-coastline of Santorini island (Greece), after the 1613 BC volcanic eruption: A GIS-based quantitative methodology

    NASA Astrophysics Data System (ADS)

    Oikonomidis, Dimitrios; Albanakis, Konstantinos; Pavlides, Spyridon; Fytikas, Michael

    2016-02-01

    A catastrophic volcanic explosion took place in Thera/Santorini island around 1613 BC, known as the `Minoan' eruption. Many papers have dealt with the shape of the shoreline of the island before the eruption, but none with the shape of the shoreline exactly after it, assuming that it would be the same with the contemporary one. However, this is not correct due to the wave erosion. In this paper, a new DEM was constructed, covering both land and submarine morphology, then topographic sections were drawn around the island. Using these sections, the `missing parts' (sea-wave erosion) were calculated, the shoreline was reconstructed as it was one day after the eruption and finally the erosion rate was calculated.

  2. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes.

    PubMed

    García-Palacios, Pablo; Maestre, Fernando T; Kattge, Jens; Wall, Diana H

    2013-08-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesised litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~ 37%). [corrected]. However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models.

  3. Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary.

    PubMed

    Crisp, Michael D; Burrows, Geoffrey E; Cook, Lyn G; Thornhill, Andrew H; Bowman, David M J S

    2011-02-15

    Fire is a major modifier of communities, but the evolutionary origins of its prevalent role in shaping current biomes are uncertain. Australia is among the most fire-prone continents, with most of the landmass occupied by the fire-dependent sclerophyll and savanna biomes. In contrast to biomes with similar climates in other continents, Australia has a tree flora dominated by a single genus, Eucalyptus, and related Myrtaceae. A unique mechanism in Myrtaceae for enduring and recovering from fire damage likely resulted in this dominance. Here, we find a conserved phylogenetic relationship between post-fire resprouting (epicormic) anatomy and biome evolution, dating from 60 to 62 Ma, in the earliest Palaeogene. Thus, fire-dependent communities likely existed 50 million years earlier than previously thought. We predict that epicormic resprouting could make eucalypt forests and woodlands an excellent long-term carbon bank for reducing atmospheric CO(2) compared with biomes with similar fire regimes in other continents.

  4. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes

    PubMed Central

    García-Palacios, Pablo; Maestre, Fernando T.; Kattge, Jens; Wall, Diana H.

    2015-01-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesized litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~27%). However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. PMID:23763716

  5. Response of vegetation to drought time-scales across global land biomes

    NASA Astrophysics Data System (ADS)

    Vicente-Serrano, Sergio M.; Gouveia, Célia; Julio Camarero, Jesús; Beguería, Santiago; Trigo, Ricardo; López-Moreno, Juan I.; Azorín-Molina, César; Pasho, Edmond; Lorenzo-Lacruz, Jorge; Revuelto, Jesús; Morán-Tejeda, Enrique; Sanchez-Lorenzo, Arturo

    2013-01-01

    We evaluated the response of the Earth land biomes to drought by correlating a drought index with three global indicators of vegetation activity and growth: vegetation indices from satellite imagery, tree-ring growth series, and Aboveground Net Primary Production (ANPP) records. Arid and humid biomes are both affected by drought, and we suggest that the persistence of the water deficit (i.e., the drought time-scale) could be playing a key role in determining the sensitivity of land biomes to drought. We found that arid biomes respond to drought at short time-scales; that is, there is a rapid vegetation reaction as soon as water deficits below normal conditions occur. This may be due to the fact that plant species of arid regions have mechanisms allowing them to rapidly adapt to changing water availability. Humid biomes also respond to drought at short time-scales, but in this case the physiological mechanisms likely differ from those operating in arid biomes, as plants usually have a poor adaptability to water shortage. On the contrary, semiarid and subhumid biomes respond to drought at long time-scales, probably because plants are able to withstand water deficits, but they lack the rapid response of arid biomes to drought. These results are consistent among three vegetation parameters analyzed and across different land biomes, showing that the response of vegetation to drought depends on characteristic drought time-scales for each biome. Understanding the dominant time-scales at which drought most influences vegetation might help assessing the resistance and resilience of vegetation and improving our knowledge of vegetation vulnerability to climate change.

  6. Response of vegetation to drought time-scales across global land biomes

    PubMed Central

    Vicente-Serrano, Sergio M.; Gouveia, Célia; Camarero, Jesús Julio; Beguería, Santiago; Trigo, Ricardo; López-Moreno, Juan I.; Azorín-Molina, César; Pasho, Edmond; Lorenzo-Lacruz, Jorge; Revuelto, Jesús; Morán-Tejeda, Enrique; Sanchez-Lorenzo, Arturo

    2013-01-01

    We evaluated the response of the Earth land biomes to drought by correlating a drought index with three global indicators of vegetation activity and growth: vegetation indices from satellite imagery, tree-ring growth series, and Aboveground Net Primary Production (ANPP) records. Arid and humid biomes are both affected by drought, and we suggest that the persistence of the water deficit (i.e., the drought time-scale) could be playing a key role in determining the sensitivity of land biomes to drought. We found that arid biomes respond to drought at short time-scales; that is, there is a rapid vegetation reaction as soon as water deficits below normal conditions occur. This may be due to the fact that plant species of arid regions have mechanisms allowing them to rapidly adapt to changing water availability. Humid biomes also respond to drought at short time-scales, but in this case the physiological mechanisms likely differ from those operating in arid biomes, as plants usually have a poor adaptability to water shortage. On the contrary, semiarid and subhumid biomes respond to drought at long time-scales, probably because plants are able to withstand water deficits, but they lack the rapid response of arid biomes to drought. These results are consistent among three vegetation parameters analyzed and across different land biomes, showing that the response of vegetation to drought depends on characteristic drought time-scales for each biome. Understanding the dominant time-scales at which drought most influences vegetation might help assessing the resistance and resilience of vegetation and improving our knowledge of vegetation vulnerability to climate change. PMID:23248309

  7. Response of vegetation to drought time-scales across global land biomes.

    PubMed

    Vicente-Serrano, Sergio M; Gouveia, Célia; Camarero, Jesús Julio; Beguería, Santiago; Trigo, Ricardo; López-Moreno, Juan I; Azorín-Molina, César; Pasho, Edmond; Lorenzo-Lacruz, Jorge; Revuelto, Jesús; Morán-Tejeda, Enrique; Sanchez-Lorenzo, Arturo

    2013-01-01

    We evaluated the response of the Earth land biomes to drought by correlating a drought index with three global indicators of vegetation activity and growth: vegetation indices from satellite imagery, tree-ring growth series, and Aboveground Net Primary Production (ANPP) records. Arid and humid biomes are both affected by drought, and we suggest that the persistence of the water deficit (i.e., the drought time-scale) could be playing a key role in determining the sensitivity of land biomes to drought. We found that arid biomes respond to drought at short time-scales; that is, there is a rapid vegetation reaction as soon as water deficits below normal conditions occur. This may be due to the fact that plant species of arid regions have mechanisms allowing them to rapidly adapt to changing water availability. Humid biomes also respond to drought at short time-scales, but in this case the physiological mechanisms likely differ from those operating in arid biomes, as plants usually have a poor adaptability to water shortage. On the contrary, semiarid and subhumid biomes respond to drought at long time-scales, probably because plants are able to withstand water deficits, but they lack the rapid response of arid biomes to drought. These results are consistent among three vegetation parameters analyzed and across different land biomes, showing that the response of vegetation to drought depends on characteristic drought time-scales for each biome. Understanding the dominant time-scales at which drought most influences vegetation might help assessing the resistance and resilience of vegetation and improving our knowledge of vegetation vulnerability to climate change.

  8. Softball Games Bring NCI and Leidos Biomed Employees Together | Poster

    Cancer.gov

    NCI and Leidos Biomed employees took to the fields at Nallin Pond for the third annual slow-pitch softball games on August 26. The series attracted 54 employees who were divided into four teams, Red, Blue, Gray, and White, and they were cheered on by about 40 enthusiastic spectators. In the first set of games, the Gray team defeated the Blue team, 15–8, and the White team pulled out a win against the Red team, 17–15. After a brief rest, the two winning teams and the two losing teams faced each other in a second set of games. On Field 1, the “winners” match-up of the Gray and White teams was a nail biter, with a close score throughout the game. Daylight was a factor, however, and the team captains decided to call the game for safety reasons. With a lead of 15 to 13, the Gray team was declared the overall winner.

  9. Biogeography of photoautotrophs in the high polar biome

    PubMed Central

    Pointing, Stephen B.; Burkhard Büdel; Convey, Peter; Gillman, Len N.; Körner, Christian; Leuzinger, Sebastian; Vincent, Warwick F.

    2015-01-01

    The global latitudinal gradient in biodiversity weakens in the high polar biome and so an alternative explanation for distribution of Arctic and Antarctic photoautotrophs is required. Here we identify how temporal, microclimate and evolutionary drivers of biogeography are important, rather than the macroclimate features that drive plant diversity patterns elsewhere. High polar ecosystems are biologically unique, with a more central role for bryophytes, lichens and microbial photoautotrophs over that of vascular plants. Constraints on vascular plants arise mainly due to stature and ontogenetic barriers. Conversely non-vascular plant and microbial photoautotroph distribution is correlated with favorable microclimates and the capacity for poikilohydric dormancy. Contemporary distribution also depends on evolutionary history, with adaptive and dispersal traits as well as legacy influencing biogeography. We highlight the relevance of these findings to predicting future impacts on diversity of polar photoautotrophs and to the current status of plants in Arctic and Antarctic conservation policy frameworks. PMID:26442009

  10. Carbon dioxide measurements in tropical east African biomes

    SciTech Connect

    Schnell, R.C.; Odh, S.A.; Njau, L.N.

    1981-06-20

    From January 1977 through May 1978 atmospheric CO/sub 2/ concentrations were measured hourly and/or continuously at bimonthly intervals over periods varying from 5 to 8 days at 10 different locations in Kenya, East Africa. During each of these periods, at least two, and in some cases five, vertical profile measurements of CO/sub 2/ concentrations were conducted above different biomes. A large diurnal CO/sub 2/ periodicity was observed over land, with daytime drawdowns to 322 ppm and nighttime buildups to more than 400 ppm observed in savannah regions. In and around tropical rain forests, drawdowns to 310 ppm and buildups to more than 400 ppm were regularly observed. On the higher reaches of Mount Kenya, the diurnal CO/sub 2/ cycle was considerably reduced in amplitude, with variations in the range of 2-6 ppm throughout the 16-month study period. On sunny days, the drawdown of CO/sub 2/ was measurable to heights of at least 4000 m above ground level. Other CO/sub 2/ measurements in air over the Indian Ocean (to distances of up to 450 km upwind of the coast) produced fairly consistent concentrations of about 328.5 ppm which did not fluctuate diurnally. The weekly mean CO/sub 2/ concentrations over Kenya appear to have a bimodal structure, with minima occurring in July and January. On the basis of the data collected during the study it appears likely that regular observations at a high-altitude station on Mount Kenya, either with flask sampling or continuous analyzer measurements, are likely to yield data useful for estimates of CO/sub 2/ concentration backgrounds and trends. Also, there is strong evidence that Mount Kenya would be a good location to measure large-scale interhemispheric CO/sub 2/ exchanges and provide a unique base from which to study the effects of the tropical biome on biogeochemical phenomena. 20 references, 12 figures, 2 tables.

  11. Comparative Patterns of Plant Invasions in the Mediterranean Biome

    PubMed Central

    Arianoutsou, Margarita; Delipetrou, Pinelopi; Vilà, Montserrat; Dimitrakopoulos, Panayiotis G.; Celesti-Grapow, Laura; Wardell-Johnson, Grant; Henderson, Lesley; Fuentes, Nicol; Ugarte-Mendes, Eduardo; Rundel, Philip W.

    2013-01-01

    The objective of this work was to compare and contrast the patterns of alien plant invasions in the world’s five mediterranean-climate regions (MCRs). We expected landscape age and disturbance history to have bearing on levels of invasion. We assembled a database on naturalized alien plant taxa occurring in natural and semi-natural terrestrial habitats of all five regions (specifically Spain, Italy, Greece and Cyprus from the Mediterranean Basin, California, central Chile, the Cape Region of South Africa and Southwestern - SW Australia). We used multivariate (hierarchical clustering and NMDS ordination) trait and habitat analysis to compare characteristics of regions, taxa and habitats across the mediterranean biome. Our database included 1627 naturalized species with an overall low taxonomic similarity among the five MCRs. Herbaceous perennials were the most frequent taxa, with SW Australia exhibiting both the highest numbers of naturalized species and the highest taxonomic similarity (homogenization) among habitats, and the Mediterranean Basin the lowest. Low stress and highly disturbed habitats had the highest frequency of invasion and homogenization in all regions, and high natural stress habitats the lowest, while taxonomic similarity was higher among different habitats in each region than among regions. Our analysis is the first to describe patterns of species characteristics and habitat vulnerability for a single biome. We have shown that a broad niche (i.e. more than one habitat) is typical of naturalized plant species, regardless of their geographical area of origin, leading to potential for high homogenization within each region. Habitats of the Mediterranean Basin are apparently the most resistant to plant invasion, possibly because their landscapes are generally of relatively recent origin, but with a more gradual exposure to human intervention over a longer period. PMID:24244443

  12. The diversification of eastern South American open vegetation biomes: Historical biogeography and perspectives

    NASA Astrophysics Data System (ADS)

    Werneck, Fernanda P.

    2011-06-01

    The eastern-central South American open vegetation biomes occur across an extensive range of environmental conditions and are organized diagonally including three complexly interacting tropical/sub-tropical biomes. Seasonally Dry Tropical Forests (SDTFs), Cerrado, and Chaco biomes are seasonally stressed by drought, characterized by significant plant and animal endemism, high levels of diversity, and highly endangered. However, these open biomes have been overlooked in biogeographic studies and conservation projects in South America, especially regarding fauna studies. Here I compile and evaluate the biogeographic hypotheses previously proposed for the diversification of these three major open biomes, specifically their distributions located eastern and southern of Andes. My goal is to generate predictions and provide a background for testable hypotheses. I begin by investigating both continental (inter-biome) and regional (within-biome) levels, and I then provide a biogeographical summary for these regions. I also suggest how novel molecular-based historical biogeographic/phylogeographic approaches could contribute to the resolution of long-standing questions, identify potential target fauna groups for development of these lines of study, and describe fertile future research agendas.

  13. Robust patella motion tracking using intensity-based 2D-3D registration on dynamic bi-plane fluoroscopy: towards quantitative assessment in MPFL reconstruction surgery

    NASA Astrophysics Data System (ADS)

    Otake, Yoshito; Esnault, Matthieu; Grupp, Robert; Kosugi, Shinichi; Sato, Yoshinobu

    2016-03-01

    The determination of in vivo motion of multiple-bones using dynamic fluoroscopic images and computed tomography (CT) is useful for post-operative assessment of orthopaedic surgeries such as medial patellofemoral ligament reconstruction. We propose a robust method to measure the 3D motion of multiple rigid objects with high accuracy using a series of bi-plane fluoroscopic images and a multi-resolution, intensity-based, 2D-3D registration. A Covariance Matrix Adaptation Evolution Strategy (CMA-ES) optimizer was used with a gradient correlation similarity metric. Four approaches to register three rigid objects (femur, tibia-fibula and patella) were implemented: 1) an individual bone approach registering one bone at a time, each with optimization of a six degrees of freedom (6DOF) parameter, 2) a sequential approach registering one bone at a time but using the previous bone results as the background in DRR generation, 3) a simultaneous approach registering all the bones together (18DOF) and 4) a combination of the sequential and the simultaneous approaches. These approaches were compared in experiments using simulated images generated from the CT of a healthy volunteer and measured fluoroscopic images. Over the 120 simulated frames of motion, the simultaneous approach showed improved registration accuracy compared to the individual approach: with less than 0.68mm root-mean-square error (RMSE) for translation and less than 1.12° RMSE for rotation. A robustness evaluation was conducted with 45 trials of a randomly perturbed initialization showed that the sequential approach improved robustness significantly (74% success rate) compared to the individual bone approach (34% success) for patella registration (femur and tibia-fibula registration had a 100% success rate with each approach).

  14. Applying plant functional types to construct biome maps from eastern North American pollen data: comparisons with model results

    NASA Astrophysics Data System (ADS)

    Williams, John W.; Summers, Robert L.; Webb, Thompson, III

    Global biome models like BIOME1 convert climate-model simulations of past climates into biome distributions and thus facilitate comparison of both climate and biome model results with biomes estimate from paleoecological data. We adapted a biomization method, recently developed for European pollen data, for use with pollen data in eastern North America and then compared its estimated biomes with those derived from applying BIOME1 to the climate simulations from the NCAR CCM1 (National Center for Atmospheric Research Community Climate Model, Version 1) for 6000 years ago (6 ka). We first tested the biomization method by seeing how well the biomes inferred from modern pollen data match observed biomes. We found that modifications to the method were necessary in part to account for physiological differences between North American and European taxa, and in part to cope with our choice of using just 23 major pollen taxa. Our modifications significantly improved the match between observed modern biomes and pollen-derived biomes, as measured by the kappa statistic. We tested our tuning of the biomization method by matching its inferred 6 ka biomes to biomes estimated from pollen data using the modern analog technique. The degree of agreement at 6 ka is close to that for today, showing that (1) the biomization method and modern analog technique, when applied to the same pollen data, produce consistent results, and (2) the modifications made to the biomization method are robust back to 6 ka. We then used the results of the biomization method to test the biome maps simulated by BIOME1, which derives biome distributions from observed climate values for today and from the climatic simulations of the CCM1 for 6 ka. Only a fair agreement is seen, and significant offsets exist in the placement of biomes by BIOME1. For today BIOME1 simulates the boundary between the temperate deciduous and cool mixed forests to be too far south and the steppe-forest boundary to be too far west

  15. Multiple-proxy study of ostracods from Middle Pleistocene lake sediments at Marks Tey, Essex: Qualitative and quantitative approaches to palaeoenvironmental reconstruction

    NASA Astrophysics Data System (ADS)

    March, Anna; Horne, David; Holmes, Jonathan; Lewis, Simon

    2016-04-01

    Preliminary results of a multiple-proxy study of ostracods from the Middle Pleistocene lacustrine sedimentary succession at Marks Tey, Essex, UK, are presented. Both assemblage-based and isotopic analyses are used to investigate changes in the palaeoclimate and palaeoenvironment and the associated faunal response across the transition from interglacial to colder conditions. The >30m thick succession includes substantial intervals represented by laminated sediments amenable to high-resolution sampling and comprises not only the most complete record of the Hoxnian interglacial (MIS 11c) in Britain but also the transition (MIS11b-a) to the succeeding glacial (MIS 10). A fairly diverse freshwater (possibly slightly saline in some intervals) lacustrine ostracod fauna has so far been recovered, including Candona spp., Ilyocypris spp., Cytherissa lacustris (Sars, 1863), Limnocytherina sanctipatricii (Brady & Robertson, 1869),Limnocythere inopinata (Baird, 1843), Limnocythere falcata (Diebel, 1968), Limnocythere suessenbornensis (Diebel, 1968), and rare Limnocythere parallela (Diebel, 1968) (the first record from the UK). Taphonomic analyses confirm the in situ nature of the main elements of the assemblages, which can therefore be considered representative of local palaeoenvironments and contemporary palaeoclimates. Changes in dominant species throughout the succession are presented alongside results of a pilot study of stable isotopes; as yet the extent to which these variations reflect temperature and/or evaporative enrichment is unclear, although both may be related to climate change. Some of the higher assemblages are comparable with those of Late Quaternary thermokarst lakes in Alaska and Siberia. The prospects for multi-proxy quantitative analysis, combining the Mutual Ostracod Temperature Range method with stable isotope data, are discussed.

  16. Decadal changes of phenological patterns over Arctic tundra biome

    NASA Astrophysics Data System (ADS)

    Jia, G. J.; Epstein, H. E.; Walker, D. A.; Wang, H.

    2008-12-01

    The northern high latitudes have experienced a continuous and accelerated trend of warming during the past 30 years, with most recent decade ranks the warmest years since 1850. Warmer springs are especially evident throughout the Arctic. Meanwhile, Arctic sea ice declined rapidly to unprecedented low extents in all months, with late summer experiences the most significant declining. Warming in the north is also evident from observations of early melting of snow and reducing snow cover. Now a key question is: in the warmth limited northern biome, what will happen to the phenological patterns of tundra vegetation as the global climate warms and seasonality of air temperature, sea ice, and snow cover shift? To answer the question we examined the onset of vegetation greenness, senescence of greenness, length of growing season, and dates of peak greenness along Arctic bioclimate gradients (subzones) to see how they change over years. Here, we combine multi-scale sub-pixel analysis and remote sensing time-series analysis to investigate recent decadal changes in vegetation phenology along spatial gradients of summer temperature and vegetation in the Arctic. The datasets used here are AVHRR 15-day 8 km time series, AVHRR 8-day 1 km dataset, and MODIS 8-day 500m Collection 5 dataset. There were detectable changes in phenological pattern over tundra biome in past two decades. Increases of vegetation greenness were observed in most of the summer periods in low arctic and mid-summer in high arctic. Peak greenness appeared earlier in high arctic and declined slower after peak in low arctic. Generally, tundra plants were having longer and stronger photosynthesis activities, and therefore increased annual vegetation productivities. Field studies have observed early growth and enhanced peak growth of many deciduous shrub species in tundra plant communities. These changes in seasonality are very likely to alter surface albedo and heat budget, modify plant photosynthesis

  17. BIOME: A scientific data archive search-and-order system using browser-aware, dynamic pages

    NASA Technical Reports Server (NTRS)

    Jennings, S. V.; Yow, T. G.; Ng, V. W.

    1997-01-01

    The Oak Ridge National Laboratory's (ORNL) Distributed Active Archive Center (DAAC) is a data archive and distribution center for the National Air and Space Administration's (NASA) Earth Observing System Data and Information System (EOSDIS). Both the Earth Observing System (EOS) and EOSDIS are components of NASA's contribution to the US Global Change Research Program through its Mission to Planet Earth Program. The ORNL DAAC provides access to data used in ecological and environmental research such as global change, global warming, and terrestrial ecology. Because of its large and diverse data holdings, the challenge for the ORNL DAAC is to help users find data of interest from the hundreds of thousands of files available at the DAAC without overwhelming them. Therefore, the ORNL DAAC has developed the Biogeochemical Information Ordering Management Environment (BIOME), a customized search and order system for the World Wide Web (WWW). BIOME is a public system located at http://www-eosdis. ornl.gov/BIOME/biome.html.

  18. Cross-biome comparison of microbial association networks

    PubMed Central

    Faust, Karoline; Lima-Mendez, Gipsi; Lerat, Jean-Sébastien; Sathirapongsasuti, Jarupon F.; Knight, Rob; Huttenhower, Curtis; Lenaerts, Tom; Raes, Jeroen

    2015-01-01

    Clinical and environmental meta-omics studies are accumulating an ever-growing amount of microbial abundance data over a wide range of ecosystems. With a sufficiently large sample number, these microbial communities can be explored by constructing and analyzing co-occurrence networks, which detect taxon associations from abundance data and can give insights into community structure. Here, we investigate how co-occurrence networks differ across biomes and which other factors influence their properties. For this, we inferred microbial association networks from 20 different 16S rDNA sequencing data sets and observed that soil microbial networks harbor proportionally fewer positive associations and are less densely interconnected than host-associated networks. After excluding sample number, sequencing depth and beta-diversity as possible drivers, we found a negative correlation between community evenness and positive edge percentage. This correlation likely results from a skewed distribution of negative interactions, which take place preferentially between less prevalent taxa. Overall, our results suggest an under-appreciated role of evenness in shaping microbial association networks. PMID:26579106

  19. Plant community responses to experimental warming across the tundra biome.

    PubMed

    Walker, Marilyn D; Wahren, C Henrik; Hollister, Robert D; Henry, Greg H R; Ahlquist, Lorraine E; Alatalo, Juha M; Bret-Harte, M Syndonia; Calef, Monika P; Callaghan, Terry V; Carroll, Amy B; Epstein, Howard E; Jónsdóttir, Ingibjörg S; Klein, Julia A; Magnússon, Borgthór; Molau, Ulf; Oberbauer, Steven F; Rewa, Steven P; Robinson, Clare H; Shaver, Gaius R; Suding, Katharine N; Thompson, Catharine C; Tolvanen, Anne; Totland, Ørjan; Turner, P Lee; Tweedie, Craig E; Webber, Patrick J; Wookey, Philip A

    2006-01-31

    Recent observations of changes in some tundra ecosystems appear to be responses to a warming climate. Several experimental studies have shown that tundra plants and ecosystems can respond strongly to environmental change, including warming; however, most studies were limited to a single location and were of short duration and based on a variety of experimental designs. In addition, comparisons among studies are difficult because a variety of techniques have been used to achieve experimental warming and different measurements have been used to assess responses. We used metaanalysis on plant community measurements from standardized warming experiments at 11 locations across the tundra biome involved in the International Tundra Experiment. The passive warming treatment increased plant-level air temperature by 1-3 degrees C, which is in the range of predicted and observed warming for tundra regions. Responses were rapid and detected in whole plant communities after only two growing seasons. Overall, warming increased height and cover of deciduous shrubs and graminoids, decreased cover of mosses and lichens, and decreased species diversity and evenness. These results predict that warming will cause a decline in biodiversity across a wide variety of tundra, at least in the short term. They also provide rigorous experimental evidence that recently observed increases in shrub cover in many tundra regions are in response to climate warming. These changes have important implications for processes and interactions within tundra ecosystems and between tundra and the atmosphere.

  20. Climate control of terrestrial carbon exchange across biomes and continents

    SciTech Connect

    Ricciuto, Daniel M; Gu, Lianhong

    2010-07-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 N). The sensitivity of NEE to mean annual temperature breaks down at ~ 16 C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.

  1. Cross-biome comparison of microbial association networks.

    PubMed

    Faust, Karoline; Lima-Mendez, Gipsi; Lerat, Jean-Sébastien; Sathirapongsasuti, Jarupon F; Knight, Rob; Huttenhower, Curtis; Lenaerts, Tom; Raes, Jeroen

    2015-01-01

    Clinical and environmental meta-omics studies are accumulating an ever-growing amount of microbial abundance data over a wide range of ecosystems. With a sufficiently large sample number, these microbial communities can be explored by constructing and analyzing co-occurrence networks, which detect taxon associations from abundance data and can give insights into community structure. Here, we investigate how co-occurrence networks differ across biomes and which other factors influence their properties. For this, we inferred microbial association networks from 20 different 16S rDNA sequencing data sets and observed that soil microbial networks harbor proportionally fewer positive associations and are less densely interconnected than host-associated networks. After excluding sample number, sequencing depth and beta-diversity as possible drivers, we found a negative correlation between community evenness and positive edge percentage. This correlation likely results from a skewed distribution of negative interactions, which take place preferentially between less prevalent taxa. Overall, our results suggest an under-appreciated role of evenness in shaping microbial association networks. PMID:26579106

  2. Calibration and application of lipid hydrogen isotopic ratios for quantitative reconstruction of new england climate variability over the past 15 kyr

    NASA Astrophysics Data System (ADS)

    Hou, Juzhi

    2009-11-01

    precipitation deltaD variations, with particularly high fidelity in dry regions, although more studies in other regions will be important to further test this proxy. In Chapter 4, I present a centennial-scale record of climate change during the transition based on D/H ratios of C22 n-alkanoic acid (deltaDBA) from a sediment core in Blood Pond, Massachusetts. The abrupt climate events observed in Blood Pond records show remarkable similarity with Greenland ice core delta18O records during the Pleistocene. During the early Holocene, the northeastern North America deltaDBA record was more variable than Greenland, possibly due to the close proximity of the Laurentide ice sheet, and impact of freshwater outbursts as the ice sheet rapidly retreated. In Chapter 5, I present decadal-scale temperature records from Blood Pond, Massachusetts during the early Holocene which revealed two abrupt climate reversals. The isotopic records infer a cooling of 3˜4°C between 9.3 and 9.1 ka against the millennial scale climate background, mainly induced by changes in precipitation seasonality. In comparison, the 8.2 ka event displays smaller amplitude of temperature cooling of 1˜2°C at our southern New England site. The observed climatic reversal at ˜ 9.2 ka as representing increased proportion of winter precipitation in conjunction with a drier and cooler summer, triggered by slowdown in thermohaline circulation as a result of freshwater release from the proglacial lakes. The results suggest that the seasonality of the precipitation at the southern New England was highly sensitive to meltwater releases, especially prior to the final collapse of the LIS. In Chapter 6, I present decadal to centennial resolution temperature records from two lakes in the northeastern North America to investigate the relationship between solar activity and temperature changes during the late Pleistocene to early Holocene. The temperature reconstructions from the two lakes of 100 km apart in New England are highly

  3. Declines of biomes and biotas and the future of evolution

    PubMed Central

    Woodruff, David S.

    2001-01-01

    Although panel discussants disagreed whether the biodiversity crisis constitutes a mass extinction event, all agreed that current extinction rates are 50–500 times background and are increasing and that the consequences for the future evolution of life are serious. In response to the on-going rapid decline of biomes and homogenization of biotas, the panelists predicted changes in species geographic ranges, genetic risks of extinction, genetic assimilation, natural selection, mutation rates, the shortening of food chains, the increase in nutrient-enriched niches permitting the ascendancy of microbes, and the differential survival of ecological generalists. Rates of evolutionary processes will change in different groups, and speciation in the larger vertebrates is essentially over. Action taken over the next few decades will determine how impoverished the biosphere will be in 1,000 years when many species will suffer reduced evolvability and require interventionist genetic and ecological management. Whether the biota will continue to provide the dependable ecological services humans take for granted is less clear. The discussants offered recommendations, including two of paramount importance (concerning human populations and education), seven identifying specific scientific activities to better equip us for stewardship of the processes of evolution, and one suggesting that such stewardship is now our responsibility. The ultimate test of evolutionary biology as a science is not whether it solves the riddles of the past but rather whether it enables us to manage the future of the biosphere. Our inability to make clearer predictions about the future of evolution has serious consequences for both biodiversity and humanity. PMID:11344296

  4. Biogeochemical cycling in terrestrial ecosystems of the Caatinga Biome.

    PubMed

    Menezes, R S C; Sampaio, E V S B; Giongo, V; Pérez-Marin, A M

    2012-08-01

    The biogeochemical cycles of C, N, P and water, the impacts of land use in the stocks and flows of these elements and how they can affect the structure and functioning of Caatinga were reviewed. About half of this biome is still covered by native secondary vegetation. Soils are deficient in nutrients, especially N and P. Average concentrations of total soil P and C in the top layer (0-20 cm) are 196 mg kg(-1) and 9.3 g kg(-1), corresponding to C stocks around 23 Mg ha(-1). Aboveground biomass of native vegetation varies from 30 to 50 Mg ha(-1), and average root biomass from 3 to 12 Mg ha(-1). Average annual productivities and biomass accumulation in different land use systems vary from 1 to 7 Mg ha(-1) year(-1). Biological atmospheric N2 fixation is estimated to vary from 3 to 11 kg N ha(-1) year-1 and 21 to 26 kg N ha(-1) year(-1) in mature and secondary Caatinga, respectively. The main processes responsible for nutrient and water losses are fire, soil erosion, runoff and harvest of crops and animal products. Projected climate changes in the future point to higher temperatures and rainfall decreases. In face of the high intrinsic variability, actions to increase sustainability should improve resilience and stability of the ecosystems. Land use systems based on perennial species, as opposed to annual species, may be more stable and resilient, thus more adequate to face future potential increases in climate variability. Long-term studies to investigate the potential of the native biodiversity or adapted exotic species to design sustainable land use systems should be encouraged.

  5. Evolutionary biology and anthropology suggest biome reconstitution as a necessary approach toward dealing with immune disorders

    PubMed Central

    Parker, William; Ollerton, Jeff

    2013-01-01

    Industrialized society currently faces a wide range of non-infectious, immune-related pandemics. These pandemics include a variety of autoimmune, inflammatory and allergic diseases that are often associated with common environmental triggers and with genetic predisposition, but that do not occur in developing societies. In this review, we briefly present the idea that these pandemics are due to a limited number of evolutionary mismatches, the most damaging being ‘biome depletion’. This particular mismatch involves the loss of species from the ecosystem of the human body, the human biome, many of which have traditionally been classified as parasites, although some may actually be commensal or even mutualistic. This view, evolved from the ‘hygiene hypothesis’, encompasses a broad ecological and evolutionary perspective that considers host-symbiont relations as plastic, changing through ecological space and evolutionary time. Fortunately, this perspective provides a blueprint, termed ‘biome reconstitution’, for disease treatment and especially for disease prevention. Biome reconstitution includes the controlled and population-wide reintroduction (i.e. domestication) of selected species that have been all but eradicated from the human biome in industrialized society and holds great promise for the elimination of pandemics of allergic, inflammatory and autoimmune diseases. PMID:24481190

  6. Observing and Quantifying Ecological Disturbance Impacts on Semi-arid Biomes in the Southwestern US.

    NASA Astrophysics Data System (ADS)

    Litvak, M. E.; Krofcheck, D. J.; Morillas, L.; Fox, A. M.

    2014-12-01

    The magnitude of carbon fluxes through arid and semi-arid ecosystems is considered modest, but integrated over the ~40% of the global land surface covered by these ecosystems, the total carbon stored is almost twice that in temperate forest ecosystems. In the semi-arid Southwestern U.S., drought and rising temperatures have triggered insect outbreaks, fire and widespread mortality in the past 5 years, all of which are predicted to increase in the next century. Understanding how resilient carbon pools and fluxes in these biomes are to these disturbances constitutes a large uncertainty in our ability to understand both carbon and energy flux dynamics in this region. We use an 8 year record (2007-2014) of continuous measurements of net ecosystem exchange of carbon (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (Re), and evapotranspiration (ET) made over the New Mexico Elevation Gradient (NMEG) network of flux tower sites (desert grassland, creosote shrubland, juniper savanna, piñon-juniper woodland, ponderosa pine and subalpine mixed conifer) to quantify the biome-specific responses of carbon and water dynamics to these disturbances. In particular, we focus on biome-specific responses across the NMEG biomes to the extended drought in this region from 2011-2014, and to the widespread mortality observed in piñon-juniper woodlands following the turn of the century drought (1999-2002) and multi-year recent drought. Finally, we compare functional responses of land-surface fluxes to recent catastrophic fires (grassland, subalpine conifer biomes), and insect outbreaks (subalpine conifer and piñon-juniper woodland biomes). We discuss the results in terms of which disturbances have contributed to and are likely to trigger the largest changes in carbon sequestration in this region in response to predicted climate change scenarios.

  7. BiomeNet: A Bayesian Model for Inference of Metabolic Divergence among Microbial Communities

    PubMed Central

    Chipman, Hugh; Gu, Hong; Bielawski, Joseph P.

    2014-01-01

    Metagenomics yields enormous numbers of microbial sequences that can be assigned a metabolic function. Using such data to infer community-level metabolic divergence is hindered by the lack of a suitable statistical framework. Here, we describe a novel hierarchical Bayesian model, called BiomeNet (Bayesian inference of metabolic networks), for inferring differential prevalence of metabolic subnetworks among microbial communities. To infer the structure of community-level metabolic interactions, BiomeNet applies a mixed-membership modelling framework to enzyme abundance information. The basic idea is that the mixture components of the model (metabolic reactions, subnetworks, and networks) are shared across all groups (microbiome samples), but the mixture proportions vary from group to group. Through this framework, the model can capture nested structures within the data. BiomeNet is unique in modeling each metagenome sample as a mixture of complex metabolic systems (metabosystems). The metabosystems are composed of mixtures of tightly connected metabolic subnetworks. BiomeNet differs from other unsupervised methods by allowing researchers to discriminate groups of samples through the metabolic patterns it discovers in the data, and by providing a framework for interpreting them. We describe a collapsed Gibbs sampler for inference of the mixture weights under BiomeNet, and we use simulation to validate the inference algorithm. Application of BiomeNet to human gut metagenomes revealed a metabosystem with greater prevalence among inflammatory bowel disease (IBD) patients. Based on the discriminatory subnetworks for this metabosystem, we inferred that the community is likely to be closely associated with the human gut epithelium, resistant to dietary interventions, and interfere with human uptake of an antioxidant connected to IBD. Because this metabosystem has a greater capacity to exploit host-associated glycans, we speculate that IBD-associated communities might arise

  8. BOREAS RSS-8 BIOME-BGC Model Simulations at Tower Flux Sites in 1994

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Kimball, John

    2000-01-01

    BIOME-BGC is a general ecosystem process model designed to simulate biogeochemical and hydrologic processes across multiple scales (Running and Hunt, 1993). In this investigation, BIOME-BGC was used to estimate daily water and carbon budgets for the BOREAS tower flux sites for 1994. Carbon variables estimated by the model include gross primary production (i.e., net photosynthesis), maintenance and heterotrophic respiration, net primary production, and net ecosystem carbon exchange. Hydrologic variables estimated by the model include snowcover, evaporation, transpiration, evapotranspiration, soil moisture, and outflow. The information provided by the investigation includes input initialization and model output files for various sites in tabular ASCII format.

  9. Where do the treeless tundra areas of northern highlands fit in the global biome system: toward an ecologically natural subdivision of the tundra biome.

    PubMed

    Virtanen, Risto; Oksanen, Lauri; Oksanen, Tarja; Cohen, Juval; Forbes, Bruce C; Johansen, Bernt; Käyhkö, Jukka; Olofsson, Johan; Pulliainen, Jouni; Tømmervik, Hans

    2016-01-01

    According to some treatises, arctic and alpine sub-biomes are ecologically similar, whereas others find them highly dissimilar. Most peculiarly, large areas of northern tundra highlands fall outside of the two recent subdivisions of the tundra biome. We seek an ecologically natural resolution to this long-standing and far-reaching problem. We studied broad-scale patterns in climate and vegetation along the gradient from Siberian tundra via northernmost Fennoscandia to the alpine habitats of European middle-latitude mountains, as well as explored those patterns within Fennoscandian tundra based on climate-vegetation patterns obtained from a fine-scale vegetation map. Our analyses reveal that ecologically meaningful January-February snow and thermal conditions differ between different types of tundra. High precipitation and mild winter temperatures prevail on middle-latitude mountains, low precipitation and usually cold winters prevail on high-latitude tundra, and Scandinavian mountains show intermediate conditions. Similarly, heath-like plant communities differ clearly between middle latitude mountains (alpine) and high-latitude tundra vegetation, including its altitudinal extension on Scandinavian mountains. Conversely, high abundance of snowbeds and large differences in the composition of dwarf shrub heaths distinguish the Scandinavian mountain tundra from its counterparts in Russia and the north Fennoscandian inland. The European tundra areas fall into three ecologically rather homogeneous categories: the arctic tundra, the oroarctic tundra of northern heights and mountains, and the genuinely alpine tundra of middle-latitude mountains. Attempts to divide the tundra into two sub-biomes have resulted in major discrepancies and confusions, as the oroarctic areas are included in the arctic tundra in some biogeographic maps and in the alpine tundra in others. Our analyses based on climate and vegetation criteria thus seem to resolve the long-standing biome

  10. 50-kyr vegetation history in the western Verkhoyansk Mountains region (NE Asia) reconstructed from fossil pollen data

    NASA Astrophysics Data System (ADS)

    Müller, Stefanie; Tarasov, Pavel E.; Andreev, Andrei A.; Tütken, Thomas; Gartz, Steffi; Diekmann, Bernhard

    2010-05-01

    A detailed radiocarbon-dated pollen record from Lake Billyakh (65°17'N, 126°47'E; 340 m a.s.l.) situated in the western part of the Verkhoyansk Mountains, about 140 km south of the Arctic Circle is presented. A set of 53 surface pollen samples representing tundra, cold-deciduous forest and taiga was collected in northern and central Yakutia communities to verify the accuracy of the quantitative biome reconstruction method and to obtain a more precise attribution of the identified pollen taxa to the main regional biomes. The adjusted method is then applied to the pollen record from Lake Billyakh to gain an objective reconstruction of vegetation and environments since about 50.7 kyr BP. The results of the pollen analysis and pollen-based biome reconstruction suggest that herbaceous tundra and steppe communities dominated the area from 50.7 to 13.5 kyr BP. The lowest pollen percentages of woody taxa and the highest values of Artemisia pollen attest that the 31-15 kyr BP period as the driest and coldest interval of the entire record. A relative high content of taxa representing shrub tundra communities and the presence of larch pollen recorded prior to 31 kyr and after 13.5 kyr BP likely indicate interstadial climate amelioration associated with the middle and latest parts of the last glacial. An increase in pollen percentages of herbaceous taxa around 12 kyr BP suggests broader distribution of drier communities in response to the colder and drier than present climate of the Younger Dryas. The onset of the Holocene is marked by the highest values of shrub taxa, mainly Betula sect. Nanae/Fruticosae. Pollen percentages of arboreal taxa increase gradually and reach maximum values after 7 kyr BP. The latter maximum mainly reflects the spread of Pinus sylvestris in central Yakutia as a response to the mid-Holocene climatic optimum. The quasi-continuous presence of larch, shrubby birch and alder pollen throughout the whole record is the most striking feature of the pollen

  11. Environmental Literacy through Relationships: Connecting Biomes and Society in a Sustainable City

    ERIC Educational Resources Information Center

    Haverkos, Kimberly; Bautista, Nazan

    2011-01-01

    In this article, the authors share a project developed and implemented in an eighth-grade science classroom in which students apply what they have learned about biomes to create sustainable cities. This project promotes environmental literacy through helping students understand the interrelated elements of sustainable environmental systems and how…

  12. Assessing the Urban Heat Island Effect Across Biomes in the Continental USA Using Landsat and MODIS

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Bounoua, L.; Zhang, Ping; Wolfe, Robert

    2011-01-01

    Impervious surface area (ISA) from the Landsat TM and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) skin temperature amplitude and its relationship to development intensity, size, and ecological setting for 38 of the most populous cities in the continental United States. Development intensity zones based on %ISA are defined across urban gradients and used to stratify sampling of LST and NDVI. We find that ecological context significantly influences the amplitude of summer daytime UHI (urban - rural temperature difference) with the largest 8 C (average) for cities built in mixed forest biomes. For all cities ISA is the primary driver for increase in temperature explaining 70% of the total variance. Annually, urban areas are warmer than the non-urban fringe by 2.9 C, except in biomes with arid and semiarid climates. The average amplitude of the UHI is asymmetric with a 4.3 C difference in summer and 1.3 C in winter. In desert environments, UHI's point to a possible heat sink effect. Results show that the urban heat island amplitude increases with city size and is seasonally asymmetric for a large number of cities across most biomes. The implications are that for urban areas developed within forested ecosystems the summertime UHI can be quite high relative to the wintertime UHI suggesting that the residential energy consumption required for summer cooling is likely to increase with urban growth within those biomes.

  13. Hantavirus pulmonary syndrome and rodent reservoirs in the savanna-like biome of Brazil's southeastern region.

    PubMed

    Limongi, J E; Oliveira, R C; Guterres, A; Costa Neto, S F; Fernandes, J; Vicente, L H B; Coelho, M G; Ramos, V N; Ferreira, M S; Bonvicino, C R; D'Andrea, P S; Lemos, E R S

    2016-04-01

    This paper describes the diversity of rodent fauna in an area endemic for hantavirus cardiopulmonary syndrome (HCPS) in Brazil, the population dynamics and the relationship of rodents with hantavirus in the Cerrado (savanna-like) biome. Additionally, an analysis is made of the partial S segment sequences of the hantaviruses obtained from serologically confirmed human HCPS cases and from rodent specimens. Rodents were collected during four campaigns. Human serum samples were collected from suspected cases of HCPS at hospitals in the state of Minas Gerais. The samples antibody-reactive by ELISA were processed by RT-PCR. The PCR product was amplified and sequenced. Hantavirus was detected only in Necromys lasiurus, the wild rodent species most prevalent in the Cerrado biome (min-max: 50-83·7%). All the six human serum samples were hantavirus seropositive and five showed amplified PCR products. The analysis of the nucleotide sequences showed the circulation of a single genotype, the Araraquara hantavirus. The environmental changes that have occurred in the Cerrado biome in recent decades have favoured N. lasiurus in interspecific competition of habitats, thus increasing the risk of contact between humans and rodent species infected with hantavirus. Our data corroborate the definition of N. lasiurus as the main hantavirus reservoir in the Cerrado biome.

  14. Long term biosustainability in a high energy, low diversity crustal biome

    SciTech Connect

    Lin, L-H.; Wang, P-L.; Rumble, D.; Lippmann-Pipke, J.; SherwoodLollar, B.; Boice, E.; Pratt, L.; Brodie, E.; Hazen, T.C.; Andersen,G.L.; DeSantis, T.; Moser, D.P.; Kershaw, D.; Onstott, T.

    2006-10-01

    Geochemical, microbiological, and molecular analyses of alkaline saline groundwater at 2.8 kilometers depth in Archaean metabasalt revealed a microbial biome dominated by a single phylotype affiliated with thermophilic sulfate reducers belonging to Firmicutes. These sulfate reducers were sustained by geologically produced sulfate and hydrogen at concentrations sufficient to maintain activities for millions of years with no apparent reliance on photosynthetically derived substrates.

  15. Response of Cross-biome Productivity to the Early 21st Century Drought

    NASA Astrophysics Data System (ADS)

    Ponce-Campos, G. E.; Moran, S. M.; Huete, A. R.; Zhang, Y.; Bresloff, C. J.; Huxman, T. E.; Bosch, D. D.; Buda, A. R.; Gunter, S. A.; Kitchen, S. G.; McNab, W.; McClaran, M. P.; Morgan, J. A.; Peters, D. P.; Sadler, E.; Seyfried, M. S.; Starks, P. J.; Montoya, D. S.; Heartsill, T.; Eamus, D.

    2012-12-01

    The response of ecosystem productivity to contemporary drought coupled with record warming presents important challenges to predictive ecological modeling. In this study, we investigated the response of annual above-ground net primary production (ANPP) to precipitation variability during the early 21st century drought (2000-2009). The analysis combined satellite estimates of vegetation greenness with meteorological data from in situ climate network stations at experimental sites across a range of biomes from grassland to forest in Northern and Southern Hemispheres. We found that despite enduring prolonged warm drought conditions, all biomes retained their ANPP sensitivities to mean annual precipitation. Rain use efficiencies (RUE = ANPP/precipitation) were highest for the grassland and decreased with higher precipitation over the humid forest sites. For the most extreme drought conditions in the driest years, cross-biome RUE converged to a common, maximum rain use efficiency (RUEmax) that exceeded values previously reported. These results have implications for predicting productivity responses to potential climate change across a range of terrestrial biomes. The satellite-based approach demonstrated here may provide a means of monitoring productivity at experimental sites to better understand the consequences of predicted climate change on food security and resource management.

  16. Extreme precipitation patterns and reductions of terrestrial ecosystem production across biomes

    NASA Astrophysics Data System (ADS)

    Zhang, Yongguang; Susan Moran, M.; Nearing, Mark A.; Ponce Campos, Guillermo E.; Huete, Alfredo R.; Buda, Anthony R.; Bosch, David D.; Gunter, Stacey A.; Kitchen, Stanley G.; Henry McNab, W.; Morgan, Jack A.; McClaran, Mitchel P.; Montoya, Diane S.; Peters, Debra P. C.; Starks, Patrick J.

    2013-03-01

    Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more heavy rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated the effects of these climatic conditions on aboveground net primary production (ANPP) by combining a greenness index from satellite measurements and climatic records during 2000-2009 from 11 long-term experimental sites in multiple biomes and climates. Results showed that extreme precipitation patterns decreased the sensitivity of ANPP to total annual precipitation (PT) at the regional and decadal scales, leading to decreased rain use efficiency (RUE; by 20% on average) across biomes. Relative decreases in ANPP were greatest for arid grassland (16%) and Mediterranean forest (20%) and less for mesic grassland and temperate forest (3%). The cooccurrence of heavy rainfall events and longer dry intervals caused greater water stress conditions that resulted in reduced vegetation production. A new generalized model was developed using a function of both PT and an index of precipitation extremes and improved predictions of the sensitivity of ANPP to changes in precipitation patterns. Our results suggest that extreme precipitation patterns have substantially negative effects on vegetation production across biomes and are as important as PT. With predictions of more extreme weather events, forecasts of ecosystem production should consider these nonlinear responses to altered extreme precipitation patterns associated with climate change.

  17. Vegetation productivity responds to sub-annual climate conditions across semiarid biomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Southwestern United States (SW), the current prolonged warm drought is similar to the predicted future climate change scenarios for the region. This study aimed to determine patterns in vegetation response to the early 21st century drought across multiple biomes. We hypothesized that differen...

  18. BIOME: A scientific data archive search-and-order system using browser-aware, dynamic pages.

    SciTech Connect

    Jennings, S.V.; Yow, T.G.; Ng, V.W.

    1997-08-01

    The Oak Ridge National Laboratory`s (ORNL) Distributed Active Archive Center (DAAC) is a data archive and distribution center for the National Air and Space Administration`s (NASA) Earth Observing System Data and Information System (EOSDIS). Both the Earth Observing System (EOS) and EOSDIS are components of NASA`s contribution to the US Global Change Research Program through its Mission to Planet Earth Program. The ORNL DAAC provides access to data used in ecological and environmental research such as global change, global warming, and terrestrial ecology. Because of its large and diverse data holdings, the challenge for the ORNL DAAC is to help users find data of interest from the hundreds of thousands of files available at the DAAC without overwhelming them. Therefore, the ORNL DAAC has developed the Biogeochemical Information Ordering Management Environment (BIOME), a customized search and order system for the World Wide Web (WWW). BIOME is a public system located at http://www-eosdis.ornl.gov/BIOME/biome.html.

  19. Biome-specific scaling of ocean productivity, temperature, and carbon export efficiency

    NASA Astrophysics Data System (ADS)

    Britten, Gregory L.; Primeau, François W.

    2016-05-01

    Mass conservation and metabolic theory place constraints on how marine export production (EP) scales with net primary productivity (NPP) and sea surface temperature (SST); however, little is empirically known about how these relationships vary across ecologically distinct ocean biomes. Here we compiled in situ observations of EP, NPP, and SST and used statistical model selection theory to demonstrate significant biome-specific scaling relationships among these variables. Multiple statistically similar models yield a threefold variation in the globally integrated carbon flux (~4-12 Pg C yr-1) when applied to climatological satellite-derived NPP and SST. Simulated NPP and SST input variables from a 4×CO2 climate model experiment further show that biome-specific scaling alters the predicted response of EP to simulated increases of atmospheric CO2. These results highlight the need to better understand distinct pathways of carbon export across unique ecological biomes and may help guide proposed efforts for in situ observations of the ocean carbon cycle.

  20. The Biome Project: Developing a Legitimate Parallel Curriculum for Physical Education and Life Sciences

    ERIC Educational Resources Information Center

    Hastie, Peter Andrew

    2013-01-01

    The purpose of this article is to describe the outcomes of a parallel curriculum project between life sciences and physical education. Throughout a 6-week period, students in grades two through five became members of teams that represented different animal species and biomes, and concurrently participated in a season of gymnastics skills and…

  1. Isolation and phylogenetic relationships of bat trypanosomes from different biomes in Mato Grosso, Brazil.

    PubMed

    Marcili, Arlei; da Costa, Andrea P; Soares, Herbert S; Acosta, Igor da C L; de Lima, Julia T R; Minervino, Antonio H H; Melo, Andréia T L; Aguiar, Daniel M; Pacheco, Richard C; Gennari, Solange M

    2013-12-01

    In the order Chiroptera, more than 30 trypanosome species belonging to the subgenera Herpetosoma, Schizotrypanum, Megatrypanum, and Trypanozoon have been described. The species Trypanosoma cruzi , Trypanosoma cruzi marinkellei, and Trypanosoma dionisii are the most common in bats and belong to the Schizotrypanum subgenus. Bats from 2 different biomes, Pantanal and Amazonia/Cerrado in the state of Mato Grosso, Brazil, were evaluated according to the presence of trypanosome parasites by means of hemoculture and PCR in primary samples (blood samples). A total of 211 bats from 20 different species were caught and the trypanosome prevalence, evaluated through hemoculture, was 9.0% (19), 15.5% (13), and 4.8% (6) in the municipalities of Confresa (Amazonia/Cerrado biome) and Poconé (Pantanal biome). Among the 123 primary samples obtained from the bats, only 3 (2.4%) were positive. Phylogenetic analysis using trypanosomatid barcoding (V7V8 region of SSU rDNA) identified all the isolates and primary samples as T. c. marinkellei. The sequences of the isolates were segregated according to the bat host genus or species and suggest that co-evolutionary patterns exist between hosts and parasites. Further studies in different Brazilian regions and biomes need to be conducted in order to gain real understanding of the diversity of trypanosomes in bats.

  2. Hantavirus pulmonary syndrome and rodent reservoirs in the savanna-like biome of Brazil's southeastern region.

    PubMed

    Limongi, J E; Oliveira, R C; Guterres, A; Costa Neto, S F; Fernandes, J; Vicente, L H B; Coelho, M G; Ramos, V N; Ferreira, M S; Bonvicino, C R; D'Andrea, P S; Lemos, E R S

    2016-04-01

    This paper describes the diversity of rodent fauna in an area endemic for hantavirus cardiopulmonary syndrome (HCPS) in Brazil, the population dynamics and the relationship of rodents with hantavirus in the Cerrado (savanna-like) biome. Additionally, an analysis is made of the partial S segment sequences of the hantaviruses obtained from serologically confirmed human HCPS cases and from rodent specimens. Rodents were collected during four campaigns. Human serum samples were collected from suspected cases of HCPS at hospitals in the state of Minas Gerais. The samples antibody-reactive by ELISA were processed by RT-PCR. The PCR product was amplified and sequenced. Hantavirus was detected only in Necromys lasiurus, the wild rodent species most prevalent in the Cerrado biome (min-max: 50-83·7%). All the six human serum samples were hantavirus seropositive and five showed amplified PCR products. The analysis of the nucleotide sequences showed the circulation of a single genotype, the Araraquara hantavirus. The environmental changes that have occurred in the Cerrado biome in recent decades have favoured N. lasiurus in interspecific competition of habitats, thus increasing the risk of contact between humans and rodent species infected with hantavirus. Our data corroborate the definition of N. lasiurus as the main hantavirus reservoir in the Cerrado biome. PMID:26541807

  3. Project Reconstruct.

    ERIC Educational Resources Information Center

    Helisek, Harriet; Pratt, Donald

    1994-01-01

    Presents a project in which students monitor their use of trash, input and analyze information via a database and computerized graphs, and "reconstruct" extinct or endangered animals from recyclable materials. The activity was done with second-grade students over a period of three to four weeks. (PR)

  4. Vaginal reconstruction

    SciTech Connect

    Lesavoy, M.A.

    1985-05-01

    Vaginal reconstruction can be an uncomplicated and straightforward procedure when attention to detail is maintained. The Abbe-McIndoe procedure of lining the neovaginal canal with split-thickness skin grafts has become standard. The use of the inflatable Heyer-Schulte vaginal stent provides comfort to the patient and ease to the surgeon in maintaining approximation of the skin graft. For large vaginal and perineal defects, myocutaneous flaps such as the gracilis island have been extremely useful for correction of radiation-damaged tissue of the perineum or for the reconstruction of large ablative defects. Minimal morbidity and scarring ensue because the donor site can be closed primarily. With all vaginal reconstruction, a compliant patient is a necessity. The patient must wear a vaginal obturator for a minimum of 3 to 6 months postoperatively and is encouraged to use intercourse as an excellent obturator. In general, vaginal reconstruction can be an extremely gratifying procedure for both the functional and emotional well-being of patients.

  5. Comparing projections of future changes in runoff from hydrological and biome models in ISI-MIP

    NASA Astrophysics Data System (ADS)

    Davie, J. C. S.; Falloon, P. D.; Kahana, R.; Dankers, R.; Betts, R.; Portmann, F. T.; Wisser, D.; Clark, D. B.; Ito, A.; Masaki, Y.; Nishina, K.; Fekete, B.; Tessler, Z.; Wada, Y.; Liu, X.; Tang, Q.; Hagemann, S.; Stacke, T.; Pavlick, R.; Schaphoff, S.; Gosling, S. N.; Franssen, W.; Arnell, N.

    2013-10-01

    Future changes in runoff can have important implications for water resources and flooding. In this study, runoff projections from ISI-MIP (Inter-sectoral Impact Model Intercomparison Project) simulations forced with HadGEM2-ES bias-corrected climate data under the Representative Concentration Pathway 8.5 have been analysed for differences between impact models. Projections of change from a baseline period (1981-2010) to the future (2070-2099) from 12 impacts models which contributed to the hydrological and biomes sectors of ISI-MIP were studied. The biome models differed from the hydrological models by the inclusion of CO2 impacts and most also included a dynamic vegetation distribution. The biome and hydrological models agreed on the sign of runoff change for most regions of the world. However, in West Africa, the hydrological models projected drying, and the biome models a moistening. The biome models tended to produce larger increases and smaller decreases in regionally averaged runoff than the hydrological models, although there is large inter-model spread. The timing of runoff change was similar, but there were differences in magnitude, particularly at peak runoff. The impact of vegetation distribution change was much smaller than the projected change over time, while elevated CO2 had an effect as large as the magnitude of change over time projected by some models in some regions. The effect of CO2 on runoff was not consistent across the models, with two models showing increases and two decreases. There was also more spread in projections from the runs with elevated CO2 than with constant CO2. The biome models which gave increased runoff from elevated CO2 were also those which differed most from the hydrological models. Spatially, regions with most difference between model types tended to be projected to have most effect from elevated CO2, and seasonal differences were also similar, so elevated CO2 can partly explain the differences between hydrological and

  6. Forgotten forests - issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study

    PubMed Central

    2011-01-01

    Background South America is one of the most species diverse continents in the world. Within South America diversity is not distributed evenly at both local and continental scales and this has led to the recognition of various areas with unique species assemblages. Several schemes currently exist which divide the continental-level diversity into large species assemblages referred to as biomes. Here we review five currently available biome maps for South America, including the WWF Ecoregions, the Americas basemap, the Land Cover Map of South America, Morrone's Biogeographic regions of Latin America, and the Ecological Systems Map. The comparison is performed through a case study on the Seasonally Dry Tropical Forest (SDTF) biome using herbarium data of habitat specialist species. Results Current biome maps of South America perform poorly in depicting SDTF distribution. The poor performance of the maps can be attributed to two main factors: (1) poor spatial resolution, and (2) poor biome delimitation. Poor spatial resolution strongly limits the use of some of the maps in GIS applications, especially for areas with heterogeneous landscape such as the Andes. Whilst the Land Cover Map did not suffer from poor spatial resolution, it showed poor delimitation of biomes. The results highlight that delimiting structurally heterogeneous vegetation is difficult based on remote sensed data alone. A new refined working map of South American SDTF biome is proposed, derived using the Biome Distribution Modelling (BDM) approach where georeferenced herbarium data is used in conjunction with bioclimatic data. Conclusions Georeferenced specimen data play potentially an important role in biome mapping. Our study shows that herbarium data could be used as a way of ground-truthing biome maps in silico. The results also illustrate that herbarium data can be used to model vegetation maps through predictive modelling. The BDM approach is a promising new method in biome mapping, and could be

  7. An objective methodology for potential vegetation reconstruction constrained by climate

    NASA Astrophysics Data System (ADS)

    Levavasseur, G.; Vrac, M.; Roche, D. M.; Paillard, D.; Guiot, J.

    2013-05-01

    Reconstructions of modern Potential Natural Vegetation (PNV) are widely used in climate modelling and vegetation survey as a starting point for studies (historical changes of land-use, past or future vegetation distribution modelling, etc.). A PNV distribution is often related to vegetation models, which are based on empirical relationships between vegetation (or pollen data in paleoecological studies) and climate. Vegetation models are used to directly simulate a PNV distribution or to correct vegetation types derived from remotely-sensed observations in human-impacted regions. Consequently, these methods are quite subjective and include biases from models. This article proposes a new approach to build a high-resolution PNV map using a statistical model. As vegetation is a nominal variable, our method consists in applying a multinomial logistic regression (MLR). MLR build statistical relationships between BIOME 6000 data covering Europe and several climatological variables from the Climate Research Unit (CRU). The PNV reconstructed by MLR appears similar to those reconstructed from remotely-sensed data or simulated by a vegetation model (BIOME 4) except in southern Europe with the establishment of warm-temperate forests. MLR produces a realistic PNV distribution, which is the closest to BIOME 6000 data and provides the vegetation distribution in each grid-cell of our map. Moreover, MLR allows us to compute an uncertainty index that appears as a convenient tool to highlight the regions lacking some data toimprove the PNV distribution. The MLR method does not suffer any dynamic biases or subjective corrections and is a fast and objective alternative to the other methods. MLR provides an independent reference for vegetation models that is entirely based on vegetation and climatological data.

  8. Defining global syndromes of fire and the relationship of these to biomes, climate and human activity

    NASA Astrophysics Data System (ADS)

    Lehmann, C.; Archibald, S.; Gomez-Dans, J.; Bradstock, R.

    2012-12-01

    Fire is a ubiquitous component of the Earth system that remains poorly understood. To date, global scale understanding of fire is limited largely to the annual extent of burning as detected by satellites. This is problematic because fire is multi-dimensional, and focus on individual metrics belies both the complexity and importance of fire within the Earth system. In an applied sense, the lack of a unified understanding of fire impedes estimation of GHG emissions or prediction of future fire regimes as a consequence of changing patterns of climate and land use. To address this we identified five key characteristics of fire regimes: size, frequency, intensity, season and extent. We combined new global datasets with existing datasets to examine cross-correlations among characteristics. We demonstrate that only certain combinations of fire characteristics are possible and this likely reflects fundamental energetic constraints derived from interactions between under-lying fuel types, climate and rates of re-growth post-fire. For example, very intense fires can only occur infrequently because a system requires a lengthy period to develop sufficient fuel to burn. Further, very cool fires only occur infrequently because fuels are not available to burn. Following, we applied a clustering algorithm to these data to determine whether we could identify syndromes of fire regimes. Pyromes, as global syndromes of fire are conceptually analogous to biomes (global syndromes of vegetation) where the extent of each pyrome is determined solely as a product of the fire characteristics themselves. A point of difference to biomes being that no one has previously attempted to quantify the global range of fire syndromes. We identified five pyromes, four of which we believe represent distinctions between crown, litter and grass-fuelled fires. The relationship of pyromes to biomes and climate are not deterministic as different biomes and climates may be represented within a single pyrome

  9. Remote Sensing of the Urban Heat Island Effect Across Biomes in the Continental USA

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Zhang, Ping; Wolfe, Robert E.; Bounoua, Lahouari

    2010-01-01

    Impervious surface area (ISA) from the Landsat TM-based NLCD 2001 dataset and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) skin temperature amplitude and its relationship to development intensity, size, and ecological setting for 38 of the most populous cities in the continental United States. Development intensity zones based on %ISA are defined for each urban area emanating outward from the urban core to the nonurban rural areas nearby and used to stratify sampling for land surface temperatures and NDVI. Sampling is further constrained by biome and elevation to insure objective intercomparisons between zones and between cities in different biomes permitting the definition of hierarchically ordered zones that are consistent across urban areas in different ecological setting and across scales. We find that ecological context significantly influences the amplitude of summer daytime UHI (urban-rural temperature difference) the largest (8 C average) observed for cities built in biomes dominated by temperate broadleaf and mixed forest. For all cities combined, ISA is the primary driver for increase in temperature explaining 70% of the total variance in LST. On a yearly average, urban areas are substantially warmer than the non-urban fringe by 2.9 C, except for urban areas in biomes with arid and semiarid climates. The average amplitude of the UHI is remarkably asymmetric with a 4.3 C temperature difference in summer and only 1.3 C in winter. In desert environments, the LST's response to ISA presents an uncharacteristic "U-shaped" horizontal gradient decreasing from the urban core to the outskirts of the city and then increasing again in the suburban to the rural zones. UHI's calculated for these cities point to a possible heat sink effect. These observational results show that the urban heat island amplitude both increases with city size and is seasonally

  10. Candidatus Rickettsia andeanae, a spotted fever group agent infecting Amblyomma parvum ticks in two Brazilian biomes

    PubMed Central

    Nieri-Bastos, Fernanda Aparecida; Lopes, Marcos Gomes; Cançado, Paulo Henrique Duarte; Rossa, Giselle Ayres Razera; Faccini, João Luiz Horácio; Gennari, Solange Maria; Labruna, Marcelo Bahia

    2014-01-01

    Adult ticks of the species Amblyomma parvum were collected from the vegetation in the Pantanal biome (state of Mato Grosso do Sul) and from horses in the Cerrado biome (state of Piauí) in Brazil. The ticks were individually tested for rickettsial infection via polymerase chain reaction (PCR) targeting three rickettsial genes, gltA, ompA and ompB. Overall, 63.5% (40/63) and 66.7% (2/3) of A. parvum ticks from Pantanal and Cerrado, respectively, contained rickettsial DNA, which were all confirmed by DNA sequencing to be 100% identical to the corresponding fragments of the gltA, ompA and ompB genes of Candidatus Rickettsia andeanae. This report is the first to describe Ca. R. andeanae in Brazil. PMID:24714968

  11. Candidatus Rickettsia andeanae, a spotted fever group agent infecting Amblyomma parvum ticks in two Brazilian biomes.

    PubMed

    Nieri-Bastos, Fernanda Aparecida; Lopes, Marcos Gomes; Cançado, Paulo Henrique Duarte; Rossa, Giselle Ayres Razera; Faccini, João Luiz Horácio; Gennari, Solange Maria; Labruna, Marcelo Bahia

    2014-04-01

    Adult ticks of the species Amblyomma parvum were collected from the vegetation in the Pantanal biome (state of Mato Grosso do Sul) and from horses in the Cerrado biome (state of Piauí) in Brazil. The ticks were individually tested for rickettsial infection via polymerase chain reaction (PCR) targeting three rickettsial genes, gltA, ompA and ompB. Overall, 63.5% (40/63) and 66.7% (2/3) of A. parvum ticks from Pantanal and Cerrado, respectively, contained rickettsial DNA, which were all confirmed by DNA sequencing to be 100% identical to the corresponding fragments of the gltA, ompA and ompB genes of Candidatus Rickettsia andeanae. This report is the first to describe Ca. R. andeanae in Brazil.

  12. Ecological consequences of the expansion of N2-fixing plants in cold biomes

    USGS Publications Warehouse

    Hiltbrunner, Erika; Aerts, Rien; Bühlmann, Tobias; Huss-Danell, Kerstin; Magnusson, Borgthor; Myrold, David D.; Reed, Sasha C.; Sigurdsson, Bjarni D.; Körner, Christian

    2014-01-01

    Research in warm-climate biomes has shown that invasion by symbiotic dinitrogen (N2)-fixing plants can transform ecosystems in ways analogous to the transformations observed as a consequence of anthropogenic, atmospheric nitrogen (N) deposition: declines in biodiversity, soil acidification, and alterations to carbon and nutrient cycling, including increased N losses through nitrate leaching and emissions of the powerful greenhouse gas nitrous oxide (N2O). Here, we used literature review and case study approaches to assess the evidence for similar transformations in cold-climate ecosystems of the boreal, subarctic and upper montane-temperate life zones. Our assessment focuses on the plant genera Lupinus and Alnus, which have become invasive largely as a consequence of deliberate introductions and/or reduced land management. These cold biomes are commonly located in remote areas with low anthropogenic N inputs, and the environmental impacts of N2-fixer invasion appear to be as severe as those from anthropogenic N deposition in highly N polluted areas. Hence, inputs of N from N2 fixation can affect ecosystems as dramatically or even more strongly than N inputs from atmospheric deposition, and biomes in cold climates represent no exception with regard to the risk of being invaded by N2-fixing species. In particular, the cold biomes studied here show both a strong potential to be transformed by N2-fixing plants and a rapid subsequent saturation in the ecosystem’s capacity to retain N. Therefore, analogous to increases in N deposition, N2-fixing plant invasions must be deemed significant threats to biodiversity and to environmental quality.

  13. Shifting Environmental Ranges and Biome Potential According to the Whittaker Relationship

    NASA Astrophysics Data System (ADS)

    de Jong, R.; Garonna, I.; Schaepman, M. E.

    2015-12-01

    Robert H. Whittaker classified biome types mainly as a function of Mean Annual Temperature (MAT) and Mean Annual Precipitation (MAP), resulting in the well-known Whittaker plot1. This relationship is still being used to map biomes globally2. The same inputs (MAT and MAP), augmented with a radiation proxy, are used in the resource-balance perspective for modeling large-scale vegetation productivity as a function of abiotic factors3. These two approaches, used in a temporally dynamic manner, provided us indicators of shifts in growth-limiting factors4 and associated environmental ranges of vegetation, which, in turn, are key indicators for the study of global change and biodiversity5. We present a study in which we used the Whittaker relationship and CRU TS 3.22 climatic data to map regions that showed variable biome potential. These regions are likely to indicate ecotones - i.e. interactions zones between biomes - that have been subject to abiotic change and where a change in the vegetation system can be anticipated. At the same time, we used remotely sensed data (GIMMS v3g 1982-2012) to study gradients in vegetation dynamics in these zones. Preliminary results show strongest environmental shifts in northern ecotones, e.g. on the tundra - boreal boundary, and associated changes in climatic growth-limiting factors4. [1] Whittaker RH (1975) Communities and Ecosystems, Macmillan, 385p.[2] Ricklefs RE (2008) The Economy of Nature, W. H. Freeman, 620p.[3] Field CB, Randerson JT, Malmström CM (1995) Global net primary production: Combining ecology and remote sensing. Remote Sensing of Environment, 51, 74-88.[4] Schenkel D, Garonna I, De Jong R, Schaepman ME (this conference) Linking Land Surface Phenology and Growth Limiting Factor Shifts over the Past 30 Years.[5] University of Zurich Research Priority Program on Global Change and Biodiversity, http://www.gcb.uzh.ch

  14. A hierarchical analysis of terrestrial ecosystem model Biome-BGC: Equilibrium analysis and model calibration

    SciTech Connect

    Thornton, Peter E; Wang, Weile; Law, Beverly E.; Nemani, Ramakrishna R

    2009-01-01

    The increasing complexity of ecosystem models represents a major difficulty in tuning model parameters and analyzing simulated results. To address this problem, this study develops a hierarchical scheme that simplifies the Biome-BGC model into three functionally cascaded tiers and analyzes them sequentially. The first-tier model focuses on leaf-level ecophysiological processes; it simulates evapotranspiration and photosynthesis with prescribed leaf area index (LAI). The restriction on LAI is then lifted in the following two model tiers, which analyze how carbon and nitrogen is cycled at the whole-plant level (the second tier) and in all litter/soil pools (the third tier) to dynamically support the prescribed canopy. In particular, this study analyzes the steady state of these two model tiers by a set of equilibrium equations that are derived from Biome-BGC algorithms and are based on the principle of mass balance. Instead of spinning-up the model for thousands of climate years, these equations are able to estimate carbon/nitrogen stocks and fluxes of the target (steady-state) ecosystem directly from the results obtained by the first-tier model. The model hierarchy is examined with model experiments at four AmeriFlux sites. The results indicate that the proposed scheme can effectively calibrate Biome-BGC to simulate observed fluxes of evapotranspiration and photosynthesis; and the carbon/nitrogen stocks estimated by the equilibrium analysis approach are highly consistent with the results of model simulations. Therefore, the scheme developed in this study may serve as a practical guide to calibrate/analyze Biome-BGC; it also provides an efficient way to solve the problem of model spin-up, especially for applications over large regions. The same methodology may help analyze other similar ecosystem models as well.

  15. Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil.

    PubMed

    Góes, Luiz Gustavo Bentim; Campos, Angélica Cristine de Almeida; Carvalho, Cristiano de; Ambar, Guilherme; Queiroz, Luzia Helena; Cruz-Neto, Ariovaldo Pereira; Munir, Muhammad; Durigon, Edison Luiz

    2016-10-01

    Bats are notorious reservoirs of genetically-diverse and high-profile pathogens, and are playing crucial roles in the emergence and re-emergence of viruses, both in human and in animals. In this report, we identified and characterized previously unknown and diverse genetic clusters of bat coronaviruses in the Atlantic Forest Biome, Brazil. These results highlight the virus richness of bats and their possible roles in the public health.

  16. Ecological consequences of the expansion of N₂-fixing plants in cold biomes.

    PubMed

    Hiltbrunner, Erika; Aerts, Rien; Bühlmann, Tobias; Huss-Danell, Kerstin; Magnusson, Borgthor; Myrold, David D; Reed, Sasha C; Sigurdsson, Bjarni D; Körner, Christian

    2014-09-01

    Research in warm-climate biomes has shown that invasion by symbiotic dinitrogen (N2)-fixing plants can transform ecosystems in ways analogous to the transformations observed as a consequence of anthropogenic, atmospheric nitrogen (N) deposition: declines in biodiversity, soil acidification, and alterations to carbon and nutrient cycling, including increased N losses through nitrate leaching and emissions of the powerful greenhouse gas nitrous oxide (N2O). Here, we used literature review and case study approaches to assess the evidence for similar transformations in cold-climate ecosystems of the boreal, subarctic and upper montane-temperate life zones. Our assessment focuses on the plant genera Lupinus and Alnus, which have become invasive largely as a consequence of deliberate introductions and/or reduced land management. These cold biomes are commonly located in remote areas with low anthropogenic N inputs, and the environmental impacts of N2-fixer invasion appear to be as severe as those from anthropogenic N deposition in highly N polluted areas. Hence, inputs of N from N2 fixation can affect ecosystems as dramatically or even more strongly than N inputs from atmospheric deposition, and biomes in cold climates represent no exception with regard to the risk of being invaded by N2-fixing species. In particular, the cold biomes studied here show both a strong potential to be transformed by N2-fixing plants and a rapid subsequent saturation in the ecosystem's capacity to retain N. Therefore, analogous to increases in N deposition, N2-fixing plant invasions must be deemed significant threats to biodiversity and to environmental quality.

  17. Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil.

    PubMed

    Góes, Luiz Gustavo Bentim; Campos, Angélica Cristine de Almeida; Carvalho, Cristiano de; Ambar, Guilherme; Queiroz, Luzia Helena; Cruz-Neto, Ariovaldo Pereira; Munir, Muhammad; Durigon, Edison Luiz

    2016-10-01

    Bats are notorious reservoirs of genetically-diverse and high-profile pathogens, and are playing crucial roles in the emergence and re-emergence of viruses, both in human and in animals. In this report, we identified and characterized previously unknown and diverse genetic clusters of bat coronaviruses in the Atlantic Forest Biome, Brazil. These results highlight the virus richness of bats and their possible roles in the public health. PMID:27473780

  18. Quantifying the resilience of carbon dynamics in semi-arid biomes in the Southwestern U.S. to drought

    NASA Astrophysics Data System (ADS)

    Litvak, M. E.; Krofcheck, D. J.; Maurer, G.

    2015-12-01

    Semi-arid biomes in many parts of the Southwestern U.S. have experienced a range of precipitation over the last decade, ranging from wetter than average years 2006-2010 (relative to the 40-year PRISM mean), extreme drought years (2010-2011) and slightly dry-average precipitation years (2013-2015). While annual carbon uptake in semi-arid biomes of the Southwestern US is relatively low, compared to more temperate ecosystems, collectively these biomes store a significant amount of carbon on a regional scale. It is therefore of great interest to understand what impact this range in precipitation variability has on inter- and intra- annual variability in regional carbon dynamics. We use an 9 year record from 2007-2015 of continuous measurements of net ecosystem exchange of carbon (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (Re), made across a network of flux towers along an elevation/aridity gradient in New Mexico, the New Mexico Elevation Gradient (NMEG), to quantify biome-specific responses of carbon dynamics to climate variability over this time period. Biomes include a desert grassland, creosote shrubland, juniper savanna, piñon-juniper woodland, and ponderosa pine and subalpine mixed conifer forests. We compared daily, seasonal and annual NEP, GPP and Re means between pre-drought (2007-2010), drought (2011-2012), and post-drought years (2013-2015). All biomes sequestered less carbon in the drought years, compared to the pre-drought years (~30-40, 270 and 60 g C/m2 less in low and middle elevation biomes, ponderosa pine, and mixed conifer forest, respectively), as GPP in all biomes was more sensitive to the drought than Re. In the post-drought years, GPP was still only 80-90% what it was in the pre-drought years. Re, however, in all biomes except for the creosote shrubland, was 5-15% higher in the post-drought years compared to pre-drought. As a result, carbon sequestration in these biomes was 20-75% lower in the post

  19. Modelling the impacts of reoccurring fires in tropical savannahs using Biome-BGC.

    NASA Astrophysics Data System (ADS)

    Fletcher, Charlotte; Petritsch, Richard; Pietsch, Stephan

    2010-05-01

    Fires are a dominant feature of tropical savannahs and have occurred throughout history by natural as well as human-induced means. These fires have a profound influence on the landscape in terms of flux dynamics and vegetative species composition. This study attempts to understand the impacts of fire regimes on flux dynamics and vegetation composition in savannahs using the Biome-BGC model. The Batéké Plateau, Gabon - an area of savannah grasslands in the Congo basin, serves as a case-study. To achieve model validation for savannahs, data sets from stands with differing levels of past burning are used. It is hypothesised that the field measurements from those stands with lower-levels of past burning will correlate with the Biome-BGC model output, meaning that the model is validated for the savannah excluding fire regimes. However, in reality, fire is frequent in the savannah. Data on past fire events are available from the Moderate Resolution Imaging Spectroradiometer (MODIS) to provide the fire regimes of the model. As the field data-driven measurements of the burnt stands are influenced by fire in the savannah, this will therefore result in a Biome-BGC model validated for the impacts of fire on savannah ecology. The validated model can then be used to predict the savannah's flux dynamics under the fire scenarios expected with climate and/or human impact change.

  20. iBIOMES Lite: summarizing biomolecular simulation data in limited settings.

    PubMed

    Thibault, Julien C; Cheatham, Thomas E; Facelli, Julio C

    2014-06-23

    As the amount of data generated by biomolecular simulations dramatically increases, new tools need to be developed to help manage this data at the individual investigator or small research group level. In this paper, we introduce iBIOMES Lite, a lightweight tool for biomolecular simulation data indexing and summarization. The main goal of iBIOMES Lite is to provide a simple interface to summarize computational experiments in a setting where the user might have limited privileges and limited access to IT resources. A command-line interface allows the user to summarize, publish, and search local simulation data sets. Published data sets are accessible via static hypertext markup language (HTML) pages that summarize the simulation protocols and also display data analysis graphically. The publication process is customized via extensible markup language (XML) descriptors while the HTML summary template is customized through extensible stylesheet language (XSL). iBIOMES Lite was tested on different platforms and at several national computing centers using various data sets generated through classical and quantum molecular dynamics, quantum chemistry, and QM/MM. The associated parsers currently support AMBER, GROMACS, Gaussian, and NWChem data set publication. The code is available at https://github.com/jcvthibault/ibiomes . PMID:24830957

  1. Seasonal patterns of horse fly richness and abundance in the Pampa biome of southern Brazil.

    PubMed

    Krüger, Rodrigo Ferreira; Krolow, Tiago Kütter

    2015-12-01

    Fluctuations in seasonal patterns of horse fly populations were examined in rainforests of tropical South America, where the climate is seasonal. These patterns were evaluated with robust analytical models rather than identifying the main factors that influenced the fluctuations. We examined the seasonality of populations of horse flies in fields and lowland areas of the Pampa biome of southern Brazil with generalized linear models. We also investigated the diversity of these flies and the sampling effort of Malaise traps in this biome over two years. All of the 29 species had clear seasonality with regard to occurrence and abundance, but only seven species were identified as being influenced by temperature and humidity. The sampling was sufficient and the estimated diversity was 10% more than observed. Seasonal trends were synchronized across species and the populations were most abundant between September and March and nearly zero in other months. While previous studies demonstrated that seasonal patterns in population fluctuations are correlated with climatic conditions in horse fly assemblages in South America rainforests, we show a clear effect of each factor on richness and abundance and the seasonality in the prevalence of horse fly assemblages in localities of the Pampa biome.

  2. Water and CO2 Exchange for Different Land Use in Pampa Biome in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Roberti, D. R.; de Moraes, O. L. L.; Diaz, M.; Tatsch, J. D.; Acevedo, O. C.; Zimermann, H. R.; Rubert, G. C.; Acosta, R.; Campos Velho, H. F.

    2015-12-01

    The Pampa is the newest and most unknown Brazilian Biome. It is located in the Southern portion of the country, as well as part of Argentina and the entire Uruguay, and is formed principally by natural grasslands that have been used for centuries for grazing livestock. In recent decades it has gone through a process of intense land use change and degradation, with the replacement of natural vegetation by rice paddy crops, soybean and exotic forests. Recent studies show that the Pampa has only 36% of its original vegetation in Brazil. Research on carbon and greenhouse gas emissions in Pampa Biome are recent. It is known that the Pampa natural areas contain high stocks of soil organic carbon, and therefore their conservation is relevant for climate change mitigation. However, the net exchange of carbon and water between the surface and the atmosphere are unknown. To fill this gap, a flux tower network, SULFLUX - www.ufsm.br/sulfux, was created. Currently, SULFLUX comprises three flux towers in the Pampa biome, two of them being over natural vegetation and the other one over a rice paddy. The flux towers are nearly 100 km apart from each other. We examine the effects of climate on carbon fluxes of through the year 2014. Analysis of temporal variability in water and CO2 fluxes are examined at daily to annual scales. Overall, regional variability in climatic drivers, land use and soil proprieties appears to have a greater effect on evapotranspiration than on net carbon exchange.

  3. Convergence in the temperature response of leaf respiration across biomes and plant functional types.

    PubMed

    Heskel, Mary A; O'Sullivan, Odhran S; Reich, Peter B; Tjoelker, Mark G; Weerasinghe, Lasantha K; Penillard, Aurore; Egerton, John J G; Creek, Danielle; Bloomfield, Keith J; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R; Martinez-de la Torre, Alberto; Griffin, Kevin L; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H; Atkin, Owen K

    2016-04-01

    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates. PMID:27001849

  4. Satellite-based Biome Productivity Responses to Large Scale Drought and Wet Cycles in Australia

    NASA Astrophysics Data System (ADS)

    Huete, A. R.; Ma, X.; Ponce-Campos, G. E.; Moran, S. M.; Davies, K.; Restrepo-Coupe, N.; Broich, M.; Eamus, D.

    2012-12-01

    Australia's climate is extremely variable with inter annual rainfall at any location varying up to eight-fold. Understanding water and productivity relationships represent key issues in climate change models that aim to predict how carbon and water relationships will shift with projected changes in the frequency, timing, amount and intensity of rainfall. After a decadal long drought cycle, Australia has experienced one of the wettest periods of recorded rainfall. In this study we assessed cross-biome responses to extreme drought and wet periods across continental Australia through investigations of rainfall use efficiencies (RUE), defined as above-ground net primary production (ANPP) divided by annual rainfall. 12 years of annually integrated MODIS satellite enhanced vegetation index (iEVI) were used as proxies of ANPP and combined with rainfall data to assess large area spatial and temporal patterns in rainfall use efficiency (RUE). Positive curvilinear relationships were found between iEVI and annual rainfall with decreasing sensitivity of iEVI to additional rainfall at the more humid and energy-limited tropical savannas and forests. The driest years resulted in all biomes converging to a common and maximum RUE, or RUEmax with ANPP and precipitation relationships that became strongly linear. Standardized anomaly values showed significantly enhanced ANPP values during the 2010 and 2011 wet years, however, these values were less than encountered prior to the decade long drought, suggesting a significant loss in resilience in many Australian biomes.

  5. Convergence in the temperature response of leaf respiration across biomes and plant functional types

    PubMed Central

    Heskel, Mary A.; O’Sullivan, Odhran S.; Reich, Peter B.; Tjoelker, Mark G.; Weerasinghe, Lasantha K.; Penillard, Aurore; Egerton, John J. G.; Creek, Danielle; Bloomfield, Keith J.; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R.; Martinez-de la Torre, Alberto; Griffin, Kevin L.; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H.; Atkin, Owen K.

    2016-01-01

    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration–temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates. PMID:27001849

  6. Convergence in the temperature response of leaf respiration across biomes and plant functional types.

    PubMed

    Heskel, Mary A; O'Sullivan, Odhran S; Reich, Peter B; Tjoelker, Mark G; Weerasinghe, Lasantha K; Penillard, Aurore; Egerton, John J G; Creek, Danielle; Bloomfield, Keith J; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R; Martinez-de la Torre, Alberto; Griffin, Kevin L; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H; Atkin, Owen K

    2016-04-01

    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.

  7. Diversity and molecular characterization of novel hemoplasmas infecting wild rodents from different Brazilian biomes.

    PubMed

    Gonçalves, Luiz Ricardo; Roque, André Luiz Rodrigues; Matos, Carlos Antonio; Fernandes, Simone de Jesus; Olmos, Isabella Delamain Fernandez; Machado, Rosangela Zacarias; André, Marcos Rogério

    2015-12-01

    Although hemoplasma infection in domestic animals has been well documented, little is known about the prevalence and genetic diversity of these bacteria in wild rodents. The present work aimed to investigate the occurrence of hemotrophic mycoplasmas in wild rodents from five Brazilian biomes, assessing the 16S rRNA phylogenetic position of hemoplasma species by molecular approach. Spleen tissues were obtained from 500 rodents, comprising 52 different rodent species trapped between 2000 and 2011. DNA samples were submitted to previously described PCR protocols for amplifying Mycoplasma spp. based on 16S rRNA, followed by sequencing and phylogenetic inferences. Among 457 rodent spleen samples showing absence of inhibitors, 100 (21.9%) were PCR positive to Mycoplasma spp. The occurrence of hemotropic mycoplasmas among all sampled rodents was demonstrated in all five biomes and ranged from 9.3% (7/75) to 26.2% (38/145). The Blastn analysis showed that amplified sequences had a percentage of identity ranging from 86 to 99% with other murine hemoplasmas. The ML phylogenetic analysis of 16S rRNA gene of 24 positive randomly selected samples showed the presence of ten distinct groups, all clustering within the Mycoplasma haemofelis. The phylogenetic assessment suggests the circulation of novel hemoplasma species in rodents from different biomes in Brazil.

  8. The future distribution of the savannah biome: model-based and biogeographic contingency.

    PubMed

    Moncrieff, Glenn R; Scheiter, Simon; Langan, Liam; Trabucco, Antonio; Higgins, Steven I

    2016-09-19

    The extent of the savannah biome is expected to be profoundly altered by climatic change and increasing atmospheric CO2 concentrations. Contrasting projections are given when using different modelling approaches to estimate future distributions. Furthermore, biogeographic variation within savannahs in plant function and structure is expected to lead to divergent responses to global change. Hence the use of a single model with a single savannah tree type will likely lead to biased projections. Here we compare and contrast projections of South American, African and Australian savannah distributions from the physiologically based Thornley transport resistance statistical distribution model (TTR-SDM)-and three versions of a dynamic vegetation model (DVM) designed and parametrized separately for specific continents. We show that attempting to extrapolate any continent-specific model globally biases projections. By 2070, all DVMs generally project a decrease in the extent of savannahs at their boundary with forests, whereas the TTR-SDM projects a decrease in savannahs at their boundary with aridlands and grasslands. This difference is driven by forest and woodland expansion in response to rising atmospheric CO2 concentrations in DVMs, unaccounted for by the TTR-SDM. We suggest that the most suitable models of the savannah biome for future development are individual-based dynamic vegetation models designed for specific biogeographic regions.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. PMID:27502376

  9. Development of the BIOME-BGC model for the simulation of managed Moso bamboo forest ecosystems.

    PubMed

    Mao, Fangjie; Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Xu, Xiaojun; Shi, Yongjun; Mo, Lufeng; Zhou, Yufeng; Tu, Guoqing

    2016-05-01

    Numerical models are the most appropriate instrument for the analysis of the carbon balance of terrestrial ecosystems and their interactions with changing environmental conditions. The process-based model BIOME-BGC is widely used in simulation of carbon balance within vegetation, litter and soil of unmanaged ecosystems. For Moso bamboo forests, however, simulations with BIOME-BGC are inaccurate in terms of the growing season and the carbon allocation, due to the oversimplified representation of phenology. Our aim was to improve the applicability of BIOME-BGC for managed Moso bamboo forest ecosystem by implementing several new modules, including phenology, carbon allocation, and management. Instead of the simple phenology and carbon allocation representations in the original version, a periodic Moso bamboo phenology and carbon allocation module was implemented, which can handle the processes of Moso bamboo shooting and high growth during "on-year" and "off-year". Four management modules (digging bamboo shoots, selective cutting, obtruncation, fertilization) were integrated in order to quantify the functioning of managed ecosystems. The improved model was calibrated and validated using eddy covariance measurement data collected at a managed Moso bamboo forest site (Anji) during 2011-2013 years. As a result of these developments and calibrations, the performance of the model was substantially improved. Regarding the measured and modeled fluxes (gross primary production, total ecosystem respiration, net ecosystem exchange), relative errors were decreased by 42.23%, 103.02% and 18.67%, respectively. PMID:26921563

  10. Conservation biogeography of mammals in the Cerrado biome under the unified theory of macroecology

    NASA Astrophysics Data System (ADS)

    de Oliveira, Guilherme; Diniz Filho, José Alexandre Felizola; Bini, Luis Mauricio; Rangel, Thiago F. L. V. B.

    2009-09-01

    Understanding what limits the distribution and abundance of species is critical for adopting optimal conservation planning strategies, although it is still difficult to obtain abundance data at broad spatial scales. Here we propose conservation priorities in the Brazilian Cerrado based on density values of 108 mammal species. These values were estimated by an abundant-centre model coupled with McGill and Collin's unified theory for macroecology. We assumed that species' densities decay with a Gaussian distribution towards the range borders from a maximum density placed at the centre of each species' range. We used allometric equations to estimate maximum densities, at the Cerrado region we corrected the estimated densities by the natural vegetation remnants. Then we used a Simulated Annealing algorithm to select alternative sets of areas that met several levels of minimum viable population sizes (MVPSs) for each species. With low MVPSs, there were a small number of highly irreplaceable areas located in the northwest region of the biome, whereas with high MVPSs, highly irreplaceable areas occurred in up to 95% of the biome. By incorporating principles from the unified theory of macroecology, we were able to generate a conservation network for the Cerrado biome aiming to prioritise species' persistence and not just their presence.

  11. Reimplementation of the Biome-BGC model to simulate successional change.

    PubMed

    Bond-Lamberty, Ben; Gower, Stith T; Ahl, Douglas E; Thornton, Peter E

    2005-04-01

    Biogeochemical process models are increasingly employed to simulate current and future forest dynamics, but most simulate only a single canopy type. This limitation means that mixed stands, canopy succession and understory dynamics cannot be modeled, severe handicaps in many forests. The goals of this study were to develop a version of Biome-BGC that supported multiple, interacting vegetation types, and to assess its performance and limitations by comparing modeled results to published data from a 150-year boreal black spruce (Picea mariana (Mill.) BSP) chronosequence in northern Manitoba, Canada. Model data structures and logic were modified to support an arbitrary number of interacting vegetation types; an explicit height calculation was necessary to prioritize radiation and precipitation interception. Two vegetation types, evergreen needle-leaf and deciduous broadleaf, were modeled based on site-specific meteorological and physiological data. The new version of Biome-BGC reliably simulated observed changes in leaf area, net primary production and carbon stocks, and should be useful for modeling the dynamics of mixed-species stands and ecological succession. We discuss the strengths and limitations of Biome-BGC for this application, and note areas in which further work is necessary for reliable simulation of boreal biogeochemical cycling at a landscape scale.

  12. The role of plant functional trade-offs for biodiversity changes and biome shifts under scenarios of global climatic change

    NASA Astrophysics Data System (ADS)

    Reu, B.; Zaehle, S.; Proulx, R.; Bohn, K.; Kleidon, A.; Pavlick, R.; Schmidtlein, S.

    2010-10-01

    The global geographic distribution of biodiversity and biomes is determined by species-specific physiological tolerances to climatic constraints. Current models implement empirical bioclimatic relationships to predict present-day vegetation patterns and to forecast biodiversity changes and biome shifts under climatic change. In this paper, we consider plant functional trade-offs and their interactions with climatic changes to forecast and explain biodiversity changes and biome shifts. The Jena Diversity model (JeDi) simulates plant survival according to essential plant functional trade-offs, including eco-physiological processes such as water uptake, photosynthesis, allocation, reproduction and phenology. We apply JeDi to quantify biodiversity changes and biome shifts between present-day and a range of possible future climates from two scenarios (A2 and B1) and seven global climate models using metrics of plant functional richness and functional identity. Our results show (i) a significant biodiversity loss in the tropics, (ii) an increase in biodiversity at mid and high latitudes, and (iii) a poleward shift of biomes. While these results are consistent with the findings of empirical approaches, we are able to explain them in terms of the plant functional trade-offs involved in the allocation, metabolic and reproduction strategies of plants. We conclude that general aspects of plant physiological tolerances can be derived from plant functional trade-offs, which may provide a useful process- and trait-based alternative to bioclimatic relationships in order to address questions about the causes of biodiversity changes and biome shifts.

  13. Introduction and synthesis: Plant phylogeny and the origin of major biomes.

    PubMed Central

    Pennington, R Toby; Cronk, Quentin C B; Richardson, James A

    2004-01-01

    Phylogenetic trees based upon DNA sequence data, when calibrated with a dimension of time, allow inference of: (i) the pattern of accumulation of lineages through time; (ii) the time of origin of monophyletic groups; (iii) when lineages arrived in different geographical areas; (iv) the time of origin of biome-specific morphologies. This gives a powerful new view of the history of biomes that in many cases is not provided by the incomplete plant fossil record. Dated plant phylogenies for angiosperm families such as Leguminoaceae (Fabaceae), Melastomataceae sensu stricto, Annonaceae and Rhamnaceae indicate that long-distance, transoceanic dispersal has played an important role in shaping their distributions, and that this can obscure any effect of tectonic history, previously assumed to have been the major cause of their biogeographic patterns. Dispersal from other continents has also been important in the assembly of the Amazonian rainforest flora and the Australian flora. Comparison of dated biogeographic patterns of plants and animals suggests that recent long-distance dispersal might be more prevalent in plants, which has major implications for community assembly and coevolution. Dated plant phylogenies also reveal the role of past environmental changes on the evolution of lineages in species-rich biomes, and show that recent Plio-Pleistocene diversification has contributed substantially to their current species richness. Because of the critical role of fossils and morphological characters in assigning ages to nodes in phylogenetic trees, future studies must include careful morphological consideration of fossils and their extant relatives in a phylogenetic context. Ideal study systems will be based upon DNA sequence data from multiple loci and multiple fossil calibrations. This allows cross-validation both of age estimates from different loci, and from different fossil calibrations. For a more complete view of biome history, future studies should emphasize full

  14. Comprehensive quantitative image quality evaluation of compressed sensing MRI reconstructions using a weighted perceptual difference model (Case-PDM): selective evaluation, disturbance calibration, and aggregative evaluation of noise, blur, aliasing, and oil-painting artifacts

    NASA Astrophysics Data System (ADS)

    Miao, Jun; Huang, Feng; Wilson, David L.

    2010-02-01

    The perceptual difference model (Case-PDM) is being used to quantify image quality of fast MR acquisitions and sparse reconstruction algorithms as compared to slower, full k-space, high quality reference images. To date, most perceptual difference models average image quality over a wide range of image degradations and assume that the observer has no bias towards any of them. Here, we create metrics weighted to different types of artifacts, calibrated to a human observer's preference, and then aggregate them to produce a comprehensive evaluation. The selective PDM is tuned using test images from an input reference image degraded by noise, blur, aliasing, or "oil-painting." To each artifact, responses of cortex channels in the PDM are normalized to be weights used for selective evaluation. A pair comparison experiment based on functional measurement theory was used to calibrate selective PDM score of each artifact to its measured disturbance. Test images of varying quality were from identical reference image degraded by one type of artifact. We found that human observers rated aliasing > blur > oil-painting > noise. In order to validate the new evaluation approach, PDM scores were compared to human ratings across a large set of compressed sensing MR reconstruction test images of varying quality. Human ratings (i.e. overall, noise, blur, aliasing, and oil-painting ratings) were obtained from a modified Double Stimulus Continuous Quality Scale experiment. For 3 brain images (transverse, sagittal, and coronal planes), averaged r values [comprehensive-PDM, noise-PDM, blur-PDM, aliasing-PDM, oilpainting- PDM] were [0.947+/-0.010, 0.827+/-0.028, 0.913+/-0.005, 0.941+/-0.016, 0.884+/-0.025]. We conclude the weighted Case-PDM is useful for selectively evaluating MR reconstruction artifacts and the proposed comprehensive PDM score can faithfully represent human evaluation, especially when demonstrating artifact bias, of compressed sensing reconstructed MR images.

  15. Late Quaternary and Future Biome Simulations for Alaska and Eastern Russia

    NASA Astrophysics Data System (ADS)

    Hendricks, Amy; Walsh, John; Saito, Kazuyuki; Bigelow, Nancy

    2015-04-01

    We simulated Arctic biomes across a region including Alaska and Eastern Russia using the BIOME4 biogeochemical and biogeography vegetation model. BIOME4, which produces an equilibrium vegetation distribution under a given climate condition, was forced by CMIP5/PMIP3 climate data. We are exploring vegetation and permafrost distributions during the last 21,000 years and future projections (2100 C.E.) to gain an understanding of the effects of climate shifts on this complex subsystem. When forced with the baseline modern climatology, compiled from the University of Delaware temperature and precipitation climatology and ERA-40 sunshine data, our biome simulations were generally consistent with current vegetation observations in the study region. Much of the study area was simulated to have evergreen and deciduous taiga and shrub tundras. Paleoclimatological simulations were compared with pollen data samples taken through the study region. Simulations for the Last Glacial Maximum show the Bering Land Bridge covered almost entirely by cushion forb, lichen, and moss tundra, shrub tundra, and graminoid tundra. Three out of the five models' climate data produce evergreen and deciduous taiga in what is now southwestern Alaska. The distributions of cushion forb, lichen, and moss tundra and graminoid tundra differ noticeably between models, however, shrub tundra distributions are generally in agreement. Simulations for the Mid-Holocene are in better agreement on pollen-based distributions of biomes. Shrub tundra is simulated along the Arctic coast, and in some cases along the eastern coast of Russia. All models show evergreen taiga along the southern coast of Russia as well as covering the southern half of present-day Alaska. Deciduous taiga is simulated in the interior regions of eastern Russia and Alaska, though the distributions in Alaska differ between models. Pre-Industrial biome simulations were very similar to Mid-Holocene simulations. Differences include more shrub

  16. Quantitative analysis

    PubMed Central

    Nevin, John A.

    1984-01-01

    Quantitative analysis permits the isolation of invariant relations in the study of behavior. The parameters of these relations can serve as higher-order dependent variables in more extensive analyses. These points are illustrated by reference to quantitative descriptions of performance maintained by concurrent schedules, multiple schedules, and signal-detection procedures. Such quantitative descriptions of empirical data may be derived from mathematical theories, which in turn can lead to novel empirical analyses so long as their terms refer to behavioral and environmental events. Thus, quantitative analysis is an integral aspect of the experimental analysis of behavior. PMID:16812400

  17. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes

    USGS Publications Warehouse

    Yuan, W.; Liu, S.; Zhou, G.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, Allen H.; Goulden, M.L.; Hollinger, D.Y.; Hu, Y.; Law, B.E.; Stoy, P.C.; Vesala, T.; Wofsy, S.C.

    2007-01-01

    The quantitative simulation of gross primary production (GPP) at various spatial and temporal scales has been a major challenge in quantifying the global carbon cycle. We developed a light use efficiency (LUE) daily GPP model from eddy covariance (EC) measurements. The model, called EC-LUE, is driven by only four variables: normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux (used to calculate moisture stress). The EC-LUE model relies on two assumptions: First, that the fraction of absorbed PAR (fPAR) is a linear function of NDVI; Second, that the realized light use efficiency, calculated from a biome-independent invariant potential LUE, is controlled by air temperature or soil moisture, whichever is most limiting. The EC-LUE model was calibrated and validated using 24,349 daily GPP estimates derived from 28 eddy covariance flux towers from the AmeriFlux and EuroFlux networks, covering a variety of forests, grasslands and savannas. The model explained 85% and 77% of the observed variations of daily GPP for all the calibration and validation sites, respectively. A comparison with GPP calculated from the Moderate Resolution Imaging Spectroradiometer (MODIS) indicated that the EC-LUE model predicted GPP that better matched tower data across these sites. The realized LUE was predominantly controlled by moisture conditions throughout the growing season, and controlled by temperature only at the beginning and end of the growing season. The EC-LUE model is an alternative approach that makes it possible to map daily GPP over large areas because (1) the potential LUE is invariant across various land cover types and (2) all driving forces of the model can be derived from remote sensing data or existing climate observation networks. ?? 2007 Elsevier B.V. All rights reserved.

  18. Consistent shifts in spring vegetation green-up date across temperate biomes in China, 1982-2006.

    PubMed

    Wu, Xiuchen; Liu, Hongyan

    2013-03-01

    Understanding spring phenology changes in response to the rapid climate change at biome-level is crucial for projecting regional ecosystem carbon exchange and climate-biosphere interactions. In this study, we assessed the long-term changes and responses to changing climate of the spring phenology in six temperate biomes of China by analyzing the global inventory monitoring and modeling studies (GIMMS) NOAA/AVHRR Normalized Difference Vegetation Index (NDVI) and concurrent mean temperature and precipitation data for 1982-2006. Results show that the spring phenology trends in the six temperate biomes are not continuous throughout the 25 year period. The spring phenology in most areas of the six biomes showed obvious advancing trends (ranging from -0.09 to -0.65 day/yr) during the 1980s and early 1990s, but has subsequently suffered consistently delaying trends (ranging from 0.22 to 1.22 day/yr). Changes in spring (February-April) temperature are the dominating factor governing the pattern of spring vegetation phenology in the temperate biomes of China. The recently delayed spring phenology in these temperate biomes has been mainly triggered by the stalling or reversal of the warming trend in spring temperatures. Results in this study also reveal that precipitation during November-January can explain 16.1% (P < 0.05), 20.9% (P < 0.05) and 14.2% (P < 0.05) of the variations in temperate deciduous forest (TDF), temperate steppe (TS), temperate desert (TD) respectively, highlighting the important role of winter precipitation in regulating changes in the spring vegetation phenology of water-limited biomes. PMID:23504843

  19. Consistent shifts in spring vegetation green-up date across temperate biomes in China, 1982-2006.

    PubMed

    Wu, Xiuchen; Liu, Hongyan

    2013-03-01

    Understanding spring phenology changes in response to the rapid climate change at biome-level is crucial for projecting regional ecosystem carbon exchange and climate-biosphere interactions. In this study, we assessed the long-term changes and responses to changing climate of the spring phenology in six temperate biomes of China by analyzing the global inventory monitoring and modeling studies (GIMMS) NOAA/AVHRR Normalized Difference Vegetation Index (NDVI) and concurrent mean temperature and precipitation data for 1982-2006. Results show that the spring phenology trends in the six temperate biomes are not continuous throughout the 25 year period. The spring phenology in most areas of the six biomes showed obvious advancing trends (ranging from -0.09 to -0.65 day/yr) during the 1980s and early 1990s, but has subsequently suffered consistently delaying trends (ranging from 0.22 to 1.22 day/yr). Changes in spring (February-April) temperature are the dominating factor governing the pattern of spring vegetation phenology in the temperate biomes of China. The recently delayed spring phenology in these temperate biomes has been mainly triggered by the stalling or reversal of the warming trend in spring temperatures. Results in this study also reveal that precipitation during November-January can explain 16.1% (P < 0.05), 20.9% (P < 0.05) and 14.2% (P < 0.05) of the variations in temperate deciduous forest (TDF), temperate steppe (TS), temperate desert (TD) respectively, highlighting the important role of winter precipitation in regulating changes in the spring vegetation phenology of water-limited biomes.

  20. Identification of priority conservation areas and potential corridors for jaguars in the Caatinga biome, Brazil.

    PubMed

    Morato, Ronaldo Gonçalves; Ferraz, Katia Maria Paschoaletto Micchi de Barros; de Paula, Rogério Cunha; de Campos, Cláudia Bueno

    2014-01-01

    The jaguar, Panthera onca, is a top predator with the extant population found within the Brazilian Caatinga biome now known to be on the brink of extinction. Designing new conservation units and potential corridors are therefore crucial for the long-term survival of the species within the Caatinga biome. Thus, our aims were: 1) to recognize suitable areas for jaguar occurrence, 2) to delineate areas for jaguar conservation (PJCUs), 3) to design corridors among priority areas, and 4) to prioritize PJCUs. A total of 62 points records of jaguar occurrence and 10 potential predictors were analyzed in a GIS environment. A predictive distributional map was obtained using Species Distribution Modeling (SDM) as performed by the Maximum Entropy (Maxent) algorithm. Areas equal to or higher than the median suitability value of 0.595 were selected as of high suitability for jaguar occurrence and named as Priority Jaguar Conservation Units (PJCU). Ten PJCUs with sizes varying from 23.6 km2 to 4,311.0 km2 were identified. Afterwards, we combined the response curve, as generated by SDM, and expert opinions to create a permeability matrix and to identify least cost corridors and buffer zones between each PJCU pair. Connectivity corridors and buffer zone for jaguar movement included an area of 8.884,26 km2 and the total corridor length is about 160.94 km. Prioritizing criteria indicated the PJCU representing c.a. 68.61% of the total PJCU area (PJCU # 1) as of high priority for conservation and connectivity with others PJCUs (PJCUs # 4, 5 and 7) desirable for the long term survival of the species. In conclusion, by using the jaguar as a focal species and combining SDM and expert opinion we were able to create a valid framework for practical conservation actions at the Caatinga biome. The same approach could be used for the conservation of other carnivores.

  1. Identification of priority conservation areas and potential corridors for jaguars in the Caatinga biome, Brazil.

    PubMed

    Morato, Ronaldo Gonçalves; Ferraz, Katia Maria Paschoaletto Micchi de Barros; de Paula, Rogério Cunha; de Campos, Cláudia Bueno

    2014-01-01

    The jaguar, Panthera onca, is a top predator with the extant population found within the Brazilian Caatinga biome now known to be on the brink of extinction. Designing new conservation units and potential corridors are therefore crucial for the long-term survival of the species within the Caatinga biome. Thus, our aims were: 1) to recognize suitable areas for jaguar occurrence, 2) to delineate areas for jaguar conservation (PJCUs), 3) to design corridors among priority areas, and 4) to prioritize PJCUs. A total of 62 points records of jaguar occurrence and 10 potential predictors were analyzed in a GIS environment. A predictive distributional map was obtained using Species Distribution Modeling (SDM) as performed by the Maximum Entropy (Maxent) algorithm. Areas equal to or higher than the median suitability value of 0.595 were selected as of high suitability for jaguar occurrence and named as Priority Jaguar Conservation Units (PJCU). Ten PJCUs with sizes varying from 23.6 km2 to 4,311.0 km2 were identified. Afterwards, we combined the response curve, as generated by SDM, and expert opinions to create a permeability matrix and to identify least cost corridors and buffer zones between each PJCU pair. Connectivity corridors and buffer zone for jaguar movement included an area of 8.884,26 km2 and the total corridor length is about 160.94 km. Prioritizing criteria indicated the PJCU representing c.a. 68.61% of the total PJCU area (PJCU # 1) as of high priority for conservation and connectivity with others PJCUs (PJCUs # 4, 5 and 7) desirable for the long term survival of the species. In conclusion, by using the jaguar as a focal species and combining SDM and expert opinion we were able to create a valid framework for practical conservation actions at the Caatinga biome. The same approach could be used for the conservation of other carnivores. PMID:24709817

  2. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species.

    PubMed

    Reich, Peter B; Oleksyn, Jacek; Wright, Ian J

    2009-05-01

    The ecophysiological linkage of leaf phosphorus (P) to photosynthetic capacity (A (max)) and to the A (max)-nitrogen relation remains poorly understood. To address this issue we compiled published and unpublished field data for mass-based A (max), nitrogen (N) and P (n = 517 observations) from 314 species at 42 sites in 14 countries. Data were from four biomes: arctic, cold temperate, subtropical (including Mediterranean), and tropical. We asked whether plants with low P levels have low A (max), a shallower slope of the A (max)-N relationship, and whether these patterns have a geographic signature. On average, leaf P was substantially lower in the two warmer than in the two colder biomes, with the reverse true for N:P ratios. The evidence indicates that the response of A (max) to leaf N is constrained by low leaf P. Using a full factorial model for all data, A (max) was related to leaf N, but not to leaf P on its own, with a significant leaf N x leaf P interaction indicating that the response of A (max) to N increased with increasing leaf P. This was also found in analyses using one value per species per site, or by comparing only angiosperms or only woody plants. Additionally, the slope of the A (max)-N relationship was higher in the colder arctic and temperate than warmer tropical and subtropical biomes. Sorting data into low, medium, and high leaf P groupings also showed that the A (max)-N slope increases with leaf P. These analyses support claims that in P-limited ecosystems the A (max)-N relationship may be constrained by low P, and are consistent with laboratory studies that show P-deficient plants have limited ribulose-1,5-bisphosphate regeneration, a likely mechanism for the P influence upon the A (max)-N relation.

  3. Sex-biased parasitism is not universal: evidence from rodent-flea associations from three biomes.

    PubMed

    Kiffner, Christian; Stanko, Michal; Morand, Serge; Khokhlova, Irina S; Shenbrot, Georgy I; Laudisoit, Anne; Leirs, Herwig; Hawlena, Hadas; Krasnov, Boris R

    2013-11-01

    The distribution of parasites among individual hosts is characterised by high variability that is believed to be a result of variations in host traits. To find general patterns of host traits affecting parasite abundance, we studied flea infestation of nine rodent species from three different biomes (temperate zone of central Europe, desert of Middle East and tropics of East Africa). We tested for independent and interactive effects of host sex and body mass on the number of fleas harboured by an individual host while accounting for spatial clustering of host and parasite sampling and temporal variation. We found no consistent patterns of the effect of host sex and body mass on flea abundance either among species within a biome or among biomes. We found evidence for sex-biased flea infestation in just five host species (Apodemus agrarius, Myodes glareolus, Microtus arvalis, Gerbillus andersoni, Mastomys natalensis). In six rodent species, we found an effect of body mass on flea abundance (all species mentioned above and Meriones crassus). This effect was positive in five species and negative in one species (Microtus arvalis). In M. glareolus, G. andersoni, M. natalensis, and M. arvalis, the relationship between body mass and flea abundance was mediated by host sex. This was manifested in steeper change in flea abundance with increasing body mass in male than female individuals (M. glareolus, G. andersoni, M. natalensis), whereas the opposite pattern was found in M. arvalis. Our findings suggest that sex and body mass are common determinants of parasite infestation in mammalian hosts, but neither of them follows universal rules. This implies that the effect of host individual characteristics on mechanisms responsible for flea acquisition may be manifested differently in different host species.

  4. Identification of Priority Conservation Areas and Potential Corridors for Jaguars in the Caatinga Biome, Brazil

    PubMed Central

    Morato, Ronaldo Gonçalves; Ferraz, Katia Maria Paschoaletto Micchi de Barros; de Paula, Rogério Cunha; de Campos, Cláudia Bueno

    2014-01-01

    The jaguar, Panthera onca, is a top predator with the extant population found within the Brazilian Caatinga biome now known to be on the brink of extinction. Designing new conservation units and potential corridors are therefore crucial for the long-term survival of the species within the Caatinga biome. Thus, our aims were: 1) to recognize suitable areas for jaguar occurrence, 2) to delineate areas for jaguar conservation (PJCUs), 3) to design corridors among priority areas, and 4) to prioritize PJCUs. A total of 62 points records of jaguar occurrence and 10 potential predictors were analyzed in a GIS environment. A predictive distributional map was obtained using Species Distribution Modeling (SDM) as performed by the Maximum Entropy (Maxent) algorithm. Areas equal to or higher than the median suitability value of 0.595 were selected as of high suitability for jaguar occurrence and named as Priority Jaguar Conservation Units (PJCU). Ten PJCUs with sizes varying from 23.6 km2 to 4,311.0 km2 were identified. Afterwards, we combined the response curve, as generated by SDM, and expert opinions to create a permeability matrix and to identify least cost corridors and buffer zones between each PJCU pair. Connectivity corridors and buffer zone for jaguar movement included an area of 8.884,26 km2 and the total corridor length is about 160.94 km. Prioritizing criteria indicated the PJCU representing c.a. 68.61% of the total PJCU area (PJCU # 1) as of high priority for conservation and connectivity with others PJCUs (PJCUs # 4, 5 and 7) desirable for the long term survival of the species. In conclusion, by using the jaguar as a focal species and combining SDM and expert opinion we were able to create a valid framework for practical conservation actions at the Caatinga biome. The same approach could be used for the conservation of other carnivores. PMID:24709817

  5. Global greenhouse to icehouse and back again: The origin and future of the Boreal Forest biome

    NASA Astrophysics Data System (ADS)

    Taggart, Ralph E.; Cross, Aureal T.

    2009-02-01

    The Boreal Forest biome (Taiga), dominated by evergreen and deciduous coniferous trees (Pinaceae), is circumpolar in its present distribution, covering a significant part of the total land area of the Northern Hemisphere and representing perhaps a third of the total forest area of the planet. Nothing comparable to this extant biome existed during the global "greenhouse" interval of the Late Mesozoic and Paleogene. Latitudinal temperature gradients should have confined boreal taxa to extremely high latitudes, but evergreen taxa do not appear to have been competitive in the lowlands of the high arctic, where the vegetation consisted of a unique circumpolar forest dominated by deciduous conifers and broad-leaved taxa. Probable sources for the pinaceous taxa that now characterize boreal latitudes were the Paleogene evergreen montane coniferous forests of the western North American Cordillera. Taphonomic factors limit the fossil record for such forests, but assemblages such as the Eocene Thunder Mountain (Idaho) and Bull Run (Nevada) floras were dominated by evergreen and deciduous Pinaceae that dominate extant montane, subalpine, and Boreal Forest associations. In response to post-Eocene global cooling, such forests presumably would have migrated to lower elevations, eventually spreading across high-latitude North America, subsequently reaching Eurasia via the Beringian corridor. This high-diversity coniferous forest was differentially winnowed and modified during subsequent migration southward in both the New and Old World. Despite its extensive geographic distribution, the Boreal Forest may be the youngest of the major forest biomes. If global warming ultimately results in a significant redistribution of terrestrial vegetation, the history of the Boreal Forest may well be reversed. Northward migration of the Boreal Forest may be characterized by loss of taxa and extensive community reorganization as individual taxa are pushed to their limits with respect to rates of

  6. NEE and GPP dynamic evolution at two biomes in the upper Spanish plateau

    NASA Astrophysics Data System (ADS)

    Sánchez, María Luisa; Pardo, Nuria; Pérez, Isidro Alberto; García, Maria de los Angeles

    2014-05-01

    In order to assess the ability of dominant biomes to act as a CO2 sink, two eddy correlation stations close to each other in central Spain have been concurrently operational since March 2008 until the present. The land use of the first station, AC, is a rapeseed rotating crop consisting of annual rotation of non-irrigated rapeseed, barley, peas, rye, and sunflower, respectively. The land use of the second, CIBA, is a mixture of open shrubs/crops, with open shrubs being markedly dominant. The period of measurements covered variable general meteorological conditions. 2009 and 2012 were dominated by drought, whereas 2010 was the rainiest year. Annual rainfall during 2008 and 2009 was close to the historical averaged annual means. This paper presents the dynamic evolution of NEE-8d and GPP-8d observed at the AC station over five years and compares the results with those concurrently observed at the CIBA station. GGP 8-d estimates at both stations were determined using a Light Use Efficiency Model, LUE. Input data for the LUE model were the FPAR 8-d products supplied by MODIS, PAR in situ measurements, and a scalar f, varying between 0 and 1, to take account of the reduction in maximum PAR conversion efficiency, ɛ0, under limiting environmental conditions. f values were assumed to be dependent on air temperature and evaporative fraction, EF, which was considered a proxy of soil moisture. ɛ0, a key parameter, which depends on land use types, was derived through the results of a linear regression fit between the GPP 8-d eddy covariance composites observed and the LUE concurrent 8-d model estimates. Over the five-year study period, both biomes behaved as CO2 sinks. However, the ratio of the NEE-8d total accumulated at AC and CIBA, respectively, was close to a factor two, revealing the effectiveness of the studied crops as CO2 sinks. On an annual basis, accumulated NEE-8d exhibited major variability in both biomes. At CIBA, the results were largely dominated by the

  7. A brief botanical survey into Kumbira forest, an isolated patch of Guineo-Congolian biome

    PubMed Central

    Gonçalves, Francisco M. P.; Goyder, David J.

    2016-01-01

    Abstract Kumbira forest is a discrete patch of moist forest of Guineo-Congolian biome in Western Angola central scarp and runs through Cuanza Norte and Cuanza Sul province. The project aimed to document the floristic diversity of the Angolan escarpment, a combination of general walk-over survey, plant specimen collection and sight observation was used to aid the characterization of the vegetation. Over 100 plant specimens in flower or fruit were collected within four identified vegetation types. The list of species includes two new records of Guineo-Congolian species in Angola, one new record for the country and one potential new species. PMID:27489484

  8. Characterizing forest carbon stocks at tropical biome and landscape level in Mount Apo National Park, Philippines

    NASA Astrophysics Data System (ADS)

    Rubas, L. C.

    2012-12-01

    Forest resources sequester and store carbon, and serve as a natural brake on climate change. In the tropics, the largest source of greenhouse emission is from deforestation and forest degradation (Gibbs et al 2007). This paper attempts to compile sixty (60) existing studies on using remote sensing to measure key environmental forest indicators at two levels of scales: biome and landscape level. At the tropical forest biome level, there is not as much remote sensing studies that have been done as compared to other forest biomes. Also, existing studies on tropical Asia is still sparse compared to other tropical regions in Latin America and Africa. Biomass map is also produced for the tropical biome using keyhole macro language (KML) which is projected on Google Earth. The compiled studies showed there are four indicators being measured using remote sensors in tropical forest. These are biomass, landcover classification, deforestation and cloud cover. The landscape level will focus on Mount Apo National Park in the Philippines which is encompassing a total area of 54,974.87 hectares. It is one of the ten priority sites targeted in the World Bank-assisted Biodiversity Conservation Program. This park serves as the major watershed for the three provinces with 19 major rivers emanating from the montane formations. Only a small fraction of the natural forest that once covered the country remains. In spite of different policies that aim to reduce logging recent commercial deforestation, illegal logging and agricultural expansion pose an important threat to the remaining forest areas. In some locations in the country, these hotspots of deforestation overlap with the protected areas (Verburg et al 2006). The study site was clipped using ArcGIS from the forest biomass carbon density map produced by Gibbs and Brown (2007). Characterization on this national park using vegetation density, elevation, slope, land cover and precipitation will be conducted to determine factors that

  9. Mapping fire events in the transition of Amazon and Cerrado biome using remote sensing

    NASA Astrophysics Data System (ADS)

    Antunes Daldegan, G.; Roberts, D. A.; Peterson, S.; Ribeiro, F.

    2015-12-01

    Abstract to AGU Fire is considered one of the determinant factors that have shaped Cerrado biome, the Brazilian Savanna, considered the most biodiverse savanna in the world. At the same time, fire has not acted a major role during the evolution of the Amazon Forest due to the strong capacity it has to resist burning. Recently, with the expansion of the agricultural activities in the central Brazil, about 49% of the Cerrado has been converted to other uses and as deforestation vector runs towards the Amazon Forest it modifies the natural moist microclimate in the edges of the forest, increasing the likelihood of wildfires. Every year these ecosystems suffer with several fire events responsible for large burned areas, causing losses of biomass, biodiversity, soil nutrients, and releasing tons of CO2 that help climate change. The occurrence of fires has a direct relationship with the climate of the central portion of the south american continent, charaterized by a two seasons regime, wet and dry, each one lasting around 6 months. In this region is located the ecotone of these two majors Brazilians ecosystems. In the Cerrado biome fire is often used to manage pasture, stimulating the regrowth of natural grasses used as pasture and also to open new areas for agriculture. There are researches showing that people have been traditionally using fire as a lower cost way to manage their lands for different purposes. In the Amazon forest the cycle of deforestation started around the 60's with incentives from the federal government to populate the region in the middle of the last century, and most recently by the progress of the commodities prices, such as soybean and sugar-cane, that has occupied vast areas of the Cerrado and is marching towards the forest. In the Amazon, fire is frequently used to further open the areas that were previously logged selectively and then converted to agricultural uses.Given the ecological importance of the Amazon Forest and Cerrado biome and the

  10. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.

    PubMed

    Byrne, M; Yeates, D K; Joseph, L; Kearney, M; Bowler, J; Williams, M A J; Cooper, S; Donnellan, S C; Keogh, J S; Leys, R; Melville, J; Murphy, D J; Porch, N; Wyrwoll, K-H

    2008-10-01

    The integration of phylogenetics, phylogeography and palaeoenvironmental studies is providing major insights into the historical forces that have shaped the Earth's biomes. Yet our present view is biased towards arctic and temperate/tropical forest regions, with very little focus on the extensive arid regions of the planet. The Australian arid zone is one of the largest desert landform systems in the world, with a unique, diverse and relatively well-studied biota. With foci on palaeoenvironmental and molecular data, we here review what is known about the assembly and maintenance of this biome in the context of its physical history, and in comparison with other mesic biomes. Aridification of Australia began in the Mid-Miocene, around 15 million years, but fully arid landforms in central Australia appeared much later, around 1-4 million years. Dated molecular phylogenies of diverse taxa show the deepest divergences of arid-adapted taxa from the Mid-Miocene, consistent with the onset of desiccation. There is evidence of arid-adapted taxa evolving from mesic-adapted ancestors, and also of speciation within the arid zone. There is no evidence for an increase in speciation rate during the Pleistocene, and most arid-zone species lineages date to the Pliocene or earlier. The last 0.8 million years have seen major fluctuations of the arid zone, with large areas covered by mobile sand dunes during glacial maxima. Some large, vagile taxa show patterns of recent expansion and migration throughout the arid zone, in parallel with the ice sheet-imposed range shifts in Northern Hemisphere taxa. Yet other taxa show high lineage diversity and strong phylogeographical structure, indicating persistence in multiple localised refugia over several glacial maxima. Similar to the Northern Hemisphere, Pleistocene range shifts have produced suture zones, creating the opportunity for diversification and speciation through hybridisation, polyploidy and parthenogenesis. This review highlights

  11. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.

    PubMed

    Byrne, M; Yeates, D K; Joseph, L; Kearney, M; Bowler, J; Williams, M A J; Cooper, S; Donnellan, S C; Keogh, J S; Leys, R; Melville, J; Murphy, D J; Porch, N; Wyrwoll, K-H

    2008-10-01

    The integration of phylogenetics, phylogeography and palaeoenvironmental studies is providing major insights into the historical forces that have shaped the Earth's biomes. Yet our present view is biased towards arctic and temperate/tropical forest regions, with very little focus on the extensive arid regions of the planet. The Australian arid zone is one of the largest desert landform systems in the world, with a unique, diverse and relatively well-studied biota. With foci on palaeoenvironmental and molecular data, we here review what is known about the assembly and maintenance of this biome in the context of its physical history, and in comparison with other mesic biomes. Aridification of Australia began in the Mid-Miocene, around 15 million years, but fully arid landforms in central Australia appeared much later, around 1-4 million years. Dated molecular phylogenies of diverse taxa show the deepest divergences of arid-adapted taxa from the Mid-Miocene, consistent with the onset of desiccation. There is evidence of arid-adapted taxa evolving from mesic-adapted ancestors, and also of speciation within the arid zone. There is no evidence for an increase in speciation rate during the Pleistocene, and most arid-zone species lineages date to the Pliocene or earlier. The last 0.8 million years have seen major fluctuations of the arid zone, with large areas covered by mobile sand dunes during glacial maxima. Some large, vagile taxa show patterns of recent expansion and migration throughout the arid zone, in parallel with the ice sheet-imposed range shifts in Northern Hemisphere taxa. Yet other taxa show high lineage diversity and strong phylogeographical structure, indicating persistence in multiple localised refugia over several glacial maxima. Similar to the Northern Hemisphere, Pleistocene range shifts have produced suture zones, creating the opportunity for diversification and speciation through hybridisation, polyploidy and parthenogenesis. This review highlights

  12. Comparing global models of terrestrial net primary productivity (NPP): Global pattern and differentiation by major biomes

    USGS Publications Warehouse

    Kicklighter, D.W.; Bondeau, A.; Schloss, A.L.; Kaduk, J.; McGuire, A.D.

    1999-01-01

    Annual and seasonal net primary productivity estimates (NPP) of 15 global models across latitudinal zones and biomes are compared. The models simulated NPP for contemporary climate using common, spatially explicit data sets for climate, soil texture, and normalized difference vegetation index (NDVI). Differences among NPP estimates varied over space and time. The largest differences occur during the summer months in boreal forests (50??to 60??N) and during the dry seasons of tropical evergreen forests. Differences in NPP estimates are related to model assumptions about vegetation structure, model parameterizations, and input data sets.

  13. A brief botanical survey into Kumbira forest, an isolated patch of Guineo-Congolian biome.

    PubMed

    Gonçalves, Francisco M P; Goyder, David J

    2016-01-01

    Kumbira forest is a discrete patch of moist forest of Guineo-Congolian biome in Western Angola central scarp and runs through Cuanza Norte and Cuanza Sul province. The project aimed to document the floristic diversity of the Angolan escarpment, a combination of general walk-over survey, plant specimen collection and sight observation was used to aid the characterization of the vegetation. Over 100 plant specimens in flower or fruit were collected within four identified vegetation types. The list of species includes two new records of Guineo-Congolian species in Angola, one new record for the country and one potential new species. PMID:27489484

  14. Skin Biomes.

    PubMed

    Fyhrquist, N; Salava, A; Auvinen, P; Lauerma, A

    2016-05-01

    The cutaneous microbiome has been investigated broadly in recent years and some traditional perspectives are beginning to change. A diverse microbiome exists on human skin and has a potential to influence pathogenic microbes and modulate the course of skin disorders, e.g. atopic dermatitis. In addition to the known dysfunctions in barrier function of the skin and immunologic disturbances, evidence is rising that frequent skin disorders, e.g. atopic dermatitis, might be connected to a dysbiosis of the microbial community and changes in the skin microbiome. As a future perspective, examining the skin microbiome could be seen as a potential new diagnostic and therapeutic target in inflammatory skin disorders.

  15. Late Quaternary vegetation and environments in the Verkhoyansk Mountains region (NE Asia) reconstructed from a 50-kyr fossil pollen record from Lake Billyakh

    NASA Astrophysics Data System (ADS)

    Müller, Stefanie; Tarasov, Pavel E.; Andreev, Andrei A.; Tütken, Thomas; Gartz, Steffi; Diekmann, Bernhard

    2010-08-01

    Here we present a detailed radiocarbon-dated 936 cm long pollen record from Lake Billyakh (65°17'N, 126°47'E; 340 m a.s.l.) situated in the western part of the Verkhoyansk Mountains, about 140 km south of the Arctic Circle. A set of 53 surface pollen samples representing tundra, cold deciduous forest and taiga was collected in northern and central Yakutia communities to verify the accuracy of the quantitative biome reconstruction method and to obtain a more precise attribution of the identified pollen taxa to the main regional biomes. The adjusted method is then applied to the pollen record from Lake Billyakh to gain a reconstruction of vegetation and environments since about 50.7 kyr BP. The results of the pollen analysis and pollen-based biome reconstruction suggest that herbaceous tundra and steppe communities dominated the area from 50.7 to 13.5 kyr BP. Relatively low pollen concentrations and high percentages of herbaceous pollen taxa (mainly Cyperaceae, Poaceae and Artemisia) likely indicate a reduced vegetation cover and/or lower pollen production. On the other hand, extremely low percentages of drought-tolerant taxa, such as Chenopodiaceae and Ephedra, and the constant presence of various mesophyllous herbaceous ( Thalictrum, Rosaceae, Asteraceae) and shrubby taxa ( Betula sect. Nanae/Fruticosae, Duschekia fruticosa, Salix) in the pollen assemblages prevent an interpretation of the last glacial environments around Lake Billyakh as extremely arid. The lowest pollen percentages of woody taxa and the highest values of Artemisia pollen attest that the 31-15 kyr BP period as the driest and coldest interval of the entire record. A relative high content of taxa representing shrub tundra communities and the presence of larch pollen recorded prior to 31 kyr and after 13.5 kyr BP likely indicate interstadial climate amelioration associated with the middle and latest parts of the last glacial. An increase in pollen percentages of herbaceous taxa around 12 kyr BP

  16. The deforestation story: testing for anthropogenic origins of Africa's flammable grassy biomes.

    PubMed

    Bond, William; Zaloumis, Nicholas P

    2016-06-01

    Africa has the most extensive C4 grassy biomes of any continent. They are highly flammable accounting for greater than 70% of the world's burnt area. Much of Africa's savannas and grasslands occur in climates warm enough and wet enough to support closed forests. The combination of open grassy systems and the frequent fires they support have long been interpreted as anthropogenic artefacts caused by humans igniting frequent fires. True grasslands, it was believed, would be restricted to climates too dry or too cold to support closed woody vegetation. The idea that higher-rainfall savannas are anthropogenic and that fires are of human origin has led to initiatives to 'reforest' Africa's open grassy systems paid for by carbon credits under the assumption that the net effect of converting these system to forests would sequester carbon, reduce greenhouse gases and mitigate global warming. This paper reviews evidence for the antiquity of African grassy ecosystems and for the fires that they sustain. Africa's grassy biomes and the fires that maintain them are ancient and there is no support for the idea that humans caused large-scale deforestation. Indicators of old-growth grasslands are described. These can help distinguish secondary grasslands suitable for reforestation from ancient grasslands that should not be afforested.This article is part of the themed issue 'The interaction of fire and mankind'. PMID:27216527

  17. Assessing Forest NPP: BIOME-BGC Predictions versus BEF Derived Estimates

    NASA Astrophysics Data System (ADS)

    Hasenauer, H.; Pietsch, S. A.; Petritsch, R.

    2007-05-01

    Forest productivity has always been a major issue within sustainable forest management. While in the past terrestrial forest inventory data have been the major source for assessing forest productivity, recent developments in ecosystem modeling offer an alternative approach using ecosystem models such as Biome-BGC to estimate Net Primary Production (NPP). In this study we compare two terrestrial driven approaches for assessing NPP: (i) estimates from a species specific adaptation of the biogeochemical ecosystem model BIOME-BGC calibrated for Alpine conditions; and (ii) NPP estimates derived from inventory data using biomass expansion factors (BEF). The forest inventory data come from 624 sample plots across Austria and consist of repeated individual tree observations and include growth as well as soil and humus information. These locations are covered with spruce, beech, oak, pine and larch stands, thus addressing the main Austrian forest types. 144 locations were previously used in a validating effort to produce species-specific parameter estimates of the ecosystem model. The remaining 480 sites are from the Austrian National Forest Soil Survey carried out at the Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW). By using diameter at breast height (dbh) and height (h) volume and subsequently biomass of individual trees were calculated, aggregated for the whole forest stand and compared with the model output. Regression analyses were performed for both volume and biomass estimates.

  18. The deforestation story: testing for anthropogenic origins of Africa's flammable grassy biomes.

    PubMed

    Bond, William; Zaloumis, Nicholas P

    2016-06-01

    Africa has the most extensive C4 grassy biomes of any continent. They are highly flammable accounting for greater than 70% of the world's burnt area. Much of Africa's savannas and grasslands occur in climates warm enough and wet enough to support closed forests. The combination of open grassy systems and the frequent fires they support have long been interpreted as anthropogenic artefacts caused by humans igniting frequent fires. True grasslands, it was believed, would be restricted to climates too dry or too cold to support closed woody vegetation. The idea that higher-rainfall savannas are anthropogenic and that fires are of human origin has led to initiatives to 'reforest' Africa's open grassy systems paid for by carbon credits under the assumption that the net effect of converting these system to forests would sequester carbon, reduce greenhouse gases and mitigate global warming. This paper reviews evidence for the antiquity of African grassy ecosystems and for the fires that they sustain. Africa's grassy biomes and the fires that maintain them are ancient and there is no support for the idea that humans caused large-scale deforestation. Indicators of old-growth grasslands are described. These can help distinguish secondary grasslands suitable for reforestation from ancient grasslands that should not be afforested.This article is part of the themed issue 'The interaction of fire and mankind'.

  19. Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau

    PubMed Central

    Yang, Yuanhe; Yang, Lucun; Zhou, Guoying

    2016-01-01

    Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011–2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level. PMID:27119379

  20. Detection of wild animals as carriers of Leptospira by PCR in the Pantanal biome, Brazil.

    PubMed

    Vieira, Anahi S; Narduche, Lorena; Martins, Gabriel; Schabib Péres, Igor A H F; Zimmermann, Namor P; Juliano, Raquel S; Pellegrin, Aiesca O; Lilenbaum, Walter

    2016-11-01

    Leptospiral infection is widespread in wildlife. In this context, wild ecosystems in tropical countries hold a vast biodiversity, including several species that may act as potential reservoirs of leptospires. The Pantanal biome presents highly favorable environmental conditions for the occurrence of leptospirosis, such as high temperatures, constant flooding, and high biodiversity. The purpose of this study was to detect wild animals as carriers of Leptospira sp. using direct methods (PCR and culture) in the Pantanal biome, Brazil. A total of 35 animals were studied, namely Cerdocyon thous, Nasua nasua, Ozotoceros bezoarticus, and Sus scrofa species. Blood for serology (MAT) and urine for bacteriological culturing and PCR was sampled. The most prevalent serogroups were Javanica and Djasiman. Additionally, 40.6% of these animals presented PCR positive reactions. Seroreactivity associated with the high frequency of leptospiral carriers among the different studied species suggests a high level of exposure of the studied animals to pathogenic Leptospira strains. Our results are still limited and the actual role of the studied animals in the epidemiology of leptospirosis in the Pantanal region remains to be elucidated. PMID:27496621

  1. Antiviral and Antioxidant Activities of Sulfated Galactomannans from Plants of Caatinga Biome

    PubMed Central

    Marques, Márcia Maria Mendes; de Morais, Selene Maia; da Silva, Ana Raquel Araújo; Barroso, Naiara Dutra; Pontes Filho, Tadeu Rocha; Araújo, Fernanda Montenegro de Carvalho; Vieira, Ícaro Gusmão Pinto; Lima, Danielle Malta; Guedes, Maria Izabel Florindo

    2015-01-01

    Dengue represents a serious social and economic public health problem; then trying to contribute to improve its control, the objective of this research was to develop phytoterapics for dengue treatment using natural resources from Caatinga biome. Galactomannans isolated from Adenanthera pavonina L., Caesalpinia ferrea Mart., and Dimorphandra gardneriana Tull were chemically sulfated in order to evaluate the antioxidant, and antiviral activities and the role in the inhibition of virus DENV-2 in Vero cells. A positive correlation between the degree of sulfation, antioxidant and antiviral activities was observed. The sulfated galactomannans showed binding to the virus surface, indicating that they interact with DENV-2. The sulfated galactomannans from C. ferrea showed 96% inhibition of replication of DENV-2 followed by D. gardneriana (94%) and A. pavonina (77%) at 25 µg/mL and all sulfated galactomannans also showed antioxidant activity. This work is the first report of the antioxidant and antiviral effects of sulfated galactomannans against DENV-2. The results are very promising and suggest that these sulfated galactomannans from plants of Caatinga biome act in the early step of viral infection. Thus, sulfated galactomannans may act as an entry inhibitor of DENV-2. PMID:26257815

  2. Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes.

    PubMed Central

    Jacobs, Bonnie F

    2004-01-01

    Fossil plants provide data on climate, community composition and structure, all of which are relevant to the definition and recognition of biomes. Macrofossils reflect local vegetation, whereas pollen assemblages sample a larger area. The earliest solid evidence for angiosperm tropical rainforest in Africa is based primarily on Late Eocene to Late Oligocene (ca. 39-26 Myr ago) pollen assemblages from Cameroon, which are rich in forest families. Plant macrofossil assemblages from elsewhere in interior Africa for this time interval are rare, but new work at Chilga in the northwestern Ethiopian Highlands documents forest communities at 28 Myr ago. Initial results indicate botanical affinities with lowland West African forest. The earliest known woodland community in tropical Africa is dated at 46 Myr ago in northern Tanzania, as documented by leaves and fruits from lake deposits. The community around the lake was dominated by caesalpinioid legumes, but included Acacia, for which this, to my knowledge, is the earliest record. This community is structurally similar to modern miombo, although it is different at the generic level. The grass-dominated savannah biome began to expand in the Middle Miocene (16 Myr ago), and became widespread in the Late Miocene (ca. 8 Myr ago), as documented by pollen and carbon isotopes from both West and East Africa. PMID:15519973

  3. Detection of wild animals as carriers of Leptospira by PCR in the Pantanal biome, Brazil.

    PubMed

    Vieira, Anahi S; Narduche, Lorena; Martins, Gabriel; Schabib Péres, Igor A H F; Zimmermann, Namor P; Juliano, Raquel S; Pellegrin, Aiesca O; Lilenbaum, Walter

    2016-11-01

    Leptospiral infection is widespread in wildlife. In this context, wild ecosystems in tropical countries hold a vast biodiversity, including several species that may act as potential reservoirs of leptospires. The Pantanal biome presents highly favorable environmental conditions for the occurrence of leptospirosis, such as high temperatures, constant flooding, and high biodiversity. The purpose of this study was to detect wild animals as carriers of Leptospira sp. using direct methods (PCR and culture) in the Pantanal biome, Brazil. A total of 35 animals were studied, namely Cerdocyon thous, Nasua nasua, Ozotoceros bezoarticus, and Sus scrofa species. Blood for serology (MAT) and urine for bacteriological culturing and PCR was sampled. The most prevalent serogroups were Javanica and Djasiman. Additionally, 40.6% of these animals presented PCR positive reactions. Seroreactivity associated with the high frequency of leptospiral carriers among the different studied species suggests a high level of exposure of the studied animals to pathogenic Leptospira strains. Our results are still limited and the actual role of the studied animals in the epidemiology of leptospirosis in the Pantanal region remains to be elucidated.

  4. Biodiversity scales from plots to biomes with a universal species-area curve.

    PubMed

    Harte, John; Smith, Adam B; Storch, David

    2009-08-01

    Classic theory predicts species richness scales as the quarter-power of area, yet species-area relationships (SAR) vary widely depending on habitat, taxa, and scale range. Because power-law SAR are used to predict species loss under habitat loss, and to scale species richness from plots to biomes, insight into the wide variety of observed SAR and the conditions under which power-law behavior should be observed is needed. Here we derive from the maximum entropy principle, a new procedure for upscaling species richness data from small census plots to larger areas, and test empirically, using multiple data sets, the prediction that up to an overall scale displacement, nested SAR lie along a universal curve, with average abundance per species at each scale determining the local slope of the curve. Power-law behaviour only arises in the limit of increasing average abundance, and in that limit, the slope approaches zero, not (1/4). An extrapolation of tree species richness in the Western Ghats to biome scale (60,000 km(2)) using only census data at plot scale ((1/4) ha) is presented to illustrate the potential for applications of our theory.

  5. A biome-scale assessment of the impact of invasive alien plants on ecosystem services in South Africa.

    PubMed

    van Wilgen, B W; Reyers, B; Le Maitre, D C; Richardson, D M; Schonegevel, L

    2008-12-01

    This paper reports an assessment of the current and potential impacts of invasive alien plants on selected ecosystem services in South Africa. We used data on the current and potential future distribution of 56 invasive alien plant species to estimate their impact on four services (surface water runoff, groundwater recharge, livestock production and biodiversity) in five terrestrial biomes. The estimated reductions in surface water runoff as a result of current invasions were >3000 million m(3) (about 7% of the national total), most of which is from the fynbos (shrubland) and grassland biomes; the potential reductions would be more than eight times greater if invasive alien plants were to occupy the full extent of their potential range. Impacts on groundwater recharge would be less severe, potentially amounting to approximately 1.5% of the estimated maximum reductions in surface water runoff. Reductions in grazing capacity as a result of current levels of invasion amounted to just over 1% of the potential number of livestock that could be supported. However, future impacts could increase to 71%. A 'biodiversity intactness index' (the remaining proportion of pre-modern populations) ranged from 89% to 71% for the five biomes. With the exception of the fynbos biome, current invasions have almost no impact on biodiversity intactness. Under future levels of invasion, however, these intactness values decrease to around 30% for the savanna, fynbos and grassland biomes, but to even lower values (13% and 4%) for the two karoo biomes. Thus, while the current impacts of invasive alien plants are relatively low (with the exception of those on surface water runoff), the future impacts could be very high. While the errors in these estimates are likely to be substantial, the predicted impacts are sufficiently large to suggest that there is serious cause for concern.

  6. Aquatic ecosystem responses to Holocene climate change and biome development in boreal, central Asia

    NASA Astrophysics Data System (ADS)

    Mackay, Anson W.; Bezrukova, Elena V.; Leng, Melanie J.; Meaney, Miriam; Nunes, Ana; Piotrowska, Natalia; Self, Angela; Shchetnikov, Alexander; Shilland, Ewan; Tarasov, Pavel; Wang, Luo; White, Dustin

    2012-05-01

    Boreal ecosystems are highly vulnerable to climate change, and severe ecological impacts in the near future are virtually certain to occur. We undertook a multiproxy study on an alpine lake (ESM-1) at the modern tree-line in boreal, southern Siberia. Steppe and tundra biomes were extensive in eastern Sayan landscapes during the early Holocene. Boreal forest quickly expanded by 9.1 ka BP, and dominated the landscape until c 0.7 ka BP, when the greatest period of compositional turnover occurred. At this time, alpine meadow landscape expanded and Picea obovata colonised new habitats along river valleys and lake shorelines, because of prevailing cool, moist conditions. During the early Holocene, chironomid assemblages were dominated by cold stenotherms. Diatoms for much of the Holocene were dominated by alkaliphilous, fragilarioid taxa, up until 0.2 ka BP, when epiphytic species expanded, indicative of increased habitat availability. C/N mass ratios ranged between 9.5 and 13.5 (11.1-15.8 C/N atomic ratios), indicative of algal communities dominating organic matter contributions to bottom sediments with small, persistent contributions from vascular plants. However, δ13C values increased steadily from -34.9‰ during the early Holocene (9.3 ka BP) to -24.8‰ by 0.6 ka BP. This large shift in magnitude may be due to a number of factors, including increasing within-lake productivity, increasing disequilibrium between the isotopic balance of the lake with the atmosphere as the lake became isotopically ‘mature’, and declining soil respiration linked to small, but distinct retreat in forest biomes. The influence of climatic variables on landscape vegetation was assessed using redundancy analysis (RDA), a linear, direct ordination technique. Changes in July insolation at 60 °N significantly explained over one-fifth of the variation in species composition, while changes in estimates of northern hemisphere temperature and ice-rafted debris events in the North Atlantic

  7. Structural development and web service based sensitivity analysis of the Biome-BGC MuSo model

    NASA Astrophysics Data System (ADS)

    Hidy, Dóra; Balogh, János; Churkina, Galina; Haszpra, László; Horváth, Ferenc; Ittzés, Péter; Ittzés, Dóra; Ma, Shaoxiu; Nagy, Zoltán; Pintér, Krisztina; Barcza, Zoltán

    2014-05-01

    Studying the greenhouse gas exchange, mainly the carbon dioxide sink and source character of ecosystems is still a highly relevant research topic in biogeochemistry. During the past few years research focused on managed ecosystems, because human intervention has an important role in the formation of the land surface through agricultural management, land use change, and other practices. In spite of considerable developments current biogeochemical models still have uncertainties to adequately quantify greenhouse gas exchange processes of managed ecosystem. Therefore, it is an important task to develop and test process-based biogeochemical models. Biome-BGC is a widely used, popular biogeochemical model that simulates the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere, and within the components of the terrestrial ecosystems. Biome-BGC was originally developed by the Numerical Terradynamic Simulation Group (NTSG) of University of Montana (http://www.ntsg.umt.edu/project/biome-bgc), and several other researchers used and modified it in the past. Our research group developed Biome-BGC version 4.1.1 to improve essentially the ability of the model to simulate carbon and water cycle in real managed ecosystems. The modifications included structural improvements of the model (e.g., implementation of multilayer soil module and drought related plant senescence; improved model phenology). Beside these improvements management modules and annually varying options were introduced and implemented (simulate mowing, grazing, planting, harvest, ploughing, application of fertilizers, forest thinning). Dynamic (annually varying) whole plant mortality was also enabled in the model to support more realistic simulation of forest stand development and natural disturbances. In the most recent model version separate pools have been defined for fruit. The model version which contains every former and new development is referred as Biome-BGC MuSo (Biome

  8. Quantitative cardiac SPECT in three dimensions: validation by experimental phantom studies

    NASA Astrophysics Data System (ADS)

    Liang, Z.; Ye, J.; Cheng, J.; Li, J.; Harrington, D.

    1998-04-01

    A mathematical framework for quantitative SPECT (single photon emission computed tomography) reconstruction of the heart is presented. An efficient simultaneous compensation approach to the reconstruction task is described. The implementation of the approach on a digital computer is delineated. The approach was validated by experimental data acquired from chest phantoms. The phantoms consisted of a cylindrical elliptical tank of Plexiglass, a cardiac insert made of Plexiglass, a spine insert of packed bone meal and lung inserts made of styrofoam beads alone. Water bags were added to simulate different body characteristics. Comparison between the quantitative reconstruction and the conventional FBP (filtered backprojection) method was performed. The FBP reconstruction had a poor quantitative accuracy and varied for different body configurations. Significant improvement in reconstruction accuracy by the quantitative approach was demonstrated with a moderate computing time on a currently available desktop computer. Furthermore, the quantitative reconstruction was robust for different body characteristics. Therefore, the quantitative approach has the potential for clinical use.

  9. Quantitative research.

    PubMed

    Watson, Roger

    2015-04-01

    This article describes the basic tenets of quantitative research. The concepts of dependent and independent variables are addressed and the concept of measurement and its associated issues, such as error, reliability and validity, are explored. Experiments and surveys – the principal research designs in quantitative research – are described and key features explained. The importance of the double-blind randomised controlled trial is emphasised, alongside the importance of longitudinal surveys, as opposed to cross-sectional surveys. Essential features of data storage are covered, with an emphasis on safe, anonymous storage. Finally, the article explores the analysis of quantitative data, considering what may be analysed and the main uses of statistics in analysis.

  10. Neuromagnetic source reconstruction

    SciTech Connect

    Lewis, P.S.; Mosher, J.C.; Leahy, R.M.

    1994-12-31

    In neuromagnetic source reconstruction, a functional map of neural activity is constructed from noninvasive magnetoencephalographic (MEG) measurements. The overall reconstruction problem is under-determined, so some form of source modeling must be applied. We review the two main classes of reconstruction techniques-parametric current dipole models and nonparametric distributed source reconstructions. Current dipole reconstructions use a physically plausible source model, but are limited to cases in which the neural currents are expected to be highly sparse and localized. Distributed source reconstructions can be applied to a wider variety of cases, but must incorporate an implicit source, model in order to arrive at a single reconstruction. We examine distributed source reconstruction in a Bayesian framework to highlight the implicit nonphysical Gaussian assumptions of minimum norm based reconstruction algorithms. We conclude with a brief discussion of alternative non-Gaussian approachs.

  11. Algebraic Reconstruction Technique (ART) for parallel imaging reconstruction of undersampled radial data: Application to cardiac cine

    PubMed Central

    Li, Shu; Chan, Cheong; Stockmann, Jason P.; Tagare, Hemant; Adluru, Ganesh; Tam, Leo K.; Galiana, Gigi; Constable, R. Todd; Kozerke, Sebastian; Peters, Dana C.

    2014-01-01

    Purpose To investigate algebraic reconstruction technique (ART) for parallel imaging reconstruction of radial data, applied to accelerated cardiac cine. Methods A GPU-accelerated ART reconstruction was implemented and applied to simulations, point spread functions (PSF) and in twelve subjects imaged with radial cardiac cine acquisitions. Cine images were reconstructed with radial ART at multiple undersampling levels (192 Nr x Np = 96 to 16). Images were qualitatively and quantitatively analyzed for sharpness and artifacts, and compared to filtered back-projection (FBP), and conjugate gradient SENSE (CG SENSE). Results Radial ART provided reduced artifacts and mainly preserved spatial resolution, for both simulations and in vivo data. Artifacts were qualitatively and quantitatively less with ART than FBP using 48, 32, and 24 Np, although FBP provided quantitatively sharper images at undersampling levels of 48-24 Np (all p<0.05). Use of undersampled radial data for generating auto-calibrated coil-sensitivity profiles resulted in slightly reduced quality. ART was comparable to CG SENSE. GPU-acceleration increased ART reconstruction speed 15-fold, with little impact on the images. Conclusion GPU-accelerated ART is an alternative approach to image reconstruction for parallel radial MR imaging, providing reduced artifacts while mainly maintaining sharpness compared to FBP, as shown by its first application in cardiac studies. PMID:24753213

  12. Quantitative Thinking.

    ERIC Educational Resources Information Center

    DuBridge, Lee A.

    An appeal for more research to determine how to educate children as effectively as possible is made. Mathematics teachers can readily examine the educational problems of today in their classrooms since learning progress in mathematics can easily be measured and evaluated. Since mathematics teachers have learned to think in quantitative terms and…

  13. QUANTITATIVE MORPHOLOGY

    EPA Science Inventory

    Abstract: In toxicology, the role of quantitative assessment of brain morphology can be understood in the context of two types of treatment-related alterations. One type of alteration is specifically associated with treatment and is not observed in control animals. Measurement ...

  14. Nipple and areola reconstruction.

    PubMed

    Hutcheson, H A; Bostwick, J

    1989-01-01

    Nipple-areola reconstruction is an integral part of breast reconstruction. Optimum results are usually obtained when nipple-areola reconstruction is staged after the breast mound has attained its final shape and is well vascularized. The use of intradermal tattoo allows the use of a variety of nonpigmented donor sites. Women report that reconstruction of the nipple-areola enhances their overall satisfaction with breast reconstruction. The knowledgeable and skilled nurse is a valuable member of the professional team during this final phase of breast reconstruction. PMID:2479039

  15. Spatial and Temporal Dynamics of the Leaf Area Index of the Caatinga Biome

    NASA Astrophysics Data System (ADS)

    Alves Rodrigues Pinheiro, Everton; de Jong van Lier, Quirijn; Metselaar, Klaas

    2015-04-01

    Leaf Area Index (LAI) is an important characteristic of ecosystems with a prominent role in processes such as transpiration, photosynthesis and interception. The Caatinga biome is a unique semiarid ecosystem ocurring in a specific region of Brazil. An important main feature of this biome is the leaf shedding and regenerative capacity of its species. The aim of this study was to quantify both spatial and temporal dynamics of the LAI of the Caatinga biome in the Aiuaba Experimental Basin, an integrally-preserved Caatinga reserve, coordinates 6°42'S; 40°17'W. The research site (12 km2) was divided into three main Soil and Vegatation Associations (SVA). For each SVA the soil type and root depth are respectively, Acrisol -0.8 m, Luvisol - 0.6 m and Regosol - 0.4 m. The LAI was estimated by SEBAL algorithm applied to eleven satellite images from Landsat 5. The values of LAI estimated by SEBAL were correlated to the mean soil water content of the 15 days previous to the satellite image date. Eight images were used to generate a simple regression model, yielding a range of coefficient of determination from 0.89 to 0.92. Three other images were used to validate the equations. The Nash-Sutcliffe efficiency coefficient ranged from 0.76 to 0.94. Using the validated correlations, the LAI was calculated over the time for each of the three SVA, from 2004 to 2012. For SVA1, SVA2 and SVA3, the avarage values of LAI during the rainy season were 0.97, 1.12 and 1.07, respectively. During the dry season, the mean values were 0.15 for SVA1 and 0.11 for SVA2 and SVA3. The vegetation showed abrupt LAI changes, and the average previous 15 days soil water content was a good indicator for this. The study has shown that the maximum LAI was relatively stable over the years, occurring between March and April. The spatial behavior of LAI appeared to be similar, independently of the soil type and root depth.

  16. Stability indicators in network reconstruction.

    PubMed

    Filosi, Michele; Visintainer, Roberto; Riccadonna, Samantha; Jurman, Giuseppe; Furlanello, Cesare

    2014-01-01

    The number of available algorithms to infer a biological network from a dataset of high-throughput measurements is overwhelming and keeps growing. However, evaluating their performance is unfeasible unless a 'gold standard' is available to measure how close the reconstructed network is to the ground truth. One measure of this is the stability of these predictions to data resampling approaches. We introduce NetSI, a family of Network Stability Indicators, to assess quantitatively the stability of a reconstructed network in terms of inference variability due to data subsampling. In order to evaluate network stability, the main NetSI methods use a global/local network metric in combination with a resampling (bootstrap or cross-validation) procedure. In addition, we provide two normalized variability scores over data resampling to measure edge weight stability and node degree stability, and then introduce a stability ranking for edges and nodes. A complete implementation of the NetSI indicators, including the Hamming-Ipsen-Mikhailov (HIM) network distance adopted in this paper is available with the R package nettools. We demonstrate the use of the NetSI family by measuring network stability on four datasets against alternative network reconstruction methods. First, the effect of sample size on stability of inferred networks is studied in a gold standard framework on yeast-like data from the Gene Net Weaver simulator. We also consider the impact of varying modularity on a set of structurally different networks (50 nodes, from 2 to 10 modules), and then of complex feature covariance structure, showing the different behaviours of standard reconstruction methods based on Pearson correlation, Maximum Information Coefficient (MIC) and False Discovery Rate (FDR) strategy. Finally, we demonstrate a strong combined effect of different reconstruction methods and phenotype subgroups on a hepatocellular carcinoma miRNA microarray dataset (240 subjects), and we validate the

  17. Adapting the Biome-BGC Model to New Zealand Pastoral Agriculture: Climate Change and Land-Use Change

    NASA Astrophysics Data System (ADS)

    Keller, E. D.; Baisden, W. T.; Timar, L.

    2011-12-01

    We have adapted the Biome-BGC model to make climate change and land-use scenario estimates of New Zealand's pasture production in 2020 and 2050, with comparison to a 2005 baseline. We take an integrated modelling approach with the aim of enabling the model's use for policy assessments across broadly related issues such as climate change mitigation and adaptation, land-use change, and greenhouse gas projections. The Biome-BGC model is a biogeochemical model that simulates carbon, water, and nitrogen cycles in terrestrial ecosystems. We introduce two new 'ecosystems', sheep/beef and dairy pasture, within the existing structure of the Biome-BGC model and calibrate its ecophysiological parameters against pasture clipping data from diverse sites around New Zealand to form a baseline estimate of total New Zealand pasture production. Using downscaled AR4 climate projections, we construct mid- and upper-range climate change scenarios in 2020 and 2050. We produce land-use change scenarios in the same years by combining the Biome-BGC model with the Land Use in Rural New Zealand (LURNZ) model. The LURNZ model uses econometric approaches to predict future land-use change driven by changes in net profits driven by expected pricing, including the introduction of an emission trading system. We estimate the relative change in national pasture production from our 2005 baseline levels for both sheep/beef and dairy systems under each scenario.

  18. Data gaps in anthropogenically driven local-scale species richness change studies across the Earth's terrestrial biomes.

    PubMed

    Murphy, Grace E P; Romanuk, Tamara N

    2016-05-01

    There have been numerous attempts to synthesize the results of local-scale biodiversity change studies, yet several geographic data gaps exist. These data gaps have hindered ecologist's ability to make strong conclusions about how local-scale species richness is changing around the globe. Research on four of the major drivers of global change is unevenly distributed across the Earth's biomes. Here, we use a dataset of 638 anthropogenically driven species richness change studies to identify where data gaps exist across the Earth's terrestrial biomes based on land area, future change in drivers, and the impact of drivers on biodiversity, and make recommendations for where future studies should focus their efforts. Across all drivers of change, the temperate broadleaf and mixed forests and the tropical moist broadleaf forests are the best studied. The biome-driver combinations we have identified as most critical in terms of where local-scale species richness change studies are lacking include the following: land-use change studies in tropical and temperate coniferous forests, species invasion and nutrient addition studies in the boreal forest, and warming studies in the boreal forest and tropics. Gaining more information on the local-scale effects of the specific human drivers of change in these biomes will allow for better predictions of how human activity impacts species richness around the globe.

  19. Breast Reconstruction after Mastectomy

    PubMed Central

    Schmauss, Daniel; Machens, Hans-Günther; Harder, Yves

    2016-01-01

    Breast cancer is the leading cause of cancer death in women worldwide. Its surgical approach has become less and less mutilating in the last decades. However, the overall number of breast reconstructions has significantly increased lately. Nowadays, breast reconstruction should be individualized at its best, first of all taking into consideration not only the oncological aspects of the tumor, neo-/adjuvant treatment, and genetic predisposition, but also its timing (immediate versus delayed breast reconstruction), as well as the patient’s condition and wish. This article gives an overview over the various possibilities of breast reconstruction, including implant- and expander-based reconstruction, flap-based reconstruction (vascularized autologous tissue), the combination of implant and flap, reconstruction using non-vascularized autologous fat, as well as refinement surgery after breast reconstruction. PMID:26835456

  20. BOREAS RSS-8 BIOME-BGC SSA Simulation of Annual Water and Carbon Fluxes

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Kimball, John

    2000-01-01

    The BOREAS RSS-8 team performed research to evaluate the effect of seasonal weather and landcover heterogeneity on boreal forest regional water and carbon fluxes using a process-level ecosystem model, BIOME-BGC, coupled with remote sensing-derived parameter maps of key state variables. This data set contains derived maps of landcover type and crown and stem biomass as model inputs to determine annual evapotranspiration, gross primary production, autotrophic respiration, and net primary productivity within the BOREAS SSA-MSA, at a 30-m spatial resolution. Model runs were conducted over a 3-year period from 1994-1996; images are provided for each of those years. The data are stored in binary image format. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  1. Genetic Divergence in Eucalyptus camaldulensis Progenies in the Savanna Biome in Mato Grosso, Brazil

    PubMed Central

    Brito da Costa, Reginaldo; da Silva, Jeane Cabral; Skowronski, Leandro; Constantino, Michel; Pistori, Hemerson; Pinto, Jannaína Velasques da Costa

    2016-01-01

    Assessing the parental genetic differences and their subsequent prediction of progeny performance is an important first step to assure the efficiency of any breeding program. In this study, we estimate the genetic divergence in Eucalyptus camaldulensis based on the morphological traits of 132 progenies grown in a savanna biome. Thus, a field experiment was performed using a randomized block design and five replications to compare divergences in total height, commercial height, diameter at breast height, stem form and survival rate at 48 months. Tocher’s clustering method was performed using the Mahalanobis and Euclidian distances. The Mahalanobis distance seemed more reliable for the assessed parameters and clustered all of the progenies into fourteen major groups. The most similar progenies (86 accessions) were clustered into Group I, while the most dissimilar (1 progeny) represented Group XIV. The divergence analysis indicated that promising crosses could be made between progenies allocated in different groups for high genetic divergence and for favorable morphological traits. PMID:27681225

  2. The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes.

    PubMed

    Hatton, Ian A; McCann, Kevin S; Fryxell, John M; Davies, T Jonathan; Smerlak, Matteo; Sinclair, Anthony R E; Loreau, Michel

    2015-09-01

    Ecosystems exhibit surprising regularities in structure and function across terrestrial and aquatic biomes worldwide. We assembled a global data set for 2260 communities of large mammals, invertebrates, plants, and plankton. We find that predator and prey biomass follow a general scaling law with exponents consistently near ¾. This pervasive pattern implies that the structure of the biomass pyramid becomes increasingly bottom-heavy at higher biomass. Similar exponents are obtained for community production-biomass relations, suggesting conserved links between ecosystem structure and function. These exponents are similar to many body mass allometries, and yet ecosystem scaling emerges independently from individual-level scaling, which is not fully understood. These patterns suggest a greater degree of ecosystem-level organization than previously recognized and a more predictive approach to ecological theory.

  3. Pennsylvanian coniferopsid forests in sabkha facies reveal the nature of seasonal tropical biome

    USGS Publications Warehouse

    Falcon-Lang, H. J.; Jud, N.A.; John, Nelson W.; DiMichele, W.A.; Chaney, D.S.; Lucas, S.G.

    2011-01-01

    Pennsylvanian fossil forests are known from hundreds of sites across tropical Pangea, but nearly all comprise remains of humid Coal Forests. Here we report a unique occurrence of seasonally dry vegetation, preserved in growth position along >5 km of strike, in the Pennsylvanian (early Kasimovian, Missourian) of New Mexico (United States). Analyses of stump anatomy, diameter, and spatial density, coupled with observations of vascular traces and associated megaflora, show that this was a deciduous, mixed-age, coniferopsid woodland (~100 trees per hectare) with an open canopy. The coniferopsids colonized coastal sabkha facies and show tree rings, confirming growth under seasonally dry conditions. Such woodlands probably served as the source of coniferopsids that replaced Coal Forests farther east in central Pangea during drier climate phases. Thus, the newly discovered woodland helps unravel biome-scale vegetation dynamics and allows calibration of climate models. ?? 2011 Geological Society of America.

  4. Use of the Seasons and Biomes Project in Climate Change Education

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Morris, K.; . Jaroensutasinee, M.; Jaroensutasinee, K.; Yule, S.; Boger, R.; Gordon, L. S.; Yoshikawa, K.; Kopplin, M. R.; Verbyla, D. L.

    2009-04-01

    The Seasons and Biomes Project is an inquiry- and project- based initiative that monitors seasons, specifically their interannual variability, with the goal of increasing primary and secondary students' understanding of the earth system, and engaging them in research as a way of learning science, understanding climate change, contributing to climate change studies and participating in the fourth International Polar Year. International professional development workshops have been conducted in the United States, S. Africa, Germany and most recently in Thailand. Primary and secondary teachers and teacher trainers as well as scientists from Argentina, Bahrain, Cameroon, Canada, Czech Republic, Estonia, Germany, Greenland, India, Peru, Paraguay, Mongolia, Norway, Saudi Arabia, South Africa, Switzerland, Thailand and the United States have participated in the training workshops and are working with students. Available to the Seasons and Biomes participants are the rich array of scientific protocols for investigations on atmosphere/weather, hydrology, soils, land cover biology, and phenology as well as learning activities which have been developed by the Global Learning and Observations to Benefit the Environment program (GLOBE) program (www.globe.gov). GLOBE is an international (109 countries involved) earth/environmental science and education program that brings together scientists, teachers, students and parents in inquiry-based studies and in monitoring the Earth, increasing awareness of and care of the environment, and increasing student achievement across the curriculum. Students conduct their studies at or close to their schools and submit the data they have collected to the Data Archive on the GLOBE website. Seasons and Biomes has developed additional learning activities and measurement protocols such as freshwater ice phenology protocols (freeze-up and break-up) and a frost tube (depth of freezing in soils) protocol that are being used in schools. A mosquito

  5. Using Biome-BGC to estimate production in annual crops - A study in Nebraska

    NASA Astrophysics Data System (ADS)

    Heinsch, F. A.; Jolly, W. M.; Kimball, J. S.; Oechel, W. C.; Verma, S. B.

    2004-12-01

    The Biome-BGC ecosystem process model (Version 4.1.2) has been used successfully in many ecosystems, but was not developed for use with agricultural crops. Therefore, program modifications are needed for use with crops, including the addition of carbon allocation to fruiting and the inclusion of springtime planting. The program has been modified and tested using both C3 (soybean) and C4 (maize) vegetation. Results from the Biome-BGC model runs were validated using AmeriFlux tower eddy CO2 flux-based estimates as well as two years of biomass and yield estimates at the University of Nebraska Agricultural Research and Development Center (ARDL) near Mead, NE. The model was also used to obtain tower site and regional estimates of NEE, GPP and NPP. Preliminary results indicate that the model works well in estimating both productivity and yield of both maize and soybean. These results are combined and scaled to a 7 x 7-km area equivalent to that of the MODIS subset (resolution = 1 km2) centered on the research farm and available from Fluxnet and the Oak Ridge National Laboratory (http://www.fluxnet.ornl.gov/fluxnet/modis.cfm). The comparisons provide a means to test the ability of the MODIS algorithms to capture seasonal variations and agricultural carbon dynamics. The results of this study will be used in the future for spatial extrapolation to scales from 1 - 20,000 km2 to evaluate relative accuracies of MODIS GPP/NPP regional data and provide estimates of the regional carbon balance for the larger 20,000 km2 area within the National Institute for Global Environmental Change (NIGEC) Great Plains and Midwestern study regions.

  6. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle.

    PubMed

    Sheffer, Efrat; Batterman, Sarah A; Levin, Simon A; Hedin, Lars O

    2015-11-23

    Dinitrogen fixation by plants (in symbiosis with root bacteria) is a major source of new nitrogen for land ecosystems(1). A long-standing puzzle(2) is that trees capable of nitrogen fixation are abundant in nitrogen-rich tropical forests, but absent or restricted to early successional stages in nitrogen-poor extra-tropical forests. This biome-scale pattern presents an evolutionary paradox(3), given that the physiological cost(4) of nitrogen fixation predicts the opposite pattern: fixers should be out-competed by non-fixers in nitrogen-rich conditions, but competitively superior in nitrogen-poor soils. Here we evaluate whether this paradox can be explained by the existence of different fixation strategies in tropical versus extra-tropical trees: facultative fixers (capable of downregulating fixation(5,6) by sanctioning mutualistic bacteria(7)) are common in the tropics, whereas obligate fixers (less able to downregulate fixation) dominate at higher latitudes. Using a game-theoretic approach, we assess the ecological and evolutionary conditions under which these fixation strategies emerge, and examine their dependence on climate-driven differences in the nitrogen cycle. We show that in the tropics, transient soil nitrogen deficits following disturbance and rapid tree growth favour a facultative strategy and the coexistence of fixers and non-fixers. In contrast, sustained nitrogen deficits following disturbance in extra-tropical forests favour an obligate fixation strategy, and cause fixers to be excluded in late successional stages. We conclude that biome-scale differences in the abundance of nitrogen fixers can be explained by the interaction between individual plant strategies and climatic constraints on the nitrogen cycle over evolutionary time.

  7. A BiomeBGC-based Evaluation of Dryness Stress of Central European Forests

    NASA Astrophysics Data System (ADS)

    Buddenbaum, H.; Hientgen, J.; Dotzler, S.; Werner, W.; Hill, J.

    2015-04-01

    Dryness stress is expected to become a more common problem in central European forests due to the predicted regional climate change. Forest management has to adapt to climate change in time and think ahead several decades in decisions on which tree species to plant at which locations. The summer of 2003 was the most severe dryness event in recent time, but more periods like this are expected. Since forests on different sites react quite differently to drought conditions, we used the process-based growth model BiomeBGC and climate time series from sites all over Germany to simulate the reaction of deciduous and coniferous tree stands in different characteristics of drought stress. Times with exceptionally high values of water vapour pressure deficit coincided with negative modelled values of net primary production (NPP). In addition, in these warmest periods the usually positive relationship between temperature and NPP was inversed, i.e., under stress conditions, more sunlight does not lead to more photosynthesis but to stomatal closure and reduced productivity. Thus we took negative NPP as an indicator for drought stress. In most regions, 2003 was the year with the most intense stress, but the results were quite variable regionally. We used the Modis MOD17 gross and net primary production product time series and MOD12 land cover classification to validate the spatial patterns observed in the model runs and found good agreement between modelled and observed behaviour. Thus, BiomeBGC simulations with realistic site parameterization and climate data in combination with species- and variety-specific ecophysiological constants can be used to assist in decisions on which trees to plant on a given site.

  8. The Fynbos and Succulent Karoo Biomes Do Not Have Exceptional Local Ant Richness

    PubMed Central

    Braschler, Brigitte; Chown, Steven L.; Gaston, Kevin J.

    2012-01-01

    Background The Fynbos (FB) and Succulent Karoo biomes (SKB) have high regional plant diversity despite relatively low productivity. Local diversity in the region varies but is moderate. For insects, previous work suggests that strict phytophages, but not other taxa, may have high regional richness. However, what has yet to be investigated is whether the local insect species richness of FB and SKB is unusual for a region of this productivity level at this latitude, and whether regional richness is also high. Here we determine whether this is the case for ants. Methodology/Principal Findings We use species richness data from pitfall traps in the FB and SKB in the Western Cape Province, South Africa and a global dataset of local ant richness extracted from the literature. We then relate the globally derived values of local richness to two energy-related predictors—productive energy (NDVI) and temperature, and to precipitation, and compare the data from the FB and SKB with these relationships. We further compare our local richness estimates with that of similar habitats worldwide, and regional ant richness with estimates derived from other regions. The local ant species richness of the FB and SKB falls within the general global pattern relating ant richness to energy, and is similar to that in comparable habitats elsewhere. At a regional scale, the richness of ants across all of our sites is not exceptional by comparison with other regional estimates from across the globe. Conclusions/Significance Local richness of ants in the FB and SKB is not exceptional by global standards. Initial analyses suggest that regional diversity is also not exceptional for the group. It seems unlikely that the mechanisms which have contributed to the development of extraordinarily high regional plant diversity in these biomes have had a strong influence on the ants. PMID:22396733

  9. Linking Belowground Plant Traits With Ecosystem Processes: A Multi-Biome Perspective

    NASA Astrophysics Data System (ADS)

    Iversen, C. M.; Norby, R. J.; Childs, J.; McCormack, M. L.; Walker, A. P.; Hanson, P. J.; Warren, J.; Sloan, V. L.; Sullivan, P. F.; Wullschleger, S.; Powell, A. S.

    2015-12-01

    Fine plant roots are short-lived, narrow-diameter roots that play an important role in ecosystem carbon, water, and nutrient cycling in biomes ranging from the tundra to the tropics. Root ecologists make measurements at a millimeter scale to answer a question with global implications: In response to a changing climate, how do fine roots modulate the exchange of carbon between soils and the atmosphere and how will this response affect our future climate? In a Free-Air CO2 Enrichment experiment in Oak Ridge, TN, elevated [CO2] caused fine roots to dive deeper into the soil profile in search of limiting nitrogen, which led to increased soil C storage in deep soils. In contrast, the fine roots of trees and shrubs in an ombrotrophic bog are constrained to nutrient-poor, oxic soils above the average summer water table depth, though this may change with warmer, drier conditions. Tundra plant species are similarly constrained to surface organic soils by permafrost or waterlogged soils, but have many adaptations that alter ecosystem C fluxes, including aerenchyma that oxygenate the rhizosphere but also allow direct methane flux to the atmosphere. FRED, a global root trait database, will allow terrestrial biosphere models to represent the complexity of root traits across the globe, informing both model representation of ecosystem C and nutrient fluxes, but also the gaps where measurements are needed on plant-soil interactions (for example, in the tropical biome). While the complexity of mm-scale measurements may never have a place in large-scale global models, close collaboration between empiricists and modelers can help to guide the scaling of important, yet small-scale, processes to quantify their important roles in larger-scale ecosystem fluxes.

  10. Microbial Community Profile and Water Quality in a Protected Area of the Caatinga Biome.

    PubMed

    Lopes, Fabyano Alvares Cardoso; Catão, Elisa Caldeira Pires; Santana, Renata Henrique; Cabral, Anderson de Souza; Paranhos, Rodolfo; Rangel, Thiago Pessanha; de Rezende, Carlos Eduardo; Edwards, Robert A; Thompson, Cristiane C; Thompson, Fabiano L; Kruger, Ricardo Henrique

    2016-01-01

    The Caatinga is a semi-arid biome in northeast Brazil. The Paraguaçú River is located in the Caatinga biome, and part of its course is protected by the National Park of Chapada Diamantina (PNCD). In this study we evaluated the effect of PNCD protection on the water quality and microbial community diversity of this river by analyzing water samples obtained from points located inside and outside the PNCD in both wet and dry seasons. Results of water quality analysis showed higher levels of silicate, ammonia, particulate organic carbon, and nitrite in samples from the unprotected area compared with those from protected areas. Pyrosequencing of the 16S rRNA genes revealed that Burkholderiales was abundant in samples from all three sites during both seasons and was represented primarily by the genus Polynucleobacter and members of the Comamonadaceae family (e.g., genus Limnohabitans). During the dry season, the unprotected area showed a higher abundance of Flavobacterium sp. and Arthrobacter sp., which are frequently associated with the presence and/or degradation of arsenic and pesticide compounds. In addition, genes that appear to be related to agricultural impacts on the environment, as well as those involved in arsenic and cadmium resistance, copper homeostasis, and propanediol utilization, were detected in the unprotected areas by metagenomic sequencing. Although PNCD protection improves water quality, agricultural activities around the park may affect water quality within the park and may account for the presence of bacteria capable of pesticide degradation and assimilation, evidencing possible anthropogenic impacts on the Caatinga.

  11. Microbial Community Profile and Water Quality in a Protected Area of the Caatinga Biome

    PubMed Central

    Lopes, Fabyano Alvares Cardoso; Catão, Elisa Caldeira Pires; Santana, Renata Henrique; Cabral, Anderson de Souza; Paranhos, Rodolfo; Rangel, Thiago Pessanha; de Rezende, Carlos Eduardo; Edwards, Robert A.; Thompson, Cristiane C.

    2016-01-01

    The Caatinga is a semi-arid biome in northeast Brazil. The Paraguaçú River is located in the Caatinga biome, and part of its course is protected by the National Park of Chapada Diamantina (PNCD). In this study we evaluated the effect of PNCD protection on the water quality and microbial community diversity of this river by analyzing water samples obtained from points located inside and outside the PNCD in both wet and dry seasons. Results of water quality analysis showed higher levels of silicate, ammonia, particulate organic carbon, and nitrite in samples from the unprotected area compared with those from protected areas. Pyrosequencing of the 16S rRNA genes revealed that Burkholderiales was abundant in samples from all three sites during both seasons and was represented primarily by the genus Polynucleobacter and members of the Comamonadaceae family (e.g., genus Limnohabitans). During the dry season, the unprotected area showed a higher abundance of Flavobacterium sp. and Arthrobacter sp., which are frequently associated with the presence and/or degradation of arsenic and pesticide compounds. In addition, genes that appear to be related to agricultural impacts on the environment, as well as those involved in arsenic and cadmium resistance, copper homeostasis, and propanediol utilization, were detected in the unprotected areas by metagenomic sequencing. Although PNCD protection improves water quality, agricultural activities around the park may affect water quality within the park and may account for the presence of bacteria capable of pesticide degradation and assimilation, evidencing possible anthropogenic impacts on the Caatinga. PMID:26881432

  12. Microbial Community Profile and Water Quality in a Protected Area of the Caatinga Biome.

    PubMed

    Lopes, Fabyano Alvares Cardoso; Catão, Elisa Caldeira Pires; Santana, Renata Henrique; Cabral, Anderson de Souza; Paranhos, Rodolfo; Rangel, Thiago Pessanha; de Rezende, Carlos Eduardo; Edwards, Robert A; Thompson, Cristiane C; Thompson, Fabiano L; Kruger, Ricardo Henrique

    2016-01-01

    The Caatinga is a semi-arid biome in northeast Brazil. The Paraguaçú River is located in the Caatinga biome, and part of its course is protected by the National Park of Chapada Diamantina (PNCD). In this study we evaluated the effect of PNCD protection on the water quality and microbial community diversity of this river by analyzing water samples obtained from points located inside and outside the PNCD in both wet and dry seasons. Results of water quality analysis showed higher levels of silicate, ammonia, particulate organic carbon, and nitrite in samples from the unprotected area compared with those from protected areas. Pyrosequencing of the 16S rRNA genes revealed that Burkholderiales was abundant in samples from all three sites during both seasons and was represented primarily by the genus Polynucleobacter and members of the Comamonadaceae family (e.g., genus Limnohabitans). During the dry season, the unprotected area showed a higher abundance of Flavobacterium sp. and Arthrobacter sp., which are frequently associated with the presence and/or degradation of arsenic and pesticide compounds. In addition, genes that appear to be related to agricultural impacts on the environment, as well as those involved in arsenic and cadmium resistance, copper homeostasis, and propanediol utilization, were detected in the unprotected areas by metagenomic sequencing. Although PNCD protection improves water quality, agricultural activities around the park may affect water quality within the park and may account for the presence of bacteria capable of pesticide degradation and assimilation, evidencing possible anthropogenic impacts on the Caatinga. PMID:26881432

  13. Reoperative midface reconstruction.

    PubMed

    Acero, Julio; García, Eloy

    2011-02-01

    Reoperative reconstruction of the midface is a challenging issue because of the complexity of this region and the severity of the aesthetic and functional sequela related to the absence or failure of a primary reconstruction. The different situations that can lead to the indication of a reoperative reconstructive procedure after previous oncologic ablative procedures in the midface are reviewed. Surgical techniques, anatomic problems, and limitations affecting the reoperative reconstruction in this region of the head and neck are discussed.

  14. The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes.

    PubMed

    Angly, Florent E; Willner, Dana; Prieto-Davó, Alejandra; Edwards, Robert A; Schmieder, Robert; Vega-Thurber, Rebecca; Antonopoulos, Dionysios A; Barott, Katie; Cottrell, Matthew T; Desnues, Christelle; Dinsdale, Elizabeth A; Furlan, Mike; Haynes, Matthew; Henn, Matthew R; Hu, Yongfei; Kirchman, David L; McDole, Tracey; McPherson, John D; Meyer, Folker; Miller, R Michael; Mundt, Egbert; Naviaux, Robert K; Rodriguez-Mueller, Beltran; Stevens, Rick; Wegley, Linda; Zhang, Lixin; Zhu, Baoli; Rohwer, Forest

    2009-12-01

    Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions

  15. The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes.

    PubMed

    Angly, Florent E; Willner, Dana; Prieto-Davó, Alejandra; Edwards, Robert A; Schmieder, Robert; Vega-Thurber, Rebecca; Antonopoulos, Dionysios A; Barott, Katie; Cottrell, Matthew T; Desnues, Christelle; Dinsdale, Elizabeth A; Furlan, Mike; Haynes, Matthew; Henn, Matthew R; Hu, Yongfei; Kirchman, David L; McDole, Tracey; McPherson, John D; Meyer, Folker; Miller, R Michael; Mundt, Egbert; Naviaux, Robert K; Rodriguez-Mueller, Beltran; Stevens, Rick; Wegley, Linda; Zhang, Lixin; Zhu, Baoli; Rohwer, Forest

    2009-12-01

    Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions.

  16. The role of plant functional trade-offs for biodiversity changes and biome shifts under scenarios of global climatic change

    NASA Astrophysics Data System (ADS)

    Reu, B.; Zaehle, S.; Proulx, R.; Bohn, K.; Kleidon, A.; Pavlick, R.; Schmidtlein, S.

    2011-05-01

    The global geographic distribution of biodiversity and biomes is determined by species-specific physiological tolerances to climatic constraints. Current vegetation models employ empirical bioclimatic relationships to predict present-day vegetation patterns and to forecast biodiversity changes and biome shifts under climatic change. In this paper, we consider trade-offs in plant functioning and their responses under climatic changes to forecast and explain changes in plant functional richness and shifts in biome geographic distributions. The Jena Diversity model (JeDi) simulates plant survival according to essential plant functional trade-offs, including ecophysiological processes such as water uptake, photosynthesis, allocation, reproduction and phenology. We use JeDi to quantify changes in plant functional richness and biome shifts between present-day and a range of possible future climates from two SRES emission scenarios (A2 and B1) and seven global climate models using metrics of plant functional richness and functional identity. Our results show (i) a significant loss of plant functional richness in the tropics, (ii) an increase in plant functional richness at mid and high latitudes, and (iii) a pole-ward shift of biomes. While these results are consistent with the findings of empirical approaches, we are able to explain them in terms of the plant functional trade-offs involved in the allocation, metabolic and reproduction strategies of plants. We conclude that general aspects of plant physiological tolerances can be derived from functional trade-offs, which may provide a useful process- and trait-based alternative to bioclimatic relationships. Such a mechanistic approach may be particularly relevant when addressing vegetation responses to climatic changes that encounter novel combinations of climate parameters that do not exist under contemporary climate.

  17. Assessment of the Proximity of MODIS Active Fire Detections to Roads and Navigable Rivers in the Brazilian Tropical Moist Forest Biome

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Roy, D. P.; Souza, C., Jr.; Cochrane, M. A.; Boschetti, L.

    2011-12-01

    The Brazilian tropical moist forest biome supports the world's largest contiguous area of tropical forests and is experiencing high rates of deforestation. Fires are proxy indicators of human pressure and deforestation. Previous studies using satellite active fire detections and the official Brazilian road vector data (IBGE- Brazilian Institute of Geography and Statistics), including state, federal and some private roads, indicate that the majority of fires occur close to roads. In this quantitative study a new data set that also includes unofficial roads and navigable rivers acquired from Imazon (a non-profit research institution with a mission to promote sustainable development in the Amazon) are used to quantify annual distance distributions of MODIS Aqua and Terra satellite active fire detections for 2003 to 2009. The majority (> 93%) of active fire detections are within 10 km of a road or a navigable river bank. Inter-state and inter-annual differences in the distance distributions, that may capture inter-annual rates of road expansion and fire variability, are also presented. These results may be useful for improvement of regional fire prediction models.

  18. [Breast reconstruction after mastectomy].

    PubMed

    Ho Quoc, C; Delay, E

    2013-02-01

    The mutilating surgery for breast cancer causes deep somatic and psychological sequelae. Breast reconstruction can mitigate these effects and permit the patient to help rebuild their lives. The purpose of this paper is to focus on breast reconstruction techniques and on factors involved in breast reconstruction. The methods of breast reconstruction are presented: objectives, indications, different techniques, operative risks, and long-term monitoring. Many different techniques can now allow breast reconstruction in most patients. Clinical cases are also presented in order to understand the results we expect from a breast reconstruction. Breast reconstruction provides many benefits for patients in terms of rehabilitation, wellness, and quality of life. In our mind, breast reconstruction should be considered more as an opportunity and a positive choice (the patient can decide to do it), than as an obligation (that the patient would suffer). The consultation with the surgeon who will perform the reconstruction is an important step to give all necessary informations. It is really important that the patient could speak again with him before undergoing reconstruction, if she has any doubt. The quality of information given by medical doctors is essential to the success of psychological intervention. This article was written in a simple, and understandable way to help gynecologists giving the best information to their patients. It is maybe also possible to let them a copy of this article, which would enable them to have a written support and would facilitate future consultation with the surgeon who will perform the reconstruction.

  19. Probabilistic Multilocus Haplotype Reconstruction in Outcrossing Tetraploids.

    PubMed

    Zheng, Chaozhi; Voorrips, Roeland E; Jansen, Johannes; Hackett, Christine A; Ho, Julie; Bink, Marco C A M

    2016-05-01

    For both plant (e.g., potato) and animal (e.g., salmon) species, unveiling the genetic architecture of complex traits is key to the genetic improvement of polyploids in agriculture. F1 progenies of a biparental cross are often used for quantitative trait loci (QTL) mapping in outcrossing polyploids, where haplotype reconstruction by identifying the parental origins of marker alleles is necessary. In this paper, we build a novel and integrated statistical framework for multilocus haplotype reconstruction in a full-sib tetraploid family from biallelic marker dosage data collected from single-nucleotide polymorphism (SNP) arrays or next-generation sequencing technology given a genetic linkage map. Compared to diploids, in tetraploids, additional complexity needs to be addressed, including double reduction and possible preferential pairing of chromosomes. We divide haplotype reconstruction into two stages: parental linkage phasing for reconstructing the most probable parental haplotypes and ancestral inference for probabilistically reconstructing the offspring haplotypes conditional on the reconstructed parental haplotypes. The simulation studies and the application to real data from potato show that the parental linkage phasing is robust to, and that the subsequent ancestral inference is accurate for, complex chromosome pairing behaviors during meiosis, various marker segregation types, erroneous genetic maps except for long-range disturbances of marker ordering, various amounts of offspring dosage errors (up to ∼20%), and various fractions of missing data in parents and offspring dosages. PMID:26920758

  20. Curve Number estimation from rainfall-runoff data in the Brazilian Cerrado Biome

    NASA Astrophysics Data System (ADS)

    Oliveira, P. S.; Nearing, M.; Rodrigues, D. B.; Panachuki, E.; Wendland, E.

    2013-12-01

    The Brazilian Cerrado (Savanna) is considered one of the most important biomes for Brazilian water resources; meanwhile, it is experiencing major losses of its natural landscapes due to the pressures of food and energy production, which has caused changes in hydrological processes. To evaluate these changes hydrologic models have been used. The Curve Number (SCS-CN) method has been widely employed to estimate direct runoff from a given rainfall event, however, there are some uncertainties for estimating this parameter, particularly for use in areas with native vegetation. The objectives of this study were to measure natural rainfall-driven rates of runoff under native Cerrado vegetation and under the main crops found in this biome, and derive associated CN values from five methods. We used six plots of 5 x 20 m (100 m2) in size, with three replications of undisturbed Cerrado and three under bare soil (Ortic Quartzarenic Neosol, hydrological soil class A) and 10 plots of 3.5 x 22.15 m (77.5 m2), with two replications for pasture, soy, millet, sugarcane and bare soil (Dystrophic Red Argisol, hydrological soil class B). Plots were monitored between October 2011 and April 2013. The five methods used to obtain CN values were median, geometric mean, arithmetic mean, nonlinear, least squares fit, and standard asymptotic fit. We found reasonable results for CN calibration for the undisturbed Cerrado only by using the nonlinear least squares fit. CN obtained from the standard table values was not adequate to estimate runoff for this condition. The standard table and the five CN methods presented satisfactory results for the other land covers studied. From our results we can suggest the best CN values for each land cover: Cerrado 49.8 (47.9-51.1), bare soil class-A 83.9 (74.4-93.4), bare soil class-B 88.3 (81.7-94.8), pasture 73.7 (62.9-84.5), soy 83.5 (80.6-86.4), millet 73.9 (67.4-80.4) and sugarcane 83.9 (80.6-87.3). These CN values and ranges provide guidance for

  1. Future projections of fire danger in Brazilian biomes in the 21st century

    NASA Astrophysics Data System (ADS)

    Libonati, Renata; Silva, Patrícia; DaCamara, Carlos; Bastos, Ana

    2016-04-01

    In the global context, Brazil is one of the regions more severely affected by fire occurrences, with important consequences in the global CO2 balance, the state of the Amazon forest and the ecological diversity of the region. Brazil is also one of the few regions experiencing a raise in annual mean temperature above 2.5o during the 20th century, which may further increase between 2o and 7o until 2100 and, likely, be accompanied by a decrease in precipitation [1]. As the fire occurrence and severity largely depends on these two variables, it is worth assessing the evolution of fire danger for the coming decades. In order to obtain a detailed characterization of the future fire patterns in the different biomes of Brazil, we use outputs from a regional-downscaling of the EC-Earth climate model at 0.44 degrees spatial resolution for two future scenarios, an intermediate (RCP4.5) and a more severe (RCP8.5) one. We use a fire danger index specifically developed for the Brazilian climate and biome characteristics, the IFR from INPE. This index relies on values of maximum temperature, accumulated precipitation over different periods, minimum relative humidity and vegetation cover to estimate the likelihood of fire occurrence. We find a systematic increase of the days with critical fire risk, which is more pronounced in RCP8.5 and mostly affects months when fire activity takes place. Temperature increase is the most determinant factor for the increase in fire danger in the dry regions of savannah and shrubland, a result to be expected as fuel is already very dry. [1] Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner, 2013: Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on

  2. Modeling the grazing effect on dry grassland carbon cycling with modified Biome-BGC grazing model

    NASA Astrophysics Data System (ADS)

    Luo, Geping; Han, Qifei; Li, Chaofan; Yang, Liao

    2014-05-01

    Identifying the factors that determine the carbon source/sink strength of ecosystems is important for reducing uncertainty in the global carbon cycle. Arid grassland ecosystems are a widely distributed biome type in Xinjiang, Northwest China, covering approximately one-fourth the country's land surface. These grasslands are the habitat for many endemic and rare plant and animal species and are also used as pastoral land for livestock. Using the modified Biome-BGC grazing model, we modeled carbon dynamics in Xinjiang for grasslands that varied in grazing intensity. In general, this regional simulation estimated that the grassland ecosystems in Xinjiang acted as a net carbon source, with a value of 0.38 Pg C over the period 1979-2007. There were significant effects of grazing on carbon dynamics. An over-compensatory effect in net primary productivity (NPP) and vegetation carbon (C) stock was observed when grazing intensity was lower than 0.40 head/ha. Grazing resulted in a net carbon source of 23.45 g C m-2 yr-1, which equaled 0.37 Pg in Xinjiang in the last 29 years. In general, grazing decreased vegetation C stock, while an increasing trend was observed with low grazing intensity. The soil C increased significantly (17%) with long-term grazing, while the soil C stock exhibited a steady trend without grazing. These findings have implications for grassland ecosystem management as it relates to carbon sequestration and climate change mitigation, e.g., removal of grazing should be considered in strategies that aim to increase terrestrial carbon sequestrations at local and regional scales. One of the greatest limitations in quantifying the effects of herbivores on carbon cycling is identifying the grazing systems and intensities within a given region. We hope our study emphasizes the need for large-scale assessments of how grazing impacts carbon cycling. Most terrestrial ecosystems in Xinjiang have been affected by disturbances to a greater or lesser extent in the past

  3. Water-Use Efficiency of Two Arid-Zone Biomes of Central Australia

    NASA Astrophysics Data System (ADS)

    Tarin, T.

    2015-12-01

    Australia is an extensive country, of which 70% is covered by arid or semi-arid ecosystems. These ecosystems are influenced by the Australian monsoon, which occurs in summer (December-February). The Indian Ocean Dipole and El Niño/Southern Oscillation (ENSO) are two weather systems that most influence weather patterns in this region, and both systems have been shown to be affected by climate change. Two biomes dominate in this region: (1) Mulga, a low woodland dominated by species of the genus Acacia; and (2) open Corymbia-savanna where the dominant cover is Spinifex (C4 grass) with widely spaced tall evergreen Corymbia trees. Within each biome an eddy covariance tower has been in operation for the past 3-5 years. The aim of this study is to understand water-use efficiency (WUE) of those ecosystems, by using the indicator: WUE= Gross Primary Production (GPP) / Evapotranspiration (ET). We analysed continuous measurements of ecosystem WUE during dry (May-November) and wet (December-February) seasons from September 2012 to May 2015. At the Mulga site, 765mm of rain was received, with more than 80% (633mm) occurring during the wet season. Similarly 80% (706mm) of total rainfall (844mm) was received by the Corymbia-savanna in the wet season. ET accounted for 82% of rainfall for the Mulga site and for the Corymbia-savanna site ET was 87% of total rainfall for the study period. Total GPP for the last three wet seasons at the Mulga site was 1590 gC·m-2, while in the dry seasons was a total of 65.5 gC m-2. By contrast total GPP at the Corymbia-savanna site was 424 gC m-2 and 22.4 gC·m-2 for wet and dry seasons respectively. WUE during the wet seasons was 3.1 and 0.7 and, 1.3 and 0.4 (gC m-2 mm-1 H2O) in dry seasons for Mulga and Corymbia-savanna sites respectively. We found the Mulga site is the most water efficient ecosystem, these quantifications of the WUE in central Australia where similar to other studies in arid regions, where WUE decreased with increasing aridity.

  4. Licensing the future: report on BioMed Central's public consultation on open data in peer-reviewed journals.

    PubMed

    Hrynaszkiewicz, Iain; Busch, Stefan; Cockerill, Matthew J

    2013-01-01

    We report the outcomes of BioMed Central's public consultation on implementing open data-compliant licensing in peer-reviewed open access journals. Respondents (42) to the 2012 consultation were six to one in favor (29 in support; 5 against; 8 abstentions) of changing our authors' default open access copyright license agreement, to introduce the Creative Commons CC0 public domain waiver for data published in BioMed Central's journals. We summarize the different questions we received in response to the consultation and our responses to them - matters such as citation, plagiarism, patient privacy, and commercial use were raised. In light of the support for open data in our journals we outline our plans to implement, in September 2013, a combined Creative Commons Attribution license for published articles (papers) and Creative Commons CC0 waiver for published data. PMID:23962139

  5. Licensing the future: report on BioMed Central's public consultation on open data in peer-reviewed journals.

    PubMed

    Hrynaszkiewicz, Iain; Busch, Stefan; Cockerill, Matthew J

    2013-08-21

    We report the outcomes of BioMed Central's public consultation on implementing open data-compliant licensing in peer-reviewed open access journals. Respondents (42) to the 2012 consultation were six to one in favor (29 in support; 5 against; 8 abstentions) of changing our authors' default open access copyright license agreement, to introduce the Creative Commons CC0 public domain waiver for data published in BioMed Central's journals. We summarize the different questions we received in response to the consultation and our responses to them - matters such as citation, plagiarism, patient privacy, and commercial use were raised. In light of the support for open data in our journals we outline our plans to implement, in September 2013, a combined Creative Commons Attribution license for published articles (papers) and Creative Commons CC0 waiver for published data.

  6. Head and neck reconstruction

    PubMed Central

    Yadav, Prabha

    2013-01-01

    Whatever is excisable, is reconstructable! “You excise, we will reconstruct” are the confident words of reconstructive surgeons today. Reconstruction with multiple flaps has become routine. Radial artery (FRAF), Antero lateral thigh (ALT) and Fibula osteo cutaneous flap (FFOCF) are three most popular free flaps which can reconstruct any defect with excellent asthetics and performance. Radial Artery provides thin, pliable innervated skin; ALT large amount of skin & bulk; and FFOCF strong 22 to 25 centimetres of bone and reliable skin paddle. Free flap survival has gone to 98% in most of the renouned institutes and is an established escalator in management of defects. PMID:24501464

  7. Flexor pulley reconstruction.

    PubMed

    Dy, Christopher J; Daluiski, Aaron

    2013-05-01

    Flexor pulley reconstruction is a challenging surgery. Injuries often occur after traumatic lacerations or forceful extension applied to an acutely flexed finger. Surgical treatment is reserved for patients with multiple closed pulley ruptures, persistent pain, or dysfunction after attempted nonoperative management of a single pulley rupture, or during concurrent or staged flexor tendon repair or reconstruction. If the pulley cannot be repaired primarily, pulley reconstruction can be performed using graft woven into remnant pulley rim or looping graft around the phalanx. Regardless of the reconstructive technique, the surgeon should emulate the length, tension, and glide of the native pulley. PMID:23660059

  8. Soil-Borne Bacterial Structure and Diversity Does Not Reflect Community Activity in Pampa Biome

    PubMed Central

    Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig

    2013-01-01

    The Pampa biome is considered one of the main hotspots of the world’s biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated. PMID:24146873

  9. Local climatic conditions constrain soil yeast diversity patterns in Mediterranean forests, woodlands and scrub biome.

    PubMed

    Yurkov, Andrey M; Röhl, Oliver; Pontes, Ana; Carvalho, Cláudia; Maldonado, Cristina; Sampaio, José Paulo

    2016-02-01

    Soil yeasts represent a poorly known fraction of the soil microbiome due to limited ecological surveys. Here, we provide the first comprehensive inventory of cultivable soil yeasts in a Mediterranean ecosystem, which is the leading biodiversity hotspot for vascular plants and vertebrates in Europe. We isolated and identified soil yeasts from forested sites of Serra da Arrábida Natural Park (Portugal), representing the Mediterranean forests, woodlands and scrub biome. Both cultivation experiments and the subsequent species richness estimations suggest the highest species richness values reported to date, resulting in a total of 57 and 80 yeast taxa, respectively. These values far exceed those reported for other forest soils in Europe. Furthermore, we assessed the response of yeast diversity to microclimatic environmental factors in biotopes composed of the same plant species but showing a gradual change from humid broadleaf forests to dry maquis. We observed that forest properties constrained by precipitation level had strong impact on yeast diversity and on community structure and lower precipitation resulted in an increased number of rare species and decreased evenness values. In conclusion, the structure of soil yeast communities mirrors the environmental factors that affect aboveground phytocenoses, aboveground biomass and plant projective cover.

  10. Methane Production and Transport within the Marsh Biome of Biosphere 2

    NASA Technical Reports Server (NTRS)

    Molnar, Jennifer; Goodridge, Kelven

    1997-01-01

    In recent decades, the concentration of methane in the earth's atmosphere increased 1-2% annually. It's rate of increases, combined with methane's effectiveness as a greenhouse gas, has led to an intensive research effort to determine the sources and sinks of the gas in the environment. Biosphere 2 offers a unique opportunity to contribute to the effort because it lacks a major photochemical sink present in the Earth's atmosphere. Researchers can therefore concentrate on biological processes involved in methane cycles. Wetlands are a large source of atmospheric methane, due to anoxic conditions in the sediments and the abundance of organic materials. In order to determine if these conditions in Biosphere 2 also promote methane production, this study looked for the fluxes of methane and methods of transport of the gas from from the water and sediments to the atmosphere in the Marsh Biome. Fluxes of methane from the sediments and waters were measured using static chambers, peepers, and leaf bags. Fluxes and vertical profiles of methane in the sediments show that substantial amounts of methane are being produced in the marsh and are being transported into the Biosphere 2 environment.

  11. A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2.

    PubMed

    Leakey, Andrew D B; Bishop, Kristen A; Ainsworth, Elizabeth A

    2012-06-01

    A key finding from elevated [CO(2)] field experiments is that the impact of elevated [CO(2)] on plant and ecosystem function is highly dependent upon other environmental conditions, namely temperature and the availability of nutrients and soil moisture. In addition, there is significant variation in the response to elevated [CO(2)] among plant functional types, species and crop varieties. However, experimental data on plant and ecosystem responses to elevated [CO(2)] are strongly biased to economically and ecologically important systems in the temperate zone. There is a multi-biome gap in experimental data that is most severe in the tropics and subtropics, but also includes high latitudes. Physiological understanding of the environmental conditions and species found at high and low latitudes suggest they may respond differently to elevated [CO(2)] than well-studied temperate systems. Addressing this knowledge gap should be a high priority as it is vital to understanding 21st century food supply and ecosystem feedbacks on climate change. PMID:22284851

  12. Antimicrobial potential of actinobacteria isolated from the rhizosphere of the Caatinga biome plant Caesalpinia pyramidalis Tul.

    PubMed

    Silva-Lacerda, G R; Santana, R C F; Vicalvi-Costa, M C V; Solidônio, E G; Sena, K X F R; Lima, G M S; Araújo, J M

    2016-03-04

    Actinobacteria are known to produce various secondary metabolites having antibiotic effects. This study assessed the antimicrobial potential of actinobacteria isolated from the rhizosphere of Caesalpinia pyramidalis Tul. from the Caatinga biome. Sixty-eight actinobacteria isolates were evaluated for antimicrobial activity against different microorganisms by disk diffusion and submerged fermentation, using different culture media, followed by determination of minimum inhibitory concentration (MIC) and chemical prospecting of the crude extract. Of the isolates studied, 52.9% of those isolated at 37°C and 47.05% of those isolated at 45°C had activity against Bacillus subtilis, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Fusarium moniliforme, and Candida albicans. When compared with others actinobacteria, the isolate C1.129 stood out with better activity and was identified by 16S rDNA gene analysis as Streptomyces parvulus. The crude ethanol extract showed an MIC of 0.97 μg/mL for MRSA and B. subtilis, while the ethyl acetate extract showed MIC of 3.9 μg/mL for S. aureus and MRSA, showing the greatest potential among the metabolites produced. Chemical prospecting revealed the presence of mono/sesquiterpenes, proanthocyanidin, triterpenes, and steroids in both crude extracts. This study evaluates S. parvulus activity against multi-resistant microorganisms such as MRSA. Thus, it proves that low-fertility soil, as is found in the Caatinga, may contain important microorganisms for the development of new antimicrobial drugs.

  13. Predicting the responsiveness of soil biodiversity to deforestation: a cross-biome study.

    PubMed

    Crowther, Thomas W; Maynard, Daniel S; Leff, Jonathan W; Oldfield, Emily E; McCulley, Rebecca L; Fierer, Noah; Bradford, Mark A

    2014-09-01

    The consequences of deforestation for aboveground biodiversity have been a scientific and political concern for decades. In contrast, despite being a dominant component of biodiversity that is essential to the functioning of ecosystems, the responses of belowground biodiversity to forest removal have received less attention. Single-site studies suggest that soil microbes can be highly responsive to forest removal, but responses are highly variable, with negligible effects in some regions. Using high throughput sequencing, we characterize the effects of deforestation on microbial communities across multiple biomes and explore what determines the vulnerability of microbial communities to this vegetative change. We reveal consistent directional trends in the microbial community response, yet the magnitude of this vegetation effect varied between sites, and was explained strongly by soil texture. In sandy sites, the difference in vegetation type caused shifts in a suite of edaphic characteristics, driving substantial differences in microbial community composition. In contrast, fine-textured soil buffered microbes against these effects and there were minimal differences between communities in forest and grassland soil. These microbial community changes were associated with distinct changes in the microbial catabolic profile, placing community changes in an ecosystem functioning context. The universal nature of these patterns allows us to predict where deforestation will have the strongest effects on soil biodiversity, and how these effects could be mitigated.

  14. Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil.

    PubMed

    dos Reis, Fábio Bueno; Simon, Marcelo F; Gross, Eduardo; Boddey, Robert M; Elliott, Geoffrey N; Neto, Nicolau E; Loureiro, M de Fatima; de Queiroz, Luciano P; Scotti, Maria Rita; Chen, Wen-Ming; Norén, Agneta; Rubio, Maria C; de Faria, Sergio M; Bontemps, Cyril; Goi, Silvia R; Young, J Peter W; Sprent, Janet I; James, Euan K

    2010-06-01

    *An extensive survey of nodulation in the legume genus Mimosa was undertaken in two major biomes in Brazil, the Cerrado and the Caatinga, in both of which there are high degrees of endemicity of the genus. *Nodules were collected from 67 of the 70 Mimosa spp. found. Thirteen of the species were newly reported as nodulating. Nodules were examined by light and electron microscopy, and all except for M. gatesiae had a structure typical of effective Mimosa nodules. The endosymbiotic bacteria in nodules from all of the Mimosa spp. were identified as Burkholderia via immunolabelling with an antibody against Burkholderia phymatum STM815. *Twenty of the 23 Mimosa nodules tested were shown to contain nitrogenase by immunolabelling with an antibody to the nitrogenase Fe- (nifH) protein, and using the delta(15)N ((15)N natural abundance) technique, contributions by biological N(2) fixation of up to 60% of total plant N were calculated for Caatinga Mimosa spp. *It is concluded that nodulation in Mimosa is a generic character, and that the preferred symbionts of Brazilian species are Burkholderia. This is the first study to demonstrate N(2) fixation by beta-rhizobial symbioses in the field.

  15. Stream denitrification across biomes and its response to anthropogenic nitrate loading.

    PubMed

    Mulholland, Patrick J; Helton, Ashley M; Poole, Geoffrey C; Hall, Robert O; Hamilton, Stephen K; Peterson, Bruce J; Tank, Jennifer L; Ashkenas, Linda R; Cooper, Lee W; Dahm, Clifford N; Dodds, Walter K; Findlay, Stuart E G; Gregory, Stanley V; Grimm, Nancy B; Johnson, Sherri L; McDowell, William H; Meyer, Judy L; Valett, H Maurice; Webster, Jackson R; Arango, Clay P; Beaulieu, Jake J; Bernot, Melody J; Burgin, Amy J; Crenshaw, Chelsea L; Johnson, Laura T; Niederlehner, B R; O'Brien, Jonathan M; Potter, Jody D; Sheibley, Richard W; Sobota, Daniel J; Thomas, Suzanne M

    2008-03-13

    Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing and terrestrial ecosystems are becoming increasingly nitrogen-saturated, causing more bioavailable nitrogen to enter groundwater and surface waters. Large-scale nitrogen budgets show that an average of about 20-25 per cent of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins, indicating that substantial sinks for nitrogen must exist in the landscape. Streams and rivers may themselves be important sinks for bioavailable nitrogen owing to their hydrological connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favour microbial denitrification. Here we present data from nitrogen stable isotope tracer experiments across 72 streams and 8 regions representing several biomes. We show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of in-stream nitrate that is removed from transport. Our data suggest that the total uptake of nitrate is related to ecosystem photosynthesis and that denitrification is related to ecosystem respiration. In addition, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.

  16. Predicting the responsiveness of soil biodiversity to deforestation: a cross-biome study.

    PubMed

    Crowther, Thomas W; Maynard, Daniel S; Leff, Jonathan W; Oldfield, Emily E; McCulley, Rebecca L; Fierer, Noah; Bradford, Mark A

    2014-09-01

    The consequences of deforestation for aboveground biodiversity have been a scientific and political concern for decades. In contrast, despite being a dominant component of biodiversity that is essential to the functioning of ecosystems, the responses of belowground biodiversity to forest removal have received less attention. Single-site studies suggest that soil microbes can be highly responsive to forest removal, but responses are highly variable, with negligible effects in some regions. Using high throughput sequencing, we characterize the effects of deforestation on microbial communities across multiple biomes and explore what determines the vulnerability of microbial communities to this vegetative change. We reveal consistent directional trends in the microbial community response, yet the magnitude of this vegetation effect varied between sites, and was explained strongly by soil texture. In sandy sites, the difference in vegetation type caused shifts in a suite of edaphic characteristics, driving substantial differences in microbial community composition. In contrast, fine-textured soil buffered microbes against these effects and there were minimal differences between communities in forest and grassland soil. These microbial community changes were associated with distinct changes in the microbial catabolic profile, placing community changes in an ecosystem functioning context. The universal nature of these patterns allows us to predict where deforestation will have the strongest effects on soil biodiversity, and how these effects could be mitigated. PMID:24692253

  17. Microbial quality of soil from the Pampa biome in response to different grazing pressures

    PubMed Central

    Vargas, Rafael S.; Bataiolli, Renata; da Costa, Pedro B.; Lisboa, Bruno; Passaglia, Luciane Maria P.; Beneduzi, Anelise; Vargas, Luciano K.

    2015-01-01

    The aim of this study was to evaluate the impact of different grazing pressures on the activity and diversity of soil bacteria. We performed a long-term experiment in Eldorado do Sul, southern Brazil, that assessed three levels of grazing pressure: high pressure (HP), with 4% herbage allowance (HA), moderate pressure (MP), with 12% HA, and low pressure (LP), with 16% HA. Two reference areas were also assessed, one of never-grazed native vegetation (NG) and another of regenerated vegetation after two years of grazing (RG). Soil samples were evaluated for microbial biomass and enzymatic (β-glucosidase, arylsulfatase and urease) activities. The structure of the bacterial community and the population of diazotrophic bacteria were evaluated by RFLP of the 16S rRNA and nifH genes, respectively. The diversity of diazotrophic bacteria was assessed by partial sequencing of the 16S rDNA gene. The presence of grazing animals increased soil microbial biomass in MP and HP. The structures of the bacterial community and the populations of diazotrophic bacteria were altered by the different grazing managements, with a greater diversity of diazotrophic bacteria in the LP treatment. Based on the characteristics evaluated, the MP treatment was the most appropriate for animal production and conservation of the Pampa biome. PMID:26273224

  18. Conditions that maximize floodplain downed wood volumes: a comparison across three biomes

    NASA Astrophysics Data System (ADS)

    Lininger, K.; Wohl, E.; Rose, J. R.; Sutfin, N. A.

    2015-12-01

    Floodplain downed wood can provide important habitat for aquatic, riparian, and terrestrial organisms. This wood, which can function as both a storage area and source for large wood in river channels, can also be a significant organic carbon stock in river-floodplain ecosystems. We present data on downed wood volumes for different floodplain vegetation communities in the central Yukon River Basin in interior Alaska. We measured downed wood volume per unit floodplain area and wood decay characteristics within four distinct floodplain vegetation communities, and equate downed wood volumes per unit area to total organic carbon per unit area. Preliminary results suggest that downed wood volumes are greatest in disturbed white spruce forests, compared to undisturbed white spruce, deciduous forests, and black spruce woody wetlands. Disturbances contributing to large wood volumes include fire, wind, and ice jam floods. We also compare wood volumes in interior Alaska to downed wood volumes in other unmanaged floodplain vegetation communities, including a subtropical lowland alluvial river-floodplain and a semi-arid mountainous river-floodplain. These three datasets provide comparisons of unmanaged riparian forests across diverse climatic settings and highlight the climatic conditions and biomes that result in substantial downed wood and organic carbon storage in floodplain environments.

  19. Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes

    PubMed Central

    Bahn, M.; Reichstein, M.; Davidson, E. A.; Grünzweig, J.; Jung, M.; Carbone, M. S.; Epron, D.; Misson, L.; Nouvellon, Y.; Roupsard, O.; Savage, K.; Trumbore, S. E.; Gimeno, C.; Yuste, J. Curiel; Tang, J.; Vargas, R.; Janssens, I. A.

    2011-01-01

    Soil respiration (SR) constitutes the largest flux of CO2 from terrestrial ecosystems to the atmosphere. However, there still exist considerable uncertainties as to its actual magnitude, as well as its spatial and interannual variability. Based on a reanalysis and synthesis of 80 site-years for 57 forests, plantations, savannas, shrublands and grasslands from boreal to tropical climates we present evidence that total annual SR is closely related to SR at mean annual soil temperature (SRMAT), irrespective of the type of ecosystem and biome. This is theoretically expected for non water-limited ecosystems within most of the globally occurring range of annual temperature variability and sensitivity (Q10). We further show that for seasonally dry sites where annual precipitation (P) is lower than potential evapotranspiration (PET), annual SR can be predicted from wet season SRMAT corrected for a factor related to P/PET. Our finding indicates that it can be sufficient to measure SRMAT for obtaining a well constrained estimate of its annual total. This should substantially increase our capacity for assessing the spatial distribution of soil CO2 emissions across ecosystems, landscapes and regions, and thereby contribute to improving the spatial resolution of a major component of the global carbon cycle. PMID:23293656

  20. Stream denitrification across biomes and its response to anthropogenic nitrate loading

    USGS Publications Warehouse

    Mulholland, P.J.; Helton, A.M.; Poole, G.C.; Hall, R.O.; Hamilton, S.K.; Peterson, B.J.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Dodds, W.K.; Findlay, S.E.G.; Gregory, S.V.; Grimm, N. B.; Johnson, S.L.; McDowell, W.H.; Meyer, J.L.; Valett, H.M.; Webster, J.R.; Arango, C.P.; Beaulieu, J.J.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Johnson, L.T.; Niederlehner, B.R.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Sobota, D.J.; Thomas, S.M.

    2008-01-01

    Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing and terrestrial ecosystems are becoming increasingly nitrogen-saturated, causing more bioavailable nitrogen to enter groundwater and surface waters. Large-scale nitrogen budgets show that an average of about 20-25 per cent of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins, indicating that substantial sinks for nitrogen must exist in the landscape. Streams and rivers may themselves be important sinks for bioavailable nitrogen owing to their hydrological connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favour microbial denitrification. Here we present data from nitrogen stable isotope tracer experiments across 72 streams and 8 regions representing several biomes. We show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of in-stream nitrate that is removed from transport. Our data suggest that the total uptake of nitrate is related to ecosystem photosynthesis and that denitrification is related to ecosystem respiration. In addition, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks. ??2008 Nature Publishing Group.

  1. Beyond aridification: multiple explanations for the elevated diversification of cacti in the New World Succulent Biome.

    PubMed

    Hernández-Hernández, Tania; Brown, Joseph W; Schlumpberger, Boris O; Eguiarte, Luis E; Magallón, Susana

    2014-06-01

    Succulent plants are widely distributed, reaching their highest diversity in arid and semi-arid regions. Their origin and diversification is thought to be associated with a global expansion of aridity. We test this hypothesis by investigating the tempo and pattern of Cactaceae diversification. Our results contribute to the understanding of the evolution of New World Succulent Biomes. We use the most taxonomically complete dataset currently available for Cactaceae. We estimate divergence times and utilize Bayesian and maximum likelihood methods that account for nonrandom taxonomic sampling, possible extinction scenarios and phylogenetic uncertainty to analyze diversification rates, and evolution of growth form and pollination syndrome. Cactaceae originated shortly after the Eocene-Oligocene global drop in CO2 , and radiation of its richest genera coincided with the expansion of aridity in North America during the late Miocene. A significant correlation between growth form and pollination syndrome was found, as well as a clear state dependence between diversification rate, and pollination and growth-form evolution. This study suggests a complex picture underlying the diversification of Cactaceae. It not only responded to the availability of new niches resulting from aridification, but also to the correlated evolution of novel growth forms and reproductive strategies.

  2. Integrating Taxonomic, Functional and Phylogenetic Beta Diversities: Interactive Effects with the Biome and Land Use across Taxa.

    PubMed

    Corbelli, Julian Martin; Zurita, Gustavo Andres; Filloy, Julieta; Galvis, Juan Pablo; Vespa, Natalia Isabel; Bellocq, Isabel

    2015-01-01

    The spatial distribution of species, functional traits and phylogenetic relationships at both the regional and local scales provide complementary approaches to study patterns of biodiversity and help to untangle the mechanisms driving community assembly. Few studies have simultaneously considered the taxonomic (TBD), functional (FBD) and phylogenetic (PBD) facets of beta diversity. Here we analyze the associations between TBD, FBD, and PBD with the biome (representing different regional species pools) and land use, and investigate whether TBD, FBD and PBD were correlated. In the study design we considered two widely used indicator taxa (birds and ants) from two contrasting biomes (subtropical forest and grassland) and land uses (tree plantations and cropfields) in the southern Neotropics. Non-metric multidimensional scaling showed that taxonomic, functional and phylogenetic distances were associated to biome and land use; study sites grouped into four groups on the bi-dimensional space (cropfields in forest and grassland, and tree plantations in forest and grassland), and that was consistent across beta diversity facets and taxa. Mantel and PERMANOVA tests showed that TBD, FBD and PBD were positively correlated for both bird and ant assemblages; in general, partial correlations were also significant. Some of the functional traits considered here were conserved along phylogeny. Our results will contribute to the development of sound land use planning and beta diversity conservation.

  3. Spatial pattern of adaptive and neutral genetic diversity across different biomes in the lesser anteater (Tamandua tetradactyla).

    PubMed

    Clozato, Camila L; Mazzoni, Camila J; Moraes-Barros, Nadia; Morgante, João S; Sommer, Simone

    2015-11-01

    The genes of the major histocompatibility complex (MHC) code for proteins involved in antigen recognition and activation of the adaptive immune response and are thought to be regulated by natural selection, especially due to pathogen-driven selective pressure. In this study, we investigated the spatial distribution of MHC class II DRB exon 2 gene diversity of the lesser anteater (Tamandua tetradactyla) across five Brazilian biomes using next-generation sequencing and compared the MHC pattern with that of neutral markers (microsatellites). We found a noticeable high level of diversity in DRB (60 amino acid alleles in 65 individuals) and clear signatures of historical positive selection acting on this gene. Higher allelic richness and proportion of private alleles were found in rain forest biomes, especially Amazon forest, a megadiverse biome, possibly harboring greater pathogen richness as well. Neutral markers, however, showed a similar pattern to DRB, demonstrating the strength of demography as an additional force to pathogen-driven selection in shaping MHC diversity and structure. This is the first characterization and description of diversity of a MHC gene for any member of the magna-order Xenarthra, one of the basal lineages of placental mammals. PMID:26640672

  4. Integrating Taxonomic, Functional and Phylogenetic Beta Diversities: Interactive Effects with the Biome and Land Use across Taxa.

    PubMed

    Corbelli, Julian Martin; Zurita, Gustavo Andres; Filloy, Julieta; Galvis, Juan Pablo; Vespa, Natalia Isabel; Bellocq, Isabel

    2015-01-01

    The spatial distribution of species, functional traits and phylogenetic relationships at both the regional and local scales provide complementary approaches to study patterns of biodiversity and help to untangle the mechanisms driving community assembly. Few studies have simultaneously considered the taxonomic (TBD), functional (FBD) and phylogenetic (PBD) facets of beta diversity. Here we analyze the associations between TBD, FBD, and PBD with the biome (representing different regional species pools) and land use, and investigate whether TBD, FBD and PBD were correlated. In the study design we considered two widely used indicator taxa (birds and ants) from two contrasting biomes (subtropical forest and grassland) and land uses (tree plantations and cropfields) in the southern Neotropics. Non-metric multidimensional scaling showed that taxonomic, functional and phylogenetic distances were associated to biome and land use; study sites grouped into four groups on the bi-dimensional space (cropfields in forest and grassland, and tree plantations in forest and grassland), and that was consistent across beta diversity facets and taxa. Mantel and PERMANOVA tests showed that TBD, FBD and PBD were positively correlated for both bird and ant assemblages; in general, partial correlations were also significant. Some of the functional traits considered here were conserved along phylogeny. Our results will contribute to the development of sound land use planning and beta diversity conservation. PMID:25978319

  5. Integrating Taxonomic, Functional and Phylogenetic Beta Diversities: Interactive Effects with the Biome and Land Use across Taxa

    PubMed Central

    Corbelli, Julian Martin; Zurita, Gustavo Andres; Filloy, Julieta; Galvis, Juan Pablo; Vespa, Natalia Isabel; Bellocq, Isabel

    2015-01-01

    The spatial distribution of species, functional traits and phylogenetic relationships at both the regional and local scales provide complementary approaches to study patterns of biodiversity and help to untangle the mechanisms driving community assembly. Few studies have simultaneously considered the taxonomic (TBD), functional (FBD) and phylogenetic (PBD) facets of beta diversity. Here we analyze the associations between TBD, FBD, and PBD with the biome (representing different regional species pools) and land use, and investigate whether TBD, FBD and PBD were correlated. In the study design we considered two widely used indicator taxa (birds and ants) from two contrasting biomes (subtropical forest and grassland) and land uses (tree plantations and cropfields) in the southern Neotropics. Non-metric multidimensional scaling showed that taxonomic, functional and phylogenetic distances were associated to biome and land use; study sites grouped into four groups on the bi-dimensional space (cropfields in forest and grassland, and tree plantations in forest and grassland), and that was consistent across beta diversity facets and taxa. Mantel and PERMANOVA tests showed that TBD, FBD and PBD were positively correlated for both bird and ant assemblages; in general, partial correlations were also significant. Some of the functional traits considered here were conserved along phylogeny. Our results will contribute to the development of sound land use planning and beta diversity conservation. PMID:25978319

  6. Spatial pattern of adaptive and neutral genetic diversity across different biomes in the lesser anteater (Tamandua tetradactyla).

    PubMed

    Clozato, Camila L; Mazzoni, Camila J; Moraes-Barros, Nadia; Morgante, João S; Sommer, Simone

    2015-11-01

    The genes of the major histocompatibility complex (MHC) code for proteins involved in antigen recognition and activation of the adaptive immune response and are thought to be regulated by natural selection, especially due to pathogen-driven selective pressure. In this study, we investigated the spatial distribution of MHC class II DRB exon 2 gene diversity of the lesser anteater (Tamandua tetradactyla) across five Brazilian biomes using next-generation sequencing and compared the MHC pattern with that of neutral markers (microsatellites). We found a noticeable high level of diversity in DRB (60 amino acid alleles in 65 individuals) and clear signatures of historical positive selection acting on this gene. Higher allelic richness and proportion of private alleles were found in rain forest biomes, especially Amazon forest, a megadiverse biome, possibly harboring greater pathogen richness as well. Neutral markers, however, showed a similar pattern to DRB, demonstrating the strength of demography as an additional force to pathogen-driven selection in shaping MHC diversity and structure. This is the first characterization and description of diversity of a MHC gene for any member of the magna-order Xenarthra, one of the basal lineages of placental mammals.

  7. Modeling the Ecosystem Services Provided by Trees in Urban Ecosystems: Using Biome-BGC to Improve i-Tree Eco

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; McGroddy, Megan; Spence, Caitlin; Flake, Leah; Sarfraz, Amna; Nowak, David J.; Milesi, Cristina

    2012-01-01

    As the world becomes increasingly urban, the need to quantify the effect of trees in urban environments on energy usage, air pollution, local climate and nutrient run-off has increased. By identifying, quantifying and valuing the ecological activity that provides services in urban areas, stronger policies and improved quality of life for urban residents can be obtained. Here we focus on two radically different models that can be used to characterize urban forests. The i-Tree Eco model (formerly UFORE model) quantifies ecosystem services (e.g., air pollution removal, carbon storage) and values derived from urban trees based on field measurements of trees and local ancillary data sets. Biome-BGC (Biome BioGeoChemistry) is used to simulate the fluxes and storage of carbon, water, and nitrogen in natural environments. This paper compares i-Tree Eco's methods to those of Biome-BGC, which estimates the fluxes and storage of energy, carbon, water and nitrogen for vegetation and soil components of the ecosystem. We describe the two models and their differences in the way they calculate similar properties, with a focus on carbon and nitrogen. Finally, we discuss the implications of further integration of these two communities for land managers such as those in Maryland.

  8. Spatial Distribution of Aboveground Carbon Stock of the Arboreal Vegetation in Brazilian Biomes of Savanna, Atlantic Forest and Semi-Arid Woodland.

    PubMed

    Scolforo, Henrique Ferraco; Scolforo, Jose Roberto Soares; Mello, Carlos Rogerio; Mello, Jose Marcio; Ferraz Filho, Antonio Carlos

    2015-01-01

    The objective of this study was to map the spatial distribution of aboveground carbon stock (using Regression-kriging) of arboreal plants in the Atlantic Forest, Semi-arid woodland, and Savanna Biomes in Minas Gerais State, southeastern Brazil. The database used in this study was obtained from 163 forest fragments, totaling 4,146 plots of 1,000 m2 distributed in these Biomes. A geographical model for carbon stock estimation was parameterized as a function of Biome, latitude and altitude. This model was applied over the samples and the residuals generated were mapped based on geostatistical procedures, selecting the exponential semivariogram theoretical model for conducting ordinary Kriging. The aboveground carbon stock was found to have a greater concentration in the north of the State, where the largest contingent of native vegetation is located, mainly the Savanna Biome, with Wooded Savanna and Shrub Savanna phytophysiognomes. The largest weighted averages of carbon stock per hectare were found in the south-center region (48.6 Mg/ha) and in the southern part of the eastern region (48.4 Mg/ha) of Minas Gerais State, due to the greatest predominance of Atlantic Forest Biome forest fragments. The smallest weighted averages per hectare were found in the central (21.2 Mg/ha), northern (20.4 Mg/ha), and northwestern (20.7 Mg/ha) regions of Minas Gerais State, where Savanna Biome fragments are predominant, in the phytophysiognomes Wooded Savanna and Shrub Savanna.

  9. Spatial Distribution of Aboveground Carbon Stock of the Arboreal Vegetation in Brazilian Biomes of Savanna, Atlantic Forest and Semi-Arid Woodland

    PubMed Central

    2015-01-01

    The objective of this study was to map the spatial distribution of aboveground carbon stock (using Regression-kriging) of arboreal plants in the Atlantic Forest, Semi-arid woodland, and Savanna Biomes in Minas Gerais State, southeastern Brazil. The database used in this study was obtained from 163 forest fragments, totaling 4,146 plots of 1,000 m2 distributed in these Biomes. A geographical model for carbon stock estimation was parameterized as a function of Biome, latitude and altitude. This model was applied over the samples and the residuals generated were mapped based on geostatistical procedures, selecting the exponential semivariogram theoretical model for conducting ordinary Kriging. The aboveground carbon stock was found to have a greater concentration in the north of the State, where the largest contingent of native vegetation is located, mainly the Savanna Biome, with Wooded Savanna and Shrub Savanna phytophysiognomes. The largest weighted averages of carbon stock per hectare were found in the south-center region (48.6 Mg/ha) and in the southern part of the eastern region (48.4 Mg/ha) of Minas Gerais State, due to the greatest predominance of Atlantic Forest Biome forest fragments. The smallest weighted averages per hectare were found in the central (21.2 Mg/ha), northern (20.4 Mg/ha), and northwestern (20.7 Mg/ha) regions of Minas Gerais State, where Savanna Biome fragments are predominant, in the phytophysiognomes Wooded Savanna and Shrub Savanna. PMID:26066508

  10. Education for Reconstruction.

    ERIC Educational Resources Information Center

    Phillips, David; And Others

    This report describes the main questions that various international agencies must address in order to reconstruct education in countries that have experienced crisis. "Crisis" is defined as war, natural disaster, and extreme political and economic upheaval. Many of the problems of educational reconstruction with which the Allies contended in…

  11. Posterolateral knee reconstruction.

    PubMed

    Djian, P

    2015-02-01

    Injury to the cruciate ligaments of the knee commonly occurs in association with posterolateral instability, which can cause severe functional disability including varus, posterior translation, and external rotational instability. Failure to diagnose and treat an injury of the posterolateral corner in a patient who has a tear of the cruciate ligament can also result in the failure of the reconstructed cruciate ligament. There seems to be a consensus of opinion that injury to the posterolateral corner, whether isolated or combined, is best treated by reconstructing the posterolateral corner along with the coexisting cruciate ligament injury, if combined. Commonly proposed methods of reconstructing the posterolateral corner have focused on the reconstruction of the popliteus, the popliteofibular ligament, and the lateral collateral ligament. The aim of this conference is to describe the posterolateral corner reconstruction technique and to provide an algorithm of treatment. PMID:25596981

  12. Exponential filtering of singular values improves photoacoustic image reconstruction.

    PubMed

    Bhatt, Manish; Gutta, Sreedevi; Yalavarthy, Phaneendra K

    2016-09-01

    Model-based image reconstruction techniques yield better quantitative accuracy in photoacoustic image reconstruction. In this work, an exponential filtering of singular values was proposed for carrying out the image reconstruction in photoacoustic tomography. The results were compared with widely popular Tikhonov regularization, time reversal, and the state of the art least-squares QR-based reconstruction algorithms for three digital phantom cases with varying signal-to-noise ratios of data. It was shown that exponential filtering provides superior photoacoustic images of better quantitative accuracy. Moreover, the proposed filtering approach was observed to be less biased toward the regularization parameter and did not come with any additional computational burden as it was implemented within the Tikhonov filtering framework. It was also shown that the standard Tikhonov filtering becomes an approximation to the proposed exponential filtering. PMID:27607501

  13. Surface reconstruction for 3D remote sensing

    NASA Astrophysics Data System (ADS)

    Baran, Matthew S.; Tutwiler, Richard L.; Natale, Donald J.

    2012-05-01

    This paper examines the performance of the local level set method on the surface reconstruction problem for unorganized point clouds in three dimensions. Many laser-ranging, stereo, and structured light devices produce three dimensional information in the form of unorganized point clouds. The point clouds are sampled from surfaces embedded in R3 from the viewpoint of a camera focal plane or laser receiver. The reconstruction of these objects in the form of a triangulated geometric surface is an important step in computer vision and image processing. The local level set method uses a Hamilton-Jacobi partial differential equation to describe the motion of an implicit surface in threespace. An initial surface which encloses the data is allowed to move until it becomes a smooth fit of the unorganized point data. A 3D point cloud test suite was assembled from publicly available laser-scanned object databases. The test suite exhibits nonuniform sampling rates and various noise characteristics to challenge the surface reconstruction algorithm. Quantitative metrics are introduced to capture the accuracy and efficiency of surface reconstruction on the degraded data. The results characterize the robustness of the level set method for surface reconstruction as applied to 3D remote sensing.

  14. Reconstructions of phase contrast, phased array multicoil data.

    PubMed

    Bernstein, M A; Grgic, M; Brosnan, T J; Pelc, N J

    1994-09-01

    We present a reconstruction method for phased array multicoil data that is compatible with phase contrast MR angiography. The proposed algorithm can produce either complex difference or phase difference angiograms. Directional flow and quantitative information are preserved with the phase difference reconstruction. The proposed method is computationally efficient and avoids intercoil cancellation errors near the velocity aliasing boundary. Feasibility of the method is demonstrated on human scans.

  15. Net Ecosystem Exchange and Net Biome Productivity of different land use in eastern Germany

    NASA Astrophysics Data System (ADS)

    Grünwald, Thomas; Prescher, Anne-Katrin; Bernhofer, Christian

    2010-05-01

    The carbon (CO2-C) budgets of a managed forest (spruce), grassland and a cropland (crop rotation) have been determined and compared. The sites are part of the Tharandt cluster which features low intersite variability in climate due to the small distances between the sites. This allows the comparison of management effects on the carbon budget of different land use among other things. At the forest site, continuous CO2 flux measurements are available from 1997 to 2008, the common observation period of the grassland and cropland sites was 2005 to 2008. With regard to annual net ecosystem exchange NEE (based on eddy covariance flux measurements), the forest showed the highest net sink (-698 g C m-2 (1999) to -444 g C m-2 (2003)). In contrast the grassland and cropland sites were significantly lower sinks in terms of NEE (-177 g C m-2 (2004) to -62 g C m-2 (2005) and -115 g C m-2 (2005) to -32 g C m-2 (2007 and 2008), respectively). To quantify the net biome productivity (NBP) carbon exports due to thinning or harvest as well as carbon imports due to organic fertilisation are considered besides NEE. Carbon exports and imports change the carbon budget in terms of NBP. At the forest site only the 2002 NBP is a carbon source (+221 g C m-2) due to the thinning in April 2002 when around 43 m3 ha-1 solid wood was removed from the ecosystem. After the thinning the annual NEE is reduced by around 100 g C m-2 until 2007. The grassland NBP alternated between carbon source and sink (+25 g C m-2 (2008) to -28 g C m-2 (2006)) indicating the carbon balance was approximately neutral. Low NEE and NBP values at the grassland site were a consequence of carbon export due to several cuts per year. The NBP of the cropland ecosystem was mainly influenced by the crop type (winter or spring crop) and the application of organic fertiliser (manure) resulting in carbon budgets between +484 g C m-2 (2007) and -89 g C m-2 (2006). The different timing and length of the growing season of winter and

  16. Synergistic impacts of deforestation, climate change and fire on the future biomes distribution in Amazonia

    NASA Astrophysics Data System (ADS)

    Sampaio, G.; Cardoso, M. F.; Nobre, C. A.; Salazar, L. F.

    2013-05-01

    Several studies indicate future increase of environmental risks for the ecosystems in the Amazon region as a result of climate and land-use change, and their synergistic interactions. Modeling studies (e.g. Oyama and Nobre 2004, Salazar et al. 2007, Malhi et al. 2008) project rapid and irreversible replacement of forests by savannas with large-scale losses of biodiversity and livelihoods for people in the region. This process is referred to as the Amazon Dieback, where accelerated plant mortality due to environmental changes lead to forest collapse and savannas expansion after "tipping points" in climate and land surface changes are achieved. In this study we performed new analyses to quantify how deforestation, climate change and fire may combine to affect the distribution of major biomes in Amazonia. Changes in land use consider deforestation scenarios of 0%, 20%, 40%, and 50% (Sampaio et al., 2007), with and without fires (Cardoso et al., 2008), under the two greenhouse gases scenarios B1 and A2 and three "representative concentration pathways" (RCPs): 2.6, 4.5 and 8.5, for years 2015-2034 and 2040-2059 ("2025" and "2050" time-slices), from IPCC AR4 and CMIP5. The results show that the area affected in scenarios A2 and RCP 8.5 is larger than in the climate scenario B1 and RCP 2.6, and in both cases the effect is progressively higher in time. Most important changes occur in the East and South of the Amazon, with replacement of tropical forest by seasonal forest and savanna. The effect of fire in this region is important in all scenarios. The Northwest Amazon presents the smallest changes in the area of tropical forest, indicating that even for substantial land-use modifications and global climate change, the resulting atmospheric conditions would still support tropical forest in the region. In summary, we conclude that the synergistic combination of deforestation, climate change resulting from global warming, and the potential for higher fire occurrence may lead

  17. Net Biome Productivity of different land use at the sites of the Tharandt cluster

    NASA Astrophysics Data System (ADS)

    Grünwald, T.; Prescher, A.-K.; Bernhofer, Ch.

    2009-04-01

    Within the Tharandt cluster there are 5 flux monitoring sites including 3 CARBOEUROPE main sites. The CARBOEUROPE sites cover typical land use of the region (spruce [monitored since 1996], grassland [since 2003], cropland [since 2004]). For all sites estimates of the Net Biome Productivity (NBP) and its uncertainty have been derived using Net Ecosystem Productivity (NEP) based on the EC measurements and C exports and imports on an annual basis. The crop site is a small C sink (NEP of 30-110gCm-2a-1) only. The annual NEP values are dependent on the cultivated crop species (winter or summer crop). Including C export (harvest) and C import (manure spreading) lead to a considerable C source of 270-540gCm-2a-1. Organic fertilisation (C import) has a strong impact on NBP values expressed in a reduced annual net carbon source. Also, the largest interannual differences of NBP values are found at this site - mainly induced by the existence and the amount of a carbon import due to organic fertilisation. Management practices affect the NBP in a sensitive way at this crop site. Each crop shows a higher C export due to harvest than the annual NEP. To validate the calculated C equivalent using harvested grain biomass modelled NPP values are available. Uncertainty ranges of C export, C import and NBP as well as the grassland and spruce NBP (for comparison) are also stated. In general, land use and management strongly affect the annual NBP of non-forested ecosystems especially. So, this is the second main driver of the C budget besides the interannual variability in meteorological conditions and water availability with its influence on NEP, GPP and TER.

  18. Regional atmospheric CO2 inversion reveals seasonal and geographic differences in Amazon net biome exchange.

    PubMed

    Alden, Caroline B; Miller, John B; Gatti, Luciana V; Gloor, Manuel M; Guan, Kaiyu; Michalak, Anna M; van der Laan-Luijkx, Ingrid T; Touma, Danielle; Andrews, Arlyn; Basso, Luana S; Correia, Caio S C; Domingues, Lucas G; Joiner, Joanna; Krol, Maarten C; Lyapustin, Alexei I; Peters, Wouter; Shiga, Yoichi P; Thoning, Kirk; van der Velde, Ivar R; van Leeuwen, Thijs T; Yadav, Vineet; Diffenbaugh, Noah S

    2016-10-01

    Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (~1-8 × 10(6)  km(2) ) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub

  19. Contingenet Productivity Responses to More Extreme Rainfall Regimes Across a Grassland Biome

    NASA Astrophysics Data System (ADS)

    Heisler-White, J. L.; Knapp, A.; Collins, S.; Blair, J.; Kelly, E.

    2008-12-01

    Climate models predict, and empirical evidence confirms, that more extreme precipitation regimes are occurring in tandem with warmer atmospheric temperatures. These more extreme rainfall patterns are characterized by increased event size separated by longer within season drought periods, and represent novel climatic conditions whose consequences for different ecosystem types are largely unknown. The focus of this talk will be the impacts of extreme rainfall events on soil water content and ecosystem function, and we will present results from experimental manipulations of rainfall in four native grassland sites within the Great Plains Region of North America (USA). Along this precipitation-productivity gradient, our results suggest strong sensitivity to more extreme growing season rainfall regimes, with responses of aboveground net primary productivity (ANPP) contingent on mean soil water levels for different grassland types. At the mesic end of the gradient (tallgrass prairie), longer dry intervals between events led to extended periods of below-average soil water content, increased plant water stress and a reduction in ANPP. The opposite response occurred at the dry end (semi-arid grasslands), where a shift to fewer, but larger, events increased periods of above-average soil water content, reduced seasonal plant water stress and resulted in an increase in ANPP. These results highlight the inherent complexity in predicting how terrestrial ecosystem will respond to forecast novel climate conditions as well as the difficulties in extending inferences from single site experiments across biomes. Even with no change in annual precipitation amount, ANPP responses in a relatively uniform physiographic region differed in both magnitude and direction in response to within season changes in rainfall event size/frequency. From a mechanistic perspective, we believe that these contingent responses reflect strikingly different consequences for soil water content as a result of

  20. Genetic diversity of Burkholderia (Proteobacteria) species from the Caatinga and Atlantic rainforest biomes in Bahia, Brazil.

    PubMed

    Santini, A C; Santos, H R M; Gross, E; Corrêa, R X

    2013-03-11

    The genus Burkholderia (β-Proteobacteria) currently comprises more than 60 species, including parasites, symbionts and free-living organisms. Several new species of Burkholderia have recently been described showing a great diversity of phenotypes. We examined the diversity of Burkholderia spp in environmental samples collected from Caatinga and Atlantic rainforest biomes of Bahia, Brazil. Legume nodules were collected from five locations, and 16S rDNA and recA genes of the isolated microorganisms were analyzed. Thirty-three contigs of 16S rRNA genes and four contigs of the recA gene related to the genus Burkholderia were obtained. The genetic dissimilarity of the strains ranged from 0 to 2.5% based on 16S rDNA analysis, indicating two main branches: one distinct branch of the dendrogram for the B. cepacia complex and another branch that rendered three major groups, partially reflecting host plants and locations. A dendrogram designed with sequences of this research and those designed with sequences of Burkholderia-type strains and the first hit BLAST had similar topologies. A dendrogram similar to that constructed by analysis of 16S rDNA was obtained using sequences of the fragment of the recA gene. The 16S rDNA sequences enabled sufficient identification of relevant similarities and groupings amongst isolates and the sequences that we obtained. Only 6 of the 33 isolates analyzed via 16S rDNA sequencing showed high similarity with the B. cepacia complex. Thus, over 3/4 of the isolates have potential for biotechnological applications.

  1. Global pressures, specific responses: effects of nutrient enrichment in streams from different biomes

    NASA Astrophysics Data System (ADS)

    Artigas, Joan; García-Berthou, Emili; Bauer, Delia E.; Castro, Maria I.; Cochero, Joaquín; Colautti, Darío C.; Cortelezzi, Agustina; Donato, John C.; Elosegi, Arturo; Feijoó, Claudia; Giorgi, Adonis; Gómez, Nora; Leggieri, Leonardo; Muñoz, Isabel; Rodrigues-Capítulo, Alberto; Romaní, Anna M.; Sabater, Sergi

    2013-03-01

    We assessed the effects of nutrient enrichment on three stream ecosystems running through distinct biomes (Mediterranean, Pampean and Andean). We increased the concentrations of N and P in the stream water 1.6-4-fold following a before-after control-impact paired series (BACIPS) design in each stream, and evaluated changes in the biomass of bacteria, primary producers, invertebrates and fish in the enriched (E) versus control (C) reaches after nutrient addition through a predictive-BACIPS approach. The treatment produced variable biomass responses (2-77% of explained variance) among biological communities and streams. The greatest biomass response was observed for algae in the Andean stream (77% of the variance), although fish also showed important biomass responses (about 9-48%). The strongest biomass response to enrichment (77% in all biological compartments) was found in the Andean stream. The magnitude and seasonality of biomass responses to enrichment were highly site specific, often depending on the basal nutrient concentration and on windows of ecological opportunity (periods when environmental constraints other than nutrients do not limit biomass growth). The Pampean stream, with high basal nutrient concentrations, showed a weak response to enrichment (except for invertebrates), whereas the greater responses of Andean stream communities were presumably favored by wider windows of ecological opportunity in comparison to those from the Mediterranean stream. Despite variation among sites, enrichment globally stimulated the algal-based food webs (algae and invertebrate grazers) but not the detritus-based food webs (bacteria and invertebrate shredders). This study shows that nutrient enrichment tends to globally enhance the biomass of stream biological assemblages, but that its magnitude and extent within the food web are complex and are strongly determined by environmental factors and ecosystem structure.

  2. 2008 Co2 Assimilation in Plants: Genome to Biome Gordon Research Conference - August 17-22

    SciTech Connect

    James V. Maroney

    2009-08-12

    Formerly entitled 'CO2 Fixation and Metabolism in Green Plants', this long-standing Gordon Research Conference has been held on a triennial basis since 1976. In 1990 the participants decided to alternate between sites in the U.S. and outside the U.S. The 2005 conference was held in Europe at the Centre Paul Langevin in Aussois, France, so the 2008 conference returns to a U.S. site - the University of New England in Biddeford, Maine. The 2008 conference covers basic plant research related to photosynthesis and the subsequent regulation and engineering of carbon assimilation. Approaches that range from post-genomic technologies and systems biology, through to fundamental biochemistry, physiology and molecular biology are integrated within ecological and agronomic contexts. As such, the meeting provides the rare opportunity of a single venue for discussing all aspects of the 'carbon-side' of photosynthesis - from genome to biome. The 2008 conference will include an emphasis on the central role of carbon assimilation by plants for developing new sources of bioenergy and for achieving a carbon-neutral planet. A special characteristic of this conference is its 'intimacy' with approximately 110 conferees, ranging from beginning graduate students and postdoctoral associates to leading senior plant scientists, engaged in open and forward-thinking discussions in an informal, friendly setting. With extended time devoted to discussion, and the encouragement to challenge dogma, it is unlike other meetings in the U.S. or abroad. Another novel feature of the conference is a session devoted to the latest 'hot off the press' findings by both established and early career scientists, picked from the abstracts. Together with an expanded poster discussion in the evening sessions, this session provides an opportunity for early career scientists to present interesting new data and to 'test drive' hypotheses in a collegial atmosphere.

  3. Quantitative Electron Nanodiffraction.

    SciTech Connect

    Spence, John

    2015-01-30

    This Final report summarizes progress under this award for the final reporting period 2002 - 2013 in our development of quantitive electron nanodiffraction to materials problems, especially devoted to atomistic processes in semiconductors and electronic oxides such as the new artificial oxide multilayers, where our microdiffraction is complemented with energy-loss spectroscopy (ELNES) and aberration-corrected STEM imaging (9). The method has also been used to map out the chemical bonds in the important GaN semiconductor (1) used for solid state lighting, and to understand the effects of stacking sequence variations and interfaces in digital oxide superlattices (8). Other projects include the development of a laser-beam Zernike phase plate for cryo-electron microscopy (5) (based on the Kapitza-Dirac effect), work on reconstruction of molecular images using the scattering from many identical molecules lying in random orientations (4), a review article on space-group determination for the International Tables on Crystallography (10), the observation of energy-loss spectra with millivolt energy resolution and sub-nanometer spatial resolution from individual point defects in an alkali halide, a review article for the Centenary of X-ray Diffration (17) and the development of a new method of electron-beam lithography (12). We briefly summarize here the work on GaN, on oxide superlattice ELNES, and on lithography by STEM.

  4. PRISM3 Global Paleoclimate Reconstruction: A Global Warming Data Set

    NASA Astrophysics Data System (ADS)

    Dowsett, H. J.; Chandler, M. A.; Cronin, T. M.; Dwyer, G. S.; Haywood, A. M.; Hill, D. J.; Robinson, M. M.; Salzmann, U.; Williams, M.

    2007-12-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project provides a conceptual model and synoptic view of the earth during the last interval considerably warmer than modern (3.3 to 3.0 Ma) through reconstruction of sea-surface temperature (SST) and other paleoenvironmental parameters. The first PRISM reconstruction, with its foundation in a global network of paleontological analyses, was completed in the early 1990s. Since then, several significant revisions have been released culminating in the PRISM2 data set. The primary goal of PRISM remains a better understanding of the Earth's climate system during the mid-Pliocene, and to that end, includes the development of digital data sets for use with climate models. The new PRISM3 reconstruction, slated to be released early in 2008, has revised SST fields based upon integration of previous and new faunal and floral analyses with new geochemical proxies and biomarkers, a revised vegetation/land cover data set utilizing the BIOME 4 vegetation classification scheme, 3-dimensional land ice distribution based upon ice-sheet model experiments, new sea level estimates based upon stable isotopes and bottom water temperatures, and revised sea-ice distribution. A deep ocean temperature reconstruction, PRISM3D, adds a 3- dimensional component, which can be used for initiating coupled ocean-atmosphere GCM simulations. PRISM3 is a collaborative effort between the U.S. Geological Survey (USGS), National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), British Antarctic Survey (BAS), and several national and international academic institutions (Columbia University, Duke University, George Mason University, University of Leeds and University of Leicester).

  5. Keyhole Flap Nipple Reconstruction.

    PubMed

    Chen, Joseph I; Cash, Camille G; Iman, Al-Haj; Spiegel, Aldona J; Cronin, Ernest D

    2016-05-01

    Nipple-areola reconstruction is often one of the final but most challenging aspects of breast reconstruction. However, it is an integral and important component of breast reconstruction because it transforms the mound into a breast. We performed 133 nipple-areola reconstructions during a period of 4 years. Of these reconstructions, 76 of 133 nipple-areola complexes were reconstructed using the keyhole flap technique. The tissue used for the keyhole dermoadipose flap technique include transverse rectus abdominus myocutaneous flaps (60/76), latissimus dorsi flaps (15/76), or mastectomy skin flaps after tissue expanders (1/76). The average patient follow-up was 17 months. The design of the flap is based on a keyhole configuration. The base of the flap determines the width of the future nipple, whereas the length of the flap determines the projection. We try to match the projection of the contralateral nipple if present. The keyhole flap is simple to construct yet reliable. It provides good symmetry and projection and avoids the creation of new scars. The areola is then tattooed approximately 3 months after the nipple reconstruction. PMID:27579228

  6. Reconstruction of biofilm images: combining local and global structural parameters

    SciTech Connect

    Resat, Haluk; Renslow, Ryan S.; Beyenal, Haluk

    2014-11-07

    Digitized images can be used for quantitative comparison of biofilms grown under different conditions. Using biofilm image reconstruction, it was previously found that biofilms with a completely different look can have nearly identical structural parameters and that the most commonly utilized global structural parameters were not sufficient to uniquely define these biofilms. Here, additional local and global parameters are introduced to show that these parameters considerably increase the reliability of the image reconstruction process. Assessment using human evaluators indicated that the correct identification rate of the reconstructed images increased from 50% to 72% with the introduction of the new parameters into the reconstruction procedure. An expanded set of parameters especially improved the identification of biofilm structures with internal orientational features and of structures in which colony sizes and spatial locations varied. Hence, the newly introduced structural parameter sets helped to better classify the biofilms by incorporating finer local structural details into the reconstruction process.

  7. Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework.

    PubMed

    Matej, Samuel; Daube-Witherspoon, Margaret E; Karp, Joel S

    2016-05-01

    Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of time-of-flight (TOF) scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (DIRECT: direct image reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias versus variance performance to iterative TOF reconstruction with a matched resolution model.

  8. Acromioclavicular Joint Reconstruction.

    PubMed

    Scillia, Anthony J; Cain, E Lyle

    2015-12-01

    Our technique for acromioclavicular joint reconstruction provides a variation on coracoclavicular ligament reconstruction to also include acromioclavicular ligament reconstruction. An oblique acromial tunnel is drilled, and the medial limb of the gracilis graft, after being crossed and passed beneath the coracoid and through the clavicle, is passed through this acromial tunnel and sutured to the trapezoid graft limb after appropriate tensioning. Tenodesis screws are not placed in the bone tunnels to avoid graft fraying, and initial forces on the graft are offloaded with braided absorbable sutures passed around the clavicle. PMID:27284528

  9. Influence of finite spatial coherence on ptychographic reconstruction

    SciTech Connect

    Stachnik, K. Stuebe, N.; Meyer, J.; Warmer, M.; Meents, A.; Mohacsi, I.; Vartiainen, I.; David, C.

    2015-07-06

    X-ray ptychography is an ultrahigh-resolution scanning coherent diffractive imaging technique, allowing quantitative measurements of extended samples and a simultaneous reconstruction of the illuminating wavefront. Recent development of the mixed-state reconstruction algorithm has triggered a certain interest in utilizing partially coherent X-ray sources for ptychography. Here, we study how finite spatial coherence influences the reconstructed image of a test structure. Our work shows that use of a highly coherent illumination provides images with better spatial resolution and fewer artefacts than the approach with partial coherence.

  10. The affect of tissue depth variation on craniofacial reconstructions.

    PubMed

    Starbuck, John M; Ward, Richard E

    2007-10-25

    We examined the affect of tissue depth variation on the reconstruction of facial form, through the application of the American method, utilizing published tissue depth measurements for emaciated, normal, and obese faces. In this preliminary study, three reconstructions were created on reproductions of the same skull for each set of tissue depth measurements. The resulting morphological variation was measured quantitatively using the anthropometric craniofacial variability index (CVI). This method employs 16 standard craniofacial anthropometric measurements and the results reflect "pattern variation" or facial harmony. We report no appreciable variation in the quantitative measure of the pattern facial form obtained from the three different sets of tissue depths. Facial similarity was assessed qualitatively utilizing surveys of photographs of the three reconstructions. Surveys indicated that subjects frequently perceived the reconstructions as representing different individuals. This disagreement indicates that size of the face may blind observers to similarities in facial form. This research is significant because it illustrates the confounding effect that normal human variation contributes in the successful recognition of individuals from a representational three-dimensional facial reconstruction. Research results suggest that successful identification could be increased if multiple reconstructions were created which reflect a wide range of possible outcomes for facial form. The creation of multiple facial images, from a single skull, will be facilitated as computerized versions of facial reconstruction are further developed and refined. PMID:17353107

  11. Quantitative neuroanatomy for connectomics in Drosophila

    PubMed Central

    Schneider-Mizell, Casey M; Gerhard, Stephan; Longair, Mark; Kazimiers, Tom; Li, Feng; Zwart, Maarten F; Champion, Andrew; Midgley, Frank M; Fetter, Richard D; Saalfeld, Stephan; Cardona, Albert

    2016-01-01

    Neuronal circuit mapping using electron microscopy demands laborious proofreading or reconciliation of multiple independent reconstructions. Here, we describe new methods to apply quantitative arbor and network context to iteratively proofread and reconstruct circuits and create anatomically enriched wiring diagrams. We measured the morphological underpinnings of connectivity in new and existing reconstructions of Drosophila sensorimotor (larva) and visual (adult) systems. Synaptic inputs were preferentially located on numerous small, microtubule-free 'twigs' which branch off a single microtubule-containing 'backbone'. Omission of individual twigs accounted for 96% of errors. However, the synapses of highly connected neurons were distributed across multiple twigs. Thus, the robustness of a strong connection to detailed twig anatomy was associated with robustness to reconstruction error. By comparing iterative reconstruction to the consensus of multiple reconstructions, we show that our method overcomes the need for redundant effort through the discovery and application of relationships between cellular neuroanatomy and synaptic connectivity. DOI: http://dx.doi.org/10.7554/eLife.12059.001 PMID:26990779

  12. Advances in Tracheal Reconstruction

    PubMed Central

    Salna, Michael; Waddell, Thomas K.; Hofer, Stefan O.

    2014-01-01

    Summary: A recent revival of global interest for reconstruction of long-segment tracheal defects, which represents one of the most interesting and complex problems in head and neck and thoracic reconstructive surgery, has been witnessed. The trachea functions as a conduit for air, and its subunits including the epithelial layer, hyaline cartilage, and segmental blood supply make it particularly challenging to reconstruct. A myriad of attempts at replacing the trachea have been described. These along with the anatomy, indications, and approaches including microsurgical tracheal reconstruction will be reviewed. Novel techniques such as tissue-engineering approaches will also be discussed. Multiple attempts at replacing the trachea with synthetic scaffolds have been met with failure. The main lesson learned from such failures is that the trachea must not be treated as a “simple tube.” Understanding the anatomy, developmental biology, physiology, and diseases affecting the trachea are required for solving this problem. PMID:25426361

  13. Overview of Image Reconstruction

    SciTech Connect

    Marr, R. B.

    1980-04-01

    Image reconstruction (or computerized tomography, etc.) is any process whereby a function, f, on Rn is estimated from empirical data pertaining to its integrals, ∫f(x) dx, for some collection of hyperplanes of dimension k < n. The paper begins with background information on how image reconstruction problems have arisen in practice, and describes some of the application areas of past or current interest; these include radioastronomy, optics, radiology and nuclear medicine, electron microscopy, acoustical imaging, geophysical tomography, nondestructive testing, and NMR zeugmatography. Then the various reconstruction algorithms are discussed in five classes: summation, or simple back-projection; convolution, or filtered back-projection; Fourier and other functional transforms; orthogonal function series expansion; and iterative methods. Certain more technical mathematical aspects of image reconstruction are considered from the standpoint of uniqueness, consistency, and stability of solution. The paper concludes by presenting certain open problems. 73 references. (RWR)

  14. Breast Reconstruction After Mastectomy

    MedlinePlus

    ... Women who have autologous tissue reconstruction may need physical therapy to help them make up for weakness experienced ... 127(1):15–22. [PubMed Abstract] Monteiro M. Physical therapy implications following the TRAM procedure. Physical Therapy. 1997; ...

  15. Reconstruction of Mandibular Defects

    PubMed Central

    Chim, Harvey; Salgado, Christopher J.; Mardini, Samir; Chen, Hung-Chi

    2010-01-01

    Defects requiring reconstruction in the mandible are commonly encountered and may result from resection of benign or malignant lesions, trauma, or osteoradionecrosis. Mandibular defects can be classified according to location and extent, as well as involvement of mucosa, skin, and tongue. Vascularized bone flaps, in general, provide the best functional and aesthetic outcome, with the fibula flap remaining the gold standard for mandible reconstruction. In this review, we discuss classification and approach to reconstruction of mandibular defects. We also elaborate upon four commonly used free osteocutaneous flaps, inclusive of fibula, iliac crest, scapula, and radial forearm. Finally, we discuss indications and use of osseointegrated implants as well as recent advances in mandibular reconstruction. PMID:22550439

  16. Breast Reconstruction and Prosthesis

    MedlinePlus

    ... feel of the breast after a mastectomy. A plastic surgeon can do it at the same time ... want breast reconstruction. • Have you talked with your plastic surgeon about your options? You may not be ...

  17. Land Surface Modeling of an Enclosed Ecosystem: Vegetation Response to Short-Term Perturbations Inside Biosphere 2 Tropical Rainforest Biome

    NASA Astrophysics Data System (ADS)

    Rosolem, R.; Zeng, X.; Shuttleworth, W. J.; Saleska, S. R.; Huxman, T. E.

    2009-12-01

    Biosphere 2 (B2) is a large-scale Earth science facility near Tucson (Arizona) that encompasses about 3.15 acres of land and houses five natural biomes. Sealed off to the outside world, B2 allows scientists to exert precise climate and mass balance control at large scales. The tropical rainforest (TRF) mesocosm area is about 1900 sq. meters and contains plant species from different tropical regions. B2 provides a unique controlled laboratory for carrying out experiments to investigate rainforest biome behavior in response to imposed environmental stresses at plot-scales (e.g., temperature, rainfall, humidity, and CO2 levels), providing the missing link between the laboratory scale and the real world. However, lack of repetitions (the facility contains only a single mesocosm for each biome) poses limitations to the analysis of the results. A well-established land surface parameterization scheme (LSP) may overcome this lack of repetitions by providing a reliable assessment of the biome under a variety of conditions. Modeling approaches can also facilitate and improve future experimental designs in B2. Here we challenge a LSP, the Simple Biosphere 3 (SiB3) model, to simulate the main aspects of the biosphere-atmosphere exchanges inside B2-TRF biome. Model simulations include B2-TRF under normal (i.e., operational) conditions, and during short-term perturbations, such as drought conditions and different treatments of CO2 concentration. A hypothetical simulation which combines both drought and high CO2 levels is performed with SiB3 and analyzed on the basis of future predictions of tropical rainforest under climate change. The main objectives of this study is to determine whether or not SiB3 is capable of representing B2-TRF at a wide range of conditions, and if we can use the combination of past field experiments and modeling to improve our understanding on how tropical rainforests may respond to these changes. Results show that our modified version of SiB3 is capable

  18. Bayesian reconstruction strategy of fluorescence-mediated tomography using an integrated SPECT-CT-OT system

    NASA Astrophysics Data System (ADS)

    Cao, Liji; Peter, Jörg

    2010-05-01

    Following the assembly of a triple-modality SPECT-CT-OT small animal imaging system providing intrinsically co-registered projection data of all three submodalities and under the assumption and investigation of dual-labeled probes consisting of both fluorophores and radionuclides, a novel multi-modal reconstruction strategy is presented in this paper aimed at improving fluorescence-mediated tomography (FMT). The following reconstruction procedure is proposed: firstly, standard x-ray CT image reconstruction is performed employing the FDK algorithm. Secondly, standard SPECT image reconstruction is performed using OSEM. Thirdly, from the reconstructed CT volume data the surface boundary of the imaged object is extracted for finite element definition. Finally, the reconstructed SPECT data are used as a priori information within a Bayesian reconstruction framework for optical (FMT) reconstruction. We provide results of this multi-modal approach using phantom experimental data and illustrate that this strategy does suppress artifacts and facilitates quantitative analysis for optical imaging studies.

  19. Variation in decomposition rates in the fynbos biome, South Africa: the role of plant species and plant stoichiometry.

    PubMed

    Bengtsson, Jan; Janion, Charlene; Chown, Steven L; Leinaas, Hans Petter

    2011-01-01

    Previous studies in the fynbos biome of the Western Cape, South Africa, have suggested that biological decomposition rates in the fynbos vegetation type, on poor soils, may be so low that fire is the main factor contributing to litter breakdown and nutrient release. However, the fynbos biome also comprises vegetation types on more fertile soils, such as the renosterveld. The latter is defined by the shrub Elytropappus rhinocerotis, while the shrub Galenia africana may become dominant in overgrazed areas. We examined decomposition of litter of these two species and the geophyte Watsonia borbonica in patches of renosterveld in an agricultural landscape. In particular, we sought to understand how plant species identity affects litter decomposition rates, especially through variation in litter stoichiometry. Decomposition (organic matter mass loss) varied greatly among the species, and was related to litter N and P content. G. africana, with highest nutrient content, lost 65% of its original mass after 180 days, while E. rhinocerotis had lost ca. 30%, and the very nutrient poor W. borbonica <10%. Litter placed under G. africana decomposed slightly faster than when placed under E. rhinocerotis. Over the course of the experiment, G. africana and E. rhinocerotis lost N and P, while W. borbonica showed strong accumulation of these elements. Decomposition rates of G. africana and E. rhinocerotis were substantially higher than those previously reported from fynbos vegetation, and variation among the species investigated was considerable. Our results suggest that fire may not always be the main factor contributing to litter breakdown and nutrient release in the fynbos biome. Thus, biological decomposition has likely been underestimated and, along with small-scale variation in ecosystem processes, would repay further study.

  20. Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis.

    PubMed

    Zhou, Lingyan; Zhou, Xuhui; Zhang, Baocheng; Lu, Meng; Luo, Yiqi; Liu, Lingli; Li, Bo

    2014-07-01

    Anthropogenic activities have increased nitrogen (N) deposition by threefold to fivefold over the last century, which may considerably affect soil respiration (Rs). Although numerous individual studies and a few meta-analyses have been conducted, it remains controversial as to how N addition affects Rs and its components [i.e., autotrophic (Ra) and heterotrophic respiration (Rh)]. To reconcile the difference, we conducted a comprehensive meta-analysis of 295 published studies to examine the responses of Rs and its components to N addition in terrestrial ecosystems. We also assessed variations in their responses in relation to ecosystem types, environmental conditions, and experimental duration (DUR). Our results show that N addition significantly increased Rs by 2.0% across all biomes but decreased by 1.44% in forests and increased by 7.84% and 12.4% in grasslands and croplands, respectively (P < 0.05). The differences may largely result from diverse responses of Ra to N addition among biomes with more stimulation of Ra in croplands and grasslands compared with no significant change in forests. Rh exhibited a similar negative response to N addition among biomes except that in croplands, tropical and boreal forests. Methods of partitioning Rs did not induce significant differences in the responses of Ra or Rh to N addition, except that Ra from root exclusion and component integration methods exhibited the opposite responses in temperate forests. The response ratios (RR) of Rs to N addition were positively correlated with mean annual temperature (MAT), with being more significant when MAT was less than 15 °C, but negatively with DUR. In addition, the responses of Rs and its components to N addition largely resulted from the changes in root and microbial biomass and soil C content as indicated by correlation analysis. The response patterns of Rs to N addition as revealed in this study can be benchmarks for future modeling and experimental studies.

  1. A mechanistic-bioclimatic modeling analysis of the potential impact of climate change on biomes of the Tibetan Plateau.

    PubMed

    Ye, Jian-Sheng; Reynolds, James F; Li, Feng-Min

    2014-08-01

    The Tibetan Plateau (TP) is experiencing high rates of climatic change. We present a novel combined mechanistic-bioclimatic modeling approach to determine how changes in precipitation and temperature on the TP may impact net primary production (NPP) in four major biomes (forest, shrub, grass, desert) and if there exists a maximum rain use efficiency (RUE(MAX)) that represents Huxman et al.'s "boundary that constrain[s] site-level productivity and efficiency." We used a daily mechanistic ecosystem model to generate 40-yr outputs using observed climatic data for scenarios of decreased precipitation (25-100%); increased air temperature (1 degrees - 6 degrees C); simultaneous changes in both precipitation (+/- 50%, +/- 25%) and air temperature (+1 to +6 degrees C) and increased interannual variability (IAV) of precipitation (+1 sigma to +3 sigma, with fixed means, where sigma is SD). We fitted model output from these scenarios to Huxman et al.'s RUE(MAX) bioclimatic model, NPP = alpha + RUE x PPT (where alpha is the intercept, RUE is rain use efficiency, and PPT is annual precipitation). Based on these analyses, we conclude that there is strong support (when not explicit, then trend-wise) for Huxman et al.'s assertion that biomes converge to a common RUE(MAX) during the driest years at a site, thus representing the boundary for highest rain use efficiency; the interactive effects of simultaneously decreasing precipitation and increasing temperature on NPP for the TP is smaller than might be expected from additive, single-factor changes in these drivers; and that increasing IAV of precipitation may ultimately have a larger impact on biomes of the Tibetan Plateau than changing amounts of rainfall and air temperature alone.

  2. Variation in decomposition rates in the fynbos biome, South Africa: the role of plant species and plant stoichiometry

    PubMed Central

    Janion, Charlene; Chown, Steven L.; Leinaas, Hans Petter

    2010-01-01

    Previous studies in the fynbos biome of the Western Cape, South Africa, have suggested that biological decomposition rates in the fynbos vegetation type, on poor soils, may be so low that fire is the main factor contributing to litter breakdown and nutrient release. However, the fynbos biome also comprises vegetation types on more fertile soils, such as the renosterveld. The latter is defined by the shrub Elytropappus rhinocerotis, while the shrub Galenia africana may become dominant in overgrazed areas. We examined decomposition of litter of these two species and the geophyte Watsonia borbonica in patches of renosterveld in an agricultural landscape. In particular, we sought to understand how plant species identity affects litter decomposition rates, especially through variation in litter stoichiometry. Decomposition (organic matter mass loss) varied greatly among the species, and was related to litter N and P content. G. africana, with highest nutrient content, lost 65% of its original mass after 180 days, while E. rhinocerotis had lost ca. 30%, and the very nutrient poor W. borbonica <10%. Litter placed under G. africana decomposed slightly faster than when placed under E. rhinocerotis. Over the course of the experiment, G. africana and E. rhinocerotis lost N and P, while W. borbonica showed strong accumulation of these elements. Decomposition rates of G. africana and E. rhinocerotis were substantially higher than those previously reported from fynbos vegetation, and variation among the species investigated was considerable. Our results suggest that fire may not always be the main factor contributing to litter breakdown and nutrient release in the fynbos biome. Thus, biological decomposition has likely been underestimated and, along with small-scale variation in ecosystem processes, would repay further study. Electronic supplementary material The online version of this article (doi:10.1007/s00442-010-1753-7) contains supplementary material, which is available

  3. Regional atmospheric CO2 inversion reveals seasonal and geographic differences in Amazon net biome exchange.

    PubMed

    Alden, Caroline B; Miller, John B; Gatti, Luciana V; Gloor, Manuel M; Guan, Kaiyu; Michalak, Anna M; van der Laan-Luijkx, Ingrid T; Touma, Danielle; Andrews, Arlyn; Basso, Luana S; Correia, Caio S C; Domingues, Lucas G; Joiner, Joanna; Krol, Maarten C; Lyapustin, Alexei I; Peters, Wouter; Shiga, Yoichi P; Thoning, Kirk; van der Velde, Ivar R; van Leeuwen, Thijs T; Yadav, Vineet; Diffenbaugh, Noah S

    2016-10-01

    Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (~1-8 × 10(6)  km(2) ) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub

  4. Key Edaphic Properties Largely Explain Temporal and Geographic Variation in Soil Microbial Communities across Four Biomes

    PubMed Central

    Borton, Hannah M.; Espinosa, Noelle; Gebhardt, Martha; Gil-Loaiza, Juliana; Gutknecht, Jessica L. M.; Maes, Patrick W.; Mott, Brendon M.; Parnell, John Jacob; Purdy, Gayle; Rodrigues, Pedro A. P.; Stanish, Lee F.; Walser, Olivia N.

    2015-01-01

    Soil microbial communities play a critical role in nutrient transformation and storage in all ecosystems. Quantifying the seasonal and long-term temporal extent of genetic and functional variation of soil microorganisms in response to biotic and abiotic changes within and across ecosystems will inform our understanding of the effect of climate change on these processes. We examined spatial and seasonal variation in microbial communities based on 16S rRNA gene sequencing and phospholipid fatty acid (PLFA) composition across four biomes: a tropical broadleaf forest (Hawaii), taiga (Alaska), semiarid grassland-shrubland (Utah), and a subtropical coniferous forest (Florida). In this study, we used a team-based instructional approach leveraging the iPlant Collaborative to examine publicly available National Ecological Observatory Network (NEON) 16S gene and PLFA measurements that quantify microbial diversity, composition, and growth. Both profiling techniques revealed that microbial communities grouped strongly by ecosystem and were predominately influenced by three edaphic factors: pH, soil water content, and cation exchange capacity. Temporal variability of microbial communities differed by profiling technique; 16S-based community measurements showed significant temporal variability only in the subtropical coniferous forest communities, specifically through changes within subgroups of Acidobacteria. Conversely, PLFA-based community measurements showed seasonal shifts in taiga and tropical broadleaf forest systems. These differences may be due to the premise that 16S-based measurements are predominantly influenced by large shifts in the abiotic soil environment, while PLFA-based analyses reflect the metabolically active fraction of the microbial community, which is more sensitive to local disturbances and biotic interactions. To address the technical issue of the response of soil microbial communities to sample storage temperature, we compared 16S-based community

  5. Key Edaphic Properties Largely Explain Temporal and Geographic Variation in Soil Microbial Communities across Four Biomes.

    PubMed

    Docherty, Kathryn M; Borton, Hannah M; Espinosa, Noelle; Gebhardt, Martha; Gil-Loaiza, Juliana; Gutknecht, Jessica L M; Maes, Patrick W; Mott, Brendon M; Parnell, John Jacob; Purdy, Gayle; Rodrigues, Pedro A P; Stanish, Lee F; Walser, Olivia N; Gallery, Rachel E

    2015-01-01

    Soil microbial communities play a critical role in nutrient transformation and storage in all ecosystems. Quantifying the seasonal and long-term temporal extent of genetic and functional variation of soil microorganisms in response to biotic and abiotic changes within and across ecosystems will inform our understanding of the effect of climate change on these processes. We examined spatial and seasonal variation in microbial communities based on 16S rRNA gene sequencing and phospholipid fatty acid (PLFA) composition across four biomes: a tropical broadleaf forest (Hawaii), taiga (Alaska), semiarid grassland-shrubland (Utah), and a subtropical coniferous forest (Florida). In this study, we used a team-based instructional approach leveraging the iPlant Collaborative to examine publicly available National Ecological Observatory Network (NEON) 16S gene and PLFA measurements that quantify microbial diversity, composition, and growth. Both profiling techniques revealed that microbial communities grouped strongly by ecosystem and were predominately influenced by three edaphic factors: pH, soil water content, and cation exchange capacity. Temporal variability of microbial communities differed by profiling technique; 16S-based community measurements showed significant temporal variability only in the subtropical coniferous forest communities, specifically through changes within subgroups of Acidobacteria. Conversely, PLFA-based community measurements showed seasonal shifts in taiga and tropical broadleaf forest systems. These differences may be due to the premise that 16S-based measurements are predominantly influenced by large shifts in the abiotic soil environment, while PLFA-based analyses reflect the metabolically active fraction of the microbial community, which is more sensitive to local disturbances and biotic interactions. To address the technical issue of the response of soil microbial communities to sample storage temperature, we compared 16S-based community

  6. A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes.

    PubMed

    Liu, Lingli; Wang, Xin; Lajeunesse, Marc J; Miao, Guofang; Piao, Shilong; Wan, Shiqiang; Wu, Yuxin; Wang, Zhenhua; Yang, Sen; Li, Ping; Deng, Meifeng

    2016-04-01

    Soil respiration (Rs) is the second-largest terrestrial carbon (C) flux. Although Rs has been extensively studied across a broad range of biomes, there is surprisingly little consensus on how the spatiotemporal patterns of Rs will be altered in a warming climate with changing precipitation regimes. Here, we present a global synthesis Rs data from studies that have manipulated precipitation in the field by collating studies from 113 increased precipitation treatments, 91 decreased precipitation treatments, and 14 prolonged drought treatments. Our meta-analysis indicated that when the increased precipitation treatments were normalized to 28% above the ambient level, the soil moisture, Rs, and the temperature sensitivity (Q10) values increased by an average of 17%, 16%, and 6%, respectively, and the soil temperature decreased by -1.3%. The greatest increases in Rs and Q10 were observed in arid areas, and the stimulation rates decreased with increases in climate humidity. When the decreased precipitation treatments were normalized to 28% below the ambient level, the soil moisture and Rs values decreased by an average of -14% and -17%, respectively, and the soil temperature and Q10 values were not altered. The reductions in soil moisture tended to be greater in more humid areas. Prolonged drought without alterations in the amount of precipitation reduced the soil moisture and Rs by -12% and -6%, respectively, but did not alter Q10. Overall, our synthesis suggests that soil moisture and Rs tend to be more sensitive to increased precipitation in more arid areas and more responsive to decreased precipitation in more humid areas. The responses of Rs and Q10 were predominantly driven by precipitation-induced changes in the soil moisture, whereas changes in the soil temperature had limited impacts. Finally, our synthesis of prolonged drought experiments also emphasizes the importance of the timing and frequency of precipitation events on ecosystem C cycles. Given these

  7. Key Edaphic Properties Largely Explain Temporal and Geographic Variation in Soil Microbial Communities across Four Biomes.

    PubMed

    Docherty, Kathryn M; Borton, Hannah M; Espinosa, Noelle; Gebhardt, Martha; Gil-Loaiza, Juliana; Gutknecht, Jessica L M; Maes, Patrick W; Mott, Brendon M; Parnell, John Jacob; Purdy, Gayle; Rodrigues, Pedro A P; Stanish, Lee F; Walser, Olivia N; Gallery, Rachel E

    2015-01-01

    Soil microbial communities play a critical role in nutrient transformation and storage in all ecosystems. Quantifying the seasonal and long-term temporal extent of genetic and functional variation of soil microorganisms in response to biotic and abiotic changes within and across ecosystems will inform our understanding of the effect of climate change on these processes. We examined spatial and seasonal variation in microbial communities based on 16S rRNA gene sequencing and phospholipid fatty acid (PLFA) composition across four biomes: a tropical broadleaf forest (Hawaii), taiga (Alaska), semiarid grassland-shrubland (Utah), and a subtropical coniferous forest (Florida). In this study, we used a team-based instructional approach leveraging the iPlant Collaborative to examine publicly available National Ecological Observatory Network (NEON) 16S gene and PLFA measurements that quantify microbial diversity, composition, and growth. Both profiling techniques revealed that microbial communities grouped strongly by ecosystem and were predominately influenced by three edaphic factors: pH, soil water content, and cation exchange capacity. Temporal variability of microbial communities differed by profiling technique; 16S-based community measurements showed significant temporal variability only in the subtropical coniferous forest communities, specifically through changes within subgroups of Acidobacteria. Conversely, PLFA-based community measurements showed seasonal shifts in taiga and tropical broadleaf forest systems. These differences may be due to the premise that 16S-based measurements are predominantly influenced by large shifts in the abiotic soil environment, while PLFA-based analyses reflect the metabolically active fraction of the microbial community, which is more sensitive to local disturbances and biotic interactions. To address the technical issue of the response of soil microbial communities to sample storage temperature, we compared 16S-based community

  8. Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure.

    PubMed

    Pennington, R Toby; Richardson, James E; Lavin, Matt

    2006-01-01

    Analytical methods are now available that can date all nodes in a molecular phylogenetic tree with one calibration, and which correct for variable rates of DNA substitution in different lineages. Although these techniques are approximate, they offer a new tool to investigate the historical construction of species-rich biomes. Dated phylogenies of globally distributed plant families often indicate that dispersal, even across oceans, rather than plate tectonics, has generated their wide distributions. By contrast, there are indications that animal lineages have undergone less long distance dispersal. Dating the origin of biome-specific plant groups offers a means of estimating the age of the biomes they characterize. However, rather than a simple emphasis on biome age, we stress the importance of studies that seek to unravel the processes that have led to the accumulation of large numbers of species in some biomes. The synthesis of biological inventory, systematics and evolutionary biology offered by the frameworks of neutral ecological theory and phylogenetic community structure offers a promising route for future work.

  9. Aridification drove repeated episodes of diversification between Australian biomes: evidence from a multi-locus phylogeny of Australian toadlets (Uperoleia: Myobatrachidae).

    PubMed

    Catullo, Renee A; Scott Keogh, J

    2014-10-01

    Australia is a large and complex landmass that comprises diverse biomes ranging from tropical rainforests to harsh deserts. While Australian biotic diversity has evolved in response to landscape and climate changes, evidence of Miocene or later biome shifts are few. The Australo-Papuan endemic frog genus Uperoleia is widely distributed across mesic, monsoonal tropic and arid regions of Australia. Thus, it represents an ideal system to evaluate biome shifts as they relate to known landscape and climate history. We comprehensively sampled the distributional range of 25 described Uperoleia species and generated a detailed molecular phylogeny for the genus based on one mitochondrial and five nuclear loci. Our results support a single origin of monsoonal tropic taxa, followed by diversification within the region under the influence of the Australian monsoon. Molecular dating analyses suggest the major divergence between eastern mesic and monsoonal species occurred in the Miocene approximately 17million years ago, with repeated evolution of species from monsoonal biomes to arid or mesic biomes in the later Miocene, early Pliocene and at the beginning of the Pleistocene. Our detailed sampling helps to clarify the true distributions of species and contributes to on-going work to improve the taxonomy of the genus. Topological differences between nuclear and mitochondrial phylogenies within major clades suggest a history of mitochondrial introgression and capture, and reduce the ability to resolve close interspecific relationships.

  10. Testing the Landscape Reconstruction Algorithm for spatially explicit reconstruction of vegetation in northern Michigan and Wisconsin

    NASA Astrophysics Data System (ADS)

    Sugita, Shinya; Parshall, Tim; Calcote, Randy; Walker, Karen

    2010-09-01

    The Landscape Reconstruction Algorithm (LRA) overcomes some of the fundamental problems in pollen analysis for quantitative reconstruction of vegetation. LRA first uses the REVEALS model to estimate regional vegetation using pollen data from large sites and then the LOVE model to estimate vegetation composition within the relevant source area of pollen (RSAP) at small sites by subtracting the background pollen estimated from the regional vegetation composition. This study tests LRA using training data from forest hollows in northern Michigan (35 sites) and northwestern Wisconsin (43 sites). In northern Michigan, surface pollen from 152-ha and 332-ha lakes is used for REVEALS. Because of the lack of pollen data from large lakes in northwestern Wisconsin, we use pollen from 21 hollows randomly selected from the 43 sites for REVEALS. RSAP indirectly estimated by LRA is comparable to the expected value in each region. A regression analysis and permutation test validate that the LRA-based vegetation reconstruction is significantly more accurate than pollen percentages alone in both regions. Even though the site selection in northwestern Wisconsin is not ideal, the results are robust. The LRA is a significant step forward in quantitative reconstruction of vegetation.

  11. Model based iterative reconstruction for Bright Field electron tomography

    NASA Astrophysics Data System (ADS)

    Venkatakrishnan, Singanallur V.; Drummy, Lawrence F.; De Graef, Marc; Simmons, Jeff P.; Bouman, Charles A.

    2013-02-01

    Bright Field (BF) electron tomography (ET) has been widely used in the life sciences to characterize biological specimens in 3D. While BF-ET is the dominant modality in the life sciences it has been generally avoided in the physical sciences due to anomalous measurements in the data due to a phenomenon called "Bragg scatter" - visible when crystalline samples are imaged. These measurements cause undesirable artifacts in the reconstruction when the typical algorithms such as Filtered Back Projection (FBP) and Simultaneous Iterative Reconstruction Technique (SIRT) are applied to the data. Model based iterative reconstruction (MBIR) provides a powerful framework for tomographic reconstruction that incorporates a model for data acquisition, noise in the measurement and a model for the object to obtain reconstructions that are qualitatively superior and quantitatively accurate. In this paper we present a novel MBIR algorithm for BF-ET which accounts for the presence of anomalous measurements from Bragg scatter in the data during the iterative reconstruction. Our method accounts for the anomalies by formulating the reconstruction as minimizing a cost function which rejects measurements that deviate significantly from the typical Beer's law model widely assumed for BF-ET. Results on simulated as well as real data show that our method can dramatically improve the reconstructions compared to FBP and MBIR without anomaly rejection, suppressing the artifacts due to the Bragg anomalies.

  12. Dendroclimatic reconstructions for the southern Colorado plateau

    SciTech Connect

    Dean, J.S.; Funkhouser, G.S.

    1995-09-01

    A geographical network of climate sensitive tree-ring chronologies consisting of 25 archaeological sequences and two bristlecone pine series provides the basis for high resolution reconstructions of low and high frequency climatic variability on the southern Colorado Plateau over the last 1,500 years. Qualitative and quantitative dendroclimatic analyses of these data produce annual retrodictions of yearly and seasonal precipitation and summer Palmer Drought Severity Indices for each station and reconstructions of regional scale patterns in climatic variability. These reconstructions provide detailed information on climatic fluctuations that affected biotic and human populations as well as long-term baseline data for evaluating present-day climate and estimating future climatic trends. When integrated with other measures of past environmental variability, these reconstructions specify periods of favorable and unfavorable environmental conditions that would have affected past human populations of the region. The severest degradation, which occurred between A.D. 1250 and 1450, probably was causally related to numerous cultural changes that occurred at the end of the l3th century including the Anasazi abandonment of the Four Comers area. Projecting environmental patterns that characterized the last two millennia into the future indicates potential hazards to long term uranium mill waste disposal and containment and the potential and limitations of environmental restoration.

  13. Coracoclavicular Ligament Reconstruction

    PubMed Central

    Li, Qi; Hsueh, Pei-ling; Chen, Yun-feng

    2014-01-01

    Abstract Operative intervention is recommended for complete acromioclavicular (AC) joint dislocation to restore AC stability, but the best operative technique is still controversial. Twelve fresh-frozen male cadaveric shoulders (average age, 62.8 ± 7.8 years) were equally divided into endobutton versus the modified Weaver-Dunn groups. Each potted scapula and clavicle was fixed in a custom made jig to allow translation and load to failure testing using a Zwick BZ2.5/TS1S material testing machine (Zwick/Roell Co, Germany). A systematic review of 21 studies evaluating reconstructive methods for coracoclavicular or AC joints using a cadaveric model was also performed. From our biomechanical study, after ligament reconstruction, the triple endobutton technique demonstrated superior, anterior, and posterior displacements similar to that of the intact state (P > 0.05). In the modified Weaver-Dunn reconstruction group, however, there was significantly greater anterior (P < 0.001) and posterior (P = 0.003) translation after ligament reconstruction. In addition, there was no significant difference after reconstruction between failure load of the triple endobutton group and that of the intact state (686.88 vs 684.9 N, P > 0.05), whereas the failure load after the modified Weaver-Dunn reconstruction was decreased compared with the intact state (171.64 vs 640.86 N, P < 0.001). From our systematic review of 21 studies, which involved comparison of the modified Weaver-Dunn technique with other methods, the majority showed that the modified Weaver-Dunn procedure had significantly (P < .05) greater laxity than other methods including the endobutton technique. The triple endobutton reconstruction proved superior to the modified Weaver-Dunn technique in restoration of AC joint stability and strength. Triple endobutton reconstruction of the coracoclavicular ligament is superior to the modified Weaver-Dunn reconstruction in controlling both superior and

  14. Augmented Likelihood Image Reconstruction.

    PubMed

    Stille, Maik; Kleine, Matthias; Hägele, Julian; Barkhausen, Jörg; Buzug, Thorsten M

    2016-01-01

    The presence of high-density objects remains an open problem in medical CT imaging. Data of projections passing through objects of high density, such as metal implants, are dominated by noise and are highly affected by beam hardening and scatter. Reconstructed images become less diagnostically conclusive because of pronounced artifacts that manifest as dark and bright streaks. A new reconstruction algorithm is proposed with the aim to reduce these artifacts by incorporating information about shape and known attenuation coefficients of a metal implant. Image reconstruction is considered as a variational optimization problem. The afore-mentioned prior knowledge is introduced in terms of equality constraints. An augmented Lagrangian approach is adapted in order to minimize the associated log-likelihood function for transmission CT. During iterations, temporally appearing artifacts are reduced with a bilateral filter and new projection values are calculated, which are used later on for the reconstruction. A detailed evaluation in cooperation with radiologists is performed on software and hardware phantoms, as well as on clinically relevant patient data of subjects with various metal implants. Results show that the proposed reconstruction algorithm is able to outperform contemporary metal artifact reduction methods such as normalized metal artifact reduction.

  15. Reconstruction in Warfare Injuries.

    PubMed

    Langer, V

    2010-10-01

    Traumatic injuries, especially in the combat setting, stress the surgical team that may be sited in a remote forward area, battling against paucity of time, resources and infrastructure. The lone surgeon may be faced with the arduous challenge of saving life. There is seldom thought given to reconstruction in this high-pressure situation. If the patient survives, morbidity for want of reconstruction can be severe and quality of life can suffer significantly. Reconstruction after 3 to 5 days is fraught with complications and usually does compromise outcome in the post-operative phase. The reconstructive surgeon should be involved early in the management as he can provide coverage for large soft tissue defects after aggressive debridement with panache. If the patient is haemodynamically stable, he should be transferred urgently, preferrably by air, to a higher centre with multi-specialty care, especially being equipped with an orthopaedic and trauma reconstructive surgeon. It has been proved beyond doubt that the healing improves significantly and there is marked decrease in morbidity if coverage of wounds is provided early, before colonized wounds get infected. PMID:27365741

  16. sPlot - the new global vegetation-plot database for addressing trait-environment relationships across the world's biomes

    NASA Astrophysics Data System (ADS)

    Purschke, Oliver; Dengler, Jürgen; Bruelheide, Helge; Chytrý, Milan; Jansen, Florian; Hennekens, Stephan; Jandt, Ute; Jiménez-Alfaro, Borja; Kattge, Jens; De Patta Pillar, Valério; Sandel, Brody; Winter, Marten

    2015-04-01

    The trait composition of plant communities is determined by abiotic, biotic and historical factors, but the importance of macro-climatic factors in explaining trait-environment relationships at the local scale remains unclear. Such knowledge is crucial for biogeographical and ecological theory but also relevant to devise management measures to mitigate the negative effects of climate change. To address these questions, an iDiv Working Group has established the first global vegetation-plot database (sPlot). sPlot currently contains ~700,000 plots from over 50 countries and all biomes, and is steadily growing. Approx. 70% of the most frequent species are represented by at least one trait in the global trait database TRY and gap-filled data will become available for the most common traits. We will give an overview about the structure and present content of sPlot in terms of spatial distribution, data properties and trait coverage. We will explain next steps and perspectives, present first cross-biome analyses of community-weighted mean traits and trait variability, and highlight some ecological questions that can be addressed with sPlot.

  17. Water Regime Influences Bulk Soil and Rhizosphere of Cereus jamacaru Bacterial Communities in the Brazilian Caatinga Biome

    PubMed Central

    Nessner Kavamura, Vanessa; Taketani, Rodrigo Gouvêa; Lançoni, Milena Duarte; Andreote, Fernando Dini; Mendes, Rodrigo; Soares de Melo, Itamar

    2013-01-01

    We used the T-RFLP technique combined with Ion Torrent (PGM) sequencing of 16S rRNA and multivariate analysis to study the structure of bulk soil and rhizosphere bacterial communities of a cactus, Cereus jamacaru, from the Brazilian Caatinga biome, which is unique to Brazil. The availability of water shapes the rhizosphere communities, resulting in different patterns during the rainy and dry seasons. Taxonomic approaches and statistical analysis revealed that the phylum Actinobacteria strongly correlated with the dry season, while samples from the rainy season exhibited a strong correlation with the phylum Proteobacteria for rhizosphere samples and with the phyla Bacteroidetes, Firmicutes, Lentisphaerae, and Tenericutes for bulk soil samples. The STAMP software also indicated that the phylum Bacteroidetes, as well as two classes in the Proteobacteria phylum (γ and δ), were the most significant ones during the rainy season. The average abundance of the phylum Actinobacteria and the genus Bacillus was significantly greater during the dry season. Some significant genera found during the dry season might reflect their tolerance to the extreme conditions found in the Caatinga biome. They may also indicate the ecological function that microorganisms play in providing plants with some degree of tolerance to water stress or in assisting in their development through mechanisms of growth promotion. Alterations in microbial communities can be due to the different abilities of native microorganisms to resist and adapt to environmental changes. PMID:24069212

  18. Integrating Aircraft, Tower fluxes, MODIS and Biome-BGC to Study Carbon Dioxide and Water Vapor Fluxes over Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Oechel, W. C.; Zulueta, R. C.; Verfaillie, J.; Kwon, H.; Heinsch, F.; Kimball, J.

    2003-12-01

    To understand carbon and water dynamics of susceptible Arctic Tundra ecosystem, intensive and integrated methods are implemented on the North Slope of Artic Alaska, including eddy covariance, remote sensing and ecosystem models. Tower-based eddy covariance instruments have strongly ability to measure long-term temporal trend, and aircraft-based flux measurements is able to assess spatial variations efficiently. Both of complemental measurements have been used on this region for several years. The Aircraft (Sky Arrow ERA 650) with eddy covariance and remote sensors flied at 100 km scale over 115 hours in 2001. The aircraft fluxes are compared to tower fluxes at Barrow, Atqasuk and potable tower. The correlation of aircraft fluxes and MODIS NDVI, EVI and LAI are addressed. MODIS GPP, PSN, NPP are validated by tower measurement at long-term temporal scale and by aircraft measurement at larger spatial scale. The process-based ecosystem model, Biome-BGC, is run at five sites: Barrow, Atqasuk, Ivotuk, Toolik Lake, Prudhoe Bay. While the model can computer components of CO2 flux that cannot be directly monitored, the comparisons of model outputs and aircraft, tower measurements are used to help improve the model estimate ability. The intercomparison of model and MODIS is also discussed in this paper. Key words: Arctic tundra, trace-gas flux, aircraft-based, eddy covariance, MODIS, Biome-BGC

  19. Are there consistent grazing indicators in Drylands? Testing plant functional types of various complexity in South Africa's Grassland and Savanna Biomes.

    PubMed

    Linstädter, Anja; Schellberg, Jürgen; Brüser, Katharina; Moreno García, Cristian A; Oomen, Roelof J; du Preez, Chris C; Ruppert, Jan C; Ewert, Frank

    2014-01-01

    Despite our growing knowledge on plants' functional responses to grazing, there is no consensus if an optimum level of functional aggregation exists for detecting grazing effects in drylands. With a comparative approach we searched for plant functional types (PFTs) with a consistent response to grazing across two areas differing in climatic aridity, situated in South Africa's grassland and savanna biomes. We aggregated herbaceous species into PFTs, using hierarchical combinations of traits (from single- to three-trait PFTs). Traits relate to life history, growth form and leaf width. We first confirmed that soil and grazing gradients were largely independent from each other, and then searched in each biome for PFTs with a sensitive response to grazing, avoiding confounding with soil conditions. We found no response consistency, but biome-specific optimum aggregation levels. Three-trait PFTs (e.g. broad-leaved perennial grasses) and two-trait PFTs (e.g. perennial grasses) performed best as indicators of grazing effects in the semi-arid grassland and in the arid savanna biome, respectively. Some PFTs increased with grazing pressure in the grassland, but decreased in the savanna. We applied biome-specific grazing indicators to evaluate if differences in grazing management related to land tenure (communal versus freehold) had effects on vegetation. Tenure effects were small, which we mainly attributed to large variability in grazing pressure across farms. We conclude that the striking lack of generalizable PFT responses to grazing is due to a convergence of aridity and grazing effects, and unlikely to be overcome by more refined classification approaches. Hence, PFTs with an opposite response to grazing in the two biomes rather have a unimodal response along a gradient of additive forces of aridity and grazing. The study advocates for hierarchical trait combinations to identify localized indicator sets for grazing effects. Its methodological approach may also be useful

  20. Are there consistent grazing indicators in Drylands? Testing plant functional types of various complexity in South Africa's Grassland and Savanna Biomes.

    PubMed

    Linstädter, Anja; Schellberg, Jürgen; Brüser, Katharina; Moreno García, Cristian A; Oomen, Roelof J; du Preez, Chris C; Ruppert, Jan C; Ewert, Frank

    2014-01-01

    Despite our growing knowledge on plants' functional responses to grazing, there is no consensus if an optimum level of functional aggregation exists for detecting grazing effects in drylands. With a comparative approach we searched for plant functional types (PFTs) with a consistent response to grazing across two areas differing in climatic aridity, situated in South Africa's grassland and savanna biomes. We aggregated herbaceous species into PFTs, using hierarchical combinations of traits (from single- to three-trait PFTs). Traits relate to life history, growth form and leaf width. We first confirmed that soil and grazing gradients were largely independent from each other, and then searched in each biome for PFTs with a sensitive response to grazing, avoiding confounding with soil conditions. We found no response consistency, but biome-specific optimum aggregation levels. Three-trait PFTs (e.g. broad-leaved perennial grasses) and two-trait PFTs (e.g. perennial grasses) performed best as indicators of grazing effects in the semi-arid grassland and in the arid savanna biome, respectively. Some PFTs increased with grazing pressure in the grassland, but decreased in the savanna. We applied biome-specific grazing indicators to evaluate if differences in grazing management related to land tenure (communal versus freehold) had effects on vegetation. Tenure effects were small, which we mainly attributed to large variability in grazing pressure across farms. We conclude that the striking lack of generalizable PFT responses to grazing is due to a convergence of aridity and grazing effects, and unlikely to be overcome by more refined classification approaches. Hence, PFTs with an opposite response to grazing in the two biomes rather have a unimodal response along a gradient of additive forces of aridity and grazing. The study advocates for hierarchical trait combinations to identify localized indicator sets for grazing effects. Its methodological approach may also be useful

  1. Lateral Abdominal Wall Reconstruction

    PubMed Central

    Baumann, Donald P.; Butler, Charles E.

    2012-01-01

    Lateral abdominal wall (LAW) defects can manifest as a flank hernias, myofascial laxity/bulges, or full-thickness defects. These defects are quite different from those in the anterior abdominal wall defects and the complexity and limited surgical options make repairing the LAW a challenge for the reconstructive surgeon. LAW reconstruction requires an understanding of the anatomy, physiologic forces, and the impact of deinnervation injury to design and perform successful reconstructions of hernia, bulge, and full-thickness defects. Reconstructive strategies must be tailored to address the inguinal ligament, retroperitoneum, chest wall, and diaphragm. Operative technique must focus on stabilization of the LAW to nonyielding points of fixation at the anatomic borders of the LAW far beyond the musculofascial borders of the defect itself. Thus, hernias, bulges, and full-thickness defects are approached in a similar fashion. Mesh reinforcement is uniformly required in lateral abdominal wall reconstruction. Inlay mesh placement with overlying myofascial coverage is preferred as a first-line option as is the case in anterior abdominal wall reconstruction. However, interposition bridging repairs are often performed as the surrounding myofascial tissue precludes a dual layered closure. The decision to place bioprosthetic or prosthetic mesh depends on surgeon preference, patient comorbidities, and clinical factors of the repair. Regardless of mesh type, the overlying soft tissue must provide stable cutaneous coverage and obliteration of dead space. In cases where the fasciocutaneous flaps surrounding the defect are inadequate for closure, regional pedicled flaps or free flaps are recruited to achieve stable soft tissue coverage. PMID:23372458

  2. Adaptive iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Bruder, H.; Raupach, R.; Sunnegardh, J.; Sedlmair, M.; Stierstorfer, K.; Flohr, T.

    2011-03-01

    It is well known that, in CT reconstruction, Maximum A Posteriori (MAP) reconstruction based on a Poisson noise model can be well approximated by Penalized Weighted Least Square (PWLS) minimization based on a data dependent Gaussian noise model. We study minimization of the PWLS objective function using the Gradient Descent (GD) method, and show that if an exact inverse of the forward projector exists, the PWLS GD update equation can be translated into an update equation which entirely operates in the image domain. In case of non-linear regularization and arbitrary noise model this means that a non-linear image filter must exist which solves the optimization problem. In the general case of non-linear regularization and arbitrary noise model, the analytical computation is not trivial and might lead to image filters which are computationally very expensive. We introduce a new iteration scheme in image space, based on a regularization filter with an anisotropic noise model. Basically, this approximates the statistical data weighting and regularization in PWLS reconstruction. If needed, e.g. for compensation of the non-exactness of backprojector, the image-based regularization loop can be preceded by a raw data based loop without regularization and statistical data weighting. We call this combined iterative reconstruction scheme Adaptive Iterative Reconstruction (AIR). It will be shown that in terms of low-contrast visibility, sharpness-to-noise and contrast-to-noise ratio, PWLS and AIR reconstruction are similar to a high degree of accuracy. In clinical images the noise texture of AIR is also superior to the more artificial texture of PWLS.

  3. Anatomic Posterolateral Corner Reconstruction.

    PubMed

    Serra Cruz, Raphael; Mitchell, Justin J; Dean, Chase S; Chahla, Jorge; Moatshe, Gilbert; LaPrade, Robert F

    2016-06-01

    Posterolateral corner injuries represent a complex injury pattern, with damage to important coronal and rotatory stabilizers of the knee. These lesions commonly occur in association with other ligament injuries, making decisions regarding treatment challenging. Grade III posterolateral corner injuries result in significant instability and have poor outcomes when treated nonoperatively. As a result, reconstruction is advocated. A thorough knowledge of the anatomy is essential for surgical treatment of this pathology. The following technical note provides a diagnostic approach, postoperative management, and details of a technique for anatomic reconstruction of the 3 main static stabilizers of the posterolateral corner of the knee. PMID:27656379

  4. Temperature climatology as a determinant of tropical savanna vegetation distribution in the cerrado biome

    NASA Astrophysics Data System (ADS)

    Powell, R. L.; Toomey, M. P.; Still, C. J.

    2011-12-01

    One of the defining characteristics of savanna ecosystems is the coexistence of woody and herbaceous vegetation. While the relative abundance of these components strongly influences a number of ecosystem functional properties, including carbon and water cycling, land-cover maps rarely depict the tree:grass composition of savanna classes. As a fundamental component of climate, temperature has long been recognized to strongly influence vegetation distribution on continental scales. Here, we investigate the degree to which savanna vegetation classes in the cerrado biome of Brazil can be sorted using temperature climatologies. The definition and spatial boundaries of each savanna vegetation class were taken from the Cerrado Remnant Vegetation Map of the Brazilian Ministry of the Environment Biodiversity Program, PROBIO Project. Land-cover classes were grouped into five broad categories representing a range of woody through herbaceous vegetation cover: forestlands, shrublands, grasslands, cultivated pasture, and croplands; these vegetation polygons served as the unit of analysis. Temperature climatologies were derived from nearly ten years of daily Terra/Aqua MODIS Land Surface Temperature (LST), as well as from two climate surface datasets based on interpolated air temperature station data (1961-1990) at two spatial resolutions: the Climatic Research Unit mean monthly terrestrial climatology (half-degree) and WorldClim (30 arc-seconds). Additionally, we investigate the relationships between these temperature climatologies, the relative composition of herbaceous and woody vegetation cover as represented by the MODIS Vegetation Continuous Fields (VCF) product, and MODIS-derived mean annual net primary productivity (2000-2006). Based on pair-wise comparison of means (t-tests), the variables that were most successful at distinguishing between vegetation classes were mean annual nighttime temperatures, particularly Terra nighttime LST (collected at approximately 21:30 local

  5. Data resources for range-wide assessment of livestock grazing across the sagebrush biome

    USGS Publications Warehouse

    Assal, T.J.; Veblen, K.E.; Farinha, M.A.; Aldridge, C.L.; Casazza, M.L.; Pyke, D.A.

    2012-01-01

    The data contained in this series were compiled, modified, and analyzed for the U.S. Geological Survey (USGS) report "Range-Wide Assessment of Livestock Grazing Across the Sagebrush Biome." This report can be accessed through the USGS Publications Warehouse (online linkage: http://pubs.usgs.gov/of/2011/1263/). The dataset contains spatial and tabular data related to Bureau of Land Management (BLM) Grazing Allotments. We reviewed the BLM national grazing allotment spatial dataset available from the GeoCommunicator National Integrated Land System (NILS) website in 2007 (http://www.geocommunicator.gov). We identified several limitations in those data and learned that some BLM State and/or field offices had updated their spatial data to rectify these limitations, but maintained the data outside of NILS. We contacted appropriate BLM offices (State or field, 25 in all) to obtain the most recent data, assessed the data, established a data development protocol, and compiled data into a topologically enforced dataset throughout the area of interest for this project (that is, the pre-settlement distribution of Greater Sage-Grouse in the Western United States). The final database includes three spatial datasets: Allotments (BLM Grazing Allotments), OUT_Polygons (nonallotment polygons used to ensure topology), and Duplicate_Polygon_Allotments. See Appendix 1 of the aforementioned report for complete methods. The tabular data presented here consists of information synthesized by the Land Health Standard (LHS) analysis (Appendix 2), and data obtained from the BLM Rangeland Administration System (http://www.blm.gov/ras/). In 2008, available LHS data for all allotments in all regions were compiled by BLM in response to a Freedom of Information Act (FOIA) request made by a private organization. The BLM provided us with a copy of these data. These data provided three major types of information that were of interest: (1) date(s) (if any) of the most recent LHS evaluation for each

  6. Online reconstruction of 3D magnetic particle imaging data

    NASA Astrophysics Data System (ADS)

    Knopp, T.; Hofmann, M.

    2016-06-01

    Magnetic particle imaging is a quantitative functional imaging technique that allows imaging of the spatial distribution of super-paramagnetic iron oxide particles at high temporal resolution. The raw data acquisition can be performed at frame rates of more than 40 volumes s‑1. However, to date image reconstruction is performed in an offline step and thus no direct feedback is available during the experiment. Considering potential interventional applications such direct feedback would be mandatory. In this work, an online reconstruction framework is implemented that allows direct visualization of the particle distribution on the screen of the acquisition computer with a latency of about 2 s. The reconstruction process is adaptive and performs block-averaging in order to optimize the signal quality for a given amount of reconstruction time.

  7. Online reconstruction of 3D magnetic particle imaging data

    NASA Astrophysics Data System (ADS)

    Knopp, T.; Hofmann, M.

    2016-06-01

    Magnetic particle imaging is a quantitative functional imaging technique that allows imaging of the spatial distribution of super-paramagnetic iron oxide particles at high temporal resolution. The raw data acquisition can be performed at frame rates of more than 40 volumes s-1. However, to date image reconstruction is performed in an offline step and thus no direct feedback is available during the experiment. Considering potential interventional applications such direct feedback would be mandatory. In this work, an online reconstruction framework is implemented that allows direct visualization of the particle distribution on the screen of the acquisition computer with a latency of about 2 s. The reconstruction process is adaptive and performs block-averaging in order to optimize the signal quality for a given amount of reconstruction time.

  8. Reconstruction of the trachea

    PubMed Central

    Grillo, Hermes C.

    1973-01-01

    Grillo, H. C. (1973).Thorax, 28, 667-679. Reconstruction of the trachea. Experience in 100 consecutive cases. Anatomic mobilization of the trachea permits resection of one-half or more with primary anastomosis. An anterior approach by a cervical or cervicomediastinal route utilizes cervical flexion to devolve the larynx and tracheal mobilization with preservation of the lateral blood supply. The transthoracic route is employed for lower tracheal lesions. Over 100 tracheal resections have been done using these methods of direct reconstruction. Eighty-four patients suffered from benign strictures, 79 resulting from intubation injuries. Eleven primary tracheal tumours and five secondary tumours are included. The majority of lesions following intubation occurred at the level of the cuff. It was possible to repair 78 of the 84 stenotic lesions through a cervical or cervicomediastinal approach. Seventy-three of the 84 patients with inflammatory lesions obtained an excellent or good functional and anatomic result. Nine of 11 patients with primary neoplasms who underwent reconstruction are alive and without known disease. There were five early postoperative deaths in these 100 consecutive patients who underwent tracheal reconstruction. Images PMID:4362789

  9. Breast reconstruction - natural tissue

    MedlinePlus

    ... muscle flap; TRAM; Latissimus muscle flap with a breast implant; DIEP flap; DIEAP flap; Gluteal free flap; ... If you are having breast reconstruction at the same time as mastectomy, the surgeon may do either of the following: Skin-sparing mastectomy. This means ...

  10. Reconstructing Community History

    ERIC Educational Resources Information Center

    Shields, Amy

    2004-01-01

    History is alive and well in Lebanon, Missouri. Students in this small town in the southwest region of the state went above and beyond the community's expectations on this special project. This article describes this historical journey which began when students in a summer mural class reconstructed a mural that was originally created by a…

  11. A new method of morphological comparison for bony reconstructive surgery: maxillary reconstruction using scapular tip bone

    NASA Astrophysics Data System (ADS)

    Chan, Harley; Gilbert, Ralph W.; Pagedar, Nitin A.; Daly, Michael J.; Irish, Jonathan C.; Siewerdsen, Jeffrey H.

    2010-02-01

    esthetic appearance is one of the most important factors for reconstructive surgery. The current practice of maxillary reconstruction chooses radial forearm, fibula or iliac rest osteocutaneous to recreate three-dimensional complex structures of the palate and maxilla. However, these bone flaps lack shape similarity to the palate and result in a less satisfactory esthetic. Considering similarity factors and vasculature advantages, reconstructive surgeons recently explored the use of scapular tip myo-osseous free flaps to restore the excised site. We have developed a new method that quantitatively evaluates the morphological similarity of the scapula tip bone and palate based on a diagnostic volumetric computed tomography (CT) image. This quantitative result was further interpreted as a color map that rendered on the surface of a three-dimensional computer model. For surgical planning, this color interpretation could potentially assist the surgeon to maximize the orientation of the bone flaps for best fit of the reconstruction site. With approval from the Research Ethics Board (REB) of the University Health Network, we conducted a retrospective analysis with CT image obtained from 10 patients. Each patient had a CT scans including the maxilla and chest on the same day. Based on this image set, we simulated total, subtotal and hemi palate reconstruction. The procedure of simulation included volume segmentation, conversing the segmented volume to a stereo lithography (STL) model, manual registration, computation of minimum geometric distances and curvature between STL model. Across the 10 patients data, we found the overall root-mean-square (RMS) conformance was 3.71+/- 0.16 mm

  12. An iterative method for the reconstruction of the coronary arteries from rotational x-ray angiography

    NASA Astrophysics Data System (ADS)

    Hansis, Eberhard; Schäfer, Dirk; Grass, Michael; Dössel, Olaf

    2007-03-01

    Three-dimensional (3D) reconstruction of the coronary arteries offers great advantages in the diagnosis and treatment of cardiovascular diseases, compared to two-dimensional X-ray angiograms. Besides improved roadmapping, quantitative analysis of vessel lesions is possible. To perform 3D reconstruction, rotational projection data of the selectively contrast agent enhanced coronary arteries are acquired with simultaneous ECG recording. For the reconstruction of one cardiac phase, the corresponding projections are selected from the rotational sequence by nearest-neighbor ECG gating. This typically provides only 5-10 projections per cardiac phase. The severe angular undersampling leads to an ill-posed reconstruction problem. In this contribution, an iterative reconstruction method is presented which employs regularizations especially suited for the given reconstruction problem. The coronary arteries cover only a small fraction of the reconstruction volume. Therefore, we formulate the reconstruction problem as a minimization of the L I-norm of the reconstructed image, which results in a spatially sparse object. Two additional regularization terms are introduced: a 3D vesselness prior, which is reconstructed from vesselness-filtered projection data, and a Gibbs smoothing prior. The regularizations favor the reconstruction of the desired object, while taking care not to over-constrain the reconstruction by too detailed a-priori assumptions. Simulated projection data of a coronary artery software phantom are used to evaluate the performance of the method. Human data of clinical cases are presented to show the method's potential for clinical application.

  13. Model-based microwave image reconstruction: simulations and experiments

    SciTech Connect

    Ciocan, Razvan; Jiang Huabei

    2004-12-01

    We describe an integrated microwave imaging system that can provide spatial maps of dielectric properties of heterogeneous media with tomographically collected data. The hardware system (800-1200 MHz) was built based on a lock-in amplifier with 16 fixed antennas. The reconstruction algorithm was implemented using a Newton iterative method with combined Marquardt-Tikhonov regularizations. System performance was evaluated using heterogeneous media mimicking human breast tissue. Finite element method coupled with the Bayliss and Turkel radiation boundary conditions were applied to compute the electric field distribution in the heterogeneous media of interest. The results show that inclusions embedded in a 76-diameter background medium can be quantitatively reconstructed from both simulated and experimental data. Quantitative analysis of the microwave images obtained suggests that an inclusion of 14 mm in diameter is the smallest object that can be fully characterized presently using experimental data, while objects as small as 10 mm in diameter can be quantitatively resolved with simulated data.

  14. Preparing for Breast Reconstruction Surgery

    MedlinePlus

    ... after breast reconstruction surgery Preparing for breast reconstruction surgery Your surgeon can help you know what to ... The plan for follow-up Costs Understanding your surgery costs Health insurance policies often cover most or ...

  15. Channeled spectropolarimetry using iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Lee, Dennis J.; LaCasse, Charles F.; Craven, Julia M.

    2016-05-01

    Channeled spectropolarimeters (CSP) measure the polarization state of light as a function of wavelength. Conventional Fourier reconstruction suffers from noise, assumes the channels are band-limited, and requires uniformly spaced samples. To address these problems, we propose an iterative reconstruction algorithm. We develop a mathematical model of CSP measurements and minimize a cost function based on this model. We simulate a measured spectrum using example Stokes parameters, from which we compare conventional Fourier reconstruction and iterative reconstruction. Importantly, our iterative approach can reconstruct signals that contain more bandwidth, an advancement over Fourier reconstruction. Our results also show that iterative reconstruction mitigates noise effects, processes non-uniformly spaced samples without interpolation, and more faithfully recovers the ground truth Stokes parameters. This work offers a significant improvement to Fourier reconstruction for channeled spectropolarimetry.

  16. Survey of Hospitals and Manufacturers of Biomedical Instrumentation Concerning Variables Related to the Development and Implementation of a Bio-Med Instrumentation Technologist Curriculum.

    ERIC Educational Resources Information Center

    Schaumberg, Gary F.

    The Bio-Med Instrumentation Technologist Questionnaire was sent to 105 hospitals in the Southern California area that had electronic instrumentation for patient monitoring purposes. Sixty completed questionnaires were returned. Twenty manufacturers of bio-medical instrumentation were sent the questionnaires and seven responded. Some of the…

  17. Assessment of water pollution in the Brazilian Pampa biome by means of stress biomarkers in tadpoles of the leaf frog Phyllomedusa iheringii (Anura: Hylidae)

    PubMed Central

    Santos, TG; Melo, R; Costa-Silva, DG; Nunes, MEM; Rodrigues, NR

    2015-01-01

    The Brazilian Pampa biome is currently under constant threat due to increase of agriculture and improper management of urban effluents. Studies with a focus on the assessment of impacts caused by human activities in this biome are scarce. In the present study, we measured stress-related biomarkers in tadpoles of the leaf frog Phyllomedusa iheringii, an endemic species to the Pampa biome, and tested its suitability as a bioindicator for the assessment of potential aquatic contamination in selected ponds (S1 and S2) nearby agricultural areas in comparison to a reference site. A significant decrease in acetylcholinesterase activity was observed in S2 when compared to S1 and reference. The levels of total-hydroperoxides were increased in S2 site. In parallel, increased activity of the antioxidant enzymes catalase, superoxide dismutase and glutathione S-transferase were observed in S2 when compared to S1 and reference. Further studies are necessary in order to correlate the changes observed here with different chemical stressors in water, as well as to elucidate mechanisms of toxicity induced by pesticides in amphibian species endemic to the Pampa biome. Nevertheless, our study validates Phyllomedusa iheringii as a valuable bioindicator in environmental studies. PMID:26056614

  18. New records of mites (Acari: Spinturnicidae) associated with bats (Mammalia, Chiroptera) in two Brazilian biomes: Pantanal and Caatinga.

    PubMed

    de Almeida, Juliana Cardoso; Martins, Mayara Almeida; Guedes, Patrícia Gonçalves; Peracchi, Adriano Lucio; Serra-Freire, Nicolau Maues

    2016-01-01

    A first survey of mite species that ectoparasitize bats in the states of Ceará and Mato Grosso was conducted. The specimens of bats and their mites were collected in areas of the Caatinga and Pantanal biomes. A total of 450 spinturnicids representing two genera and ten species was collected from 15 bat species in the Private Reserve of the Natural Patrimony Serra das Almas, Ceará State, Northeast Brazil and 138 spinturnicids represented by two genera and four species were found in seven bats species collected in Private Reserve of the Natural Patrimony Sesc Pantanal, Mato Grosso State, Central-Western Brazil. The occurrence of Cameronieta genus and the species Mesoperiglischrus natali as well as four new associations (Periglischrus iheringi - Chiroderma vizottoi; P. micronycteridis - Micronycteris sanborni; P. paracutisternus - Trachops cirrhosus; Spinturnix americanus - Myotis riparius) are registered for the first time in Brazil.

  19. The mid-Holocene climate simulated by a grid-point AGCM coupled with a biome model

    NASA Astrophysics Data System (ADS)

    Wang, H. J.

    2002-03-01

    The climate simulation for the mid-Holocene about 6000 years before present (6 ka BP) is carried out with a grid-point atmospheric general circulation model (AGCM) coupled with a biome model. This coupled model simulation employs orbital parameters of 6 ka BP but present forcing conditions, Results show that large-scale climate differences between now and then are substantial in summer with dramatically strong African-Asian monsoon flow and precipitation during mid-Holocene, Although the results of this coupled model are qualitatively close to those of the AGCM, the coupled model shows a larger changes in both precipitation and temperature in summer over the North African monsoon area with weaker cooling in the Northern autumn.

  20. A Changing Number of Alternative States in the Boreal Biome: Reproducibility Risks of Replacing Remote Sensing Products

    PubMed Central

    Xu, Chi; Holmgren, Milena; Van Nes, Egbert H.; Hirota, Marina; Chapin, F. Stuart; Scheffer, Marten

    2015-01-01

    Publicly available remote sensing products have boosted science in many ways. The openness of these data sources suggests high reproducibility. However, as we show here, results may be specific to versions of the data products that can become unavailable as new versions are posted. We focus on remotely-sensed tree cover. Recent studies have used this public resource to detect multi-modality in tree cover in the tropical and boreal biomes. Such patterns suggest alternative stable states separated by critical tipping points. This has important implications for the potential response of these ecosystems to global climate change. For the boreal region, four distinct ecosystem states (i.e., treeless, sparse and dense woodland, and boreal forest) were previously identified by using the Collection 3 data of MODIS Vegetation Continuous Fields (VCF). Since then, the MODIS VCF product has been updated to Collection 5; and a Landsat VCF product of global tree cover at a fine spatial resolution of 30 meters has been developed. Here we compare these different remote-sensing products of tree cover to show that identification of alternative stable states in the boreal biome partly depends on the data source used. The updated MODIS data and the newer Landsat data consistently demonstrate three distinct modes around similar tree-cover values. Our analysis suggests that the boreal region has three modes: one sparsely vegetated state (treeless), one distinct ‘savanna-like’ state and one forest state, which could be alternative stable states. Our analysis illustrates that qualitative outcomes of studies may change fundamentally as new versions of remote sensing products are used. Scientific reproducibility thus requires that old versions remain publicly available. PMID:26571014

  1. Scale and the isotopic record of C4 plants in pedogenic carbonate: from the biome to the rhizosphere

    SciTech Connect

    Monger, Dr. H Curtis; Cole, David; Buck, Dr. Brenda; Gallegos, Robert

    2009-01-01

    The 13C/12C ratio in pedogenic carbonate (i.e., CaCO3 formed in soil) is a significant tool for investigating C4 biomes of the past. However, the paleoecological meaning of d13C values in pedogenic carbonate can change with the scale at which one considers the data. We describe studies of modern soils, fossil soils, and vegetation change in the Chihuahuan Desert of North America and elsewhere that reveal four scales important for paleoecologic interpretations. (1) At the broadest scale, the biome scale (hundreds to millions of km2), an isotopic record interpreted as C3 vegetation replacing C4 grasslands may indicate invading C3 woody shrubs instead of expanding C3 forests (a common interpretation). (2) At the landscape scale (several tens of m2 to hundreds of km2), the accuracy of scaling up paleoclimatic interpretations to a regional level is affected by the landform containing the isotopic record. (3) At the soil-profile scale (cm2 to m2), soil profiles with multiple generations of carbonate mixed together have a lower-resolution paleoecologic record than soil profiles repeatedly buried. (4) At the rhizosphere scale (lm2 to cm2), carbonate formed on roots lack the 14 17 enrichment observed at broader scales, revealing different fractionation processes at different scales. A multi-scale approach in dealing with d13C in pedogenic carbonate will increase the accuracy of paleoecologic interpretations and understanding of soil geomorphic climatic interactions that affect boundaries between C4 and C3 vegetation.

  2. Scale and the isotopic record of C4 plants in pedogenic carbonate: from the biome to the rhizospere.

    SciTech Connect

    Monger, Dr. H Curtis; Cole, David R; Buck, Dr. Brenda; Gallegos, Robert

    2009-01-01

    The 13C/12C ratio in pedogenic carbonate (i.e., CaCO3 formed in soil) is a significant tool for investigating C4 biomes of the past. However, the paleoecological meaning of d13C values in pedogenic carbonate can change with the scale at which one considers the data. We describe studies of modern soils, fossil soils, and vegetation change in the Chihuahuan Desert of North America and elsewhere that reveal four scales important for paleoecologic interpretations. (1) At the broadest scale, the biome scale (hundreds to millions of km2), an isotopic record interpreted as C3 vegetation replacing C4 grasslands may indicate invading C3 woody shrubs instead of expanding C3 forests (a common interpretation). (2) At the landscape scale (several tens of m2 to hundreds of km2), the accuracy of scaling up paleoclimatic interpretations to a regional level is affected by the landform containing the isotopic record. (3) At the soil-profile scale (cm2 to m2), soil profiles with multiple generations of carbonate mixed together have a lower-resolution paleoecologic record than soil profiles repeatedly buried. (4) At the rhizosphere scale (lm2 to cm2), carbonate formed on roots lack the 14 17 enrichment observed at broader scales, revealing different fractionation processes at different scales. A multi-scale approach in dealing with d13C in pedogenic carbonate will increase the accuracy of paleoecologic interpretations and understanding of soil geomorphic climatic interactions that affect boundaries between C4 and C3 vegetation.

  3. A Changing Number of Alternative States in the Boreal Biome: Reproducibility Risks of Replacing Remote Sensing Products.

    PubMed

    Xu, Chi; Holmgren, Milena; Van Nes, Egbert H; Hirota, Marina; Chapin, F Stuart; Scheffer, Marten

    2015-01-01

    Publicly available remote sensing products have boosted science in many ways. The openness of these data sources suggests high reproducibility. However, as we show here, results may be specific to versions of the data products that can become unavailable as new versions are posted. We focus on remotely-sensed tree cover. Recent studies have used this public resource to detect multi-modality in tree cover in the tropical and boreal biomes. Such patterns suggest alternative stable states separated by critical tipping points. This has important implications for the potential response of these ecosystems to global climate change. For the boreal region, four distinct ecosystem states (i.e., treeless, sparse and dense woodland, and boreal forest) were previously identified by using the Collection 3 data of MODIS Vegetation Continuous Fields (VCF). Since then, the MODIS VCF product has been updated to Collection 5; and a Landsat VCF product of global tree cover at a fine spatial resolution of 30 meters has been developed. Here we compare these different remote-sensing products of tree cover to show that identification of alternative stable states in the boreal biome partly depends on the data source used. The updated MODIS data and the newer Landsat data consistently demonstrate three distinct modes around similar tree-cover values. Our analysis suggests that the boreal region has three modes: one sparsely vegetated state (treeless), one distinct 'savanna-like' state and one forest state, which could be alternative stable states. Our analysis illustrates that qualitative outcomes of studies may change fundamentally as new versions of remote sensing products are used. Scientific reproducibility thus requires that old versions remain publicly available.

  4. A Changing Number of Alternative States in the Boreal Biome: Reproducibility Risks of Replacing Remote Sensing Products.

    PubMed

    Xu, Chi; Holmgren, Milena; Van Nes, Egbert H; Hirota, Marina; Chapin, F Stuart; Scheffer, Marten

    2015-01-01

    Publicly available remote sensing products have boosted science in many ways. The openness of these data sources suggests high reproducibility. However, as we show here, results may be specific to versions of the data products that can become unavailable as new versions are posted. We focus on remotely-sensed tree cover. Recent studies have used this public resource to detect multi-modality in tree cover in the tropical and boreal biomes. Such patterns suggest alternative stable states separated by critical tipping points. This has important implications for the potential response of these ecosystems to global climate change. For the boreal region, four distinct ecosystem states (i.e., treeless, sparse and dense woodland, and boreal forest) were previously identified by using the Collection 3 data of MODIS Vegetation Continuous Fields (VCF). Since then, the MODIS VCF product has been updated to Collection 5; and a Landsat VCF product of global tree cover at a fine spatial resolution of 30 meters has been developed. Here we compare these different remote-sensing products of tree cover to show that identification of alternative stable states in the boreal biome partly depends on the data source used. The updated MODIS data and the newer Landsat data consistently demonstrate three distinct modes around similar tree-cover values. Our analysis suggests that the boreal region has three modes: one sparsely vegetated state (treeless), one distinct 'savanna-like' state and one forest state, which could be alternative stable states. Our analysis illustrates that qualitative outcomes of studies may change fundamentally as new versions of remote sensing products are used. Scientific reproducibility thus requires that old versions remain publicly available. PMID:26571014

  5. Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Jiang, Huabei

    2006-06-01

    We report on experimental demonstration of photoacoustic tomography for reconstructing the optical absorption coefficient images of heterogeneous media. Photoacoustic images are obtained from a series of tissuelike phantom experiments using a finite element-based reconstruction algorithm coupled with a scanning photoacoustic imaging system. The experimental results show that optical absorption images can be quantitatively reconstructed when the photon diffusion model is coupled with the Helmholtz photoacoustic wave equation.

  6. Rigour in quantitative research.

    PubMed

    Claydon, Leica Sarah

    2015-07-22

    This article which forms part of the research series addresses scientific rigour in quantitative research. It explores the basis and use of quantitative research and the nature of scientific rigour. It examines how the reader may determine whether quantitative research results are accurate, the questions that should be asked to determine accuracy and the checklists that may be used in this process. Quantitative research has advantages in nursing, since it can provide numerical data to help answer questions encountered in everyday practice.

  7. Stochastic reconstruction of sandstones

    PubMed

    Manwart; Torquato; Hilfer

    2000-07-01

    A simulated annealing algorithm is employed to generate a stochastic model for a Berea sandstone and a Fontainebleau sandstone, with each a prescribed two-point probability function, lineal-path function, and "pore size" distribution function, respectively. We find that the temperature decrease of the annealing has to be rather quick to yield isotropic and percolating configurations. A comparison of simple morphological quantities indicates good agreement between the reconstructions and the original sandstones. Also, the mean survival time of a random walker in the pore space is reproduced with good accuracy. However, a more detailed investigation by means of local porosity theory shows that there may be significant differences of the geometrical connectivity between the reconstructed and the experimental samples.

  8. LOFAR sparse image reconstruction

    NASA Astrophysics Data System (ADS)

    Garsden, H.; Girard, J. N.; Starck, J. L.; Corbel, S.; Tasse, C.; Woiselle, A.; McKean, J. P.; van Amesfoort, A. S.; Anderson, J.; Avruch, I. M.; Beck, R.; Bentum, M. J.; Best, P.; Breitling, F.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; de Gasperin, F.; de Geus, E.; de Vos, M.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Hörandel, J.; van der Horst, A.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Mulcahy, D. D.; Munk, H.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pietka, G.; Pizzo, R.; Polatidis, A. G.; Renting, A.; Röttgering, H.; Rowlinson, A.; Schwarz, D.; Sluman, J.; Smirnov, O.; Stappers, B. W.; Steinmetz, M.; Stewart, A.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; Thoudam, S.; Toribio, C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.; Zensus, A.

    2015-03-01

    Context. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by various deconvolution and minimization methods. Aims: Recent papers have established a clear link between the discrete nature of radio interferometry measurement and the "compressed sensing" (CS) theory, which supports sparse reconstruction methods to form an image from the measured visibilities. Empowered by proximal theory, CS offers a sound framework for efficient global minimization and sparse data representation using fast algorithms. Combined with instrumental direction-dependent effects (DDE) in the scope of a real instrument, we developed and validated a new method based on this framework. Methods: We implemented a sparse reconstruction method in the standard LOFAR imaging tool and compared the photometric and resolution performance of this new imager with that of CLEAN-based methods (CLEAN and MS-CLEAN) with simulated and real LOFAR data. Results: We show that i) sparse reconstruction performs as well as CLEAN in recovering the flux of point sources; ii) performs much better on extended objects (the root mean square error is reduced by a factor of up to 10); and iii) provides a solution with an effective angular resolution 2-3 times better than the CLEAN images. Conclusions: Sparse recovery gives a correct photometry on high dynamic and wide-field images and improved realistic structures of extended sources (of simulated and real LOFAR datasets). This sparse reconstruction method is compatible with modern interferometric imagers that handle DDE corrections (A- and W-projections) required for current and future instruments such as LOFAR and SKA.

  9. Kinky tomographic reconstruction

    SciTech Connect

    Hanson, K.M.; Cunningham, G.S.; Bilisoly, R.L.

    1996-05-01

    We address the issue of how to make decisions about the degree of smoothness demanded of a flexible contour used to model the boundary of a 2D object. We demonstrate the use of a Bayesian approach to set the strength of the smoothness prior for a tomographic reconstruction problem. The Akaike Information Criterion is used to determine whether to allow a kink in the contour.

  10. Sparsity-constrained PET image reconstruction with learned dictionaries

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie

    2016-09-01

    PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.

  11. Sparsity-constrained PET image reconstruction with learned dictionaries.

    PubMed

    Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie

    2016-09-01

    PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging. PMID:27494441

  12. An approach to prior austenite reconstruction

    SciTech Connect

    Abbasi, Majid; Nelson, Tracy W.; Sorensen, Carl D.; Wei Lingyun

    2012-04-15

    One area of interest in Friction Stir Welding (FSW) of steels is to understand microstructural evolution during the process. Most of the deformation occurs in the austenite temperature range. Quantitative microstructural measurements of prior austenite microstructure are needed in order to understand evolution of the microstructure. Considering the fact that room temperature microstructure in ferritic steels contains very little to no retained austenite, prior austenite microstructure needs to be recovered from the room temperature ferrite. In this paper, an approach based on Electron Backscattered Diffraction (EBSD) is introduced to detect Bain zones. Bain zone detection is used to reconstruct prior austenite grain structure. Additionally, a separate approach based on phase transformation orientation relationships is introduced in order to recover prior austenite orientation. - Highlights: Black-Right-Pointing-Pointer This approach provides a tool to reconstruct large-scale austenite microstructures. Black-Right-Pointing-Pointer It recovers prior austenite orientation without relying on retained austenite. Black-Right-Pointing-Pointer It utilizes EBSD data from the room temperature microstructure. Black-Right-Pointing-Pointer Higher number of active variants leads to more accurate reconstructions. Black-Right-Pointing-Pointer At least two variants are needed in order to recover prior austenite orientation.

  13. Genome-scale metabolic network reconstruction.

    PubMed

    Fondi, Marco; Liò, Pietro

    2015-01-01

    Bacterial metabolism is an important source of novel products/processes for everyday life and strong efforts are being undertaken to discover and exploit new usable substances of microbial origin. Computational modeling and in silico simulations are powerful tools in this context since they allow the exploration and a deeper understanding of bacterial metabolic circuits. Many approaches exist to quantitatively simulate chemical reaction fluxes within the whole microbial metabolism and, regardless of the technique of choice, metabolic model reconstruction is the first step in every modeling pipeline. Reconstructing a metabolic network consists in drafting the list of the biochemical reactions that an organism can carry out together with information on cellular boundaries, a biomass assembly reaction, and exchange fluxes with the external environment. Building up models able to represent the different functional cellular states is universally recognized as a tricky task that requires intensive manual effort and much additional information besides genome sequence. In this chapter we present a general protocol for metabolic reconstruction in bacteria and the main challenges encountered during this process. PMID:25343869

  14. Multiproxy paleotemperature reconstructions for the late Quaternary in southern New Zealand

    NASA Astrophysics Data System (ADS)

    Vandergoes, M. J.; Zink, K. G.; Schwark, L.; Newnham, R.; Wilmshurst, J.; Dieffenbacher-Krall, A.

    2012-12-01

    Paleoclimate archives preserved in the central South Island, New Zealand provide a basis for developing detailed, quantitative reconstructions of past climate change. These climate reconstructions are essential for defining the temporal and spatial magnitude of paleoclimate variability in the Southern Hemisphere. Recently developed New Zealand climate reconstruction models, based on biological indicators including pollen and insect remains, have contributed significantly to the range of techniques available to provide quantitative reconstructions of past climate. For example, pollen and chironomid (midge fly)-based reconstructions are the first to quantify a climate cooling of up to 3oC that interrupted an otherwise progressive warming trend at the end of the last ice age. These reconstructions have large predictive errors, however, and some discrepancies between techniques have been noted. Lipid biomarkers offer further potential to determine more precise, quantitative paleotemperature reconstructions in freshwater systems. Recent work with bacterial tetraether lipid indices (MBT: methylation ratio of branched tetraethers and CBT: cyclisation ratio of branched tetraethers) has proven very promising for estimating air temperature from terrestrial environments because these compounds are ubiquitous in lacustrine sediments. Our preliminary research using MBT lipids has provided reliable estimates of temperature in modern and paleo New Zealand lakes (Zink et al., 2010) that is independently corroborated by modern temperature values and established reconstruction techniques (chironomid analysis). Here we present and compare a suite of new multi-proxy data for understanding the pattern of climate change during the Last Glacial Maximum and Lateglacial from continuous, 14C-dated, climatically-sensitive records in southern New Zealand. The lipid-inferred, chironomid and pollen, and temperature reconstructions utilise the inference models of Dieffenbacher-Krall et al. (2007

  15. Geometric reconstruction using tracked ultrasound strain imaging

    NASA Astrophysics Data System (ADS)

    Pheiffer, Thomas S.; Simpson, Amber L.; Ondrake, Janet E.; Miga, Michael I.

    2013-03-01

    The accurate identification of tumor margins during neurosurgery is a primary concern for the surgeon in order to maximize resection of malignant tissue while preserving normal function. The use of preoperative imaging for guidance is standard of care, but tumor margins are not always clear even when contrast agents are used, and so margins are often determined intraoperatively by visual and tactile feedback. Ultrasound strain imaging creates a quantitative representation of tissue stiffness which can be used in real-time. The information offered by strain imaging can be placed within a conventional image-guidance workflow by tracking the ultrasound probe and calibrating the image plane, which facilitates interpretation of the data by placing it within a common coordinate space with preoperative imaging. Tumor geometry in strain imaging is then directly comparable to the geometry in preoperative imaging. This paper presents a tracked ultrasound strain imaging system capable of co-registering with preoperative tomograms and also of reconstructing a 3D surface using the border of the strain lesion. In a preliminary study using four phantoms with subsurface tumors, tracked strain imaging was registered to preoperative image volumes and then tumor surfaces were reconstructed using contours extracted from strain image slices. The volumes of the phantom tumors reconstructed from tracked strain imaging were approximately between 1.5 to 2.4 cm3, which was similar to the CT volumes of 1.0 to 2.3 cm3. Future work will be done to robustly characterize the reconstruction accuracy of the system.

  16. Improved Diffusion Imaging through SNR-Enhancing Joint Reconstruction

    PubMed Central

    Haldar, Justin P.; Wedeen, Van J.; Nezamzadeh, Marzieh; Dai, Guangping; Weiner, Michael W.; Schuff, Norbert; Liang, Zhi-Pei

    2012-01-01

    Quantitative diffusion imaging is a powerful technique for the characterization of complex tissue microarchitecture. However, long acquisition times and limited signal-to-noise ratio (SNR) represent significant hurdles for many in vivo applications. This paper presents a new approach to reduce noise while largely maintaining resolution in diffusion weighted images, using a statistical reconstruction method that takes advantage of the high level of structural correlation observed in typical datasets. Compared to existing denoising methods, the proposed method performs reconstruction directly from the measured complex k-space data, allowing for Gaussian noise modeling and theoretical characterizations of the resolution and SNR of the reconstructed images. In addition, the proposed method is compatible with many different models of the diffusion signal (e.g., diffusion tensor modeling, q-space modeling, etc.). The joint reconstruction method can provide significant improvements in SNR relative to conventional reconstruction techniques, with a relatively minor corresponding loss in image resolution. Results are shown in the context of diffusion spectrum imaging tractography and diffusion tensor imaging, illustrating the potential of this SNR-enhancing joint reconstruction approach for a range of different diffusion imaging experiments. PMID:22392528

  17. Direct reconstruction of enhanced signal in computed tomography perfusion

    NASA Astrophysics Data System (ADS)

    Li, Bin; Lyu, Qingwen;