Sample records for quantitative chimerism analysis

  1. Rapid single nucleotide polymorphism based method for hematopoietic chimerism analysis and monitoring using high-speed droplet allele-specific PCR and allele-specific quantitative PCR.

    PubMed

    Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Uehara, Masayuki; Sugano, Mitsutoshi; Okumura, Nobuo; Honda, Takayuki

    2015-05-20

    Chimerism analysis is important for the evaluation of engraftment and predicting relapse following hematopoietic stem cell transplantation (HSCT). We developed a chimerism analysis for single nucleotide polymorphisms (SNPs), including rapid screening of the discriminable donor/recipient alleles using droplet allele-specific PCR (droplet-AS-PCR) pre-HSCT and quantitation of recipient DNA using AS-quantitative PCR (AS-qPCR) following HSCT. SNP genotyping of 20 donor/recipient pairs via droplet-AS-PCR and the evaluation of the informativity of 5 SNP markers for chimerism analysis were performed. Samples from six follow-up patients were analyzed to assess the chimerism via AS-qPCR. These results were compared with that determined by short tandem repeat PCR (STR-PCR). Droplet-AS-PCR could determine genotypes within 8min. The total informativity using all 5 loci was 95% (19/20). AS-qPCR provided the percentage of recipient DNA in all 6 follow-up patients without influence of the stutter peak or the amplification efficacy, which affected the STR-PCR results. The droplet-AS-PCR had an advantage over STR-PCR in terms of rapidity and simplicity for screening before HSCT. Furthermore, AS-qPCR had better accuracy than STR-PCR for quantification of recipient DNA following HSCT. The present chimerism assay compensates for the disadvantages of STR-PCR and is readily performable in clinical laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Diagnostic value of highly-sensitive chimerism analysis after allogeneic stem cell transplantation.

    PubMed

    Sellmann, Lea; Rabe, Kim; Bünting, Ivonne; Dammann, Elke; Göhring, Gudrun; Ganser, Arnold; Stadler, Michael; Weissinger, Eva M; Hambach, Lothar

    2018-05-02

    Conventional analysis of host chimerism (HC) frequently fails to detect relapse before its clinical manifestation in patients with hematological malignancies after allogeneic stem cell transplantation (allo-SCT). Quantitative PCR (qPCR)-based highly-sensitive chimerism analysis extends the detection limit of conventional (short tandem repeats-based) chimerism analysis from 1 to 0.01% host cells in whole blood. To date, the diagnostic value of highly-sensitive chimerism analysis is hardly defined. Here, we applied qPCR-based chimerism analysis to 901 blood samples of 71 out-patients with hematological malignancies after allo-SCT. Receiver operating characteristics (ROC) curves were calculated for absolute HC values and for the increments of HC before relapse. Using the best cut-offs, relapse was detected with sensitivities of 74 or 85% and specificities of 69 or 75%, respectively. Positive predictive values (PPVs) were only 12 or 18%, but the respective negative predictive values were 98 or 99%. Relapse was detected median 38 or 45 days prior to clinical diagnosis, respectively. Considering also durations of steadily increasing HC of more than 28 days improved PPVs to more than 28 or 59%, respectively. Overall, highly-sensitive chimerism analysis excludes relapses with high certainty and predicts relapses with high sensitivity and specificity more than a month prior to clinical diagnosis.

  3. Quantitative assessment of hematopoietic chimerism by quantitative real-time polymerase chain reaction of sequence polymorphism systems after hematopoietic stem cell transplantation.

    PubMed

    Qin, Xiao-ying; Li, Guo-xuan; Qin, Ya-zhen; Wang, Yu; Wang, Feng-rong; Liu, Dai-hong; Xu, Lan-ping; Chen, Huan; Han, Wei; Wang, Jing-zhi; Zhang, Xiao-hui; Li, Jin-lan; Li, Ling-di; Liu, Kai-yan; Huang, Xiao-jun

    2011-08-01

    Analysis of changes in recipient and donor hematopoietic cell origin is extremely useful to monitor the effect of hematopoietic stem cell transplantation (HSCT) and sequential adoptive immunotherapy by donor lymphocyte infusions. We developed a sensitive, reliable and rapid real-time PCR method based on sequence polymorphism systems to quantitatively assess the hematopoietic chimerism after HSCT. A panel of 29 selected sequence polymorphism (SP) markers was screened by real-time PCR in 101 HSCT patients with leukemia and other hematological diseases. The chimerism kinetics of bone marrow samples of 8 HSCT patients in remission and relapse situations were followed longitudinally. Recipient genotype discrimination was possible in 97.0% (98 of 101) with a mean number of 2.5 (1-7) informative markers per recipient/donor pair. Using serial dilutions of plasmids containing specific SP markers, the linear correlation (r) of 0.99, the slope between -3.2 and -3.7 and the sensitivity of 0.1% were proved reproducible. By this method, it was possible to very accurately detect autologous signals in the range from 0.1% to 30%. The accuracy of the method in the very important range of autologous signals below 5% was extraordinarily high (standard deviation <1.85%), which might significantly improve detection accuracy of changes in autologous signals early in the post-transplantation course of follow-up. The main advantage of the real-time PCR method over short tandem repeat PCR chimerism assays is the absence of PCR competition and plateau biases, with demonstrated greater sensitivity and linearity. Finally, we prospectively analyzed bone marrow samples of 8 patients who received allografts and presented the chimerism kinetics of remission and relapse situations that illustrated the sensitivity level and the promising clinical application of this method. This SP-based real-time PCR assay provides a rapid, sensitive, and accurate quantitative assessment of mixed chimerism that can be useful in predicting graft rejection and early relapse.

  4. Chimeric cellulase matrix for investigating intramolecular synergism between non-hydrolytic disruptive functions of carbohydrate-binding modules and catalytic hydrolysis.

    PubMed

    Wang, Yuguo; Tang, Rentao; Tao, Jin; Wang, Xiaonan; Zheng, Baisong; Feng, Yan

    2012-08-24

    The conversion of renewable cellulosic biomass is of considerable interest for the production of biofuels and materials. The bottleneck in the efficient conversion is the compactness and resistance of crystalline cellulose. Carbohydrate-binding modules (CBMs), which disrupt crystalline cellulose via non-hydrolytic mechanisms, are expected to overcome this bottleneck. However, the lack of convenient methods for quantitative analysis of the disruptive functions of CBMs have hindered systematic studies and molecular modifications. Here we established a practical and systematic platform for quantifying and comparing the non-hydrolytic disruptive activities of CBMs via the synergism of CBMs and a catalytic module within designed chimeric cellulase molecules. Bioinformatics and computational biology were also used to provide a deeper understanding. A convenient vector was constructed to serve as a cellulase matrix into which heterologous CBM sequences can be easily inserted. The resulting chimeric cellulases were suitable for studying disruptive functions, and their activities quantitatively reflected the disruptive functions of CBMs on crystalline cellulose. In addition, this cellulase matrix can be used to construct novel chimeric cellulases with high hydrolytic activities toward crystalline cellulose.

  5. Comprehensive Exploration of Novel Chimeric Transcripts in Clear Cell Renal Cell Carcinomas Using Whole Transcriptome Analysis

    PubMed Central

    Gotoh, Masahiro; Ichikawa, Hitoshi; Arai, Eri; Chiku, Suenori; Sakamoto, Hiromi; Fujimoto, Hiroyuki; Hiramoto, Masaki; Nammo, Takao; Yasuda, Kazuki; Yoshida, Teruhiko; Kanai, Yae

    2014-01-01

    The aim of this study was to clarify the participation of expression of chimeric transcripts in renal carcinogenesis. Whole transcriptome analysis (RNA sequencing) and exploration of candidate chimeric transcripts using the deFuse program were performed on 68 specimens of cancerous tissue (T) and 11 specimens of non-cancerous renal cortex tissue (N) obtained from 68 patients with clear cell renal cell carcinomas (RCCs) in an initial cohort. As positive controls, two RCCs associated with Xp11.2 translocation were analyzed. After verification by reverse transcription (RT)-PCR and Sanger sequencing, 26 novel chimeric transcripts were identified in 17 (25%) of the 68 clear cell RCCs. Genomic breakpoints were determined in five of the chimeric transcripts. Quantitative RT-PCR analysis revealed that the mRNA expression levels for the MMACHC, PTER, EPC2, ATXN7, FHIT, KIFAP3, CPEB1, MINPP1, TEX264, FAM107A, UPF3A, CDC16, MCCC1, CPSF3, and ASAP2 genes, being partner genes involved in the chimeric transcripts in the initial cohort, were significantly reduced in 26 T samples relative to the corresponding 26 N samples in the second cohort. Moreover, the mRNA expression levels for the above partner genes in T samples were significantly correlated with tumor aggressiveness and poorer patient outcome, indicating that reduced expression of these genes may participate in malignant progression of RCCs. As is the case when their levels of expression are reduced, these partner genes also may not fully function when involved in chimeric transcripts. These data suggest that generation of chimeric transcripts may participate in renal carcinogenesis by inducing dysfunction of tumor-related genes. PMID:25230976

  6. Chimeric Cellulase Matrix for Investigating Intramolecular Synergism between Non-hydrolytic Disruptive Functions of Carbohydrate-binding Modules and Catalytic Hydrolysis*

    PubMed Central

    Wang, Yuguo; Tang, Rentao; Tao, Jin; Wang, Xiaonan; Zheng, Baisong; Feng, Yan

    2012-01-01

    The conversion of renewable cellulosic biomass is of considerable interest for the production of biofuels and materials. The bottleneck in the efficient conversion is the compactness and resistance of crystalline cellulose. Carbohydrate-binding modules (CBMs), which disrupt crystalline cellulose via non-hydrolytic mechanisms, are expected to overcome this bottleneck. However, the lack of convenient methods for quantitative analysis of the disruptive functions of CBMs have hindered systematic studies and molecular modifications. Here we established a practical and systematic platform for quantifying and comparing the non-hydrolytic disruptive activities of CBMs via the synergism of CBMs and a catalytic module within designed chimeric cellulase molecules. Bioinformatics and computational biology were also used to provide a deeper understanding. A convenient vector was constructed to serve as a cellulase matrix into which heterologous CBM sequences can be easily inserted. The resulting chimeric cellulases were suitable for studying disruptive functions, and their activities quantitatively reflected the disruptive functions of CBMs on crystalline cellulose. In addition, this cellulase matrix can be used to construct novel chimeric cellulases with high hydrolytic activities toward crystalline cellulose. PMID:22778256

  7. A semi-nested real-time PCR method to detect low chimerism percentage in small quantity of hematopoietic stem cell transplant DNA samples.

    PubMed

    Aloisio, Michelangelo; Bortot, Barbara; Gandin, Ilaria; Severini, Giovanni Maria; Athanasakis, Emmanouil

    2017-02-01

    Chimerism status evaluation of post-allogeneic hematopoietic stem cell transplantation samples is essential to predict post-transplant relapse. The most commonly used technique capable of detecting small increments of chimerism is quantitative real-time PCR. Although this method is already used in several laboratories, previously described protocols often lack sensitivity and the amount of the DNA required for each chimerism analysis is too high. In the present study, we compared a novel semi-nested allele-specific real-time PCR (sNAS-qPCR) protocol with our in-house standard allele-specific real-time PCR (gAS-qPCR) protocol. We selected two genetic markers and analyzed technical parameters (slope, y-intercept, R2, and standard deviation) useful to determine the performances of the two protocols. The sNAS-qPCR protocol showed better sensitivity and precision. Moreover, the sNAS-qPCR protocol requires, as input, only 10 ng of DNA, which is at least 10-fold less than the gAS-qPCR protocols described in the literature. Finally, the proposed sNAS-qPCR protocol could prove very useful for performing chimerism analysis with a small amount of DNA, as in the case of blood cell subsets.

  8. Functional analysis of aldehyde oxidase using expressed chimeric enzyme between monkey and rat.

    PubMed

    Itoh, Kunio; Asakawa, Tasuku; Hoshino, Kouichi; Adachi, Mayuko; Fukiya, Kensuke; Watanabe, Nobuaki; Tanaka, Yorihisa

    2009-01-01

    Aldehyde oxidase (AO) is a homodimer with a subunit molecular mass of approximately 150 kDa. Each subunit consists of about 20 kDa 2Fe-2S cluster domain storing reducing equivalents, about 40 kDa flavine adenine dinucleotide (FAD) domain and about 85 kDa molybdenum cofactor (MoCo) domain containing a substrate binding site. In order to clarify the properties of each domain, especially substrate binding domain, chimeric cDNAs were constructed by mutual exchange of 2Fe-2S/FAD and MoCo domains between monkey and rat. Chimeric monkey/rat AO was referred to one with monkey type 2Fe-2S/FAD domains and a rat type MoCo domain. Rat/monkey AO was vice versa. AO-catalyzed 2-oxidation activities of (S)-RS-8359 were measured using the expressed enzyme in Escherichia coli. Substrate inhibition was seen in rat AO and chimeric monkey/rat AO, but not in monkey AO and chimeric rat/monkey AO, suggesting that the phenomenon might be dependent on the natures of MoCo domain of rat. A biphasic Eadie-Hofstee profile was observed in monkey AO and chimeric rat/monkey AO, but not rat AO and chimeric monkey/rat AO, indicating that the biphasic profile might be related to the properties of MoCo domain of monkey. Two-fold greater V(max) values were observed in monkey AO than in chimeric rat/monkey AO, and in chimeric monkey/rat AO than in rat AO, suggesting that monkey has the more effective electron transfer system than rat. Thus, the use of chimeric enzymes revealed that 2Fe-2S/FAD and MoCo domains affect the velocity and the quantitative profiles of AO-catalyzed (S)-RS-8359 2-oxidation, respectively.

  9. Case of successful IVF treatment of an oligospermic male with 46,XX/46,XY chimerism.

    PubMed

    Laursen, R J; Alsbjerg, B; Vogel, I; Gravholt, C H; Elbaek, H; Lildballe, D L; Humaidan, P; Vestergaard, E M

    2018-04-30

    We present a case of an infertile male with 46,XX/46,XYchimerism fathering a child after ICSI procedure. Conventional cytogenetic analysis on chromosomes, derived from lymphocytes, using standard Q-banding procedures with a 450-550-band resolution and short-tandem-repeat analysis of 14 loci. Analysis of 20 metaphases from lymphocytes indicated that the proband was a karyotypic mosaic with an almost equal distribution between male and female cell lines. In total, 12 of 20 (60%) metaphases exhibited a normal female karyotype 46,XX, while 8 of 20 (40%) metaphases demonstrated a normal male karyotype 46,XY. No structural chromosomal abnormalities were present. Out of 14 STR loci, two loci (D18S51 and D21S11) showed four different alleles in peripheral blood, buccal mucosal cells, conjunctival mucosal cells, and seminal fluid. In three loci (D2S1338, D7S820, and vWA), three alleles were detected with quantitative differences that indicated presence of four alleles. In DNA extracted from washed semen, four alleles were detected in one locus, and three alleles were detected in three loci. This pattern is consistent with tetragametic chimerism. There were no quantitative significant differences in peak heights between maternal and paternal alleles. STR-analysis on DNA from the son confirmed paternity. We report a unique case with 46,XX/46,XY chimerism confirmed to be tetragametic, demonstrated in several tissues, with male phenotype and no genital ambiguity with oligospermia fathering a healthy child after IVF with ICSI procedure.

  10. Generation of human-to-pig chimerism to induce tolerance through transcutaneous in utero injection of cord blood-derived mononuclear cells or human bone marrow mesenchymals cells in a preclinical program of liver xenotransplantation: preliminary results.

    PubMed

    Abellaneda, J M; Ramis, G; Martínez-Alarcón, L; Majado, M J; Quereda, J J; Herrero-Medrano, J M; Mendonça, L; García-Nicolás, O; Reus, M; Insausti, C; Ríos, A; López-Navas, A; González, M R; Pallarés, F J; Munoz, A; Ramírez, P; Parrilla, P

    2012-01-01

    Using a percutaneous ecoguided injection system to obtain chimeric piglets through a less invasive and traumatic technique than previously reported. The two types of human cells included umbilical cord blood mononuclear elements and mesenchymal stem cells cultured from bone marrow. Four sows at gestational day 50 were anesthetized. A needle was inserted through the skin and uterine wall to reach the peritoneal cavity of the fetuses under continuous ultrasound guidance. Fourteen piglets were injected with various cell concentrations. All sows carried pregnancies to term yielding 69 piglets, among which 67 were alive and two mummified. Two piglets died during the first 48 hours of life. Chimerism was detected using flow cytometry and by quantitative polymerase chain reaction (q-PCR) to detect Alu gene in blood or tissues samples. The analysis detected blood chimerism in 13 piglets (21%) by flow cytometry and the presence of the human Alu gene in 33 (51%) by q-PCR. The results suggest cell trafficking between littermates after in utero injection. Transcutaneous echo-guided injection succeeded to produce chimeric piglets without disadvantages to the sow or the fetuses and avoiding abortions or fetal death. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. [Recurrence of chronic active Epstein-Barr virus infection presenting with myelopathy after umbilical cord blood transplantation].

    PubMed

    Watanabe, Shohei; Okada, Masaya; Tokugawa, Tazuko; Sawada, Akihiro; Ogawa, Hiroyasu; Yoshikawa, Hiroo

    2014-01-01

    A 38-year-old man was admitted to our hospital with neck pain, dysesthesia of both hands, and weakness of the left upper limb. He had been diagnosed with a chronic active Epstein-Barr virus infection (CAEBV) at the age of 34 and had undergone umbilical cord blood transplantation at the age of 37. MRI of the spinal cord revealed an intramedullary hyperintense lesion on T₂-weighted images with gadolinium enhancement. Because his laboratory tests revealed proliferation of CD19(+) lymphocytes in the peripheral blood, and EBV DNA was detected in both peripheral blood and CSF, he was diagnosed as having post-transplant EBV associated lymphoproliferative disease. However, chemotherapy did not alleviate his symptoms. At a later time, quantitative chimerism analysis of his CSF showed a higher proportion of lymphocytes that had originated from the recipient. Finally, he was diagnosed as having a recurrence of CAEBV in the central nervous system, and his symptoms were restored by intrathecal chemotherapy (methotrexate, cytosine arabinoside, and prednisolone). Quantitative chimerism analysis of CSF was useful for diagnosing the recurrence of CAEBV in the central nervous system.

  12. HLA-targeted flow cytometric sorting of blood cells allows separation of pure and viable microchimeric cell populations.

    PubMed

    Drabbels, Jos J M; van de Keur, Carin; Kemps, Berit M; Mulder, Arend; Scherjon, Sicco A; Claas, Frans H J; Eikmans, Michael

    2011-11-10

    Microchimerism is defined by the presence of low levels of nonhost cells in a person. We developed a reliable method for separating viable microchimeric cells from the host environment. For flow cytometric cell sorting, HLA antigens were targeted with human monoclonal HLA antibodies (mAbs). Optimal separation of microchimeric cells (present at a proportion as low as 0.01% in artificial mixtures) was obtained with 2 different HLA mAbs, one targeting the chimeric cells and the other the background cells. To verify purity of separated cell populations, flow-sorted fractions of 1000 cells were processed for DNA analysis by HLA-allele-specific and Y-chromosome-directed real-time quantitative PCR assays. After sorting, PCR signals of chimeric DNA markers in the positive fractions were significantly enhanced compared with those in the presort samples, and they were similar to those in 100% chimeric control samples. Next, we demonstrate applicability of HLA-targeted FACS sorting after pregnancy by separating chimeric maternal cells from child umbilical cord mononuclear cells. Targeting allelic differences with anti-HLA mAbs with FACS sorting allows maximal enrichment of viable microchimeric cells from a background cell population. The current methodology enables reliable microchimeric cell detection and separation in clinical specimens.

  13. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  14. ChimericSeq: An open-source, user-friendly interface for analyzing NGS data to identify and characterize viral-host chimeric sequences.

    PubMed

    Shieh, Fwu-Shan; Jongeneel, Patrick; Steffen, Jamin D; Lin, Selena; Jain, Surbhi; Song, Wei; Su, Ying-Hsiu

    2017-01-01

    Identification of viral integration sites has been important in understanding the pathogenesis and progression of diseases associated with particular viral infections. The advent of next-generation sequencing (NGS) has enabled researchers to understand the impact that viral integration has on the host, such as tumorigenesis. Current computational methods to analyze NGS data of virus-host junction sites have been limited in terms of their accessibility to a broad user base. In this study, we developed a software application (named ChimericSeq), that is the first program of its kind to offer a graphical user interface, compatibility with both Windows and Mac operating systems, and optimized for effectively identifying and annotating virus-host chimeric reads within NGS data. In addition, ChimericSeq's pipeline implements custom filtering to remove artifacts and detect reads with quantitative analytical reporting to provide functional significance to discovered integration sites. The improved accessibility of ChimericSeq through a GUI interface in both Windows and Mac has potential to expand NGS analytical support to a broader spectrum of the scientific community.

  15. ChimericSeq: An open-source, user-friendly interface for analyzing NGS data to identify and characterize viral-host chimeric sequences

    PubMed Central

    Shieh, Fwu-Shan; Jongeneel, Patrick; Steffen, Jamin D.; Lin, Selena; Jain, Surbhi; Song, Wei

    2017-01-01

    Identification of viral integration sites has been important in understanding the pathogenesis and progression of diseases associated with particular viral infections. The advent of next-generation sequencing (NGS) has enabled researchers to understand the impact that viral integration has on the host, such as tumorigenesis. Current computational methods to analyze NGS data of virus-host junction sites have been limited in terms of their accessibility to a broad user base. In this study, we developed a software application (named ChimericSeq), that is the first program of its kind to offer a graphical user interface, compatibility with both Windows and Mac operating systems, and optimized for effectively identifying and annotating virus-host chimeric reads within NGS data. In addition, ChimericSeq’s pipeline implements custom filtering to remove artifacts and detect reads with quantitative analytical reporting to provide functional significance to discovered integration sites. The improved accessibility of ChimericSeq through a GUI interface in both Windows and Mac has potential to expand NGS analytical support to a broader spectrum of the scientific community. PMID:28829778

  16. Quantitative analysis of antigen for the induction of tolerance in carcinoembryonic antigen transgenic mice.

    PubMed Central

    Hasegawa, T; Isobe, K; Nakashima, I; Shimokata, K

    1992-01-01

    In order to analyse the amounts of antigen in the thymus for the induction of tolerance, several carcinoembryonic antigen (CEA) transgenic lines were established which expressed human CEA antigen with different amounts. The chimeric KSN nude mice transplanted with the thymus of the B601 line (in which CEA mRNA and CEA protein could be detected in various tissues) to kidney capsule showed tolerance to human CEA. On the other hand, the chimeric KSN nude mice transplanted with the thymus of the B602 or BC60 line (in which neither CEA mRNA nor CEA protein could be detected by Northern blot analysis and flow cytometry analysis) or normal C57BL/6 (B6) did not develop the tolerance to human CEA. However, the chimeric KSN nude mice transplanted simultaneously with thymus of the B6 and spleen of the B601 line became tolerant to human CEA antigen. In the case of systemic immunization with cells which had CEA antigen, the B601 line was tolerant to human CEA. Surprisingly, the B602 and BC60 lines were also tolerant to CEA molecule. These results indicate that not only the antigen present in the thymus but also the antigen which flows from the peripheral organs to the thymus may be necessary for the induction of CEA tolerance. Images Figure 1 PMID:1493931

  17. Droplet Digital PCR-Based Chimerism Analysis for Primary Immunodeficiency Diseases.

    PubMed

    Okano, Tsubasa; Tsujita, Yuki; Kanegane, Hirokazu; Mitsui-Sekinaka, Kanako; Tanita, Kay; Miyamoto, Satoshi; Yeh, Tzu-Wen; Yamashita, Motoi; Terada, Naomi; Ogura, Yumi; Takagi, Masatoshi; Imai, Kohsuke; Nonoyama, Shigeaki; Morio, Tomohiro

    2018-04-01

    In the current study, we aimed to accurately evaluate donor/recipient or male/female chimerism in samples from patients who underwent hematopoietic stem cell transplantation (HSCT). We designed the droplet digital polymerase chain reaction (ddPCR) for SRY and RPP30 to detect the male/female chimerism. We also developed mutation-specific ddPCR for four primary immunodeficiency diseases. The accuracy of the male/female chimerism analysis using ddPCR was confirmed by comparing the results with those of conventional methods (fluorescence in situ hybridization and short tandem repeat-PCR) and evaluating dilution assays. In particular, we found that this method was useful for analyzing small samples. Thus, this method could be used with patient samples, especially to sorted leukocyte subpopulations, during the early post-transplant period. Four mutation-specific ddPCR accurately detected post-transplant chimerism. ddPCR-based male/female chimerism analysis and mutation-specific ddPCR were useful for all HSCT, and these simple methods contribute to following the post-transplant chimerism, especially in disease-specific small leukocyte fractions.

  18. Chimeric mice transplanted with human hepatocytes as a model for prediction of human drug metabolism and pharmacokinetics.

    PubMed

    Sanoh, Seigo; Ohta, Shigeru

    2014-03-01

    Preclinical studies in animal models are used routinely during drug development, but species differences of pharmacokinetics (PK) between animals and humans have to be taken into account in interpreting the results. Human hepatocytes are also widely used to examine metabolic activities mediated by cytochrome P450 (P450) and other enzymes, but such in vitro metabolic studies also have limitations. Recently, chimeric mice with humanized liver (h-chimeric mice), generated by transplantation of human donor hepatocytes, have been developed as a model for the prediction of metabolism and PK in humans, using both in vitro and in vivo approaches. The expression of human-specific metabolic enzymes and metabolic activities was confirmed in humanized liver of h-chimeric mice with high replacement ratios, and several reports indicate that the profiles of P450 and non-P450 metabolism in these mice adequately reflect those in humans. Further, the combined use of h-chimeric mice and r-chimeric mice, in which endogenous hepatocytes are replaced with rat hepatocytes, is a promising approach for evaluation of species differences in drug metabolism. Recent work has shown that data obtained in h-chimeric mice enable the semi-quantitative prediction of not only metabolites, but also PK parameters, such as hepatic clearance, of drug candidates in humans, although some limitations remain because of differences in the metabolic activities, hepatic blood flow and liver structure between humans and mice. In addition, fresh h-hepatocytes can be isolated reproducibly from h-chimeric mice for metabolic studies. Copyright © 2013 John Wiley & Sons, Ltd.

  19. ChimerDB 3.0: an enhanced database for fusion genes from cancer transcriptome and literature data mining.

    PubMed

    Lee, Myunggyo; Lee, Kyubum; Yu, Namhee; Jang, Insu; Choi, Ikjung; Kim, Pora; Jang, Ye Eun; Kim, Byounggun; Kim, Sunkyu; Lee, Byungwook; Kang, Jaewoo; Lee, Sanghyuk

    2017-01-04

    Fusion gene is an important class of therapeutic targets and prognostic markers in cancer. ChimerDB is a comprehensive database of fusion genes encompassing analysis of deep sequencing data and manual curations. In this update, the database coverage was enhanced considerably by adding two new modules of The Cancer Genome Atlas (TCGA) RNA-Seq analysis and PubMed abstract mining. ChimerDB 3.0 is composed of three modules of ChimerKB, ChimerPub and ChimerSeq. ChimerKB represents a knowledgebase including 1066 fusion genes with manual curation that were compiled from public resources of fusion genes with experimental evidences. ChimerPub includes 2767 fusion genes obtained from text mining of PubMed abstracts. ChimerSeq module is designed to archive the fusion candidates from deep sequencing data. Importantly, we have analyzed RNA-Seq data of the TCGA project covering 4569 patients in 23 cancer types using two reliable programs of FusionScan and TopHat-Fusion. The new user interface supports diverse search options and graphic representation of fusion gene structure. ChimerDB 3.0 is available at http://ercsb.ewha.ac.kr/fusiongene/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Indel analysis by droplet digital PCR: a sensitive method for DNA mixture detection and chimerism analysis.

    PubMed

    Santurtún, Ana; Riancho, José A; Arozamena, Jana; López-Duarte, Mónica; Zarrabeitia, María T

    2017-01-01

    Several methods have been developed to determinate genetic profiles from a mixed samples and chimerism analysis in transplanted patients. The aim of this study was to explore the effectiveness of using the droplet digital PCR (ddPCR) for mixed chimerism detection (a mixture of genetic profiles resulting after allogeneic hematopoietic stem cell transplantation (HSCT)). We analyzed 25 DNA samples from patients who had undergone HSCT and compared the performance of ddPCR and two established methods for chimerism detection, based upon the Indel and STRs analysis, respectively. Additionally, eight artificial mixture DNA samples were created to evaluate the sensibility of ddPCR. Our results show that the chimerism percentages estimated by the analysis of a single Indel using ddPCR were very similar to those calculated by the amplification of 15 STRs (r 2  = 0.970) and with the results obtained by the amplification of 38 Indels (r 2  = 0.975). Moreover, the amplification of a single Indel by ddPCR was sensitive enough to detect a minor DNA contributor comprising down to 0.5 % of the sample. We conclude that ddPCR can be a powerful tool for the determination of a genetic profile of forensic mixtures and clinical chimerism analysis when traditional techniques are not sensitive enough.

  1. Chimeric analysis of EGFP and DsRed2 transgenic mice demonstrates polyclonal maintenance of pancreatic acini.

    PubMed

    Ryu, Je-Young; Siswanto, Antoni; Harimoto, Kenichi; Tagawa, Yoh-ichi

    2013-06-01

    The pancreatic islet is an assembly of specific endocrine cells. There are many conflicting reports regarding whether the acinus develops from single or multiple progenitor cells. This study investigated the development and maintenance clonality of the pancreatic acinus and duct using a chimeric analysis with EGFP and DsRed2 transgenic mice. Chimeric mice (G-R mice) were obtained by the aggregation method, using 8-cell stage embryos from EGFP and DsRed2 transgenic mice. The islets from the G-R mice were chimeric and mosaic, consisting of either EGFP- or DsRed2-positive populations, as in previous reports. On the other hand, most acini developed from either EGFP or DsRed2 origin, but some were chimeric. Interestingly, these chimeric acini were clearly separated into two-color regions and were not mosaic. Some large intralobular pancreatic ducts consisting of more than 10 cells were found to be chimeric, but no small ducts made up of less than 9 cells were chimeric. Our histological observations suggest that the pancreatic acinus polyclonally and directionally is maintained by multiple progenitor cells. Pancreatic large ducts also seem to develop polyclonally and might result from the assembly of small ducts that develop from a single origin. These findings provide useful information for further understanding pancreatic maintenance.

  2. A dispermic chimera was identified in a healthy man with mixed field agglutination reaction in ABO blood grouping and mosaic 46, XY/46, XX karyotype.

    PubMed

    Hong, Xiaozhen; Ying, Yanlin; Xu, Xianguo; Liu, Ying; Chen, Zhimei; Lan, Xiaofei; Ma, Kairong; He, Ji; Zhu, Faming; Lv, Hangjun; Yan, Lixing

    2013-04-01

    Chimerism is the presence of two or more genetically distinct cell populations in one organism. Here, we reported the identification of dispermic chimerism in a 25-year-old male. Blood grouping was performed with standard gel centrifugation test cards. ABO and HLA-A,-B,-C,-DRB1 and -DQB1 loci genotyping was determined with PCR sequence-based typing. A quantitative analysis of dual red cells populations was measured by flow cytometer. The karyotype was analyzed by G-banded chromosomes. Short tandem repeat (STR) analysis was performed on blood, buccal mucosal and hair shafts samples. A mixed-field agglutination with anti-B antibody was observed with gel centrifugation tests, which showed a double populations of O and B groups RBCs. Two groups RBCs were also observed by flow cytometer with nearly 90% O group cells and 10% B group cells. The normal O01,O02,B101 alleles were identified in DNA sample of the proband. STR analysis revealed three alleles for D8S1179,D3S1358,TH01,D13S317,D16S539,D2S1338,D19S433,TPOX and D18S51 loci. HLA-DRB1 and -DQB1 loci had three alleles and a karyotypic mosaic was found with 60% 46, XY and 40% 46, XX karyotype in the proband. In all studies, the third allele was attributable to a dual paternal contribution. A individual with dispermic chimerism was identified, which would generate by fertilization of an oocyte and the corresponding second polar body by two different sperms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Mice with chimeric livers are an improved model for human lipoprotein metabolism.

    PubMed

    Ellis, Ewa C S; Naugler, Willscott Edward; Nauglers, Scott; Parini, Paolo; Mörk, Lisa-Mari; Jorns, Carl; Zemack, Helen; Sandblom, Anita Lövgren; Björkhem, Ingemar; Ericzon, Bo-Göran; Wilson, Elizabeth M; Strom, Stephen C; Grompe, Markus

    2013-01-01

    Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism. FRG [ F ah(-/-) R ag2(-/-)Il2r g (-/-)]) mice were repopulated with primary human hepatocytes. Serum lipoprotein lipid composition and distribution (VLDL, LDL, and HDL) was analyzed by size exclusion chromatography. Bile was analyzed by LC-MS or by GC-MS. RNA expression levels were measured by quantitative RT-PCR. Chimeric mice displayed increased LDL and VLDL fractions and a lower HDL fraction compared to wild type, thus significantly shifting the ratio of LDL/HDL towards a human profile. Bile acid analysis revealed a human-like pattern with high amounts of cholic acid and deoxycholic acid (DCA). Control mice had only taurine-conjugated bile acids as expcted, but highly repopulated mice had glycine-conjugated cholic acid as found in human bile. RNA levels of human genes involved in bile acid synthesis including CYP7A1, and CYP27A1 were significantly upregulated as compared to human control liver. However, administration of recombinant hFGF19 restored human CYP7A1 levels to normal. Humanized-liver mice showed a typical human lipoprotein profile with LDL as the predominant lipoprotein fraction even on a normal diet. The bile acid profile confirmed presence of an intact enterohepatic circulation. Although bile acid synthesis was deregulated in this model, this could be fully normalized by FGF19 administration. Taken together these data indicate that chimeric FRG-mice are a useful new model for human lipoprotein and bile-acid metabolism.

  4. The impact of chimerism in DNA-based forensic sex determination analysis.

    PubMed

    George, Renjith; Donald, Preethy Mary; Nagraj, Sumanth Kumbargere; Idiculla, Jose Joy; Hj Ismail, Rashid

    2013-01-01

    Sex determination is the most important step in personal identification in forensic investigations. DNA-based sex determination analysis is comparatively more reliable than the other conventional methods of sex determination analysis. Advanced technology like real-time polymerase chain reaction (PCR) offers accurate and reproducible results and is at the level of legal acceptance. But still there are situations like chimerism where an individual possess both male and female specific factors together in their body. Sex determination analysis in such cases can give erroneous results. This paper discusses the phenomenon of chimerism and its impact on sex determination analysis in forensic investigations.

  5. Mixed donor chimerism in non-malignant haematological diseases after allogeneic bone marrow transplantation.

    PubMed

    Shamshad, Ghassan Umair; Ahmed, Suhaib; Bhatti, Farhat Abbas; Ali, Nadir

    2012-12-01

    To determine the frequency of mixed donor chimerism in patients of non-malignant haematological diseases after allogeneic bone marrow transplant. A cross-sectional, observational study. Department of Haematology, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from July 2010 to June 2011. Donor chimerism was assessed in patients of aplastic anaemia and beta-thalassaemia major who underwent allogeneic bone marrow transplantation (BMT). Peripheral blood samples were used to assess chimerism status by analysis of short tandem repeats (STR). In patients where pre-transplant blood sample was not available, swab of buccal mucosa was used for pre-transplant STR profile. A standard set of primers for STR markers were used and the amplified DNA was resolved by gel electrophoresis and stained with silver nitrate. The percentage of donor origin DNA was estimated by densitometer. Out of 84 patients, 52 (62%) were males, while 32 (38%) were females. In patients of beta-thalassaemia major, 31 (62%) developed mixed donor chimerism (MC), 13 (26%) developed complete donor chimerism (CC) and 6 (12%) had graft failure. In aplastic anaemia, 17 patients (50%) achieved MC, 13 (38.2%) had CC and 4 (11.8%) developed graft failure. The combined frequency of mixed donor chimerism for both the diseases was 58.3%. D3S1358 was the most informative STR marker in these patients. Majority of the studied patients developed mixed donor chimerism following bone marrow transplantation, whereas only a minor percentage of the patients had graft failure. Analysis of D3S1358 was the most informative in assessing donor chimerism in patients who underwent BMT.

  6. Quantification of mixed chimerism by real time PCR on whole blood-impregnated FTA cards.

    PubMed

    Pezzoli, N; Silvy, M; Woronko, A; Le Treut, T; Lévy-Mozziconacci, A; Reviron, D; Gabert, J; Picard, C

    2007-09-01

    This study has investigated quantification of chimerism in sex-mismatched transplantations by quantitative real time PCR (RQ-PCR) using FTA paper for blood sampling. First, we demonstrate that the quantification of DNA from EDTA-blood which has been deposit on FTA card is accurate and reproducible. Secondly, we show that fraction of recipient cells detected by RQ-PCR was concordant between the FTA and salting-out method, reference DNA extraction method. Furthermore, the sensitivity of detection of recipient cells is relatively similar with the two methods. Our results show that this innovative method can be used for MC assessment by RQ-PCR.

  7. Generation and characterization of a human-mouse chimeric high-affinity antibody that detects the DYKDDDDK FLAG peptide.

    PubMed

    Ikeda, Koki; Koga, Tomoaki; Sasaki, Fumiyuki; Ueno, Ayumi; Saeki, Kazuko; Okuno, Toshiaki; Yokomizo, Takehiko

    2017-05-13

    DYKDDDDK peptide (FLAG) is a useful tool for investigating the function and localization of proteins whose antibodies (Abs) are not available. We recently established a high-affinity monoclonal antibody (mAb) for FLAG (clone 2H8). The 2H8 Ab is highly sensitive for detecting FLAG-tagged proteins by flowcytometry and immunoprecipitation, but it can yield nonspecific signals in immunohistochemistry of mouse tissues because it is of mouse origin. In this study, we reduced nonspecific signals by generating a chimeric 2H8 Ab with Fc fragments derived from human immunoglobulin. We fused a 5' terminal cDNA fragments for the Fab region of 2H8 mAb with 3' terminal cDNA fragments for Fc region of human IgG1. We transfected both chimeric plasmids and purified the resulting human-mouse chimeric 2H8. The chimeric 2H8 Ab successfully detected FLAG-tagged proteins in flowcytometry with anti-human IgG secondary Ab with comparable sensitivity to 2H8 mAb. Importantly, chimeric 2H8 detected specific FLAG peptide signals without nonspecific signals in immunohistochemical analysis with mouse tissues. This human-mouse chimeric high-affinity anti-FLAG Ab will prove useful for future immunohistochemical analysis of mouse tissues. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Development of Murine Cyp3a Knockout Chimeric Mice with Humanized Liver.

    PubMed

    Kato, Kota; Ohbuchi, Masato; Hamamura, Satoko; Ohshita, Hiroki; Kazuki, Yasuhiro; Oshimura, Mitsuo; Sato, Koya; Nakada, Naoyuki; Kawamura, Akio; Usui, Takashi; Kamimura, Hidetaka; Tateno, Chise

    2015-08-01

    We developed murine CYP3A knockout ko chimeric mice with humanized liver expressing human P450S similar to those in humans and whose livers and small intestines do not express murine CYP3A this: approach may overcome effects of residual mouse metabolic enzymes like Cyp3a in conventional chimeric mice with humanized liver, such as PXB-mice [urokinase plasminogen activator/severe combined immunodeficiency (uPA/SCID) mice repopulated with over 70% human hepatocytes] to improve the prediction of drug metabolism and pharmacokinetics in humans. After human hepatocytes were transplanted into Cyp3a KO/uPA/SCID host mice, human albumin levels logarithmically increased until approximately 60 days after transplantation, findings similar to those in PXB-mice. Quantitative real-time-polymerase chain reaction analyses showed that hepatic human P450s, UGTs, SULTs, and transporters mRNA expression levels in Cyp3a KO chimeric mice were also similar to those in PXB-mice and confirmed the absence of Cyp3a11 mRNA expression in mouse liver and intestine. Findings for midazolam and triazolam metabolic activities in liver microsomes were comparable between Cyp3a KO chimeric mice and PXB-mice. In contrast, these activities in the intestine of Cyp3a KO chimeric mice were attenuated compared with PXB-mice. Owing to the knockout of murine Cyp3a, hepatic Cyp2b10 and 2c55 mRNA levels in Cyp3a KO/uPA/SCID mice (without hepatocyte transplants) were 8.4- and 61-fold upregulated compared with PXB-mice, respectively. However, human hepatocyte transplantation successfully restored Cyp2b10 level nearly fully and Cyp2c55 level partly (still 13-fold upregulated) compared with those in PXB-mice. Intestinal Cyp2b10 and 2c55 were also repressed by human hepatocyte transplantation in Cyp3a KO chimeric mice. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Vectors expressing chimeric Japanese encephalitis dengue 2 viruses.

    PubMed

    Wei, Y; Wang, S; Wang, X

    2014-01-01

    Vectors based on self-replicating RNAs (replicons) of flaviviruses are becoming powerful tool for expression of heterologous genes in mammalian cells and development of novel antiviral and anticancer vaccines. We constructed two vectors expressing chimeric viruses consisting of attenuated SA14-14-2 strain of Japanese encephalitis virus (JEV) in which the PrM/M-E genes were replaced fully or partially with those of dengue 2 virus (DENV-2). These vectors, named pJED2 and pJED2-1770 were transfected to BHK-21 cells and produced chimeric viruses JED2V and JED2-1770V, respectively. The chimeric viruses could be passaged in C6/36 but not BHK-21 cells. The chimeric viruses produced in C6/36 cells CPE 4-5 days after infection and RT-PCR, sequencing, immunofluorescence assay (IFA) and Western blot analysis confirmed the chimeric nature of produced viruses. The immunogenicity of chimeric viruses in mice was proved by detecting DENV-2 E protein-specific serum IgG antibodies with neutralization titer of 10. Successful preparation of infectious clones of chimeric JEV-DENV-2 viruses showed that JEV-based expression vectors are fully functional.

  10. Fluorine-19 nuclear magnetic resonance of chimeric antigen receptor T cell biodistribution in murine cancer model.

    PubMed

    Chapelin, Fanny; Gao, Shang; Okada, Hideho; Weber, Thomas G; Messer, Karen; Ahrens, Eric T

    2017-12-18

    Discovery of effective cell therapies against cancer can be accelerated by the adaptation of tools to rapidly quantitate cell biodistribution and survival after delivery. Here, we describe the use of nuclear magnetic resonance (NMR) 'cytometry' to quantify the biodistribution of immunotherapeutic T cells in intact tissue samples. In this study, chimeric antigen receptor (CAR) T cells expressing EGFRvIII targeting transgene were labeled with a perfluorocarbon (PFC) emulsion ex vivo and infused into immunocompromised mice bearing subcutaneous human U87 glioblastomas expressing EGFRvIII and luciferase. Intact organs were harvested at day 2, 7 and 14 for whole-sample fluorine-19 ( 19 F) NMR to quantitatively measure the presence of PFC-labeled CAR T cells, followed by histological validation. NMR measurements showed greater CAR T cell homing and persistence in the tumors and spleen compared to untransduced T cells. Tumor growth was monitored with bioluminescence imaging, showing that CAR T cell treatment resulted in significant tumor regression compared to untransduced T cells. Overall, 19 F NMR cytometry is a rapid and quantitative method to evaluate cell biodistribution, tumor homing, and fate in preclinical studies.

  11. Identification and analysis of pig chimeric mRNAs using RNA sequencing data

    PubMed Central

    2012-01-01

    Background Gene fusion is ubiquitous over the course of evolution. It is expected to increase the diversity and complexity of transcriptomes and proteomes through chimeric sequence segments or altered regulation. However, chimeric mRNAs in pigs remain unclear. Here we identified some chimeric mRNAs in pigs and analyzed the expression of them across individuals and breeds using RNA-sequencing data. Results The present study identified 669 putative chimeric mRNAs in pigs, of which 251 chimeric candidates were detected in a set of RNA-sequencing data. The 618 candidates had clear trans-splicing sites, 537 of which obeyed the canonical GU-AG splice rule. Only two putative pig chimera variants whose fusion junction was overlapped with that of a known human chimeric mRNA were found. A set of unique chimeric events were considered middle variances in the expression across individuals and breeds, and revealed non-significant variance between sexes. Furthermore, the genomic region of the 5′ partner gene shares a similar DNA sequence with that of the 3′ partner gene for 458 putative chimeric mRNAs. The 81 of those shared DNA sequences significantly matched the known DNA-binding motifs in the JASPAR CORE database. Four DNA motifs shared in parental genomic regions had significant similarity with known human CTCF binding sites. Conclusions The present study provided detailed information on some pig chimeric mRNAs. We proposed a model that trans-acting factors, such as CTCF, induced the spatial organisation of parental genes to the same transcriptional factory so that parental genes were coordinatively transcribed to give birth to chimeric mRNAs. PMID:22925561

  12. Analysis of the Contribution of Stem Cells to Breast Cancer Using Microchimerism-Based Y-Chromosome Stains and Histopathology

    DTIC Science & Technology

    2005-07-01

    stroma), if any, have originated from the body’s circulating stem cell pool, using the Y- chromosome in micro-chimeric mothers . Such a cell may present... Transplanted or chimeric Y chromosome-bearing stem cells behave as do the mothers own: proliferating, differentiating and incorporating into... Transplanted or chimeric Y chromosome-bearing stem cells behave as do the mothers own: aggregating, proliferating, and differentiating(Petersen

  13. SCHEMA computational design of virus capsid chimeras: calibrating how genome packaging, protection, and transduction correlate with calculated structural disruption.

    PubMed

    Ho, Michelle L; Adler, Benjamin A; Torre, Michael L; Silberg, Jonathan J; Suh, Junghae

    2013-12-20

    Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions.

  14. SCHEMA computational design of virus capsid chimeras: calibrating how genome packaging, protection, and transduction correlate with calculated structural disruption

    PubMed Central

    Ho, Michelle L.; Adler, Benjamin A.; Torre, Michael L.; Silberg, Jonathan J.; Suh, Junghae

    2013-01-01

    Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications, but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions. PMID:23899192

  15. Membrane-bound LERK2 ligand can signal through three different Eph-related receptor tyrosine kinases.

    PubMed Central

    Brambilla, R; Schnapp, A; Casagranda, F; Labrador, J P; Bergemann, A D; Flanagan, J G; Pasquale, E B; Klein, R

    1995-01-01

    The Eph-related family of receptor tyrosine kinases consists of at least 13 members, several of which display distinctive expression patterns in the developing and adult nervous system. Recently, a small family of ligands, structurally related to the B61 protein, was identified. Binding of these ligands to Eph-related receptors did not, however, elicit measurable biological signals in cultured cells. In order to study functional interactions between B61-related ligands and Eph-related receptors, we constructed chimeric receptors, containing an Eph-related ectodomain and the cytoplasmic domain of the TrkB neurotrophin receptor. Expression and activation of such chimeric receptors in NIH 3T3 cells induced transformation in focus formation assays. Membrane-bound LERK2 ligand is shown to signal through three different Eph-related receptors, namely Cek5, Cek10 and Elk. LERK2, however, fails to interact functionally with the Cek9 receptor. Quantitative analysis including binding assays indicates that Cek10 is the preferred LERK2 receptor. Preliminary mutagenesis of the LERK2 protein suggests a negative regulatory role for its cytoplasmic domain in LERK2 signaling. Images PMID:7621826

  16. Enhanced stability of a chimeric hepatitis B core antigen virus-like-particle (HBcAg-VLP) by a C-terminal linker-hexahistidine-peptide.

    PubMed

    Schumacher, Jens; Bacic, Tijana; Staritzbichler, René; Daneschdar, Matin; Klamp, Thorsten; Arnold, Philipp; Jägle, Sabrina; Türeci, Özlem; Markl, Jürgen; Sahin, Ugur

    2018-04-13

    Virus-like-particles (VLPs) are attractive nanoparticulate scaffolds for broad applications in material/biological sciences and medicine. Prior their functionalization, specific adaptations have to be carried out. These adjustments frequently lead to disordered particles, but the particle integrity is an essential factor for the VLP suitability. Therefore, major requirements for particle stabilization exist. The objective of this study was to evaluate novel stabilizing elements for functionalized chimeric hepatitis B virus core antigen virus-like particles (HBcAg-VLP), with beneficial characteristics for vaccine development, imaging or delivery. The effects of a carboxy-terminal polyhistidine-peptide and an intradimer disulfide-bridge on the stability of preclinically approved chimeric HBcAg-VLPs were assessed. We purified recombinant chimeric HBcAg-VLPs bearing different modified C-termini and compared their physical and chemical particle stability by quantitative protein-biochemical and biophysical techniques. We observed lower chemical resistance of T = 3- compared to T = 4-VLP (triangulation number) capsids and profound impairment of accessibility of hexahistidine-peptides in assembled VLPs. Histidines attached to the C-terminus were associated with superior mechanical and/or chemical particle stability depending on the number of histidine moieties. A molecular modeling approach based on cryo-electron microscopy and biolayer interferometry revealed the underlying structural mechanism for the strengthening of the integrity of VLPs. Interactions triggering capsid stabilization occur on a highly conserved residue on the basis of HBcAg-monomers as well as on hexahistidine-peptides of adjacent monomers. This new stabilization mechanism appears to mimic an evolutionary conserved stabilization concept for hepadnavirus core proteins. These findings establish the genetically simply transferable C-terminal polyhistidine-peptide as a general stabilizing element for chimeric HBcAg-VLPs to increase their suitability.

  17. Identification of the mechanism underlying a human chimera by SNP array analysis.

    PubMed

    Shin, So Youn; Yoo, Han-Wook; Lee, Beom Hee; Kim, Kun Suk; Seo, Eul-Ju

    2012-09-01

    Human chimerism resulting from the fusion of two different zygotes is a rare phenomenon. Two mechanisms of chimerism have been hypothesized: dispermic fertilization of an oocyte and its second polar body and dispermic fertilization of two identical gametes from parthenogenetic activation, and these can be identified and discriminated using DNA polymorphism. In the present study we describe a patient with chimerism presenting as a true hermaphrodite and applied single nucleotide polymorphism array analysis to demonstrate dispermic fertilization of two identical gametes from parthenogenetic activation as the underlying mechanism at the whole chromosome level. We suggest that application of genotyping array analysis to the diagnostic process in patients with disorders of sex development will help identify more human chimera patients and increase our understanding of the underlying mechanisms. Copyright © 2012 Wiley Periodicals, Inc.

  18. Bellerophon: A program to detect chimeric sequences in multiple sequence alignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Thomas; Faulkner, Geoffrey; Hugenholtz, Philip

    2003-12-23

    Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments.

  19. Assessment of amiodarone-induced phospholipidosis in chimeric mice with a humanized liver.

    PubMed

    Sanoh, Seigo; Yamachika, Yuto; Tamura, Yuka; Kotake, Yaichiro; Yoshizane, Yasumi; Ishida, Yuji; Tateno, Chise; Ohta, Shigeru

    2017-01-01

    It is important to consider susceptibility to drug-induced toxicity between animals and humans. Chimeric mice with a humanized liver are expected to predict hepatotoxicity in humans. Drug-induced phospholipidosis (DIPL), in which phospholipids accumulate, is a known entity. In this study, we examined whether chimeric mice can reveal species differences in DIPL. Changes in various phosphatidylcholine (PhC) molecules were investigated in the liver of chimeric mice after administering amiodarone, which induces phospholipidosis. Liquid chromatography-tandem mass spectrometry revealed that levels of PhCs tended to increase in the liver after administration of amiodarone. The liver of chimeric mice consists of human hepatocytes and residual mouse hepatocytes. We used imaging mass spectrometry (IMS) to evaluate the increase of PhCs in human and mouse hepatocytes after administration of amiodarone. IMS visualizes localization of endogenous and exogenous molecules in tissues. The IMS analysis suggested that the localized levels of several PhCs tended to be higher in the human hepatocytes than those in mouse hepatocytes, and PhC levels changed in response to amiodarone. Chimeric mice with a humanized liver will be useful to evaluate species differences in DIPL between mice and humans.

  20. Sociogenomics of self vs. non-self cooperation during development of Dictyostelium discoideum.

    PubMed

    Li, Si I; Buttery, Neil J; Thompson, Christopher R L; Purugganan, Michael D

    2014-07-21

    Dictyostelium discoideum, a microbial model for social evolution, is known to distinguish self from non-self and show genotype-dependent behavior during chimeric development. Aside from a small number of cell-cell recognition genes, however, little is known about the genetic basis of self/non-self recognition in this species. Based on the key hypothesis that there should be differential expression of genes if D. discoideum cells were interacting with non-clone mates, we performed transcriptomic profiling study in this species during clonal vs. chimeric development. The transcriptomic profiles of D. discoideum cells in clones vs. different chimeras were compared at five different developmental stages using a customized microarray. Effects of chimerism on global transcriptional patterns associated with social interactions were observed. We find 1,759 genes significantly different between chimera and clone, 1,144 genes associated significant strain differences, and 6,586 genes developmentally regulated over time. Principal component analysis showed a small amount of the transcriptional variance to chimerism-related factors (Chimerism: 0.18%, Chimerism × Timepoint: 0.03%). There are 162 genes specifically regulated under chimeric development, with continuous small differences between chimera vs. clone over development. Almost 60% of chimera-associated differential genes were differentially expressed at the 4 h aggregate stage, which corresponds to the initial transition of D. discoideum from solitary life to a multicellular phase. A relatively small proportion of over-all variation in gene expression is explained by differences between chimeric and clonal development. The relatively small modifications in gene expression associated with chimerism is compatible with the high level of cooperation observed among different strains of D. discoideum; cells of distinct genetic backgrounds will co-aggregate indiscriminately and co-develop into fruiting bodies. Chimeric development may involve re-programming of the transcriptome through small modifications of the developmental genetic network, which may also indicate that response to social interaction involves many genes with individually small transcriptional effect.

  1. [Construction of the lentiviral expression vector for anti-p185(erbB2) mouse/human chimeric antibody].

    PubMed

    Liu, Fang; Li, Li; Zhang, Wei; Wang, Qi

    2013-04-01

    This research was to construct the lentiviral expression vector for anti- p185(erbB2) mouse/human chimeric antibody and to determine the expression of the chimeric antibody gene in 293T cells transfected with this vector. The genes (vL and vH) coding light and heavy chain of variable regions of anti-p185(erbB2) mAb and the constant regions of human IgG1 (kappa and gamma1) were cloned with PCR method. The target genes were assembled by three-primers PCR method to obtain the chimeric light chain (L) and the chimeric heavy chain (H). Both chains inserted into the down stream and upper stream of IRES gene of the plasmid pVAX1/IRES respectively. We digested the plasmid pVAX1/ H-IRES-L with endoenzyme and subcloned H-IRES-L into the lentiviral vector pWPI. The enzyme digestion and sequence analysis showed that the lentiviral expression vector pWPI/H-IRES-L was constructed correctly. Then, it was transfected into 293T cells and after 48h, GFP protein expression in 293T cells were detected by fluorescent microscope and the chimeric antibody expression was detected by RT-PCR and direct ELISA. The results showed that after 293T cells were transfected with recombination plasmid, both light and heavy chains of the chimeric antibody genes could express together. The chimeric antibody expressed could bind to p185(erbB2) specifically. This research may lay a sound foundation for further study of anti-p185(erbB2) engineered antibody.

  2. Evaluation of 16 SNPs allele-specific to quantify post hSCT chimerism by SYBR green-based qRT-PCR.

    PubMed

    Almeida, Carlos Arthur Cardoso; Dreyfuss, Juliana Luporini; Azevedo-Shimmoto, Marily Maria; Figueiredo, Maria Stela; de Oliveira, José Salvador Rodrigues

    2013-03-01

    The importance of monitoring post haematopoietic stem cell transplantation (hSCT) chimerism has been defined in numerous publications. Single-nucleotide polymorphisms (SNPs) are molecular markers that vary significantly among different populations. Allied to a very sensible technique, SNP assays seem to be very sensitive (0.001%) when post hSCT chimerism is measured. However, well known SNP frequencies are limited to certain populations, mainly in countries where there is a high level of diversity in its population, therefore restricting their use worldwide. Amplification by SYBR green based quantitative real time PCR of eight pairs of allele-specific SNPs (MLH-1, PECAM-1, ICAM-1, SUR-1, HA-1, rs715405, rs713503, rs2296600) was conducted in 88 patient/donor pairs, who underwent allogeneic myeloablative or non-myeloablative hSCT. One informative allele was detected in at least 42% (n=37) of the samples; 20% (n=18) had at least two informative alleles; 10% (n=9) had at least three informative alleles; 9% (n=8) had more than three informative alleles and 18% (n=16) showed no informative allele at all. Overall, the frequency of informative alleles for these SNPs in the Brazilian population was very low. Consequently, the amount of information attained reached 9% of those expected, being able to discriminate only eight pairs of donor/recipient samples with more than three informative alleles, making them useless for the quantification of chimerism in our routine.

  3. Advanced error diagnostics of the CMAQ and Chimere modelling systems within the AQMEII3 model evaluation framework

    EPA Science Inventory

    The work here complements the overview analysis of the modelling systems participating in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) by focusing on the performance for hourly surface ozone by two modelling systems, Chimere for Europe an...

  4. Suppression of Retinal Neovascularization in vivo by Inhibition of Vascular Endothelial Growth Factor (VEGF) Using Soluble VEGF-Receptor Chimeric Proteins

    NASA Astrophysics Data System (ADS)

    Aiello, Lloyd Paul; Pierce, Eric A.; Foley, Eliot D.; Takagi, Hitoshi; Chen, Helen; Riddle, Lavon; Ferrara, Napoleone; King, George L.; Smith, Lois E. H.

    1995-11-01

    The majority of severe visual loss in the United States results from complications associated with retinal neovascularization in patients with ischemic ocular diseases such as diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. Intraocular expression of the angiogenic protein vascular endothelial growth factor (VEGF) is closely correlated with neovascularization in these human disorders and with ischemia-induced retinal neovascularization in mice. In this study, we evaluated whether in vivo inhibition of VEGF action could suppress retinal neovascularization in a murine model of ischemic retinopathy. VEGF-neutralizing chimeric proteins were constructed by joining the extracellular domain of either human (Flt) or mouse (Flk) high-affinity VEGF receptors with IgG. Control chimeric proteins that did not bind VEGF were also used. VEGF-receptor chimeric proteins eliminated in vitro retinal endothelial cell growth stimulation by either VEGF (P < 0.006) or hypoxic conditioned medium (P < 0.005) without affecting growth under nonstimulated conditions. Control proteins had no effect. To assess in vivo response, animals with bilateral retinal ischemia received intravitreal injections of VEGF antagonist in one eye and control protein in the contralateral eye. Retinal neovascularization was quantitated histologically by a masked protocol. Retinal neovascularization in the eye injected with human Flt or murine Flk chimeric protein was reduced in 100% (25/25; P < 0.0001) and 95% (21/22; P < 0.0001) of animals, respectively, compared to the control treated eye. This response was evident after only a single intravitreal injection and was dose dependent with suppression of neovascularization noted after total delivery of 200 ng of protein (P < 0.002). Reduction of histologically evident neovascular nuclei per 6-um section averaged 47% ± 4% (P < 0.001) and 37% ± 2% (P < 0.001) for Flt and Flk chimeric proteins with maximal inhibitory effects of 77% and 66%, respectively. No retinal toxicity was observed by light microscopy. These data demonstrate VEGF's causal role in retinal angiogenesis and prove the potential of VEGF inhibition as a specific therapy for ischemic retinal disease.

  5. A method to generate enhanced GFP+ chimeric mice to study the role of bone marrow-derived cells in the eye.

    PubMed

    Singh, Vivek; Jaini, Ritika; Torricelli, André A M; Tuohy, Vincent K; Wilson, Steven E

    2013-11-01

    GFP-chimeric mice are important tools to study the role of bone marrow-derived cells in eye physiology. A method is described to generate GFP-chimeric mice using whole-body, sub-lethal radiation (600 rad) of wild-type C57BL/6 recipients followed by tail vein injection of bone marrow cells derived from GFP+ (GFP-transgenic C57/BL/6-Tg(UBC-GFP)30 Scha/J) mice. This method yields stable GFP+ chimeras with greater than 95% chimerism (range 95-99%), achieved within one month of bone marrow transfer confirmed by microscopy and fluorescence-assisted cell sorting (FACS) analysis, with lower mortality after irradiation than prior methods. To demonstrate the efficacy of GFP+ bone marrow chimeric mice, the role of circulating GFP+ bone marrow-derived cells in myofibroblast generation after irregular photo-therapeutic keratectomy (PTK) was analyzed. Many SMA+ myofibroblasts that were generated at one month after PTK were derived from GFP+ bone marrow-derived cells. The GFP+ bone marrow chimeric mouse provides an excellent model for studying the role of bone marrow-derived cells in corneal wound healing, glaucoma surgery, optic nerve head pathology and retinal pathophysiology and wound healing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Prostate Cancer Progression and Serum SIBLING (Small Integrin Binding N-Linked Glycoprotein)Levels

    DTIC Science & Technology

    2007-10-01

    termed SIBLINGs (for small integrin binding ligand N-linked glycoproteins) whose members include bone sialoprotein (BSP), osteopontin (OPN), dentin...enzyme-linked immunosorbent assays (ELISAs) for quantitatively determining the levels of bone sialoprotein (BSP), osteopontin (OPN), dentin...synthesized as a chimeric protein, composed of three parts: dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP, also

  7. Engineered chimeric peptides with antimicrobial and titanium-binding functions to inhibit biofilm formation on Ti implants.

    PubMed

    Geng, Hongjuan; Yuan, Yang; Adayi, Aidina; Zhang, Xu; Song, Xin; Gong, Lei; Zhang, Xi; Gao, Ping

    2018-01-01

    Titanium (Ti) implants have been commonly used in oral medicine. However, despite their widespread clinical application, these implants are susceptible to failure induced by microbial infection due to bacterial biofilm formation. Immobilization of chimeric peptides with antibacterial properties on the Ti surface may be a promising antimicrobial approach to inhibit biofilm formation. Here, chimeric peptides were designed by connecting three sequences (hBD-3-1/2/3) derived from human β-defensin-3 (hBD-3) with Ti-binding peptide-l (TBP-l: RKLPDAGPMHTW) via a triple glycine (G) linker to modify Ti surfaces. Using X-ray photoelectron spectroscopy (XPS), the properties of individual domains of the chimeric peptides were evaluated for their binding activity toward the Ti surface. The antimicrobial and anti-biofilm efficacy of the peptides against initial settlers, Streptococcus oralis (S. oralis), Streptococcus gordonii (S. gordonii) and Streptococcus sanguinis (S. sanguinis), was evaluated with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Transmission electron microscopy (TEM) and real-time quantitative PCR (qRT-PCR) were used to study cell membrane changes and the underlying antimicrobial mechanism. Compared with the other two peptides, TBP-1-GGG-hBD3-3 presented stronger antibacterial activity and remained stable in saliva and serum. Therefore, it was chosen as the best candidate to modify Ti surfaces in this study. This peptide inhibited the growth of initial streptococci and biofilm formation on Ti surfaces with no cytotoxicity to MC3T3-E1 cells. Disruption of the integrity of bacterial membranes and decreased expression of adhesion protein genes from S. gordonii revealed aspects of the antibacterial mechanism of TBP-1-GGG-hBD3-3. We conclude that engineered chimeric peptides with antimicrobial activity provide a potential solution for inhibiting biofilm formation on Ti surfaces to reduce or prevent the occurrence of peri-implant diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cell-free DNA characteristics and chimerism analysis in patients after allogeneic cell transplantation.

    PubMed

    Duque-Afonso, Jesus; Waterhouse, Miguel; Pfeifer, Dietmar; Follo, Marie; Duyster, Justus; Bertz, Hartmut; Finke, Jürgen

    2018-02-01

    Cell-free DNA (cfDNA) isolated from plasma or serum has received increasing interest for diagnostic applications in pregnancy, solid tumors and solid organ transplantation. The reported clinical usefulness of cfDNA obtained from plasma or serum in patients undergoing allogeneic cell transplantation (alloHSCT) is scarce. To analyze the potential clinical utility of cfDNA chimerism analysis after alloHSCT. A total of 196 samples obtained from 110 patients were investigated for their chimeric status both in peripheral blood and plasma using standard PCR for microsatellite amplification. Plasma DNA size distribution was analyzed using capillary electrophoresis. The mean cfDNA concentration in the transplanted patients was 469ng/ml (range: 50-10,700ng/ml). The size range of almost 80% of the analyzed fragments was between 80 and 200bp. In 41 out of the 110 patients included in the study a mixture of donor and recipient plasma cfDNA was detected. There was a statistically significant difference in the percentage of plasma mixed chimerism between the patients without transplant related complications and the patients with either GvHD (p<0.05) or relapse (p<0.01). In those patients who showed improvement of GvHD also displayed a decrease in the observable percentage of recipient cfDNA during GvHD treatment. In patients without improvement or even with worsening of acute GvHD, stable or increasing levels of recipient cfDNA were detected. cfDNA in combination with peripheral blood and bone marrow cell chimerism analysis might improve its utility in the clinic in particular in those patients with clinical complications after alloHSCT. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  9. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms

    NASA Technical Reports Server (NTRS)

    Kopczynski, E. D.; Bateson, M. M.; Ward, D. M.

    1994-01-01

    When PCR was used to recover small-subunit (SSU) rRNA genes from a hot spring cyanobacterial mat community, chimeric SSU rRNA sequences which exhibited little or no secondary structural abnormality were recovered. They were revealed as chimeras of SSU rRNA genes of uncultivated species through separate phylogenetic analysis of short sequence domains.

  10. Developing an algorithm of informative markers for evaluation of chimerism after allogeneic bone marrow transplantation.

    PubMed

    Sellathamby, S; Balasubramanian, P; Sivalingam, S; Shaji, R V; Mathews, V; George, B; Viswabandya, A; Srivastava, A; Chandy, M

    2006-04-01

    Analysis of chimerism by polymerase chain reaction amplification of STR or VNTR has become a routine procedure for the evaluation of engraftment after allogeneic stem cell transplantation. Knowledge of the frequency of different STR or VNTR alleles in unrelated individuals in a population is useful for forensic work. In the context of HLA identical sibling bone marrow transplantation the informativeness of these markers needs to be evaluated. We evaluated five STRs (THO1, VWA, FES, ACTBP2, and F13A1) and 1 VNTR (APOB) for informativeness in stem cell transplants from HLA identical sibling donors. All four markers used individually allowed us to discriminate 20-56% of the patient donor pairs. Using a combination of all these markers along with a polymorphic marker in the beta-globin gene and the sex chromosome specific amelogenin marker, we were able to discriminate 99% of the patient donor pairs. We have established an algorithm for evaluating chimerism following HLA identical sibling donor transplants in the Indian population using molecular markers in 310 patients. Analysis of heterozygote frequencies in different populations is similar suggesting that this algorithm can be used universally for transplant centers to evaluate chimerism following allogeneic bone marrow transplantation.

  11. CRISPR/Cas9 mediated genome editing in ES cells and its application for chimeric analysis in mice.

    PubMed

    Oji, Asami; Noda, Taichi; Fujihara, Yoshitaka; Miyata, Haruhiko; Kim, Yeon Joo; Muto, Masanaga; Nozawa, Kaori; Matsumura, Takafumi; Isotani, Ayako; Ikawa, Masahito

    2016-08-17

    Targeted gene disrupted mice can be efficiently generated by expressing a single guide RNA (sgRNA)/CAS9 complex in the zygote. However, the limited success of complicated genome editing, such as large deletions, point mutations, and knockins, remains to be improved. Further, the mosaicism in founder generations complicates the genotypic and phenotypic analyses in these animals. Here we show that large deletions with two sgRNAs as well as dsDNA-mediated point mutations are efficient in mouse embryonic stem cells (ESCs). The dsDNA-mediated gene knockins are also feasible in ESCs. Finally, we generated chimeric mice with biallelic mutant ESCs for a lethal gene, Dnajb13, and analyzed their phenotypes. Not only was the lethal phenotype of hydrocephalus suppressed, but we also found that Dnajb13 is required for sperm cilia formation. The combination of biallelic genome editing in ESCs and subsequent chimeric analysis provides a useful tool for rapid gene function analysis in the whole organism.

  12. Evaluation of Trichodysplasia Spinulosa-Associated Polyomavirus Capsid Protein as a New Carrier for Construction of Chimeric Virus-Like Particles Harboring Foreign Epitopes

    PubMed Central

    Gedvilaite, Alma; Kucinskaite-Kodze, Indre; Lasickiene, Rita; Timinskas, Albertas; Vaitiekaite, Ausra; Ziogiene, Danguole; Zvirbliene, Aurelija

    2015-01-01

    Recombinant virus-like particles (VLPs) represent a promising tool for protein engineering. Recently, trichodysplasia spinulosa-associated polyomavirus (TSPyV) viral protein 1 (VP1) was efficiently produced in yeast expression system and shown to self-assemble to VLPs. In the current study, TSPyV VP1 protein was exploited as a carrier for construction of chimeric VLPs harboring selected B and T cell-specific epitopes and evaluated in comparison to hamster polyomavirus VP1 protein. Chimeric VLPs with inserted either hepatitis B virus preS1 epitope DPAFR or a universal T cell-specific epitope AKFVAAWTLKAAA were produced in yeast Saccharomyces cerevisiae. Target epitopes were incorporated either at the HI or BC loop of the VP1 protein. The insertion sites were selected based on molecular models of TSPyV VP1 protein. The surface exposure of the insert positions was confirmed using a collection of monoclonal antibodies raised against the intact TSPyV VP1 protein. All generated chimeric proteins were capable to self-assemble to VLPs, which induced a strong immune response in mice. The chimeric VLPs also activated dendritic cells and T cells as demonstrated by analysis of cell surface markers and cytokine production profiles in spleen cell cultures. In conclusion, TSPyV VP1 protein represents a new potential carrier for construction of chimeric VLPs harboring target epitopes. PMID:26230706

  13. Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells

    PubMed Central

    Borel, Christelle; Mudge, Jonathan M.; Howald, Cédric; Foissac, Sylvain; Ucla, Catherine; Chrast, Jacqueline; Ribeca, Paolo; Martin, David; Murray, Ryan R.; Yang, Xinping; Ghamsari, Lila; Lin, Chenwei; Bell, Ian; Dumais, Erica; Drenkow, Jorg; Tress, Michael L.; Gelpí, Josep Lluís; Orozco, Modesto; Valencia, Alfonso; van Berkum, Nynke L.; Lajoie, Bryan R.; Vidal, Marc; Stamatoyannopoulos, John; Batut, Philippe; Dobin, Alex; Harrow, Jennifer; Hubbard, Tim; Dekker, Job; Frankish, Adam; Salehi-Ashtiani, Kourosh; Reymond, Alexandre; Antonarakis, Stylianos E.; Guigó, Roderic; Gingeras, Thomas R.

    2012-01-01

    The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5′ and 3′ transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network. PMID:22238572

  14. Perforator chimerism for the reconstruction of complex defects: A new chimeric free flap classification system.

    PubMed

    Kim, Jeong Tae; Kim, Youn Hwan; Ghanem, Ali M

    2015-11-01

    Complex defects present structural and functional challenges to reconstructive surgeons. When compared to multiple free flaps or staged reconstruction, the use of chimeric flaps to reconstruct such defects have many advantages such as reduced number of operative procedures and donor site morbidity as well as preservation of recipient vessels. With increased popularity of perforator flaps, chimeric flaps' harvest and design has benefited from 'perforator concept' towards more versatile and better reconstruction solutions. This article discusses perforator based chimeric flaps and presents a practice based classification system that incorporates the perforator flap concept into "Perforator Chimerism". The authors analyzed a variety of chimeric patterns used in 31 consecutive cases to present illustrative case series and their new classification system. Accordingly, chimeric flaps are classified into four types. Type I: Classical Chimerism, Type II: Anastomotic Chimerism, Type III: Perforator Chimerism and Type IV Mixed Chimerism. Types I on specific source vessel anatomy whilst Type II requires microvascular anastomosis to create the chimeric reconstructive solution. Type III chimeric flaps utilizes the perforator concept to raise two components of tissues without microvascular anastomosis between them. Type IV chimeric flaps are mixed type flaps comprising any combination of Types I to III. Incorporation of the perforator concept in planning and designing chimeric flaps has allowed safe, effective and aesthetically superior reconstruction of complex defects. The new classification system aids reconstructive surgeons and trainees to understand chimeric flaps design, facilitating effective incorporation of this important reconstructive technique into the armamentarium of the reconstruction toolbox. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Competitive clonal hematopoiesis in mouse chimeras explained by a stochastic model of stem cell organization.

    PubMed

    Roeder, Ingo; Kamminga, Leonie M; Braesel, Katrin; Dontje, Bert; de Haan, Gerald; Loeffler, Markus

    2005-01-15

    Many current experimental results show the necessity of new conceptual approaches to understand hematopoietic stem cell organization. Recently, we proposed a novel theoretical concept and a corresponding quantitative model based on microenvironment-dependent stem cell plasticity. The objective of our present work is to subject this model to an experimental test for the situation of chimeric hematopoiesis. Investigating clonal competition processes in DBA/2-C57BL/6 mouse chimeras, we observed biphasic chimerism development with initially increasing but long-term declining DBA/2 contribution. These experimental results were used to select the parameters of the mathematical model. To validate the model beyond this specific situation, we fixed the obtained parameter configuration to simulate further experimental settings comprising variations of transplanted DBA/2-C57BL/6 proportions, secondary transplantations, and perturbation of stabilized chimeras by cytokine and cytotoxic treatment. We show that the proposed model is able to consistently describe the situation of chimeric hematopoiesis. Our results strongly support the view that the relative growth advantage of strain-specific stem cells is not a fixed cellular property but is sensitively dependent on the actual state of the entire system. We conclude that hematopoietic stem cell organization should be understood as a flexible, self-organized rather than a fixed, preprogrammed process.

  16. Chimeric mice with humanized liver: Application in drug metabolism and pharmacokinetics studies for drug discovery.

    PubMed

    Naritomi, Yoichi; Sanoh, Seigo; Ohta, Shigeru

    2018-02-01

    Predicting human drug metabolism and pharmacokinetics (PK) is key to drug discovery. In particular, it is important to predict human PK, metabolite profiles and drug-drug interactions (DDIs). Various methods have been used for such predictions, including in vitro metabolic studies using human biological samples, such as hepatic microsomes and hepatocytes, and in vivo studies using experimental animals. However, prediction studies using these methods are often inconclusive due to discrepancies between in vitro and in vivo results, and interspecies differences in drug metabolism. Further, the prediction methods have changed from qualitative to quantitative to solve these issues. Chimeric mice with humanized liver have been developed, in which mouse liver cells are mostly replaced with human hepatocytes. Since human drug metabolizing enzymes are expressed in the liver of these mice, they are regarded as suitable models for mimicking the drug metabolism and PK observed in humans; therefore, these mice are useful for predicting human drug metabolism and PK. In this review, we discuss the current state, issues, and future directions of predicting human drug metabolism and PK using chimeric mice with humanized liver in drug discovery. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  17. Fialuridine induces acute liver failure in chimeric TK-NOG mice: a model for detecting hepatic drug toxicity prior to human testing.

    PubMed

    Xu, Dan; Nishimura, Toshi; Nishimura, Sachiko; Zhang, Haili; Zheng, Ming; Guo, Ying-Ying; Masek, Marylin; Michie, Sara A; Glenn, Jeffrey; Peltz, Gary

    2014-04-01

    Seven of 15 clinical trial participants treated with a nucleoside analogue (fialuridine [FIAU]) developed acute liver failure. Five treated participants died, and two required a liver transplant. Preclinical toxicology studies in mice, rats, dogs, and primates did not provide any indication that FIAU would be hepatotoxic in humans. Therefore, we investigated whether FIAU-induced liver toxicity could be detected in chimeric TK-NOG mice with humanized livers. Control and chimeric TK-NOG mice with humanized livers were treated orally with FIAU 400, 100, 25, or 2.5 mg/kg/d. The response to drug treatment was evaluated by measuring plasma lactate and liver enzymes, by assessing liver histology, and by electron microscopy. After treatment with FIAU 400 mg/kg/d for 4 d, chimeric mice developed clinical and serologic evidence of liver failure and lactic acidosis. Analysis of liver tissue revealed steatosis in regions with human, but not mouse, hepatocytes. Electron micrographs revealed lipid and mitochondrial abnormalities in the human hepatocytes in FIAU-treated chimeric mice. Dose-dependent liver toxicity was detected in chimeric mice treated with FIAU 100, 25, or 2.5 mg/kg/d for 14 d. Liver toxicity did not develop in control mice that were treated with the same FIAU doses for 14 d. In contrast, treatment with another nucleotide analogue (sofosbuvir 440 or 44 mg/kg/d po) for 14 d, which did not cause liver toxicity in human trial participants, did not cause liver toxicity in mice with humanized livers. FIAU-induced liver toxicity could be readily detected using chimeric TK-NOG mice with humanized livers, even when the mice were treated with a FIAU dose that was only 10-fold above the dose used in human participants. The clinical features, laboratory abnormalities, liver histology, and ultra-structural changes observed in FIAU-treated chimeric mice mirrored those of FIAU-treated human participants. The use of chimeric mice in preclinical toxicology studies could improve the safety of candidate medications selected for testing in human participants. Please see later in the article for the Editors' Summary.

  18. [Immunogenicity of chimeric gene vaccine Mtb8.4/hIL12].

    PubMed

    Li, Hui; Li, Rong; Zhong, Sen; Luo, Yue-bei; Ren, Hong; Deng, Cun-liang

    2006-09-01

    To construct chimeric gene vaccine Mtb8.4/hIL-12, express it in COS-7 cells and study its immunogenicity. Chimeric gene Mtb8.4/hIL-12 was amplified by PCR and cloned into the eukaryotic vector pCI-neo to construct the recombinant plasmid pCI-neo-Mtb8.4/hIL12. After the recombinant plasmid was identified by restriction enzyme digestion analysis, PCR and DNA sequencing, COS-7 cells were transfected with pCI-neo-Mtb8.4/hIL12 through cationic liposome. 48 hours later, the expression of mRNA was detected by RT-PCR and the level of hIL-12 in culture supernatant and cell lysates were detected by Western blot. C57BL/6N mice were vaccinated with chimeric gene vaccine Mtb8.4/hIL-12 three times at the interval of 3 weeks each time. Four weeks after the final inoculation, three mice were sacrificed to assess the cytotoxicity of CTLs and response to cytokine. The recombinant plasmid pCI-neo-Mtb8.4/hIL12 was constructed successfully. After COS-7 cells were transfected with pCI-neo-Mtb8.4/hIL12, chimeric gene Mtb8.4/hIL12 was expressed in COS-7 cells. The chimeric gene vaccine could induce strong antigen-specific immune response. With the increase of IFN-gamma and IL-2 secretion and the decrease of IL-4 secretion, the cytotoxicity of specific CTLs was heightened. Recombinant plasmid pCI-neo-Mtb8.4/hIL12 has been successfully constructed and expressed in COS-7 cells. The constructed chimeric gene vaccine Mtb8.4/hIL12 is of strong immunogenicity and can obviously induce the cytotoxicity of CTLs.

  19. Bone marrow cell migration to the heart in a chimeric mouse model of acute chagasic disease

    PubMed Central

    Irion, Camila Iansen; Paredes, Bruno Diaz; Brasil, Guilherme Visconde; da Cunha, Sandro Torrentes; Paula, Luis Felipe; Carvalho, Alysson Roncally; de Carvalho, Antonio Carlos Campos; Carvalho, Adriana Bastos; Goldenberg, Regina Coeli dos Santos

    2017-01-01

    BACKGROUND Chagas disease is a public health problem caused by infection with the protozoan Trypanosoma cruzi. There is currently no effective therapy for Chagas disease. Although there is some evidence for the beneficial effect of bone marrow-derived cells in chagasic disease, the mechanisms underlying their effects in the heart are unknown. Reports have suggested that bone marrow cells are recruited to the chagasic heart; however, studies using chimeric mouse models of chagasic cardiomyopathy are rare. OBJECTIVES The aim of this study was to investigate the migration of bone marrow cells to the heart after T. cruzi infection in a model of chagasic disease in chimeric mice. METHODS To obtain chimerical mice, wild-type (WT) C57BL6 mice were exposed to full body irradiation (7 Gy), causing bone marrow ablation. Then, bone marrow cells from green fluorescent protein (GFP)-transgenic mice were infused into the mice. Graft effectiveness was confirmed by flow cytometry. Experimental mice were divided into four groups: (i) infected chimeric (iChim) mice; (ii) infected WT (iWT) mice, both of which received 3 × 104 trypomastigotes of the Brazil strain; (iii) non-infected chimeric (Chim) mice; and (iv) non-infected WT mice. FINDINGS At one-month post-infection, iChim and iWT mice showed first degree atrioventricular block with decreased heart rate and treadmill exercise parameters compared to those in the non-infected groups. MAIN CONCLUSIONS iChim mice showed an increase in parasitaemia, myocarditis, and the presence of amastigote nests in the heart tissue compared to iWT mice. Flow cytometry analysis did not detect haematopoietic progenitor cells in the hearts of infected mice. Furthermore, GFP+ cardiomyocytes were not detected in the tissues of chimeric mice. PMID:28767980

  20. Bone marrow cell migration to the heart in a chimeric mouse model of acute chagasic disease.

    PubMed

    Irion, Camila Iansen; Paredes, Bruno Diaz; Brasil, Guilherme Visconde; Cunha, Sandro Torrentes da; Paula, Luis Felipe; Carvalho, Alysson Roncally; Carvalho, Antonio Carlos Campos de; Carvalho, Adriana Bastos; Goldenberg, Regina Coeli Dos Santos

    2017-08-01

    Chagas disease is a public health problem caused by infection with the protozoan Trypanosoma cruzi. There is currently no effective therapy for Chagas disease. Although there is some evidence for the beneficial effect of bone marrow-derived cells in chagasic disease, the mechanisms underlying their effects in the heart are unknown. Reports have suggested that bone marrow cells are recruited to the chagasic heart; however, studies using chimeric mouse models of chagasic cardiomyopathy are rare. The aim of this study was to investigate the migration of bone marrow cells to the heart after T. cruzi infection in a model of chagasic disease in chimeric mice. To obtain chimerical mice, wild-type (WT) C57BL6 mice were exposed to full body irradiation (7 Gy), causing bone marrow ablation. Then, bone marrow cells from green fluorescent protein (GFP)-transgenic mice were infused into the mice. Graft effectiveness was confirmed by flow cytometry. Experimental mice were divided into four groups: (i) infected chimeric (iChim) mice; (ii) infected WT (iWT) mice, both of which received 3 × 104 trypomastigotes of the Brazil strain; (iii) non-infected chimeric (Chim) mice; and (iv) non-infected WT mice. At one-month post-infection, iChim and iWT mice showed first degree atrioventricular block with decreased heart rate and treadmill exercise parameters compared to those in the non-infected groups. iChim mice showed an increase in parasitaemia, myocarditis, and the presence of amastigote nests in the heart tissue compared to iWT mice. Flow cytometry analysis did not detect haematopoietic progenitor cells in the hearts of infected mice. Furthermore, GFP+ cardiomyocytes were not detected in the tissues of chimeric mice.

  1. AccuCopy quantification combined with pre-amplification of long-distance PCR for fast analysis of intron 22 inversion in haemophilia A.

    PubMed

    Ding, Qianlan; Wu, Xi; Lu, Yeling; Chen, Changming; Shen, Rui; Zhang, Xi; Jiang, Zhengwen; Wang, Xuefeng

    2016-07-01

    To develop a digitalized intron 22 inversion (Inv22) detection in patients with severe haemophilia A. The design included two tests: A genotyping test included two multiplex pre-amplification of LD-PCR (PLP) with two combinations of five primers to amplify wild-type and chimeric int22h alleles; a carrier mosaicism test was similar to the genotyping test except only amplification of chimeric int22h alleles by removing one primer from each of two combinations. AccuCopy detection was used to quantify PLP products. PLP product patterns in the genotyping test allowed identifying all known Inv22. Quantitative patterns accurately represented the product patterns. The results of 164 samples detected by the genotyping test were consistent with those obtained by LD-PCR detection. Limit of detection (LOD) of the carrier mosaicism test was at least 2% of heterozygous cells with Inv22. Performing the test in two obligate mothers with negative Inv22 from two sporadic pedigrees mosaic rates of blood and hair root of the mother from pedigree 1 were 8.3% and >20%, respectively and negative results were obtained in pedigree 2. AccuCopy quantification combined with PLP (AQ-PLP) method was confirmed to be rapid and reliable for genotyping Inv22 and highly sensitive to carrier mosaicism detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Comprehensive in silico allergenicity assessment of novel protein engineered chimeric Cry proteins for safe deployment in crops.

    PubMed

    Rathinam, Maniraj; Singh, Shweta; Pattanayak, Debasis; Sreevathsa, Rohini

    2017-08-02

    Development of chimeric Cry toxins by protein engineering of known and validated proteins is imperative for enhancing the efficacy and broadening the insecticidal spectrum of these genes. Expression of novel Cry proteins in food crops has however created apprehensions with respect to the safety aspects. To clarify this, premarket evaluation consisting of an array of analyses to evaluate the unintended effects is a prerequisite to provide safety assurance to the consumers. Additionally, series of bioinformatic tools as in silico aids are being used to evaluate the likely allergenic reaction of the proteins based on sequence and epitope similarity with known allergens. In the present study, chimeric Cry toxins developed through protein engineering were evaluated for allergenic potential using various in silico algorithms. Major emphasis was on the validation of allergenic potential on three aspects of paramount significance viz., sequence-based homology between allergenic proteins, validation of conformational epitopes towards identification of food allergens and physico-chemical properties of amino acids. Additionally, in vitro analysis pertaining to heat stability of two of the eight chimeric proteins and pepsin digestibility further demonstrated the non-allergenic potential of these chimeric toxins. The study revealed for the first time an all-encompassing evaluation that the recombinant Cry proteins did not show any potential similarity with any known allergens with respect to the parameters generally considered for a protein to be designated as an allergen. These novel chimeric proteins hence can be considered safe to be introgressed into plants.

  3. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments.

    PubMed

    Huber, Thomas; Faulkner, Geoffrey; Hugenholtz, Philip

    2004-09-22

    Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments. Bellerophon is available as an interactive web server at http://foo.maths.uq.edu.au/~huber/bellerophon.pl

  4. The B7-1 Cytoplasmic Tail Enhances Intracellular Transport and Mammalian Cell Surface Display of Chimeric Proteins in the Absence of a Linear ER Export Motif

    PubMed Central

    Lin, Yi-Chieh; Chen, Bing-Mae; Lu, Wei-Cheng; Su, Chien-I; Prijovich, Zeljko M.; Chung, Wen-Chuan; Wu, Pei-Yu; Chen, Kai-Chuan; Lee, I-Chiao; Juan, Ting-Yi; Roffler, Steve R.

    2013-01-01

    Membrane-tethered proteins (mammalian surface display) are increasingly being used for novel therapeutic and biotechnology applications. Maximizing surface expression of chimeric proteins on mammalian cells is important for these applications. We show that the cytoplasmic domain from the B7-1 antigen, a commonly used element for mammalian surface display, can enhance the intracellular transport and surface display of chimeric proteins in a Sar1 and Rab1 dependent fashion. However, mutational, alanine scanning and deletion analysis demonstrate the absence of linear ER export motifs in the B7 cytoplasmic domain. Rather, efficient intracellular transport correlated with the presence of predicted secondary structure in the cytoplasmic tail. Examination of the cytoplasmic domains of 984 human and 782 mouse type I transmembrane proteins revealed that many previously identified ER export motifs are rarely found in the cytoplasmic tail of type I transmembrane proteins. Our results suggest that efficient intracellular transport of B7 chimeric proteins is associated with the structure rather than to the presence of a linear ER export motif in the cytoplasmic tail, and indicate that short (less than ~ 10-20 amino acids) and unstructured cytoplasmic tails should be avoided to express high levels of chimeric proteins on mammalian cells. PMID:24073236

  5. Connections between Transcription Downstream of Genes and cis-SAGe Chimeric RNA.

    PubMed

    Chwalenia, Katarzyna; Qin, Fujun; Singh, Sandeep; Tangtrongstittikul, Panjapon; Li, Hui

    2017-11-22

    cis-Splicing between adjacent genes (cis-SAGe) is being recognized as one way to produce chimeric fusion RNAs. However, its detail mechanism is not clear. Recent study revealed induction of transcriptions downstream of genes (DoGs) under osmotic stress. Here, we investigated the influence of osmotic stress on cis-SAGe chimeric RNAs and their connection to DoGs. We found,the absence of induction of at least some cis-SAGe fusions and/or their corresponding DoGs at early time point(s). In fact, these DoGs and their cis-SAGe fusions are inversely correlated. This negative correlation was changed to positive at a later time point. These results suggest a direct competition between the two categories of transcripts when total pool of readthrough transcripts is limited at an early time point. At a later time point, DoGs and corresponding cis-SAGe fusions are both induced, indicating that total readthrough transcripts become more abundant. Finally, we observed overall enhancement of cis-SAGe chimeric RNAs in KCl-treated samples by RNA-Seq analysis.

  6. A chimeric human-mouse model of Sjögren's syndrome.

    PubMed

    Young, Nicholas A; Wu, Lai-Chu; Bruss, Michael; Kaffenberger, Benjamin H; Hampton, Jeffrey; Bolon, Brad; Jarjour, Wael N

    2015-01-01

    Despite recent advances in the understanding of Sjögren's Syndrome (SjS), the pathogenic mechanisms remain elusive and an ideal model for early drug discovery is not yet available. To establish a humanized mouse model of SjS, peripheral blood mononuclear cells (PBMCs) from healthy volunteers or patients with SjS were transferred into immunodeficient NOD-scid IL-2rγ(null) mouse recipients to produce chimeric mice. While no difference was observed in the distribution of cells, chimeric mice transferred with PBMCs from SjS patients produced enhanced cytokine levels, most significantly IFN-γ and IL-10. Histological examination revealed enhanced inflammatory responses in the lacrimal and salivary glands of SjS chimeras, as measured by digital image analysis and blinded histopathological scoring. Infiltrates were primarily CD4+, with minimal detection of CD8+ T-cells and B-cells. These results demonstrate a novel chimeric mouse model of human SjS that provides a unique in vivo environment to test experimental therapeutics and investigate T-cell disease pathology. Copyright © 2014. Published by Elsevier Inc.

  7. Study of the peptide length and amino acid specific substitution in the antigenic activity of the chimeric synthetic peptides, containing the p19 core and gp46 envelope proteins of the HTLV-I virus.

    PubMed

    Marin, Milenen Hernández; Rodríguez-Tanty, Chryslaine; Higginson-Clarke, David; Bocalandro, Yadaris Márquez; Peña, Lilliam Pozo

    2005-10-28

    Four chimeric synthetic peptides (Q5, Q6, Q7(multiply sign in circle), and Q8(multiply sign in circle)), incorporating immunodominant epitopes of the core p19 (105-124 a.a.) and envelope gp46 proteins (175-205 a.a.), of HTLV-I were obtained. Also, two gp46 monomeric peptides M4 and M5(multiply sign in circle) (Ser at position 192) were synthesized. The analysis of the influence of the peptide lengths and the proline to serine substitution on the chimeric and monomeric peptides' antigenicity, with regard to the chimeric peptides Q1, Q2, Q3(multiply sign in circle), and Q4(multiply sign in circle), reported previously, for HTLV-I was carried out. The peptides' antigenicity was evaluated in an ultramicroenzyme-linked immunosorbent assay (UMELISA) using sera of HTLV-I/II. The peptides' antigenicity was affected appreciably by the change of the peptide length and amino acid substitutions into the immunodominant sequence of gp46 peptide.

  8. Long-term follow-up of patients receiving allogeneic stem cell transplant for chronic lymphocytic leukaemia: mixed T-cell chimerism is associated with high relapse risk and inferior survival.

    PubMed

    Thompson, Philip A; Stingo, Francesco; Keating, Michael J; Wierda, William G; O'Brien, Susan M; Estrov, Zeev; Ledesma, Celina; Rezvani, Katayoun; Qazilbash, Muzaffar; Shah, Nina; Parmar, Simrit; Popat, Uday; Anderlini, Paolo; Yago, Nieto; Ciurea, Stefan O; Kebriaei, Partow; Champlin, Richard; Shpall, Elizabeth J; Hosing, Chitra M

    2017-05-01

    There is limited information regarding the immunological predictors of post-allogeneic stem cell transplant (alloSCT) outcome in chronic lymphocytic leukaemia (CLL), such as mixed T-cell chimerism. We analysed 143 consecutive patients with relapsed/refractory CLL, transplanted between 2000 and 2012, to determine the prognostic relevance of mixed chimerism post-alloSCT and the ability of post-transplant immunomodulation to treat relapse. Mixed T-cell chimerism occurred in 50% of patients at 3 months and 43% at 6 months post-alloSCT; upon 3- and 6-month landmark analysis, this was associated with inferior progression-free survival (PFS) [Hazard ratio (HR) 1·93, P = 0·003 and HR 2·58, P < 0·001] and survival (HR 1·66, P = 0·05 and HR 2·17, P < 0·001), independent of baseline patient characteristics, and a lower rate of grade II-IV acute graft-versus-host disease (GHVD) (16% vs. 52%, P < 0·001). Thirty-three patients were treated with immunomodulation for relapse post-alloSCT (immunosuppression withdrawal, n = 6, donor lymphocyte infusion, n = 27); 17 achieved complete response (CR), which predicted superior PFS (53 months vs. 10 months, P < 0·001) and survival (117 months vs. 30 months, P = 0·006). Relapsed patients with mixed chimerism had inferior response to immunomodulation; conversion to full donor chimerism was highly correlated both with CR and with the development of severe acute GVHD, which was fatal in 3/8 patients. Novel therapeutic strategies are required for patients with mixed T-cell chimerism post-alloSCT for CLL. © 2017 John Wiley & Sons Ltd.

  9. Bone marrow chimerism as a strategy to produce tolerance in solid organ allotransplantation.

    PubMed

    Hu, Min; Alexander, Stephen I; Yi, Shounan

    2016-12-01

    Clinical transplant tolerance has been most successfully achieved combining hematopoietic chimerism with kidney transplantation. This review outlines this strategy in animal models and human transplantation, and possible clinical challenges. Kidney transplant tolerance has been achieved through chimerism in several centers beginning with Massachusetts General Hospital's success with mixed chimerism in human leukocyte antigen (HLA)-mismatched patients and the Stanford group with HLA-matched patients, and the more recent success of the Northwestern protocol achieving full chimerism. This has challenged the original view that stable mixed chimerism is necessary for organ graft tolerance. However, among the HLA-mismatched kidney transplant-tolerant patients, loss of mixed chimerism does not lead to renal-graft rejection, and the development of host Foxp3+ regulatory T cells has been observed. Recent animal models suggest that graft tolerance through bone marrow chimerism occurs through both clonal deletion and regulatory immune cells. Further, Tregs have been shown to improve chimerism in animal models. Animal studies continue to suggest ways to improve our current clinical strategies. Advances in chimerism protocols suggest that tolerance may be clinically achievable with relative safety for HLA-mismatched kidney transplants.

  10. Dissociation between peripheral blood chimerism and tolerance to hindlimb composite tissue transplants: preferential localization of chimerism in donor bone.

    PubMed

    Rahhal, Dina N; Xu, Hong; Huang, Wei-Chao; Wu, Shengli; Wen, Yujie; Huang, Yiming; Ildstad, Suzanne T

    2009-09-27

    Mixed chimerism induces donor-specific tolerance to composite tissue allotransplants (CTAs). In the present studies, we used a nonmyeloablative conditioning approach to establish chimerism and promote CTA acceptance. Wistar Furth (RT1A(u)) rats were conditioned with 600 to 300 cGy total body irradiation (TBI, day-1), and 100 x 10(6) T-cell-depleted ACI (RT1A(abl)) bone marrow cells were transplanted on day 0, followed by a 11-day course of tacrolimus and one dose of antilymphocyte serum (day 10). Heterotopic osteomyocutaneous flap transplantation was performed 4 to 6 weeks after bone marrow transplantation. Mixed chimerism was initially achieved in almost all recipients, but long-term acceptance of CTA was only achieved in rats treated with 600 cGy TBI. When anti-alphabeta-T-cell receptor (TCR) monoclonal antibody (mAb) (day-3) was added into the regimens, donor chimerism was similar to recipients preconditioned without anti-alphabeta-TCR mAb. However, the long-term CTA survival was significantly improved in chimeras receiving more than or equal to 300 cGy TBI plus anti-alphabeta-TCR mAb. Higher levels of donor chimerism were associated with CTA acceptance. The majority of flap acceptors lost peripheral blood chimerism within 6 months. However, donor chimerism persisted in the transplanted bone at significantly higher levels compared with other hematopoietic compartments. The compartment donor chimerism may be responsible for the maintenance of tolerance to CTA. Long-term acceptors were tolerant to a donor skin graft challenge even in the absence of peripheral blood chimerism. Mixed chimerism established by nonmyeloablative conditioning induces long-term acceptance of CTA, which is associated with persistent chimerism preferentially in the transplanted donor bone.

  11. Dissociation between peripheral blood chimerism and tolerance to hindlimb composite tissue transplants: preferential localization of chimerism in donor bone

    PubMed Central

    Rahhal, Dina N.; Xu, Hong; Huang, Wei-Chao; Wu, Shengli; Wen, Yujie; Huang, Yiming; Ildstad, Suzanne T.

    2009-01-01

    Background Mixed chimerism induces donor-specific tolerance to composite tissue allotransplants (CTA). In the present studies, we used a nonmyeloablative conditioning approach to establish chimerism and promote CTA acceptance. Methods WF (RT1Au) rats were conditioned with 600-300 cGy total body irradiation (TBI, day-1), 100 × 106 T cell-depleted ACI (RT1Aabl) bone marrow cells were transplanted day 0, followed by a 11-day course of tacrolimus and one dose of anti-lymphocyte serum (day 10). Heterotopic osteomyocutaneous flap transplantation was performed 4-6 weeks after bone marrow transplantation. Results Mixed chimerism was initially achieved in almost all recipients, but long-term acceptance of CTA was only achieved in rats treated with 600 cGy TBI. When anti-αβ-TCR mAb (day-3) was added into the regimens, donor chimerism was similar to recipients preconditioned without anti-αβ-TCR mAb. However, the long-term CTA survival was significantly improved in chimeras receiving ≥ 300 cGy TBI plus anti-αβ-TCR mAb. Higher levels of donor chimerism were associated with CTA acceptance. The majority of flap-acceptors lost peripheral blood (PB) chimerism within 6 months. However, donor chimerism persisted in transplanted bone at significantly higher levels compared to other hematopoietic compartments. The compartment donor chimerism may be responsible for the maintenance of tolerance to CTA. Long-term acceptors were tolerant to a donor skin graft challenge even in the absence of PB chimerism. Conclusions Mixed chimerism established by nonmyeloablative conditioning induces long-term acceptance of CTA which is associated with persistent chimerism preferentially in transplanted donor bone. PMID:19920776

  12. Germ line transmission of a yeast artificial chromosome spanning the murine [alpha][sub 1](I) collagen locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, W.M.; Dausman, J.; Beard, C.

    Molecular complementation of mutant phenotypes by transgenic technology is a potentially important tool for gene identification. A technology was developed to allow the transfer of a physically intact yeast artificial chromosome (YAC) into the germ line of the mouse. A purified 150-kilobase YAC encompassing the murine gene Col1a1 was efficiently introduced into embryonic stem (ES) cells via lipofection. Chimeric founder mice were derived from two transfected ES cell clones. These chimeras transmitted the full length transgene through the germ line, generating two transgenic mouse strains. Transgene expression was visualized as nascent transcripts in interphase nuclei and quantitated by ribonuclease protectionmore » analysis. Both assays indicated that the transgene was expressed at levels comparable to the endogenous collagen gene. 32 refs., 3 figs., 1 tab.« less

  13. Symmetry of Fv architecture is conducive to grafting a second antibody binding site in the Fv region.

    PubMed Central

    Keck, P C; Huston, J S

    1996-01-01

    Molecular modeling studies on antibody Fv regions have been pursued to design a second antigen-binding site (chi-site) in a chimeric single-chain Fv (chi sFv) species of about 30 kDa. This analysis has uncovered an architectural basis common to many Fv regions that permits grafting a chi-site onto the Fv surface that diametrically opposes the normal combining site. By using molecular graphics analysis, chimeric complementarity-determining regions (chi CDRs) were defined that comprised most of the CDRs from an antibody binding site of interest. The chain directionality of chi CDRs was consistent with that of specific bottom loops of the sFv, which allowed for grafting of chi CDRs with an overall geometry approximating CDRs in the parent combining site. Analysis of 10 different Fv crystal structures indicates that the positions for inserting chi CDRs are very highly conserved, as are the corresponding chi CDR boundaries in the parent binding site. The results of this investigation suggest that it should be possible to generally apply this approach to the development of chimeric bispecific antibody binding site (chi BABS) proteins. Images FIGURE 2 FIGURE 3 PMID:8889174

  14. Chimeras taking shape: Potential functions of proteins encoded by chimeric RNA transcripts

    PubMed Central

    Frenkel-Morgenstern, Milana; Lacroix, Vincent; Ezkurdia, Iakes; Levin, Yishai; Gabashvili, Alexandra; Prilusky, Jaime; del Pozo, Angela; Tress, Michael; Johnson, Rory; Guigo, Roderic; Valencia, Alfonso

    2012-01-01

    Chimeric RNAs comprise exons from two or more different genes and have the potential to encode novel proteins that alter cellular phenotypes. To date, numerous putative chimeric transcripts have been identified among the ESTs isolated from several organisms and using high throughput RNA sequencing. The few corresponding protein products that have been characterized mostly result from chromosomal translocations and are associated with cancer. Here, we systematically establish that some of the putative chimeric transcripts are genuinely expressed in human cells. Using high throughput RNA sequencing, mass spectrometry experimental data, and functional annotation, we studied 7424 putative human chimeric RNAs. We confirmed the expression of 175 chimeric RNAs in 16 human tissues, with an abundance varying from 0.06 to 17 RPKM (Reads Per Kilobase per Million mapped reads). We show that these chimeric RNAs are significantly more tissue-specific than non-chimeric transcripts. Moreover, we present evidence that chimeras tend to incorporate highly expressed genes. Despite the low expression level of most chimeric RNAs, we show that 12 novel chimeras are translated into proteins detectable in multiple shotgun mass spectrometry experiments. Furthermore, we confirm the expression of three novel chimeric proteins using targeted mass spectrometry. Finally, based on our functional annotation of exon organization and preserved domains, we discuss the potential features of chimeric proteins with illustrative examples and suggest that chimeras significantly exploit signal peptides and transmembrane domains, which can alter the cellular localization of cognate proteins. Taken together, these findings establish that some chimeric RNAs are translated into potentially functional proteins in humans. PMID:22588898

  15. Novel chromosomal rearrangements and break points at the t(6;9) in salivary adenoid cystic carcinoma: association with MYB-NFIB chimeric fusion, MYB expression, and clinical outcome.

    PubMed

    Mitani, Yoshitsugu; Rao, Pulivarthi H; Futreal, P Andrew; Roberts, Dianna B; Stephens, Philip J; Zhao, Yi-Jue; Zhang, Li; Mitani, Mutsumi; Weber, Randal S; Lippman, Scott M; Caulin, Carlos; El-Naggar, Adel K

    2011-11-15

    To investigate the molecular genetic heterogeneity associated with the t(6:9) in adenoid cystic carcinoma (ACC) and correlate the findings with patient clinical outcome. Multimolecular and genetic techniques complemented with massive pair-ended sequencing and single-nucleotide polymorphism array analyses were used on tumor specimens from 30 new and 52 previously analyzed fusion transcript-negative ACCs by reverse transcriptase PCR (RT-PCR). MYB mRNA expression level was determined by quantitative RT-PCR. The results of 102 tumors (30 new and 72 previously reported cases) were correlated with the clinicopathologic factors and patients' survival. The FISH analysis showed 34 of 82 (41.5%) fusion-positive tumors and molecular techniques identified fusion transcripts in 21 of the 82 (25.6%) tumors. Detailed FISH analysis of 11 out the 15 tumors with gene fusion without transcript formation showed translocation of NFIB sequences to proximal or distal sites of the MYB gene. Massive pair-end sequencing of a subset of tumors confirmed the proximal translocation to an NFIB sequence and led to the identification of a new fusion gene (NFIB-AIG1) in one of the tumors. Overall, MYB-NFIB gene fusion rate by FISH was in 52.9% whereas fusion transcript forming incidence was 38.2%. Significant statistical association between the 5' MYB transcript expression and patient survival was found. We conclude that: (i) t(6;9) results in complex genetic and molecular alterations in ACC, (ii) MYB-NFIB gene fusion may not always be associated with chimeric transcript formation, (iii) noncanonical MYB-NFIB gene fusions occur in a subset of tumors, (iv) high MYB expression correlates with worse patient survival.

  16. Novel Chromosomal Rearrangements and breakpoints at the t(6;9) in Salivary Adenoid Cystic Carcinoma: association with MYB-NFIB chimeric fusion, MYB expression, and clinical outcome

    PubMed Central

    Mitani, Yoshitsugu; Rao, Pulivarthi H.; Futreal, P. Andrew; Roberts, Dianna B.; Stephens, Philip J.; Zhao, Yi-Jue; Zhang, Li; Mitani, Mutsumi; Weber, Randal S.; Lippman, Scott M.; Caulin, Carlos; El-Naggar, Adel K.

    2011-01-01

    Objective To investigate the molecular-genetic heterogeneity associated with the t(6:9) in adenoid cystic carcinoma (ACC) and correlate the findings with patient clinical outcome. Experimental Design Multi-molecular and genetic techniques complemented with massive pair-ended sequencing and SNP array analyses were used on tumor specimens from 30 new and 52 previously RT-PCR analyzed fusion transcript negative ACCs. MYB mRNA expression level was determined by quantitative RT-PCR. The results of 102 tumors (30 new and 72 previously reported cases) were correlated with the clinicopathologic factors and patients’ survival. Results The FISH analysis showed 34/82 (41.5%) fusion positive tumors and molecular techniques identified fusion transcripts in 21 of the 82 (25.6%) tumors. Detailed FISH analysis of 11 out the 15 tumors with gene fusion without transcript formation showed translocation of NFIB sequences to proximal or distal sites of the MYB gene. Massive pair-end sequencing of a subset of tumors confirmed the proximal translocation to an NFIB sequence and led to the identification of a new fusion gene (NFIB-AIG1) in one of the tumors. Overall, MYB-NFIB gene fusion rate by FISH was in 52.9% while fusion transcript forming incidence was 38.2%. Significant statistical association between the 5′ MYB transcript expression and patient survival was found. Conclusions We conclude that: 1) t(6;9) results in a complex genetic and molecular alterations in ACC, 2) MYB-NFIB gene fusion may not always be associated with chimeric transcript formation, 3) non-canonical MYB, NFIB gene fusions occur in a subset of tumors, 4) high MYB expression correlates with worse patient survival. PMID:21976542

  17. Lymphocyte apheresis for chimeric antigen receptor T-cell manufacturing in children and young adults with leukemia and neuroblastoma.

    PubMed

    Ceppi, Francesco; Rivers, Julie; Annesley, Colleen; Pinto, Navin; Park, Julie R; Lindgren, Catherine; Mgebroff, Stephanie; Linn, Naomi; Delaney, Meghan; Gardner, Rebecca A

    2018-06-01

    The first step in the production of chimeric antigen receptor T cells is the collection of autologous T cells using apheresis technology. The procedure is technically challenging, because patients often have low leukocyte counts and are heavily pretreated with multiple lines of chemotherapy, marrow transplantation, and/or radiotherapy. Here, we report our experience of collecting T lymphocytes for chimeric antigen receptor T-cell manufacturing in pediatric and young adult patients with leukemia, non-Hodgkin lymphoma, or neuroblastoma. Apheresis procedures were performed on a COBE Spectra machine using the mononuclear cell program, with a collection target of 1 × 10 9 total mononuclear cells per kilogram. Data were collected regarding preapheresis and postapheresis blood counts, apheresis parameters, products, and adverse events. Ninety-nine patients (ages 1.3-25.7 years) and 102 apheresis events were available for analysis. Patients underwent apheresis at a variety of absolute lymphocyte cell counts, with a median absolute lymphocyte count of 944 cells/μL (range, 142-6944 cells/μL). Twenty-two patients (21.6%) had absolute lymphocyte counts less than 500 cells/μL. The mononuclear cell target was obtained in 100% of all apheresis harvests, and chimeric antigen receptor T-cell production was possible from the majority of collections (94%). Mononuclear cell collection efficiency was 65.4%, and T-lymphocyte collection efficiency was 83.4%. Ten patients (9.8%) presented with minor adverse events during the 102 apheresis procedures, with one exception of a severe allergy. Mononuclear cell apheresis for chimeric antigen receptor T-cell therapy is well tolerated and safe, and it is possible to obtain an adequate quantity of CD3+ lymphocytes for chimeric antigen receptor T-cell manufacturing in heavily pretreated patients who have low lymphocyte counts. © 2018 AABB.

  18. High-yield nontoxic gene transfer through conjugation of the CM₁₈-Tat₁₁ chimeric peptide with nanosecond electric pulses.

    PubMed

    Salomone, Fabrizio; Breton, Marie; Leray, Isabelle; Cardarelli, Francesco; Boccardi, Claudia; Bonhenry, Daniel; Tarek, Mounir; Mir, Lluis M; Beltram, Fabio

    2014-07-07

    We report a novel nontoxic, high-yield, gene delivery system based on the synergistic use of nanosecond electric pulses (NPs) and nanomolar doses of the recently introduced CM18-Tat11 chimeric peptide (sequence of KWKLFKKIGAVLKVLTTGYGRKKRRQRRR, residues 1-7 of cecropin-A, 2-12 of melittin, and 47-57 of HIV-1 Tat protein). This combined use makes it possible to drastically reduce the required CM18-Tat11 concentration and confines stable nanopore formation to vesicle membranes followed by DNA release, while no detectable perturbation of the plasma membrane is observed. Two different experimental assays are exploited to quantitatively evaluate the details of NPs and CM18-Tat11 cooperation: (i) cytofluorimetric analysis of the integrity of synthetic 1,2-dioleoyl-sn-glycero-3-phosphocholine giant unilamellar vesicles exposed to CM18-Tat11 and NPs and (ii) the in vitro transfection efficiency of a green fluorescent protein-encoding plasmid conjugated to CM18-Tat11 in the presence of NPs. Data support a model in which NPs induce membrane perturbation in the form of transient pores on all cellular membranes, while the peptide stabilizes membrane defects selectively within endosomes. Interestingly, atomistic molecular dynamics simulations show that the latter activity can be specifically attributed to the CM18 module, while Tat11 remains essential for cargo binding and vector subcellular localization. We argue that this result represents a paradigmatic example that can open the way to other targeted delivery protocols.

  19. Global Manufacturing of CAR T Cell Therapy.

    PubMed

    Levine, Bruce L; Miskin, James; Wonnacott, Keith; Keir, Christopher

    2017-03-17

    Immunotherapy using chimeric antigen receptor-modified T cells has demonstrated high response rates in patients with B cell malignancies, and chimeric antigen receptor T cell therapy is now being investigated in several hematologic and solid tumor types. Chimeric antigen receptor T cells are generated by removing T cells from a patient's blood and engineering the cells to express the chimeric antigen receptor, which reprograms the T cells to target tumor cells. As chimeric antigen receptor T cell therapy moves into later-phase clinical trials and becomes an option for more patients, compliance of the chimeric antigen receptor T cell manufacturing process with global regulatory requirements becomes a topic for extensive discussion. Additionally, the challenges of taking a chimeric antigen receptor T cell manufacturing process from a single institution to a large-scale multi-site manufacturing center must be addressed. We have anticipated such concerns in our experience with the CD19 chimeric antigen receptor T cell therapy CTL019. In this review, we discuss steps involved in the cell processing of the technology, including the use of an optimal vector for consistent cell processing, along with addressing the challenges of expanding chimeric antigen receptor T cell therapy to a global patient population.

  20. Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wogulis, Mark; Sweeney, Matthew; Heu, Tia

    The present invention relates to chimeric GH61 polypeptides having cellulolytic enhancing activity. The present invention also relates to polynucleotides encoding the chimeric GH61 polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the chimeric GH61 polypeptides.

  1. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawano, Masaaki; Morikawa, Katsuma; Suda, Tatsuya

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A{sup ⁎}02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A{sup ⁎}02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimericmore » SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. - Highlights: • We constructed chimeric SV40-VLPs carrying an influenza virus-derived CTL epitope. • Chimeric SV40-VLPs induce influenza-specific CTLs in mice without adjuvants. • Chimeric SV40-VLPs induce heterosubtypic protection against influenza A viruses. • Chimeric SV40-VLPs induce long-lasting memory CTLs. • Chimeric SV40-VLPs is a promising vaccine platform with self-adjuvant properties.« less

  2. Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein.

    PubMed Central

    Stevenson, S C; Rollence, M; Marshall-Neff, J; McClelland, A

    1997-01-01

    The adenovirus fiber protein is responsible for attachment of the virion to unidentified cell surface receptors. There are at least two distinct adenovirus fiber receptors which interact with the group B (Ad3) and group C (Ad5) adenoviruses. We have previously shown by using expressed adenovirus fiber proteins that it is possible to change the specificity of the fiber protein by exchanging the head domain with another serotype which recognizes a different receptor (S. C. Stevenson et al., J. Virol. 69:2850-2857, 1995). A chimeric fiber cDNA containing the Ad3 fiber head domain fused to the Ad5 fiber tail and shaft was incorporated into the genome of an adenovirus vector with E1 and E3 deleted encoding beta-galactosidase to generate Av9LacZ4, an adenovirus particle which contains a chimeric fiber protein. Western blot analysis of the chimeric fiber vector confirmed expression of the chimeric fiber protein and its association with the adenovirus capsid. Transduction experiments with fiber protein competitors demonstrated the altered receptor tropism of the chimeric fiber vector compared to that of the parental Av1LacZ4 vector. Transduction of a panel of human cell lines with the chimeric and parental vectors provided evidence for a different cellular distribution of the Ad5 and Ad3 receptors. Three cell lines (THP-1, MRC-5, and FaDu) were more efficiently transduced by the vector containing the Ad3 fiber head than by the Ad5 fiber vector. In contrast, human coronary artery endothelial cells were transduced more readily with the vector containing the Ad5 fiber than with the chimeric fiber vector. HeLa and human umbilical vein endothelial cells were transduced at equivalent levels compared with human diploid fibroblasts, which were refractory to transduction with both vectors. These results provide evidence for the differential expression of the Ad5 and Ad3 receptors on human cell lines derived from clinically relevant target tissues. Furthermore, we show that exchange of the fiber head domain is a viable approach to the production of adenovirus vectors with cell-type-selective transduction properties. It may be possible to extend this approach to the use of ligands for a range of different cellular receptors in order to target gene transfer to specific cell types at the level of transduction. PMID:9151872

  3. A new CYP21A1P/CYP21A2 chimeric gene identified in an Italian woman suffering from classical congenital adrenal hyperplasia form

    PubMed Central

    Concolino, Paola; Mello, Enrica; Minucci, Angelo; Giardina, Emiliano; Zuppi, Cecilia; Toscano, Vincenzo; Capoluongo, Ettore

    2009-01-01

    Background More than 90% of Congenital Adrenal Hyperplasia (CAH) cases are associated with mutations in the 21-hydroxylase gene (CYP21A2) in the HLA class III area on the short arm of chromosome 6p21.3. In this region, a 30 kb deletion produces a non functional chimeric gene with its 5' and 3' ends corresponding to CYP21A1P pseudogene and CYP21A2, respectively. To date, five different CYP21A1P/CYP21A2 chimeric genes have been found and characterized in recent studies. In this paper, we describe a new CYP21A1P/CYP21A2 chimera (CH-6) found in an Italian CAH patient. Methods Southern blot analysis and CYP21A2 sequencing were performed on the patient. In addition, in order to isolate the new CH-6 chimeric gene, two different strategies were used. Results The CYP21A2 sequencing analysis showed that the patient was homozygote for the g.655C/A>G mutation and heterozygote for the p.P30L missense mutation. In addition, the promoter sequence revealed the presence, in heterozygosis, of 13 SNPs generally produced by microconversion events between gene and pseudogene. Southern blot analysis showed that the woman was heterozygote for the classic 30-kb deletion producing a new CYP21A1P/CYP21A2 chimeric gene (CH-6). The hybrid junction site was located between the end of intron 2 pseudogene, after the g.656C/A>G mutation, and the beginning of exon 3, before the 8 bp deletion. Consequently, CH-6 carries three mutations: the weak pseudogene promoter region, the p.P30L and the g.655C/A>G splice mutation. Conclusion We describe a new CYP21A1P/CYP21A2 chimera (CH-6), associated with the HLA-B15, DR13 haplotype, in a young Italian CAH patient. PMID:19624807

  4. Chimeric enzymes with improved cellulase activities

    DOEpatents

    Xu, Qi; Baker, John O; Himmel, Michael E

    2015-03-31

    Nucleic acid molecules encoding chimeric cellulase polypeptides that exhibit improved cellulase activities are disclosed herein. The chimeric cellulase polypeptides encoded by these nucleic acids and methods to produce the cellulases are also described, along with methods of using chimeric cellulases for the conversion of cellulose to sugars such as glucose.

  5. Recombinant constructs of Borrelia burgdorferi

    DOEpatents

    Dattwyler, Raymond J.; Gomes-Solecki, Maria J. C.; Luft, Benjamin J.; Dunn, John J.

    2007-02-20

    Novel chimeric nucleic acids, encoding chimeric Borrelia proteins comprising OspC or an antigenic fragment thereof and OspA or an antigenic fragment thereof, are disclosed. Chimeric proteins encoded by the nucleic acid sequences are also disclosed. The chimeric proteins are useful as vaccine immunogens against Lyme borreliosis, as well as for immunodiagnostic reagents.

  6. Protein-Protein Interactions, Not Substrate Recognition, Dominate the Turnover of Chimeric Assembly Line Polyketide Synthases*

    PubMed Central

    Klaus, Maja; Ostrowski, Matthew P.; Austerjost, Jonas; Robbins, Thomas; Lowry, Brian; Cane, David E.; Khosla, Chaitan

    2016-01-01

    The potential for recombining intact polyketide synthase (PKS) modules has been extensively explored. Both enzyme-substrate and protein-protein interactions influence chimeric PKS activity, but their relative contributions are unclear. We now address this issue by studying a library of 11 bimodular and 8 trimodular chimeric PKSs harboring modules from the erythromycin, rifamycin, and rapamycin synthases. Although many chimeras yielded detectable products, nearly all had specific activities below 10% of the reference natural PKSs. Analysis of selected bimodular chimeras, each with the same upstream module, revealed that turnover correlated with the efficiency of intermodular chain translocation. Mutation of the acyl carrier protein (ACP) domain of the upstream module in one chimera at a residue predicted to influence ketosynthase-ACP recognition led to improved turnover. In contrast, replacement of the ketoreductase domain of the upstream module by a paralog that produced the enantiomeric ACP-bound diketide caused no changes in processing rates for each of six heterologous downstream modules compared with those of the native diketide. Taken together, these results demonstrate that protein-protein interactions play a larger role than enzyme-substrate recognition in the evolution or design of catalytically efficient chimeric PKSs. PMID:27246853

  7. Hotspot Selective Preference of the Chimeric Sequences Formed in Multiple Displacement Amplification.

    PubMed

    Tu, Jing; Lu, Na; Duan, Mengqin; Huang, Mengting; Chen, Liang; Li, Junji; Guo, Jing; Lu, Zuhong

    2017-02-24

    Multiple displacement amplification (MDA) is considered to be a conventional approach to comprehensive amplification from low input DNA. The chimeric reads generated in MDA lead to severe disruption in some studies, including those focusing on heterogeneity, structural variation, and genetic recombination. Meanwhile, the generation of by-products gives a new approach to gain insights into the reaction process of φ29 polymerase. Here, we analyzed 36.7 million chimeras and screened 196 billion chimeric hotspots in the human genome, as well as evaluating the hotspot selective preference of chimeras. No significant preference was captured in the distributions of chimeras and hotspots among chromosomes. Hotspots with overlaps for 12-13 nucleotides (nt) were most likely to be selected as templates in chimera generation. Meanwhile, a regularly selective preference was noticed in overlap GC content. The preferences in overlap length and GC content was shown to be pertinent to the sequence denaturation temperature, which pointed out the optimization direction for reducing chimeras. Distance preference between two segments of chimeras was 80-280 nt. The analysis is beneficial for reducing the chimeras in MDA, and the characterization of MDA chimeras is helpful in distinguishing MDA chimeras from chimeric sequences caused by disease.

  8. Hotspot Selective Preference of the Chimeric Sequences Formed in Multiple Displacement Amplification

    PubMed Central

    Tu, Jing; Lu, Na; Duan, Mengqin; Huang, Mengting; Chen, Liang; Li, Junji; Guo, Jing; Lu, Zuhong

    2017-01-01

    Multiple displacement amplification (MDA) is considered to be a conventional approach to comprehensive amplification from low input DNA. The chimeric reads generated in MDA lead to severe disruption in some studies, including those focusing on heterogeneity, structural variation, and genetic recombination. Meanwhile, the generation of by-products gives a new approach to gain insights into the reaction process of φ29 polymerase. Here, we analyzed 36.7 million chimeras and screened 196 billion chimeric hotspots in the human genome, as well as evaluating the hotspot selective preference of chimeras. No significant preference was captured in the distributions of chimeras and hotspots among chromosomes. Hotspots with overlaps for 12–13 nucleotides (nt) were most likely to be selected as templates in chimera generation. Meanwhile, a regularly selective preference was noticed in overlap GC content. The preferences in overlap length and GC content was shown to be pertinent to the sequence denaturation temperature, which pointed out the optimization direction for reducing chimeras. Distance preference between two segments of chimeras was 80–280 nt. The analysis is beneficial for reducing the chimeras in MDA, and the characterization of MDA chimeras is helpful in distinguishing MDA chimeras from chimeric sequences caused by disease. PMID:28245591

  9. A Replication-incompetent Rift Valley Fever Vaccine: Chimeric Virus-like Particles Protect Mice and Rats Against Lethal Challenge

    PubMed Central

    Mandell, Robert B.; Koukuntla, Ramesh; Mogler, Laura J. K.; Carzoli, Andrea K.; Freiberg, Alexander N.; Holbrook, Michael R.; Martin, Brian K.; Staplin, William R.; Vahanian, Nicholas N.; Link, Charles J.; Flick, Ramon

    2009-01-01

    Virus-like particles (VLPs) present viral antigens in a native conformation and are effectively recognized by the immune system and therefore are considered as suitable and safe vaccine candidates against many viral diseases. Here we demonstrate that chimeric VLPs containing Rift Valley fever virus (RVFV) glycoproteins GN and GC, nucleoprotein N and the gag protein of Moloney murine leukemia virus represent an effective vaccine candidate against Rift Valley fever, a deadly disease in humans and livestock. Long-lasting humoral and cellular immune responses are demonstrated in a mouse model by the analysis of neutralizing antibody titers and cytokine secretion profiles. Vaccine efficacy studies were performed in mouse and rat lethal challenge models resulting in high protection rates. Taken together, these results demonstrate that replication-incompetent chimeric RVF VLPs are an efficient RVFV vaccine candidate. PMID:19932911

  10. Prenatal tolerance induction: relationship between cell dose, marrow T-cells, chimerism, and tolerance.

    PubMed

    Chen, Jeng-Chang; Chang, Ming-Ling; Huang, Shiu-Feng; Chang, Pei-Yeh; Muench, Marcus O; Fu, Ren-Huei; Ou, Liang-Shiou; Kuo, Ming-Ling

    2008-01-01

    It was reported that the dose of self-antigens can determine the consequence of deletional tolerance and donor T cells are critical for tolerance induction in mixed chimeras. This study aimed at assessing the effect of cell doses and marrow T cells on engraftment and tolerance induction after prenatal bone marrow transplantation. Intraperitoneal cell transplantation was performed in FVB/N (H-2K(q)) mice at gestational day 14 with escalating doses of adult C57BL/6 (H-2K(b)) marrows. Peripheral chimerism was examined postnatally by flow cytometry and tolerance was tested by skin transplantation. Transplantation of light-density marrow cells showed a dose response. High-level chimerism emerged with a threshold dose of 5.0 x 10(6) and host leukocytes could be nearly replaced at a dose of 7.5-10.0 x 10(6). High-dose transplants conferred a steady long-lasting donor-specific tolerance but were accompanied by >50% incidence of graft-versus-host disease. Depletion of marrow T cells lessened graft-versus-host disease to the detriment of engraftment. With low-level chimerism, tolerance was a graded phenomenon dependent upon the level of chimerism. Durable chimerism within 6 months required a threshold of > or = 2% chimerism at 1 month of age and predicted a 50% chance of long-term tolerance, whereas transient chimerism (<2%) only caused hyporesponsiveness to the donor. Tolerance induction did not succeed without peripheral chimerism even if a large amount of injected donor cells persisted in the peritoneum. Neither did an increase in cell doses or donor T-cell contents benefit skin graft survivals unless it had substantially improved peripheral chimerism. Thus, peripheral chimerism level can be a simple and straightforward test to predict the degree of prenatal immune tolerance.

  11. Generating chimeric mice from embryonic stem cells via vial coculturing or hypertonic microinjection.

    PubMed

    Lee, Kun-Hsiung

    2014-01-01

    The generation of a fertile embryonic stem cell (ESC)-derived or F0 (100 % coat color chimerism) mice is the final criterion in proving that the ESC is truly pluripotent. Many methods have been developed to produce chimeric mice. To date, the most popular methods for generating chimeric embryos is well sandwich aggregation between zona pellucida (ZP) removed (denuded) 2.5-day post-coitum (dpc) embryos and ESC clumps, or direct microinjection of ESCs into the cavity (blastocoel) of 3.5-dpc blastocysts. However, due to systemic limitations and the disadvantages of conventional microinjection, aggregation, and coculturing, two novel methods (vial coculturing and hypertonic microinjection) were developed in recent years at my laboratory.Coculturing 2.5-dpc denuded embryos with ESCs in 1.7-mL vials for ~3 h generates chimeras that have significantly high levels of chimerism (including 100 % coat color chimerism) and germline transmission. This method has significantly fewer instrumental and technological limitations than existing methods, and is an efficient, simple, inexpensive, and reproducible method for "mass production" of chimeric embryos. For laboratories without a microinjection system, this is the method of choice for generating chimeric embryos. Microinjecting ESCs into a subzonal space of 2.5-dpc embryos can generate germline-transmitted chimeras including 100 % coat color chimerism. However, this method is adopted rarely due to the very small and tight space between ZP and blastomeres. Using a laser pulse or Piezo-driven instrument/device to help introduce ESCs into the subzonal space of 2.5-dpc embryos demonstrates the superior efficiency in generating ESC-derived (F0) chimeras. Unfortunately, due to the need for an expensive instrument/device and extra fine skill, not many studies have used either method. Recently, ESCs injected into the large subzonal space of 2.5-dpc embryos in an injection medium containing 0.2-0.3 M sucrose very efficiently generated viable, healthy, and fertile chimeric mice with 100 % coat color chimerism.Both vial coculture and hypertonic microinjection methods are useful and effective alternatives for producing germline chimeric or F0 mice efficiently and reliably. Furthermore, both novel methods are also good for induced pluripotent stem cells (iPSCs) to generate chimeric embryos.

  12. Regulation of expression of two LY-6 family genes by intron retention and transcription induced chimerism

    PubMed Central

    Calvanese, Vincenzo; Mallya, Meera; Campbell, R Duncan; Aguado, Begoña

    2008-01-01

    Background Regulation of the expression of particular genes can rely on mechanisms that are different from classical transcriptional and translational control. The LY6G5B and LY6G6D genes encode LY-6 domain proteins, whose expression seems to be regulated in an original fashion, consisting of an intron retention event which generates, through an early premature stop codon, a non-coding transcript, preventing expression in most cell lines and tissues. Results The MHC LY-6 non-coding transcripts have shown to be stable and very abundant in the cell, and not subject to Nonsense Mediated Decay (NMD). This retention event appears not to be solely dependent on intron features, because in the case of LY6G5B, when the intron is inserted in the artificial context of a luciferase expression plasmid, it is fully spliced but strongly stabilises the resulting luciferase transcript. In addition, by quantitative PCR we found that the retained and spliced forms are differentially expressed in tissues indicating an active regulation of the non-coding transcript. EST database analysis revealed that these genes have an alternative expression pathway with the formation of Transcription Induced Chimeras (TIC). This data was confirmed by RT-PCR, revealing the presence of different transcripts that would encode the chimeric proteins CSNKβ-LY6G5B and G6F-LY6G6D, in which the LY-6 domain would join to a kinase domain and an Ig-like domain, respectively. Conclusion In conclusion, the LY6G5B and LY6G6D intron-retained transcripts are not subjected to NMD and are more abundant than the properly spliced forms. In addition, these genes form chimeric transcripts with their neighbouring same orientation 5' genes. Of interest is the fact that the 5' genes (CSNKβ or G6F) undergo differential splicing only in the context of the chimera (CSNKβ-LY6G5B or G6F-LY6G6C) and not on their own. PMID:18817541

  13. Quantitative and Qualitative Involvement of P3N-PIPO in Overcoming Recessive Resistance against Clover Yellow Vein Virus in Pea Carrying the cyv1 Gene

    PubMed Central

    Choi, Sun Hee; Hagiwara-Komoda, Yuka; Atsumi, Go; Shimada, Ryoko; Hisa, Yusuke; Naito, Satoshi

    2013-01-01

    In pea carrying cyv1, a recessive gene for resistance to Clover yellow vein virus (ClYVV), ClYVV isolate Cl-no30 was restricted to the initially infected cells, whereas isolate 90-1 Br2 overcame this resistance. We mapped the region responsible for breaking of cyv1-mediated resistance by examining infection of cyv1 pea with chimeric viruses constructed from parts of Cl-no30 and 90-1 Br2. The breaking of resistance was attributed to the P3 cistron, which is known to produce two proteins: P3, from the main open reading frame (ORF), and P3N-PIPO, which has the N-terminal part of P3 fused to amino acids encoded by a small open reading frame (ORF) called PIPO in the +2 reading frame. We introduced point mutations that were synonymous with respect to the P3 protein but nonsynonymous with respect to the P3N-PIPO protein, and vice versa, into the chimeric viruses. Infection of plants with these mutant viruses revealed that both P3 and P3N-PIPO were involved in overcoming cyv1-mediated resistance. Moreover, P3N-PIPO quantitatively affected the virulence of Cl-no30 in cyv1 pea. Additional expression in trans of the P3N-PIPO derived from Cl-no30, using White clover mosaic virus as a vector, enabled Cl-no30 to move to systemic leaves in cyv1 pea. Susceptible pea plants infected with chimeric ClYVV possessing the P3 cistron of 90-1 Br2, and which were therefore virulent toward cyv1 pea, accumulated more P3N-PIPO than did those infected with Cl-no30, suggesting that the higher level of P3N-PIPO in infected cells contributed to the breaking of resistance by 90-1 Br2. This is the first report showing that P3N-PIPO is a virulence determinant in plants resistant to a potyvirus. PMID:23616656

  14. Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing

    PubMed Central

    Kannan, Kalpana; Wang, Liguo; Wang, Jianghua; Ittmann, Michael M.; Li, Wei; Yen, Laising

    2011-01-01

    Transcription-induced chimeric RNAs, possessing sequences from different genes, are expected to increase the proteomic diversity through chimeric proteins or altered regulation. Despite their importance, few studies have focused on chimeric RNAs especially regarding their presence/roles in human cancers. By deep sequencing the transcriptome of 20 human prostate cancer and 10 matched benign prostate tissues, we obtained 1.3 billion sequence reads, which led to the identification of 2,369 chimeric RNA candidates. Chimeric RNAs occurred in significantly higher frequency in cancer than in matched benign samples. Experimental investigation of a selected 46 set led to the confirmation of 32 chimeric RNAs, of which 27 were highly recurrent and previously undescribed in prostate cancer. Importantly, a subset of these chimeras was present in prostate cancer cell lines, but not detectable in primary human prostate epithelium cells, implying their associations with cancer. These chimeras contain discernable 5′ and 3′ splice sites at the RNA junction, indicating that their formation is mediated by splicing. Their presence is also largely independent of the expression of parental genes, suggesting that other factors are involved in their production and regulation. One chimera, TMEM79-SMG5, is highly differentially expressed in human cancer samples and therefore a potential biomarker. The prevalence of chimeric RNAs may allow the limited number of human genes to encode a substantially larger number of RNAs and proteins, forming an additional layer of cellular complexity. Together, our results suggest that chimeric RNAs are widespread, and increased chimeric RNA events could represent a unique class of molecular alteration in cancer. PMID:21571633

  15. Busulfan-conditioned bone marrow transplantation results in high-level allogeneic chimerism in mice made tolerant by in utero hematopoietic cell transplantation.

    PubMed

    Ashizuka, Shuichi; Peranteau, William H; Hayashi, Satoshi; Flake, Alan W

    2006-03-01

    In utero hematopoietic cell transplantation (IUHCT) is a non-ablative approach that achieves mixed allogeneic chimerism and donor-specific tolerance. However, clinical application of IUHCT has been limited by minimal engraftment. We have previously demonstrated in the murine model that low-level allogeneic chimerism achieved by IUHCT can be enhanced to near-complete donor chimerism by postnatal minimally myeloablative total body irradiation (TBI) followed by same-donor bone marrow transplantation. Because of concerns of toxicity related to even low-dose TBI in early life, we wondered if a potentially less toxic strategy utilizing a single myelosuppressive agent, Busulfan (BU), would provide similar enhancement of engraftment. In this study, mixed chimerism was created by IUHCT in a fully allogeneic strain combination. After birth, chimeric mice were conditioned with BU followed by transplantation of bone marrow cells congenic to the prenatal donor. We demonstrate that: 1) low-level chimerism after IUHCT can be converted to high-level chimerism by this protocol; 2) enhancement of chimerism is BU dose-dependent; and 3) BU reduces the proliferative potential of hematopoietic progenitor cells thus conferring a competitive advantage to the non-BU-treated postnatal donor cells. This study confirms the potential of IUHCT for facilitation of minimally toxic postnatal regimens to achieve therapeutic levels of allogeneic engraftment.

  16. Identification of Metabolism and Excretion Differences of Procymidone between Rats and Humans Using Chimeric Mice: Implications for Differential Developmental Toxicity.

    PubMed

    Abe, Jun; Tomigahara, Yoshitaka; Tarui, Hirokazu; Omori, Rie; Kawamura, Satoshi

    2018-02-28

    A metabolite of procymidone, hydroxylated-PCM, causes rat-specific developmental toxicity due to higher exposure to it in rats than in rabbits or monkeys. When procymidone was administered to chimeric mice with rat or human hepatocytes, the plasma level of hydroxylated-PCM was higher than that of procymidone in rat chimeric mice, and the metabolic profile of procymidone in intact rats was well reproduced in rat chimeric mice. In human chimeric mice, the plasma level of hydroxylated-PCM was less, resulting in a much lower exposure. The main excretion route of hydroxylated-PCM-glucuronide was bile (the point that hydroxylated-PCM enters the enterohepatic circulation) in rat chimeric mice, and urine in human chimeric mice. These data suggest that humans, in contrast to rats, extensively form the glucuronide and excrete it in urine, as do rabbits and monkeys. Overall, procymidone's potential for causing teratogenicity in humans must be low compared to that in rats.

  17. A recombinant chimeric protein composed of human and mice-specific CD4+ and CD8+ T-cell epitopes protects against visceral leishmaniasis.

    PubMed

    Martins, V T; Duarte, M C; Lage, D P; Costa, L E; Carvalho, A M R S; Mendes, T A O; Roatt, B M; Menezes-Souza, D; Soto, M; Coelho, E A F

    2017-01-01

    In this study, a recombinant chimeric protein (RCP), which was composed of specific CD4 + and CD8 + T-cell epitopes to murine and human haplotypes, was evaluated as an immunogen against Leishmania infantum infection in a murine model. BALB/c mice received saline were immunized with saponin or with RCP with or without an adjuvant. The results showed that RCP/saponin-vaccinated mice presented significantly higher levels of antileishmanial IFN-γ, IL-12 and GM-CSF before and after challenge, which were associated with the reduction of IL-4 and IL-10 mediated responses. These animals showed significant reductions in the parasite burden in all evaluated organs, when both limiting dilution and quantitative real-time PCR techniques were used. In addition, the protected animals presented higher levels of parasite-specific nitrite, as well as the presence of anti-Leishmania IgG2a isotype antibodies. In conclusion, the RCP/saponin vaccine could be considered as a prophylactic alternative to prevent against VL. © 2016 John Wiley & Sons Ltd.

  18. Chimeric OspA genes, proteins and methods of use thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, Brian A.; Livey, Ian; O'Rourke, Maria

    The invention relates to the development of chimeric OspA molecules for use in a new Lyme vaccine. More specifically, the chimeric OspA molecules comprise the proximal portion from one OspA serotype, together with the distal portion from another OspA serotype, while retaining antigenic properties of both of the parent polypeptides. The chimeric OspA molecules are delivered alone or in combination to provide protection against a variety of Borrelia genospecies. The invention also provides methods for administering the chimeric OspA molecules to a subject in the prevention and treatment of Lyme disease or borreliosis.

  19. Apoptosis induced by the myelodysplastic syndrome-associated NPM-MLF1 chimeric protein.

    PubMed

    Yoneda-Kato, N; Fukuhara, S; Kato, J

    1999-06-24

    The NPM-MLF1 chimeric protein is produced by the t(3;5)(q25.1;q34) chromosomal translocation, which is associated with myelodysplastic syndrome (MDS) prior to progression into acute myeloid leukemia (AML). Here we report that K562 human leukemia cells ectopically expressing NPM-MLF1, but not those with wild-type MLF1, were gradually eliminated from the culture by undergoing apoptosis. NIH3T3 mouse fibroblasts engineered to overexpress NPM-MLF1 grew normally but serum deprivation triggered apoptotic cell death with slower kinetics than did other well-known apoptotic inducers such as c-Myc or E2F-1. Quantitative analysis of apoptotic induction confirmed that, neither NPM nor MLF1, but the NPM-MLF1 fusion protein was able to induce apoptosis. Analyses using a variety of deletion mutants of NPM-MLF1 revealed that induction of apoptosis required the N-terminal domain of MLF1 and the NPM domain containing nuclear localization signal and that removal of the NPM dimerization domain markedly impaired the ability to induce apoptosis. Co-expression of Bcl-2 rescued NIH3T3 fibroblasts from NPM-MLF1-mediated cell death without affecting the expression level or the subcellular localization of NPM-MLF1 and enabled cells to progress into S phase in low serum. These findings provide an NPM-MLF1-mediated novel mechanism of apoptotic induction and imply that NPM-MLFI in collaboration with anti-apoptotic oncoproteins may play an important role in multi-step progression from MDS to AML.

  20. Microarray hybridization for assessment of the genetic stability of chimeric West Nile/dengue 4 virus.

    PubMed

    Laassri, Majid; Bidzhieva, Bella; Speicher, James; Pletnev, Alexander G; Chumakov, Konstantin

    2011-05-01

    Genetic stability is an important characteristic of live viral vaccines because an accumulation of mutants can cause reversion to a virulent phenotype as well as a loss of immunogenic properties. This study was aimed at evaluating the genetic stability of a live attenuated West Nile (WN) virus vaccine candidate that was generated by replacing the pre-membrane and envelope protein genes of dengue 4 virus with those from WN. Chimeric virus was serially propagated in Vero, SH-SY5Y human neuroblastoma and HeLa cells and screened for point mutations using hybridization with microarrays of overlapping oligonucleotide probes covering the entire genome. The analysis revealed several spontaneous mutations that led to amino acid changes, most of which were located in the envelope (E) and non-structural NS4A, NS4B, and NS5 proteins. Viruses passaged in Vero and SH-SY5Y cells shared two common mutations: G(2337) C (Met(457) Ile) in the E gene and A(6751) G (Lys(125) Arg) in the NS4A gene. Quantitative assessment of the contents of these mutants in viral stocks indicated that they accumulated independently with different kinetics during propagation in cell cultures. Mutant viruses grew better in Vero cells compared to the parental virus, suggesting that they have a higher fitness. When tested in newborn mice, the cell culture-passaged viruses did not exhibit increased neurovirulence. The approach described in this article could be useful for monitoring the molecular consistency and quality control of vaccine strains. Copyright © 2011 Wiley-Liss, Inc.

  1. Microarray Hybridization for Assessment of the Genetic Stability of Chimeric West Nile/Dengue 4 Virus

    PubMed Central

    Laassri, Majid; Bidzhieva, Bella; Speicher, James; Pletnev, Alexander G.; Chumakov, Konstantin

    2012-01-01

    Genetic stability is an important characteristic of live viral vaccines because an accumulation of mutants can cause reversion to a virulent phenotype as well as a loss of immunogenic properties. This study was aimed at evaluating the genetic stability of a live attenuated West Nile (WN) virus vaccine candidate that was generated by replacing the pre-membrane and envelope protein genes of dengue 4 virus with those from WN. Chimeric virus was serially propagated in Vero, SH-SY5Y human neuroblastoma and HeLa cells and screened for point mutations using hybridization with microarrays of overlapping oligonucleotide probes covering the entire genome. The analysis revealed several spontaneous mutations that led to amino acid changes, most of which were located in the envelope (E) and non-structural NS4A, NS4B, and NS5 proteins. Viruses passaged in Vero and SH-SY5Y cells shared two common mutations: G2337C (Met457Ile) in the E gene and A6751G (Lys125Arg) in the NS4A gene. Quantitative assessment of the contents of these mutants in viral stocks indicated that they accumulated independently with different kinetics during propagation in cell cultures. Mutant viruses grew better in Vero cells compared to the parental virus, suggesting that they have a higher fitness. When tested in newborn mice, the cell culture-passaged viruses did not exhibit increased neurovirulence. The approach described in this paper could be useful for monitoring the molecular consistency and quality control of vaccine strains. PMID:21360544

  2. Establishment of Donor Chimerism Using Allogeneic Bone Marrow with AMP Cell Co-infusion

    DTIC Science & Technology

    2016-09-01

    specific immunosuppression. Induction of tolerance to the CTA is the ideal solution. Combined mixed allogeneic chimerism induction and kidney ...transplantation has been shown to induce robust tolerance to the kidney allograft despite transient mixed chimerism in non-human primates and humans...solution. Mixed chimerism induction via hematopoietic cell transplantation (HCT) has been shown to facilitate tolerance induction to kidney allografts

  3. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass

    PubMed Central

    Cen, Huifang; Ye, Wenxing; Liu, Yanrong; Li, Dayong; Wang, Kexin; Zhang, Wanjun

    2016-01-01

    The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement. PMID:27251327

  4. Interaction analysis of chimeric metal-binding green fluorescent protein and artificial solid-supported lipid membrane by quartz crystal microbalance and atomic force microscopy.

    PubMed

    Prachayasittikul, Virapong; Isarankura Na Ayudhya, Chartchalerm; Hilterhaus, Lutz; Hinz, Andreas; Tantimongcolwat, Tanawut; Galla, Hans-Joachim

    2005-02-04

    Non-specific adsorption and specific interaction between a chimeric green fluorescent protein (GFP) carrying metal-binding region and the immobilized zinc ions on artificial solid-supported lipid membranes was investigated using the quartz crystal microbalance technique and the atomic force microscopy (AFM). Supported lipid bilayer, composed of octanethiol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-[N-(5-amino-1-carboxypentyl iminodiacetic acid)succinyl] (NTA-DOGS)-Zn2+, was formed on the gold electrode of quartz resonator (5 MHz). Binding of the chimeric GFP to zinc ions resulted in a rapid decrease of resonance frequency. Reversibility of the process was demonstrated via the removal of metal ions by EDTA. Nanoscale structural orientation of the chimeric GFP on the membrane was imaged by AFM. Association constant of the specific binding to metal ions was 2- to 3-fold higher than that of the non-specific adsorption, which was caused by the fluidization effect of the metal-chelating lipid molecules as well as the steric hindrance effect. This infers a possibility for a further development of biofunctionalized membrane. However, maximization is needed in order to attain closer advancement to a membrane-based sensor device.

  5. Ligand-independent Dimer Formation of Epidermal Growth Factor Receptor (EGFR) Is a Step Separable from Ligand-induced EGFR Signaling

    PubMed Central

    Yu, Xiaochun; Sharma, Kailash D.; Takahashi, Tsuyoshi; Iwamoto, Ryo; Mekada, Eisuke

    2002-01-01

    Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between 835Ala and 918Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events. PMID:12134089

  6. Immunization with a novel chimeric peptide representing B and T cell epitopes from HER2 extracellular domain (HER2 ECD) for breast cancer.

    PubMed

    Mahdavi, Manijeh; Keyhanfar, Mehrnaz; Jafarian, Abbas; Mohabatkar, Hassan; Rabbani, Mohammad

    2014-12-01

    Because of direct stimulating immune system against disease, vaccination or active immunotherapy is preferable compared to passive immunotherapy. For this purpose, a newly designed chimeric peptide containing epitopes for both B and T cells from HER2 ECD subdomain III was proposed. To evaluate the effects of the active immunization, a discontinuous B cell epitope peptide was selected based on average antigenicity by bioinformatics analysis. The selected peptide was collinearly synthesized as a chimera with a T helper epitope from the protein sequence of measles virus fusion (208-302) using the GPSL linker. Three mice were immunized with the chimeric peptide. Reactive antibodies with HER2 protein in ELISA and immunofluorescence assays with no cross-reactivity were generated. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay indicated that the anti-peptide sera had inhibitory effects on proliferation of SK-BR-3 cells. Hence, the newly designed, discontinuous chimeric peptide representing B and T cell epitopes from subdomain III of HER2-ECD can form the basis for future vaccines design, where these data can be applied for monoclonal antibody production targeting the distinct epitope of HER2 receptor compared to the two broadly used anti-HER2 monoclonal antibodies, Herceptin and pertuzumab.

  7. Stability of Chimerism in Non-Obese Diabetic Mice Achieved By Rapid T Cell Depletion Is Associated With High Levels of Donor Cells Very Early After Transplant.

    PubMed

    Lin, Jiaxin; Chan, William F N; Boon, Louis; Anderson, Colin C

    2018-01-01

    Stable mixed hematopoietic chimerism is a robust method for inducing donor-specific tolerance with the potential to prevent rejection of donor islets in recipients with autoimmune type-1 diabetes. However, with reduced intensity conditioning, fully allogeneic chimerism in a tolerance resistant autoimmune-prone non-obese diabetic (NOD) recipient has rarely been successful. In this setting, successful multilineage chimerism has required either partial major histocompatability complex matching, mega doses of bone marrow, or conditioning approaches that are not currently clinically feasible. Irradiation free protocols with moderate bone marrow doses have not generated full tolerance; donor skin grafts were rejected. We tested whether more efficient recipient T cell depletion would generate a more robust tolerance. We show that a combination of donor-specific transfusion-cyclophosphamide and multiple T cell depleting antibodies could induce stable high levels of fully allogeneic chimerism in NOD recipients. Less effective T cell depletion was associated with instability of chimerism. Stable chimeras appeared fully donor-specific tolerant, with clonal deletion of allospecific T cells and acceptance of donor skin grafts, while recovering substantial immunocompetence. The loss of chimerism months after transplant was significantly associated with a lower level of chimerism and donor T cells within the first 2 weeks after transplant. Thus, rapid and robust recipient T cell depletion allows for stable high levels of fully allogeneic chimerism and robust donor-specific tolerance in the stringent NOD model while using a clinically feasible protocol. In addition, these findings open the possibility of identifying recipients whose chimerism will later fail, stratifying patients for early intervention.

  8. Pooled assembly of marine metagenomic datasets: enriching annotation through chimerism.

    PubMed

    Magasin, Jonathan D; Gerloff, Dietlind L

    2015-02-01

    Despite advances in high-throughput sequencing, marine metagenomic samples remain largely opaque. A typical sample contains billions of microbial organisms from thousands of genomes and quadrillions of DNA base pairs. Its derived metagenomic dataset underrepresents this complexity by orders of magnitude because of the sparseness and shortness of sequencing reads. Read shortness and sequencing errors pose a major challenge to accurate species and functional annotation. This includes distinguishing known from novel species. Often the majority of reads cannot be annotated and thus cannot help our interpretation of the sample. Here, we demonstrate quantitatively how careful assembly of marine metagenomic reads within, but also across, datasets can alleviate this problem. For 10 simulated datasets, each with species complexity modeled on a real counterpart, chimerism remained within the same species for most contigs (97%). For 42 real pyrosequencing ('454') datasets, assembly increased the proportion of annotated reads, and even more so when datasets were pooled, by on average 1.6% (max 6.6%) for species, 9.0% (max 28.7%) for Pfam protein domains and 9.4% (max 22.9%) for PANTHER gene families. Our results outline exciting prospects for data sharing in the metagenomics community. While chimeric sequences should be avoided in other areas of metagenomics (e.g. biodiversity analyses), conservative pooled assembly is advantageous for annotation specificity and sensitivity. Intriguingly, our experiment also found potential prospects for (low-cost) discovery of new species in 'old' data. dgerloff@ffame.org Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Establishment of donor Chimerism Using Allogeneic Bone Marrow with AMP Cell Co-infusion

    DTIC Science & Technology

    2017-09-01

    the ideal solution. Combined mixed allogeneic chimerism induction and kidney transplantation has been shown to induce robust tolerance to the kidney ...induction to kidney allografts in non-human primates and humans despite the transience of donor chimerism. However, evidence indicates that durable mixed...chimerism may be required for tolerance induction to tissues or organs other than kidney . Amnion-derived multipotent progenitor (AMP) cells possess

  10. [Biological characteristics of a chimeric rabies virus expressing canine parvovirus VP2 protein].

    PubMed

    Niu, Xue-Feng; Liu, Xiao-Hui; Sun, Zhao-Jin; Shi, He-He; Chen, Jing; Jiang, Bido; Sun, Jing-Chen; Guo, Xiao-Feng

    2009-09-01

    To obtain a bivalence vaccine against canine rabies virus and canine parvovirus, a chimeric rabies virus expressing canine parvovirus VP2 protein was generated by the technique of reverse genetics. It was shown that the chimeric virus designated as HEP-Flury (VP2) grew well on BHK-21 cells and the VP2 gene could still be stably expressed after ten passages on BHK-21 cells. Experiments on the mice immunized with the chimeric virus HEP-Flury (VP2) demonstrated that specific antibodies against rabies virus and canine parvovirus were induced in immunized mice after vaccination with the live chimeric virus.

  11. Thionin-D4E1 chimeric protein protects plants against bacterial infections

    DOEpatents

    Stover, Eddie W; Gupta, Goutam; Hao, Guixia

    2017-08-08

    The generation of a chimeric protein containing a first domain encoding either a pro-thionon or thionin, a second domain encoding D4E1 or pro-D4E1, and a third domain encoding a peptide linker located between the first domain and second domain is described. Either the first domain or the second domain is located at the amino terminal of the chimeric protein and the other domain (second domain or first domain, respectively) is located at the carboxyl terminal. The chimeric protein has antibacterial activity. Genetically altered plants and their progeny expressing a polynucleotide encoding the chimeric protein resist diseases caused by bacteria.

  12. Production and immunogenicity of chimeric virus-like particles containing the spike glycoprotein of infectious bronchitis virus

    PubMed Central

    Lv, Lishan; Li, Xiaoming; Liu, Genmei; Li, Ran; Liu, Qiliang; Shen, Huifang; Wang, Wei; Xue, Chunyi

    2014-01-01

    Infectious bronchitis virus (IBV) poses a severe threat to the poultry industry and causes heavy economic losses worldwide. Vaccination is the most effective method of preventing infection and controlling the spread of IBV, but currently available inactivated and attenuated virus vaccines have some disadvantages. We developed a chimeric virus-like particle (VLP)-based candidate vaccine for IBV protection. The chimeric VLP was composed of matrix 1 protein from avian influenza H5N1 virus and a fusion protein neuraminidase (NA)/spike 1 (S1) that was generated by fusing IBV S1 protein to the cytoplasmic and transmembrane domains of NA protein of avian influenza H5N1 virus. The chimeric VLPs elicited significantly higher S1-specific antibody responses in intramuscularly immunized mice and chickens than inactivated IBV viruses. Furthermore, the chimeric VLPs induced significantly higher neutralization antibody levels than inactivated H120 virus in SPF chickens. Finally, the chimeric VLPs induced significantly higher IL-4 production in mice. These results demonstrate that chimeric VLPs have the potential for use in vaccines against IBV infection. PMID:24378590

  13. Mosaic Origins of a Complex Chimeric Mitochondrial Gene in Silene vulgaris

    PubMed Central

    Storchova, Helena; Müller, Karel; Lau, Steffen; Olson, Matthew S.

    2012-01-01

    Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1). We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species. PMID:22383961

  14. Production and immunogenicity of chimeric virus-like particles containing the spike glycoprotein of infectious bronchitis virus.

    PubMed

    Lv, Lishan; Li, Xiaoming; Liu, Genmei; Li, Ran; Liu, Qiliang; Shen, Huifang; Wang, Wei; Xue, Chunyi; Cao, Yongchang

    2014-01-01

    Infectious bronchitis virus (IBV) poses a severe threat to the poultry industry and causes heavy economic losses worldwide. Vaccination is the most effective method of preventing infection and controlling the spread of IBV, but currently available inactivated and attenuated virus vaccines have some disadvantages. We developed a chimeric virus-like particle (VLP)-based candidate vaccine for IBV protection. The chimeric VLP was composed of matrix 1 protein from avian influenza H5N1 virus and a fusion protein neuraminidase (NA)/spike 1 (S1) that was generated by fusing IBV S1 protein to the cytoplasmic and transmembrane domains of NA protein of avian influenza H5N1 virus. The chimeric VLPs elicited significantly higher S1-specific antibody responses in intramuscularly immunized mice and chickens than inactivated IBV viruses. Furthermore, the chimeric VLPs induced significantly higher neutralization antibody levels than inactivated H120 virus in SPF chickens. Finally, the chimeric VLPs induced significantly higher IL-4 production in mice. These results demonstrate that chimeric VLPs have the potential for use in vaccines against IBV infection.

  15. Analysis of the thermodynamics of binding of an SH3 domain to proline-rich peptides using a chimeric fusion protein.

    PubMed

    Candel, Adela M; van Nuland, Nico A J; Martin-Sierra, Francisco M; Martinez, Jose C; Conejero-Lara, Francisco

    2008-03-14

    A complete understanding of the thermodynamic determinants of binding between SH3 domains and proline-rich peptides is crucial to the development of rational strategies for designing ligands for these important domains. Recently we engineered a single-chain chimeric protein by fusing the alpha-spectrin Src homology region 3 (SH3) domain to the decapeptide APSYSPPPPP (p41). This chimera mimics the structural and energetic features of the interaction between SH3 domains and proline-rich peptides. Here we show that analysing the unfolding thermodynamics of single-point mutants of this chimeric fusion protein constitutes a very useful approach to deciphering the thermodynamics of SH3-ligand interactions. To this end, we investigated the contribution of each proline residue of the ligand sequence to the SH3-peptide interaction by producing six single Pro-Ala mutants of the chimeric protein and analysing their unfolding thermodynamics by differential scanning calorimetry (DSC). Structural analyses of the mutant chimeras by circular dichroism, fluorescence and NMR together with NMR-relaxation measurements indicate conformational flexibility at the binding interface, which is strongly affected by the different Pro-Ala mutations. An analysis of the DSC thermograms on the basis of a three-state unfolding model has allowed us to distinguish and separate the thermodynamic magnitudes of the interaction at the binding interface. The model assumes equilibrium between the "unbound" and "bound" states at the SH3-peptide binding interface. The resulting thermodynamic magnitudes classify the different proline residues according to their importance in the interaction as P2 approximately P7 approximately P10>P9 approximately P6>P8, which agrees well with Lim's model for the interaction between SH3 domains and proline-rich peptides. In addition, the thermodynamic signature of the interaction is the same as that usually found for this type of binding, with a strong enthalpy-entropy compensation for all the mutants. This compensation appears to derive from an increase in conformational flexibility concomitant to the weakening of the interactions at the binding interface. We conclude that our approach, based on DSC and site-directed mutagenesis analysis of chimeric fusion proteins, may serve as a suitable tool to analyse the energetics of weak biomolecular interactions such as those involving SH3 domains.

  16. Tumor-Triggered Geometrical Shape Switch of Chimeric Peptide for Enhanced in Vivo Tumor Internalization and Photodynamic Therapy.

    PubMed

    Han, Kai; Zhang, Jin; Zhang, Weiyun; Wang, Shibo; Xu, Luming; Zhang, Chi; Zhang, Xianzheng; Han, Heyou

    2017-03-28

    Geometrical shape of nanoparticles plays an important role in cellular internalization. However, the applicability in tumor selective therapeutics is still scarcely reported. In this article, we designed a tumor extracellular acidity-responsive chimeric peptide with geometrical shape switch for enhanced tumor internalization and photodynamic therapy. This chimeric peptide could self-assemble into spherical nanoparticles at physiological condition. While at tumor extracellular acidic microenvironment, chimeric peptide underwent detachment of acidity-sensitive 2,3-dimethylmaleic anhydride groups. The subsequent recovery of ionic complementarity between chimeric peptides resulted in formation of rod-like nanoparticles. Both in vitro and in vivo studies demonstrated that this acidity-triggered geometrical shape switch endowed chimeric peptide with accelerated internalization in tumor cells, prolonged accumulation in tumor tissue, enhanced photodynamic therapy, and minimal side effects. Our results suggested that fusing tumor microenvironment with geometrical shape switch should be a promising strategy for targeted drug delivery.

  17. Generation of chimeric minipigs by aggregating 4- to 8-cell-stage blastomeres from somatic cell nuclear transfer with the tracing of enhanced green fluorescent protein.

    PubMed

    Ji, Huili; Long, Chuan; Feng, Chong; Shi, Ningning; Jiang, Yingdi; Zeng, Guomin; Li, Xirui; Wu, Jingjing; Lu, Lin; Lu, Shengsheng; Pan, Dengke

    2017-05-01

    Blastocyst complementation is an important technique for generating chimeric organs in organ-deficient pigs, which holds great promise for solving the problem of a shortage of organs for human transplantation procedures. Porcine chimeras have been generated using embryonic germ cells, embryonic stem cells, and induced pluripotent stem cells; however, there are no authentic pluripotent stem cells for pigs. In previous studies, blastomeres from 4- to 8-cell-stage parthenogenetic embryos were able to generate chimeric fetuses efficiently, but the resulting fetuses did not produce live-born young. Here, we used early-stage embryos from somatic cell nuclear transfer (SCNT) to generate chimeric piglets by the aggregation method. Then, the distribution of chimerism in various tissues and organs was observed through the expression of enhanced green fluorescent protein (EGFP). Initially, we determined whether 4- to 8- or 8- to 16-cell-stage embryos were more suitable to generate chimeric piglets. Chimeras were produced by aggregating two EGFP-tagged Wuzhishan minipig (WZSP) SCNT embryos and two Bama minipig (BMP) SCNT embryos. The chimeric piglets were identified by coat color and microsatellite and swine leukocyte antigen analyses. Moreover, the distribution of chimerism in various tissues and organs of the piglets was evaluated by EGFP expression. We found that more aggregated embryos were produced using 4- to 8-cell-stage embryos (157/657, 23.9%) than 8- to 16-cell-stage embryos (100/499, 20.0%). Thus, 4- to 8-cell-stage embryos were used for the generation of chimeras. The rate of blastocysts development after aggregating WZSP with BMP embryos was 50.6%. Transfer of 391 blastocysts developed from 4- to 8-cell-stage embryos to five recipients gave rise to 18 piglets, of which two (11.1%) were confirmed to be chimeric by their coat color and microsatellite examination of the skin. One of the chimeric piglets died at 35 days and was subsequently autopsied, whereas the other piglet was maintained for the following observations. The heart and kidneys of the dead piglet showed chimerism, whereas the spinal cord, stomach, pancreas, intestines, muscle, ovary, and brain had no chimerism. To our knowledge, this is the first report of porcine chimeras generated by aggregating 4- to 8-cell-stage blastomeres from SCNT. We detected chimerism only in the skin, heart, and kidneys. Collectively, these results indicate that aggregation using 4- to 8-cell-stage SCNT embryos offers a practical approach for producing chimeric minipigs. Furthermore, it also provides a potential platform for generating interspecific chimeras between pigs and non-human primates for xenotransplantation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Correlative scanning-transmission electron microscopy reveals that a chimeric flavivirus is released as individual particles in secretory vesicles.

    PubMed

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.

  19. Correlative Scanning-Transmission Electron Microscopy Reveals that a Chimeric Flavivirus Is Released as Individual Particles in Secretory Vesicles

    PubMed Central

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations. PMID:24681578

  20. Systematic Characteristic Exploration of the Chimeras Generated in Multiple Displacement Amplification through Next Generation Sequencing Data Reanalysis

    PubMed Central

    Gao, Shen; Yao, Bei; Lu, Zuhong

    2015-01-01

    Background The chimeric sequences produced by phi29 DNA polymerase, which are named as chimeras, influence the performance of the multiple displacement amplification (MDA) and also increase the difficulty of sequence data process. Despite several articles have reported the existence of chimeric sequence, there was only one research focusing on the structure and generation mechanism of chimeras, and it was merely based on hundreds of chimeras found in the sequence data of E. coli genome. Method We finished data mining towards a series of Next Generation Sequencing (NGS) reads which were used for whole genome haplotype assembling in a primary study. We established a bioinformatics pipeline based on subsection alignment strategy to discover all the chimeras inside and achieve their structural visualization. Then, we artificially defined two statistical indexes (the chimeric distance and the overlap length), and their regular abundance distribution helped illustrate of the structural characteristics of the chimeras. Finally we analyzed the relationship between the chimera type and the average insertion size, so that illustrate a method to decrease the proportion of wasted data in the procedure of DNA library construction. Results/Conclusion 131.4 Gb pair-end (PE) sequence data was reanalyzed for the chimeras. Totally, 40,259,438 read pairs (6.19%) with chimerism were discovered among 650,430,811 read pairs. The chimeric sequences are consisted of two or more parts which locate inconsecutively but adjacently on the chromosome. The chimeric distance between the locations of adjacent parts on the chromosome followed an approximate bimodal distribution ranging from 0 to over 5,000 nt, whose peak was at about 250 to 300 nt. The overlap length of adjacent parts followed an approximate Poisson distribution and revealed a peak at 6 nt. Moreover, unmapped chimeras, which were classified as the wasted data, could be reduced by properly increasing the length of the insertion segment size through a linear correlation analysis. Significance This study exhibited the profile of the phi29MDA chimeras by tens of millions of chimeric sequences, and helped understand the amplification mechanism of the phi29 DNA polymerase. Our work also illustrated the importance of NGS data reanalysis, not only for the improvement of data utilization efficiency, but also for more potential genomic information. PMID:26440104

  1. Murine and math models for the level of stable mixed chimerism to cure beta-thalassemia by nonmyeloablative bone marrow transplantation.

    PubMed

    Roberts, Carla; Kean, Leslie; Archer, David; Balkan, Can; Hsu, Lewis L

    2005-01-01

    Stable mixed chimeric stem cell transplantation in hemoglobinopathies exploits shorter erythroid survival in hemolytic anemias, providing normal donor red blood cells with a competitive survival advantage. This study examined the level of stable mixed chimerism necessary for complete hematological cure of the thalassemic phenotype, using a nonmyeloablative busulfan chemotherapeutic preparation. Thalassemic mice transplanted from congenic wild-type donors developed partial mixed chimerism. Hematologic cure required >80% donor red blood cells and only >13% donor white blood cells. Murine and human transplant results were compared with a math model for survival advantage of donor peripheral blood cells produced by steady-state chimeric marrow.

  2. Chimeric recombinant antibody fragments in cardiac troponin I immunoassay.

    PubMed

    Hyytiä, Heidi; Heikkilä, Taina; Brockmann, Eeva-Christine; Kekki, Henna; Hedberg, Pirjo; Puolakanaho, Tarja; Lövgren, Timo; Pettersson, Kim

    2015-03-01

    To introduce a novel nanoparticle-based immunoassay for cardiac troponin I (cTnI) utilizing chimeric antibody fragments and to demonstrate that removal of antibody Fc-part and antibody chimerization decrease matrix related interferences. A sandwich-type immunoassay for cTnI based on recombinant chimeric (mouse variable/human constant) antigen binding (cFab) antibodies and intrinsically fluorescent nanoparticles was developed. To test whether using chimeric antibody fragments helps to avoid matrix related interferences, samples (n=39) with known amounts of triglycerides, bilirubin, rheumatoid factor (RF) or human anti-mouse antibodies (HAMAs) were measured with the novel assay, along with a previously published nanoparticle-based research assay with the same antibody epitopes. The limit of detection (LoD) was 3.30ng/L. Within-laboratory precision for 29ng/L and 2819ng/L cTnI were 13.7% and 15.9%, respectively. Regression analysis with Siemens ADVIA Centaur® yielded a slope (95% confidence intervals) of 0.18 (0.17-1.19) and a y-intercept of 1.94 (-1.28-3.91) ng/L. When compared to a previously published nanoparticle-based assay, the novel assay showed substantially reduced interference in the tested interference prone samples, 15.4 vs. 51.3%. A rheumatoid factor containing sample was decreased from 241ng/L to

  3. Expression and purification of chimeric peptide comprising EGFR B-cell epitope and measles virus fusion protein T-cell epitope in Escherichia coli.

    PubMed

    Wu, Meizhi; Zhao, Lin; Zhu, Lei; Chen, Zhange; Li, Huangjin

    2013-03-01

    Chimeric peptide MVF-EGFR(237-267), comprising a B-cell epitope from the dimerization interface of human epidermal growth factor receptor (EGFR) and a promiscuous T-cell epitope from measles virus fusion protein (MVF), is a promising candidate antigen peptide for therapeutic vaccine. To establish a high-efficiency preparation process of this small peptide, the coding sequence was cloned into pET-21b and pET-32a respectively, to be expressed alone or in the form of fusion protein with thioredoxin (Trx) and His(6)-tag in Escherichia coli BL21 (DE3). The chimeric peptide failed to be expressed alone, but over-expressed in the fusion form, which presented as soluble protein and took up more than 30% of total proteins of host cells. The fusion protein was seriously degraded during the cell disruption, in which endogenous metalloproteinase played a key role. Degradation of target peptide was inhibited by combined application of EDTA in the cell disruption buffer and a step of Source 30Q anion exchange chromatography (AEC) before metal-chelating chromatography (MCAC) for purifying His(6)-tagged fusion protein. The chimeric peptide was recovered from the purified fusion protein by enterokinase digestion at a yield of 3.0 mg/L bacteria culture with a purity of more than 95%. Immunogenicity analysis showed that the recombinant chimeric peptide was able to arouse more than 1×10(4) titers of specific antibody in BALB/c mice. Present work laid a solid foundation for the development of therapeutic peptide vaccine targeting EGFR dimerization and provided a convenient and low-cost preparation method for small peptides. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. A novel chimeric low-molecular-weight glutenin subunit gene from the wild relatives of wheat Aegilops kotschyi and Ae. juvenalis: evolution at the Glu-3 loci.

    PubMed

    Li, Xiaohui; Ma, Wujun; Gao, Liyan; Zhang, Yanzhen; Wang, Aili; Ji, Kangmin; Wang, Ke; Appels, Rudi; Yan, Yueming

    2008-09-01

    Four LMW-m and one novel chimeric (between LMW-i and LMW-m types) low-molecular-weight glutenin subunit (LMW-GS) genes from Aegilops neglecta (UUMM), Ae. kotschyi (UUSS), and Ae. juvenalis (DDMMUU) were isolated and characterized. Sequence structures showed that the 4 LMW-m-type genes, assigned to the M genome of Ae. neglecta, displayed a high homology with those from hexaploid common wheat. The novel chimeric gene, designed as AjkLMW-i, was isolated from both Ae. kotschyi and Ae. juvenalis and shown to be located on the U genome. Phylogentic analysis demonstrated that it had higher identity to the LMW-m-type than the LMW-i-type genes. A total of 20 single nucleotide polymorphisms (SNPs) were detected among the 4 LMW-m genes, with 13 of these being nonsynonymous SNPs that resulted in amino acid substitutions in the deduced mature proteins. Phylogenetic analysis demonstrated that it had higher identity to the LMW-m-type than the LMW-i-type genes. The divergence time estimation showed that the M and D genomes were closely related and diverged at 5.42 million years ago (MYA) while the differentiation between the U and A genomes was 6.82 MYA. We propose that, in addition to homologous recombination, an illegitimate recombination event on the U genome may have occurred 6.38 MYA and resulted in the generation of the chimeric gene AjkLMW-i, which may be an important genetic mechanism for the origin and evolution of LMW-GS Glu-3 alleles as well as other prolamin genes.

  5. Identification of the gamma subunit-interacting residues on photoreceptor cGMP phosphodiesterase, PDE6alpha '.

    PubMed

    Granovsky, A E; Artemyev, N O

    2000-12-29

    Photoreceptor cGMP phosphodiesterase (PDE6) is the effector enzyme in the G protein-mediated visual transduction cascade. In the dark, the activity of PDE6 is shut off by the inhibitory gamma subunit (Pgamma). Chimeric proteins between cone PDE6alpha' and cGMP-binding and cGMP-specific PDE (PDE5) have been constructed and expressed in Sf9 cells to study the mechanism of inhibition of PDE6 catalytic activity by Pgamma. Substitution of the segment PDE5-(773-820) by the corresponding PDE6alpha'-(737-784) sequence in the wild-type PDE5 or in a PDE5/PDE6alpha' chimera containing the catalytic domain of PDE5 results in chimeric enzymes capable of inhibitory interaction with Pgamma. The catalytic properties of the chimeric PDEs remained similar to those of PDE5. Ala-scanning mutational analysis of the Pgamma-binding region, PDE6alpha'-(750-760), revealed PDE6alpha' residues essential for the interaction. The M758A mutation markedly impaired and the Q752A mutation moderately impaired the inhibition of chimeric PDE by Pgamma. The analysis of the catalytic properties of mutant PDEs and a model of the PDE6 catalytic domain suggest that residues Met(758) and Gln(752) directly bind Pgamma. A model of the PDE6 catalytic site shows that PDE6alpha'-(750-760) forms a loop at the entrance to the cGMP-binding pocket. Binding of Pgamma to Met(758) would effectively block access of cGMP to the catalytic cavity, providing a structural basis for the mechanism of PDE6 inhibition.

  6. Chimeric mitochondrial minichromosomes of the human body louse, Pediculus humanus: evidence for homologous and non-homologous recombination.

    PubMed

    Shao, Renfu; Barker, Stephen C

    2011-02-15

    The mitochondrial (mt) genome of the human body louse, Pediculus humanus, consists of 18 minichromosomes. Each minichromosome is 3 to 4 kb long and has 1 to 3 genes. There is unequivocal evidence for recombination between different mt minichromosomes in P. humanus. It is not known, however, how these minichromosomes recombine. Here, we report the discovery of eight chimeric mt minichromosomes in P. humanus. We classify these chimeric mt minichromosomes into two groups: Group I and Group II. Group I chimeric minichromosomes contain parts of two different protein-coding genes that are from different minichromosomes. The two parts of protein-coding genes in each Group I chimeric minichromosome are joined at a microhomologous nucleotide sequence; microhomologous nucleotide sequences are hallmarks of non-homologous recombination. Group II chimeric minichromosomes contain all of the genes and the non-coding regions of two different minichromosomes. The conserved sequence blocks in the non-coding regions of Group II chimeric minichromosomes resemble the "recombination repeats" in the non-coding regions of the mt genomes of higher plants. These repeats are essential to homologous recombination in higher plants. Our analyses of the nucleotide sequences of chimeric mt minichromosomes indicate both homologous and non-homologous recombination between minichromosomes in the mitochondria of the human body louse. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Fluorescently labeled chimeric anti-CEA antibody improves detection and resection of human colon cancer in a patient-derived orthotopic xenograft (PDOX) nude mouse model.

    PubMed

    Metildi, Cristina A; Kaushal, Sharmeela; Luiken, George A; Talamini, Mark A; Hoffman, Robert M; Bouvet, Michael

    2014-04-01

    The aim of this study was to evaluate a new fluorescently labeled chimeric anti-CEA antibody for improved detection and resection of colon cancer. Frozen tumor and normal human tissue samples were stained with chimeric and mouse antibody-fluorophore conjugates for comparison. Mice with patient-derived orthotopic xenografts (PDOX) of colon cancer underwent fluorescence-guided surgery (FGS) or bright-light surgery (BLS) 24 hr after tail vein injection of fluorophore-conjugated chimeric anti-CEA antibody. Resection completeness was assessed using postoperative images. Mice were followed for 6 months for recurrence. The fluorophore conjugation efficiency (dye/mole ratio) improved from 3-4 to >5.5 with the chimeric CEA antibody compared to mouse anti-CEA antibody. CEA-expressing tumors labeled with chimeric CEA antibody provided a brighter fluorescence signal on frozen human tumor tissues (P = 0.046) and demonstrated consistently lower fluorescence signals in normal human tissues compared to mouse antibody. Chimeric CEA antibody accurately labeled PDOX colon cancer in nude mice, enabling improved detection of tumor margins for more effective FGS. The R0 resection rate increased from 86% to 96% with FGS compared to BLS. Improved conjugating efficiency and labeling with chimeric fluorophore-conjugated antibody resulted in better detection and resection of human colon cancer in an orthotopic mouse model. © 2013 Wiley Periodicals, Inc.

  8. Kidney Versus Islet Allograft Survival After Induction of Mixed Chimerism With Combined Donor Bone Marrow Transplantation.

    PubMed

    Oura, Tetsu; Ko, Dicken S C; Boskovic, Svjetlan; O'Neil, John J; Chipashvili, Vaja; Koulmanda, Maria; Hotta, Kiyohiko; Kawai, Kento; Nadazdin, Ognjenka; Smith, R Neal; Cosimi, A B; Kawai, Tatsuo

    2016-01-01

    We have previously reported successful induction of transient mixed chimerism and long-term acceptance of renal allografts in MHC mismatched nonhuman primates. In this study, we attempted to extend this tolerance induction approach to islet allografts. A total of eight recipients underwent MHC mismatched combined islet and bone marrow (BM) transplantation after induction of diabetes by streptozotocin. Three recipients were treated after a nonmyeloablative conditioning regimen that included low-dose total body and thymic irradiation, horse Atgam (ATG), six doses of anti-CD154 monoclonal antibody (mAb), and a 1-month course of cyclosporine (CyA) (Islet A). In Islet B, anti-CD8 mAb was administered in place of CyA. In Islet C, two recipients were treated with Islet B, but without ATG. The results were compared with previously reported results of eight cynomolgus monkeys that received combined kidney and BM transplantation (Kidney A) following the same conditioning regimen used in Islet A. The majority of kidney/BM recipients achieved long-term renal allograft survival after induction of transient chimerism. However, prolonged islet survival was not achieved in similarly conditioned islet/BM recipients (Islet A), despite induction of comparable levels of chimerism. In order to rule out islet allograft loss due to CyA toxicity, three recipients were treated with anti-CD8 mAb in place of CyA. Although these recipients developed significantly superior mixed chimerism and more prolonged islet allograft survival (61, 103, and 113 days), islet function was lost soon after the disappearance of chimerism. In Islet C recipients, neither prolonged chimerism nor islet survival was observed (30 and 40 days). Significant improvement of mixed chimerism induction and islet allograft survival were achieved with a CyA-free regimen that included anti-CD8 mAb. However, unlike the kidney allograft, islet allograft tolerance was not induced with transient chimerism. Induction of more durable mixed chimerism may be necessary for induction of islet allograft tolerance.

  9. Donor Chimerism of B Cells and Nature Killer Cells Provides Useful Information to Predict Hematologic Relapse following Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Jiang, Ying; Wan, Liping; Qin, Youwen; Wang, Xiaorui; Yan, Shike; Xie, Kuangcheng; Wang, Chun

    2015-01-01

    In this study we investigated the correlation between donor chimerism status and disease relapse following allogeneic hematopoietic stem cell transplantation (allo-HSCT). The chimerism of Fluorescence-activated cell sorter (FACS) sorted CD3+T lymphocytes of 153 cases, CD56+CD16+NK lymphocytes of 153 cases and CD19+B lymphocytes of 31 cases with acute B lymphoblastic leukemia (B-ALL) was analyzed post-transplant utilizing polymerase chain reaction amplification of short tandem repeats (PCR-STR). A total of 33 patients (33/153, 21.6%) had recurrent disease. The positive predictive values of declining donor chimerism for hematologic and isolated extramedullary relapse were 58.8% and 10% (P=0.018, Chi-Square). The positive predictive values of declining donor chimerism in BMB, BMT, BMNK and PBB for hematologic relapse were 11.6%, 0%, 0% and 0% under close monitoring in patients with B-ALL. Only the donor chimerism in BMB significantly decreased in the group with hematologic relapse as compared with the group without hematologic relapse (P=0.00, Independent-samples T test) in patients with B-ALL. The median drop of donor chimerism in PBT, BMT, PBNK and BMNK were 0%, 0%, 5.9% and 2.8% one or two weeks prior to hematologic relapse in patients with non-B-ALL. The donor chimerism in PBNK significantly decreased prior to hematologic relapse in the group with hematologic relapse as compared with the group without hematologic relapse (P=0.022, Independent-samples T test).These data suggest donor chimerism of BMB can be used to predict the occurrence of hematologic relapse in patients with B-ALL. Donor chimerism decrease in PBNK was associated with a somewhat increased risk of hematologic relapse in patients with non-B-ALL. Therefore, our results reveal a more effective path to individually predict for hematologic relapse by dynamic monitoring different cell lineages in different disease.

  10. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants.

    PubMed

    Kawano, Masaaki; Morikawa, Katsuma; Suda, Tatsuya; Ohno, Naohito; Matsushita, Sho; Akatsuka, Toshitaka; Handa, Hiroshi; Matsui, Masanori

    2014-01-05

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A*02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A*02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. © 2013 Elsevier Inc. All rights reserved.

  11. Acidity-Triggered Tumor Retention/Internalization of Chimeric Peptide for Enhanced Photodynamic Therapy and Real-Time Monitoring of Therapeutic Effects.

    PubMed

    Han, Kai; Zhang, Wei-Yun; Ma, Zhao-Yu; Wang, Shi-Bo; Xu, Lu-Ming; Liu, Jia; Zhang, Xian-Zheng; Han, He-You

    2017-05-17

    Photodynamic therapy (PDT) holds great promise in tumor treatment. Nevertheless, it remains highly desirable to develop easy-to-fabricated PDT systems with improved tumor accumulation/internalization and timely therapeutic feedback. Here, we report a tumor-acidity-responsive chimeric peptide for enhanced PDT and noninvasive real-time apoptosis imaging. Both in vitro and in vivo studies revealed that a tumor mildly acidic microenvironment could trigger rapid protonation of carboxylate anions in chimeric peptide, which led to increased ζ potential, improved hydrophobicity, controlled size enlargement, and precise morphology switching from sphere to spherocylinder shape of the chimeric peptide. All of these factors realized superfast accumulation and prolonged retention in the tumor region, selective cellular internalization, and enhanced PDT against the tumor. Meanwhile, this chimeric peptide could further generate reactive oxygen species and initiate cell apoptosis during PDT. The subsequent formation of caspase-3 enzyme hydrolyzed the chimeric peptide, achieving a high signal/noise ratio and timely fluorescence feedback. Importantly, direct utilization of the acidity responsiveness of a biofunctional Asp-Glu-Val-Asp-Gly (DEVDG, caspase-3 enzyme substrate) peptide sequence dramatically simplified the preparation and increased the performance of the chimeric peptide furthest.

  12. [Expression of human-mouse chimeric antibody directed against Chikungunya virus with site-specific integration system].

    PubMed

    Li, Jian-min; Chen, Wei; Jia, Xiu-jie; An, Xiao-ping; Li, Bing; Fan, Ying-ru; Tong, Yi-gang

    2005-05-01

    To obtain CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site and to express human-mouse chimeric antibody directed against Chikungunya Virus by using the cell line. The fusion gene of FRT and HBsAg was constructed by PCR and cloned into the MCS of pCI-neo to construct pCI-FRT-HBsAg. The pCI-FRT-HBsAg was transfected into CHO/dhfr(-) cells and cell clones with high expression of HBsAg were screened by detecting the amount of HBsAg with ELISA. A CHO cell clone with the highest expression was chosen and named as CHO/dhfr(-) FRT(+). pAFRT HFLF, a expression plasmid of chimeric antibody with RFT sequence was transfected into CHO/dhfr(-) FRT(+) cells and cell clones with high expression of the chimeric antibody were screened by increasing concentration of MTX. A CHO cell clone with high expression of the chimeric antibody was cultured in large scale and supernatant was collected from which the chimeric antibody was purified. The purified chimeric antibody was analyzed by SDS-PAGE, Western blot and IFA. A CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site was obtained successfully. A cell clone with yield of 5 mg/L of chimeric antibody was obtained, as compared with routine CHO cell expression system with a yield of 2 mg/L. A cell line with integrated FRT sequence in the chromosome transcription active site was obtained and with it human-mouse chimeric antibody directed against Chikungunya virus was expressed. This system lays a solid foundation which can be used for expressing antibodies and other proteins.

  13. Integrated Safety Assessment of 2′-O-Methoxyethyl Chimeric Antisense Oligonucleotides in NonHuman Primates and Healthy Human Volunteers

    PubMed Central

    Crooke, Stanley T; Baker, Brenda F; Kwoh, T Jesse; Cheng, Wei; Schulz, Dan J; Xia, Shuting; Salgado, Nelson; Bui, Huynh-Hoa; Hart, Christopher E; Burel, Sebastien A; Younis, Husam S; Geary, Richard S; Henry, Scott P; Bhanot, Sanjay

    2016-01-01

    The common chemical and biological properties of antisense oligonucleotides provide the opportunity to identify and characterize chemical class effects across species. The chemical class that has proven to be the most versatile and best characterized is the 2′-O-methoxyethyl chimeric antisense oligonucleotides. In this report we present an integrated safety assessment of data obtained from controlled dose-ranging studies in nonhuman primates (macaques) and healthy human volunteers for 12 unique 2′-O-methoxyethyl chimeric antisense oligonucleotides. Safety was assessed by the incidence of safety signals in standardized laboratory tests for kidney and liver function, hematology, and complement activation; as well as by the mean test results as a function of dose level over time. At high doses a number of toxicities were observed in nonhuman primates. However, no class safety effects were identified in healthy human volunteers from this integrated data analysis. Effects on complement in nonhuman primates were not observed in humans. Nonhuman primates predicted safe doses in humans, but over predicted risk of complement activation and effects on platelets. Although limited to a single chemical class, comparisons from this analysis are considered valid and accurate based on the carefully controlled setting for the specified study populations and within the total exposures studied. PMID:27357629

  14. Enhanced processive cellulases

    DOEpatents

    Adney, William S.; Beckham, Gregg T.; Jarvis, Eric; Himmel, Michael E.; Decker, Stephen R.; Linger, Jeffrey G.; Podkaminer, Kara; Baker, John O.; Taylor, II, Larry; Xu, Qi; Singh, Arjun

    2017-06-20

    Nucleic acid sequences encoding chimeric polypeptides that exhibit enhanced cellulase activities are disclosed herein. These nucleic acids may be expressed in hosts such as fungi, which in turn may be cultured to produce chimeric polypeptides. Also disclosed are chimeric polypeptides and their use in the degradation of cellulosic materials.

  15. Study of a chimeric foot-and-mouth disease virus DNA vaccine containing structural genes of serotype O in a genome backbone of serotype Asia 1 in guinea pigs.

    PubMed

    Chockalingam, A K; Thiyagarajan, S; Govindasamy, N; Patnaikuni, R; Garlapati, S; Golla, R R; Joyappa, D H; Krishnamshetty, P; Veluvarti, V V S; Veluvati, V V S

    2010-01-01

    Since foot-and-mouth disease virus (FMDV) serotypes display a great genetic and antigenic diversity, there is a constant requirement to monitor the performance of FMDV vaccines in the field with respect to their antigenic coverage. To avoid possible antigenic changes in field FMDV isolates during their adaptation to BHK-21 cells, a standard step used in production of conventional FMDV vaccines, the custom-made chimeric conventional or DNA vaccines, in which antigenic determinants are replaced with those of appropriate field strains, should be constructed. Using this approach, we made a plasmid-based chimeric FMDV DNA vaccine containing structural genes of serotype O in the genome backbone of serotype Asia 1, all under the control of Human cytomegalovirus (HCMV) immediate early gene promoter. BHK-21 cells transfected with the chimeric DNA vaccine did not show cytopathic effect (CPE), but expressed virus-specific proteins as demonstrated by 35S-methionine labeling and immunoprecipitation. Guinea pigs immunized with the chimeric DNA vaccine produced virus-specific antibodies assayed by ELISA and virus neutralization test (VNT), respectively. The chimeric DNA vaccine showed a partial protection of guinea pigs challenged with the virulent FMDV. Although the chimeric DNA vaccine, in general, was not as effective as a conventional one, this study encourages further work towards the development of genetically engineered custom-made chimeric vaccines against FMDV.

  16. Internal brooding favours pre-metamorphic chimerism in a non-colonial cnidarian, the sea anemone Urticina felina

    PubMed Central

    Mercier, Annie; Sun, Zhao; Hamel, Jean-François

    2011-01-01

    The concept of intraorganismal genetic heterogeneity resulting from allogeneic fusion (i.e. chimerism) has almost exclusively been explored in modular organisms that have the capacity to reproduce asexually, such as colonial ascidians and corals. Apart from medical conditions in mammals, the natural development of chimeras across ontogenetic stages has not been investigated in any unitary organism incapable of asexual propagation. Furthermore, chimerism was mainly studied among gregarious settlers to show that clustering of genetically similar individuals upon settlement promotes the occurrence of multi-chimeras exhibiting greater fitness. The possible occurrence of chimeric embryos and larvae prior to settlement has not received any attention. Here we document for the first time the presence of natural chimeras in brooded embryos and larvae of a unitary cnidarian, the sea anemone Urticina felina. Rates of visible bi- and multi-chimerism of up to 3.13 per cent were measured in the broods of 16 females. Apart from these sectorial chimeras, monitored fusion events also yielded homogeneous chimeric entities (mega-larvae) suggesting that the actual rates of natural chimerism in U. felina are greater than predicted by visual assessment. In support of this assumption, the broods of certain individuals comprised a dominant proportion (to 90%) of inexplicably large embryos and larvae (relative to oocyte size). Findings of fusion and chimerism in a unitary organism add a novel dimension to the framework within which the mechanisms and evolutionary significance of genetic heterogeneity in animal taxa can be explored. PMID:21508035

  17. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi

    DOE PAGES

    Xu, Qi; Knoshaug, Eric P.; Wang, Wei; ...

    2017-07-24

    Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose twomore » prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel production. Lastly, the effectiveness of the tested secretion signals will also benefit future secretion of other heterologous proteins in L. starkeyi and, given the effectiveness of the cross-genus secretion signal, possibly other oleaginous yeasts as well.« less

  18. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qi; Knoshaug, Eric P.; Wang, Wei

    Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose twomore » prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel production. Lastly, the effectiveness of the tested secretion signals will also benefit future secretion of other heterologous proteins in L. starkeyi and, given the effectiveness of the cross-genus secretion signal, possibly other oleaginous yeasts as well.« less

  19. Ultra-Sensitive Droplet Digital PCR for the Assessment of Microchimerism in Cellular Therapies.

    PubMed

    Kliman, David; Castellano-Gonzalez, Gloria; Withers, Barbara; Street, Janine; Tegg, Elizabeth; Mirochnik, Oksana; Lai, Joey; Clancy, Leighton; Gottlieb, David; Blyth, Emily

    2018-05-01

    Current techniques to assess chimerism after hematopoietic stem cell transplantation (HSCT) are limited in both sensitivity and precision. These drawbacks are problematic in the context of cellular therapies that frequently result in microchimerism (donor chimerism <1%). We have developed a highly sensitive droplet digital PCR (ddPCR) assay using commercially available regents with good performance throughout the range of clinically relevant chimerism measurements, including microchimerism. We tested the assay using spiked samples of known donor-recipient ratios and in clinical samples from HSCT recipients and patients enrolled on clinical trials of microtransplantation and third-party virus-specific T cells (VSTs). The levels of detection and quantification of the assay were .008% and .023%, with high levels of precision with samples of DNA content ranging from 1 to 300 ng DNA. From the panel of 29 insertion-deletion probes multiple informative markers were found for each of 43 HSCT donor-recipient pairs. In the case of third-party cellular therapies in which there were 3 DNA contributors (recipient, HSCT donor, and T-cell donor), a marker to detect the cellular product in a background of recipient and donor cells was available for 11 of 12 cases (92%). Chimerism by ddPCR was able to quantify chimerism in HSCT recipients and comparison against standard STR analysis in 8 HSCT patients demonstrated similar results, with the advantage of fast turnaround time. Persistence of donor microchimerism in patients undergoing microtransplantation for acute myeloid leukemia was detectable for up to 57 days in peripheral blood and bone marrow. The presence of microtransplant product DNA in bone marrow T cells after cell sorting was seen in the 1 patient tested. In patients receiving third-party VSTs for treatment of refractory viral infections, VST donor DNA was detected at low levels in 7 of 9 cases. ddPCR offers advantages over currently available methods for assessment of chimerism in standard HSCT and cellular therapies. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  20. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice

    PubMed Central

    Tateno, Chise; Kawase, Yosuke; Tobita, Yoshimi; Hamamura, Satoko; Ohshita, Hiroki; Yokomichi, Hiroshi; Sanada, Harumi; Kakuni, Masakazu; Shiota, Akira; Kojima, Yuha; Ishida, Yuji; Shitara, Hiroshi; Wada, Naoko A.; Tateishi, Hiromi; Sudoh, Masayuki; Nagatsuka, Shin-ichiro; Jishage, Kou-ichi; Kohara, Michinori

    2015-01-01

    We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID) mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps) replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID). We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression—not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb) levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and useful hosts for producing chimeric mice for use in future long-term studies, including hepatitis virus infection analysis or drug toxicity studies. PMID:26536627

  1. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice.

    PubMed

    Tateno, Chise; Kawase, Yosuke; Tobita, Yoshimi; Hamamura, Satoko; Ohshita, Hiroki; Yokomichi, Hiroshi; Sanada, Harumi; Kakuni, Masakazu; Shiota, Akira; Kojima, Yuha; Ishida, Yuji; Shitara, Hiroshi; Wada, Naoko A; Tateishi, Hiromi; Sudoh, Masayuki; Nagatsuka, Shin-Ichiro; Jishage, Kou-Ichi; Kohara, Michinori

    2015-01-01

    We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID) mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps) replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID). We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression-not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb) levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and useful hosts for producing chimeric mice for use in future long-term studies, including hepatitis virus infection analysis or drug toxicity studies.

  2. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi.

    PubMed

    Xu, Qi; Knoshaug, Eric P; Wang, Wei; Alahuhta, Markus; Baker, John O; Yang, Shihui; Vander Wall, Todd; Decker, Stephen R; Himmel, Michael E; Zhang, Min; Wei, Hui

    2017-07-24

    Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel production. The effectiveness of the tested secretion signals will also benefit future secretion of other heterologous proteins in L. starkeyi and, given the effectiveness of the cross-genus secretion signal, possibly other oleaginous yeasts as well.

  3. Comparative analysis of the mating-type loci from Neurospora crassa and Sordaria macrospora: identification of novel transcribed ORFs.

    PubMed

    Pöggeler, S; Kück, U

    2000-03-01

    The mating-type locus controls mating and sexual development in filamentous ascomycetes. In the heterothallic ascomycete Neurospora crassa, the genes that confer mating behavior comprise dissimilar DNA sequences (idiomorphs) in the mat a and mat A mating partners. In the homothallic fungus Sordaria macrospora, sequences corresponding to both idiomorphs are located contiguously in the mating-type locus, which contains one chimeric gene, Smt A-3, that includes sequences which are similar to sequences found at the mat A and mat a mating-type idiomorphs in N. crassa. In this study, we describe the comparative transcriptional analysis of the chimeric mating-type region of S. macrospora and the corresponding region of the N. crassa mat a idiomorph. By means of RT-PCR experiments, we identified novel intervening sequences in the mating-type loci of both ascomycetes and, hence, concluded that an additional ORF, encoding a putative polypeptide of 79 amino acids, is present in the N. crassa mat a idiomorph. Furthermore, our analysis revealed co-transcription of the novel gene with the mat a-1 gene in N. crassa. The same mode of transcription was found in the corresponding mating-type region of S. macrospora, where the chimeric Smt A-3 gene is co-transcribed with the mat a-specific Smt a-1 gene. Analysis of a Smt A-3 cDNA revealed optional splicing of two introns. We believe that this is the first report of co-transcription of protein-encoding nuclear genes in filamentous fungi. Possible functions of the novel ORFs in regulating mating-type gene expression are discussed.

  4. RNase-Resistant Virus-Like Particles Containing Long Chimeric RNA Sequences Produced by Two-Plasmid Coexpression System▿

    PubMed Central

    Wei, Yuxiang; Yang, Changmei; Wei, Baojun; Huang, Jie; Wang, Lunan; Meng, Shuang; Zhang, Rui; Li, Jinming

    2008-01-01

    RNase-resistant, noninfectious virus-like particles containing exogenous RNA sequences (armored RNA) are good candidates as RNA controls and standards in RNA virus detection. However, the length of RNA packaged in the virus-like particles with high efficiency is usually less than 500 bases. In this study, we describe a method for producing armored L-RNA. Armored L-RNA is a complex of MS2 bacteriophage coat protein and RNA produced in Escherichia coli by the induction of a two-plasmid coexpression system in which the coat protein and maturase are expressed from one plasmid and the target RNA sequence with modified MS2 stem-loop (pac site) is transcribed from another plasmid. A 3V armored L-RNA of 2,248 bases containing six gene fragments—hepatitis C virus, severe acute respiratory syndrome coronavirus (SARS-CoV1, SARS-CoV2, and SARS-CoV3), avian influenza virus matrix gene (M300), and H5N1 avian influenza virus (HA300)—was successfully expressed by the two-plasmid coexpression system and was demonstrated to have all of the characteristics of armored RNA. We evaluated the 3V armored L-RNA as a calibrator for multiple virus assays. We used the WHO International Standard for HCV RNA (NIBSC 96/790) to calibrate the chimeric armored L-RNA, which was diluted by 10-fold serial dilutions to obtain samples containing 106 to 102 copies. In conclusion, the approach we used for armored L-RNA preparation is practical and could reduce the labor and cost of quality control in multiplex RNA virus assays. Furthermore, we can assign the chimeric armored RNA with an international unit for quantitative detection. PMID:18305135

  5. High processivity polymerases

    DOEpatents

    Shamoo, Yousif; Sun, Siyang

    2014-06-10

    Chimeric proteins comprising a sequence nonspecific single-stranded nucleic-acid-binding domain joined to a catalytic nucleic-acid-modifying domain are provided. Methods comprising contacting a nucleic acid molecule with a chimeric protein, as well as systems comprising a nucleic acid molecule, a chimeric protein, and an aqueous solution are also provided. The joining of sequence nonspecific single-stranded nucleic-acid-binding domain and a catalytic nucleic-acid-modifying domain in chimeric proteins, among other things, may prevent the separation of the two domains due to their weak association and thereby enhances processivity while maintaining fidelity.

  6. Reduced immune responses in chimeric mice engrafted with bone marrow cells from mice with airways inflammation.

    PubMed

    Scott, Naomi M; Ng, Royce L X; McGonigle, Terence A; Gorman, Shelley; Hart, Prue H

    2015-11-01

    During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied. Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD). Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice. Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities.

  7. Design, Construction and Evaluation of 1a/JFH1 HCV Chimera by Replacing the Intergenotypic Variable Region

    PubMed Central

    Ghasemi, Faezeh; Ghayour-Mobarhan, Majid; Pasdar, Alireza; Pourianfar, Hamid; Reza Aghasadeghi, Mohammad; Gouklani, Hamed; Meshkat, Zahra

    2016-01-01

    Background The E2 glycoprotein is an important encoded hepatitis C virus (HCV) protein that contains three different variable regions. Objectives The aim of the present study was to construct an HCV 1a/JFH1 chimeric virus by replacing the intergenotypic variable region (igVR) fragment of the highly variable region of the E2 gene of the Japanese Fulminant hepatitis genotype 2a JFH1 virus with a similar region of HCV genotype 1a. This chimera was produced as a model virus with the ability to be cultured. We analyzed the adapted virus and the variations of nucleic acids within it. Methods Specific primers were designed for the igVR of HCV genotype 1a followed by the overlap-PCR method for the synthesis of the desired DNA fragment. The amplified igVR-1a chimera gene and pFL-J6/JFH were digested by KpnI and BsiWI restriction enzymes, and the fragment was ligated into pFL-J6/JFH. The recombinant vector was transformed into Escherichia coli JM109 strain competent cells. All clones were confirmed by colony PCR using specific primers, and the confirmed recombinant vector was sequenced. The recombinant vector was targeted for RNA synthesis by T7 RNA polymerase enzyme. RNA transfection was performed in the Huh7.5 cell line. Virus production in several passages and the evaluated viral load were studied using quantitative real-time PCR and ELISA methods. After 30 passages, the RNA virus was extracted and cloned in PCDNA3.1 vector, and was then sequenced Results Quantitative real-time PCR results showed 11,292,514 copies/mL of chimeric virus production in cell culture. The virus production was confirmed using ELISA, which showed a virus core production of 808.2 pg/mL. The results of cloning and sequencing showed that some of the nucleic acids in the chimera virus were changed, affecting the viral behavior in the cell culture. Conclusions Real-time PCR and ELISA showed high levels of production of 1a/JFH1 chimeric HCV in the Huh7.5 cell culture. The constructed virus can be used for future studies, including the development of new HCV drugs and vaccines. PMID:27882063

  8. Kidney versus Islet Allograft Survival after Induction of Mixed Chimerism with Combined Donor Bone Marrow Transplantation

    PubMed Central

    Oura, Tetsu; Ko, Dicken S.C.; Boskovic, Svjetlan; O'Neil, John J.; Chipashvili, Vaja; Koulmanda, Maria; Hotta, Kiyohiko; Kawai, Kento; Nadazdin, Ognjenka; Smith, R. Neal; Cosimi, A. B.; Kawai, Tatsuo

    2016-01-01

    Background We have previously reported successful induction of transient mixed chimerism and long-term acceptance of renal allografts in MHC-mismatched nonhuman primates. In this study, we attempted to extend this tolerance induction approach to islet allografts. Methods A total of eight recipients underwent MHC mismatched combined islet and bone marrow (BM) transplantation after induction of diabetes by streptozotocin. Three recipients were treated after a nonmyeloablative conditioning regimen that includes low dose total body and thymic irradiation, horse ATG (Atgam), six doses of anti-CD154 monoclonal antibody (mAb) and a one month course of cyclosporine (CyA) (Islet-A). In Islet-B, anti-CD8 mAb was administered in place of CyA. In Islet-C, two recipients were treated with Islet-B but without Atgam. The results were compared with previously reported results of eight cynomolgus monkeys that received combined kidney and bone marrow transplantation (Kidney-A) following the same conditioning regimen used in Islet-A. Results The majority of Kidney/BM recipients achieved long-term renal allograft survival after induction of transient chimerism. However, prolonged islet survival was not achieved in similarly conditioned Islet/BM recipients (Islet-A), despite induction of comparable levels of chimerism. In order to rule out islet allograft loss due to calcineurin inhibitor (CNI) toxicity, three recipients were treated with anti-CD8 mAb in place of CNI. Although these recipients developed significantly superior mixed chimerism and more prolonged islet allograft survival (61, 103, and 113 days), islet function was lost soon after the disappearance of chimerism. In Islet-C recipients, neither prolonged chimerism nor islet survival was observed (30 and 40 days). Conclusion Significant improvement of mixed chimerism induction and islet allograft survival were achieved with a CNI-free regimen that includes anti-CD8 mAb. However, unlike the kidney allograft, islet allograft tolerance was not induced with transient chimerism. Induction of more durable mixed chimerism may be necessary for induction of islet allograft tolerance. PMID:26337731

  9. Production of infectious chimeric hepatitis C virus genotype 2b harboring minimal regions of JFH-1.

    PubMed

    Murayama, Asako; Kato, Takanobu; Akazawa, Daisuke; Sugiyama, Nao; Date, Tomoko; Masaki, Takahiro; Nakamoto, Shingo; Tanaka, Yasuhito; Mizokami, Masashi; Yokosuka, Osamu; Nomoto, Akio; Wakita, Takaji

    2012-02-01

    To establish a cell culture system for chimeric hepatitis C virus (HCV) genotype 2b, we prepared a chimeric construct harboring the 5' untranslated region (UTR) to the E2 region of the MA strain (genotype 2b) and the region of p7 to the 3' UTR of the JFH-1 strain (genotype 2a). This chimeric RNA (MA/JFH-1.1) replicated and produced infectious virus in Huh7.5.1 cells. Replacement of the 5' UTR of this chimera with that from JFH-1 (MA/JFH-1.2) enhanced virus production, but infectivity remained low. In a long-term follow-up study, we identified a cell culture-adaptive mutation in the core region (R167G) and found that it enhanced virus assembly. We previously reported that the NS3 helicase (N3H) and the region of NS5B to 3' X (N5BX) of JFH-1 enabled replication of the J6CF strain (genotype 2a), which could not replicate in cells. To reduce JFH-1 content in MA/JFH-1.2, we produced a chimeric viral genome for MA harboring the N3H and N5BX regions of JFH-1, combined with a JFH-1 5' UTR replacement and the R167G mutation (MA/N3H+N5BX-JFH1/R167G). This chimeric RNA replicated efficiently, but virus production was low. After the introduction of four additional cell culture-adaptive mutations, MA/N3H+N5BX-JFH1/5am produced infectious virus efficiently. Using this chimeric virus harboring minimal regions of JFH-1, we analyzed interferon sensitivity and found that this chimeric virus was more sensitive to interferon than JFH-1 and another chimeric virus containing more regions from JFH-1 (MA/JFH-1.2/R167G). In conclusion, we established an HCV genotype 2b cell culture system using a chimeric genome harboring minimal regions of JFH-1. This cell culture system may be useful for characterizing genotype 2b viruses and developing antiviral strategies.

  10. [In vitro development and chimeric efficiency of mouse-porcine interspecies chimeric embryos in different culture systems].

    PubMed

    Wang, Ying; Ren, Jilong; Song, Yuran; Hai, Tang; Zhou, Qi; Liu, Zhonghua

    2016-07-25

    With the advancements of stem cells and regenerative medicine, interspecies chimera has become a hot topic and will pave a new way of providing donor sources in organ transplantation. However, the interspecies chimera is confronted with a number of scientific questions and technical obstacles, including selections of appropriate embryonic stage and appropriate culture medium; those factors will deeply influence the developmental balance between donor cells and receptor embryos. Due to its relatively rapid reproductive cycle and similar organ size to human's, porcine is a very potential donor candidate to study these questions. To compare the development and chimeric efficiency of interspecies embryos, we tested and evaluated three different culture systems, PZM-3 (Porcine zygotic medium), culture medium for iPSCs (N2B27) and 3.5 h of N2B27 before PZM-3 (N2B27(3.5 h)), and two different embryonic stages, 8-cell and blastocyst in mouse-porcine chimeric embryos using parthenogenetically activated porcine embryos and mouse induced pluripotent stem cells (miPS). The results showed that, PZM-3 was beneficial for both development of chimeric embryos and miPSCs proliferation in porcine embryos in the 8-cell injection group. After early blastocyst injection, the chimeric efficiency did not appear significantly different among the three culture systems but was lower than 8-cell injection. In summary, the results suggest that 8-cell injection and PZM-3 culture medium are more beneficial to the in vitro development and chimeric efficiency of mouse-porcine chimeric embryos.

  11. Production of chicken progeny (Gallus gallus domesticus) from interspecies germline chimeric duck (Anas domesticus) by primordial germ cell transfer.

    PubMed

    Liu, Chunhai; Khazanehdari, Kamal A; Baskar, Vijaya; Saleem, Shazia; Kinne, Joerg; Wernery, Ulrich; Chang, Il-Kuk

    2012-04-01

    The present study aimed to investigate the differentiation of chicken (Gallus gallus domesticus) primordial germ cells (PGCs) in duck (Anas domesticus) gonads. Chimeric ducks were produced by transferring chicken PGCs into duck embryos. Transfer of 200 and 400 PGCs resulted in the detection of a total number of 63.0 ± 54.3 and 116.8 ± 47.1 chicken PGCs in the gonads of 7-day-old duck embryos, respectively. The chimeric rate of ducks prior to hatching was 52.9% and 90.9%, respectively. Chicken germ cells were assessed in the gonad of chimeric ducks with chicken-specific DNA probes. Chicken spermatogonia were detected in the seminiferous tubules of duck testis. Chicken oogonia, primitive and primary follicles, and chicken-derived oocytes were also found in the ovaries of chimeric ducks, indicating that chicken PGCs are able to migrate, proliferate, and differentiate in duck ovaries and participate in the progression of duck ovarian folliculogenesis. Chicken DNA was detected using PCR from the semen of chimeric ducks. A total number of 1057 chicken eggs were laid by Barred Rock hens after they were inseminated with chimeric duck semen, of which four chicken offspring hatched and one chicken embryo did not hatch. Female chimeric ducks were inseminated with chicken semen; however, no fertile eggs were obtained. In conclusion, these results demonstrated that chicken PGCs could interact with duck germinal epithelium and complete spermatogenesis and eventually give rise to functional sperm. The PGC-mediated germline chimera technology may provide a novel system for conserving endangered avian species.

  12. 78 FR 16505 - Prospective Grant of Exclusive License: Chimeric West Nile/Dengue Viruses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... Grant of Exclusive License: Chimeric West Nile/Dengue Viruses AGENCY: Centers for Disease Control and... giving an exclusive license, in the field of use of in vitro diagnostics for dengue virus infection, to.... Provisional Application 61/049,342, filed 4/30/2008, entitled ``Engineered, Chimeric West Nile/Dengue Viruses...

  13. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties

    USDA-ARS?s Scientific Manuscript database

    The development of a spider silk manufacturing process is of great interest. piggyBac vectors were used to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials that included chimeric silkworm/spider silk prote...

  14. Faith-based perspectives on the use of chimeric organisms for medical research.

    PubMed

    Degeling, Chris; Irvine, Rob; Kerridge, Ian

    2014-04-01

    Efforts to advance our understanding of neurodegenerative diseases involve the creation chimeric organisms from human neural stem cells and primate embryos--known as prenatal chimeras. The existence of potential mentally complex beings with human and non-human neural apparatus raises fundamental questions as to the ethical permissibility of chimeric research and the moral status of the creatures it creates. Even as bioethicists find fewer reasons to be troubled by most types of chimeric organisms, social attitudes towards the non-human world are often influenced by religious beliefs. In this paper scholars representing eight major religious traditions provide a brief commentary on a hypothetical case concerning the development and use of prenatal human-animal chimeric primates in medical research. These commentaries reflect the plurality and complexity within and between religious discourses of our relationships with other species. Views on the moral status and permissibility of research on neural human animal chimeras vary. The authors provide an introduction to those who seek a better understanding of how faith-based perspectives might enter into biomedical ethics and public discourse towards forms of biomedical research that involves chimeric organisms.

  15. Theoretical design of a new chimeric protein for the treatment of breast cancer

    PubMed Central

    Soleimani, Meysam; Mahnam, Karim; Mirmohammad-Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Jahanian-Najafabadi, Ali

    2016-01-01

    p28 and NRC peptides are two anticancer peptides with various mechanisms have shown to be effective against breast cancer. Therefore, it seems that construction of a chimeric protein containing the two peptides might cause synergistic cytotoxic effects. However, since the two peptides bear opposite charges, production of a chimeric protein in which the two moieties do not intervene each other is difficult. In this study, our goal was to find a suitable peptide linker for the new chimeric protein in a manner that none of the peptides intervene the other’s function. We selected some linkers with different characteristics and lengths and created a small library of the chimeric proteins harboring these linkers. Homology modeling and molecular dynamic simulation revealed that (PA)5P and (EAAAK)3 linkers can separate the p28 and NRC peptides effectively. Thus, the chimeric protein linked with (PA)5P or (EAAAK)3 linkers might show synergistic and stronger anticancer effects than the separate peptide moieties because they could exert their cytotoxic effects freely which is not influenced by the other part. PMID:27499788

  16. Dynamics and unfolding pathway of chimeric azurin variants: insights from molecular dynamics simulation.

    PubMed

    Evoli, Stefania; Guzzi, Rita; Rizzuti, Bruno

    2013-10-01

    The spectroscopic, thermal, and functional properties of blue copper proteins can be modulated by mutations in the metal binding loop. Molecular dynamics simulation was used to compare the conformational properties of azurin and two chimeric variants, which were obtained by inserting into the azurin scaffold the copper binding loop of amicyanin and plastocyanin, respectively. Simulations at room temperature show that the proteins retain their overall structure and exhibit concerted motions among specific inner regions, as revealed by principal component analysis. Molecular dynamics at high temperature indicates that the first events in the unfolding pathway are structurally similar in the three proteins and unfolding starts from the region of the α-helix that is far from the metal binding loop. The results provide details of the denaturation process that are consistent with experimental data and in close agreement with other computational approaches, suggesting a distinct mechanism of unfolding of azurin and its chimeric variants. Moreover, differences observed in the dynamics of specific regions in the three proteins correlate with their thermal behavior, contributing to the determination of the basic factors that influence the stability.

  17. Impact of meteorology on air quality modeling over the Po valley in northern Italy

    NASA Astrophysics Data System (ADS)

    Pernigotti, D.; Georgieva, E.; Thunis, P.; Bessagnet, B.

    2012-05-01

    A series of sensitivity tests has been performed using both a mesoscale meteorological model (MM5) and a chemical transport model (CHIMERE) to better understand the reasons why all models underestimate particulate matter concentrations in the Po valley in winter. Different options are explored to nudge meteorological observations from regulatory networks into MM5 in order to improve model performances, especially during the low wind speed regimes frequently present in this area. The sensitivity of the CHIMERE modeled particulate matter concentrations to these different meteorological inputs are then evaluated for the January 2005 time period. A further analysis of the CHIMERE model results revealed the need of improving the parametrization of the in-cloud scavenging and vertical diffusivity schemes; such modifications are relevant especially when the model is applied under mist, fog and low stratus conditions, which frequently occur in the Po valley during winter. The sensitivity of modeled particulate matter concentrations to turbulence parameters, wind, temperature and cloud liquid water content in one of the most polluted and complex areas in Europe is finally discussed.

  18. The concept of the eudicot shoot apical meristem as it applies to four Spiraea (Rosaceae), one Mentha (Lamiaceae) and one Euonymus (Celastraceae) cultivars based on chimeric analysis.

    PubMed

    Korn, Robert W

    2013-05-01

    Eversporting eudicots were sought to see if they behave like gymnosperms. Behaviour of eversporting gymnosperm chimeras indicates a single apical cell is present in SAM and it would be of interest to see if eudicot chimeras have the same behaviour. Four eversporting spireas, the pineapple mint and the Silver King euonymus were inspected for the fate of the yellow (mutant)-green (wild type) chimeras. As with gymnosperms, unstable eudicot chimeras in the four spireas, the pineapple mint and the Silver King euonymus became stable yellow about 80 % or more of the time and 20 % or less became stable green. The statistically significant preponderance of chimeric fates becoming all yellow suggests that a single apical cell resides in the yellow tunica. As with gymnosperms, descendent cells of the yellow replacement corpus cell eventually take over the corpus. Here is the first chimeric set of data to support the hypothesis of a one-celled meristem in eudicots rather than the traditional view of a muticellular meristem.

  19. Generation of the novel monoclonal antibody against TLS/EWS-CHOP chimeric oncoproteins that is applicable to one of the most sensitive assays for myxoid and round cell liposarcomas.

    PubMed

    Oikawa, Kosuke; Ishida, Tsuyoshi; Imamura, Tetsuo; Yoshida, Keiichi; Takanashi, Masakatsu; Hattori, Hiroyuki; Ishikawa, Akio; Fujita, Koji; Yamamoto, Kengo; Matsubayashi, Jun; Kuroda, Masahiko; Mukai, Kiyoshi

    2006-03-01

    The fusion oncoproteins, TLS-CHOP and EWS-CHOP, are characteristic markers for myxoid and round cell liposarcomas (MLS/RCLS). Especially, the peptide sequence of 26 amino acids corresponding to the normally untranslated CHOP exon 2 and parts of exon 3 (5'-UTR) is a unique structure for these chimeric proteins. In this report, we have generated monoclonal antibodies against the unique peptide sequence of TLS/EWS-CHOP oncoproteins. These antibodies reacted with TLS-CHOP fusion protein, but not reacted with normal TLS and CHOP proteins by Western blot analysis. In addition, one of the antibodies also recognized the chimeric oncoprotein in archival paraffin-embedded tissue samples of MLS/RCLS. The oncoprotein was detectable by the antibody even in the paraffin-embedded tissue samples whose mRNAs were too degraded to be detected by a nested reverse transcription-polymerase chain reaction-based assay. Thus, the molecular assay using the novel antibody is expected to be one of the most sensitive diagnostic assays for MLS/RCLS.

  20. Structural characterization by NMR of a double phosphorylated chimeric peptide vaccine for treatment of Alzheimer's disease.

    PubMed

    Ramírez-Gualito, Karla; Richter, Monique; Matzapetakis, Manolis; Singer, David; Berger, Stefan

    2013-04-26

    Rational design of peptide vaccines becomes important for the treatment of some diseases such as Alzheimer's disease (AD) and related disorders. In this study, as part of a larger effort to explore correlations of structure and activity, we attempt to characterize the doubly phosphorylated chimeric peptide vaccine targeting a hyperphosphorylated epitope of the Tau protein. The 28-mer linear chimeric peptide consists of the double phosphorylated B cell epitope Tau₂₂₉₋₂₃₇[pThr231/pSer235] and the immunomodulatory T cell epitope Ag85B₂₄₁₋₂₅₅ originating from the well-known antigen Ag85B of the Mycobacterium tuberculosis, linked by a four amino acid sequence -GPSL-. NMR chemical shift analysis of our construct demonstrated that the synthesized peptide is essentially unfolded with a tendency to form a β-turn due to the linker. In conclusion, the -GPSL- unit presumably connects the two parts of the vaccine without transferring any structural information from one part to the other. Therefore, the double phosphorylated epitope of the Tau peptide is flexible and accessible.

  1. Prism adaptation does not change the rightward spatial preference bias found with ambiguous stimuli in unilateral neglect

    PubMed Central

    Sarri, Margarita; Greenwood, Richard; Kalra, Lalit; Driver, Jon

    2011-01-01

    Previous research has shown that prism adaptation (prism adaptation) can ameliorate several symptoms of spatial neglect after right-hemisphere damage. But the mechanisms behind this remain unclear. Recently we reported that prisms may increase leftward awareness for neglect in a task using chimeric visual objects, despite apparently not affecting awareness in a task using chimeric emotional faces (Sarri et al., 2006). Here we explored potential reasons for this apparent discrepancy in outcome, by testing further whether the lack of a prism effect on the chimeric face task task could be explained by: i) the specific category of stimuli used (faces as opposed to objects); ii) the affective nature of the stimuli; and/or iii) the particular task implemented, with the chimeric face task requiring forced-choice judgements of lateral ‘preference’ between pairs of identical, but left/right mirror-reversed chimeric face tasks (as opposed to identification for the chimeric object task). We replicated our previous pattern of no impact of prisms on the emotional chimeric face task here in a new series of patients, while also similarly finding no beneficial impact on another lateral ‘preference’ measure that used non-face non-emotional stimuli, namely greyscale gradients. By contrast, we found the usual beneficial impact of prism adaptation (prism adaptation) on some conventional measures of neglect, and improvements for at least some patients in a different face task, requiring explicit discrimination of the chimeric or non-chimeric nature of face stimuli. The new findings indicate that prism therapy does not alter spatial biases in neglect as revealed by ‘lateral preference tasks’ that have no right or wrong answer (requiring forced-choice judgements on left/right mirror-reversed stimuli), regardless of whether these employ face or non-face stimuli. But our data also show that prism therapy can beneficially modulate some aspects of visual awareness in spatial neglect not only for objects, but also for face stimuli, in some cases. PMID:20171612

  2. Comparison of male chimeric mice generated from microinjection of JM8.N4 embryonic stem cells into C57BL/6J and C57BL/6NTac blastocysts.

    PubMed

    Fielder, Thomas J; Yi, Charles S; Masumi, Juliet; Waymire, Katrina G; Chen, Hsiao-Wen; Wang, Shuling; Shi, Kai-Xuan; Wallace, Douglas C; MacGregor, Grant R

    2012-12-01

    To identify ways to improve the efficiency of generating chimeric mice via microinjection of blastocysts with ES cells, we compared production and performance of ES-cell derived chimeric mice using blastocysts from two closely related and commonly used sub-strains of C57BL/6. Chimeras were produced by injection of the same JM8.N4 (C57BL/6NTac) derived ES cell line into blastocysts of mixed sex from either C57BL/6J (B6J) or C57BL/6NTac (B6NTac) mice. Similar efficiency of production and sex-conversion of chimeric animals was observed with each strain of blastocyst. However, B6J chimeric males had fewer developmental abnormalities involving urogenital and reproductive tissues (1/12, 8%) compared with B6NTac chimeric males (7/9, 78%). The low sample size did not permit determination of statistical significance for many parameters. However, in each category analyzed the B6J-derived chimeric males performed as well, or better, than their B6NTac counterparts. Twelve of 14 (86%) B6J male chimeras were fertile compared with 6 of 11 (55%) B6NTac male chimeras. Ten of 12 (83%) B6J chimeric males sired more than 1 litter compared with only 3 of 6 (50%) B6NTac chimeras. B6J male chimeras produced more litters per productive mating (3.42 ± 1.73, n = 12) compared to B6NTac chimeras (2.17 ± 1.33, n = 6). Finally, a greater ratio of germline transmitting chimeric males was obtained using B6J blastocysts (9/14; 64%) compared with chimeras produced using B6NTac blastocysts (4/11; 36%). Use of B6J host blastocysts for microinjection of ES cells may offer improvements over blastocysts from B6NTac and possibly other sub-strains of C57BL/6 mice.

  3. Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency.

    PubMed

    Yin, Haifang; Boisguerin, Prisca; Moulton, Hong M; Betts, Corinne; Seow, Yiqi; Boutilier, Jordan; Wang, Qingsong; Walsh, Anthony; Lebleu, Bernard; Wood, Matthew Ja

    2013-09-24

    We have recently reported that cell-penetrating peptides (CPPs) and novel chimeric peptides containing CPP (referred as B peptide) and muscle-targeting peptide (referred as MSP) motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs) in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was investigated. Four additional chimeric peptide-PMO conjugates including newly identified peptide 9 (B-9-PMO and 9-B-PMO) and control peptide 3 (B-3-PMO and 3-B-PMO) were tested in mdx mice. Immunohistochemical staining, RT-PCR and western blot results indicated that B-9-PMO induced significantly higher level of exon skipping and dystrophin restoration than its counterpart (9-B-PMO), further corroborating the notion that the activity of chimeric peptide-PMO conjugates is dependent on relative position of the tissue-targeting peptide motif within the chimeric peptide with respect to PMOs. Subsequent mechanistic studies showed that enhanced cellular uptake of B-MSP-PMO into muscle cells leads to increased exon-skipping activity in comparison with MSP-B-PMO. Surprisingly, further evidence showed that the uptake of chimeric peptide-PMO conjugates of both orientations (B-MSP-PMO and MSP-B-PMO) was ATP- and temperature-dependent and also partially mediated by heparan sulfate proteoglycans (HSPG), indicating that endocytosis is likely the main uptake pathway for both chimeric peptide-PMO conjugates. Collectively, our data demonstrate that peptide orientation in chimeric peptides is an important parameter that determines cellular uptake and activity when conjugated directly to oligonucleotides. These observations provide insight into the design of improved cell targeting compounds for future therapeutics studies.Molecular Therapy-Nucleic Acids (2013) 2, e124; doi:10.1038/mtna.2013.51; published online 24 September 2013.

  4. Pharmacokinetics and effects on serum cholinesterase activities of organophosphorus pesticides acephate and chlorpyrifos in chimeric mice transplanted with human hepatocytes.

    PubMed

    Suemizu, Hiroshi; Sota, Shigeto; Kuronuma, Miyuki; Shimizu, Makiko; Yamazaki, Hiroshi

    2014-11-01

    Organophosphorus pesticides acephate and chlorpyrifos in foods have potential to impact human health. The aim of the current study was to investigate the pharmacokinetics of acephate and chlorpyrifos orally administered at lowest-observed-adverse-effect-level doses in chimeric mice transplanted with human hepatocytes. Absorbed acephate and its metabolite methamidophos were detected in serum from wild type mice and chimeric mice orally administered 150mg/kg. Approximately 70% inhibition of cholinesterase was evident in plasma of chimeric mice with humanized liver (which have higher serum cholinesterase activities than wild type mice) 1day after oral administrations of acephate. Adjusted animal biomonitoring equivalents from chimeric mice studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Estimated plasma concentrations of acephate and chlorpyrifos in humans were consistent with reported concentrations. Acephate cleared similarly in humans and chimeric mice but accidental/incidental overdose levels of chlorpyrifos cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in mice. The data presented here illustrate how chimeric mice transplanted with human hepatocytes in combination with a simple PBPK model can assist evaluations of toxicological potential of organophosphorus pesticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Production and characterization of a recombinant chimeric antigen consisting botulinum neurotoxin serotypes A, B and E binding subdomains.

    PubMed

    Ebrahimi, Firouz; Rasaee, Mohammad Javad; Mousavi, Seyed Latif; Babaeipour, Valiollah

    2010-02-01

    Botulinum neurotoxins (BoNTs) are potent toxicant proteins composed of a heavy chain (100 kDa) and a light chain (50 kDa) of seven (A-G) serotypes that is responsible for botulism syndrome. In this study, polypeptides from C-terminal heavy chain of BoNTs serotypes A, B and E to the length of 54, 45 and 48 amino acid respectively were selected, linked together using a hydrophobic linker and expressed in E. coli. The expression efficiency of the chimeric protein was found to be 51%. The chimeric protein was produced in the form of inclusion body (IB) both at two studied temperatures, 30 degrees C and 37 degrees C. This IB was extracted by ultracentrifugation and followed for chimeric protein solubilization and purification using of ultrafiltration and preparative electrophoresis. The purified chimeric protein was characterized using blotting and ELISA. To evaluate the protection ability of this chimeric antigen against their active toxins, it was injected to mice and the antibody titer as well as the extent of protectivity were determined. Mice given three injections (10 microg/mice) of the antigen were protected against an intra-peritoneal administration of 10 LD(50 )of serotypes A and E, but 100 LD(50) of serotype B. We conclude that a significant correlation exists between the antigenic characteristics and protection capability of the chimeric protein prepared in this study.

  6. ChiTaRS-3.1-the enhanced chimeric transcripts and RNA-seq database matched with protein-protein interactions.

    PubMed

    Gorohovski, Alessandro; Tagore, Somnath; Palande, Vikrant; Malka, Assaf; Raviv-Shay, Dorith; Frenkel-Morgenstern, Milana

    2017-01-04

    Discovery of chimeric RNAs, which are produced by chromosomal translocations as well as the joining of exons from different genes by trans-splicing, has added a new level of complexity to our study and understanding of the transcriptome. The enhanced ChiTaRS-3.1 database (http://chitars.md.biu.ac.il) is designed to make widely accessible a wealth of mined data on chimeric RNAs, with easy-to-use analytical tools built-in. The database comprises 34 922: chimeric transcripts along with 11 714: cancer breakpoints. In this latest version, we have included multiple cross-references to GeneCards, iHop, PubMed, NCBI, Ensembl, OMIM, RefSeq and the Mitelman collection for every entry in the 'Full Collection'. In addition, for every chimera, we have added a predicted Chimeric Protein-Protein Interaction (ChiPPI) network, which allows for easy visualization of protein partners of both parental and fusion proteins for all human chimeras. The database contains a comprehensive annotation for 34 922: chimeric transcripts from eight organisms, and includes the manual annotation of 200 sense-antiSense (SaS) chimeras. The current improvements in the content and functionality to the ChiTaRS database make it a central resource for the study of chimeric transcripts and fusion proteins. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Current status of prediction of drug disposition and toxicity in humans using chimeric mice with humanized liver.

    PubMed

    Kitamura, Shigeyuki; Sugihara, Kazumi

    2014-01-01

    1. Human-chimeric mice with humanized liver have been constructed by transplantation of human hepatocytes into several types of mice having genetic modifications that injure endogenous liver cells. Here, we focus on liver urokinase-type plasminogen activator-transgenic severe combined immunodeficiency (uPA/SCID) mice, which are the most widely used human-chimeric mice. Studies so far indicate that drug metabolism, drug transport, pharmacological effects and toxicological action in these mice are broadly similar to those in humans. 2. Expression of various drug-metabolizing enzymes is known to be different between humans and rodents. However, the expression pattern of cytochrome P450, aldehyde oxidase and phase II enzymes in the liver of human-chimeric mice resembles that in humans, not that in the host mice. 3. Metabolism of various drugs, including S-warfarin, zaleplon, ibuprofen, naproxen, coumarin, troglitazone and midazolam, in human-chimeric mice is mediated by human drug-metabolizing enzymes, not by host mouse enzymes, and thus resembles that in humans. 4. Pharmacological and toxicological effects of various drugs in human-chimeric mice are also similar to those in humans. 5. The current consensus is that chimeric mice with humanized liver are useful to predict drug metabolism catalyzed by cytochrome P450, aldehyde oxidase and phase II enzymes in humans in vivo and in vitro. Some remaining issues are discussed in this review.

  8. Chimeric mitochondrial peptides from contiguous regular and swinger RNA.

    PubMed

    Seligmann, Hervé

    2016-01-01

    Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.

  9. Potential Therapeutic Use of Relaxin in Healing Cranial Bone Defects

    DTIC Science & Technology

    2016-08-01

    successful production of chimeric mice after irradiation and GFP+ bone marrow transplantation; reproducible implementation of uniform cranial lesions of ~1.5...cranial defect model in chimeric mice transplanted with GFP+ bone marrow. We follow defect closure by three dimensional microcomputed tomography (µCT...histolomorphometry and immunohistochemistry, respectively. 2. Keywords GFP+ chimeric mice, cranial defect closure, relaxin, angiogenesis

  10. Alloreactive Regulatory T Cells Allow the Generation of Mixed Chimerism and Transplant Tolerance.

    PubMed

    Ruiz, Paulina; Maldonado, Paula; Hidalgo, Yessia; Sauma, Daniela; Rosemblatt, Mario; Bono, Maria Rosa

    2015-01-01

    The induction of donor-specific transplant tolerance is one of the main goals of modern immunology. Establishment of a mixed chimerism state in the transplant recipient has proven to be a suitable strategy for the induction of long-term allograft tolerance; however, current experimental recipient preconditioning protocols have many side effects, and are not feasible for use in future therapies. In order to improve the current mixed chimerism induction protocols, we developed a non-myeloablative bone-marrow transplant (NM-BMT) protocol using retinoic acid (RA)-induced alloantigen-specific Tregs, clinically available immunosuppressive drugs, and lower doses of irradiation. We demonstrate that RA-induced alloantigen-specific Tregs in addition to a NM-BMT protocol generates stable mixed chimerism and induces tolerance to allogeneic secondary skin allografts in mice. Therefore, the establishment of mixed chimerism through the use of donor-specific Tregs rather than non-specific immunosuppression could have a potential use in organ transplantation.

  11. Lipid raft-like liposomes used for targeted delivery of a chimeric entry-inhibitor peptide with anti-HIV-1 activity.

    PubMed

    Gómara, María José; Pérez-Pomeda, Ignacio; Gatell, José María; Sánchez-Merino, Victor; Yuste, Eloisa; Haro, Isabel

    2017-02-01

    The work reports the design and synthesis of a chimeric peptide that is composed of the peptide sequences of two entry inhibitors which target different sites of HIV-1 gp41. The chimeric peptide offers the advantage of targeting two gp41 regions simultaneously: the fusion peptide and the loop both of which are membrane active and participate in the membrane fusion process. We therefore use lipid raft-like liposomes as a tool to specifically direct the chimeric inhibitor peptide to the membrane domains where the HIV-1 envelope protein is located. Moreover, the liposomes that mimic the viral membrane composition protect the chimeric peptide against proteolytic digestion thereby increasing the stability of the peptide. The described liposome preparations are suitable nanosystems for managing hydrophobic entry-inhibitor peptides as putative therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Case of 46,XX/47,XY, +21 chimerism in a newborn infant with ambiguous genitalia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawai, Tomoko; Yoshimoto, Masaaki; Kinoshita, Ei-ichi

    The authors describe the whole-body chimerism in a newborn infant with small phallus, pseudo-vaginal perineal hypospadias, and a bifid scrotum containing gonads. The human testis determining factor gene (SRY) was detected by PCR amplification. GTG-banding chromosome analysis in peripheral blood lymphocytes and cultured fibroblasts derived from right cubital skin showed a 46,XX/47,XY, +21 karyotype. Their ratios in each cell line were 294:5 and 178:7, respectively. QFQ-banding chromosome analysis documented 3 heteromorphic satellites on trisomic chromsomes 21 in the 47,XY,+21 cell line and a homozygous satellite pattern in the 46,XX cell line. Heteromorphic patterns of chromsomes 4, 13, 14, and 22more » were also different between the two cell lines. To our knowledge, such disomy/trisomy chimeras have not been described previously. 10 refs., 3 figs.« less

  13. Targeted Induction of Interferon-λ in Humanized Chimeric Mouse Liver Abrogates Hepatotropic Virus Infection

    PubMed Central

    Kameyama, Takeshi; Tokunaga, Yuko; Nishito, Yasumasa; Hirabayashi, Kazuko; Yano, Junichi; Ochiya, Takahiro; Tateno, Chise; Tanaka, Yasuhito; Mizokami, Masashi; Tsukiyama-Kohara, Kyoko; Inoue, Kazuaki; Yoshiba, Makoto; Takaoka, Akinori; Kohara, Michinori

    2013-01-01

    Background & Aims The interferon (IFN) system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV) and hepatitis B virus (HBV). Methods This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC). Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs) in the livers and sera of these humanized chimeric mice. Results Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level) of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic) tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1), suggesting dual recognition of LIC-pIC by both sensor adaptor pathways. Conclusions These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection. PMID:23555725

  14. Chimeric bovine respiratory syncytial virus with attachment and fusion glycoproteins replaced by bovine parainfluenza virus type 3 hemagglutinin-neuraminidase and fusion proteins.

    PubMed

    Stope, M B; Karger, A; Schmidt, U; Buchholz, U J

    2001-10-01

    Chimeric bovine respiratory syncytial viruses (BRSV) expressing glycoproteins of bovine parainfluenza virus type 3 (BPIV-3) instead of BRSV glycoproteins were generated from cDNA. In the BRSV antigenome cDNA, the open reading frames of the major BRSV glycoproteins, attachment protein G and fusion protein F, were replaced individually or together by those of the BPIV-3 hemagglutinin-neuraminidase (HN) and/or fusion (F) glycoproteins. Recombinant virus could not be recovered from cDNA when the BRSV F open reading frame was replaced by the BPIV-3 F open reading frame. However, cDNA recovery of the chimeric virus rBRSV-HNF, with both glycoproteins replaced simultaneously, and of the chimeric virus rBRSV-HN, with the BRSV G protein replaced by BPIV-3 HN, was successful. The replication rates of both chimeras were similar to that of standard rBRSV. Moreover, rBRSV-HNF was neutralized by antibodies specific for BPIV-3, but not by antibodies specific to BRSV, demonstrating that the BRSV glycoproteins can be functionally replaced by BPIV-3 glycoproteins. In contrast, rBRSV-HN was neutralized by BRSV-specific antisera, but not by BPIV-3 specific sera, showing that infection of rBRSV-HN is mediated by BRSV F. Hemadsorption of cells infected with rBRSV-HNF and rBRSV-HN proved that BPIV-3 HN protein expressed by rBRSV is functional. Colocalization of the BPIV-3 glycoproteins with BRSV M protein was demonstrated by confocal laser scan microscopy. Moreover, protein analysis revealed that the BPIV-3 glycoproteins were present in chimeric virions. Taken together, these data indicate that the heterologous glycoproteins were not only expressed but were incorporated into the envelope of recombinant BRSV. Thus, the envelope glycoproteins derived from a member of the Respirovirus genus can together functionally replace their homologs in a Pneumovirus background.

  15. Targeted induction of interferon-λ in humanized chimeric mouse liver abrogates hepatotropic virus infection.

    PubMed

    Nakagawa, Shin-ichiro; Hirata, Yuichi; Kameyama, Takeshi; Tokunaga, Yuko; Nishito, Yasumasa; Hirabayashi, Kazuko; Yano, Junichi; Ochiya, Takahiro; Tateno, Chise; Tanaka, Yasuhito; Mizokami, Masashi; Tsukiyama-Kohara, Kyoko; Inoue, Kazuaki; Yoshiba, Makoto; Takaoka, Akinori; Kohara, Michinori

    2013-01-01

    The interferon (IFN) system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV) and hepatitis B virus (HBV). This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC). Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs) in the livers and sera of these humanized chimeric mice. Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level) of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic) tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1), suggesting dual recognition of LIC-pIC by both sensor adaptor pathways. These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.

  16. Hemispheric metacontrol and cerebral dominance in healthy individuals investigated by means of chimeric faces.

    PubMed

    Urgesi, Cosimo; Bricolo, Emanuela; Aglioti, Salvatore M

    2005-08-01

    Cerebral dominance and hemispheric metacontrol were investigated by testing the ability of healthy participants to match chimeric, entire, or half faces presented tachistoscopically. The two hemi-faces compounding chimeric or entire stimuli were presented simultaneously or asynchronously at different exposure times. Participants did not consciously detect chimeric faces for simultaneous presentations lasting up to 40 ms. Interestingly, a 20 ms separation between each half-chimera was sufficient to induce detection of conflicts at a conscious level. Although the presence of chimeric faces was not consciously perceived, performance on chimeric faces was poorer than on entire- and half-faces stimuli, thus indicating an implicit processing of perceptual conflicts. Moreover, the precedence of hemispheric stimulation over-ruled the right hemisphere dominance for face processing, insofar as the hemisphere stimulated last appeared to influence the response. This dynamic reversal of cerebral dominance, however, was not caused by a shift in hemispheric specialization, since the level of performance always reflected the right hemisphere specialization for face recognition. Thus, the dissociation between hemispheric dominance and specialization found in the present study hints at the existence of hemispheric metacontrol in healthy individuals.

  17. Chimeric peptide containing both B and T cells epitope of tumor-associated antigen L6 enhances anti-tumor effects in HLA-A2 transgenic mice.

    PubMed

    Lin, Su-I; Huang, Ming-Hsi; Chang, Yu-Wen; Chen, I-Hua; Roffler, Steve; Chen, Bing-Mae; Sher, Yuh-Pyng; Liu, Shih-Jen

    2016-07-28

    Synthetic peptides are attractive for cancer immunotherapy because of their safety and flexibility. In this report, we identified a new B cell epitope of tumor-associated antigen L6 (TAL6) that could induce antibody-dependent cellular cytotoxicity (ADCC) in vivo. We incorporated the B cell epitope with a cytotoxic T lymphocyte (CTL) and a helper T (Th) epitope to form a chimeric long peptide. We formulated the chimeric peptide with different adjuvants to immunize HLA-A2 transgenic mice and evaluate their immunogenicity. The chimeric peptide formulated with an emulsion type nanoparticle (PELC) adjuvant and a toll-like receptor 9 agonist (CpG ODN) (PELC/CpG) induced the greatest ADCC and CTL responses. The induced anti-tumor immunity inhibited the growth of TAL6-positive cancer cells. Moreover, we observed that immunization with the chimeric peptide inhibited cancer cell migration in vitro and metastasis in vivo. These data suggest that a chimeric peptide containing both B and T cell epitopes of TAL6 formulated with PELC/CpG adjuvant is feasible for cancer immunotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Expression of the leukemia-associated CBF{beta}/SMMHC chimeric gene causes transformation of 3T3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajra, A.; Liu, P.; Collins, E.S.

    1994-09-01

    A pericentric inversion of chromosome 16 (inv(16)(p13;q22)) is consistently seen in acute myeloid leukemia of the M4Eo subtype. This inversion fuses almost the entire coding region of the gene encoding of the {beta} subunit of the heterodimeric transcription factor CBF/PEBP2 to the region of the MYH11 gene encoding the rod domain for the smooth muscle myosin heavy chain (SMMHC). To investigate the biological properties of the CBF{beta}/SMMHC fusion protein, we have generated 3T3 cell lines that stably express the CBF{beta}/SMMHC chimeric cDNA or the normal, nonchimeric CBF{beta} and SMMHC cDNAs. 3T3 cells expressing CBF{beta}/SMMHC acquire a transformed phenotype, as indicatedmore » by altered cell morphology, formation of foci, and growth in soft agar. Cells constitutively overexpressing the normal CBF{beta} cDNA or the rod region of SMMHC remain nontransformed. Western blot analysis using antibodies to CBF{beta} and the SMMHC rod demonstrates that stably transfected cells express the appropriate chimeric or normal protein. Electrophoretic mobility shift assays reveal that cells transformed by the chimeric cDNA do not have a CBF-DNA complex of the expected mobility, but instead contain a large complex with CBF DNA-binding activity that fails to migrate out of the gel wells. In order to define the regions of CBF{beta}/SMMHC necessary for 3T3 transformation, we have stably transfected cells with mutant CBF{beta}/SMMHC cDNAs containing various deletions of the coding region. Analysis of these cell lines indicates that the transformation property of CBF{beta}/SMMHC requires regions of CBF{beta} known to be necessary for association with the DNA-binding CBF{alpha} subunit, and also requires an intact SMMHC carboxyl terminus, which is necessary for formation of the coiled coil domain of the myosin rod.« less

  19. Bacterial Artificial Chromosome Libraries for Mouse Sequencing and Functional Analysis

    PubMed Central

    Osoegawa, Kazutoyo; Tateno, Minako; Woon, Peng Yeong; Frengen, Eirik; Mammoser, Aaron G.; Catanese, Joseph J.; Hayashizaki, Yoshihide; de Jong, Pieter J.

    2000-01-01

    Bacterial artificial chromosome (BAC) and P1-derived artificial chromosome (PAC) libraries providing a combined 33-fold representation of the murine genome have been constructed using two different restriction enzymes for genomic digestion. A large-insert PAC library was prepared from the 129S6/SvEvTac strain in a bacterial/mammalian shuttle vector to facilitate functional gene studies. For genome mapping and sequencing, we prepared BAC libraries from the 129S6/SvEvTac and the C57BL/6J strains. The average insert sizes for the three libraries range between 130 kb and 200 kb. Based on the numbers of clones and the observed average insert sizes, we estimate each library to have slightly in excess of 10-fold genome representation. The average number of clones found after hybridization screening with 28 probes was in the range of 9–14 clones per marker. To explore the fidelity of the genomic representation in the three libraries, we analyzed three contigs, each established after screening with a single unique marker. New markers were established from the end sequences and screened against all the contig members to determine if any of the BACs and PACs are chimeric or rearranged. Only one chimeric clone and six potential deletions have been observed after extensive analysis of 113 PAC and BAC clones. Seventy-one of the 113 clones were conclusively nonchimeric because both end markers or sequences were mapped to the other confirmed contig members. We could not exclude chimerism for the remaining 41 clones because one or both of the insert termini did not contain unique sequence to design markers. The low rate of chimerism, ∼1%, and the low level of detected rearrangements support the anticipated usefulness of the BAC libraries for genome research. [The sequence data described in this paper have been submitted to the GenBank data library under accession numbers AQ797173–AQ797398.] PMID:10645956

  20. Adoptive immunotherapy against kidney targets in dog-leukocyte antigen-identical mixed hematopoietic canine chimeras.

    PubMed

    Junghanss, Christian; Takatu, Alessandra; Little, Marie-Terese; Maciej Zaucha, J; Zellmer, Eustacia; Yunusov, Murad; Sale, George; Georges, George E; Storb, Rainer

    2003-02-15

    Stable mixed-donor-host-hematopoietic chimerism can serve as a platform for adoptive immunotherapy. Infusions of donor lymphocytes (DLI) sensitized against hematopoietic cells converted mixed hematopoietic into full-donor chimerism in dog-leukocyte antigen (DLA)-identical littermates. Whether sensitization against tissue of solid organs leads to organ-specific immunity that can be transferred by DLI was unknown and was investigated in these experiments using the kidney as target. DLA-identical recipients with established stable mixed-donor-host-hematopoietic chimerism were used. In five pairs, hematopoietic stem-cell transplant (HSCT) donors were sensitized by kidney transplantation from the respective chimeras. In a second group, five HSCT donors received vaccinations that were generated from kidney cells of the respective mixed chimeras. Twenty-eight days after sensitization, DLI were administered to the mixed-hematopoietic chimeras. All HSCT donors rejected their kidney grafts from their mixed-chimeric recipients within 22 to 45 days. DLI caused no sustained graft-versus-kidney effects in the mixed-chimeric recipients. However, DLI donors sensitized by kidney transplantation converted 4 of 5 mixed chimeras into virtually complete (>95%) donor-type chimeras, compared with 1 of 5 mixed chimeras given DLI by vaccination from sensitized donors. Although DLA-identical kidney grafts from mixed-hematopoietic chimeras were readily rejected by their HSCT donors, subsequent transfusions of sensitized-donor lymphocytes into mixed chimeras converted mixed to all-donor chimerism but failed to induce graft-versus-kidney effects. Vaccination strategies in lieu of kidney grafts failed to convert mixed chimerism.

  1. The use of neural networks and texture analysis for rapid objective selection of regions of interest in cytoskeletal images.

    PubMed

    Derkacs, Amanda D Felder; Ward, Samuel R; Lieber, Richard L

    2012-02-01

    Understanding cytoskeletal dynamics in living tissue is prerequisite to understanding mechanisms of injury, mechanotransduction, and mechanical signaling. Real-time visualization is now possible using transfection with plasmids that encode fluorescent cytoskeletal proteins. Using this approach with the muscle-specific intermediate filament protein desmin, we found that a green fluorescent protein-desmin chimeric protein was unevenly distributed throughout the muscle fiber, resulting in some image areas that were saturated as well as others that lacked any signal. Our goal was to analyze the muscle fiber cytoskeletal network quantitatively in an unbiased fashion. To objectively select areas of the muscle fiber that are suitable for analysis, we devised a method that provides objective classification of regions of images of striated cytoskeletal structures into "usable" and "unusable" categories. This method consists of a combination of spatial analysis of the image using Fourier methods along with a boosted neural network that "decides" on the quality of the image based on previous training. We trained the neural network using the expert opinion of three scientists familiar with these types of images. We found that this method was over 300 times faster than manual classification and that it permitted objective and accurate classification of image regions.

  2. Local Tacrolimus (FK506) Delivery for Prevention of Acute Rejection in the Nonhuman Primate Delayed Mixed Chimerism Vascularized Composite Allograft Tolerance Induction Protocol

    DTIC Science & Technology

    2016-10-01

    Chimerism Vascularized Composite Allograft Tolerance Induction Protocol PRINCIPAL INVESTIGATORS: Dr. Curtis L. Cetrulo CONTRACTING ORGANIZATION...Tacrolimus (FK506) Delivery for Prevention of Acute Rejection in the Nonhuman Primate Delayed Mixed Chimerism Vascularized Composite Allograft Tolerance...tacrolimus, FK506, vascularized composite allografts , immune rejection, preclinical, transplant, nonhuman primate model, degradable polymer, tyrosine

  3. Smart, Injury-Triggered Therapy for Ocular Trauma

    DTIC Science & Technology

    2015-10-01

    attachment surgery. We genetically engineered “protease activity sensor” (PAS) as chimeric transmembrane protein that can respond to increase in...results or key outcomes We genetically engineered “protease activity sensor” (PAS) as chimeric transmembrane protein that can respond to increase in...6 A B Fig. 1. The effects of ionomycin on the shedding of chimeric fractalkine constructs from HEK293 cells in vitro. (A

  4. [Genetic transformation of flax (Linum usitatissimum L.) with chimeric GFP-TUA6 gene for visualisation of microtubules].

    PubMed

    Shisha, E N; Korkhovoĭ, V I; Baer, G Ia; Guzenko, E V; Lemesh, V A; Kartel', N A; Emets, A I; Blium, Ia B

    2013-01-01

    The data of Agrobacterium-mediated transformation of some Linum usitatissimum cultivars zoned on the territories of Belarus and Ukraine with the plasmid carrying chimeric GFP-TUA6 gene and nptII gene as selectable marker conferring resistance to kanamycin are presented in this study. Transformation was affected by a number of factors including optical density (OD600), time of inoculation of explants with Agrobacterium and co-culture conditions. Transgenic nature of obtained lines was confirmed by PCR analysis. Expression of GFP-TUA6 gene was detected with confocal laser scanning microscopy. The obtained transgenic lines can be used for further functional studies the role of microtubules in the processes of building the flax fibres and resistance to wind.

  5. Nitrogen deposition in Spain: modeled patterns and threatened habitats within the Natura 2000 network.

    PubMed

    García-Gómez, H; Garrido, J L; Vivanco, M G; Lassaletta, L; Rábago, I; Àvila, A; Tsyro, S; Sánchez, G; González Ortiz, A; González-Fernández, I; Alonso, R

    2014-07-01

    The Mediterranean Basin presents an extraordinary biological richness but very little information is available on the threat that air pollution, and in particular reactive nitrogen (N), can pose to biodiversity and ecosystem functioning. This study represents the first approach to assess the risk of N enrichment effects on Spanish ecosystems. The suitability of EMEP and CHIMERE air quality model systems as tools to identify those areas where effects of atmospheric N deposition could be occurring was tested. For this analysis, wet deposition of NO3(-) and NH4(+) estimated with EMEP and CHIMERE model systems were compared with measured data for the period 2005-2008 obtained from different monitoring networks in Spain. Wet N deposition was acceptably predicted by both models, showing better results for oxidized than for reduced nitrogen, particularly when using CHIMERE. Both models estimated higher wet deposition values in northern and northeastern Spain, and decreasing along a NE-SW axis. Total (wet+dry) nitrogen deposition in 2008 reached maxima values of 19.4 and 23.0 kg N ha(-1) year(-1) using EMEP and CHIMERE models respectively. Total N deposition was used to estimate the exceedance of N empirical critical loads in the Natura 2000 network. Grassland habitats proved to be the most threatened group, particularly in the northern alpine area, pointing out that biodiversity conservation in these protected areas could be endangered by N deposition. Other valuable mountain ecosystems can be also threatened, indicating the need to extend atmospheric deposition monitoring networks to higher altitudes in Spain. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Versatile bio-ink for covalent immobilization of chimeric avidin on sol-gel substrates.

    PubMed

    Heikkinen, Jarkko J; Kivimäki, Liisa; Määttä, Juha A E; Mäkelä, Inka; Hakalahti, Leena; Takkinen, Kristiina; Kulomaa, Markku S; Hytönen, Vesa P; Hormi, Osmo E O

    2011-10-15

    A bio-ink for covalent deposition of thermostable, high affinity biotin-binding chimeric avidin onto sol-gel substrates was developed. The bio-ink was prepared from heterobifunctional crosslinker 6-maleimidohexanoic acid N-hydroxysuccinimide which was first reacted either with 3-aminopropyltriethoxysilane or 3-aminopropyldimethylethoxysilane to form silane linkers 6-maleimide-N-(3-(triethoxysilyl)propyl)hexanamide or -(ethoxydimethylsilyl)propyl)-hexanamide. C-terminal cysteine genetically engineered to chimeric avidin was reacted with the maleimide group of silane linker in methanol/PBS solution to form a suspension, which was printed on sol-gel modified PMMA film. Different concentrations of chimeric avidin and ratios between silane linkers were tested to find the best properties for the bio-ink to enable gravure or inkjet printing. Bio-ink prepared from 3-aminopropyltriethoxysilane was found to provide the highest amount of active immobilized chimeric avidin. The developed bio-ink was shown to be valuable for automated fabrication of avidin-functionalized polymer films. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Tumor radioimmunoimaging of chimeric antibody in nude mice with hepatoma xenograft

    PubMed Central

    Gong, Yi; Liu, Kang-Da; Zhou, Ge; Xue, Qiong; Chen, Shao-Liang; Tang, Zhao-You

    1998-01-01

    AIM: To study the radioimmunoimaging (RAII) using the human/mouse chimeric Ab to evaluate its targeting activity in animal models. METHODS: To chimeric Ab was labeled with 131I. RAII was performed at different intervals after injection of radio-labeled Abs in nude mice with human hepatoma xenograft, and tissue distribution of radioactivity was measured. Comparison was made in the chimeric Ab between the single segment Ab and previous murine mAb against HBxAg. RESULTS: The experimental objects developed tumor-positive image after 2 days of radio-labeled Abs injection, and the peak accumulation of radioactivity fell on the 7th day. The tumor/liver ratioactivity of the chimeric Ab, single segment Ab, anti-HBx mAb, and the control group was 281 ± 0.21, 2.44 ± 0.16, 4.60 ± 0.19, and 0.96 ± 0.14, respectively. CONCLUSION: The genetic engineering Abs have a considerable targeting activity which can be used as a novel humanized vector in the targeting treatment of liver cancer. PMID:11819217

  8. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome

    NASA Astrophysics Data System (ADS)

    Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V.

    2015-06-01

    The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement.

  9. Mechanical coupling of microtubule-dependent motor teams during peroxisome transport in Drosophila S2 cells.

    PubMed

    De Rossi, María Cecilia; Wetzler, Diana E; Benseñor, Lorena; De Rossi, María Emilia; Sued, Mariela; Rodríguez, Daniela; Gelfand, Vladimir; Bruno, Luciana; Levi, Valeria

    2017-12-01

    Intracellular transport requires molecular motors that step along cytoskeletal filaments actively dragging cargoes through the crowded cytoplasm. Here, we explore the interplay of the opposed polarity motors kinesin-1 and cytoplasmic dynein during peroxisome transport along microtubules in Drosophila S2 cells. We used single particle tracking with nanometer accuracy and millisecond time resolution to extract quantitative information on the bidirectional motion of organelles. The transport performance was studied in cells expressing a slow chimeric plus-end directed motor or the kinesin heavy chain. We also analyzed the influence of peroxisomes membrane fluidity in methyl-β-ciclodextrin treated cells. The experimental data was also confronted with numerical simulations of two well-established tug of war scenarios. The velocity distributions of retrograde and anterograde peroxisomes showed a multimodal pattern suggesting that multiple motor teams drive transport in either direction. The chimeric motors interfered with the performance of anterograde transport and also reduced the speed of the slowest retrograde team. In addition, increasing the fluidity of peroxisomes membrane decreased the speed of the slowest anterograde and retrograde teams. Our results support the existence of a crosstalk between opposed-polarity motor teams. Moreover, the slowest teams seem to mechanically communicate with each other through the membrane to trigger transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Reperfusion injury intensifies the adaptive human T cell alloresponse in a human-mouse chimeric artery model.

    PubMed

    Yi, Tai; Fogal, Birgit; Hao, Zhengrong; Tobiasova, Zuzana; Wang, Chen; Rao, Deepak A; Al-Lamki, Rafia S; Kirkiles-Smith, Nancy C; Kulkarni, Sanjay; Bradley, John R; Bothwell, Alfred L M; Sessa, William C; Tellides, George; Pober, Jordan S

    2012-02-01

    Perioperative nonimmune injuries to an allograft can decrease graft survival. We have developed a model for studying this process using human materials. Human artery segments were transplanted as infrarenal aortic interposition grafts into an immunodeficient mouse host, allowed to "heal in" for 30 days, and then retransplanted into a second mouse host. To induce a reperfusion injury, the healed-in artery segments were incubated for 3 hours under hypoxic conditions ex vivo before retransplantation. To induce immunologic rejection, the animals receiving the retransplanted artery segment were adoptively transferred with human peripheral blood mononuclear cells or purified T cells from a donor allogeneic to the artery 1 week before surgery. To compare rejection of injured versus healthy tissues, these manipulations were combined. Results were analyzed ex vivo by histology, morphometry, immunohistochemistry, and mRNA quantitation or in vivo by ultrasound. Our results showed that reperfusion injury, which otherwise heals with minimal sequelae, intensifies the degree of allogeneic T cell-mediated injury to human artery segments. We developed a new human-mouse chimeric model demonstrating interactions of reperfusion injury and alloimmunity using human cells and tissues that may be adapted to study other forms of nonimmune injury and other types of adaptive immune responses.

  11. Emergence of a Novel Chimeric Gene Underlying Grain Number in Rice

    PubMed Central

    Chen, Hao; Tang, Yanyan; Liu, Jianfeng; Tan, Lubin; Jiang, Jiahuan; Wang, Mumu; Zhu, Zuofeng; Sun, Xianyou; Sun, Chuanqing

    2017-01-01

    Grain number is an important factor in determining grain production of rice (Oryza sativa L.). The molecular genetic basis for grain number is complex. Discovering new genes involved in regulating rice grain number increases our knowledge regarding its molecular mechanisms and aids breeding programs. Here, we identified GRAINS NUMBER 2 (GN2), a novel gene that is responsible for rice grain number, from “Yuanjiang” common wild rice (O. rufipogon Griff.). Transgenic plants overexpressing GN2 showed less grain number, reduced plant height, and later heading date than control plants. Interestingly, GN2 arose through the insertion of a 1094-bp sequence from LOC_Os02g45150 into the third exon of LOC_Os02g56630, and the inserted sequence recruited its nearby sequence to generate the chimeric GN2. The gene structure and expression pattern of GN2 were distinct from those of LOC_Os02g45150 and LOC_Os02g56630. Sequence analysis showed that GN2 may be generated in the natural population of Yuanjiang common wild rice. In this study, we identified a novel functional chimeric gene and also provided information regarding the molecular mechanisms regulating rice grain number. PMID:27986805

  12. The concept of the eudicot shoot apical meristem as it applies to four Spiraea (Rosaceae), one Mentha (Lamiaceae) and one Euonymus (Celastraceae) cultivars based on chimeric analysis

    PubMed Central

    Korn, Robert W.

    2013-01-01

    Background and Aims Eversporting eudicots were sought to see if they behave like gymnosperms. Behaviour of eversporting gymnosperm chimeras indicates a single apical cell is present in SAM and it would be of interest to see if eudicot chimeras have the same behaviour. Methods Four eversporting spireas, the pineapple mint and the Silver King euonymus were inspected for the fate of the yellow (mutant)–green (wild type) chimeras. Key Results As with gymnosperms, unstable eudicot chimeras in the four spireas, the pineapple mint and the Silver King euonymus became stable yellow about 80 % or more of the time and 20 % or less became stable green. Conclusions The statistically significant preponderance of chimeric fates becoming all yellow suggests that a single apical cell resides in the yellow tunica. As with gymnosperms, descendent cells of the yellow replacement corpus cell eventually take over the corpus. Here is the first chimeric set of data to support the hypothesis of a one-celled meristem in eudicots rather than the traditional view of a muticellular meristem. PMID:23482330

  13. Development of a Plant Transformation Selection System Based on Expression of Genes Encoding Gentamicin Acetyltransferases

    PubMed Central

    Hayford, Maria B.; Medford, June I.; Hoffman, Nancy L.; Rogers, Stephen G.; Klee, Harry J.

    1988-01-01

    The development of selectable markers for transformation has been a major factor in the successful genetic manipulation of plants. A new selectable marker system has been developed based on bacterial gentamicin-3-N-acetyltransferases [AAC(3)]. These enzymes inactivate aminoglycoside antibiotics by acetylation. Two examples of AAC(3) enzymes have been manipulated to be expressed in plants. Chimeric AAC(3)-III and AAC(3)-IV genes were assembled using the constitutively expressed cauliflower mosaic virus 35S promoter and the nopaline synthase 3′ nontranslated region. These chimeric genes were engineered into vectors for Agrobacterium-mediated plant transformation. Petunia hybrida and Arabidopsis thaliana tissue transformed with these vectors grew in the presence of normally lethal levels of gentamicin. The transformed nature of regenerated Arabidopsis plants was confirmed by DNA hybridization analysis and inheritance of the selectable phenotype in progeny. The chimeric AAC(3)-IV gene has also been used to select transformants in several additional plant species. These results show that the bacterial AAC(3) genes will serve as useful selectable markers in plant tissue culture. Images Fig. 3 Fig. 4 Fig. 5 PMID:16666057

  14. FXR activation by obeticholic acid or nonsteroidal agonists induces a human-like lipoprotein cholesterol change in mice with humanized chimeric liver.

    PubMed

    Papazyan, Romeo; Liu, Xueqing; Liu, Jingwen; Dong, Bin; Plummer, Emily M; Lewis, Ronald D; Roth, Jonathan D; Young, Mark A

    2018-06-01

    Obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist that regulates bile acid and lipid metabolism. FXR activation induces distinct changes in circulating cholesterol among animal models and humans. The mechanistic basis of these effects has been elusive because of difficulties in studying lipoprotein homeostasis in mice, which predominantly package circulating cholesterol in HDLs. Here, we tested the effects of OCA in chimeric mice whose livers are mostly composed (≥80%) of human hepatocytes. Chimeric mice exhibited a human-like ratio of serum LDL cholesterol (LDL-C) to HDL cholesterol (HDL-C) at baseline. OCA treatment in chimeric mice increased circulating LDL-C and decreased circulating HDL-C levels, demonstrating that these mice closely model the cholesterol effects of FXR activation in humans. Mechanistically, OCA treatment increased hepatic cholesterol in chimeric mice but not in control mice. This increase correlated with decreased SREBP-2 activity and target gene expression, including a significant reduction in LDL receptor protein. Cotreatment with atorvastatin reduced total cholesterol, rescued LDL receptor protein levels, and normalized serum LDL-C. Treatment with two clinically relevant nonsteroidal FXR agonists elicited similar lipoprotein and hepatic changes in chimeric mice, suggesting that the increase in circulating LDL-C is a class effect of FXR activation.

  15. Mixed chimerism and split tolerance

    PubMed Central

    Al-Adra, David P.

    2011-01-01

    Establishing hematopoietic mixed chimerism can lead to donor-specific tolerance to transplanted organs and may eliminate the need for long-term immunosuppressive therapy, while also preventing chronic rejection. In this review, we discuss central and peripheral mechanisms of chimerism induced tolerance. However, even in the long-lasting presence of a donor organ or donor hematopoietic cells, some allogeneic tissues from the same donor can be rejected; a phenomenon known as split tolerance. With the current goal of creating mixed chimeras using clinically feasible amounts of donor bone marrow and with minimal conditioning, split tolerance may become more prevalent and its mechanisms need to be explored. Some predisposing factors that may increase the likelihood of split tolerance are immunogenicity of the graft, certain donor-recipient combinations, prior sensitization, location and type of graft and minimal conditioning chimerism induction protocols. Additionally, split tolerance may occur due to a differential susceptibility of various types of tissues to rejection. The mechanisms involved in a tissue’s differential susceptibility to rejection include the presence of polymorphic tissue-specific antigens and variable sensitivity to indirect pathway effector mechanisms. Finally, we review the clinical attempts at allograft tolerance through the induction of chimerism; studies that are revealing the complex relationship between chimerism and tolerance. This relationship often displays split tolerance, and further research into its mechanisms is warranted. PMID:22509425

  16. Reversible Heat-Induced Inactivation of Chimeric β-Glucuronidase in Transgenic Plants1

    PubMed Central

    Almoguera, Concepción; Rojas, Anabel; Jordano, Juan

    2002-01-01

    We compared the expression patterns in transgenic tobacco (Nicotiana tabacum) of two chimeric genes: a translational fusion to β-glucuronidase (GUS) and a transcriptional fusion, both with the same promoter and 5′-flanking sequences of Ha hsp17.7 G4, a small heat shock protein (sHSP) gene from sunflower (Helianthus annuus). We found that immediately after heat shock, the induced expression from the two fusions in seedlings was similar, considering chimeric mRNA or GUS protein accumulation. Surprisingly, we discovered that the chimeric GUS protein encoded by the translational fusion was mostly inactive in such conditions. We also found that this inactivation was fully reversible. Thus, after returning to control temperature, the GUS activity was fully recovered without substantial changes in GUS protein accumulation. In contrast, we did not find differences in the in vitro heat inactivation of the respective GUS proteins. Insolubilization of the chimeric GUS protein correlated with its inactivation, as indicated by immunoprecipitation analyses. The inclusion in another chimeric gene of the 21 amino-terminal amino acids from a different sHSP lead to a comparable reversible inactivation. That effect not only illustrates unexpected post-translational problems, but may also point to sequences involved in interactions specific to sHSPs and in vivo heat stress conditions. PMID:12011363

  17. Chimeric autologous/allogeneic constructs for skin regeneration.

    PubMed

    Rasmussen, Cathy Ann; Tam, Joshua; Steiglitz, Barry M; Bauer, Rebecca L; Peters, Noel R; Wang, Ying; Anderson, R Rox; Allen-Hoffmann, B Lynn

    2014-08-01

    The ideal treatment for severe cutaneous injuries would eliminate the need for autografts and promote fully functional, aesthetically pleasing autologous skin regeneration. NIKS progenitor cell-based skin tissues have been developed to promote healing by providing barrier function and delivering wound healing factors. Independently, a device has recently been created to "copy" skin by harvesting full-thickness microscopic tissue columns (MTCs) in lieu of autografts traditionally harvested as sheets. We evaluated the feasibility of combining these two technologies by embedding MTCs in NIKS-based skin tissues to generate chimeric autologous/allogeneic constructs. Chimeric constructs have the potential to provide immediate wound coverage, eliminate painful donor site wounds, and promote restoration of a pigmented skin tissue possessing hair follicles, sweat glands, and sebaceous glands. After MTC insertion, chimeric constructs and controls were reintroduced into air-interface culture and maintained in vitro for several weeks. Tissue viability, proliferative capacity, and morphology were evaluated after long-term culture. Our results confirmed successful MTC insertion and integration, and demonstrated the feasibility of generating chimeric autologous/allogeneic constructs that preserved the viability, proliferative capacity, and structure of autologous pigmented skin. These feasibility studies established the proof-of-principle necessary to further develop chimeric autologous/allogeneic constructs for the treatment of complex skin defects. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  18. Chimeric vaccine composed of viral peptide and mammalian heat-shock protein 60 peptide protects against West Nile virus challenge

    PubMed Central

    Gershoni-Yahalom, Orly; Landes, Shimon; Kleiman-Shoval, Smadar; Ben-Nathan, David; Kam, Michal; Lachmi, Bat-El; Khinich, Yevgeny; Simanov, Michael; Samina, Itzhak; Eitan, Anat; Cohen, Irun R; Rager-Zisman, Bracha; Porgador, Angel

    2010-01-01

    The protective efficacy and immunogenicity of a chimeric peptide against West Nile virus (WNV) was evaluated. This virus is the aetiological agent of West Nile fever, which has recently emerged in the western hemisphere. The rapid spread of WNV throughout North America, as well as the constantly changing epidemiology and transmission of the virus by blood transfusion and transplantation, have raised major public-health concerns. Currently, there are no effective treatments for WNV or vaccine for human use. We previously identified a novel, continuous B-cell epitope from domain III of the WNV envelope protein, termed Ep15. To test whether this epitope can protect against WNV infection, we synthesized a linear chimeric peptide composed of Ep15 and the heat-shock protein 60 peptide, p458. The p458 peptide is an effective carrier peptide for subunit vaccines against other infectious agents. We now report that mice immunized with the chimeric peptide, p458-Ep15, were resistant to lethal challenges with three different WNV strains. Moreover, their brains were free of viral genome and infectious virus. Mice immunized with Ep15 alone or with p431-Ep15, a control conjugate, were not protected. The chimeric p458-Ep15 peptide induced WNV-specific immunoglobulin G antibodies that neutralized the virus and induced the secretion of interferon-γin vitro. Challenge of chimeric peptide-immunized mice considerably enhanced WNV-specific neutralizing antibodies. We conclude that this chimeric peptide can be used for formulation of a human vaccine against WNV. PMID:20331473

  19. Prevention of Asthma Exacerbation in a Mouse Model by Simultaneous Inhibition of NF-κB and STAT6 Activation Using a Chimeric Decoy Strategy.

    PubMed

    Miyake, Tetsuo; Miyake, Takashi; Sakaguchi, Makoto; Nankai, Hirokazu; Nakazawa, Takahiro; Morishita, Ryuichi

    2018-03-02

    Transactivation of inflammatory and immune mediators in asthma is tightly regulated by nuclear factor κB (NF-κB) and signal transducer and activator of transcription 6 (STAT6). Therefore, we investigated the efficacy of simultaneous inhibition of NF-κB and STAT6 using a chimeric decoy strategy to prevent asthma exacerbation. The effects of decoy oligodeoxynucleotides were evaluated using an ovalbumin-induced mouse asthma model. Ovalbumin-sensitized mice received intratracheal administration of decoy oligodeoxynucleotides 3 days before ovalbumin challenge. Fluorescent-dye-labeled decoy oligodeoxynucleotides could be detected in lymphocytes and macrophages in the lung, and activation of NF-κB and STAT6 was inhibited by chimeric decoy oligodeoxynucleotide transfer. Consequently, treatment with chimeric or NF-κB decoy oligodeoxynucleotides protected against methacholine-induced airway hyperresponsiveness, whereas the effect of chimeric decoy oligodeoxynucleotides was significantly greater than that of NF-κB decoy oligodeoxynucleotides. Treatment with chimeric decoy oligodeoxynucleotides suppressed airway inflammation through inhibition of overexpression of interleukin-4 (IL-4), IL-5, and IL-13 and inflammatory infiltrates. Histamine levels in the lung were reduced via suppression of mast cell accumulation. A significant reduction in mucin secretion was observed due to suppression of MUC5AC gene expression. Interestingly, the inhibitory effects on IL-5, IL-13, and histamine secretion were achieved by transfer of chimeric decoy oligodeoxynucleotides only. This novel therapeutic approach could be useful to treat patients with various types of asthma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. A Novel Self-Replicating Chimeric Lentivirus-Like Particle

    PubMed Central

    Young, Kelly R.; Madden, Victoria J.; Johnson, Philip R.; Johnston, Robert E.

    2012-01-01

    Successful live attenuated vaccines mimic natural exposure to pathogens without causing disease and have been successful against several viruses. However, safety concerns prevent the development of attenuated human immunodeficiency virus (HIV) as a vaccine candidate. If a safe, replicating virus vaccine could be developed, it might have the potential to offer significant protection against HIV infection and disease. Described here is the development of a novel self-replicating chimeric virus vaccine candidate that is designed to provide natural exposure to a lentivirus-like particle and to incorporate the properties of a live attenuated virus vaccine without the inherent safety issues associated with attenuated lentiviruses. The genome from the alphavirus Venezuelan equine encephalitis virus (VEE) was modified to express SHIV89.6P genes encoding the structural proteins Gag and Env. Expression of Gag and Env from VEE RNA in primate cells led to the assembly of particles that morphologically and functionally resembled lentivirus virions and that incorporated alphavirus RNA. Infection of CD4+ cells with chimeric lentivirus-like particles was specific and productive, resulting in RNA replication, expression of Gag and Env, and generation of progeny chimeric particles. Further genome modifications designed to enhance encapsidation of the chimeric virus genome and to express an attenuated simian immunodeficiency virus (SIV) protease for particle maturation improved the ability of chimeric lentivirus-like particles to propagate in cell culture. This study provides proof of concept for the feasibility of creating chimeric virus genomes that express lentivirus structural proteins and assemble into infectious particles for presentation of lentivirus immunogens in their native and functional conformation. PMID:22013035

  1. A novel self-replicating chimeric lentivirus-like particle.

    PubMed

    Jurgens, Christy K; Young, Kelly R; Madden, Victoria J; Johnson, Philip R; Johnston, Robert E

    2012-01-01

    Successful live attenuated vaccines mimic natural exposure to pathogens without causing disease and have been successful against several viruses. However, safety concerns prevent the development of attenuated human immunodeficiency virus (HIV) as a vaccine candidate. If a safe, replicating virus vaccine could be developed, it might have the potential to offer significant protection against HIV infection and disease. Described here is the development of a novel self-replicating chimeric virus vaccine candidate that is designed to provide natural exposure to a lentivirus-like particle and to incorporate the properties of a live attenuated virus vaccine without the inherent safety issues associated with attenuated lentiviruses. The genome from the alphavirus Venezuelan equine encephalitis virus (VEE) was modified to express SHIV89.6P genes encoding the structural proteins Gag and Env. Expression of Gag and Env from VEE RNA in primate cells led to the assembly of particles that morphologically and functionally resembled lentivirus virions and that incorporated alphavirus RNA. Infection of CD4⁺ cells with chimeric lentivirus-like particles was specific and productive, resulting in RNA replication, expression of Gag and Env, and generation of progeny chimeric particles. Further genome modifications designed to enhance encapsidation of the chimeric virus genome and to express an attenuated simian immunodeficiency virus (SIV) protease for particle maturation improved the ability of chimeric lentivirus-like particles to propagate in cell culture. This study provides proof of concept for the feasibility of creating chimeric virus genomes that express lentivirus structural proteins and assemble into infectious particles for presentation of lentivirus immunogens in their native and functional conformation.

  2. Chimeric vaccine composed of viral peptide and mammalian heat-shock protein 60 peptide protects against West Nile virus challenge.

    PubMed

    Gershoni-Yahalom, Orly; Landes, Shimon; Kleiman-Shoval, Smadar; Ben-Nathan, David; Kam, Michal; Lachmi, Bat-El; Khinich, Yevgeny; Simanov, Michael; Samina, Itzhak; Eitan, Anat; Cohen, Irun R; Rager-Zisman, Bracha; Porgador, Angel

    2010-08-01

    The protective efficacy and immunogenicity of a chimeric peptide against West Nile virus (WNV) was evaluated. This virus is the aetiological agent of West Nile fever, which has recently emerged in the western hemisphere. The rapid spread of WNV throughout North America, as well as the constantly changing epidemiology and transmission of the virus by blood transfusion and transplantation, have raised major public-health concerns. Currently, there are no effective treatments for WNV or vaccine for human use. We previously identified a novel, continuous B-cell epitope from domain III of the WNV envelope protein, termed Ep15. To test whether this epitope can protect against WNV infection, we synthesized a linear chimeric peptide composed of Ep15 and the heat-shock protein 60 peptide, p458. The p458 peptide is an effective carrier peptide for subunit vaccines against other infectious agents. We now report that mice immunized with the chimeric peptide, p458-Ep15, were resistant to lethal challenges with three different WNV strains. Moreover, their brains were free of viral genome and infectious virus. Mice immunized with Ep15 alone or with p431-Ep15, a control conjugate, were not protected. The chimeric p458-Ep15 peptide induced WNV-specific immunoglobulin G antibodies that neutralized the virus and induced the secretion of interferon-gammain vitro. Challenge of chimeric peptide-immunized mice considerably enhanced WNV-specific neutralizing antibodies. We conclude that this chimeric peptide can be used for formulation of a human vaccine against WNV.

  3. Construction of chimeric bovine viral diarrhea viruses containing glycoprotein E rns of heterologous pestiviruses and evaluation of the chimeras as potential marker vaccines against BVDV.

    PubMed

    Luo, Yugang; Yuan, Ying; Ankenbauer, Robert G; Nelson, Lynn D; Witte, Steven B; Jackson, James A; Welch, Siao-Kun W

    2012-06-06

    Bovine viral diarrhea virus (BVDV) infections are enzootic in the cattle population and continue to cause significant economic losses to the beef and dairy industries worldwide. Extent of the damages has stimulated increasing interest in control programs directed at eradicating BVDV infections. Use of a BVDV marker vaccine would facilitate eradication efforts as a negatively marked vaccine would enable differentiation of infected from vaccinated animals (DIVA). We describe here the construction of three chimeric BVDVs containing glycoprotein E(rns) of heterologous pestiviruses and the evaluation of the chimera viruses as potential marker vaccines against BVDV infections. Chimeric NADL/G-E(rns), NADL/R-E(rns), and NADL/P-E(rns) were constructed by replacing the E(rns) gene of the full-length BVDV (NADL strain) genome with the E(rns) genes of giraffe (G-E(rns)), reindeer (R-E(rns)), or pronghorn antelope (P-E(rns)) pestiviruses, respectively. Each chimeric NADL virus was viable and infectious in RD 420 (bovine testicular) and BK-6 (bovine kidney) cells. By immunohistochemistry assays, NADL/G-E(rns) and NADL/R-E(rns) chimeric viruses reacted to BVDV E(rns) specific monoclonal antibody (mAb) 15C5, whereas the NADL/P-E(rns) chimeric virus did not. In an animal vaccination study, inactivated vaccines made from two chimeric viruses and the wild type NADL BVDV induced similar neutralizing antibody responses. NADL/P-E(rns)-vaccinated animals were distinguished from animals vaccinated with the wild type virus by means of a companion serological DIVA assay. These results show that chimeric NADL/P-E(rns) virus containing the E(rns) gene of pronghorn antelope pestivirus could be a potential marker vaccine candidate for use in a BVDV control and eradication program. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Novel pre-mRNA splicing of intronically integrated HBV generates oncogenic chimera in hepatocellular carcinoma.

    PubMed

    Chiu, Yung-Tuen; Wong, John K L; Choi, Shing-Wan; Sze, Karen M F; Ho, Daniel W H; Chan, Lo-Kong; Lee, Joyce M F; Man, Kwan; Cherny, Stacey; Yang, Wan-Ling; Wong, Chun-Ming; Sham, Pak-Chung; Ng, Irene O L

    2016-06-01

    Hepatitis B virus (HBV) integration is common in HBV-associated hepatocellular carcinoma (HCC) and may play an important pathogenic role through the production of chimeric HBV-human transcripts. We aimed to screen the transcriptome for HBV integrations in HCCs. Transcriptome sequencing was performed on paired HBV-associated HCCs and corresponding non-tumorous liver tissues to identify viral-human chimeric sites. Validation was further performed in an expanded cohort of human HCCs. Here we report the discovery of a novel pre-mRNA splicing mechanism in generating HBV-human chimeric protein. This mechanism was exemplified by the formation of a recurrent HBV-cyclin A2 (CCNA2) chimeric transcript (A2S), as detected in 12.5% (6 of 48) of HCC patients, but in none of the 22 non-HCC HBV-associated cirrhotic liver samples examined. Upon the integration of HBV into the intron of the CCNA2 gene, the mammalian splicing machinery utilized the foreign splice sites at 282nt. and 458nt. of the HBV genome to generate a pseudo-exon, forming an in-frame chimeric fusion with CCNA2. The A2S chimeric protein gained a non-degradable property and promoted cell cycle progression, demonstrating its potential oncogenic functions. A pre-mRNA splicing mechanism is involved in the formation of HBV-human chimeric proteins. This represents a novel and possibly common mechanism underlying the formation of HBV-human chimeric transcripts from intronically integrated HBV genome with functional impact. HBV is involved in the mammalian pre-mRNA splicing machinery in the generation of potential tumorigenic HBV-human chimeras. This study also provided insight on the impact of intronic HBV integration with the gain of splice sites in the development of HBV-associated HCC. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  5. A Chimera Analysis of Prestin Knockout Mice

    PubMed Central

    Cheatham, Mary Ann; Low-Zeddies, Sharon; Naik, Khurram; Edge, Roxanne; Zheng, Jing; Anderson, Charles T.; Dallos, Peter

    2009-01-01

    A chimera is a genetic composite containing a unique mix of cells derived from more than one zygote. This mouse model allows one to learn how cells of contrasting genotype functionally interact in vivo. Here we investigate the effect that different proportions of prestin-containing outer hair cells (OHC) have on cochlear amplification. In order to address this issue, we developed a prestin chimeric mouse in which both ROSA26 wildtype (WT) and prestin knockout (KO) genotypes are present in a single cochlea. The WT ROSA26 mice express a cell marker, allowing one to identify cells originating from the WT genome. Examination of cochlear tissue indicated that prestin chimeric mice demonstrate a mosaic in which mutant and normal OHCs interleave along the cochlear partition, similar to all other chimeric mouse models. The anatomical distribution of prestin-containing OHCs was compared with physiological data including thresholds and tuning curves for the compound action potential (CAP) recorded in anesthetized mice. Analysis of these measures did not reveal mixed phenotypes in which the distribution of prestin-containing OHCs impacted sensitivity and frequency selectivity to different degrees. However, by reducing the number of prestin-containing OHCs, phenotypes intermediate between WT and KO response patterns were obtained. Accordingly, we demonstrate a proportional reduction in sensitivity and in the tip length of CAP tuning curves as the number of OHCs derived from the KO genome increases, i.e., genotype ratio and phenotype are closely related. PMID:19776286

  6. Tolerance in Nonhuman Primates by Delayed Mixed Chimerism

    DTIC Science & Technology

    2017-12-01

    person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control ...induction of mixed chimerism in a non -human primate (NHP) model. This approach, in contrast to protocols which have already reached clinical trials...principle of delayed induction of mixed chimerism in a non -human primate (NHP) model. This approach, in contrast to protocols which have already reached

  7. Development of Augmented Leukemia/Lymphoma-Specific T-Cell Immunotherapy for Deployment with Haploidentical Hematopoietic Progenitor-Cell Transplant

    DTIC Science & Technology

    2009-05-01

    adoptive therapy using CD19-specific chimeric antigen receptor re-directed T cells for recurrent/refrctory follicular lymphoma...Beauty (SB) transposon/transposase system to express a CD19-specific chimeric antigen receptor (CAR). T cells that have undergone transposition...accomplished using genetic engineering to express a chimeric antigen receptor (CAR) to redirect the specificity of T cells for CD19 on malignant B cells

  8. Chimeras with multiple coherent regions

    NASA Astrophysics Data System (ADS)

    Ujjwal, Sangeeta Rani; Ramaswamy, Ramakrishna

    2013-09-01

    We study chimeric states in a coupled phase oscillator system with piecewise linear nonlocal coupling. By modifying the details of the coupling, it is possible to obtain multiple chimeric states with a specified number of coherent regions and with specified phase relationships. The case of a two-component chimera is illustrated and the generalization to arbitrary chimeric configurations is discussed. The phase relations between the two clusters of phase oscillators is described in some detail.

  9. Methods and compositions for regulating gene expression in plant cells

    NASA Technical Reports Server (NTRS)

    Dai, Shunhong (Inventor); Beachy, Roger N. (Inventor); Luis, Maria Isabel Ordiz (Inventor)

    2010-01-01

    Novel chimeric plant promoter sequences are provided, together with plant gene expression cassettes comprising such sequences. In certain preferred embodiments, the chimeric plant promoters comprise the BoxII cis element and/or derivatives thereof. In addition, novel transcription factors are provided, together with nucleic acid sequences encoding such transcription factors and plant gene expression cassettes comprising such nucleic acid sequences. In certain preferred embodiments, the novel transcription factors comprise the acidic domain, or fragments thereof, of the RF2a transcription factor. Methods for using the chimeric plant promoter sequences and novel transcription factors in regulating the expression of at least one gene of interest are provided, together with transgenic plants comprising such chimeric plant promoter sequences and novel transcription factors.

  10. MHC-mismatched mixed chimerism restores peripheral tolerance of noncross-reactive autoreactive T cells in NOD mice

    PubMed Central

    Zhang, Mingfeng; Racine, Jeremy J.; Lin, Qing; Liu, Yuqing; Tang, Shanshan; Qin, Qi; Qi, Tong; Riggs, Arthur D.; Zeng, Defu

    2018-01-01

    Autoimmune type 1 diabetes (T1D) and other autoimmune diseases are associated with particular MHC haplotypes and expansion of autoreactive T cells. Induction of MHC-mismatched but not -matched mixed chimerism by hematopoietic cell transplantation effectively reverses autoimmunity in diabetic nonobese diabetic (NOD) mice, even those with established diabetes. As expected, MHC-mismatched mixed chimerism mediates deletion in the thymus of host-type autoreactive T cells that have T-cell receptor (TCR) recognizing (cross-reacting with) donor-type antigen presenting cells (APCs), which have come to reside in the thymus. However, how MHC-mismatched mixed chimerism tolerizes host autoreactive T cells that recognize only self-MHC–peptide complexes remains unknown. Here, using NOD.Rag1−/−.BDC2.5 or NOD.Rag1−/−.BDC12-4.1 mice that have only noncross-reactive transgenic autoreactive T cells, we show that induction of MHC-mismatched but not -matched mixed chimerism restores immune tolerance of peripheral noncross-reactive autoreactive T cells. MHC-mismatched mixed chimerism results in increased percentages of both donor- and host-type Foxp3+ Treg cells and up-regulated expression of programmed death-ligand 1 (PD-L1) by host-type plasmacytoid dendritic cells (pDCs). Furthermore, adoptive transfer experiments showed that engraftment of donor-type dendritic cells (DCs) and expansion of donor-type Treg cells are required for tolerizing the noncross-reactive autoreactive T cells in the periphery, which are in association with up-regulation of host-type DC expression of PD-L1 and increased percentage of host-type Treg cells. Thus, induction of MHC-mismatched mixed chimerism may establish a peripheral tolerogenic DC and Treg network that actively tolerizes autoreactive T cells, even those with no TCR recognition of the donor APCs. PMID:29463744

  11. Custom-engineered chimeric foot-and-mouth disease vaccine elicits protective immune responses in pigs.

    PubMed

    Blignaut, Belinda; Visser, Nico; Theron, Jacques; Rieder, Elizabeth; Maree, Francois F

    2011-04-01

    Chimeric foot-and-mouth disease viruses (FMDV) of which the antigenic properties can be readily manipulated is a potentially powerful approach in the control of foot-and-mouth disease (FMD) in sub-Saharan Africa. FMD vaccine application is complicated by the extensive variability of the South African Territories (SAT) type viruses, which exist as distinct genetic and antigenic variants in different geographical regions. A cross-serotype chimeric virus, vKNP/SAT2, was engineered by replacing the external capsid-encoding region (1B-1D/2A) of an infectious cDNA clone of the SAT2 vaccine strain, ZIM/7/83, with that of SAT1 virus KNP/196/91. The vKNP/SAT2 virus exhibited comparable infection kinetics, virion stability and antigenic profiles to the KNP/196/91 parental virus, thus indicating that the functions provided by the capsid can be readily exchanged between serotypes. As these qualities are necessary for vaccine manufacturing, high titres of stable chimeric virus were obtained. Chemically inactivated vaccines, formulated as double-oil-in-water emulsions, were produced from intact 146S virion particles of both the chimeric and parental viruses. Inoculation of guinea pigs with the respective vaccines induced similar antibody responses. In order to show compliance with commercial vaccine requirements, the vaccines were evaluated in a full potency test. Pigs vaccinated with the chimeric vaccine produced neutralizing antibodies and showed protection against homologous FMDV challenge, albeit not to the same extent as for the vaccine prepared from the parental virus. These results provide support that chimeric vaccines containing the external capsid of field isolates can be successfully produced and that they induce protective immune responses in FMD host species.

  12. Design of chimeric peptide ligands to galanin receptors and substance P receptors.

    PubMed

    Langel, U; Land, T; Bartfai, T

    1992-06-01

    Several chimeric peptides were synthesized and found to be high-affinity ligands for both galanin and substance P receptors in membranes from the rat hypothalamus. The peptide galantide, composed of the N-terminal part of galanin and C-terminal part of substance P (SP), galanin-(1-12)-Pro-SP-(5-11) amide, which is the first galanin antagonist to be reported, recognizes two classes of galanin binding sites (KD(1) less than 0.1 nM and KD(2) approximately 6 nM) in the rat hypothalamus, while it appears to bind to a single population of SP receptors (KD approximately 40 nM). The chimeric peptide has higher affinity towards galanin receptors than the endogenous peptide galanin-(1-29) (KD approximately 1 nM) or its N-terminal fragment galanin-(1-13) (KD approximately 1 microM), which constitutes the N-terminus of the chimeric peptide. Galantide has also higher affinity for the SP receptors than the C-terminal SP fragment-(4-11) amide (KD = 0.4 microM), which constitutes its C-terminal portion. Substitution of amino acid residues, which is of importance for recognition of galanin by galanin receptors, such as [Trp2], in the galanin portion of the chimeric peptide or substitution of ([Phe7] or [Met11]-amide) in the SP portion of chimeric peptide both cause significant loss in affinity of the analogs of galantide for both the galanin- and the SP-receptors. These results suggest that the high affinity of the chimeric peptide, galantide, may in part be accounted for by simultaneous recognition/binding to both receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Ethical acceptability of research on human-animal chimeric embryos: summary of opinions by the Japanese Expert Panel on Bioethics.

    PubMed

    Mizuno, Hiroshi; Akutsu, Hidenori; Kato, Kazuto

    2015-01-01

    Human-animal chimeric embryos are embryos obtained by introducing human cells into a non-human animal embryo. It is envisaged that the application of human-animal chimeric embryos may make possible many useful research projects including producing three-dimensional human organs in animals and verification of the pluripotency of human ES cells or iPS cells in vivo. The use of human-animal chimeric embryos, however, raises several ethical and moral concerns. The most fundamental one is that human-animal chimeric embryos possess the potential to develop into organisms containing human-derived tissue, which may lead to infringing upon the identity of the human species, and thus impairing human dignity. The Japanese Expert Panel on Bioethics in the Cabinet Office carefully considered the scientific significance and ethical acceptability of the issue and released its "Opinions regarding the handling of research using human-animal chimeric embryos". The Panel proposed a framework of case-by-case review, and suggested that the following points must be carefully reviewed from the perspective of ethical acceptability: (a) Types of animal embryos and types of animals receiving embryo transfers, particularly in dealing with non-human primates; (b) Types of human cells and organs intended for production, particularly in dealing with human nerve or germ cells; and (c) Extent of the period required for post-transfer studies. The scientific knowledge that can be gained from transfer into an animal uterus and from the production of an individual must be clarified to avoid unnecessary generation of chimeric animals. The time is ripe for the scientific community and governments to start discussing the ethical issues for establishing a global consensus.

  14. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma.

    PubMed

    Drent, Esther; Groen, Richard W J; Noort, Willy A; Themeli, Maria; Lammerts van Bueren, Jeroen J; Parren, Paul W H I; Kuball, Jürgen; Sebestyen, Zsolt; Yuan, Huipin; de Bruijn, Joost; van de Donk, Niels W C J; Martens, Anton C M; Lokhorst, Henk M; Mutis, Tuna

    2016-05-01

    Adoptive transfer of chimeric antigen receptor-transduced T cells is a promising strategy for cancer immunotherapy. The CD38 molecule, with its high expression on multiple myeloma cells, appears a suitable target for antibody therapy. Prompted by this, we used three different CD38 antibody sequences to generate second-generation retroviral CD38-chimeric antigen receptor constructs with which we transduced T cells from healthy donors and multiple myeloma patients. We then evaluated the preclinical efficacy and safety of the transduced T cells. Irrespective of the donor and antibody sequence, CD38-chimeric antigen receptor-transduced T cells proliferated, produced inflammatory cytokines and effectively lysed malignant cell lines and primary malignant cells from patients with acute myeloid leukemia and multi-drug resistant multiple myeloma in a cell-dose, and CD38-dependent manner, despite becoming CD38-negative during culture. CD38-chimeric antigen receptor-transduced T cells also displayed significant anti-tumor effects in a xenotransplant model, in which multiple myeloma tumors were grown in a human bone marrow-like microenvironment. CD38-chimeric antigen receptor-transduced T cells also appeared to lyse the CD38(+) fractions of CD34(+) hematopoietic progenitor cells, monocytes, natural killer cells, and to a lesser extent T and B cells but did not inhibit the outgrowth of progenitor cells into various myeloid lineages and, furthermore, were effectively controllable with a caspase-9-based suicide gene. These results signify the potential importance of CD38-chimeric antigen receptor-transduced T cells as therapeutic tools for CD38(+) malignancies and warrant further efforts to diminish the undesired effects of this immunotherapy using appropriate strategies. Copyright© Ferrata Storti Foundation.

  15. Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia

    PubMed Central

    Barrett, David; Aplenc, Richard; Porter, David L.; Rheingold, Susan R.; Teachey, David T.; Chew, Anne; Hauck, Bernd; Wright, J. Fraser; Milone, Michael C.; Levine, Bruce L.; June, Carl H.

    2014-01-01

    Summary Chimeric antigen receptor–modified T cells with specificity for CD19 have shown promise in the treatment of chronic lymphocytic leukemia (CLL). It remains to be established whether chimeric antigen receptor T cells have clinical activity in acute lymphoblastic leukemia (ALL). Two children with relapsed and refractory pre–B-cell ALL received infusions of T cells transduced with anti-CD19 antibody and a T-cell signaling molecule (CTL019 chimeric antigen receptor T cells), at a dose of 1.4×106 to 1.2×107 CTL019 cells per kilogram of body weight. In both patients, CTL019 T cells expanded to a level that was more than 1000 times as high as the initial engraftment level, and the cells were identified in bone marrow. In addition, the chimeric antigen receptor T cells were observed in the cerebrospinal fluid (CSF), where they persisted at high levels for at least 6 months. Eight grade 3 or 4 adverse events were noted. The cytokine-release syndrome and B-cell aplasia developed in both patients. In one child, the cytokine-release syndrome was severe; cytokine blockade with etanercept and tocilizumab was effective in reversing the syndrome and did not prevent expansion of chimeric antigen receptor T cells or reduce anti-leukemic efficacy. Complete remission was observed in both patients and is ongoing in one patient at 11 months after treatment. The other patient had a relapse, with blast cells that no longer expressed CD19, approximately 2 months after treatment. Chimeric antigen receptor–modified T cells are capable of killing even aggressive, treatment-refractory acute leukemia cells in vivo. The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL. PMID:23527958

  16. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia.

    PubMed

    Grupp, Stephan A; Kalos, Michael; Barrett, David; Aplenc, Richard; Porter, David L; Rheingold, Susan R; Teachey, David T; Chew, Anne; Hauck, Bernd; Wright, J Fraser; Milone, Michael C; Levine, Bruce L; June, Carl H

    2013-04-18

    Chimeric antigen receptor-modified T cells with specificity for CD19 have shown promise in the treatment of chronic lymphocytic leukemia (CLL). It remains to be established whether chimeric antigen receptor T cells have clinical activity in acute lymphoblastic leukemia (ALL). Two children with relapsed and refractory pre-B-cell ALL received infusions of T cells transduced with anti-CD19 antibody and a T-cell signaling molecule (CTL019 chimeric antigen receptor T cells), at a dose of 1.4×10(6) to 1.2×10(7) CTL019 cells per kilogram of body weight. In both patients, CTL019 T cells expanded to a level that was more than 1000 times as high as the initial engraftment level, and the cells were identified in bone marrow. In addition, the chimeric antigen receptor T cells were observed in the cerebrospinal fluid (CSF), where they persisted at high levels for at least 6 months. Eight grade 3 or 4 adverse events were noted. The cytokine-release syndrome and B-cell aplasia developed in both patients. In one child, the cytokine-release syndrome was severe; cytokine blockade with etanercept and tocilizumab was effective in reversing the syndrome and did not prevent expansion of chimeric antigen receptor T cells or reduce antileukemic efficacy. Complete remission was observed in both patients and is ongoing in one patient at 11 months after treatment. The other patient had a relapse, with blast cells that no longer expressed CD19, approximately 2 months after treatment. Chimeric antigen receptor-modified T cells are capable of killing even aggressive, treatment-refractory acute leukemia cells in vivo. The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL.

  17. Receptor binding properties and antinociceptive effects of chimeric peptides consisting of a micro-opioid receptor agonist and an ORL1 receptor antagonist.

    PubMed

    Kawano, Susumu; Ito, Risa; Nishiyama, Miharu; Kubo, Mai; Matsushima, Tomoko; Minamisawa, Motoko; Ambo, Akihiro; Sasaki, Yusuke

    2007-07-01

    Receptor binding properties and antinociceptive activities of chimeric peptides linked by spacers were investigated. The peptides consisted of the micro-opioid receptor ligand dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH(2)) or its analog YRFB (Tyr-D-Arg-Phe-betaAla-NH(2)) linked to the ORL1 receptor ligand Ac-Arg-Tyr-Tyr-Arg-Ile-Lys-NH(2) (Ac-RYYRIK-NH(2)). All chimeric peptides were found to possess high receptor binding affinities for both micro-opioid and ORL1 receptors in mouse brain membranes although their binding affinities for both receptors in spinal membranes were significantly lower. Among them, chimeric peptide 2, which consists of dermorphin and Ac-RYYRIK-NH(2) connected by a long spacer, had the highest binding affinity towards both receptors. In the tail-flick test following intrathecal (i.t.) administration to mice, all chimeric peptides showed potent and dose-dependent antinociceptive activities with an ED(50) of 1.34-4.51 (pmol/mouse), nearly comparable to dermorphin alone (ED(50); 1.08 pmol/mouse). In contrast to their micro-opioid receptor binding profiles, intracerebroventricular (i.c.v.) administration of the chimeric peptides resulted in much less potent antinociceptive activity (ED(50) 5.55-100< pmol/mouse) than when administered i.t. (ED(50): 1.34-4.51 pmol/mouse). These results suggest the involvement of nociceptin-like agonistic effects of the Ac-RYYRIK pharmacophore in the peptides, and the regulation of mu-opioid receptor-mediated antinociception in brain. The present chimeric peptides may be useful as pharmacological tools for studies on micro-opioid receptor/ORL1 receptor heterodimers.

  18. Modification of Titanium Substrates with Chimeric Peptides Comprising Antimicrobial and Titanium-Binding Motifs Connected by Linkers To Inhibit Biofilm Formation.

    PubMed

    Liu, Zihao; Ma, Shiqing; Duan, Shun; Xuliang, Deng; Sun, Yingchun; Zhang, Xi; Xu, Xinhua; Guan, Binbin; Wang, Chao; Hu, Meilin; Qi, Xingying; Zhang, Xu; Gao, Ping

    2016-03-02

    Bacterial adhesion and biofilm formation are the primary causes of implant-associated infection, which is difficult to eliminate and may induce failure in dental implants. Chimeric peptides with both binding and antimicrobial motifs may provide a promising alternative to inhibit biofilm formation on titanium surfaces. In this study, chimeric peptides were designed by connecting an antimicrobial motif (JH8194: KRLFRRWQWRMKKY) with a binding motif (minTBP-1: RKLPDA) directly or via flexible/rigid linkers to modify Ti surfaces. We evaluated the binding behavior of peptides using quartz crystal microbalance (QCM) and atomic force microscopy (AFM) techniques and investigated the effect of the modification of titanium surfaces with these peptides on the bioactivity of Streptococcus gordonii (S. gordonii) and Streptococcus sanguis (S. sanguis). Compared with the flexible linker (GGGGS), the rigid linker (PAPAP) significantly increased the adsorption of the chimeric peptide on titanium surfaces (p < 0.05). Concentration-dependent adsorption is consistent with a single Langmuir model, whereas time-dependent adsorption is in line with a two-domain Langmuir model. Additionally, the chimeric peptide with the rigid linker exhibited more effective antimicrobial ability than the peptide with the flexible linker. This finding was ascribed to the ability of the rigid linker to separate functional domains and reduce their interference to the maximum extent. Consequently, the performance of chimeric peptides with specific titanium-binding motifs and antimicrobial motifs against bacteria can be optimized by the proper selection of linkers. This rational design of chimeric peptides provides a promising alternative to inhibit the formation of biofilms on titanium surfaces with the potential to prevent peri-implantitis and peri-implant mucositis.

  19. Development of Augmented Leukemia/Lymphoma-Specific T-Cell Immunotherapy for Deployment with Haploidentical, Hematompoietic Progenitor-Cell Transplant

    DTIC Science & Technology

    2008-05-01

    adoptive therapy using CD19- specific chimeric antigen receptor re-directed T cells for recurrent/refractory follicular lymphoma. Mol Ther...T- cell therapies for B- cell malignancies we have developed a chimeric antigen receptor (CAR) which when expressed on the cell surface redirects T...that both CD4+ and CD8+ T cells expressing CD19-specific chimeric antigen receptor (CAR) can be generated usmg a novel non-viral gene

  20. Immunomodulatory Effects of Mixed Hematopoietic Chimerism: Immune Tolerance in Canine Model of Lung Transplantation

    PubMed Central

    Nash;, Richard A.; Yunosov;, Murad; Abrams;, Kraig; Hwang;, Billanna; Castilla-Llorente;, Cristina; Chen;, Peter; Farivar;, Alexander S.; Georges;, George E.; Hackman;, Robert C.; Lamm;, Wayne J.E.; Lesnikova;, Marina; Ochs;, Hans D.; Randolph-Habecker;, Julie; Ziegler;, Stephen F.; Storb;, Rainer; Storer;, Barry; Madtes;, David K.; Glenny;, Robb; Mulligan, Michael S.

    2010-01-01

    Long-term survival after lung transplantation is limited by acute and chronic graft rejection. Induction of immune tolerance by first establishing mixed hematopoietic chimerism (MC) is a promising strategy to improve outcomes. In a preclinical canine model, stable MC was established in recipients after reduced-intensity conditioning and hematopoietic cell transplantation from a DLA-identical donor. Delayed lung transplantation was performed from the stem cell donor without pharmacological immunosuppression. Lung graft survival without loss of function was prolonged in chimeric (n=5) vs. nonchimeric (n=7) recipients (p≤0.05, Fisher’s test). There were histological changes consistent with low grade rejection in 3/5 of the lung grafts in chimeric recipients at ≥1 year. Chimeric recipients after lung transplantation had a normal immune response to a T-dependent antigen. Compared to normal dogs, there were significant increases of CD4+INFγ+, CD4+IL-4+ and CD8+ INFγ+ T-cell subsets in the blood (p <0.0001 for each of the 3 T-cell subsets). Markers for regulatory T-cell subsets including foxP3, IL10 and TGFβ were also increased in CD3+ T cells from the blood and peripheral tissues of chimeric recipients after lung transplantation. Establishing MC is immunomodulatory and observed changes were consistent with activation of both the effector and regulatory immune response. PMID:19422333

  1. Development of a mouse-feline chimeric antibody against feline tumor necrosis factor-alpha.

    PubMed

    Doki, Tomoyoshi; Takano, Tomomi; Hohdatsu, Tsutomu

    2016-10-01

    Feline infectious peritonitis (FIP) is a fatal inflammatory disease caused by FIP virus infection. Feline tumor necrosis factor (fTNF)-alpha is closely involved in the aggravation of FIP pathology. We previously described the preparation of neutralizing mouse anti-fTNF-alpha monoclonal antibody (mAb 2-4) and clarified its role in the clinical condition of cats with FIP using in vitro systems. However, administration of mouse mAb 2-4 to cat may lead to a production of feline anti-mouse antibodies. In the present study, we prepared a mouse-feline chimeric mAb (chimeric mAb 2-4) by fusing the variable region of mouse mAb 2-4 to the constant region of feline antibody. The chimeric mAb 2-4 was confirmed to have fTNF-alpha neutralization activity. Purified mouse mAb 2-4 and chimeric mAb 2-4 were repeatedly administered to cats, and the changes in the ability to induce feline anti-mouse antibody response were investigated. In the serum of cats treated with mouse mAb 2-4, feline anti-mouse antibody production was induced, and the fTNF-alpha neutralization effect of mouse mAb 2-4 was reduced. In contrast, in cats treated with chimeric mAb 2-4, the feline anti-mouse antibody response was decreased compared to that of mouse mAb 2-4-treated cats.

  2. Porcine induced pluripotent stem cells produce chimeric offspring.

    PubMed

    West, Franklin D; Terlouw, Steve L; Kwon, Dae Jin; Mumaw, Jennifer L; Dhara, Sujoy K; Hasneen, Kowser; Dobrinsky, John R; Stice, Steven L

    2010-08-01

    Ethical and moral issues rule out the use of human induced pluripotent stem cells (iPSCs) in chimera studies that would determine the full extent of their reprogrammed state, instead relying on less rigorous assays such as teratoma formation and differentiated cell types. To date, only mouse iPSC lines are known to be truly pluripotent. However, initial mouse iPSC lines failed to form chimeric offspring, but did generate teratomas and differentiated embryoid bodies, and thus these specific iPSC lines were not completely reprogrammed or truly pluripotent. Therefore, there is a need to address whether the reprogramming factors and process used eventually to generate chimeric mice are universal and sufficient to generate reprogrammed iPSC that contribute to chimeric offspring in additional species. Here we show that porcine mesenchymal stem cells transduced with 6 human reprogramming factors (POU5F1, SOX2, NANOG, KLF4, LIN28, and C-MYC) injected into preimplantation-stage embryos contributed to multiple tissue types spanning all 3 germ layers in 8 of 10 fetuses. The chimerism rate was high, 85.3% or 29 of 34 live offspring were chimeras based on skin and tail biopsies harvested from 2- to 5-day-old pigs. The creation of pluripotent porcine iPSCs capable of generating chimeric offspring introduces numerous opportunities to study the facets significantly affecting cell therapies, genetic engineering, and other aspects of stem cell and developmental biology.

  3. HEMATOPOIETIC STEM CELL INFUSION/TRANSPLANTATION FOR INDUCTION OF ALLOGRAFT TOLERANCE

    PubMed Central

    Granados, Jose M. Marino; Benichou, Gilles; Kawai, Tatsuo

    2015-01-01

    Purpose of review This review updates the current status of basic, preclinical, and clinical research on donor hematopoietic stem cell infusion for allograft tolerance induction. Recent findings Recent basic studies in mice provide evidence of significant involvement of both central deletional and peripheral regulatory mechanisms in induction and maintenance of allograft tolerance effected through a mixed chimerism approach with donor hematopoietic stem cell infusion. The presence of heterologous memory T cells in primates hampers the induction of persistent chimerism. Durable mixed chimerism, however, now has been recently induced in inbred major histocompatibility complex-mismatched swine, resulting in tolerance of vascularized composite tissue allografts. In clinical transplantation, allograft tolerance has been achieved in human leukocyte antigen-mismatched kidney transplantation after the induction of transient mixed chimerism or persistent full donor chimerism. Summary Tolerance induction in clinical kidney transplantation has been achieved by donor hematopoietic stem cell infusion. Improving the consistency and safety of tolerance induction and extending successful protocols to other organs, as well as to organs from deceased donors, are critical next steps to bringing tolerance to a wider range of clinical applications. PMID:25563992

  4. Novel chimeric foot-and-mouth disease virus-like particles harboring serotype O VP1 protect guinea pigs against challenge.

    PubMed

    Li, Haitao; Li, Zhiyong; Xie, Yinli; Qin, Xiaodong; Qi, Xingcai; Sun, Peng; Bai, Xingwen; Ma, Youji; Zhang, Zhidong

    2016-02-01

    Foot-and-mouth disease is a highly contagious, acute viral disease of cloven-hoofed animal species causing severe economic losses worldwide. Among the seven serotypes of foot-and-mouth disease virus (FMDV), serotype O is predominant, but its viral capsid is more acid sensitive than other serotypes, making it more difficult to produce empty serotype O VLPs in the low pH insect hemolymph. Therefore, a novel chimeric virus-like particle (VLP)-based candidate vaccine for serotype O FMDV was developed and characterized in the present study. The chimeric VLPs were composed of antigenic VP1 from serotype O and segments of viral capsid proteins from serotype Asia1. These VLPs elicited significantly higher FMDV-specific antibody levels in immunized mice than did the inactivated vaccine. Furthermore, the chimeric VLPs protected guinea pigs from FMDV challenge with an efficacy similar to that of the inactivated vaccine. These results suggest that chimeric VLPs have the potential for use in vaccines against serotype O FMDV infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Chimeric RNase H–Competent Oligonucleotides Directed to the HIV-1 Rev Response Element

    PubMed Central

    Prater, Chrissy E.; Saleh, Anthony D.; Wear, Maggie P.; Miller, Paul S.

    2007-01-01

    Chimeric oligo-2′-O-methylribonucleotides containing centrally located patches of contiguous 2′-deoxyribonucleotides and terminating in a nuclease resistant 3′-methylphosphonate internucleotide linkage were prepared. The oligonucleotides were targeted to the 3′-side of HIV Rev response element (RRE) stem-loop IIB RNA, which is adjacent to the high affinity Rev protein binding site and is critical to virus function. Thermal denaturation experiments showed that chimeric oligonucleotides form very stable duplexes with a complementary single-stranded RNA, and gel electrophoretic mobility shift assays (EMSA) showed that they bind with high affinity and specificity to RRE stem-loop II RNA (KD approximately 200 nM). The chimeric oligonucleotides promote RNase H-mediated hydrolysis of RRE stem-loop II RNA and have half lives exceeding 24 h when incubated in cell culture medium containing 10% fetal calf serum. One of the chimeric oligonucleotides inhibited RRE mediated expression of chloramphenicol acetyl transferase (CAT) approximately 60% at a concentration of 300 nM in HEK 293T cells co-transfected with p-RRE/CAT and p-Rev mammalian expression vectors. PMID:17566743

  6. Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes

    PubMed Central

    Fischbach, Michael A.; Lai, Jonathan R.; Roche, Eric D.; Walsh, Christopher T.; Liu, David R.

    2007-01-01

    Nonribosomal peptides (NRPs) are produced by NRP synthetase (NRPS) enzymes that function as molecular assembly lines. The modular architecture of NRPSs suggests that a domain responsible for activating a building block could be replaced with a domain from a foreign NRPS to create a chimeric assembly line that produces a new variant of a natural NRP. However, such chimeric NRPS modules are often heavily impaired, impeding efforts to create novel NRP variants by swapping domains from different modules or organisms. Here we show that impaired chimeric NRPSs can be functionally restored by directed evolution. Using rounds of mutagenesis coupled with in vivo screens for NRP production, we rapidly isolated variants of two different chimeric NRPSs with ≈10-fold improvements in enzyme activity and product yield, including one that produces new derivatives of the potent NRP/polyketide antibiotic andrimid. Because functional restoration in these examples required only modest library sizes (103 to 104 clones) and three or fewer rounds of screening, our approach may be widely applicable even for NRPSs from genetically challenging hosts. PMID:17620609

  7. Development of a chimeric Plasmodium berghei strain expressing the repeat region of the P. vivax circumsporozoite protein for in vivo evaluation of vaccine efficacy.

    PubMed

    Espinosa, Diego A; Yadava, Anjali; Angov, Evelina; Maurizio, Paul L; Ockenhouse, Christian F; Zavala, Fidel

    2013-08-01

    The development of vaccine candidates against Plasmodium vivax-the most geographically widespread human malaria species-is challenged by technical difficulties, such as the lack of in vitro culture systems and availability of animal models. Chimeric rodent Plasmodium parasites are safe and useful tools for the preclinical evaluation of new vaccine formulations. We report the successful development and characterization of chimeric Plasmodium berghei parasites bearing the type I repeat region of P. vivax circumsporozoite protein (CSP). The P. berghei-P. vivax chimeric strain develops normally in mosquitoes and produces highly infectious sporozoites that produce patent infection in mice that are exposed to the bites of as few as 3 P. berghei-P. vivax-infected mosquitoes. Using this transgenic parasite, we demonstrate that monoclonal and polyclonal antibodies against P. vivax CSP strongly inhibit parasite infection and thus support the notion that these antibodies play an important role in protective immunity. The chimeric parasites we developed represent a robust model for evaluating protective immune responses against P. vivax vaccines based on CSP.

  8. Public attitudes in Japan towards human-animal chimeric embryo research using human induced pluripotent stem cells.

    PubMed

    Sawai, Tsutomu; Hatta, Taichi; Fujita, Misao

    2017-04-01

    To understand the steps and objectives for which Japanese people are willing to accept human-animal chimeric embryo research using human induced pluripotent stem cells. An internet-based survey was conducted for the general public and researchers in Japan in 2016. Over 60% of the public and 83.8% of researchers supported the creation of human-swine chimeras and 81.0% of the public and 92.4% of researchers supported the creation of human-swine chimeric embryos. When presented with a graded view of human-swine chimeric embryo research with concomitant, specific objectives, a large majority of the general public as well as researchers are willing to accept this research with the aims of disease study, novel drug and treatment development, and transplantation.

  9. Surface acidic amino acid of Pseudomonas/Halomonas chimeric nucleoside diphosphate kinase leads effective recovery from heat-denaturation.

    PubMed

    Tokunaga, Hiroko; Arakawa, Tsutomu; Tokunaga, Masao

    2013-07-01

    One of the hallmarks of halophilic properties is reversibility of thermal unfolding. A nucleoside diphosphate kinase (NDK) from a moderate halophile Halomonas sp. 593 (HaNDK) follows this behavior. His-tagged chimeric NDK (HisPaHaNDK) consisting of an N-terminal half of a non-halophilic Pseuodomonas aeruginosa NDK (PaNDK) and a Cterminal half of HaNDK loses this reversible property, indicating a critical role of the N-terminal portion of PaNDK in determining the reversibility of the chimeric protein. Various mutations were introduced at Arg45 and Lys61, based on the model NDK structure. It appears that having Glu at position 45 is critical in conferring the thermal reversibility to HisPa- HaNDK chimeric protein.

  10. The pharmacokinetics and metabolism of lumiracoxib in chimeric humanized and murinized FRG mice.

    PubMed

    Dickie, A P; Wilson, C E; Schreiter, K; Wehr, R; Wilson, E M; Bial, J; Scheer, N; Wilson, I D; Riley, R J

    2017-07-01

    The pharmacokinetics and metabolism of lumiracoxib were studied, after administration of single 10mg/kg oral doses to chimeric liver-humanized and murinized FRG mice. In the chimeric humanized mice, lumiracoxib reached peak observed concentrations in the blood of 1.10±0.08μg/mL at 0.25-0.5h post-dose with an AUC inf of 1.74±0.52μgh/mL and an effective half-life for the drug of 1.42±0.72h (n=3). In the case of the murinized animals peak observed concentrations in the blood were determined as 1.15±0.08μg/mL at 0.25h post-dose with an AUC inf of 1.94±0.22μgh/mL and an effective half-life of 1.28±0.02h (n=3). Analysis of blood indicated only the presence of unchanged lumiracoxib. Metabolic profiling of urine, bile and faecal extracts revealed a complex pattern of metabolites for both humanized and murinized animals with, in addition to unchanged parent drug, a variety of hydroxylated and conjugated metabolites detected. The profiles obtained in humanized mice were different compared to murinized animals with e.g., a higher proportion of the dose detected in the form of acyl glucuronide metabolites and much reduced amounts of taurine conjugates. Comparison of the metabolic profiles obtained from the present study with previously published data from C57bl/6J mice and humans, revealed a greater though not complete match between chimeric humanized mice and humans, such that the liver-humanized FRG model may represent a useful approach to assessing the biotransformation of such compounds in humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. [Construction, expression and immunogenicity study of a chimeric MS/hIL-12 eukaryotic expression plasmid].

    PubMed

    Li, Hui; Li, Rong; Zhong, Sen; Ren, Hong; Deng, Cun-liang; Shi, Xiao-ling; Wang, Ming-yong

    2006-04-01

    To construct and express a chimeric Mtb8.4 with signal peptide (MS)/hIL12 eukaryotic expression plasmid, and to study the immunogenicity of the MS/hIL-12 chimeric genetic vaccines. The MS/hIL-12 chimeric gene was amplified by polymerase chain reaction (PCR) and cloned into the eukaryotic expression vector pCI-neo. The correct pCI-neo-MS/hIL12 (pMSI) recombinant plasmid was identified by PCR, restricted enzyme digestion and DNA sequencing. COS-7 cells were transfected with pMSI constructs by cationic liposome. After 48 hours, mRNA of the target gene was detected by RT-PCR, and hIL-12 protein in culture supernatant and cell lysates was detected by Western blot. C57BL/6N mice were vaccinated with MS/hIL-12 chimeric gene vaccine for three times at 3 week intervals. Four weeks after the final inoculation, three mice were sacrificed for measurement of the cytokine response and cytotoxic T lymphocyte (CTL) induction. The accuracy of plasmid construction was confirmed by a number of molecular biological techniques. Transfection of COS-7 cells with plasmids pMSI lead to transient expression of fusion proteins. The IFN-gamma and IL-2 titers were (1,521 +/- 48) ng/L and (755 +/- 41) ng/L in MS/hIL-12 chimeric gene vaccine group, (820 +/- 50) ng/L and (297 +/- 31) ng/L in MS gene vaccine group, (1,487 +/- 40) ng/L and (767 +/- 50) ng/L in BCG group, (121 +/- 16) ng/L and (62 +/- 10) ng/L in vacant vector group, and (48 +/- 16) ng/L and (32 +/- 17) ng/L in PBS group respectively. The levels of IFN-gamma and IL-2 in MS/hIL-12 chimeric gene vaccine group were higher than those of MS gene vaccine group, vacant vector group and PBS group (P < 0.01) and was similar to the BCG group (P > 0.05). The level of IL-4 in BCG group [(91 +/- 11) ng/L] increased significantly as compared to other groups (P < 0.01). When effector-cell-to-target-cell ratio (E:T ratio) were 100:1, 50:1, and 10:1 respectively, the CTL activity was 77.5%, 51.2%, 30.3% in MS/hIL-12 chimeric gene vaccine group, 56.2%, 37.8%, 11.5% in MS gene vaccine group, 28.9%, 21.4%, 9.8% in BCG group. The cytotoxicity in MS/hIL-12 chimeric gene vaccine group was higher than that of other groups (P < 0.01). When used to construct the chimeric gene vaccine, hIL-12 could improve the immunogenicity of MS gene vaccine.

  12. A t(1;11) translocation linked to schizophrenia and affective disorders gives rise to aberrant chimeric DISC1 transcripts that encode structurally altered, deleterious mitochondrial proteins

    PubMed Central

    Eykelenboom, Jennifer E.; Briggs, Gareth J.; Bradshaw, Nicholas J.; Soares, Dinesh C.; Ogawa, Fumiaki; Christie, Sheila; Malavasi, Elise L.V.; Makedonopoulou, Paraskevi; Mackie, Shaun; Malloy, Mary P.; Wear, Martin A.; Blackburn, Elizabeth A.; Bramham, Janice; McIntosh, Andrew M.; Blackwood, Douglas H.; Muir, Walter J.; Porteous, David J.; Millar, J. Kirsty

    2012-01-01

    Disrupted-In-Schizophrenia 1 (DISC1) was identified as a risk factor for psychiatric illness through its disruption by a balanced chromosomal translocation, t(1;11)(q42.1;q14.3), that co-segregates with schizophrenia, bipolar disorder and depression. We previously reported that the translocation reduces DISC1 expression, consistent with a haploinsufficiency disease model. Here we report that, in lymphoblastoid cell lines, the translocation additionally results in the production of abnormal transcripts due to the fusion of DISC1 with a disrupted gene on chromosome 11 (DISC1FP1/Boymaw). These chimeric transcripts encode abnormal proteins, designated CP1, CP60 and CP69, consisting of DISC1 amino acids 1–597 plus 1, 60 or 69 amino acids, respectively. The novel 69 amino acids in CP69 induce increased α-helical content and formation of large stable protein assemblies. The same is predicted for CP60. Both CP60 and CP69 exhibit profoundly altered functional properties within cell lines and neurons. Both are predominantly targeted to mitochondria, where they induce clustering and loss of membrane potential, indicative of severe mitochondrial dysfunction. There is currently no access to neural material from translocation carriers to confirm these findings, but there is no reason to suppose that these chimeric transcripts will not also be expressed in the brain. There is thus potential for the production of abnormal chimeric proteins in the brains of translocation carriers, although at substantially lower levels than for native DISC1. The mechanism by which inheritance of the translocation increases risk of psychiatric illness may therefore involve both DISC1 haploinsufficiency and mitochondrial deficiency due to the effects of abnormal chimeric protein expression. GenBank accession numbers: DISC1FP1 (EU302123), Boymaw (GU134617), der 11 chimeric transcript DISC1FP1 exon 2 to DISC1 exon 9 (JQ650115), der 1 chimeric transcript DISC1 exon 4 to DISC1FP1 exon 4 (JQ650116), der 1 chimeric transcript DISC1 exon 6 to DISC1FP1 exon 3a (JQ650117). PMID:22547224

  13. Kinetics of hairpin ribozyme cleavage in yeast.

    PubMed Central

    Donahue, C P; Fedor, M J

    1997-01-01

    Hairpin ribozymes catalyze a self-cleavage reaction that provides a simple model for quantitative analyses of intracellular mechanisms of RNA catalysis. Decay rates of chimeric mRNAs containing self-cleaving ribozymes give a direct measure of intracellular cleavage kinetics in yeast. Intracellular ribozyme-mediated cleavage occurs at similar rates and shows similar inhibition by ribozyme mutations as ribozyme-mediated reactions in vitro, but only when ribozymes are located in a favorable mRNA sequence context. The impact of cleavage on mRNA abundance is shown to depend directly on intrinsic mRNA stability. Surprisingly, cleavage products are no more labile than uncleaved mRNAs despite the loss of terminal cap structures or poly (A). PMID:9292496

  14. In vivo near-infrared fluorescence imaging of CD105 expression during tumor angiogenesis.

    PubMed

    Yang, Yunan; Zhang, Yin; Hong, Hao; Liu, Glenn; Leigh, Bryan R; Cai, Weibo

    2011-11-01

    Angiogenesis is an indispensable process during tumor development. The currently accepted standard method for quantifying tumor angiogenesis is to assess microvessel density (MVD) based on CD105 staining, which is an independent prognostic factor for survival in patients with most solid tumor types. The goal of this study is to evaluate tumor angiogenesis in a mouse model by near-infrared fluorescence (NIRF) imaging of CD105 expression. TRC105, a human/murine chimeric anti-CD105 monoclonal antibody, was conjugated to an NIRF dye (IRDye 800CW; Ex: 778 nm; Em: 806 nm). FACS analysis and microscopy studies were performed to compare the CD105 binding affinity of TRC105 and 800CW-TRC105. In vivo/ex vivo NIRF imaging, blocking studies, and ex vivo histology were performed on 4T1 murine breast tumor-bearing mice to evaluate the ability of 800CW-TRC105 to target tumor angiogenesis. Another chimeric antibody, cetuximab, was used as an isotype-matched control. FACS analysis of human umbilical vein endothelial cells (HUVECs) revealed no difference in CD105 binding affinity between TRC105 and 800CW-TRC105, which was further validated by fluorescence microscopy. 800CW conjugation of TRC105 was achieved in excellent yield (> 85%), with an average of 0.4 800CW molecules per TRC105. Serial NIRF imaging after intravenous injection of 800CW-TRC105 revealed that the 4T1 tumor could be clearly visualized as early as 30 min post-injection. Quantitative region of interest (ROI) analysis showed that the tumor uptake peaked at about 16 h post-injection. Based on ex vivo NIRF imaging at 48 h post-injection, tumor uptake of 800CW-TRC105 was higher than most organs, thus providing excellent tumor contrast. Blocking experiments, control studies with 800CW-cetuximab and 800CW, as well as ex vivo histology all confirmed the in vivo target specificity of 800CW-TRC105. This is the first successful NIRF imaging study of CD105 expression in vivo. Fast, prominent, persistent, and CD105-specific uptake of the probe during tumor angiogenesis was observed in a mouse model. 800CW-TRC105 may be used in the clinic for imaging tumor angiogenesis within the lesions close to the skin surface, tissues accessible by endoscopy, or during image-guided surgery.

  15. [NMR structure and dynamics of the chimeric protein SH3-F2].

    PubMed

    Kutyshenko, V P; Gushchina, L V; Khristoforov, V S; Prokhorov, D A; Timchenko, M A; Kudrevatykh, Iu A; Fediukina, D V; Filimonov, V V

    2010-01-01

    For the further elucidation of structural and dynamic principles of protein self-organization and protein-ligand interactions the design of new chimeric protein SH3-F2 was made and genetically engineered construct was created. The SH3-F2 amino acid sequence consists of polyproline ligand mgAPPLPPYSA, GG linker and the sequence of spectrin SH3 domain circular permutant S19-P20s. Structural and dynamics properties of the protein were studied by high-resolution NMR. According to NMR data the tertiary structure of the chimeric protein SH3-F2 has the topology which is typical of SH3 domains in the complex with the ligand, forming polyproline type II helix, located in the conservative region of binding in the orientation II. The polyproline ligand closely adjoins with the protein globule and is stabilized by hydrophobic interactions. However the interaction of ligand and the part of globule relative to SH3 domain is not too large because the analysis of protein dynamic characteristics points to the low amplitude, high-frequency ligand tumbling in relation to the slow intramolecular motions of the main globule. The constructed chimera permits to carry out further structural and thermodynamic investigations of polyproline helix properties and its interaction with regulatory domains.

  16. LAMP-1-chimeric DNA vaccines enhance the antibody response in Japanese flounder, Paralichthys olivaceus.

    PubMed

    Rondón-Barragán, Iang; Nozaki, Reiko; Hirono, Ikuo; Kondo, Hidehiro

    2017-08-01

    DNA vaccination is one method to protect farmed fish from viral and bacterial diseases. Chimeric antigens encoded by DNA vaccines have been shown to increase the resistance to viral diseases. Here, we sequenced the gene encoding lysosome-associated membrane protein-1 from Japanese flounder, Paralichthys olivaceus, (JfLAMP-1) and assessed its use in a chimeric DNA vaccine fused with the major capsule protein (MCP) from red seabream iridovirus (RSIV). JfLAMP-1 cDNA has a length of 1248 bp encoding 415 aa, which contains transmembrane and cytoplasmic domains. JfLAMP-1 is constitutively expressed in several tissues and its expression in spleen was upregulated following injection of formalin-killed cells (FKC) of Edwardsiella tarda. Immunofluorescence analysis showed that JfLAMP-1 is distributed in the small and large granules in the cytoplasm and groups close to the nucleus. The DNA encoding the luminal domain of JfLAMP-1 was replaced with the gene for the RSIV MCP, and the construct was cloned in an expression vector (pCIneo). Fish vaccinated with pCLAMP-MCP had significantly higher antibody levels than fish vaccinated with pCIneo vector harboring the MCP gene (p < 0.05) at day 30 post-vaccination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Combined immunotherapy of breast cancer with EGF and VEGF vaccines from DNA shuffling in a mouse model.

    PubMed

    Jin, Dong; Yu, Xin; Chen, Bing; Li, Zhitao; Ding, Jia; Zhao, Xiuyun; Qi, Gaofu

    2017-06-01

    Development of EGF and VEGF vaccines with high antigenicity for combined immunotherapy of EGF-EGFR signaling-dependent epithelial tumors such as breast cancer. EGF genes from mouse, human and chicken were randomly assembled to chimeric genes by DNA shuffling, then a chimeric EGF was selected out by PCR, SDS-PAGE and immunization for combined immunotherapy of breast cancer with a previously constructed chimeric VEGF vaccine from shuffling. Combined vaccination with chimeric EGF and VEGF from shuffling could induce high titer of antibodies against EGF and VEGF to inhibit tumor growth and angiogenesis, and improve the survival rate of mice with breast cancer. Combined vaccination with EGF and VEGF from shuffling showed better immunotherapy on EGF-EGFR signaling-dependent epithelial tumors such as breast cancer than the single-agent EGF vaccination.

  18. Long-term outcomes of fludarabine, melphalan and antithymocyte globulin as reduced-intensity conditioning regimen for allogeneic hematopoietic stem cell transplantation in children with primary immunodeficiency disorders: a prospective single center study.

    PubMed

    Hamidieh, A A; Behfar, M; Pourpak, Z; Faghihi-Kashani, S; Fazlollahi, M R; Hosseini, A S; Movahedi, M; Mozafari, M; Moin, M; Ghavamzadeh, A

    2016-02-01

    Reduced-intensity conditioning (RIC) has offered many primary immunodeficiency disorder (PID) patients who are ineligible for myeloablative regimens a chance of cure. However, the beneficial role of RIC was questioned following reports suggesting higher chance of rejection and lower symptom resolution rate in mixed chimerism settings. Forty-five children affected by PIDs with a median age of 21 months underwent allogeneic hematopoietic stem cell transplantation in our institute from 2007 to 2013. All patients received an identical RIC regimen. Forty-one patients had successful primary engraftment (91%). Of the successful engraftments, 80% (n=33) had stable full donor chimerism at last contact. Overall, eleven transplant-related mortalities were reported including five patients due to sepsis, three children due to grade IV acute GvHD, two due to chronic GvHD and one patient due to sepsis after primary graft failure. The median post-transplantation follow-up of deceased patients was 55 days. Five-year overall survival and disease-free survival was 75.6% and 68.89%, respectively. All surviving patients with successful engraftment became disease free, regardless of having full or mixed chimerism. Our study suggests that RIC regimen provides satisfactory rates of successful engraftment and full chimerism. Furthermore, patients with mixed chimerism were stable in long-term follow-up and this chimerism status offered the potential to resolve symptoms of immunodeficiency.

  19. Porcine circovirus type 2 protective epitope densely carried by chimeric papaya ringspot virus-like particles expressed in Escherichia coli as a cost-effective vaccine manufacture alternative.

    PubMed

    Aguilera, Brenda Eugenia; Chávez-Calvillo, Gabriela; Elizondo-Quiroga, Darwin; Jimenez-García, Mónica Noemí; Carrillo-Tripp, Mauricio; Silva-Rosales, Laura; Hernández-Gutiérrez, Rodolfo; Gutiérrez-Ortega, Abel

    2017-05-01

    Porcine circovirus type 2 (PCV2) still represents a major problem to the swine industry worldwide, causing high mortality rates in infected animals. Virus-like particles (VLPs) have gained attention for vaccine development, serving both as scaffolds for epitope expression and immune response enhancers. The commercial subunit vaccines against PCV2 consist of VLPs formed by the self-assembly of PCV2 capsid protein (CP) expressed in the baculovirus vector system. In this work, a PCV2 protective epitope was inserted into three different regions of papaya ringspot virus (PRSV) CP, namely, the N- and C-termini and a predicted antigenic region located near the N-terminus. Wild-type and chimeric CPs were modeled in silico, expressed in Escherichia coli, purified, and visualized by transmission electron microscopy. This is the first report that shows the formation of chimeric VLPs using PRSV as epitope-presentation scaffold. Moreover, it was found that PCV2 epitope localization strongly influences VLP length. Also, the estimated yields of the chimeric VLPs at a small-scale level ranged between 65 and 80 mg/L of culture medium. Finally, the three chimeric VLPs induced high levels of immunoglobulin G against the PCV2 epitope in immunized BALB/c mice, suggesting that these chimeric VLPs can be used for swine immunoprophylaxis against PCV2. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  20. Association of mixed hematopoietic chimerism with elevated circulating autoantibodies and chronic graft-versus-host disease occurrence.

    PubMed

    Perruche, Sylvain; Marandin, Aliette; Kleinclauss, François; Angonin, Régis; Fresnay, Stéphanie; Baron, Marie Hélène; Tiberghien, Pierre; Saas, Philippe

    2006-02-27

    Use of a reduced-intensity conditioning regimen before an allogeneic hematopoietic cell transplantation is frequently associated with an early state of mixed hematopoietic chimerism. Such a coexistence of both host and donor hematopoietic cells may influence posttransplant alloreactivity and may affect the occurrence and severity of acute and chronic graft-versus-host disease (GVHD) as well as the intensity of the graft-versus-leukemia effect. Here we evaluated the relation between chimerism state after reduced-intensity conditioning transplantation (RICT), autoantibody production, and chronic GVHD (cGVHD)-related pathology. Chimerism state, circulating anticardiolipin, and antidouble stranded DNA autoantibody (Ab) titers as well as occurrence of cGVHD-like lesions were investigated in a murine RICT model. We observed a novel association between mixed chimerism state, high levels of pathogenic IgG autoantibodies, and subsequent development of cGVHD-like lesions. Furthermore, we found that the persistence of host B cells, but not dendritic cell origin or subset, was a factor associated with the appearance of cGVHD-like lesions. The implication of host B cells was confirmed by a host origin of autoantibodies. Recipient B cell persistence may contribute to the frequency and/or severity of cGVHD after RICT.

  1. Construction of a laccase chimerical gene: recombinant protein characterization and gene expression via yeast surface display.

    PubMed

    Bleve, G; Lezzi, C; Spagnolo, S; Rampino, P; Perrotta, C; Mita, G; Grieco, Francesco

    2014-03-01

    The ERY4 laccase gene from Pleurotus eryngii was expressed in Saccharomyces cerevisiae and the recombinant laccase resulted to be not biologically active. This gene was thus modified to obtain chimerical enzymes derived from the substitution of N-, C- and both N- and C-terminal regions with the corresponding regions of Ery3 laccase, another laccase isoform of P. eryngii. The chimerical isoform named 4NC3, derived from the substitution of both N- and C-terminal regions, showed the best performances in terms of enzymatic activities, affinities for different substrates and stability at a broad range of temperatures and pHs. The chimerical 4NC3 laccase isoform was displayed on the cell surface of S. cerevisiae using the N-terminal fusion with either the Pir2 or the Flo1 S. cerevisiae proteins as anchor attachment sequence. Immunofluorescence microscopy and Western blot analyses confirmed the localization of 4NC3 on the yeast cell surface. The enzyme activity on specific laccase substrates revealed that 4NC3 laccase was immobilized in active form on the cell surface. To our knowledge, this is the first example of expression of a chimerical fungal laccase by yeast cell display.

  2. Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia

    PubMed Central

    Porter, David L.; Levine, Bruce L.; Kalos, Michael; Bagg, Adam; June, Carl H.

    2012-01-01

    SUMMARY We designed a lentiviral vector expressing a chimeric antigen receptor with specificity for the B-cell antigen CD19, coupled with CD137 (a costimulatory receptor in T cells [4-1BB]) and CD3-zeta (a signal-transduction component of the T-cell antigen receptor) signaling domains. A low dose (approximately 1.5×105 cells per kilogram of body weight) of autologous chimeric antigen receptor–modified T cells reinfused into a patient with refractory chronic lymphocytic leukemia (CLL) expanded to a level that was more than 1000 times as high as the initial engraftment level in vivo, with delayed development of the tumor lysis syndrome and with complete remission. Apart from the tumor lysis syndrome, the only other grade 3/4 toxic effect related to chimeric antigen receptor T cells was lymphopenia. Engineered cells persisted at high levels for 6 months in the blood and bone marrow and continued to express the chimeric antigen receptor. A specific immune response was detected in the bone marrow, accompanied by loss of normal B cells and leukemia cells that express CD19. Remission was ongoing 10 months after treatment. Hypogammaglobulinemia was an expected chronic toxic effect. PMID:21830940

  3. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results.

    PubMed

    Till, Brian G; Jensen, Michael C; Wang, Jinjuan; Qian, Xiaojun; Gopal, Ajay K; Maloney, David G; Lindgren, Catherine G; Lin, Yukang; Pagel, John M; Budde, Lihua E; Raubitschek, Andrew; Forman, Stephen J; Greenberg, Philip D; Riddell, Stanley R; Press, Oliver W

    2012-04-26

    Cellular immune responses have the potential to elicit dramatic and sustained clinical remissions in lymphoma patients. Recent clinical trial data demonstrate that modification of T cells with chimeric antigen receptors (CARs) is a promising strategy. T cells containing CARs with costimulatory domains exhibit improved activity against tumors. We conducted a pilot clinical trial testing a "third-generation" CD20-specific CAR with CD28 and 4-1BB costimulatory domains in patients with relapsed indolent B-cell and mantle cell lymphomas. Four patients were enrolled, and 3 received T-cell infusions after cyclophosphamide lymphodepletion. Treatment was well tolerated, although one patient developed transient infusional symptoms. Two patients without evaluable disease remained progression-free for 12 and 24 months. The third patient had an objective partial remission and relapsed at 12 months after infusions. Modified T cells were detected by quantitative PCR at tumor sites and up to 1 year in peripheral blood, albeit at low levels. No evidence of host immune responses against infused cells was detected. In conclusion, adoptive immunotherapy with CD20-specific T cells was well tolerated and was associated with antitumor activity. We will pursue alternative gene transfer technologies and culture conditions in future studies to improve CAR expression and cell production efficiency.

  4. Active Sonic Hedgehog Signaling between Androgen Independent Human Prostate Cancer Cells and Normal/Benign but Not Cancer-Associated Prostate Stromal Cells

    PubMed Central

    Shigemura, Katsumi; Huang, Wen-Chin; Li, Xiangyan; Zhau, Haiyen E.; Zhu, Guodong; Gotoh, Akinobu; Fujisawa, Masato; Xie, Jingwu; Marshall, Fray F.; Chung, Leland W. K.

    2012-01-01

    BACKGROUND Sonic hedgehog (Shh) signaling plays a pivotal role in stromal-epithelial interaction during normal development but its role in tumor-stromal interaction during carcinogenic progression is less well defined. Since hormone refractory prostate cancer with bone metastasis is difficult to treat, it is crucial to investigate how androgen independent (AI) human prostate cancer cells communicate with their associated stroma. METHODS Shh and its target transcription factor, Gli1 mRNA, were assessed by RT-PCR and/or quantitative RT-PCR in co-cultured cell recombinants comprised of AI C4-2 either with NPF (prostate fibroblasts from normal/benign prostate gland) or CPF cancer-associated stromal fibroblasts) under Shh/cyclopamine (a hedgehog signaling inhibitor) treatment. Human bone marrow stromal (HS27A) cells were used as controls. In vivo investigation was performed by checking serum PSA and immunohistochemical staining for the apoptosis-associated M30 gene in mice bearing chimeric C4-2/NPF tumors. RESULTS CONCLUSIONS Based on co-culture and chimeric tumor models, active Shh-mediated signaling was demonstrated between AI prostate cancer and NPF in a paracrine- and tumor progression-dependent manner. Our study suggests that drugs like cyclopamine that interfere with Shh signaling could be beneficial in preventing AI progression in prostate cancer cells. PMID:21520153

  5. Interspecies chimeric complementation for the generation of functional human tissues and organs in large animal hosts.

    PubMed

    Wu, Jun; Izpisua Belmonte, Juan Carlos

    2016-06-01

    The past decade's rapid progress in human pluripotent stem cell (hPSC) research has generated hope for meeting the rising demand of organ donation, which remains the only effective cure for end-stage organ failure, a major cause of death worldwide. Despite the potential, generation of transplantable organs from hPSCs using in vitro differentiation is far-fetched. An in vivo interspecies chimeric complementation strategy relying on chimeric-competent hPSCs and zygote genome editing provides an auspicious alternative for providing unlimited organ source for transplantation.

  6. Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts

    PubMed Central

    Dron, Michel; Clouse, Steven D.; Dixon, Richard A.; Lawton, Michael A.; Lamb, Christopher J.

    1988-01-01

    To investigate the mechanisms underlying activation of plant defenses against microbial attack we have studied elicitor regulation of a chimeric gene comprising the 5′ flanking region of a defense gene encoding the phytoalexin biosynthetic enzyme chalcone synthase fused to a bacterial chloramphenicol acetyltransferase gene. Glutathione or fungal elicitor caused a rapid, marked but transient expression of the chimeric gene electroporated into soybean protoplasts. The response closely resembled that of endogenous chalcone synthase genes in suspension cultured cells. Functional analysis of 5′ deletions suggests that promoter activity is determined by an elicitor-regulated activator located between the “TATA box” and nucleotide position -173 and an upstream silencer between -173 and -326. These cis-acting elements function in the transduction of the elicitation signal to initiate elaboration of an inducible defense response. Images PMID:16593981

  7. A novel type of EWS-CHOP fusion gene in myxoid liposarcoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Yoshito; Ueda, Takafumi; Kubo, Takahiro

    2006-09-22

    The cytogenetic hallmark of myxoid type and round cell type liposarcoma consists of reciprocal translocation of t(12;16)(q13;p11) and t(12;22)(q13;q12), which results in fusion of TLS/FUS and CHOP, and EWS and CHOP, respectively. Nine structural variations of the TLS/FUS-CHOP chimeric transcript have been reported, however, only two types of EWS-CHOP have been described. We describe here a case of myxoid liposarcoma containing a novel EWS-CHOP chimeric transcript and identified the breakpoint occurring in intron 13 of EWS. Reverse transcription-polymerase chain reaction and direct sequence showed that exon 13 of EWS was in-frame fused to exon 2 of CHOP. Genomic analysis revealedmore » that the breaks were located in intron 13 of EWS and intron 1 of CHOP.« less

  8. A cellular system for quantitation of vitamin K cycle activity: structure-activity effects on vitamin K antagonism by warfarin metabolites

    PubMed Central

    Haque, Jamil A.; McDonald, Matthew G.; Kulman, John D.

    2014-01-01

    Warfarin and other 4-hydroxycoumarins inhibit vitamin K epoxide reductase (VKOR) by depleting reduced vitamin K that is required for posttranslational modification of vitamin K–dependent clotting factors. In vitro prediction of the in vivo potency of vitamin K antagonists is complicated by the complex multicomponent nature of the vitamin K cycle. Here we describe a sensitive assay that enables quantitative analysis of γ-glutamyl carboxylation and its antagonism in live cells. We engineered a human embryonic kidney (HEK) 293–derived cell line (HEK 293-C3) to express a chimeric protein (F9CH) comprising the Gla domain of factor IX fused to the transmembrane and cytoplasmic regions of proline-rich Gla protein 2. Maximal γ-glutamyl carboxylation of F9CH required vitamin K supplementation, and was dose-dependently inhibited by racemic warfarin at a physiologically relevant concentration. Cellular γ-glutamyl carboxylation also exhibited differential VKOR inhibition by warfarin enantiomers (S > R) consistent with their in vivo potencies. We further analyzed the structure-activity relationship for inhibition of γ-glutamyl carboxylation by warfarin metabolites, observing tolerance to phenolic substitution at the C-5 and especially C-6, but not C-7 or C-8, positions on the 4-hydroxycoumarin nucleus. After correction for in vivo concentration and protein binding, 10-hydroxywarfarin and warfarin alcohols were predicted to be the most potent inhibitory metabolites in vivo. PMID:24297869

  9. Generating Porcine Chimeras Using Inner Cell Mass Cells and Parthenogenetic Preimplantation Embryos

    PubMed Central

    Nakano, Kazuaki; Watanabe, Masahito; Matsunari, Hitomi; Matsuda, Taisuke; Honda, Kasumi; Maehara, Miki; Kanai, Takahiro; Hayashida, Gota; Kobayashi, Mirina; Kuramoto, Momoko; Arai, Yoshikazu; Umeyama, Kazuhiro; Fujishiro, Shuh-hei; Mizukami, Yoshihisa; Nagaya, Masaki; Hanazono, Yutaka; Nagashima, Hiroshi

    2013-01-01

    Background The development and validation of stem cell therapies using induced pluripotent stem (iPS) cells can be optimized through translational research using pigs as large animal models, because pigs have the closest characteristics to humans among non-primate animals. As the recent investigations have been heading for establishment of the human iPS cells with naïve type characteristics, it is an indispensable challenge to develop naïve type porcine iPS cells. The pluripotency of the porcine iPS cells can be evaluated using their abilities to form chimeras. Here, we describe a simple aggregation method using parthenogenetic host embryos that offers a reliable and effective means of determining the chimera formation ability of pluripotent porcine cells. Methodology/Significant Principal Findings In this study, we show that a high yield of chimeric blastocysts can be achieved by aggregating the inner cell mass (ICM) from porcine blastocysts with parthenogenetic porcine embryos. ICMs cultured with morulae or 4–8 cell-stage parthenogenetic embryos derived from in vitro-matured (IVM) oocytes can aggregate to form chimeric blastocysts that can develop into chimeric fetuses after transfer. The rate of production of chimeric blastocysts after aggregation with host morulae (20/24, 83.3%) was similar to that after the injection of ICMs into morulae (24/29, 82.8%). We also found that 4–8 cell-stage embryos could be used; chimeric blastocysts were produced with a similar efficiency (17/26, 65.4%). After transfer into recipients, these blastocysts yielded chimeric fetuses at frequencies of 36.0% and 13.6%, respectively. Conclusion/Significance Our findings indicate that the aggregation method using parthenogenetic morulae or 4–8 cell-stage embryos offers a highly reproducible approach for producing chimeric fetuses from porcine pluripotent cells. This method provides a practical and highly accurate system for evaluating pluripotency of undifferentiated cells, such as iPS cells, based on their ability to form chimeras. PMID:23626746

  10. Imaging of alpha(v)beta(3) expression by a bifunctional chimeric RGD peptide not cross-reacting with alpha(v)beta(5).

    PubMed

    Zannetti, Antonella; Del Vecchio, Silvana; Iommelli, Francesca; Del Gatto, Annarita; De Luca, Stefania; Zaccaro, Laura; Papaccioli, Angela; Sommella, Jvana; Panico, Mariarosaria; Speranza, Antonio; Grieco, Paolo; Novellino, Ettore; Saviano, Michele; Pedone, Carlo; Salvatore, Marco

    2009-08-15

    To test whether a novel bifunctional chimeric peptide comprising a cyclic Arg-Gly-Asp pentapeptide covalently bound to an echistatin domain can discriminate alpha(v)beta(3) from alpha(v)beta(5) integrin, thus allowing the in vivo selective visualization of alpha(v)beta(3) expression by single-photon and positron emission tomography (PET) imaging. The chimeric peptide was preliminarily tested for inhibition of alpha(v)beta(3)-dependent cell adhesion and competition of 125I-echistatin binding to membrane of stably transfected K562 cells expressing alpha(v)beta(3) (Kalpha(v)beta(3)) or alpha(v)beta(5) (Kalpha(v)beta(5)) integrin. The chimeric peptide was then conjugated with diethylenetriaminepentaacetic acid and labeled with 111In for single-photon imaging, whereas a one-step procedure was used for labeling the full-length peptide and a truncated derivative, lacking the last five C-terminal amino acids, with 18F for PET imaging. Nude mice bearing tumors from Kalpha(v)beta(3), Kalpha(v)beta(5), U87MG human glioblastoma, and A431 human epidermoid cells were subjected to single-photon and PET imaging. Adhesion and competitive binding assays showed that the novel chimeric peptide selectively binds to alpha(v)beta(3) integrin and does not cross-react with alpha(v)beta(5). In agreement with in vitro findings, single-photon and PET imaging studies showed that the radiolabeled chimeric peptide selectively localizes in tumor xenografts expressing alphavbeta3 and fails to accumulate in those expressing alpha(v)beta(5) integrin. When 18F-labeled truncated derivative was used for PET imaging, alphavbeta3- and alpha(v)beta(5)-expressing tumors were visualized, indicating that the five C-terminal amino acids are required to differentially bind the two integrins. Our findings indicate that the novel chimeric Arg-Gly-Asp peptide, having no cross-reaction with alphavbeta5 integrin, allows highly selective alphavbeta3 expression imaging and monitoring.

  11. Comparisons of Native Shiga Toxins (Stxs) Type 1 and 2 with Chimeric Toxins Indicate that the Source of the Binding Subunit Dictates Degree of Toxicity

    PubMed Central

    Russo, Lisa M.; Melton-Celsa, Angela R.; Smith, Michael J.; O'Brien, Alison D.

    2014-01-01

    Shiga toxin (Stx)-producing E. coli (STEC) cause food-borne outbreaks of hemorrhagic colitis. The main virulence factor expressed by STEC, Stx, is an AB5 toxin that has two antigenically distinct forms, Stx1a and Stx2a. Although Stx1a and Stx2a bind to the same receptor, globotriaosylceramide (Gb3), Stx2a is more potent than Stx1a in mice, whereas Stx1a is more cytotoxic than Stx2a in cell culture. In this study, we used chimeric toxins to ask what the relative contribution of individual Stx subunits is to the differential toxicity of Stx1a and Stx2a in vitro and in vivo. Chimeric stx1/stx2 operons were generated by PCR such that the coding regions for the A2 and B subunits of one toxin were combined with the coding region for the A1 subunit of the heterologous toxin. The toxicities of purified Stx1a, Stx2a, and the chimeric Stxs were determined on Vero and HCT-8 cell lines, while polarized HCT-8 cell monolayers grown on permeable supports were used to follow toxin translocation. In all in vitro assays, the activity of the chimeric toxin correlated with that of the parental toxin from which the B subunit originated. The origin of the native B subunit also dictated the 50% lethal dose of toxin after intraperitoneal intoxication of mice; however, the chimeric Stxs exhibited reduced oral toxicity and pH stability compared to Stx1a and Stx2a. Taken together, these data support the hypothesis that the differential toxicity of the chimeric toxins for cells and mice is determined by the origin of the B subunit. PMID:24671194

  12. Assessing Species-specific Contributions To Craniofacial Development Using Quail-duck Chimeras

    PubMed Central

    Fish, Jennifer L.; Schneider, Richard A.

    2014-01-01

    The generation of chimeric embryos is a widespread and powerful approach to study cell fates, tissue interactions, and species-specific contributions to the histological and morphological development of vertebrate embryos. In particular, the use of chimeric embryos has established the importance of neural crest in directing the species-specific morphology of the craniofacial complex. The method described herein utilizes two avian species, duck and quail, with remarkably different craniofacial morphology. This method greatly facilitates the investigation of molecular and cellular regulation of species-specific pattern in the craniofacial complex. Experiments in quail and duck chimeric embryos have already revealed neural crest-mediated tissue interactions and cell-autonomous behaviors that regulate species-specific pattern in the craniofacial skeleton, musculature, and integument. The great diversity of neural crest derivatives suggests significant potential for future applications of the quail-duck chimeric system to understanding vertebrate development, disease, and evolution. PMID:24962088

  13. The evolution of courtship behaviors through the origination of a new gene in Drosophila

    PubMed Central

    Dai, Hongzheng; Chen, Ying; Chen, Sidi; Mao, Qiyan; Kennedy, David; Landback, Patrick; Eyre-Walker, Adam; Du, Wei; Long, Manyuan

    2008-01-01

    New genes can originate by the combination of sequences from unrelated genes or their duplicates to form a chimeric structure. These chimeric genes often evolve rapidly, suggesting that they undergo adaptive evolution and may therefore be involved in novel phenotypes. Their functions, however, are rarely known. Here, we describe the phenotypic effects of a chimeric gene, sphinx, that has recently evolved in Drosophila melanogaster. We show that a knockout of this gene leads to increased male–male courtship in D. melanogaster, although it leaves other aspects of mating behavior unchanged. Comparative studies of courtship behavior in other closely related Drosophila species suggest that this mutant phenotype of male–male courtship is the ancestral condition because these related species show much higher levels of male–male courtship than D. melanogaster. D. melanogaster therefore seems to have evolved in its courtship behaviors by the recruitment of a new chimeric gene. PMID:18508971

  14. Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy

    PubMed Central

    Kim, Se Mi; Kim, Young-Il; Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-il; Si, Young-Jae; Lee, In-Won; Song, Min-Suk

    2017-01-01

    ABSTRACT In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5 avian influenza viruses. IMPORTANCE Current influenza virus killed vaccines predominantly induce antihemagglutinin (anti-HA) antibodies that are commonly strain specific in that the antibodies have potent neutralizing activity against homologous strains but do not cross-react with HAs of other influenza virus subtypes. In contrast, the HA2 stalk domain is relatively well conserved among subtypes, and recently, broadly neutralizing antibodies against this domain have been isolated. Therefore, in light of the need for a vaccine strain that applies the DIVA strategy utilizing an HI assay and induces broad cross-protection against H5N1 and H9N2 viruses, we generated a novel chimeric H9/H5N1 virus that expresses the entire HA1 portion from the H9N2 virus and the HA2 region of the heterosubtypic H5N8 virus. The chimeric H9/H5N2 recombinant vaccine protected immunized hosts against lethal challenge with H9N2 and HPAI H5N1 viruses with significantly attenuated virus shedding in immunized hosts. Therefore, this chimeric vaccine is suitable as a DIVA vaccine against H5 avian influenza viruses. PMID:28077631

  15. The efficacy of chimeric antigen receptor (CAR) immunotherapy in animal models for solid tumors: A systematic review and meta-analysis.

    PubMed

    Wu, Yingcheng; Xu, Ran; Jia, Keren; Shi, Hui

    2017-01-01

    Most recently, an emerging theme in the field of tumor immunology predominates: chimeric antigen receptor (CAR) therapy in treating solid tumors. The number of related preclinical trials was surging. However, an evaluation of the effects of preclinical studies remained absent. Hence, a meta-analysis was conducted on the efficacy of CAR in animal models for solid tumors. The authors searched PubMed/Medline, Embase, and Google scholar up to April 2017. HR for survival was extracted based on the survival curve. The authors used fixed effect models to combine the results of all the trials. Heterogeneity was assessed by I-square statistic. Quality assessment was conducted following the Stroke Therapy Academic Industry Roundtable standard. Publication bias was assessed using Egger's test. Eleven trials were included, including 54 experiments with a total of 362 animals involved. CAR immunotherapy significantly improved the survival of animals (HR: 0.25, 95% CI: 0.13-0.37, P < 0.001). The quality assessment revealed that no study reported whether allocation concealment and blinded outcome assessment were conducted, and only five studies implemented randomization. This meta-analysis indicated that CAR therapy may be a potential clinical strategy in treating solid tumors.

  16. Functional capabilities of an N-formyl peptide receptor-G(alpha)(i)(2) fusion protein: assemblies with G proteins and arrestins.

    PubMed

    Shi, Mei; Bennett, Teresa A; Cimino, Daniel F; Maestas, Diane C; Foutz, Terry D; Gurevich, Vsevolod V; Sklar, Larry A; Prossnitz, Eric R

    2003-06-24

    G protein-coupled receptors (GPCRs) must constantly compete for interactions with G proteins, kinases, and arrestins. To evaluate the interactions of these proteins with GPCRs in greater detail, we generated a fusion protein between the N-formyl peptide receptor and the G(alpha)(i2) protein. The functional capabilities of this chimeric protein were determined both in vivo, in stably transfected U937 cells, and in vitro, using a novel reconstitution system of solubilized components. The chimeric protein exhibited a cellular ligand binding affinity indistinguishable from that of the wild-type receptor and existed as a complex, when solubilized, containing betagamma subunits, as demonstrated by sucrose density sedimentation. The chimeric protein mobilized intracellular calcium and desensitized normally in response to agonist. Furthermore, the chimeric receptor was internalized and recycled at rates similar to those of the wild-type FPR. Confocal fluorescence microscopy revealed that internalized chimeric receptors, as identified with fluorescent ligand, colocalized with arrestin, as well as G protein, unlike wild-type receptors. Soluble reconstitution experiments demonstrated that the chimeric receptor, even in the phosphorylated state, existed as a high ligand affinity G protein complex, in the absence of exogenous G protein. This interaction was only partially prevented through the addition of arrestins. Furthermore, our results demonstrate that the GTP-bound state of the G protein alpha subunit displays no detectable affinity for the receptor. Together, these results indicate that complex interactions exist between GPCRs, in their unphosphorylated and phosphorylated states, G proteins, and arrestins, which result in the highly regulated control of GPCR function.

  17. The expression and genetic immunization of chimeric fragment of Hantaan virus M and S segments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Fanglin; Wu Xingan; Luo Wen

    2007-03-23

    Hemorrhagic fever with renal syndrome (HFRS), which is characterized by severe symptoms and high mortality, is caused by hantavirus. There are still no effective prophylactic vaccines directed to HFRS until now. In this research, we fused expressed G2 fragment of M segment and 0.7 kb fragment of S segment. We expect it could be a candidate vaccine. Chimeric gene G2S0.7 was first expressed in prokaryotic expression system pGEX-4T. After inducing expressed fusion proteins, GST-G2S0.7 was induced and its molecular weight was about 100 kDa. Meanwhile, the fusion protein kept the activity of its parental proteins. Further, BALB/c mice were vaccinatedmore » by the chimeric gene. ELISA, cell microculture neutralization test in vitro were used to detect the humoral immune response in immunized BALB/c mice. Lymphocyte proliferation assay was used to detect the cellular immune response. The results showed that the chimeric gene could simultaneously evoke specific antibody against nucleocapsid protein (NP) and glycoprotein (GP). And the immunized mice of every group elicited neutralizing antibodies with different titers. But the titers were low. Lymphocyte proliferation assay results showed that the stimulation indexes of splenocytes of chimeric gene to NP and GP were significantly higher than that of control. It suggested that the chimeric gene of Hantaan virus containing G2 fragment of M segment and 0.7 kb fragment of S segment could directly elicit specific anti-Hantaan virus humoral and cellular immune response in BALB/c mice.« less

  18. Chimeric HIV-1 Envelope Glycoproteins with Potent Intrinsic Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Activity*

    PubMed Central

    Boot, Maikel; Cobos Jiménez, Viviana; Kootstra, Neeltje A.; Sanders, Rogier W.

    2013-01-01

    HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed EnvGM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized EnvGM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric EnvGM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins. PMID:23565193

  19. Comparative study of immunological and structural properties of two recombinant vaccine candidates against botulinum neurotoxin type E.

    PubMed

    Rostamian, Mosayeb; Mousavy, Seyed Jafar; Ebrahimi, Firouz; Ghadami, Seyyed Abolghasem; Sheibani, Nader; Minaei, Mohammad Ebrahim; Arefpour Torabi, Mohammad Ali

    2012-01-01

    Recently, botulinum neurotoxin (BoNT)-derived recombinant proteins have been suggested as potential botulism vaccines. Here, with concentrating on BoNT type E (BoNT/E), we studied two of these binding domain-based recombinant proteins: a multivalent chimer protein, which is composed of BoNT serotypes A, B and E binding subdomains, and a monovalent recombinant protein, which contains 93 amino acid residues from recombinant C-terminal heavy chain of BoNT/E (rBoNT/E-HCC). Both proteins have an identical region (48 aa) that contains one of the most important BoNT/E epitopes (YLTHMRD sequence). The recombinant protein efficiency in antibody production, their structural differences, and their BoNT/E-epitope location were compared by using ELISA, circular dichroism, computational modeling, and hydrophobicity predictions. Immunological studies indicated that the antibody yield against rBoNT/E-HCC was higher than chimer protein. Cross ELISA confirmed that the antibodies against the chimer protein recognized rBoNT/E-HCC more efficiently. However, both antibody groups (anti-chimer and anti-rBoNT/E-HCC antibodies) were able to recognize other proteins. Structural studies with circular dichroism showed that chimer proteins have slightly more secondary structures than rBoNT/E-HCC. The immunological results suggested that the above-mentioned identical region in rBoNT/E-HCC is more exposed. Circular dichroism, computational protein modeling and hydrophobicity predictions indicated a more exposed location for the identical region in rBoNT/E-HCC than the chimer protein, which is strongly in agreement with immunological results.

  20. Simulation of human plasma concentration-time profiles of the partial glucokinase activator PF-04937319 and its disproportionate N-demethylated metabolite using humanized chimeric mice and semi-physiological pharmacokinetic modeling.

    PubMed

    Kamimura, Hidetaka; Ito, Satoshi; Chijiwa, Hiroyuki; Okuzono, Takeshi; Ishiguro, Tomohiro; Yamamoto, Yosuke; Nishinoaki, Sho; Ninomiya, Shin-Ichi; Mitsui, Marina; Kalgutkar, Amit S; Yamazaki, Hiroshi; Suemizu, Hiroshi

    2017-05-01

    1. The partial glucokinase activator N,N-dimethyl-5-((2-methyl-6-((5-methylpyrazin-2-yl)carbamoyl)benzofuran-4-yl)oxy)pyrimidine-2-carboxamide (PF-04937319) is biotransformed in humans to N-methyl-5-((2-methyl-6-((5-methylpyrazin-2-yl)carbamoyl)benzofuran-4-yl)oxy)pyrimidine-2-carboxamide (M1), accounting for ∼65% of total exposure at steady state. 2. As the disproportionately abundant nature of M1 could not be reliably predicted from in vitro metabolism studies, we evaluated a chimeric mouse model with humanized liver on TK-NOG background for its ability to retrospectively predict human disposition of PF-04937319. Since livers of chimeric mice were enlarged by hyperplasia and contained remnant mouse hepatocytes, hepatic intrinsic clearances normalized for liver weight, metabolite formation and liver to plasma concentration ratios were plotted against the replacement index by human hepatocytes and extrapolated to those in the virtual chimeric mouse with 100% humanized liver. 3. Semi-physiological pharmacokinetic analyses using the above parameters revealed that simulated concentration curves of PF-04937319 and M1 were approximately superimposed with the observed clinical data in humans. 4. Finally, qualitative profiling of circulating metabolites in humanized chimeric mice dosed with PF-04937319 or M1 also revealed the presence of a carbinolamide metabolite, identified in the clinical study as a human-specific metabolite. The case study demonstrates that humanized chimeric mice may be potentially useful in preclinical discovery towards studying disproportionate or human-specific metabolism of drug candidates.

  1. Serodiagnosis of Toxoplasma gondii infection in farm animals (horses, swine, and sheep) by enzyme-linked immunosorbent assay using chimeric antigens.

    PubMed

    Ferra, Bartłomiej; Holec-Gąsior, Lucyna; Kur, Józef

    2015-10-01

    Toxoplasma gondii infects all warm-blooded animals including humans, causing serious public health problems and great economic loss in the animal husbandry. Commonly used serological tests for diagnosis of toxoplasmosis involve preparation of whole Toxoplasma lysate antigen (TLA) from tachyzoites. The production of this antigen is associated with high costs and lengthy preparation and the possibility of staff infection. There are also some difficulties in the standardization of such tests. One approach in order to improve the diagnosis of T. gondii infection is to use recombinant chimeric antigens in place of the TLA, which was confirmed by studies in the serodiagnosis of toxoplasmosis in humans. In this paper, we assess, for the first time, the diagnostic utility of five T. gondii recombinant chimeric antigens (MIC1-MAG1-SAG1S, SAG1L-MIC1-MAG1, SAG2-GRA1-ROP1S, SAG2-GRA1-ROP1L, and GRA1-GRA2-GRA6) in immunoglobulin G (IgG) enzyme-linked immunosorbent assays (IgG ELISAs) with sera from three different groups of livestock animals (horses, pigs, and sheep). The reactivity of individual chimeric antigens was analyzed in relation to the results obtained in IgG ELISAs based on a mixture of three antigens (M1: rSAG1+rMIC1+rMAG1, M2: rSAG2+rGRA1+rROP1, and M3: rGRA1+rGRA2+rGRA6) and referenced to TLA. All chimeric antigens were characterized by high specificity (100%), and the sensitivity of the IgG ELISAs based on chimeric antigens was variable (between 28.4% and 100%) and mainly dependent on the animal species. The chimeric antigens were generally more reactive than mixtures of three antigens. The most effective for the diagnosis of toxoplasmosis was SAG2-GRA1-ROP1L, which can detect specific anti-T. gondii antibodies in 100%, 93.8%, and 100% of positive serum samples from horses, pigs, and sheep, respectively. The present study shows that recombinant chimeric antigens can be successfully used to diagnose T. gondii infection in farm animals, and can replace the commonly used TLA. Copyright © 2015. Published by Elsevier Ireland Ltd.

  2. INDUCTION OF DONOR-SPECIFIC TRANSPLANTATION TOLERANCE TO SKIN AND CARDIAC ALLOGRAFTS USING MIXED CHIMERISM IN (A + B → A) IN RATS

    PubMed Central

    Markus, Peter M.; Selvaggi, Gennaro; Cai, Xin; Fung, John J.; Starzl, Thomas E.

    2010-01-01

    Mixed allogeneic chimerism (A + B → A) was induced in rats by reconstitution of lethally irradiated LEW recipients with a mixture of T-cell depleted (TCD) syngeneic and TCD allogeneic ACI bone marrow. Thirty-seven percent of animals repopulated as stable mixed lymphopoietic chimeras, while the remainder had no detectable allogeneic chimerism. When evaluated for evidence of donor-specific transplantation tolerance, only those recipients with detectable allogeneic lymphoid chimerism exhibited acceptance of donor-specific skin and cardiac allografts. Despite transplantation over a major histocompatibility complex (MHO)- and minor-disparate barrier, animals accepted donor-specific ACI skin and primarily vascularized cardiac allografts permanently, while rejecting third party Brown Norway (BN) grafts. The tolerance induced was also donor-specific in vitro as evidenced by specific hyporeactivity to the allogeneic donor lymphoid elements, yet normal reactivity to MHC-disparate third party rat lymphoid cells. This model for mixed chimerism in the rat will be advantageous to investigate specific transplantation tolerance to primarily vascularized solid organ grafts that can be performed with relative ease in the rat, but not in the mouse, and may provide a method to study the potential existence of organ- or tissue-specific alloantigens in primarily vascularized solid organ allografts. PMID:8162277

  3. [Immunoreactivity of chimeric proteins carrying poliovirus epitopes on the VP6 of rotavirus as a vector].

    PubMed

    Pan, X-X; Zhao, B-X; Teng, Y-M; Xia, W-Y; Wang, J; Li, X-F; Liao, G-Y; Yang, С; Chen, Y-D

    2016-01-01

    Rotavirus and poliovirus continue to present significant risks and burden of disease to children in developing countries. Developing a combined vaccine may effectively prevent both illnesses and may be advantageous in terms of maximizing compliance and vaccine coverage at the same visit. Recently, we sought to generate a vaccine vector by incorporating multiple epitopes into the rotavirus group antigenic protein, VP6. In the present study, a foreign epitope presenting a system using VP6 as a vector was created with six sites on the outer surface of the vector that could be used for insertion of foreign epitopes, and three VP6-based PV1 epitope chimeric proteins were constructed. The chimeric proteins were confirmed by immunoblot, immunofluorescence assay, and injected into guinea pigs to analyze the epitope-specific humoral response. Results showed that these chimeric proteins reacted with anti-VP6F and -PV1 antibodies, and elicited antibodies against both proteins in guinea pigs. Antibodies against the chimeric proteins carrying PV1 epitopes neutralized rotavirus Wa and PV1 infection in vitro. Our study contributes to a better understanding of the use of VP6-based vectors as multiple-epitope delivery vehicles and the epitopes displayed in this form could be considered for development of epitope-based vaccines against rotavirus and poliovirus.

  4. Anti-MUC1 nanobody can redirect T-body cytotoxic effector function.

    PubMed

    Bakhtiari, Seyed Hamid Aghaee; Rahbarizadeh, Fatemeh; Hasannia, Sadegh; Ahmadvand, Davoud; Iri-Sofla, Farnoush Jafari; Rasaee, Mohammad Javad

    2009-04-01

    Chimeric antigen T cell receptors provide a good approach for adoptive immunotherapy of cancer, especially in the context of cancerous cells that fail to express major histocompatibility complex antigen and co-stimulatory molecules. Clinical applications of these receptors are limited, mostly due to the xenogenic origin of the antibodies, which cause immunogenic reactions. Nanobodies are the smallest fragments of antibodies that have great homology to human VH and low immunogenic potential. MUC1 is a highly attractive immunotherapeutic target owing to increased expression, altered glycosylation, and loss of polarity in more than 80% of human malignancies. We used anti-MUC1 nanobody as an antigen binding domain, CD28 and CD3zeta as signaling domains, and IgG3 as a spacer in a chimeric receptor construct. This construct was transfected to Jurkat cells. The transfected Jurkat cells were exposed to MUC1-positive MCF7 cells. Then we analyzed the secretion of IL2, proliferation of Jurkat cells, and death of MCF7 cells. These data revealed that the nanobody chimeric receptor can target tumor-associated antigen-positive cells. Regarding the efficient and specific function of nanobody chimeric receptor and non-immunogenic nature of nanobodies, these chimeric receptors might be used as promising candidates for clinical applications.

  5. Association of mixed hematopoietic chimerism with elevated circulating autoantibodies and chronic graft-versus-host disease occurrence

    PubMed Central

    Perruche, Sylvain; Marandin, Aliette; Kleinclauss, François M.; Angonin, Régis; Fresnay, Stéphanie; Baron, Marie Hélène; Tiberghien, Pierre; Saas, Philippe

    2006-01-01

    Background Use of a reduced intensity conditioning regimen before an allogeneic hematopoietic cell transplantation is frequently associated with an early state of mixed hematopoietic chimerism. Such a co-existence of both host and donor hematopoietic cells may influence post-transplant alloreactivity and may affect the occurrence and severity of acute and chronic graft-versus-host disease (GVHD) as well as the intensity of the graft-versus-leukemia effect. Here we evaluated the relation between chimerism state after reduced intensity conditioning transplantation (RICT), auto-antibody production and chronic GVHD (cGVHD)-related pathology. Methods Chimerism state, circulating anti-cardiolipin and anti-double stranded DNA auto-antibody (Ab) titers as well as occurrence of cGVHD-like lesions were investigated in a murine RICT model. Results We observed a novel association between mixed chimerism state, high levels of pathogenic IgG auto-Abs and subsequent development of cGVHD-like lesions. Furthermore, we found that the persistence of host B cells, but not dendritic cell origin or subset, was a factor associated with the appearance of cGVHD-like lesions. The implication of host B cells was confirmed by a host origin of auto-Abs. Conclusions Recipient B cell persistence may therefore contribute to the frequency and/or severity of cGVHD after RICT. PMID:16495806

  6. Isolation of chicken embryonic stem cell and preparation of chicken chimeric model.

    PubMed

    Zhang, Yani; Yang, Haiyan; Zhang, Zhentao; Shi, Qingqing; Wang, Dan; Zheng, Mengmeng; Li, Bichun; Song, Jiuzhou

    2013-03-01

    Chicken embryonic stem cells (ESCs) were separated from blastoderms at stage-X and cultured in vitro. Alkaline phosphatase activity and stage-specific embryonic antigen-1 staining was conducted to detect ESCs. Then, chicken ESCs were transfected with linearized plasmid pEGFP-N1 in order to produce chimeric chicken. Firstly, the optimal electrotransfection condition was compared; the results showed the highest transfection efficiency was obtained when the field strength and pulse duration was 280 V and 75 μs, respectively. Secondly, the hatchability of shedding methods, drilling a window at the blunt end of egg and drilling a window at the lateral shell of egg was compared, the results showed that the hatchability was the highest for drilling a window at the lateral shell of egg. Thirdly, the hatchability of microinjection (ESCs was microinjected into chick embryo cavity) was compared too, the results showed there were significant difference between the injection group transfected with ESCs and that of other two groups. In addition, five chimeric chickens were obtained in this study and EGFP gene was expressed in some organs, but only two chimeric chicken expressed EGFP gene in the gonad, indicating that the chimeric chicken could be obtained through chick embryo cavity injection by drilling a window at the lateral shell of egg.

  7. A chimeric α-amylase engineered from Bacillus acidicola and Geobacillus thermoleovorans with improved thermostability and catalytic efficiency.

    PubMed

    Parashar, Deepak; Satyanarayana, T

    2016-04-01

    The α-amylase (Ba-amy) of Bacillus acidicola was fused with DNA fragments encoding partial N- and C-terminal region of thermostable α-amylase gene of Geobacillus thermoleovorans (Gt-amy). The chimeric enzyme (Ba-Gt-amy) expressed in Escherichia coli displays marked increase in catalytic efficiency [K cat: 4 × 10(4) s(-1) and K cat/K m: 5 × 10(4) mL(-1) mg(-1) s(-1)] and higher thermostability than Ba-amy. The melting temperature (T m) of Ba-Gt-amy (73.8 °C) is also higher than Ba-amy (62 °C), and the CD spectrum analysis revealed the stability of the former, despite minor alteration in secondary structure. Langmuir-Hinshelwood kinetic analysis suggests that the adsorption of Ba-Gt-amy onto raw starch is more favourable than Ba-amy. Ba-Gt-amy is thus a suitable biocatalyst for raw starch saccharification at sub-gelatinization temperatures because of its acid stability, thermostability and Ca(2+) independence, and better than the other known bacterial acidic α-amylases.

  8. Structural constraints in the packaging of bluetongue virus genomic segments

    PubMed Central

    Burkhardt, Christiane; Sung, Po-Yu; Celma, Cristina C.

    2014-01-01

    The mechanism used by bluetongue virus (BTV) to ensure the sorting and packaging of its 10 genomic segments is still poorly understood. In this study, we investigated the packaging constraints for two BTV genomic segments from two different serotypes. Segment 4 (S4) of BTV serotype 9 was mutated sequentially and packaging of mutant ssRNAs was investigated by two newly developed RNA packaging assay systems, one in vivo and the other in vitro. Modelling of the mutated ssRNA followed by biochemical data analysis suggested that a conformational motif formed by interaction of the 5′ and 3′ ends of the molecule was necessary and sufficient for packaging. A similar structural signal was also identified in S8 of BTV serotype 1. Furthermore, the same conformational analysis of secondary structures for positive-sense ssRNAs was used to generate a chimeric segment that maintained the putative packaging motif but contained unrelated internal sequences. This chimeric segment was packaged successfully, confirming that the motif identified directs the correct packaging of the segment. PMID:24980574

  9. Benefit of STR-based chimerism analysis to identify TA-GVHD as a cause of death: Utility of various biological specimens.

    PubMed

    Raina, Anupuma; Chaudhary, Garima; Dogra, Tirath Das; Khandelwal, Deepchand; Balayan, Ajay; Jain, Vandana; Kanga, Uma; Seth, Tulika

    2016-04-01

    Transfusion-associated graft-versus-host disease (TA-GVHD) is a rare condition. It can occur after blood transfusion in immune-compromised and occasionally even in immune-competent patients, and is associated with a mortality rate of >90%. The diagnosis of TA-GVHD is often delayed because of its non-specific clinical features. A case of an immune-competent child who developed TA-GVHD is reported here. DNA profiling (short tandem repeat analysis), a technique that has a wide application in forensic medicine, was performed to detect the presence of donor cells in this patient. The findings suggest that more studies are needed with this tool, and the diagnostic potential of using other multiple biological specimens for DNA profiling such as the hair follicle and buccal swab should be evaluated. This is the first case report where the donor's DNA fingerprinting pattern was substantiated from a patient's hair follicle sample. Chimerism was also present in the blood and buccal swab specimens. © The Author(s) 2015.

  10. reSpect: Software for Identification of High and Low Abundance Ion Species in Chimeric Tandem Mass Spectra

    PubMed Central

    Shteynberg, David; Mendoza, Luis; Hoopmann, Michael R.; Sun, Zhi; Schmidt, Frank; Deutsch, Eric W.; Moritz, Robert L.

    2016-01-01

    Most shotgun proteomics data analysis workflows are based on the assumption that each fragment ion spectrum is explained by a single species of peptide ion isolated by the mass spectrometer; however, in reality mass spectrometers often isolate more than one peptide ion within the window of isolation that contributes to additional peptide fragment peaks in many spectra. We present a new tool called reSpect, implemented in the Trans-Proteomic Pipeline (TPP), that enables an iterative workflow whereby fragment ion peaks explained by a peptide ion identified in one round of sequence searching or spectral library search are attenuated based on the confidence of the identification, and then the altered spectrum is subjected to further rounds of searching. The reSpect tool is not implemented as a search engine, but rather as a post search engine processing step where only fragment ion intensities are altered. This enables the application of any search engine combination in the following iterations. Thus, reSpect is compatible with all other protein sequence database search engines as well as peptide spectral library search engines that are supported by the TPP. We show that while some datasets are highly amenable to chimeric spectrum identification and lead to additional peptide identification boosts of over 30% with as many as four different peptide ions identified per spectrum, datasets with narrow precursor ion selection only benefit from such processing at the level of a few percent. We demonstrate a technique that facilitates the determination of the degree to which a dataset would benefit from chimeric spectrum analysis. The reSpect tool is free and open source, provided within the TPP and available at the TPP website. PMID:26419769

  11. Embryonic Stem Cells Contribute to Mouse Chimeras in the Absence of Detectable Cell Fusion

    PubMed Central

    Kidder, Benjamin L.; Oseth, Leann; Miller, Shanna; Hirsch, Betsy; Verfaillie, Catherine

    2008-01-01

    Abstract Embryonic stem (ES) cells are capable of differentiating into all embryonic and adult cell types following mouse chimera production. Although injection of diploid ES cells into tetraploid blastocysts suggests that tetraploid cells have a selective disadvantage in the developing embryo, tetraploid hybrid cells, formed by cell fusion between ES cells and somatic cells, have been reported to contribute to mouse chimeras. In addition, other examples of apparent stem cell plasticity have recently been shown to be the result of cell fusion. Here we investigate whether ES cells contribute to mouse chimeras through a cell fusion mechanism. Fluorescence in situ hybridization (FISH) analysis for X and Y chromosomes was performed on dissociated tissues from embryonic, neonatal, and adult wild-type, and chimeric mice to follow the ploidy distributions of cells from various tissues. FISH analysis showed that the ploidy distributions in dissociated tissues, notably the tetraploid cell number, did not differ between chimeric and wild-type tissues. To address the possibility that early cell fusion events are hidden by subsequent reductive divisions or other changes in cell ploidy, we injected Z/EG (lacZ/EGFP) ES cells into ACTB-cre blastocysts. Recombination can only occur as the result of cell fusion, and the recombined allele should persist through any subsequent changes in cell ploidy. We did not detect evidence of fusion in embryonic chimeras either by direct fluorescence microscopy for GFP or by PCR amplification of the recombined Z/EG locus on genomic DNA from ACTB-cre::Z/EG chimeric embryos. Our results argue strongly against cell fusion as a mechanism by which ES cells contribute to chimeras. PMID:18338954

  12. Wide Tolerance to Amino Acids Substitutions In The OCTN1 Ergothioneine Transporter

    PubMed Central

    Frigeni, Marta; Iacobazzi, Francesco; Yin, Xue; Longo, Nicola

    2016-01-01

    Background Organic cation transporters transfer solutes with a positive charge across the plasma membrane. The novel organic cation transporter 1 (OCTN1) and 2 (OCTN2) transport ergothioneine and carnitine, respectively. Mutations in the SLC22A5 gene encoding OCTN2 cause primary carnitine deficiency, a recessive disorders resulting in low carnitine levels and defective fatty acid oxidation. Variations in the SLC22A4 gene encoding OCTN1 are associated with rheumatoid arthritis and Crohn disease. Methods Here we evaluate the functional properties of the OCTN1 transporter using chimeric transporters constructed by fusing different portion of the OCTN1 and OCTN2 cDNAs. Their relative abundance and subcellular distribution was evaluated through western blot analysis and confocal microscopy. Results Substitutions of the C-terminal portion of OCTN1 with the correspondent residues of OCTN2 generated chimeric OCTN transporters more active than wild-type OCTN1 in transporting ergothioneine. Additional single amino acid substitutions introduced in chimeric OCTN transporters further increased ergothioneine transport activity. Kinetic analysis indicated that increased transport activity was due to an increased Vmax, with modest changes in Km toward ergothioneine. Conclusions Our results indicate that the OCTN1 transporter is tolerant to extensive amino acid substitutions. This is in sharp contrast to the OCTN2 carnitine transporter that has been selected for high functional activity through evolution, with almost all substitutions reducing carnitine transport activity. General significance The widespread tolerance of OCTN1 to amino acid substitutions suggests that the corresponding SLC22A4 gene may have derived from a recent duplication of the SLC22A5 gene and might not yet have a defined physiological role. PMID:26994919

  13. reSpect: software for identification of high and low abundance ion species in chimeric tandem mass spectra.

    PubMed

    Shteynberg, David; Mendoza, Luis; Hoopmann, Michael R; Sun, Zhi; Schmidt, Frank; Deutsch, Eric W; Moritz, Robert L

    2015-11-01

    Most shotgun proteomics data analysis workflows are based on the assumption that each fragment ion spectrum is explained by a single species of peptide ion isolated by the mass spectrometer; however, in reality mass spectrometers often isolate more than one peptide ion within the window of isolation that contribute to additional peptide fragment peaks in many spectra. We present a new tool called reSpect, implemented in the Trans-Proteomic Pipeline (TPP), which enables an iterative workflow whereby fragment ion peaks explained by a peptide ion identified in one round of sequence searching or spectral library search are attenuated based on the confidence of the identification, and then the altered spectrum is subjected to further rounds of searching. The reSpect tool is not implemented as a search engine, but rather as a post-search engine processing step where only fragment ion intensities are altered. This enables the application of any search engine combination in the iterations that follow. Thus, reSpect is compatible with all other protein sequence database search engines as well as peptide spectral library search engines that are supported by the TPP. We show that while some datasets are highly amenable to chimeric spectrum identification and lead to additional peptide identification boosts of over 30% with as many as four different peptide ions identified per spectrum, datasets with narrow precursor ion selection only benefit from such processing at the level of a few percent. We demonstrate a technique that facilitates the determination of the degree to which a dataset would benefit from chimeric spectrum analysis. The reSpect tool is free and open source, provided within the TPP and available at the TPP website. Graphical Abstract ᅟ.

  14. reSpect: Software for Identification of High and Low Abundance Ion Species in Chimeric Tandem Mass Spectra

    NASA Astrophysics Data System (ADS)

    Shteynberg, David; Mendoza, Luis; Hoopmann, Michael R.; Sun, Zhi; Schmidt, Frank; Deutsch, Eric W.; Moritz, Robert L.

    2015-11-01

    Most shotgun proteomics data analysis workflows are based on the assumption that each fragment ion spectrum is explained by a single species of peptide ion isolated by the mass spectrometer; however, in reality mass spectrometers often isolate more than one peptide ion within the window of isolation that contribute to additional peptide fragment peaks in many spectra. We present a new tool called reSpect, implemented in the Trans-Proteomic Pipeline (TPP), which enables an iterative workflow whereby fragment ion peaks explained by a peptide ion identified in one round of sequence searching or spectral library search are attenuated based on the confidence of the identification, and then the altered spectrum is subjected to further rounds of searching. The reSpect tool is not implemented as a search engine, but rather as a post-search engine processing step where only fragment ion intensities are altered. This enables the application of any search engine combination in the iterations that follow. Thus, reSpect is compatible with all other protein sequence database search engines as well as peptide spectral library search engines that are supported by the TPP. We show that while some datasets are highly amenable to chimeric spectrum identification and lead to additional peptide identification boosts of over 30% with as many as four different peptide ions identified per spectrum, datasets with narrow precursor ion selection only benefit from such processing at the level of a few percent. We demonstrate a technique that facilitates the determination of the degree to which a dataset would benefit from chimeric spectrum analysis. The reSpect tool is free and open source, provided within the TPP and available at the TPP website.

  15. The rice XA21 ectodomain fused to the Arabidopsis EFR cytoplasmic domain confers resistance to Xanthomonas oryzae pv. oryzae.

    PubMed

    Thomas, Nicholas C; Oksenberg, Nir; Liu, Furong; Caddell, Daniel; Nalyvayko, Alina; Nguyen, Yen; Schwessinger, Benjamin; Ronald, Pamela C

    2018-01-01

    Rice ( Oryza sativa ) plants expressing the XA21 cell-surface receptor kinase are resistant to Xanthomonas oryzae pv. oryzae (Xoo) infection. We previously demonstrated that expressing a chimeric protein containing the ELONGATION FACTOR Tu RECEPTOR (EFR) ectodomain and the XA21 endodomain (EFR:XA21) in rice does not confer robust resistance to Xoo . To test if the XA21 ectodomain is required for Xoo resistance, we produced transgenic rice lines expressing a chimeric protein consisting of the XA21 ectodomain and EFR endodomain (XA21:EFR) and inoculated these lines with Xoo . We also tested if the XA21:EFR rice plants respond to a synthetic sulfated 21 amino acid derivative (RaxX21-sY) of the activator of XA21-mediated immunity, RaxX. We found that five independently transformed XA21:EFR rice lines displayed resistance to Xoo as measured by lesion length analysis, and showed that five lines share characteristic markers of the XA21 defense response (generation of reactive oxygen species and defense response gene expression) after treatment with RaxX21-sY. Our results indicate that expression of the XA21:EFR chimeric receptor in rice confers resistance to Xoo . These results suggest that the endodomain of the EFR and XA21 immune receptors are interchangeable and the XA21 ectodomain is the key determinant conferring robust resistance to Xoo .

  16. Metabolism of methylstenbolone studied with human liver microsomes and the uPA⁺/⁺-SCID chimeric mouse model.

    PubMed

    Geldof, Lore; Lootens, Leen; Polet, Michael; Eichner, Daniel; Campbell, Thane; Nair, Vinod; Botrè, Francesco; Meuleman, Philip; Leroux-Roels, Geert; Deventer, Koen; Eenoo, Peter Van

    2014-07-01

    Anti-doping laboratories need to be aware of evolutions on the steroid market and elucidate steroid metabolism to identify markers of misuse. Owing to ethical considerations, in vivo and in vitro models are preferred to human excretion for nonpharmaceutical grade substances. In this study the chimeric mouse model and human liver microsomes (HLM) were used to elucidate the phase I metabolism of a new steroid product containing, according to the label, methylstenbolone. Analysis revealed the presence of both methylstenbolone and methasterone, a structurally closely related steroid. Via HPLC fraction collection, methylstenbolone was isolated and studied with both models. Using HLM, 10 mono-hydroxylated derivatives (U1-U10) and a still unidentified derivative of methylstenbolone (U13) were detected. In chimeric mouse urine only di-hydroxylated metabolites (U11-U12) were identified. Although closely related, neither methasterone nor its metabolites were detected after administration of isolated methylstenbolone. Administration of the steroid product resulted mainly in the detection of methasterone metabolites, which were similar to those already described in the literature. Methylstenbolone metabolites previously described were not detected. A GC-MS/MS multiple reaction monitoring method was developed to detect methylstenbolone misuse. In one out of three samples, previously tested positive for methasterone, methylstenbolone and U13 were additionally detected, indicating the applicability of the method. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Ray Owen and the history of naturally acquired chimerism

    PubMed Central

    Martin, Aryn

    2015-01-01

    abstract This article interweaves a history of Ray Owen's early work with a broader account of the conceptual landscape of immunology in the mid 1950's. In particular, Owen's openness to the very possibility of chimeric phenomena is recognized. PMID:27093621

  18. The role of recombination in the origin and evolution of Alu subfamilies.

    PubMed

    Teixeira-Silva, Ana; Silva, Raquel M; Carneiro, João; Amorim, António; Azevedo, Luísa

    2013-01-01

    Alus are the most abundant and successful short interspersed nuclear elements found in primate genomes. In humans, they represent about 10% of the genome, although few are retrotransposition-competent and are clustered into subfamilies according to the source gene from which they evolved. Recombination between them can lead to genomic rearrangements of clinical and evolutionary significance. In this study, we have addressed the role of recombination in the origin of chimeric Alu source genes by the analysis of all known consensus sequences of human Alus. From the allelic diversity of Alu consensus sequences, validated in extant elements resulting from whole genome searches, distinct events of recombination were detected in the origin of particular subfamilies of AluS and AluY source genes. These results demonstrate that at least two subfamilies are likely to have emerged from ectopic Alu-Alu recombination, which stimulates further research regarding the potential of chimeric active Alus to punctuate the genome.

  19. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes

    PubMed Central

    Tarlow, Branden D.; Pelz, Carl; Naugler, Willscott E.; Wakefield, Leslie; Wilson, Elizabeth M.; Finegold, Milton J.; Grompe, Markus

    2014-01-01

    Summary Adult liver progenitor cells are biliary-like epithelial cells that emerge only under injury conditions in the periportal region of the liver. They exhibit phenotypes of both hepatocytes and bile ducts. However, their origin and their significance to injury repair remain unclear. Here, we used a chimeric lineage tracing system to demonstrate that hepatocytes contribute to the progenitor pool. RNA-sequencing, ultrastructural analysis, and in vitro progenitor assays revealed that hepatocyte-derived progenitors were distinct from their biliary-derived counterparts. In vivo lineage tracing and serial transplantation assays showed that hepatocyte-derived proliferative ducts retained a memory of their origin and differentiated back into hepatocytes upon cessation of injury. Similarly, human hepatocytes in chimeric mice also gave rise to biliary progenitors in vivo. We conclude that human and mouse hepatocytes can undergo reversible ductal metaplasia in response to injury, expand as ducts and subsequently contribute to restoration of the hepatocyte mass. PMID:25312494

  20. Short-fiber protein of ad40 confers enteric tropism and protection against acidic gastrointestinal conditions.

    PubMed

    Rodríguez, Ester; Romero, Carolina; Río, Adolfo; Miralles, Marta; Raventós, Aida; Planells, Laura; Burgueño, Joan F; Hamada, Hirofumi; Perales, Jose Carlos; Bosch, Assumpció; Gassull, Miguel Angel; Fernández, Ester; Chillon, Miguel

    2013-08-01

    The lack of vectors for selective gene delivery to the intestine has hampered the development of gene therapy strategies for intestinal diseases. We hypothesized that chimeric adenoviruses of Ad5 (species C) displaying proteins of the naturally enteric Ad40 (species F) might hold the intestinal tropism of the species F and thus be useful for gene delivery to the intestine. As oral-fecal dissemination of enteric adenovirus must withstand the conditions encountered in the gastrointestinal tract, we studied the resistance of chimeric Ad5 carrying the short-fiber protein of Ad40 to acid milieu and proteases and found that the Ad40 short fiber confers resistance to inactivation in acidic conditions and that AdF/40S was further activated upon exposure to low pH. In contrast, the chimeric AdF/40S exhibited only a slightly higher protease resistance compared with Ad5 to proteases present in simulated gastric juice. Then, the biodistribution of different chimeric adenoviruses by oral, rectal, and intravenous routes was tested. Expression of reporter β-galactosidase was measured in extracts of 15 different organs 3 days after administration. Our results indicate that among the chimeric viruses, only intrarectally given AdF/40S infected the colon (preferentially enteroendocrine cells and macrophages) and to a lesser extent, the small intestine, whereas Ad5 infectivity was very poor in all tissues. Additional in vitro experiments showed improved infectivity of AdF/40S also in different human epithelial cell lines. Therefore, our results point at the chimeric adenovirus AdF/40S as an interesting vector for selective gene delivery to treat intestinal diseases.

  1. Inflammatory myofibroblastic tumors of the lung carrying a chimeric A2M-ALK gene: report of 2 infantile cases and review of the differential diagnosis of infantile pulmonary lesions.

    PubMed

    Tanaka, Mio; Kohashi, Kenichi; Kushitani, Kei; Yoshida, Misa; Kurihara, Sho; Kawashima, Masumi; Ueda, Yuka; Souzaki, Ryota; Kinoshita, Yoshiaki; Oda, Yoshinao; Takeshima, Yukio; Hiyama, Eiso; Taguchi, Tomoaki; Tanaka, Yukichi

    2017-08-01

    We report 2 infantile cases of pulmonary tumor carrying a chimeric A2M-ALK gene. A2M-ALK is a newly identified anaplastic lymphoma kinase (ALK)-related chimeric gene from a tumor diagnosed as fetal lung interstitial tumor (FLIT). FLIT is a recently recognized infantile pulmonary lesion defined as a mass-like lesion that morphologically resembles the fetal lung. Grossly, FLIT characteristically appears as a well-circumscribed spongy mass, whereas the tumors in these patients were solid and firm. Histologically, the tumors showed intrapulmonary lesions composed of densely proliferating polygonal or spindle-shaped mesenchymal cells with diffuse and dense infiltrations of inflammatory cells forming microcystic or micropapillary structures lined by thyroid transcription factor 1-positive pneumocytes, favoring inflammatory myofibroblastic tumor rather than FLIT. The proliferating cells were immunoreactive for ALK, and A2M-ALK was identified in both tumors with reverse-transcription polymerase chain reaction. The dense infiltration of inflammatory cells, immunoreactivity for ALK, and identification of an ALK-related chimeric gene suggested a diagnosis of inflammatory myofibroblastic tumor. Histologically, most reported FLITs show sparse inflammatory infiltrates and a relatively low density of interstitial cells in the septa, although prominent infiltration of inflammatory cells and high cellularity of interstitial cells are seen in some FLITs. The present cases suggest that ALK rearrangements, including the chimeric A2M-ALK gene, may be present in these infantile pulmonary lesions, especially those with inflammatory cell infiltration. We propose that these infantile pulmonary lesions containing a chimeric A2M-ALK gene be categorized as a specific type of inflammatory myofibroblastic tumor that develops exclusively in neonates and infants. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Chimeric Human Skin Substitute Tissue: A Novel Treatment Option for the Delivery of Autologous Keratinocytes.

    PubMed

    Rasmussen, Cathy A; Allen-Hoffmann, B Lynn

    2012-04-01

    For patients suffering from catastrophic burns, few treatment options are available. Chimeric coculture of patient-derived autologous cells with a "carrier" cell source of allogeneic keratinocytes has been proposed as a means to address the complex clinical problem of severe skin loss. Currently, autologous keratinocytes are harvested, cultured, and expanded to form graftable epidermal sheets. However, epidermal sheets are thin, are extremely fragile, and do not possess barrier function, which only develops as skin stratifies and matures. Grafting is typically delayed for up to 4 weeks to propagate a sufficient quantity of the patient's cells for application to wound sites. Fully stratified chimeric bioengineered skin substitutes could not only provide immediate wound coverage and restore barrier function, but would simultaneously deliver autologous keratinocytes to wounds. The ideal allogeneic cell source for this application would be an abundant supply of clinically evaluated, nontumorigenic, pathogen-free, human keratinocytes. To evaluate this potential cell-based therapy, mixed populations of a green fluorescent protein-labeled neonatal human keratinocyte cell line (NIKS) and unlabeled primary keratinocytes were used to model the allogeneic and autologous components of chimeric monolayer and organotypic cultures. Relatively few autologous keratinocytes may be required to produce fully stratified chimeric skin substitute tissue substantially composed of autologous keratinocyte-derived regions. The need for few autologous cells interspersed within an allogeneic "carrier" cell population may decrease cell expansion time, reducing the time to patient application. This study provides proof of concept for utilizing NIKS keratinocytes as the allogeneic carrier for the generation of bioengineered chimeric skin substitute tissues capable of providing immediate wound coverage while simultaneously supplying autologous human cells for tissue regeneration.

  3. Chimeric proteins combining phosphatase and cellulose-binding activities: proof-of-concept and application in the hydrolysis of paraoxon.

    PubMed

    Gonçalves, Larissa M; Chaimovich, Hernan; Cuccovia, Iolanda M; Marana, Sandro R

    2014-05-01

    Phosphatases for organophosphate degradation and carbohydrate-binding domains (CBMs) have potential biotechnological applications. As a proof-of-concept, a soluble chimeric protein that combines acid phosphatase (AppA) from Escherichia coli and a CBM from Xanthomonas axonopodis pv. citri (AppA-CBM) was produced in E.coli. AppACBM adsorbed in microcrystalline cellulose Avicel PH101 catalyzed the hydrolysis of p-nitrophenyl phosphate (PNPP). The binding to microcrystalline cellulose displayed saturation behavior with an apparent binding constant (Kb) of 22 ± 5 mg and a maximum binding (Bmax) of 1.500 ± 0.001 enzyme units. Binding was highest at pH 2.5 and decreased above pH 6.5, as previously observed for family 2 CBMs. The Km values for PNPP of AppA-CBM and native AppA were identical (2.7 mM). To demonstrate that this strategy for protein engineering has practical applications and is largely functional, even for phosphatases exhibiting diverse folds, a chimeric protein combining human paraoxonase 1 (hPON1) and the CBM was produced. Both PON1-CBM and hPON1 had identical Km values for paraoxon (1.3 mM). Additionally, hPON1 bound to microcrystalline cellulose with a Kb of 27 ± 3 mg, the same as that observed for AppA-CBM. These data show that the phosphatase domains are as functional in both of the chimeric proteins as they are in the native enzymes and that the CBM domain maintains the same cellulose affinity. Therefore, the engineering of chimeric proteins combining domains of phosphatases and CBMs is fully feasible, resulting in chimeric enzymes that exhibit potential for OP detoxification.

  4. Comparison of immunoglobulin E measurements on IMMULITE and ImmunoCAP in samples consisting of allergen-specific mouse-human chimeric monoclonal antibodies towards allergen extracts and four recombinant allergens.

    PubMed

    Szecsi, Pal B; Stender, Steen

    2013-01-01

    Specific immunoglobulin E (IgE) antibody in vitro tests are performed on enzyme immunoassay systems. Poor agreement among systems has been reported and comparisons have been made exclusively with allergen extracts - not with recombinant allergens. Here we compare the ImmunoCAP and the IMMULITE systems. Ten patient samples with positive IgE toward egg white, birch pollen or cat or dog dander were compared using allergen extracts or the recombinant allergens Gal d 1, Bet v 1, Fel d 1 and Can f 1 with the two assay systems. Comparisons were also performed using four monoclonal mouse-human chimeric IgE antibodies specific for the same allergenic components. IMMULITE estimated a higher allergen-specific IgE concentration in sera than ImmunoCAP when testing with allergen extracts as well as recombinant allergens. The chimeric antibodies gave an equivalent response in the total IgE and specific IgE (sIgE) with an average ratio of 1.08 (range 0.9-1.3) on ImmunoCAP. In contrast, IMMULITE exhibited sIgE signals that were substantially higher than the summed level of IgE for all four chimeric antibodies (average ratio 2.96 and range 1.7-4.3). Comparison using chimeric antibodies allowed the evaluation of the true performance of the systems. ImmunoCAP measured total IgE and sIgE equally, whereas IMMULITE displayed higher sIgE signals when compared to the summed level of total IgE for all four chimeric antibodies. Results obtained with the two assay systems are not interchangeable by means of mathematical conversion. Copyright © 2013 S. Karger AG, Basel.

  5. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    NASA Astrophysics Data System (ADS)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore open up new possibilities to modify the implant site and tailor it to a desirable bioactivity.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanada, Takahiro; Tsukiyama-Kohara, Kyoko, E-mail: kkohara@vet.kagoshima-u.ac.jp; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, Kagoshima 890-0065

    The northern treeshrew (Tupaia belangeri) has been reported to be an effective candidate for animal infection model with hepatitis B virus (HBV). The objective of our study was to analyze the growth characteristics of HBV in tupaia hepatocytes and the host response to HBV infection. We established primary tupaia hepatocytes (3–6-week old tupaia) and infected them with HBV genotypes A, B and C, and all the genotypes proliferated as well as those in human primary hepatocytes (>10{sup 5} copies/ml in culture supernatant). We next generated a chimeric mouse with tupaia liver by transplantation of tupaia primary hepatocytes to urokinase-type plasminogenmore » activator cDNA (cDNA-uPA)/severe combined immunodeficient (SCID) mice and the replacement ratio with tupaia hepatocytes was found to be more than 95%. Infection of chimeric mice with HBV (genotypes B, C, and D) resulted in HBV-DNA level of 10{sup 4}-10{sup 6} copies/ml after 8 weeks of infection, which were almost similar to that in humanized chimeric mouse. In contrast, serum HBV level in adult tupaia (1-year-old tupaia) was quite low (<10{sup 3} copies/ml). Understanding the differences in the response to HBV infection in primary tupaia hepatocytes, chimeric mouse, and adult tupaia will contribute to elucidating the mechanism of persistent HBV infection and viral eradication. Thus, T. belangeri was found to be efficient for studying the host response to HBV infection, thereby providing novel insight into the pathogenesis of HBV. - Highlights: • Primary hepatocytes were established from tupaia that is a novel HBV infection model. • Tupaia primary hepatocytes were susceptible for HBV infection. • The immunodeficient chimeric mice with tupaia hepatocytes were established. • The chimeric mice with tupaia hepatocytes were susceptible for HBV infection.« less

  7. MHC-mismatched mixed chimerism augments thymic regulatory T-cell production and prevents relapse of EAE in mice

    PubMed Central

    Wu, Limin; Li, Nainong; Zhang, Mingfeng; Xue, Sheng-Li; Cassady, Kaniel; Lin, Qing; Riggs, Arthur D.; Zeng, Defu

    2015-01-01

    Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system with demyelination, axon damage, and paralysis. Induction of mixed chimerism with allogeneic donors has been shown to not cause graft-versus-host disease (GVHD) in animal models and humans. We have reported that induction of MHC-mismatched mixed chimerism can cure autoimmunity in autoimmune NOD mice, but this approach has not yet been tested in animal models of MS, such as experimental autoimmune encephalomyelitis (EAE). Here, we report that MHC-mismatched mixed chimerism with C57BL/6 (H-2b) donor in SJL/J (H-2s) EAE recipients eliminates clinical symptoms and prevents relapse. This cure is demonstrated by not only disappearance of clinical signs but also reversal of autoimmunity; elimination of infiltrating T, B, and macrophage cells in the spinal cord; and regeneration of myelin sheath. The reversal of autoimmunity is associated with a marked reduction of autoreactivity of CD4+ T cells and significant increase in the percentage of Foxp3+ Treg among host-type CD4+ T cells in the spleen and lymph nodes. The latter is associated with a marked reduction of the percentage of host-type CD4+CD8+ thymocytes and an increase of Treg percentage among the CD4+CD8+ and CD4+CD8− thymocytes. Thymectomy leads to loss of prevention of EAE relapse by induction of mixed chimerism, although there is a dramatic expansion of host-type Treg cells in the lymph nodes. These results indicate that induction of MHC-mismatched mixed chimerism can restore thymic negative selection of autoreactive CD4+ T cells, augment production of Foxp3+ Treg, and cure EAE. PMID:26647186

  8. A New MIC1-MAG1 Recombinant Chimeric Antigen Can Be Used Instead of the Toxoplasma gondii Lysate Antigen in Serodiagnosis of Human Toxoplasmosis

    PubMed Central

    Holec-Gąsior, Lucyna; Ferra, Bartłomiej; Drapała, Dorota; Lautenbach, Dariusz

    2012-01-01

    This study presents an evaluation of the MIC1 (microneme protein 1)-MAG1 (matrix antigen 1) Toxoplasma gondii recombinant chimeric antigen for the serodiagnosis of human toxoplasmosis for the first time. The recombinant MIC1-MAG1 antigen was obtained as a fusion protein containing His tags at the N- and C-terminal ends using an Escherichia coli expression system. After purification by metal affinity chromatography, the chimeric protein was tested for usefulness in an enzyme-linked immunosorbent assay (ELISA) for the detection of anti-T. gondii immunoglobulin G (IgG). One hundred ten sera from patients at different stages of infection and 40 sera from seronegative patients were examined. The results obtained for the MIC1-MAG1 chimeric antigen were compared with those of IgG ELISAs using a Toxoplasma lysate antigen (TLA), a combination of recombinant antigens (rMIC1ex2-rMAG1) and single recombinant proteins (rMIC1ex2 and rMAG1). The sensitivity of the IgG ELISA calculated from all of the positive serum samples was similar for the MIC1-MAG1 chimeric antigen (90.8%) and the TLA (91.8%), whereas the sensitivities of the other antigenic samples used were definitely lower, at 69.1% for the mixture of antigens, 75.5% for the rMIC1ex2, and 60% for rMAG1. This study demonstrates that the MIC1-MAG1 recombinant chimeric antigen can be used instead of the TLA in the serodiagnosis of human toxoplasmosis. PMID:22116686

  9. Isolation of tumor antigen-specific single-chain variable fragments using a chimeric antigen receptor bicistronic retroviral vector in a Mammalian screening protocol.

    PubMed

    Lipowska-Bhalla, Grazyna; Gilham, David E; Hawkins, Robert E; Rothwell, Dominic G

    2013-12-01

    The clinical potential of chimeric antigen receptors in adoptive cellular therapy is beginning to be realized with several recent clinical trials targeting CD19 showing promising results in advanced B cell malignancies. This increased efficacy corresponds with improved engineering of the chimeric receptors with the latest-generation receptors eliciting greater signaling and proliferation potential. However, the antigen-binding single-chain variable fragment (scFv) domain of the receptors is critical in determining the activity of the chimeric receptor-expressing T cells, as this determines specificity and affinity to the tumor antigen. In this study, we describe a mammalian T cell line screening protocol employing a 2A-based bicistronic retroviral vector to isolate functional scFvs. This approach involves expression of the scFv library in a chimeric antigen receptor, and is based on selection of clones capable of stimulating CD69 upregulation in a T cell line and has a number of advantages over previously described methods in that the use of a 2A cassette ensures the exclusion of nonexpressing scFvs and the screening using a chimeric receptor in a mammalian T cell line ensures selection in the optimum context for therapeutic use. Proof-of-principle experiments show that the protocol was capable of a 10(5)-fold enrichment of positive clones after three rounds of selection. Furthermore, an antigen-specific clone was successfully isolated from a partially enriched scFv library, confirming the strength of the protocol. This approach has the potential to identify novel scFvs of use in adoptive T cell therapy and, potentially, wider antibody-based applications.

  10. Propagation of Human Hepatocytes in uPA/SCID Mice: Producing Chimeric Mice with Humanized Liver.

    PubMed

    Ohshita, Hiroki; Tateno, Chise

    2017-01-01

    Primary or cryopreserved human hepatocytes (h-heps) have been used as the gold standard for in vitro metabolism and hepatotoxicity studies; however, the supply of h-heps is limited and they cannot grow in vitro. We achieved approximately 1000-fold propagation of h-heps in the liver of albumin promoter/enhancer-driven urokinase-type plasminogen activator transgenic/severe combined immunodeficiency disease (uPA/SCID) mice with genetically induced liver disease and immunodeficiency. When h-heps are transplanted into the uPA/SCID mouse liver via the spleen, the h-heps engraft in the mouse liver, resulting in its repopulation with h-heps. We have named this model "chimeric mouse with humanized liver, PXB-mouse ® ." Fresh h-heps can be isolated from the chimeric mice (PXB-cells ® ) and have been used for in vitro studies.The efficacy and safety of chemical entities for use in humans are estimated using experimental animals such as rats and mice. The drug development of many chemical entities has been halted because of metabolic differences between humans and animals during clinical studies. Therefore, chimeric mice with humanized liver have been used to predict human-type metabolism and safety conditions for h-heps. In addition, until recently there were no suitable hepatitis B or C virus (HBV or HCV) susceptible animal models aside from chimpanzees. Chimeric mice are the sole persistent infectious small animal model for HBV and HCV and they have been used to investigate the efficacy of new anti-HBV or HCV agents.In this chapter, we describe a method for producing chimeric mice with humanized liver using uPA/SCID mice.

  11. A recombinant chimeric La Crosse virus expressing the surface glycoproteins of Jamestown Canyon virus is immunogenic and protective against challenge with either parental virus in mice or monkeys.

    PubMed

    Bennett, R S; Gresko, A K; Nelson, J T; Murphy, B R; Whitehead, S S

    2012-01-01

    La Crosse virus (LACV) and Jamestown Canyon virus (JCV), family Bunyaviridae, are mosquito-borne viruses that are endemic in North America and recognized as etiologic agents of encephalitis in humans. Both viruses belong to the California encephalitis virus serogroup, which causes 70 to 100 cases of encephalitis a year. As a first step in creating live attenuated viral vaccine candidates for this serogroup, we have generated a recombinant LACV expressing the attachment/fusion glycoproteins of JCV. The JCV/LACV chimeric virus contains full-length S and L segments derived from LACV. For the M segment, the open reading frame (ORF) of LACV is replaced with that derived from JCV and is flanked by the untranslated regions of LACV. The resulting chimeric virus retained the same robust growth kinetics in tissue culture as observed for either parent virus, and the virus remains highly infectious and immunogenic in mice. Although both LACV and JCV are highly neurovirulent in 21 day-old mice, with 50% lethal dose (LD₅₀) values of 0.1 and 0.5 log₁₀ PFU, respectively, chimeric JCV/LACV is highly attenuated and does not cause disease even after intracerebral inoculation of 10³ PFU. Parenteral vaccination of mice with 10¹ or 10³ PFU of JCV/LACV protected against lethal challenge with LACV, JCV, and Tahyna virus (TAHV). The chimeric virus was infectious and immunogenic in rhesus monkeys and induced neutralizing antibodies to JCV, LACV, and TAHV. When vaccinated monkeys were challenged with JCV, they were protected against the development of viremia. Generation of highly attenuated yet immunogenic chimeric bunyaviruses could be an efficient general method for development of vaccines effective against these pathogenic viruses.

  12. Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation.

    PubMed

    Leventhal, Joseph; Abecassis, Michael; Miller, Joshua; Gallon, Lorenzo; Ravindra, Kadiyala; Tollerud, David J; King, Bradley; Elliott, Mary Jane; Herzig, Geoffrey; Herzig, Roger; Ildstad, Suzanne T

    2012-03-07

    The toxicity of chronic immunosuppressive agents required for organ transplant maintenance has prompted investigators to pursue approaches to induce immune tolerance. We developed an approach using a bioengineered mobilized cellular product enriched for hematopoietic stem cells (HSCs) and tolerogenic graft facilitating cells (FCs) combined with nonmyeloablative conditioning; this approach resulted in engraftment, durable chimerism, and tolerance induction in recipients with highly mismatched related and unrelated donors. Eight recipients of human leukocyte antigen (HLA)-mismatched kidney and FC/HSC transplants underwent conditioning with fludarabine, 200-centigray total body irradiation, and cyclophosphamide followed by posttransplant immunosuppression with tacrolimus and mycophenolate mofetil. Subjects ranged in age from 29 to 56 years. HLA match ranged from five of six loci with related donors to one of six loci with unrelated donors. The absolute neutrophil counts reached a nadir about 1 week after transplant, with recovery by 2 weeks. Multilineage chimerism at 1 month ranged from 6 to 100%. The conditioning was well tolerated, with outpatient management after postoperative day 2. Two subjects exhibited transient chimerism and were maintained on low-dose tacrolimus monotherapy. One subject developed viral sepsis 2 months after transplant and experienced renal artery thrombosis. Five subjects experienced durable chimerism, demonstrated immunocompetence and donor-specific tolerance by in vitro proliferative assays, and were successfully weaned off all immunosuppression 1 year after transplant. None of the recipients produced anti-donor antibody or exhibited engraftment syndrome or graft-versus-host disease. These results suggest that manipulation of a mobilized stem cell graft and nonmyeloablative conditioning represents a safe, practical, and reproducible means of inducing durable chimerism and donor-specific tolerance in solid organ transplant recipients.

  13. Chimeric Ply187 endolysin kills Staphylococcus aureus more effectively than the parental enzyme.

    USDA-ARS?s Scientific Manuscript database

    Peptidoglycan hydrolases are an effective new source of antimicrobials. A chimeric fusion protein of the Ply187 endopeptidase domain and LysK SH3b cell wall binding domain is a potent agent against Staphylococcus aureus in three functional assays....

  14. Function-blocking antibodies to human vascular adhesion protein-1: a potential anti-inflammatory therapy.

    PubMed

    Kirton, Christopher M; Laukkanen, Marja-Leena; Nieminen, Antti; Merinen, Marika; Stolen, Craig M; Armour, Kathryn; Smith, David J; Salmi, Marko; Jalkanen, Sirpa; Clark, Michael R

    2005-11-01

    Human vascular adhesion protein-1 (VAP-1) is a homodimeric 170-kDa sialoglycoprotein that is expressed on the surface of endothelial cells and functions as a semicarbazide-sensitive amine oxidase and as an adhesion molecule. Blockade of VAP-1 has been shown to reduce leukocyte adhesion and transmigration in in vivo and in vitro models, suggesting that VAP-1 is a potential target for anti-inflammatory therapy. In this study we have constructed mouse-human chimeric antibodies by genetic engineering in order to circumvent the potential problems involved in using murine antibodies in man. Our chimeric anti-VAP-1 antibodies, which were designed to lack Fc-dependent effector functions, bound specifically to cell surface-expressed recombinant human VAP-1 and recognized VAP-1 in different cell types in tonsil. Furthermore, the chimeric antibodies prevented leukocyte adhesion and transmigration in vitro and in vivo. Hence, these chimeric antibodies have the potential to be used as a new anti-inflammatory therapy.

  15. Neurophysiological evidence (ERPs) for hemispheric processing of facial expressions of emotions: Evidence from whole face and chimeric face stimuli.

    PubMed

    Damaskinou, Nikoleta; Watling, Dawn

    2018-05-01

    This study was designed to investigate the patterns of electrophysiological responses of early emotional processing at frontocentral sites in adults and to explore whether adults' activation patterns show hemispheric lateralization for facial emotion processing. Thirty-five adults viewed full face and chimeric face stimuli. After viewing two faces, sequentially, participants were asked to decide which of the two faces was more emotive. The findings from the standard faces and the chimeric faces suggest that emotion processing is present during the early phases of face processing in the frontocentral sites. In particular, sad emotional faces are processed differently than neutral and happy (including happy chimeras) faces in these early phases of processing. Further, there were differences in the electrode amplitudes over the left and right hemisphere, particularly in the early temporal window. This research provides supporting evidence that the chimeric face test is a test of emotion processing that elicits right hemispheric processing.

  16. Reconstruction of two separate defects in the upper extremity using anterolateral thigh chimeric flap.

    PubMed

    Peng, Feng; Chen, Lin; Han, Dong; Xiao, Chenwei; Bao, Qiyuan; Wang, Tao

    2013-11-01

    We presented our experience on the use of anterolateral thigh (ALT) chimeric flap to reconstruct two separate defects in upper extremity. From December 2009 to August 2012, we used this ALT chimeric flap to reconstruct two separate defects in upper extremity on five patients (mean age: 36.6 years; range: 15 ∼ 47 years). The locations of defect were palm and fingers in four patients and forearm in the other patient. The sizes of defect ranged from 4.5 × 1.5 cm to 20 × 10 cm. A minimum of two separate perforator vessels in the flap were identified. The skin paddle was then split between the two perforators to shape two separate paddles with a common vascular supply. There were no cases of flap failure or re-exploration. Four donor sites were directly closed and one was covered by a skin graft. Donor-site morbidity was negligible. The ALT chimeric flap provides customized cover for two separate defects in upper extremity. Copyright © 2013 Wiley Periodicals, Inc.

  17. A chimeric measles virus with a lentiviral envelope replicates exclusively in CD4+/CCR5+ cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mourez, Thomas; APHP, GH Saint-Louis-Lariboisiere, Laboratoire de Bacteriologie-Virologie, F-75010 Paris; Universite Paris 7 Denis Diderot, F-75010 Paris

    2011-10-25

    We generated a replicating chimeric measles virus in which the hemagglutinin and fusion surface glycoproteins were replaced with the gp160 envelope glycoprotein of simian immunodeficiency virus (SIVmac239). Based on a previously cloned live-attenuated Schwarz vaccine strain of measles virus (MV), this chimera was rescued at high titers using reverse genetics in CD4+ target cells. Cytopathic effect consisted in the presence of large cell aggregates evolving to form syncytia, as observed during SIV infection. The morphology of the chimeric virus was identical to that of the parent MV particles. The presence of SIV gp160 as the only envelope protein on chimericmore » particles surface altered the cell tropism of the new virus from CD46+ to CD4+ cells. Used as an HIV candidate vaccine, this MV/SIVenv chimeric virus would mimic transient HIV-like infection, benefiting both from HIV-like tropism and the capacity of MV to replicate in dendritic cells, macrophages and lymphocytes.« less

  18. DPPC/poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) chimeric nanostructures as potential drug nanocarriers

    NASA Astrophysics Data System (ADS)

    Pippa, Natassa; Kaditi, Eleni; Pispas, Stergios; Demetzos, Costas

    2013-06-01

    In this study, we report on the self assembly behavior and on stability studies of mixed (chimeric) nanosystems consisting of dipalmitoylphosphatidylcholine (DPPC) and poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) (MPOx) gradient copolymer in aqueous media and in fetal bovine serum (FBS). A gamut of light scattering techniques and fluorescence spectroscopy were used in order to extract information on the size and morphological characteristics of the nanoassemblies formed, as a function of gradient block copolymer content, as well as temperature. The hydrodynamic radii ( R h) of nanoassemblies decreased in the process of heating up to 50 °C, while the fractal dimension ( d f) values, also increased. Indomethacin was successfully incorporated into these chimeric nanocarriers. Drug release was depended on the components ratio. The present studies show that there are a number of parameters that can be used in order to alter the properties of chimeric nanosystems, and this is advantageous to the development of "smart" nanocarriers for drug delivery.

  19. Venturing in coral larval chimerism: a compact functional domain with fostered genotypic diversity

    NASA Astrophysics Data System (ADS)

    Rinkevich, Baruch; Shaish, Lee; Douek, Jacob; Ben-Shlomo, Rachel

    2016-01-01

    The globally distributed coral species Pocillopora damicornis is known to release either sexual or asexual derived planula-larvae in various reef locations. Using microsatellite loci as markers, we documented the release of asexually derived chimeric larvae (CL), originating from mosaicked maternal colonies that were also chimeras, at Thai and Philippines reefs. The CL, each presenting different combinations of maternal genotypic constituents, create genetically-complex sets of asexual propagules. This novel mode of inheritance in corals challenges classical postulations of sexual/asexual reproduction traits, as asexual derived CL represent an alliance between genotypes that significantly sways the recruits’ absolute fitness. This type of inherited chimerism, while enhancing intra-entity genetic heterogeneity, is an evolutionary tactic used to increase genetic-heterogeneity, primarily in new areas colonized by a limited number of larvae. Chimerism may also facilitate combat global change impacts by exhibiting adjustable genomic combinations of within-chimera traits that could withstand alterable environmental pressures, helping Pocillopora become a successful cosmopolitan species.

  20. Combining Chimeric Mice with Humanized Liver, Mass Spectrometry, and Physiologically-Based Pharmacokinetic Modeling in Toxicology.

    PubMed

    Yamazaki, Hiroshi; Suemizu, Hiroshi; Mitsui, Marina; Shimizu, Makiko; Guengerich, F Peter

    2016-12-19

    Species differences exist in terms of drug oxidation activities, which are mediated mainly by cytochrome P450 (P450) enzymes. To overcome the problem of species extrapolation, transchromosomic mice containing a human P450 3A cluster or chimeric mice transplanted with human hepatocytes have been introduced into the human toxicology research area. In this review, drug metabolism and disposition mediated by humanized livers in chimeric mice are summarized in terms of biliary/urinary excretions of phthalate and bisphenol A and plasma clearances of the human cocktail probe drugs caffeine, warfarin, omeprazole, metoprolol, and midazolam. Simulation of human plasma concentrations of the teratogen thalidomide and its human metabolites is possible with a simplified physiologically based pharmacokinetic model based on data obtained in chimeric mice, in accordance with reported clinical thalidomide concentrations. In addition, in vivo nonspecific hepatic protein binding parameters of metabolically activated 14 C-drug candidate and hepatotoxic medicines in humanized liver mice can be analyzed by accelerator mass spectrometry and are useful for predictions in humans.

  1. Viewing strategies for simple and chimeric faces: an investigation of perceptual bias in normals and schizophrenic patients using visual scan paths.

    PubMed

    Phillips, M L; David, A S

    1997-11-01

    Left hemi-face (LHF) perceptual bias of chimeric faces in normal right-handers is well-documented. We investigated mechanisms underlying this by measuring visual scan paths in right-handed normal controls (n = 9) and schizophrenics (n = 8) for simple, full-face photographs and schematic, happy-sad chimeric faces over 5 s. Normals viewed the left side/ LHF first, more so than the right of all stimuli. Schizophrenics viewed the LHF first more than the right of stimuli for which there was a LHF choice of predominant affect. Neither group demonstrated an overall LHF perceptual bias for the chimeric stimuli. Readjustment of the initial LHF bias in controls was probably a result of increased attention to stimulus detail with scanning, whereas the schizophrenics demonstrated difficulty in redirection of the initial focus of attention. The study highlights the role of visual scan paths as a marker of normal and abnormal attentional processes. Copyright 1997 Academic Press.

  2. Useful oriented immobilization of antibodies on chimeric magnetic particles: direct correlation of biomacromolecule orientation with biological activity by AFM studies.

    PubMed

    Marciello, Marzia; Filice, Marco; Olea, David; Velez, Marisela; Guisan, José M; Mateo, Cesar

    2014-12-16

    The preparation and performance of a suitable chimeric biosensor based on antibodies (Abs) immobilized on lipase-coated magnetic particles by means of a standing orienting strategy are presented. This novel system is based on hydrophobic magnetic particles coated with modified lipase molecules able to orient and further immobilize different Abs in a covalent way without any previous site-selective chemical modification of biomacromolecules. Different key parameters attending the process were studied and optimized. The optimal preparation was performed using a controlled loading (1 nmol Ab g(-1) chimeric support) at pH 9 and a short reaction time to recover a biological activity of about 80%. AFM microscopy was used to study and confirm the Abs-oriented immobilization on lipase-coated magnetic particles and the final achievement of a highly active and recyclable chimeric immune sensor. This direct technique was demonstrated to be a powerful alternative to the indirect immunoactivity assay methods for the study of biomacromolecule-oriented immobilizations.

  3. Intron retention and transcript chimerism conserved across mammals: Ly6g5b and Csnk2b-Ly6g5b as examples

    PubMed Central

    2013-01-01

    Background Alternative splicing (AS) is a major mechanism for modulating gene expression of an organism, allowing the synthesis of several structurally and functionally distinct mRNAs and protein isoforms from a unique gene. Related to AS is the Transcription Induced Chimerism (TIC) or Tandem Chimerism, by which chimeric RNAs between adjacent genes can be found, increasing combinatorial complexity of the proteome. The Ly6g5b gene presents particular behaviours in its expression, involving an intron retention event and being capable to form RNA chimera transcripts with the upstream gene Csnk2b. We wanted to characterise these events more deeply in four tissues in six different mammals and analyse their protein products. Results While canonical Csnk2b isoform was widely expressed, Ly6g5b canonical isoform was less ubiquitous, although the Ly6g5b first intron retained transcript was present in all the tissues and species analysed. Csnk2b-Ly6g5b chimeras were present in all the samples analysed, but with restricted expression patterns. Some of these chimeric transcripts maintained correct structural domains from Csnk2b and Ly6g5b. Moreover, we found Csnk2b, Ly6g5b, and Csnk2b-Ly6g5b transcripts that present exon skipping, alternative 5' and 3' splice site and intron retention events. These would generate truncated or aberrant proteins whose role remains unknown. Some chimeric transcripts would encode CSNK2B proteins with an altered C-terminus, which could affect its biological function broadening its substrate specificity. Over-expression of human CSNK2B, LY6G5B, and CSNK2B-LY6G5B proteins, show different patterns of post-translational modifications and cell distribution. Conclusions Ly6g5b intron retention and Csnk2b-Ly6g5b transcript chimerism are broadly distributed in tissues of different mammals. PMID:23521802

  4. Evidence for Anger Saliency during the Recognition of Chimeric Facial Expressions of Emotions in Underage Ebola Survivors

    PubMed Central

    Ardizzi, Martina; Evangelista, Valentina; Ferroni, Francesca; Umiltà, Maria A.; Ravera, Roberto; Gallese, Vittorio

    2017-01-01

    One of the crucial features defining basic emotions and their prototypical facial expressions is their value for survival. Childhood traumatic experiences affect the effective recognition of facial expressions of negative emotions, normally allowing the recruitment of adequate behavioral responses to environmental threats. Specifically, anger becomes an extraordinarily salient stimulus unbalancing victims’ recognition of negative emotions. Despite the plethora of studies on this topic, to date, it is not clear whether this phenomenon reflects an overall response tendency toward anger recognition or a selective proneness to the salience of specific facial expressive cues of anger after trauma exposure. To address this issue, a group of underage Sierra Leonean Ebola virus disease survivors (mean age 15.40 years, SE 0.35; years of schooling 8.8 years, SE 0.46; 14 males) and a control group (mean age 14.55, SE 0.30; years of schooling 8.07 years, SE 0.30, 15 males) performed a forced-choice chimeric facial expressions recognition task. The chimeric facial expressions were obtained pairing upper and lower half faces of two different negative emotions (selected from anger, fear and sadness for a total of six different combinations). Overall, results showed that upper facial expressive cues were more salient than lower facial expressive cues. This priority was lost among Ebola virus disease survivors for the chimeric facial expressions of anger. In this case, differently from controls, Ebola virus disease survivors recognized anger regardless of the upper or lower position of the facial expressive cues of this emotion. The present results demonstrate that victims’ performance in the recognition of the facial expression of anger does not reflect an overall response tendency toward anger recognition, but rather the specific greater salience of facial expressive cues of anger. Furthermore, the present results show that traumatic experiences deeply modify the perceptual analysis of philogenetically old behavioral patterns like the facial expressions of emotions. PMID:28690565

  5. Biochemical and Functional Analysis of Drosophila-Sciara Chimeric Sex-Lethal Proteins

    PubMed Central

    Ruiz, María Fernanda; Sarno, Francesca; Zorrilla, Silvia; Rivas, Germán; Sánchez, Lucas

    2013-01-01

    Background The Drosophila SXL protein controls sex determination and dosage compensation. It is a sex-specific factor controlling splicing of its own Sxl pre-mRNA (auto-regulation), tra pre-mRNA (sex determination) and msl-2 pre-mRNA plus translation of msl-2 mRNA (dosage compensation). Outside the drosophilids, the same SXL protein has been found in both sexes so that, in the non-drosophilids, SXL does not appear to play the key discriminating role in sex determination and dosage compensation that it plays in Drosophila. Comparison of SXL proteins revealed that its spatial organisation is conserved, with the RNA-binding domains being highly conserved, whereas the N- and C-terminal domains showing significant variation. This manuscript focuses on the evolution of the SXL protein itself and not on regulation of its expression. Methodology Drosophila-Sciara chimeric SXL proteins were produced. Sciara SXL represents the non-sex-specific function of ancient SXL in the non-drosophilids from which presumably Drosophila SXL evolved. Two questions were addressed. Did the Drosophila SXL protein have affected their functions when their N- and C-terminal domains were replaced by the corresponding ones of Sciara? Did the Sciara SXL protein acquire Drosophila sex-specific functions when the Drosophila N- and C-terminal domains replaced those of Sciara? The chimeric SXL proteins were analysed in vitro to study their binding affinity and cooperative properties, and in vivo to analyse their effect on sex determination and dosage compensation by producing Drosophila flies that were transgenic for the chimeric SXL proteins. Conclusions The sex-specific properties of extant Drosophila SXL protein depend on its global structure rather than on a specific domain. This implies that the modifications, mainly in the N- and C-terminal domains, that occurred in the SXL protein during its evolution within the drosophilid lineage represent co-evolutionary changes that determine the appropriate folding of SXL to carry out its sex-specific functions. PMID:23762307

  6. Evidence for Anger Saliency during the Recognition of Chimeric Facial Expressions of Emotions in Underage Ebola Survivors.

    PubMed

    Ardizzi, Martina; Evangelista, Valentina; Ferroni, Francesca; Umiltà, Maria A; Ravera, Roberto; Gallese, Vittorio

    2017-01-01

    One of the crucial features defining basic emotions and their prototypical facial expressions is their value for survival. Childhood traumatic experiences affect the effective recognition of facial expressions of negative emotions, normally allowing the recruitment of adequate behavioral responses to environmental threats. Specifically, anger becomes an extraordinarily salient stimulus unbalancing victims' recognition of negative emotions. Despite the plethora of studies on this topic, to date, it is not clear whether this phenomenon reflects an overall response tendency toward anger recognition or a selective proneness to the salience of specific facial expressive cues of anger after trauma exposure. To address this issue, a group of underage Sierra Leonean Ebola virus disease survivors (mean age 15.40 years, SE 0.35; years of schooling 8.8 years, SE 0.46; 14 males) and a control group (mean age 14.55, SE 0.30; years of schooling 8.07 years, SE 0.30, 15 males) performed a forced-choice chimeric facial expressions recognition task. The chimeric facial expressions were obtained pairing upper and lower half faces of two different negative emotions (selected from anger, fear and sadness for a total of six different combinations). Overall, results showed that upper facial expressive cues were more salient than lower facial expressive cues. This priority was lost among Ebola virus disease survivors for the chimeric facial expressions of anger. In this case, differently from controls, Ebola virus disease survivors recognized anger regardless of the upper or lower position of the facial expressive cues of this emotion. The present results demonstrate that victims' performance in the recognition of the facial expression of anger does not reflect an overall response tendency toward anger recognition, but rather the specific greater salience of facial expressive cues of anger. Furthermore, the present results show that traumatic experiences deeply modify the perceptual analysis of philogenetically old behavioral patterns like the facial expressions of emotions.

  7. Full Conversion of the Hemagglutinin-Neuraminidase Specificity of the Parainfluenza Virus 5 Fusion Protein by Replacement of 21 Amino Acids in Its Head Region with Those of the Simian Virus 41 Fusion Protein

    PubMed Central

    Nakahashi, Mito; Matsushima, Yoshiaki; Ito, Morihiro; Nishio, Machiko; Kawano, Mitsuo; Komada, Hiroshi; Nosaka, Tetsuya

    2013-01-01

    For most parainfluenza viruses, a virus type-specific interaction between the hemagglutinin-neuraminidase (HN) and fusion (F) proteins is a prerequisite for mediating virus-cell fusion and cell-cell fusion. The molecular basis of this functional interaction is still obscure partly because it is unknown which region of the F protein is responsible for the physical interaction with the HN protein. Our previous cell-cell fusion assay using the chimeric F proteins of parainfluenza virus 5 (PIV5) and simian virus 41 (SV41) indicated that replacement of two domains in the head region of the PIV5 F protein with the SV41 F counterparts bestowed on the PIV5 F protein the ability to induce cell-cell fusion on coexpression with the SV41 HN protein while retaining its ability to induce fusion with the PIV5 HN protein. In the study presented here, we furthered the chimeric analysis of the F proteins of PIV5 and SV41, finding that the PIV5 F protein could be converted to an SV41 HN-specific chimeric F protein by replacing five domains in the head region with the SV41 F counterparts. The five SV41 F-protein-derived domains of this chimera were then divided into 16 segments; 9 out of 16 proved to be not involved in determining its specificity for the SV41 HN protein. Finally, mutational analyses of a chimeric F protein, which harbored seven SV41 F-protein-derived segments, revealed that replacement of at most 21 amino acids of the PIV5 F protein with the SV41 F-protein counterparts was enough to convert its HN protein specificity. PMID:23698295

  8. Tumor-targeting domains for chimeric antigen receptor T cells.

    PubMed

    Bezverbnaya, Ksenia; Mathews, Ashish; Sidhu, Jesse; Helsen, Christopher W; Bramson, Jonathan L

    2017-01-01

    Immunotherapy with chimeric antigen receptor (CAR) T cells has been advancing steadily in clinical trials. Since the ability of engineered T cells to recognize intended tumor-associated targets is crucial for the therapeutic success, antigen-binding domains play an important role in shaping T-cell responses. Single-chain antibody and T-cell receptor fragments, natural ligands, repeat proteins, combinations of the above and universal tag-specific domains have all been used in the antigen-binding moiety of chimeric receptors. Here we outline the advantages and disadvantages of different domains, discuss the concepts of affinity and specificity, and highlight the recent progress of each targeting strategy.

  9. Adoptive therapy with chimeric antigen receptor-modified T cells of defined subset composition.

    PubMed

    Riddell, Stanley R; Sommermeyer, Daniel; Berger, Carolina; Liu, Lingfeng Steven; Balakrishnan, Ashwini; Salter, Alex; Hudecek, Michael; Maloney, David G; Turtle, Cameron J

    2014-01-01

    The ability to engineer T cells to recognize tumor cells through genetic modification with a synthetic chimeric antigen receptor has ushered in a new era in cancer immunotherapy. The most advanced clinical applications are in targeting CD19 on B-cell malignancies. The clinical trials of CD19 chimeric antigen receptor therapy have thus far not attempted to select defined subsets before transduction or imposed uniformity of the CD4 and CD8 cell composition of the cell products. This review will discuss the rationale for and challenges to using adoptive therapy with genetically modified T cells of defined subset and phenotypic composition.

  10. Chimeric antigen receptor T cells: power tools to wipe out leukemia and lymphoma.

    PubMed

    Riet, Tobias; Abken, Hinrich

    2015-08-01

    Adoptive cell therapy for malignant diseases is showing promise in recent early-phase trials in the treatment of B cell leukemia/lymphoma. Genetically engineered with a tumor-specific chimeric antigen receptor, patient's T cells produce lasting and complete leukemia regression. However, treatment is associated with some toxicity which needs our attention and the field still faces some hurdles at the scientific, technologic and clinical levels. Surmounting these obstacles will establish chimeric antigen receptor T cell therapy as a powerful approach to cure hematologic malignancies, paving the way for the treatment of other common types of cancer in the future.

  11. [COMPARISON OF REPAIR EFFECT BETWEEN CHIMERIC ANTEROLATERAL THIGH FLAP AND SERIES-WOUND FLAPS FOR DEFECT AFTER RESECTION OF ORAL AND MAXILLOFACIAL CANCER].

    PubMed

    Yang, Heping; Zhang, Hongwu; Chen, Haidi; Yang, Shuxiong; Wang, Jun; Hu, Dawang

    2016-04-01

    To compare the effectiveness of complex defects repair between using chimeric anterolateral thigh flap and series-wound flaps after resection of oral and maxillofacial cancer. After resection of oral and maxillofacial cancer, defect was repaired with chimeric anterolateral thigh flap in 39 patients between January 2011 and July 2014 (chimeric anterolateral thigh flap group); and defect was repaired with series-wound flaps in 35 patients between January 2009 and December 2010 (series-wound flaps group). There was no significant difference in gender, age, duration of disease, tumor type, tumor staging, defect location, and defect area between 2 groups (P > 0.05). The operation time, flap harvesting and microvascular anastomosis time, stomach tube extraction time, and oral feeding time were recorded and compared between 2 groups, and postoperative complications were observed; the effectiveness was evaluated according to clinical efficacy evaluation table of bone and soft tissue defects reconstruction surgery in oral and maxillofacial region. Vascular crisis occurred in 2 cases of chimeric anterolateral thigh flap group, and 4 cases of series-wound flaps group. Partial necrosis appeared at distal end of a series-wound flaps, and oral fistula and infection developed in 3 series-wound flaps. The other flaps and the grafted skin at donor site survived; wounds at recipient site healed by first intention. The operation time, stomach tube extraction time, and oral feeding time of chimeric anterolateral thigh flap group were significantly shorter than those of series-wound flaps group (P < 0.05), while the flap harvesting and microvascular anastomosis time was significantly longer than that of series-wound flaps group (P < 0.05). The patients were followed up 1-5 years (mean, 2.5 years). At 3 months after operation, the appearance, patients' satisfaction, working conditions, oral closure function, chew, language performance, and swallowing scores of the chimeric anterolateral thigh-flap group were significantly better than those of the series-wound flaps group (P < 0.05), while there was no significant difference in diet, mouth opening degree, oral cavity holding water test, and occlusion scores between the 2 groups (P > 0.05). Using chimeric anterolateral thigh flap for defect repair after resection of oral and maxillofacial cancer can significantly shorten the operation time, accelerate postoperative rehabilitation, and help the functional recovery of oral closure, chewing, language performance, swallowing function when compared with the series-wound flaps.

  12. Construction of yellow fever-influenza A chimeric virus particles.

    PubMed

    Oliveira, B C E P D; Liberto, M I M; Barth, O M; Cabral, M C

    2002-12-01

    In order to obtain a better understanding of the functional mechanisms involved in the fusogenesis of enveloped viruses, the influenza A (X31) and the yellow fever (17DD) virus particles were used to construct a chimeric structure based on their distinct pH requirements for fusion, and the distinct malleability of their nucleocapsids. The malleable nucleocapsid of the influenza A virus particle is characterized by a pleomorphic configuration when observed by electron microscopy. A heat inactivated preparation of X31 virus was used as a lectin to interact with the sialic acid domains present in the 17DD virus envelope. The E spikes of 17DD virus were induced to promote fusion of both envelopes, creating a double genome enveloped structure, the chimeric yellow fever-influenza A virus particle. These chimeric viral particles, originally denominated 'partículas virais quiméricas' (PVQ), were characterized by their infectious capacity for different biological systems. Cell inoculation with PVQ resulted in viral products that showed similar characteristics to those obtained after 17DD virus infections. Our findings open new opportunities towards the understanding of both virus particles and aspects of cellular physiologic quality control. The yellow fever-influenza A chimeric particles, by means of their hybrid composition, should be a valuable tool in the study of cell biology and the function of viral components. Copyright 2002 Elsevier Science B.V.

  13. Systematic evaluation of atmospheric chemistry-transport model CHIMERE

    NASA Astrophysics Data System (ADS)

    Khvorostyanov, Dmitry; Menut, Laurent; Mailler, Sylvain; Siour, Guillaume; Couvidat, Florian; Bessagnet, Bertrand; Turquety, Solene

    2017-04-01

    Regional-scale atmospheric chemistry-transport models (CTM) are used to develop air quality regulatory measures, to support environmentally sensitive decisions in the industry, and to address variety of scientific questions involving the atmospheric composition. Model performance evaluation with measurement data is critical to understand their limits and the degree of confidence in model results. CHIMERE CTM (http://www.lmd.polytechnique.fr/chimere/) is a French national tool for operational forecast and decision support and is widely used in the international research community in various areas of atmospheric chemistry and physics, climate, and environment (http://www.lmd.polytechnique.fr/chimere/CW-articles.php). This work presents the model evaluation framework applied systematically to the new CHIMERE CTM versions in the course of the continuous model development. The framework uses three of the four CTM evaluation types identified by the Environmental Protection Agency (EPA) and the American Meteorological Society (AMS): operational, diagnostic, and dynamic. It allows to compare the overall model performance in subsequent model versions (operational evaluation), identify specific processes and/or model inputs that could be improved (diagnostic evaluation), and test the model sensitivity to the changes in air quality, such as emission reductions and meteorological events (dynamic evaluation). The observation datasets currently used for the evaluation are: EMEP (surface concentrations), AERONET (optical depths), and WOUDC (ozone sounding profiles). The framework is implemented as an automated processing chain and allows interactive exploration of the results via a web interface.

  14. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain.

    PubMed

    Mishina, Yukiko; Mutoh, Hiroki; Song, Chenchen; Knöpfel, Thomas

    2014-01-01

    Deciphering how the brain generates cognitive function from patterns of electrical signals is one of the ultimate challenges in neuroscience. To this end, it would be highly desirable to monitor the activities of very large numbers of neurons while an animal engages in complex behaviors. Optical imaging of electrical activity using genetically encoded voltage indicators (GEVIs) has the potential to meet this challenge. Currently prevalent GEVIs are based on the voltage-sensitive fluorescent protein (VSFP) prototypical design or on the voltage-dependent state transitions of microbial opsins. We recently introduced a new VSFP design in which the voltage-sensing domain (VSD) is sandwiched between a fluorescence resonance energy transfer pair of fluorescent proteins (termed VSFP-Butterflies) and also demonstrated a series of chimeric VSD in which portions of the VSD of Ciona intestinalis voltage-sensitive phosphatase are substituted by homologous portions of a voltage-gated potassium channel subunit. These chimeric VSD had faster sensing kinetics than that of the native Ci-VSD. Here, we describe a new set of VSFPs that combine chimeric VSD with the Butterfly structure. We show that these chimeric VSFP-Butterflies can report membrane voltage oscillations of up to 200 Hz in cultured cells and report sensory evoked cortical population responses in living mice. This class of GEVIs may be suitable for imaging of brain rhythms in behaving mammalians.

  15. Trypanosoma cruzi Differentiates and Multiplies within Chimeric Parasitophorous Vacuoles in Macrophages Coinfected with Leishmania amazonensis

    PubMed Central

    Pessoa, Carina Carraro; Ferreira, Éden Ramalho; Bayer-Santos, Ethel; Rabinovitch, Michel; Mortara, Renato Arruda

    2016-01-01

    The trypanosomatids Leishmania amazonensis and Trypanosoma cruzi are excellent models for the study of the cell biology of intracellular protozoan infections. After their uptake by mammalian cells, the parasitic protozoan flagellates L. amazonensis and T. cruzi lodge within acidified parasitophorous vacuoles (PVs). However, whereas L. amazonensis develops in spacious, phagolysosome-like PVs that may enclose numerous parasites, T. cruzi is transiently hosted within smaller vacuoles from which it soon escapes to the host cell cytosol. To investigate if parasite-specific vacuoles are required for the survival and differentiation of T. cruzi, we constructed chimeric vacuoles by infection of L. amazonensis amastigote-infected macrophages with T. cruzi epimastigotes (EPIs) or metacyclic trypomastigotes (MTs). These chimeric vacuoles, easily observed by microscopy, allowed the entry and fate of T. cruzi in L. amazonensis PVs to be dynamically recorded by multidimensional imaging of coinfected cells. We found that although T. cruzi EPIs remained motile and conserved their morphology in chimeric vacuoles, T. cruzi MTs differentiated into amastigote-like forms capable of multiplying. These results demonstrate that the large adaptive vacuoles of L. amazonensis are permissive to T. cruzi survival and differentiation and that noninfective EPIs are spared from destruction within the chimeric PVs. We conclude that T. cruzi differentiation can take place in Leishmania-containing vacuoles, suggesting this occurs prior to their escape into the host cell cytosol. PMID:26975994

  16. Assessment of chimeric mice with humanized livers in new drug development: generation of pharmacokinetics, metabolism and toxicity data for selecting the final candidate compound.

    PubMed

    Kamimura, Hidetaka; Ito, Satoshi

    2016-01-01

    1. Chimeric mice with humanized livers are expected to be a novel tool for new drug development. This review discusses four applications where these animals can be used efficiently to collect supportive data for selecting the best compound in the final stage of drug discovery. 2. The first application is selection of the final compound based on estimated pharmacokinetic parameters in humans. Since chimeric mouse livers are highly repopulated with human hepatocytes, hepatic clearance values in vivo could be used preferentially to estimate pharmacokinetic profiles for humans. 3. The second is prediction of human-specific or disproportionate metabolites. Chimeric mice reproduce human-specific metabolites of drugs under development to conform to ICH guidance M3(R2), except for compounds that were extensively eliminated by co-existing mouse hepatocytes. 4. The third is identifying metabolites with distinct pharmacokinetic profiles in humans. Slow metabolite elimination specifically in humans increases its exposure level, but if its elimination is faster in laboratory animals, the animal exposure level might not satisfy ICH guidance M3(R2). 5. Finally, two examples of reproducing acute liver toxicity in chimeric mice are introduced. Integrated pharmacokinetics, metabolism and toxicity information are expected to assist pharmaceutical scientists in selecting the best candidate compound in new drug development.

  17. Fluorescent transgenic mice suitable for multi-color aggregation chimera studies.

    PubMed

    Ohtsuka, Masato; Miura, Hiromi; Gurumurthy, Channabasavaiah B; Kimura, Minoru; Inoko, Hidetoshi; Yoshimura, Shinichi; Sato, Masahiro

    2012-11-01

    We recently reported a novel method of mouse transgenesis called Pronuclear Injection-based Targeted Transgenisis (PITT) using which a series of fluorescent transgenic (Tg) mice lines were generated. These lines, unlike those generated using conventional random integration methods, express the transgenes faithfully and reproducibly generation after generation. Because of this superior nature, these lines are ideal for the generation of multi-colored aggregation chimeras that can be used to study cell-cell interactions and lineage analyses in living embryos/organs, where the transgenes can be detected and the clonal origin of a given cell population easily traced by its distinct fluorescence. In this study, to verify if Tg fluorescent mice generated through PITT were suitable for such applications, we sought to generate chimeric blastocysts and chimeric-Tg mice by aggregating two- or three-colored 8-cell embryos. Our analyses using these models led to the following observations. First, we noticed that cell mixing was infrequent during the stages of morula to early blastocyst. Second, chimeric fetuses obtained after aggregation of the two-colored 8-cell embryos exhibited uniform cell mixing. And third, in the organs of adult chimeric mice, the mode of cell distribution could be either clonal or polyclonal, as previously pointed out by others. Implications of our novel and improved Tg-chimeric mice approach for clonal cell lineage and developmental studies are discussed.

  18. Persistent hyperplastic primary vitreous due to somatic mosaic deletion of the arf tumor suppressor.

    PubMed

    Thornton, J Derek; Swanson, Doug J; Mary, Michelle N; Pei, Deqing; Martin, Amy C; Pounds, Stanley; Goldowitz, Dan; Skapek, Stephen X

    2007-02-01

    Mice lacking the Arf tumor-suppressor gene develop eye disease reminiscent of persistent hyperplastic primary vitreous (PHPV). The current work explores mechanisms by which Arf promotes eye development, and its absence causes a PHPV-like disease. Chimeric mice were made by fusing wild-type and Arf(-/-) morulae. In these experiments, wild-type cells are identified by transgenic expression of GFP from a constitutive promoter. PCR-based genotyping and quantitative analyses after immunofluorescence staining of tissue and cultured cells documented the relative contribution of wild-type and Arf(-/-) cells to different tissues in the eye and different types of cells in the vitreous. The contributions of the Arf(-/-) lineage to the tail DNA, cornea, retina, and retina pigment epithelium (RPE) correlated with each other in wild-type<-->Arf(-/-) chimeric mice. Newborn chimeras had primary vitreous hyperplasia, evident as a retrolental mass. The mass was usually present when the proportion of Arf(-/-) cells was relatively high and absent when the Arf(-/-) proportion was low. The Pdgfrbeta- and Sma-expressing cells within the mass arose predominantly from the Arf(-/-) population. Ectopic Arf expression induced smooth muscle proteins in cultured pericyte-like cells, and Arf and Sma expression overlapped in hyaloid vessels. In the mouse model, loss of Arf in only a subset of cells causes a PHPV-like disease. The data indicate that both cell autonomous and non-cell autonomous effects of Arf may contribute to its role in vitreous development.

  19. The intracoelomic route: a new approach for in utero human cord blood stem cell transplantation.

    PubMed

    Noia, Giuseppe; Pierelli, Luca; Bonanno, Giuseppina; Monego, Giovanni; Perillo, Alessandro; Rutella, Sergio; Cavaliere, Anna Franca; Straface, Gianluca; Fortunato, Giuseppe; Cesari, Elena; Scambia, Giovanni; Terzano, Marinella; Iannace, Enrico; Zelano, Giovanni; Michetti, Fabrizio; Leone, Giuseppe; Mancuso, Salvatore

    2004-01-01

    The intracoelomic route for in utero hematopoietic stem cell transplantation has been evaluated in pre-immune fetal sheep and the engraftment characteristics defined. Twelve ovine fetuses (gestational ages: 40-45 days) received intracoelomic transplants of human CD3-depleted (50 x 10(6) per lamb) or CD34-selected (1-2 x 10(5) per lamb) cord blood hematopoietic stem cells. Engraftment was evaluated from cell suspension of the liver, spleen, bone marrow and thymus by flow cytometry, cloning assays and polymerase chain reaction (PCR) analysis for human beta(2)-microglobulin gene. The engraftment of liver samples was also evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR), fluorescent in situ hybridization (FISH) and immunohistochemistry. Four fetuses (33%) aborted shortly after intracoelomic transplantation and were not evaluable for engraftment. Engraftment was detected in 4 fetuses obtained from cesarean delivery on day 70 after transplantation of CD3-depleted cord blood cells. The degree of engraftment in these 4 fetuses ranged from 6 to 22% in the different organs (as revealed by antigenic analysis of human CD45 with flow cytometry). Three fetuses obtained after cesarean section at 102 (No. 435184) and 105 (Nos 915293, 037568) days and 1 fetus delivered at term, which received CD34-selected cord blood cells, had human engraftment with 10, 32, 20 and 10% CD45+ cells in bone marrow, respectively. A further check of human chimerism was done at 1 year after birth of the fetus delivered at term and 7.6% of bone marrow chimerism was detected. In 6 out of 8 fetuses evaluable for human engraftment, chimerism was confirmed by PCR analysis for human beta(2)-microglobulin which also identified human cells in brain, spinal cord, heart, lung and skeletal muscle. On liver samples, FISH and RT-PCR confirmed the xenograft of human cells and the immunohistochemical analysis detected human markers of hematopoietic and hepatic lineage of differentiation. This preliminary study indicates that intracoelomic transplantation of human hematopoietic stem cells in fetal lambs is feasible and effective in terms of hematopoietic engraftment. Copyright 2004 S. Karger AG, Basel

  20. Heterogeneity to Homogeneity: Synthesis, Base Pairing, and Ligation Studies of 4',3'-XyluloNA/RNA and TNA/RNA Chimeric Sequences

    NASA Astrophysics Data System (ADS)

    Bhowmik, S.; Stoop, M.; Krishnamurthy, R.

    2017-07-01

    Based on the reality of "prebiotic clutter," we herein present an alternate model for pre-RNA to RNA transition, which starts, not with homogeneous-backbone system, but rather with mixtures of heterogeneous-backbone of chimeric "pre-RNA/RNA."

  1. Therapeutic use of chimeric bacteriophage (phage) lysins in staphylococcal endophthalmitis

    USDA-ARS?s Scientific Manuscript database

    Purpose: Phage endolysins are peptidoglycan hydrolases that are produced at the end of the phage lytic cycle to digest the host bacterial cell wall, facilitating the release of mature phage progeny. The aim of this study is to determine the antimicrobial activity of chimeric phage lysins against cli...

  2. Staphylococcal surface display of metal-binding polyhistidyl peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuelson, P.; Wernerus, H.; Svedberg, M.

    2000-03-01

    Recombinant Staphylococcus xylosus and Staphylococcus carnosus strains were generated with surface-exposed chimeric proteins containing polyhistidyl peptides designed for binding to divalent metal ions. Surface accessibility of the chimeric surface proteins was demonstrated and the chimeric surface proteins were found to be functional in terms of metal binding, since the recombinant staphylococcal cells were shown to have gained Ni{sup 2+}- and Cd{sup 2+}-binding capacity, suggesting that such bacteria could find use in bioremediation of heavy metals. This is, to their knowledge, the first time that recombinant, surface-exposed metal-binding peptides have been expressed on gram-positive bacteria. Potential environmental or biosensor applications formore » such recombinant staphylococci as biosorbents are discussed.« less

  3. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  4. Direct observation of nucleocytoplasmic transport by microinjection of GFP-tagged proteins in living cells.

    PubMed

    Rosorius, O; Heger, P; Stelz, G; Hirschmann, N; Hauber, J; Stauber, R H

    1999-08-01

    We established a straightforward experimental system to investigate directly the requirements for nucleocytoplasmic transport in live cells. For this purpose, substrates were created containing nuclear localization signals (NLS) or nuclear export signals (NES) linked to a chimeric protein composed of the glutathione S-transferase (GST) fused to the green fluorescent protein (GFP). The combination of GST/GFP-tagging allowed us to control protein expression in bacteria and to monitor protein purification during chromatography. Following microinjection into somatic cells, nuclear export/import of the highly fluorescent substrates could be observed directly by fluorescence microscopy. This system sets the stage to quantitate, in real time, the kinetics of nuclear import/export in living cells and to evaluate qualitative differences in various NLS/NES signals and pathways.

  5. Custom-engineered chimeric foot-and-mouth disease vaccine elicits protective immune responses in pigs

    USDA-ARS?s Scientific Manuscript database

    Chimeric foot-and-mouth disease viruses (FMDV) of which the antigenic properties can be readily manipulated is a potentially powerful approach in the control of foot-and-mouth disease (FMD) in sub-Saharan Africa. FMD vaccine application is complicated by the extensive variability of the South Africa...

  6. Intravitreal injection of a chimeric phage endolysin Ply187 protects mice from Staphylococcus aureus endophthalmitis

    USDA-ARS?s Scientific Manuscript database

    Objectives: The treatment of endophthalmitis is becoming very challenging due to the emergence of multidrug-resistant bacteria. Hence, the development of novel therapeutic alternatives for ocular use is essential. Here, we evaluated the therapeutic potential of Ply187AN-KSH3b, a chimeric phage endol...

  7. AFM study of morphology and mechanical properties of a chimeric spider silk and bone sialoprotein protein for bone regeneration

    PubMed Central

    Gomes, Sílvia; Numata, Keiji; Leonor, Isabel B.; Mano, João F.; Reis, Rui L.; Kaplan, David L.

    2011-01-01

    Atomic force microscopy (AFM) was used to assess a new chimeric protein consisting of a fusion protein of the consensus repeat for Nephila clavipes spider dragline protein and bone sialoprotein (6mer+BSP). The elastic modulus of this protein in film form was assessed through force curves, and film surface roughness was also determined. The results showed a significant difference between the elastic modulus of the chimeric silk protein, 6mer+BSP, and control films consisting of only the silk component (6mer). The behaviour of the 6mer+BSP and 6mer proteins in aqueous solution in the presence of calcium (Ca) ions was also assessed to determine interactions between the inorganic and organic components related to bone interactions, anchoring and biomaterial network formation. The results demonstrated the formation of protein networks in the presence of Ca2+ ions, characteristics that may be important in the context of controlling materials assembly and properties related to bone-formation with this new chimeric silk-BSP protein. PMID:21370930

  8. AFM study of morphology and mechanical properties of a chimeric spider silk and bone sialoprotein protein for bone regeneration.

    PubMed

    Gomes, Sílvia; Numata, Keiji; Leonor, Isabel B; Mano, João F; Reis, Rui L; Kaplan, David L

    2011-05-09

    Atomic force microscopy (AFM) was used to assess a new chimeric protein consisting of a fusion protein of the consensus repeat for Nephila clavipes spider dragline protein and bone sialoprotein (6mer+BSP). The elastic modulus of this protein in film form was assessed through force curves, and film surface roughness was also determined. The results showed a significant difference among the elastic modulus of the chimeric silk protein, 6mer+BSP, and control films consisting of only the silk component (6mer). The behavior of the 6mer+BSP and 6mer proteins in aqueous solution in the presence of calcium (Ca) ions was also assessed to determine interactions between the inorganic and organic components related to bone interactions, anchoring, and biomaterial network formation. The results demonstrated the formation of protein networks in the presence of Ca(2+) ions, characteristics that may be important in the context of controlling materials assembly and properties related to bone formation with this new chimeric silk-BSP protein.

  9. Generation of Chimeric RNAs by cis-splicing of adjacent genes (cis-SAGe) in mammals.

    PubMed

    Zhuo, Jian-Shu; Jing, Xiao-Yan; Du, Xin; Yang, Xiu-Qin

    2018-02-20

    Chimeric RNA molecules, possessing exons from two or more independent genes, are traditionally believed to be produced by chromosome rearrangement. However, recent studies revealed that cis-splicing of adjacent genes (cis- SAGe) is one of the major mechanisms underlying the formation of chimeric RNAs. cis-SAGe refers to intergenic splicing of directly adjacent genes with the same transcriptional orientation, resulting in read-through transcripts, termed chimeric RNAs, which contain sequences from two or more parental genes. cis-SAGe was first identified in tumor cells, since then its potential in carcinogenesis has attracted extensive attention. More and more scientists are focusing on it. With the development of research, cis-SAGe was found to be ubiquitous in various normal tissues, and might make a crucial contribution to the formation of novel genes in the evolution of genomes. In this review, we summarize the splicing pattern, expression characteristics, possible mechanisms, and significance of cis-SAGe in mammals. This review will be helpful for general understanding of the current status and development tendency of cis-SAGe.

  10. Novel chimeric peptide with enhanced cell specificity and anti-inflammatory activity.

    PubMed

    Kim, Young-Min; Kim, Nam-Hong; Lee, Jong-Wan; Jang, Jin-Sun; Park, Yung-Hoon; Park, Seong-Cheol; Jang, Mi-Kyeong

    2015-07-31

    An antimicrobial peptide (AMP), Hn-Mc, was designed by combining the N-terminus of HPA3NT3 and the C-terminus of melittin. This chimeric AMP exhibited potent antibacterial activity with low minimal inhibitory concentrations (MICs), ranging from 1 to 2 μM against four drug-susceptible bacteria and ten drug-resistant bacteria. Moreover, the hemolysis and cytotoxicity was reduced significantly compared to those of the parent peptides, highlighting its high cell selectivity. The morphological changes in the giant unilamellar vesicles and bacterial cell surfaces caused by the Hn-Mc peptide suggested that it killed the microbial cells by damaging the membrane envelope. An in vivo study also demonstrated the antibacterial activity of the Hn-Mc peptide in a mouse model infected with drug-resistant bacteria. In addition, the chimeric peptide inhibited the expression of lipopolysaccharide (LPS)-induced cytokines in RAW 264.7 cells by preventing the interaction between LPS and Toll-like receptors. These results suggest that this chimeric peptide is an antimicrobial and anti-inflammatory candidate as a pharmaceutic agent. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. IgE recognition of chimeric isoforms of the honeybee (Apis mellifera) venom allergen Api m 10 evaluated by protein array technology.

    PubMed

    Van Vaerenbergh, Matthias; De Smet, Lina; Rafei-Shamsabadi, David; Blank, Simon; Spillner, Edzard; Ebo, Didier G; Devreese, Bart; Jakob, Thilo; de Graaf, Dirk C

    2015-02-01

    Api m 10 has recently been established as novel major allergen that is recognized by more than 60% of honeybee venom (HBV) allergic patients. Previous studies suggest Api m 10 protein heterogeneity which may have implications for diagnosis and immunotherapy of HBV allergy. In the present study, RT-PCR revealed the expression of at least nine additional Api m 10 transcript isoforms by the venom glands. Two distinct mechanisms are responsible for the generation of these isoforms: while the previously known variant 2 is produced by an alternative splicing event, novel identified isoforms are intragenic chimeric transcripts. To the best of our knowledge, this is the first report of the identification of chimeric transcripts generated by the honeybee. By a retrospective proteomic analysis we found evidence for the presence of several of these isoforms in the venom proteome. Additionally, we analyzed IgE reactivity to different isoforms by protein array technology using sera from HBV allergic patients, which revealed that IgE recognition of Api m 10 is both isoform- and patient-specific. While it was previously demonstrated that the majority of HBV allergic patients display IgE reactivity to variant 2, our study also shows that some patients lacking IgE antibodies for variant 2 display IgE reactivity to two of the novel identified Api m 10 variants, i.e. variants 3 and 4. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Development of a Novel Anti-HIV-1 Agent from within: Effect of Chimeric Vpr-Containing Protease Cleavage Site Residues on Virus Replication

    NASA Astrophysics Data System (ADS)

    Serio, D.; Rizvi, T. A.; Cartas, M.; Kalyanaraman, V. S.; Weber, I. T.; Koprowski, H.; Srinivasan, A.

    1997-04-01

    Effective antiviral agents will be of great value in controlling virus replication and delaying the onset of HIV-1-related disease symptoms. Current therapy involves the use of antiviral agents that target the enzymatic functions of the virus, resulting in the emergence of resistant viruses to these agents, thus lowering their effectiveness. To overcome this problem, we have considered the idea of developing novel agents from within HIV-1 as inhibitors of virus replication. The specificity of the Vpr protein for the HIV-1 virus particle makes it an attractive molecule for the development of antiviral agents targeting the events associated with virus maturation. We have generated chimeric Vpr proteins containing HIV-1-specific sequences added to the C terminus of Vpr. These sequences correspond to nine cleavage sites of the Gag and Gag-Pol precursors of HIV-1. The chimeric Vpr constructs were introduced into HIV-1 proviral DNA to assess their effect on virus infectivity using single- and multiple-round replication assays. The virus particles generated exhibited a variable replication pattern depending on the protease cleavage site used as a fusion partner. Interestingly, the chimeric Vpr containing the cleavage sequences from the junction of p24 and p2, 24/2, completely abolished virus infectivity. These results show that chimeric proteins generated from within HIV-1 have the ability to suppress HIV-1 replication and make ideal agents for gene therapy or intracellular immunization to treat HIV-1 infection.

  13. Chimeric Mouse model to track the migration of bone marrow derived cells in glioblastoma following anti-angiogenic treatments.

    PubMed

    Achyut, B R; Shankar, Adarsh; Iskander, A S M; Ara, Roxan; Knight, Robert A; Scicli, Alfonso G; Arbab, Ali S

    2016-01-01

    Bone marrow derived cells (BMDCs) have been shown to contribute in the tumor development. In vivo animal models to investigate the role of BMDCs in tumor development are poorly explored. We established a novel chimeric mouse model using as low as 5 × 10(6) GFP+ BM cells in athymic nude mice, which resulted in >70% engraftment within 14 d. In addition, chimera was established in NOD-SCID mice, which displayed >70% with in 28 d. Since anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in glioblastoma (GBM), which resulted into marked hypoxia and recruited BMDCs to the tumor microenvironment (TME). We exploited chimeric mice in athymic nude background to develop orthotopic U251 tumor and tested receptor tyrosine kinase inhibitors and CXCR4 antagonist against GBM. We were able to track GFP+ BMDCs in the tumor brain using highly sensitive multispectral optical imaging instrument. Increased tumor growth associated with the infiltration of GFP+ BMDCs acquiring suppressive myeloid and endothelial phenotypes was seen in TME following treatments. Immunofluorescence study showed GFP+ cells accumulated at the site of VEGF, SDF1 and PDGF expression, and at the periphery of the tumors following treatments. In conclusion, we developed a preclinical chimeric model of GBM and phenotypes of tumor infiltrated BMDCs were investigated in context of AATs. Chimeric mouse model could be used to study detailed cellular and molecular mechanisms of interaction of BMDCs and TME in cancer.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M., E-mail: wilsonjm@mail.med.upenn.edu

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole livermore » cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.« less

  15. A chimeric virus created by DNA shuffling of the capsid genes of different subtypes of porcine circovirus type 2 (PCV2) in the backbone of the non-pathogenic PCV1 induces protective immunity against the predominant PCV2b and the emerging PCV2d in pigs.

    PubMed

    Matzinger, Shannon R; Opriessnig, Tanja; Xiao, Chao-Ting; Catanzaro, Nicholas; Beach, Nathan M; Slade, David E; Nitzel, Gregory P; Meng, Xiang-Jin

    2016-11-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease (PCVAD). Available commercial vaccines all target PCV2a subtype, although the circulating predominant subtype worldwide is PCV2b, and the emerging PCV2d subtype is also increasingly associated with PCVAD. Here we molecularly bred genetically-divergent strains representing PCV2a, PCV2b, PCV2c, PCV2d, and "divergent PCV2a" subtypes by DNA-shuffling of the capsid genes to produce a chimeric virus representing PCV2 global genetic diversity. When placed in the PCV2a backbone, one chimeric virus (PCV2-3cl14) induced higher neutralizing antibody titers against different PCV2 subtypes. Subsequently, a candidate vaccine (PCV1-3cl14) was produced by cloning the shuffled 3cl14 capsid into the backbone of the non-pathogenic PCV1. A vaccine efficacy study revealed that chimeric virus PCV1-3cl14 induces protective immunity against challenge with PCV2b or PCV2d in pigs. The chimeric PCV1-3cl14 virus is a strong candidate for a novel vaccine in pigs infected with variable PCV2 strains. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Linker-based GnRH-PE chimeric proteins inhibit cancer growth in nude mice.

    PubMed

    Ben-Yehudah, A; Yarkoni, S; Nechushtan, A; Belostotsky, R; Lorberboum-Galski, H

    1999-04-01

    Since the number of cancer-related deaths has not decreased in recent years, major efforts are being made to find new drugs for cancer treatment. In this report we introduce the gonadotropin releasing hormone-Pseudomonas exotoxin (GnRH-PE) based chimeric proteins L-GnRH-PE66 and L-GnRH-PE40. These proteins are composed of a GnRH moiety attached to modified forms of Pseudomonas exotoxin via a polylinker (gly4ser)2. The chimeric proteins L-GnRH-PE66 and L-GnRH-PE40 have the ability to target and kill adenocarcinoma cell lines in vitro, whereas non-adenocarcinoma cell lines are not affected. We demonstrate that L-GnRH-PE66 and L-GnRH-PE40 efficiently inhibit cancer growth. Nude mice were injected subcutaneously with the SW-48 adenocarcinoma cell line to produce xenograft tumours. When the tumours were established and visible, the animals were injected with chimeric proteins for 10 days. At the end of this period, a reduction of up to 3-fold in tumor size was obtained in the treated mice, as compared with the control group, which received equivalent amounts of GnRH; the difference was even greater 13 days after termination of treatment. Thus, the chimeric proteins L-GnRH-PE66 and L-GnRH-PE40 are promising candidates for treatment of a variety of adenocarcinomas and their use in humans should be considered.

  17. A novel inactivated enterovirus 71 vaccine can elicit cross-protective immunity against coxsackievirus A16 in mice.

    PubMed

    Yang, Lisheng; Liu, Yajing; Li, Shuxuan; Zhao, Huan; Lin, Qiaona; Yu, Hai; Huang, Xiumin; Zheng, Qingbing; Cheng, Tong; Xia, Ningshao

    2016-11-21

    Hand, foot, and mouth disease (HFMD) is a highly contagious disease that mainly affects infants and children. Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the major pathogens of HFMD. Two EV71 vaccines were recently licensed in China and the administration of the EV71 vaccines is believed to significantly reduce the number of HFMD-related severe or fatal cases. However, a monovalent EV71 vaccine cannot cross-protect against CA16 infection, this may result in that it cannot effectively control the overall HFMD epidemic. In this study, a chimeric EV71, whose VP1/210-225 epitope was replaced by that of CA16, was constructed using a reverse genetics technique to produce a candidate EV71/CA16 bivalent vaccine strain. The chimeric EV71 was infectious and showed similar growth characteristics as its parental strain. The replacement of the VP1/210-225 epitope did not significantly affect the antigenicity and immunogenicity of EV71. More importantly, the chimeric EV71 could induce protective immunity against both EV71 and CA16, and protect neonatal mice against either EV71 or CA16 lethal infections, the chimeric EV71 constructed in this study was shown to be a feasible and promising candidate bivalent vaccine against both EV71 and CA16. The construction of a chimeric enterovirus also provides an alternative platform for broad-spectrum HFMD vaccines development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A designed bifunctional laccase/β-1,3-1,4-glucanase enzyme shows synergistic sugar release from milled sugarcane bagasse.

    PubMed

    Furtado, G P; Ribeiro, L F; Lourenzoni, M R; Ward, R J

    2013-01-01

    A bifunctional enzyme has been created by fusing two Bacillus subtilis enzymes: the β-1,3-1,4-glucanase (BglS, EC 3.2.1.73) that hydrolyzes plant cell wall β-glucans and the copper-dependent oxidase laccase (CotA, EC 1.10.3.2) that catalyzes the oxidation of aromatic compounds with simultaneous reduction of oxygen to water. The chimeric laccase/β-1,3-1,4-glucanase was created by insertion fusion of the bglS and cotA genes, and expressed in Escherichia coli. The affinity-purified recombinant chimeric enzyme showed both laccase and glucanase activities, with a maximum laccase activity at pH 4.5 and 75°C that showed a V(max) 30% higher than observed for the parental laccase. The maximum glucanase activity in the chimeric enzyme was at pH 6.0 and 50°C, with a slight reduction in V(max) by ∼10% compared with the parental glucanase. A decreased K(M) resulted in an overall increase in the K(cat)/K(M) value for the glucanase activity of the chimeric enzyme. The hydrolytic activity of the chimera was 20% higher against natural milled sugarcane bagasse as compared with equimolar mixtures of the separate parental enzymes. Molecular dynamics simulations indicated the approximation of the two catalytic domains in the chimeric enzyme, and the formation of an inter-domain interface may underlie the improved catalytic function.

  19. Persistent replication of a hepatitis C virus genotype 1b-based chimeric clone carrying E1, E2 and p6 regions from GB virus B in a New World monkey.

    PubMed

    Suzuki, Saori; Mori, Ken-Ichi; Higashino, Atsunori; Iwasaki, Yuki; Yasutomi, Yasuhiro; Maki, Noboru; Akari, Hirofumi

    2016-01-01

    The development of effective hepatitis C virus (HCV) vaccines is essential for the prevention of further HCV dissemination, especially in developing countries. Therefore the aim of this study is to establish a feasible and immunocompetent surrogate animal model of HCV infection that will help in evaluation of the protective efficacy of newly developing HCV vaccine candidates. To circumvent the narrow host range of HCV, an HCV genotype 1b-based chimeric clone carrying E1, E2 and p6 regions from GB virus B (GBV-B), which is closely related to HCV, was generated. The chimera between HCV and GBV-B, named HCV/G, replicated more efficiently as compared with the HCV clone in primary marmoset hepatocytes. Furthermore, it was found that the chimera persistently replicated in a tamarin for more than 2 years after intrahepatic inoculation of the chimeric RNA. Although relatively low (<200 copies/mL), the viral RNA loads in plasma were detectable intermittently during the observation period. Of note, the chimeric RNA was found in the pellet fraction obtained by ultracentrifugation of the plasma at 73 weeks, indicating production of the chimeric virus. Our results will help establish a novel non-human primate model for HCV infection on the basis of the HCV/G chimera in the major framework of the HCV genome. © 2015 The Societies and John Wiley & Sons Australia, Ltd.

  20. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants

    PubMed Central

    Yazici, Hilal; O'Neill, Mary B.; Kacar, Turgay; Wilson, Brandon R.; Oren, E. Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-01-01

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property. PMID:26795060

  1. Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides.

    PubMed

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques

    2016-02-01

    Growing evidence supports a role for brain gangliosides in the pathogenesis of neurodegenerative diseases including Alzheimer's and Parkinson's. Recently we deciphered the ganglioside-recognition code controlling specific ganglioside binding to Alzheimer's β-amyloid (Aβ1-42) peptide and Parkinson's disease-associated protein α-synuclein. Cracking this code allowed us to engineer a short chimeric Aβ/α-synuclein peptide that recognizes all brain gangliosides. Here we show that ganglioside-deprived neural cells do no longer sustain the formation of zinc-sensitive amyloid pore channels induced by either Aβ1-42 or α-synuclein, as assessed by single-cell Ca(2+) fluorescence microscopy. Thus, amyloid channel formation, now considered a key step in neurodegeneration, is a ganglioside-dependent process. Nanomolar concentrations of chimeric peptide competitively inhibited amyloid pore formation induced by Aβ1-42 or α-synuclein in cultured neural cells. Moreover, this peptide abrogated the intracellular calcium increases induced by Parkinson's-associated mutant forms of α-synuclein (A30P, E46K and A53T). The chimeric peptide also prevented the deleterious effects of Aβ1-42 on synaptic vesicle trafficking and decreased the Aβ1-42-induced impairment of spontaneous activity in rat hippocampal slices. Taken together, these data show that the chimeric peptide has broad anti-amyloid pore activity, suggesting that a common therapeutic strategy based on the prevention of amyloid-ganglioside interactions is a reachable goal for both Alzheimer's and Parkinson's diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.

    PubMed

    Yazici, Hilal; O'Neill, Mary B; Kacar, Turgay; Wilson, Brandon R; Oren, E Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-03-02

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property.

  3. Proteomic Analysis and Identification of the Structural and Regulatory Proteins of the Rhodobacter capsulatus Gene Transfer Agent

    PubMed Central

    Chen, Frank; Spano, Anthony; Goodman, Benjamin E.; Blasier, Kiev R.; Sabat, Agnes; Jeffery, Erin; Norris, Andrew; Shabanowitz, Jeffrey; Hunt, Donald F.; Lebedev, Nikolai

    2010-01-01

    The gene transfer agent of Rhodobacter capsulatus (GTA) is a unique phage-like particle that exchanges genetic information between members of this same species of bacterium. Besides being an excellent tool for genetic mapping, the GTA has a number of advantages for biotechnological and nanoengineering purposes. To facilitate the GTA purification and identify the proteins involved in GTA expression, assembly and regulation, in the present work we construct and transform into R. capsulatus Y262 a gene coding for a C-terminally His-tagged capsid protein. The constructed protein was expressed in the cells, assembled into chimeric GTA particles inside the cells and excreted from the cells into surrounding medium. Transmission electron micrographs of phosphotungstate-stained, NiNTA-purified chimeric GTA confirm that its structure is similar to normal GTA particles, with many particles composed both of a head and a tail. The mass spectrometric proteomic analysis of polypeptides present in the GTA recovered outside the cells shows that GTA is composed of at least 9 proteins represented in the GTA gene cluster including proteins coded for by Orf’s 3, 5, 6–9, 11, 13, and 15. PMID:19105630

  4. Proteomic analysis and identification of the structural and regulatory proteins of the Rhodobacter capsulatus gene transfer agent.

    PubMed

    Chen, Frank; Spano, Anthony; Goodman, Benjamin E; Blasier, Kiev R; Sabat, Agnes; Jeffery, Erin; Norris, Andrew; Shabanowitz, Jeffrey; Hunt, Donald F; Lebedev, Nikolai

    2009-02-01

    The gene transfer agent of Rhodobacter capsulatus (GTA) is a unique phage-like particle that exchanges genetic information between members of this same species of bacterium. Besides being an excellent tool for genetic mapping, the GTA has a number of advantages for biotechnological and nanoengineering purposes. To facilitate the GTA purification and identify the proteins involved in GTA expression, assembly and regulation, in the present work we construct and transform into R. capsulatus Y262 a gene coding for a C-terminally His-tagged capsid protein. The constructed protein was expressed in the cells, assembled into chimeric GTA particles inside the cells and excreted from the cells into surrounding medium. Transmission electron micrographs of phosphotungstate-stained, NiNTA-purified chimeric GTA confirm that its structure is similar to normal GTA particles, with many particles composed both of a head and a tail. The mass spectrometric proteomic analysis of polypeptides present in the GTA recovered outside the cells shows that GTA is composed of at least 9 proteins represented in the GTA gene cluster including proteins coded for by Orf's 3, 5, 6-9, 11, 13, and 15.

  5. Primordial germ cell-mediated chimera technology produces viable pure-line Houbara bustard offspring: potential for repopulating an endangered species.

    PubMed

    Wernery, Ulrich; Liu, Chunhai; Baskar, Vijay; Guerineche, Zhor; Khazanehdari, Kamal A; Saleem, Shazia; Kinne, Jörg; Wernery, Renate; Griffin, Darren K; Chang, Il-Kuk

    2010-12-29

    The Houbara bustard (Chlamydotis undulata) is a wild seasonal breeding bird populating arid sandy semi-desert habitats in North Africa and the Middle East. Its population has declined drastically during the last two decades and it is classified as vulnerable. Captive breeding programmes have, hitherto, been unsuccessful in reviving population numbers and thus radical technological solutions are essential for the long term survival of this species. The purpose of this study was to investigate the use of primordial germ cell-mediated chimera technology to produce viable Houbara bustard offspring. Embryonic gonadal tissue was dissected from Houbara bustard embryos at eight days post-incubation. Subsequently, Houbara tissue containing gonadal primordial germ cells (gPGCs) was injected into White Leghorn chicken (Gallus gallus domesticus) embryos, producing 83/138 surviving male chimeric embryos, of which 35 chimeric roosters reached sexual maturity after 5 months. The incorporation and differentiation of Houbara gPGCs in chimeric chicken testis were assessed by PCR with Houbara-specific primers and 31.3% (5/16) gonads collected from the injected chicken embryos showed the presence of donor Houbara cells. A total of 302 semen samples from 34 chimeric roosters were analyzed and eight were confirmed as germline chimeras. Semen samples from these eight roosters were used to artificially inseminate three female Houbara bustards. Subsequently, 45 Houbara eggs were obtained and incubated, two of which were fertile. One egg hatched as a male live born Houbara; the other was female but died before hatching. Genotyping confirmed that the male chick was a pure-line Houbara derived from a chimeric rooster. This study demonstrates for the first time that Houbara gPGCs can migrate, differentiate and eventually give rise to functional sperm in the chimeric chicken testis. This approach may provide a promising tool for propagation and conservation of endangered avian species that cannot breed in captivity.

  6. Induction of HIV Neutralizing Antibodies against the MPER of the HIV Envelope Protein by HA/gp41 Chimeric Protein-Based DNA and VLP Vaccines

    PubMed Central

    Ye, Ling; Wen, Zhiyuan; Dong, Ke; Wang, Xi; Bu, Zhigao; Zhang, Huizhong; Compans, Richard W.; Yang, Chinglai

    2011-01-01

    Several conserved neutralizing epitopes have been identified in the HIV Env protein and among these, the MPER of gp41 has received great attention and is widely recognized as a promising target. However, little success has been achieved in eliciting MPER-specific HIV neutralizing antibodies by a number of different vaccine strategies. We investigated the ability of HA/gp41 chimeric protein-based vaccines, which were designed to enhance the exposure of the MPER in its native conformation, to induce MPER-specific HIV neutralizing antibodies. In characterization of the HA/gp41 chimeric protein, we found that by mutating an unpaired Cys residue (Cys-14) in its HA1 subunit to a Ser residue, the modified chimeric protein HA-C14S/gp41 showed increased reactivity to a conformation-sensitive monoclonal antibody against HA and formed more stable trimers in VLPs. On the other hand, HA-C14S/gp41 and HA/gp41 chimeric proteins expressed on the cell surfaces exhibited similar reactivity to monoclonal antibodies 2F5 and 4E10. Immunization of guinea pigs using the HA-C14S/gp41 DNA or VLP vaccines induced antibodies against the HIV gp41 as well as to a peptide corresponding to a segment of MPER at higher levels than immunization by standard HIV VLPs. Further, sera from vaccinated guinea pigs were found to exhibit HIV neutralizing activities. Moreover, sera from guinea pigs vaccinated by HA-C14S/gp41 DNA and VLP vaccines but not the standard HIV VLPs, were found to neutralize HIV pseudovirions containing a SIV-4E10 chimeric Env protein. The virus neutralization could be blocked by a MPER-specific peptide, thus demonstrating induction of MPER-specific HIV neutralizing antibodies by this novel vaccine strategy. These results show that induction of MPER-specific HIV neutralizing antibodies can be achieved through a rationally designed vaccine strategy. PMID:21625584

  7. Adoptive transfer of murine T cells expressing a chimeric-PD1-Dap10 receptor as an immunotherapy for lymphoma.

    PubMed

    Lynch, Adam; Hawk, William; Nylen, Emily; Ober, Sean; Autin, Pierre; Barber, Amorette

    2017-11-01

    Adoptive transfer of T cells is a promising cancer therapy and expression of chimeric antigen receptors can enhance tumour recognition and T-cell effector functions. The programmed death protein 1 (PD1) receptor is a prospective target for a chimeric antigen receptor because PD1 ligands are expressed on many cancer types, including lymphoma. Therefore, we developed a murine chimeric PD1 receptor (chPD1) consisting of the PD1 extracellular domain fused to the cytoplasmic domain of CD3ζ. Additionally, chimeric antigen receptor therapies use various co-stimulatory domains to enhance efficacy. Hence, the inclusion of a Dap10 or CD28 co-stimulatory domain in the chPD1 receptor was compared to determine which domain induced optimal anti-tumour immunity in a mouse model of lymphoma. The chPD1 T cells secreted pro-inflammatory cytokines and lysed RMA lymphoma cells. Adoptive transfer of chPD1 T cells significantly reduced established tumours and led to tumour-free survival in lymphoma-bearing mice. When comparing chPD1 receptors containing a Dap10 or CD28 domain, both receptors induced secretion of pro-inflammatory cytokines; however, chPD1-CD28 T cells also secreted anti-inflammatory cytokines whereas chPD1-Dap10 T cells did not. Additionally, chPD1-Dap10 induced a central memory T-cell phenotype compared with chPD1-CD28, which induced an effector memory phenotype. The chPD1-Dap10 T cells also had enhanced in vivo persistence and anti-tumour efficacy compared with chPD1-CD28 T cells. Therefore, adoptive transfer of chPD1 T cells could be a novel therapy for lymphoma and inclusion of the Dap10 co-stimulatory domain in chimeric antigen receptors may induce a preferential cytokine profile and T-cell differentiation phenotype for anti-tumour therapies. © 2017 John Wiley & Sons Ltd.

  8. Primordial Germ Cell-Mediated Chimera Technology Produces Viable Pure-Line Houbara Bustard Offspring: Potential for Repopulating an Endangered Species

    PubMed Central

    Wernery, Ulrich; Liu, Chunhai; Baskar, Vijay; Guerineche, Zhor; Khazanehdari, Kamal A.; Saleem, Shazia; Kinne, Jörg; Wernery, Renate

    2010-01-01

    Background The Houbara bustard (Chlamydotis undulata) is a wild seasonal breeding bird populating arid sandy semi-desert habitats in North Africa and the Middle East. Its population has declined drastically during the last two decades and it is classified as vulnerable. Captive breeding programmes have, hitherto, been unsuccessful in reviving population numbers and thus radical technological solutions are essential for the long term survival of this species. The purpose of this study was to investigate the use of primordial germ cell-mediated chimera technology to produce viable Houbara bustard offspring. Methodology/Principal Findings Embryonic gonadal tissue was dissected from Houbara bustard embryos at eight days post-incubation. Subsequently, Houbara tissue containing gonadal primordial germ cells (gPGCs) was injected into White Leghorn chicken (Gallus gallus domesticus) embryos, producing 83/138 surviving male chimeric embryos, of which 35 chimeric roosters reached sexual maturity after 5 months. The incorporation and differentiation of Houbara gPGCs in chimeric chicken testis were assessed by PCR with Houbara-specific primers and 31.3% (5/16) gonads collected from the injected chicken embryos showed the presence of donor Houbara cells. A total of 302 semen samples from 34 chimeric roosters were analyzed and eight were confirmed as germline chimeras. Semen samples from these eight roosters were used to artificially inseminate three female Houbara bustards. Subsequently, 45 Houbara eggs were obtained and incubated, two of which were fertile. One egg hatched as a male live born Houbara; the other was female but died before hatching. Genotyping confirmed that the male chick was a pure-line Houbara derived from a chimeric rooster. Conclusion This study demonstrates for the first time that Houbara gPGCs can migrate, differentiate and eventually give rise to functional sperm in the chimeric chicken testis. This approach may provide a promising tool for propagation and conservation of endangered avian species that cannot breed in captivity. PMID:21209914

  9. Chimeric peptides as implant functionalization agents for titanium alloy implants with antimicrobial properties.

    PubMed

    Yucesoy, Deniz T; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M; Snead, Malcolm L; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMP's), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host- and bacterial- cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with antimicrobial peptides can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, S. mutans, S. epidermidis , and E. coli . In biological interactions such as occurs on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore open up new possibilities to cover the implant site and tailor it to a desirable bioactivity.

  10. Human hepatocytes support the hypertrophic but not the hyperplastic response to the murine nongenotoxic hepatocarcinogen sodium phenobarbital in an in vivo study using a chimeric mouse with humanized liver.

    PubMed

    Yamada, Tomoya; Okuda, Yu; Kushida, Masahiko; Sumida, Kayo; Takeuchi, Hayato; Nagahori, Hirohisa; Fukuda, Takako; Lake, Brian G; Cohen, Samuel M; Kawamura, Satoshi

    2014-11-01

    High doses of sodium phenobarbital (NaPB), a constitutive androstane receptor (CAR) activator, have been shown to produce hepatocellular tumors in rodents by a mitogenic mode of action (MOA) involving CAR activation. The effect of 1-week dietary treatment with NaPB on liver weight and histopathology, hepatic CYP2B enzyme activity and CYP2B/3A mRNA expression, replicative DNA synthesis and selected genes related to cell proliferation, and functional transcriptomic and metabolomic analyses was studied in male CD-1 mice, Wistar Hannover (WH) rats, and chimeric mice with human hepatocytes. The treatment of chimeric mice with 1000-1500-ppm NaPB resulted in plasma levels around 3-5-fold higher than those observed in human subjects given therapeutic doses of NaPB. NaPB produced dose-dependent increases in hepatic CYP2B activity and CYP2B/3A mRNA levels in all animal models. Integrated functional metabolomic and transcriptomic analyses demonstrated that the responses to NaPB in the human liver were clearly different from those in rodents. Although NaPB produced a dose-dependent increase in hepatocyte replicative DNA synthesis in CD-1 mice and WH rats, no increase in replicative DNA synthesis was observed in human hepatocyte-originated areas of chimeric mice. In addition, treatment with NaPB had no effect on Ki-67, PCNA, GADD45β, and MDM2 mRNA expression in chimeric mice, whereas significant increases were observed in CD-1 mice and/or WH rats. However, increases in hepatocyte replicative DNA synthesis were observed in chimeric mice both in vivo and in vitro after treatment epidermal growth factor. Thus, although NaPB could activate CAR in both rodent and human hepatocytes, NaPB did not increase replicative DNA synthesis in human hepatocytes of chimeric mice, whereas it was mitogenic to rat and mouse hepatocytes. As human hepatocytes are refractory to the mitogenic effects of NaPB, the MOA for NaPB-induced rodent liver tumor formation is thus not relevant for humans. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Human placenta: relative content of antibodies of different classes and subclasses (IgG1-IgG4) containing lambda- and kappa-light chains and chimeric lambda-kappa-immunoglobulins.

    PubMed

    Lekchnov, Evgenii A; Sedykh, Sergey E; Dmitrenok, Pavel S; Buneva, Valentina N; Nevinsky, Georgy A

    2015-06-01

    The specific organ placenta is much more than a filter: it is an organ that protects, feeds and regulates the growth of the embryo. Affinity chromatography, ELISA, SDS-PAGE and matrix-assisted laser desorption ionization mass spectrometry were used. Using 10 intact human placentas deprived of blood, a quantitative analysis of average relative content [% of total immunoglobulins (Igs)] was carried out for the first time: (92.7), IgA (2.4), IgM (2.5), kappa-antibodies (51.4), lambda-antibodies (48.6), IgG1 (47.0), IgG2 (39.5), IgG3 (8.8) and IgG4 (4.3). It was shown for the first time that placenta contains sIgA (2.5%). In the classic paradigm, Igs represent products of clonal B-cell populations, each producing antibodies recognizing a single antigen. There is a common belief that IgGs in mammalian biological fluids are monovalent molecules having stable structures and two identical antigen-binding sites. However, similarly to human milk Igs, placenta antibodies undergo extensive half-molecule exchange and the IgG pool consists of 43.5 ± 15.0% kappa-kappa-IgGs and 41.6 ± 17.0% lambda-lambda-IgGs, while 15.0 ± 4.0% of the IgGs contained both kappa- and lambda-light chains. Kappa-kappa-IgGs and lambda-lambda-IgGs contained, respectively (%): IgG1 (47.7 and 34.4), IgG2 (36.3 and 44.5), IgG3 (7.4 and 11.8) and IgG4 (7.5 and 9.1), while chimeric kappa-lambda-IgGs consisted of (%): 43.5 IgG1, 41.0 IgG2, 5.6 IgG3 and 7.9 IgG4. Our data are indicative of the possibility of half-molecule exchange between placenta IgGs of various subclasses, raised against different antigens, which explains a very well-known polyspecificity and cross-reactivity of different human IgGs. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Perceptual Asymmetry for Chimeric Stimuli in Children with Early Unilateral Brain Damage

    ERIC Educational Resources Information Center

    Bava, Sunita; Ballantyne, Angela O.; May, Susanne J.; Trauner, Doris A.

    2005-01-01

    The present study used a chimeric stimuli task to assess the magnitude of the left-hemispace bias in children with congenital unilateral brain damage (n=46) as compared to typically developing matched controls (n=46). As would be expected, controls exhibited a significant left-hemispace bias. In the presence of left hemisphere (LH) damage, the…

  13. Gender Differences in Empathy: The Role of the Right Hemisphere

    ERIC Educational Resources Information Center

    Rueckert, Linda; Naybar, Nicolette

    2008-01-01

    The relationship between activation of the right cerebral hemisphere (RH) and empathy was investigated. Twenty-two men and 73 women participated by completing a chimeric face task and empathy questionnaire. For the face task, participants were asked to pick which of the two chimeric faces looked happier. Both men and women were significantly more…

  14. Facial aesthetics: babies prefer attractiveness to symmetry.

    PubMed

    Samuels, Curtis A; Butterworth, George; Roberts, Tony; Graupner, Lida; Hole, Graham

    2013-01-01

    The visual preferences of human infants for faces that varied in their attractiveness and in their symmetry about the midline were explored. The aim was to establish whether infants' visual preference for attractive faces may be mediated by the vertical symmetry of the face. Chimeric faces, made from photographs of attractive and unattractive female faces, were produced by computer graphics. Babies looked longer at normal and at chimeric attractive faces than at normal and at chimeric unattractive faces. There were no developmental differences between the younger and older infants: all preferred to look at the attractive faces. Infants as young as 4 months showed similarity with adults in the 'aesthetic perception' of attractiveness and this preference was not based on the vertical symmetry of the face.

  15. Chimeric antigen receptors: driving immunology towards synthetic biology

    PubMed Central

    Sadelain, Michel

    2017-01-01

    The advent of second generation CARs and the CD19 paradigm have ushered a new therapeutic modality in oncology. In contrast to earlier forms of adoptive cell therapy, which were based on the isolation and expansion of naturally occurring T cells, CAR therapy is based on the design and manufacture of engineered T cells with optimized properties. A new armamentarium, comprising not only CARs but also chimeric costimulatory receptors, chimeric cytokine receptors, inhibitory receptors and synthetic Notch receptors, expressed in naïve, central memory or stem cell-like memory T cells, is being developed for clinical use in a wide range of cancers. Immunological principles are thus finding a new purpose thanks to advances in genetic engineering, synthetic biology and cell manufacturing sciences. PMID:27372731

  16. The Role of Recombination in the Origin and Evolution of Alu Subfamilies

    PubMed Central

    Teixeira-Silva, Ana; Silva, Raquel M.; Carneiro, João; Amorim, António; Azevedo, Luísa

    2013-01-01

    Alus are the most abundant and successful short interspersed nuclear elements found in primate genomes. In humans, they represent about 10% of the genome, although few are retrotransposition-competent and are clustered into subfamilies according to the source gene from which they evolved. Recombination between them can lead to genomic rearrangements of clinical and evolutionary significance. In this study, we have addressed the role of recombination in the origin of chimeric Alu source genes by the analysis of all known consensus sequences of human Alus. From the allelic diversity of Alu consensus sequences, validated in extant elements resulting from whole genome searches, distinct events of recombination were detected in the origin of particular subfamilies of AluS and AluY source genes. These results demonstrate that at least two subfamilies are likely to have emerged from ectopic Alu-Alu recombination, which stimulates further research regarding the potential of chimeric active Alus to punctuate the genome. PMID:23750218

  17. Recurring sequence-structure motifs in (βα)8-barrel proteins and experimental optimization of a chimeric protein designed based on such motifs.

    PubMed

    Wang, Jichao; Zhang, Tongchuan; Liu, Ruicun; Song, Meilin; Wang, Juncheng; Hong, Jiong; Chen, Quan; Liu, Haiyan

    2017-02-01

    An interesting way of generating novel artificial proteins is to combine sequence motifs from natural proteins, mimicking the evolutionary path suggested by natural proteins comprising recurring motifs. We analyzed the βα and αβ modules of TIM barrel proteins by structure alignment-based sequence clustering. A number of preferred motifs were identified. A chimeric TIM was designed by using recurring elements as mutually compatible interfaces. The foldability of the designed TIM protein was then significantly improved by six rounds of directed evolution. The melting temperature has been improved by more than 20°C. A variety of characteristics suggested that the resulting protein is well-folded. Our analysis provided a library of peptide motifs that is potentially useful for different protein engineering studies. The protein engineering strategy of using recurring motifs as interfaces to connect partial natural proteins may be applied to other protein folds. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Chimerism for 20q11.2 microdeletion of GDF5 explains discordant phenotypes in monochorionic-diamniotic twins.

    PubMed

    Meredith, Matthew M; Crabb, Beau; Vargas, Marcelo; Hirsch, Betsy A

    2017-12-01

    Microdeletions of 20q11.2 are rare but have been associated with characteristic clinical findings. A 1.6 Mb minimal critical region has been identified that includes three OMIM genes: GDF5, EPB41L1, and SAMHD. Here we describe a male monozygotic, monochorionic-diamniotic twin pair with discordant phenotypes, one with multiple findings that overlap with those reported in 20q11.2 deletions, and the other unaffected. Microarray analysis revealed mosaicism for a 363 Kb deletion encompassing GDF5 in the peripheral blood of both twins, which was confirmed by FISH. Subsequent FISH on buccal cells identified the deletion only in the affected twin. The blood FISH findings were interpreted as representing chimerism resulting from anastomosis and the blood exchange between the twins in utero. The implications of this finding are discussed, as is the contribution of GDF5 to the associated clinical findings of 20q11.2 deletions. © 2017 Wiley Periodicals, Inc.

  19. A novel chimeric prophage vB_LdeS-phiJB from commercial Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Guo, Tingting; Zhang, Chenchen; Xin, Yongping; Xin, Min; Kong, Jian

    2016-05-01

    Prophage vB_LdeS-phiJB (phiJB) was induced by mitomycin C and UV radiation from the Lactobacillus delbrueckii subsp. bulgaricus SDMCC050201 isolated from a Chinese yoghurt sample. It has an isometric head and a non-contractile tail with 36,969 bp linear double-stranded DNA genome, which is classified into the group a of Lb. delbrueckii phages. The genome of phiJB is highly modular with functionally related genes clustered together. Unexpectedly, there is no similarity of its DNA replication module to any phages that have been reported, while it consists of open-reading frames homologous to the proteins of Lactobacillus strains. Comparative genomic analysis indicated that its late gene clusters, integration/lysogeny modules and DNA replication module derived from different evolutionary ancestors and integrated into a chimera. Our results revealed a novel chimeric phage of commercial Lb. delbrueckii and will broaden the knowledge of phage diversity in the dairy industry.

  20. Chimeric protein identification of dystrophic, Pierson and other laminin polymerization residues

    PubMed Central

    McKee, Karen K.; Aleksandrova, Maya; Yurchenco, Peter D.

    2018-01-01

    Laminin polymerization is a key step of basement membrane self-assembly that depends on the binding of the three different N-terminal globular LN domains. Several mutations in the LN domains cause LAMA2-deficient muscular dystrophy and LAMB2-deficient Pierson syndrome. These mutations may affect polymerization. A novel approach to identify the amino acid residues required for polymerization has been applied to an analysis of these and other laminin LN mutations. The approach utilizes laminin-nidogen chimeric fusion proteins that bind to recombinant non-polymerizing laminins to provide a missing functional LN domain. Single amino acid substitutions introduced into these chimeras were tested to determine if polymerization activity and the ability to assemble on cell surfaces were lost. Several laminin-deficient muscular dystrophy mutations, renal Pierson syndrome mutations, and Drosophila mutations causing defects of heart development were identified as ones causing loss of laminin polymerization. In addition, two novel residues required for polymerization were identified in the laminin γ1 LN domain. PMID:29408412

  1. Mimicry of erythropoietin and interleukin-6 signalling by an antibody/cytokine receptor chimera in murine myeloid 32D cells.

    PubMed

    Kawahara, Masahiro; Ueda, Hiroshi; Tsumoto, Kouhei; Kumagai, Izumi; Nagamune, Teruyuki

    2007-04-01

    We have previously designed antibody-cytokine receptor chimeras that could respond to a cognate antigen. While these chimeric receptors were functional, it has not been investigated exactly how they mimic signal transduction through corresponding wild-type receptors. In this study, we compared the growth properties and the phosphorylation status of intracellular signal transducers between the erythropoietin receptor (EpoR)- or gp130-based chimeric receptors and wild-type EpoR or EpoR-gp130 chimera, respectively. Expression plasmids, encoding V(H) or V(L) region of anti-hen egg lysozyme (HEL) antibody HyHEL-10 tethered to a pair of extracellular D2 domain of EpoR and transmembrane/cytoplasmic domains of either EpoR or gp130, were constructed, and pairs of chimeric receptor combinations (V(H)-EpoR and V(L)-EpoR, V(H)-gp130 and V(L)-gp130, V(H)-EpoR and V(L)-gp130, V(H)-gp130 and V(L)-EpoR) were expressed in an IL-3-dependent myeloid cell line, 32D. Growth assay revealed that the transfectants all grew in a HEL-dependent manner. As for phosphorylation of Stat3, Stat5, ERK and Akt, the chimeric receptors showed similar activation pattern of signalling molecules with wild-type receptors, although the chimeric receptors showed ligand-independency and a little lower maximal phosphorylation than the corresponding wild-type receptors. The results demonstrate that antibody-receptor chimeras could substantially mimic wild-type receptors.

  2. Conformational influence of the ribose 2'-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes

    NASA Technical Reports Server (NTRS)

    Egli, M.; Usman, N.; Rich, A.

    1993-01-01

    We have crystallized three double-helical DNA-RNA chimeric duplexes and determined their structures by X-ray crystallography at resolutions between 2 and 2.25 A. The two self-complementary duplexes [r(G)d(CGTATACGC)]2 and [d(GCGT)r(A)d(TACGC)]2, as well as the Okazaki fragment d(GGGTATACGC).r(GCG)d(TATACCC), were found to adopt A-type conformations. The crystal structures are non-isomorphous, and the crystallographic environments for the three chimeras are different. A number of intramolecular interactions of the ribose 2'-hydroxyl groups contribute to the stabilization of the A-conformation. Hydrogen bonds between 2'-hydroxyls and 5'-oxygens or phosphate oxygens, in addition to the previously observed hydrogen bonds to 1'-oxygens of adjacent riboses and deoxyriboses, are observed in the DNA-RNA chimeric duplexes. The crystalline chimeric duplexes do not show a transition between the DNA A- and B-conformations. CD spectra suggest that the Okazaki fragment assumes an A-conformation in solution as well. In this molecule the three RNA residues may therefore lock the complete decamer in the A-conformation. Crystals of an all-DNA strand with the same sequence as the self-complementary chimeras show a morphology which is different from those of the chimera crystals. Moreover, the oligonucleotide does not match any of the sequence characteristics of DNAs usually adopting the A-conformation in the crystalline state (e.g., octamers with short alternating stretches of purines and pyrimidines). In DNA-RNA chimeric duplexes, it is therefore possible that a single RNA residue can drive the conformational equilibrium toward the A-conformation.

  3. Aberrant chimeric RNA GOLM1-MAK10 encoding a secreted fusion protein as a molecular signature for human esophageal squamous cell carcinoma

    PubMed Central

    Zhang, Hao; Lin, Wan; Kannan, Kalpana; Luo, Liming; Li, Jing; Chao, Pei-Wen; Wang, Yan; Chen, Yu-Ping; Gu, Jiang; Yen, Laising

    2013-01-01

    It is increasingly recognized that chimeric RNAs may exert a novel layer of cellular complexity that contributes to oncogenesis and cancer progression, and could be utilized as molecular biomarkers and therapeutic targets. To date yet no fusion chimeric RNAs have been identified in esophageal cancer, the 6th most frequent cause of cancer death in the world. While analyzing the expression of 32 recurrent cancer chimeric RNAs in esophageal squamous cell carcinoma (ESCC) from patients and cancer cell lines, we identified GOLM1-MAK10, as a highly cancer-enriched chimeric RNA in ESCC. In situ hybridization revealed that the expression of the chimera is largely restricted to cancer cells in patient tumors, and nearly undetectable in non-neoplastic esophageal tissue from normal subjects. The aberrant chimera closely correlated with histologic differentiation and lymph node metastasis. Furthermore, we demonstrate that chimera GOLM1-MAK10 encodes a secreted fusion protein. Mechanistic studies reveal that GOLM1-MAK10 is likely derived from transcription read-through/splicing rather than being generated from a fusion gene. Collectively, these findings provide novel insights into the molecular mechanism involved in ESCC and provide a novel potential target for future therapies. The secreted fusion protein translated from GOLM1-MAK10 could also serve as a unique protein signature detectable by standard non-invasive assays. These observations are critical as there is no clinically useful molecular signature available for detecting this deadly disease or monitoring the treatment response. PMID:24243830

  4. Chimeric β-Lactamases: Global Conservation of Parental Function and Fast Time-Scale Dynamics with Increased Slow Motions

    PubMed Central

    Clouthier, Christopher M.; Morin, Sébastien; Gobeil, Sophie M. C.; Doucet, Nicolas; Blanchet, Jonathan; Nguyen, Elisabeth; Gagné, Stéphane M.; Pelletier, Joelle N.

    2012-01-01

    Enzyme engineering has been facilitated by recombination of close homologues, followed by functional screening. In one such effort, chimeras of two class-A β-lactamases – TEM-1 and PSE-4 – were created according to structure-guided protein recombination and selected for their capacity to promote bacterial proliferation in the presence of ampicillin (Voigt et al., Nat. Struct. Biol. 2002 9:553). To provide a more detailed assessment of the effects of protein recombination on the structure and function of the resulting chimeric enzymes, we characterized a series of functional TEM-1/PSE-4 chimeras possessing between 17 and 92 substitutions relative to TEM-1 β-lactamase. Circular dichroism and thermal scanning fluorimetry revealed that the chimeras were generally well folded. Despite harbouring important sequence variation relative to either of the two ‘parental’ β-lactamases, the chimeric β-lactamases displayed substrate recognition spectra and reactivity similar to their most closely-related parent. To gain further insight into the changes induced by chimerization, the chimera with 17 substitutions was investigated by NMR spin relaxation. While high order was conserved on the ps-ns timescale, a hallmark of class A β-lactamases, evidence of additional slow motions on the µs-ms timescale was extracted from model-free calculations. This is consistent with the greater number of resonances that could not be assigned in this chimera relative to the parental β-lactamases, and is consistent with this well-folded and functional chimeric β-lactamase displaying increased slow time-scale motions. PMID:23284969

  5. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    PubMed

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  6. Engineering chimeric human and mouse major histocompatibility complex (MHC) class I tetramers for the production of T-cell receptor (TCR) mimic antibodies

    PubMed Central

    Bentley, Carol; Yates, Jenna; Salimi, Maryam; Greig, Jenny; Wiblin, Sarah; Hassanali, Tasneem; Banham, Alison H.

    2017-01-01

    Therapeutic monoclonal antibodies targeting cell surface or secreted antigens are among the most effective classes of novel immunotherapies. However, the majority of human proteins and established cancer biomarkers are intracellular. Peptides derived from these intracellular proteins are presented on the cell surface by major histocompatibility complex class I (MHC-I) and can be targeted by a novel class of T-cell receptor mimic (TCRm) antibodies that recognise similar epitopes to T-cell receptors. Humoural immune responses to MHC-I tetramers rarely generate TCRm antibodies and many antibodies recognise the α3 domain of MHC-I and β2 microglobulin (β2m) that are not directly involved in presenting the target peptide. Here we describe the production of functional chimeric human-murine HLA-A2-H2Dd tetramers and modifications that increase their bacterial expression and refolding efficiency. These chimeric tetramers were successfully used to generate TCRm antibodies against two epitopes derived from wild type tumour suppressor p53 (RMPEAAPPV and GLAPPQHLIRV) that have been used in vaccination studies. Immunisation with chimeric tetramers yielded no antibodies recognising the human α3 domain and β2m and generated TCRm antibodies capable of specifically recognising the target peptide/MHC-I complex in fully human tetramers and on the cell surface of peptide pulsed T2 cells. Chimeric tetramers represent novel immunogens for TCRm antibody production and may also improve the yield of tetramers for groups using these reagents to monitor CD8 T-cell immune responses in HLA-A2 transgenic mouse models of immunotherapy. PMID:28448627

  7. Comparative analysis of gene expression between semigametic Pima 57-6 and non-semigametic Pima S-1 in cotton by differential display

    USDA-ARS?s Scientific Manuscript database

    Semigamy in cotton is a type of facultative apomixis controlled by a single incompletely dominant gene (Se) in which the sperm and egg nuclei fail to fuse after the sperm nucleus has entered the embryo sac, giving rise to diploid, haploid or even chimeral embryos comprised of paternal and maternal o...

  8. Detection of PAX3-FKHR and PAX7-FKHR fusion transcripts in rhabdomyosarcoma by reverse transcriptase-polymerase chain reaction using paraffin-embedded tissue.

    PubMed

    Chen, B F; Chen, M L; Liang, D C; Huang, Y W; Liu, H C; Chen, S H

    1999-02-01

    Alveolar rhabdomyosarcoma (RMS) is associated with a characteristic chromosomal translocation t(2;13)(q35;q14). The genes involved in this translocation are paired box (PAX)3 on chromosome 2 and forkhead in RMS (FKHR) on chromosome 13. An occasional variant translocation t(1;13)(p36;q14) affecting PAX7 and FKHR on chromosomes 1 and 13, respectively, has also been described. Chromosomal translocations in RMS are detected using conventional cytogenetic analysis, fluorescence in situ hybridization (FISH) or reverse transcriptase-polymerase chain reaction (RT-PCR) on fresh or frozen tissue samples. We describe the results of RT-PCR analysis of PAX3-FKHR and PAX7-FKHR chimeric messages in formalin-fixed, paraffin-embedded tissue samples from 17 RMS cases. RNA was extracted from formalin-fixed, paraffin-embedded RMS tissue. Oligonucleotide primers corresponding to the regions of PAX3, PAX7 and FKHR were used for the detection of PAX3-FKHR and PAX7-FKHR chimeric messages. A seminested PCR of the PCR products was used to increase the sensitivity of detection. The amplified fragments were purified and directly sequenced to confirm the specificity of the methods. The PAX3-FKHR chimeric message was detected in all three cases of alveolar RMS but not in any of the 12 embryonal and two pleomorphic RMS cases. The PAX7-FKHR fusion transcript was detected in one case of embryonal RMS. The results indicate that the RT-PCR assay is a reliable method for the detection of the PAX3-FKHR fusion transcript of alveolar RMS in formalin-fixed, paraffin-embedded tissue. This simple method enables pathologists to identify chromosomal rearrangements in RMS as a diagnostic aid in cases where fresh or frozen tissue is not available.

  9. ChAy/Bx, a novel chimeric high-molecular-weight glutenin subunit gene apparently created by homoeologous recombination in Triticum turgidum ssp. dicoccoides.

    PubMed

    Guo, Xiao-Hui; Bi, Zhe-Guang; Wu, Bi-Hua; Wang, Zhen-Zhen; Hu, Ji-Liang; Zheng, You-Liang; Liu, Deng-Cai

    2013-12-01

    High-molecular-weight glutenin subunits (HMW-GSs) are of considerable interest, because they play a crucial role in determining dough viscoelastic properties and end-use quality of wheat flour. In this paper, ChAy/Bx, a novel chimeric HMW-GS gene from Triticum turgidum ssp. dicoccoides (AABB, 2n=4x=28) accession D129, was isolated and characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that the electrophoretic mobility of the glutenin subunit encoded by ChAy/Bx was slightly faster than that of 1Dy12. The complete ORF of ChAy/Bx contained 1,671 bp encoding a deduced polypeptide of 555 amino acid residues (or 534 amino acid residues for the mature protein), making it the smallest HMW-GS gene known from Triticum species. Sequence analysis showed that ChAy/Bx was neither a conventional x-type nor a conventional y-type subunit gene, but a novel chimeric gene. Its first 1305 nt sequence was highly homologous with the corresponding sequence of 1Ay type genes, while its final 366 nt sequence was highly homologous with the corresponding sequence of 1Bx type genes. The mature ChAy/Bx protein consisted of the N-terminus of 1Ay type subunit (the first 414 amino acid residues) and the C-terminus of 1Bx type subunit (the final 120 amino acid residues). Secondary structure prediction showed that ChAy/Bx contained some domains of 1Ay subunit and some domains of 1Bx subunit. The special structure of this HMW glutenin chimera ChAy/Bx subunit might have unique effects on the end-use quality of wheat flour. Here we propose that homoeologous recombination might be a novel pathway for allelic variation or molecular evolution of HMW-GSs. © 2013.

  10. Development of a biosensor protein bullet as a fluorescent method for fast detection of Escherichia coli in drinking water.

    PubMed

    Gutiérrez-Del-Río, Ignacio; Marín, Laura; Fernández, Javier; Álvarez San Millán, María; Ferrero, Francisco Javier; Valledor, Marta; Campo, Juan Carlos; Cobián, Natalia; Méndez, Ignacio; Lombó, Felipe

    2018-01-01

    Drinking water can be exposed to different biological contaminants from the source, through the pipelines, until reaching the final consumer or industry. Some of these are pathogenic bacteria and viruses which may cause important gastrointestinal or systemic diseases. The microbiological quality of drinking water relies mainly in monitoring three indicator bacteria of faecal origin, Escherichia coli, Enterococcus faecalis and Clostridium perfringens, which serve as early sentinels of potential health hazards for the population. Here we describe the analysis of three chimeric fluorescent protein bullets as biosensor candidates for fast detection of E. coli in drinking water. Two of the chimeric proteins (based on GFP-hadrurin and GFP-pb5 chimera proteins) failed with respect to specificity and/or sensitivity, but the GFP-colS4 chimera protein was able to carry out specific detection of E. coli in drinking water samples in a procedure encompassing about 8 min for final result and this biosensor protein was able to detect in a linear way between 20 and 103 CFU of this bacterium. Below 20 CFU, the system cannot differentiate presence or absence of the target bacterium. The fluorescence in this biosensor system is provided by the GFP subunit of the chimeric protein, which, in the case of the better performing sensor bullet, GFP-colS4 chimera, is covalently bound to a flexible peptide bridge and to a bacteriocin binding specifically to E. coli cells. Once bound to the target bacteria, the excitation step with 395 nm LED light causes emission of fluorescence from the GFP domain, which is amplified in a photomultiplier tube, and finally this signal is converted into an output voltage which can be associated with a CFU value and these data distributed along mobile phone networks, for example. This method, and the portable fluorimeter which has been developed for it, may contribute to reduce the analysis time for detecting E. coli presence in drinking water.

  11. Development of a biosensor protein bullet as a fluorescent method for fast detection of Escherichia coli in drinking water

    PubMed Central

    Gutiérrez-del-Río, Ignacio; Marín, Laura; Fernández, Javier; Álvarez San Millán, María; Ferrero, Francisco Javier; Valledor, Marta; Campo, Juan Carlos; Cobián, Natalia; Méndez, Ignacio

    2018-01-01

    Drinking water can be exposed to different biological contaminants from the source, through the pipelines, until reaching the final consumer or industry. Some of these are pathogenic bacteria and viruses which may cause important gastrointestinal or systemic diseases. The microbiological quality of drinking water relies mainly in monitoring three indicator bacteria of faecal origin, Escherichia coli, Enterococcus faecalis and Clostridium perfringens, which serve as early sentinels of potential health hazards for the population. Here we describe the analysis of three chimeric fluorescent protein bullets as biosensor candidates for fast detection of E. coli in drinking water. Two of the chimeric proteins (based on GFP-hadrurin and GFP-pb5 chimera proteins) failed with respect to specificity and/or sensitivity, but the GFP-colS4 chimera protein was able to carry out specific detection of E. coli in drinking water samples in a procedure encompassing about 8 min for final result and this biosensor protein was able to detect in a linear way between 20 and 103 CFU of this bacterium. Below 20 CFU, the system cannot differentiate presence or absence of the target bacterium. The fluorescence in this biosensor system is provided by the GFP subunit of the chimeric protein, which, in the case of the better performing sensor bullet, GFP-colS4 chimera, is covalently bound to a flexible peptide bridge and to a bacteriocin binding specifically to E. coli cells. Once bound to the target bacteria, the excitation step with 395 nm LED light causes emission of fluorescence from the GFP domain, which is amplified in a photomultiplier tube, and finally this signal is converted into an output voltage which can be associated with a CFU value and these data distributed along mobile phone networks, for example. This method, and the portable fluorimeter which has been developed for it, may contribute to reduce the analysis time for detecting E. coli presence in drinking water. PMID:29304041

  12. Dual door entry to exciplex emission in a chimeric DNA duplex containing non-nucleoside-nucleoside pair.

    PubMed

    Bag, Subhendu Sekhar; Talukdar, Sangita; Kundu, Rajen; Saito, Isao; Jana, Subhashis

    2014-01-25

    Dual door entry to exciplex formation was established in a chimeric DNA duplex wherein a fluorescent non-nucleosidic base surrogate () is paired against a fluorescent nucleosidic base surrogate (). Packing of the nucleobases via intercalative stacking interactions led to an exciplex emission either via FRET from the donor or direct excitation of the FRET acceptor .

  13. 78 FR 13691 - Prospective Grant of Exclusive License: The Development of m971 and m972 Chimeric Antigen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... Cell Malignancies AGENCY: National Institutes of Health, Public Health Service, HHS. ACTION: Notice... exclusive license territory may be worldwide, and the field of use may be limited to: Treatment of B cell malignancies that express CD22 on their cell surface using chimeric antigen receptors which contain the m971 or...

  14. Recipient-Matching of Passenger Leukocytes Prolongs Survival of Donor Lung Allografts in Miniature Swine

    PubMed Central

    Madariaga, Maria Lucia L.; Michel, Sebastian G.; La Muraglia, Glenn M.; Sihag, Smita; Leonard, David A.; Farkash, Evan A.; Colvin, Robert B.; Cetrulo, Curtis L.; Huang, Christene A.; Sachs, David H.; Madsen, Joren C.; Allan, James S.

    2014-01-01

    Background Allograft rejection continues to be a vexing problem in clinical lung transplantation, and the role played by passenger leukocytes in the rejection or acceptance of an organ is unclear. Here we tested whether recipient-matching of donor graft passenger leukocytes would impact graft survival in a preclinical model of orthotopic left lung transplantation. Methods In the experimental group (Group 1), donor lungs were obtained from chimeric swine, in which the passenger leukocytes (but not the parenchyma) were MHC-matched to the recipients (n=3). In the control group (Group 2), both the donor parenchyma and the passenger leukocytes were MHC-mismatched to the recipients (n = 3). Results Lungs harvested from swine previously rendered chimeric by hematopoietic stem cell transplantation using recipient-type cells showed a high degree of passenger leukocyte chimerism by immunohistochemistry and flow cytometry. The chimeric lungs containing passenger leukocytes matched to the lung recipient (Group 1) survived on average 107 days (range 80–156). Control lung allografts (Group 2) survived on average 45 days (range 29–64; p<0.05). Conclusion Our data indicate that recipient-matching of passenger leukocytes significantly prolongs lung allograft survival. PMID:25757217

  15. Combination of Cyclamen persicum Mill. floral gene promoters and chimeric repressors for the modification of ornamental traits in Torenia fournieri Lind.

    PubMed Central

    Kasajima, Ichiro; Ohtsubo, Norihiro; Sasaki, Katsutomo

    2017-01-01

    Although chimeric repressors such as the Arabidopsis TCP3 repressor are known to have significant effects on flower morphology and color, their cellular-level effects on flower petals are not understood. The promoter sequences of the genes expressed in the flowers of cyclamen, a representative potted flower grown during the winter season, are also unknown. Here, we isolated eight promoters from cyclamen genes that are reportedly expressed in the petals. These promoters were then fused to four chimeric repressors and introduced into the model flower torenia to screen for effective combinations of promoters and repressors for flower breeding. As expected, some of the constructs altered flower phenotypes upon transformation. We further analyzed the effects of chimeric repressors at the cellular level. We observed that complicated petal and leaf serrations were accompanied by excessive vascular branching. Dichromatism in purple anthocyanin was inferred to result in bluish flowers, and imbalanced cell proliferation appeared to result in epinastic flowers. Thus, the genetic constructs and phenotypic changes described in this report will benefit the future breeding and characterization of ornamental flowers. PMID:28446955

  16. Enhanced Incretin Effects of Exendin-4 Expressing Chimeric Plasmid Based On Two-Step Transcription Amplification System with Dendritic Bioreducible Polymer for the Treatment of Type 2 Diabetes

    PubMed Central

    Kim, Pyung-Hwan; Lee, Minhyung; Nam, Kihoon; Kim, Sung Wan

    2014-01-01

    Glucagon-like peptide 1 (GLP-1) agonist, exenxdin-4, is currently being advanced as a promising diabetes remedy via a variety of incretin actions similar with GLP-1. In this study, we investigated an effective anti-diabetic therapy via exendin-4 expressing chimeric plasmid based on two-step transcription amplification (TSTA) system with dendrimer-type bioreducible polymer for more improved incretin-based gene therapy. Arginine-grafted poly (cystaminebisacrylamide-diaminohexane) (ABP)-conjugated poly (amido amine) (PAMAM) dendrimer (PAM-ABP) was used as gene carrier. PAM-ABP/chimeric DNA polyplex was markedly elevated exendin-4 expression in ectopic cells as well as increased insulin production through an enhanced activation of protein kinase K (PKA) induced by up-regulation of exendin-4-stimulated cyclic adenosine monophosphate (cAMP) in pancreatic β-cell. Consistent with these results, intravenous administration of PAM-ABP/chimeric DNA polyplex improved glucoregulotory effects, as well as increased insulin secretion by high expression of exendin-4 in blood in type 2 diabetic mice with no any toxicity. Our exendin-4 system can be attributed to provide a potential diabetes therapeutic agent for improved incretin gene therapy. PMID:24839613

  17. Intracolonial genetic variation in the scleractinian coral Seriatopora hystrix

    NASA Astrophysics Data System (ADS)

    Maier, E.; Buckenmaier, A.; Tollrian, R.; Nürnberger, B.

    2012-06-01

    In recent years, increasing numbers of studies revealed intraorganismal genetic variation, primarily in modular organisms like plants or colonial marine invertebrates. Two underlying mechanisms are distinguished: Mosaicism is caused by somatic mutation, whereas chimerism originates from allogeneic fusion. We investigated the occurrence of intracolonial genetic variation at microsatellite loci in five natural populations of the scleractinian coral Seriatopora hystrix on the Great Barrier Reef. This coral is a widely distributed, brooding species that is at present a target of intensive population genetic research on reproduction and dispersal patterns. From each of 155 S. hystrix colonies, either two or three samples were genotyped at five or six loci. Twenty-seven (~17%) genetically heterogeneous colonies were found. Statistical analyses indicated the occurrence of both mosaicism and chimerism. In most cases, intracolonial variation was found only at a single allele. Our analyses suggest that somatic mutations present a major source of genetic heterogeneity within a single colony. Moreover, we observed large, apparently stable chimeric colonies that harbored clearly distinct genotypes and contrast these findings with the patterns typically observed in laboratory-based experiments. We discuss the error that mosaicism and chimerism introduce into population genetic analyses.

  18. The chimeric transcript RUNX1-GLRX5: a biomarker for good postoperative prognosis in Stage IA non-small-cell lung cancer.

    PubMed

    Ishikawa, Rie; Amano, Yosuke; Kawakami, Masanori; Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori; Ohishi, Nobuya; Yatomi, Yutaka; Nakajima, Jun; Fukayama, Masashi; Nagase, Takahide; Takai, Daiya

    2016-02-01

    Stage IA non-small-cell lung cancer cases have been recognized as having a low risk of relapse; however, occasionally, relapse may occur. To predict clinical outcome in Stage IA non-small-cell lung cancer patients, we searched for chimeric transcripts that can be used as biomarkers and identified a novel chimeric transcript, RUNX1-GLRX5, comprising RUNX1, a transcription factor, and GLRX5. This chimera was detected in approximately half of the investigated Stage IA non-small-cell lung cancer patients (44/104 cases, 42.3%). Although there was no significant difference in the overall survival rate between RUNX1-GLRX5-positive and -negative cases (P = 0.088), a significantly lower relapse rate was observed in the RUNX1-GLRX5-positive cases (P = 0.039), indicating that this chimera can be used as a biomarker for good prognosis in Stage IA patients. Detection of the RUNX1-GLRX5 chimeric transcript may therefore be useful for the determination of a postoperative treatment plan for Stage IA non-small-cell lung cancer patients. © The Author 2015. Published by Oxford University Press.

  19. De novo transcriptome assembly for a non-model species, the blood-sucking bug Triatoma brasiliensis, a vector of Chagas disease.

    PubMed

    Marchant, A; Mougel, F; Almeida, C; Jacquin-Joly, E; Costa, J; Harry, M

    2015-04-01

    High throughput sequencing (HTS) provides new research opportunities for work on non-model organisms, such as differential expression studies between populations exposed to different environmental conditions. However, such transcriptomic studies first require the production of a reference assembly. The choice of sampling procedure, sequencing strategy and assembly workflow is crucial. To develop a reliable reference transcriptome for Triatoma brasiliensis, the major Chagas disease vector in Northeastern Brazil, different de novo assembly protocols were generated using various datasets and software. Both 454 and Illumina sequencing technologies were applied on RNA extracted from antennae and mouthparts from single or pooled individuals. The 454 library yielded 278 Mb. Fifteen Illumina libraries were constructed and yielded nearly 360 million RNA-seq single reads and 46 million RNA-seq paired-end reads for nearly 45 Gb. For the 454 reads, we used three assemblers, Newbler, CAP3 and/or MIRA and for the Illumina reads, the Trinity assembler. Ten assembly workflows were compared using these programs separately or in combination. To compare the assemblies obtained, quantitative and qualitative criteria were used, including contig length, N50, contig number and the percentage of chimeric contigs. Completeness of the assemblies was estimated using the CEGMA pipeline. The best assembly (57,657 contigs, completeness of 80 %, <1 % chimeric contigs) was a hybrid assembly leading to recommend the use of (1) a single individual with large representation of biological tissues, (2) merging both long reads and short paired-end Illumina reads, (3) several assemblers in order to combine the specific advantages of each.

  20. Chimeric rabbit/human Fab antibodies against the hepatitis Be-antigen and their potential applications in assays, characterization, and therapy.

    PubMed

    Zhuang, Xiaolei; Watts, Norman R; Palmer, Ira W; Kaufman, Joshua D; Dearborn, Altaira D; Trenbeath, Joni L; Eren, Elif; Steven, Alasdair C; Rader, Christoph; Wingfield, Paul T

    2017-10-06

    Hepatitis B virus (HBV) infection afflicts millions worldwide, causing cirrhosis and liver cancer. HBV e-antigen (HBeAg), a clinical marker for disease severity, is a soluble variant of the viral capsid protein. HBeAg is not required for viral replication but is implicated in establishing immune tolerance and chronic infection. The structure of recombinant e-antigen (rHBeAg) was recently determined, yet to date, the exact nature and quantitation of HBeAg still remain uncertain. Here, to further characterize HBeAg, we used phage display to produce a panel of chimeric rabbit/human monoclonal antibody fragments (both Fab and scFv) against rHBeAg. Several of the Fab/scFv, expressed in Escherichia coli , had unprecedentedly high binding affinities ( K d ∼10 -12 m) and high specificity. We used Fab/scFv in the context of an enzyme-linked immunosorbent assay (ELISA) for HBeAg quantification, which we compared with commercially available kits and verified with seroconversion panels, the WHO HBeAg standard, rHBeAg, and patient plasma samples. We found that the specificity and sensitivity are superior to those of existing commercial assays. To identify potential fine differences between rHBeAg and HBeAg, we used these Fabs in microscale immunoaffinity chromatography to purify HBeAg from individual patient plasmas. Western blotting and MS results indicated that rHBeAg and HBeAg are essentially structurally identical, although HBeAg from different patients exhibits minor carboxyl-terminal heterogeneity. We discuss several potential applications for the humanized Fab/scFv.

  1. Cloned Viral Protein Vaccine for Foot-and-Mouth Disease: Responses in Cattle and Swine

    NASA Astrophysics Data System (ADS)

    Kleid, Dennis G.; Yansura, Daniel; Small, Barbara; Dowbenko, Donald; Moore, Douglas M.; Grubman, Marvin J.; McKercher, Peter D.; Morgan, Donald O.; Robertson, Betty H.; Bachrach, Howard L.

    1981-12-01

    A DNA sequence coding for the immunogenic capsid protein VP3 of foot-and-mouth disease virus A12, prepared from the virion RNA, was ligated to a plasmid designed to express a chimeric protein from the Escherichia coli tryptophan promoter-operator system. When Escherichia coli transformed with this plasmid was grown in tryptophan-depleted media, approximately 17 percent of the total cellular protein was found to be an insoluble and stable chimeric protein. The purified chimeric protein competed equally on a molar basis with VP3 for specific antibodies to foot-and-mouth disease virus. When inoculated into six cattle and two swine, this protein elicited high levels of neutralizing antibody and protection against challenge with foot-and-mouth disease virus.

  2. Broad Cross-Protection Is Induced in Preclinical Models by a Human Papillomavirus Vaccine Composed of L1/L2 Chimeric Virus-Like Particles

    PubMed Central

    Boxus, Mathieu; Fochesato, Michel; Miseur, Agnès; Mertens, Emmanuel; Dendouga, Najoua; Brendle, Sarah; Balogh, Karla K.; Christensen, Neil D.

    2016-01-01

    ABSTRACT At least 15 high-risk human papillomaviruses (HPVs) are linked to anogenital preneoplastic lesions and cancer. Currently, there are three licensed prophylactic HPV vaccines based on virus-like particles (VLPs) of the L1 major capsid protein from HPV-2, -4, or -9, including the AS04-adjuvanted HPV-16/18 L1 vaccine. The L2 minor capsid protein contains HPV-neutralizing epitopes that are well conserved across numerous high-risk HPVs. Therefore, the objective of our study was to assess the capacity to broaden vaccine-mediated protection using AS04-adjuvanted vaccines based on VLP chimeras of L1 with one or two L2 epitopes. Several chimeric VLPs were constructed by inserting L2 epitopes within the DE loop and/or C terminus of L1. Based on the shape, yield, size, and immunogenicity, one of seven chimeras was selected for further evaluation in mouse and rabbit challenge models. The chimeric VLP consisted of HPV-18 L1 with insertions of HPV-33 L2 (amino acid residues 17 to 36; L1 DE loop) and HPV-58 L2 (amino acid residues 56 to 75; L1 C terminus). This chimeric L1/L2 VLP vaccine induced persistent immune responses and protected against all of the different HPVs evaluated (HPV-6, -11, -16, -31, -35, -39, -45, -58, and -59 as pseudovirions or quasivirions) in both mouse and rabbit challenge models. The degree and breadth of protection in the rabbit were further enhanced when the chimeric L1/L2 VLP was formulated with the L1 VLPs from the HPV-16/18 L1 vaccine. Therefore, the novel HPV-18 L1/L2 chimeric VLP (alone or in combination with HPV-16 and HPV-18 L1 VLPs) formulated with AS04 has the potential to provide broad protective efficacy in human subjects. IMPORTANCE From evaluations in human papillomavirus (HPV) protection models in rabbits and mice, our study has identified a prophylactic vaccine with the potential to target a wide range of HPVs linked to anogenital cancer. The three currently licensed vaccines contain virus-like particles (VLPs) of the L1 major capsid protein from two, four, or nine different HPVs. Rather than increasing the diversity of L1 VLPs, this vaccine contains VLPs based on a recombinant chimera of two highly conserved neutralizing epitopes from the L2 capsid protein inserted into L1. Our study demonstrated that the chimeric L1/L2 VLP is an effective vehicle for displaying two different L2 epitopes and can be used in a quantity equivalent to what is used in the licensed vaccines. Hence, using the chimeric L1/L2 VLP may be a more cost-effective approach for vaccine formulation than adding different VLPs for each HPV. PMID:27147749

  3. Chimeric epitope vaccine against Leptospira interrogans infection and induced specific immunity in guinea pigs.

    PubMed

    Lin, Xu'ai; Xiao, Guohui; Luo, Dongjiao; Kong, Liangliang; Chen, Xu; Sun, Dexter; Yan, Jie

    2016-10-14

    Leptospirosis is an important reemerging zoonosis, with more than half a million cases reported annually, and is caused by pathogenic Leptospira species. Development of a universal vaccine is one of the major strategic goals to overcome the disease burden of leptospirosis. In this study, a chimeric multi-epitope protein-based vaccine was designed and tested for its potency to induce a specific immune response and provide protection against L. interrogans infection. The protein, containing four repeats of six T- and B-cell combined epitopes from the leptospiral outer membrane proteins, OmpL1, LipL32 and LipL21, was expressed and purified. Western blot analysis showed that the recombinant protein (named r4R) mainly expressed in a soluble pattern, and reacted with antibodies raised in rabbit against heat-killed Leptospira and in guinea pigs against the r4R vaccine. Microscopic agglutination tests showed that r4R antisera was immunological cross-reactive with a range of Chinese standard reference strains of Leptospira belonging to different serogroups. In guinea pigs, the r4R vaccine induced a Th1-biased immune response, as reflected by the IgG2a/IgG1 ratio and cytokine production of stimulated splenocytes derived from immunized animals. Finally, r4R-immunized guinea pigs showed increased survival of lethal Leptospira challenges compared with PBS-immunized animals and tissue damage and leptospiral colonization of the kidney were reduced. The multi-epitope chimeric r4R protein is a promising antigen for the development of a universal cross-reactive vaccine against leptospirosis.

  4. Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors

    DOE PAGES

    Carbonell, Alberto; Fahlgren, Noah; Mitchell, Skyler; ...

    2015-05-20

    Artificial microRNAs (amiRNAs) are used for selective gene silencing in plants. However, current methods to produce amiRNA constructs for silencing transcripts in monocot species are not suitable for simple, cost-effective and large-scale synthesis. Here, a series of expression vectors based on Oryza sativa MIR390 (OsMIR390) precursor was developed for high-throughput cloning and high expression of amiRNAs in monocots. Four different amiRNA sequences designed to target specifically endogenous genes and expressed from OsMIR390-based vectors were validated in transgenic Brachypodium distachyon plants. Surprisingly, amiRNAs accumulated to higher levels and were processed more accurately when expressed from chimeric OsMIR390-based precursors that include distalmore » stem-loop sequences from Arabidopsis thaliana MIR390a (AtMIR390a). In all cases, transgenic plants displayed the predicted phenotypes induced by target gene repression, and accumulated high levels of amiRNAs and low levels of the corresponding target transcripts. Genome-wide transcriptome profiling combined with 5-RLM-RACE analysis in transgenic plants confirmed that amiRNAs were highly specific. Finally, significance Statement A series of amiRNA vectors based on Oryza sativa MIR390 (OsMIR390) precursor were developed for simple, cost-effective and large-scale synthesis of amiRNA constructs to silence genes in monocots. Unexpectedly, amiRNAs produced from chimeric OsMIR390-based precursors including Arabidopsis thaliana MIR390a distal stem-loop sequences accumulated elevated levels of highly effective and specific amiRNAs in transgenic Brachypodium distachyon plants.« less

  5. Mechanism of attenuation of a chimeric influenza A/B transfectant virus.

    PubMed

    Luo, G; Bergmann, M; Garcia-Sastre, A; Palese, P

    1992-08-01

    The ribonucleoprotein transfection system for influenza virus allowed us to construct an influenza A virus containing a chimeric neuraminidase (NA) gene in which the noncoding sequence is derived from the NS gene of influenza B virus (T. Muster, E. K. Subbarao, M. Enami, B. P. Murphy, and P. Palese, Proc. Natl. Acad. Sci. USA 88:5177-5181, 1991). This transfectant virus is attenuated in mice and grows to lower titers in tissue culture than wild-type virus. Since such a virus has characteristics desirable for a live attenuated vaccine strain, attempts were made to characterize this virus at the molecular level. Our analysis suggests that the attenuation of the virus is due to changes in the cis signal sequences, which resulted in a reduction of transcription and replication of the chimeric NA gene. The major finding concerns a sixfold reduction in NA-specific viral RNA in the virion, causing a reduction in the ratio of infectious particles to physical particles compared with the ratio in wild-type virus. Although the NA-specific mRNA level is also reduced in transfectant virus-infected cells, it does not appear to contribute to the attenuation characteristics of the virus. The levels of the other RNAs and their expression appear to be unchanged for the transfectant virus. It is suggested that downregulation of the synthesis of one viral RNA segment leads to the generation of defective viruses during each replication cycle. We believe that this represents a general principle for attenuation which may be applied to other segmented viruses containing either single-stranded or double-stranded RNA.

  6. Synergistic gene and drug tumor therapy using a chimeric peptide.

    PubMed

    Han, Kai; Chen, Si; Chen, Wei-Hai; Lei, Qi; Liu, Yun; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2013-06-01

    Co-delivery of gene and drug for synergistic therapy has provided a promising strategy to cure devastating diseases. Here, an amphiphilic chimeric peptide (Fmoc)2KH7-TAT with pH-responsibility for gene and drug delivery was designed and fabricated. As a drug carrier, the micelles self-assembled from the peptide exhibited a much faster doxorubicin (DOX) release rate at pH 5.0 than that at pH 7.4. As a non-viral gene vector, (Fmoc)(2)KH(7)-TAT peptide could satisfactorily mediate transfection of pGL-3 reporter plasmid with or without the existence of serum in both 293T and HeLa cell-lines. Besides, the endosome escape capability of peptide/DNA complexes was investigated by confocal laser scanning microscopy (CLSM). To evaluate the co-delivery efficiency and the synergistic anti-tumor effect of gene and drug, p53 plasmid and DOX were simultaneously loaded in the peptide micelles to form micelleplexes during the self-assembly of the peptide. Cellular uptake and intracellular delivery of gene and drug were studied by CLSM and flow cytometry respectively. And p53 protein expression was determined via Western blot analysis. The in vitro cytotoxicity and in vivo tumor inhibition effect were also studied. Results suggest that the co-delivery of gene and drug from peptide micelles resulted in effective cell growth inhibition in vitro and significant tumor growth restraining in vivo. The chimeric peptide-based gene and drug co-delivery system will find great potential for tumor therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The chimeric mapping problem: algorithmic strategies and performance evaluation on synthetic genomic data.

    PubMed

    Greenberg, D; Istrail, S

    1994-09-01

    The Human Genome Project requires better software for the creation of physical maps of chromosomes. Current mapping techniques involve breaking large segments of DNA into smaller, more-manageable pieces, gathering information on all the small pieces, and then constructing a map of the original large piece from the information about the small pieces. Unfortunately, in the process of breaking up the DNA some information is lost and noise of various types is introduced; in particular, the order of the pieces is not preserved. Thus, the map maker must solve a combinatorial problem in order to reconstruct the map. Good software is indispensable for quick, accurate reconstruction. The reconstruction is complicated by various experimental errors. A major source of difficulty--which seems to be inherent to the recombination technology--is the presence of chimeric DNA clones. It is fairly common for two disjoint DNA pieces to form a chimera, i.e., a fusion of two pieces which appears as a single piece. Attempts to order chimera will fail unless they are algorithmically divided into their constituent pieces. Despite consensus within the genomic mapping community of the critical importance of correcting chimerism, algorithms for solving the chimeric clone problem have received only passing attention in the literature. Based on a model proposed by Lander (1992a, b) this paper presents the first algorithms for analyzing chimerism. We construct physical maps in the presence of chimerism by creating optimization functions which have minimizations which correlate with map quality. Despite the fact that these optimization functions are invariably NP-complete our algorithms are guaranteed to produce solutions which are close to the optimum. The practical import of using these algorithms depends on the strength of the correlation of the function to the map quality as well as on the accuracy of the approximations. We employ two fundamentally different optimization functions as a means of avoiding biases likely to decorrelate the solutions from the desired map. Experiments on simulated data show that both our algorithm which minimizes the number of chimeric fragments in a solution and our algorithm which minimizes the maximum number of fragments per clone in a solution do, in fact, correlate to high quality solutions. Furthermore, tests on simulated data using parameters set to mimic real experiments show that that the algorithms have the potential to find high quality solutions with real data. We plan to test our software against real data from the Whitehead Institute and from Los Alamos Genomic Research Center in the near future.

  8. Engineered chimeric antigen receptor-expressing T cells for the treatment of pancreatic ductal adenocarcinoma

    PubMed Central

    Beatty, Gregory L

    2014-01-01

    Adoptive cell therapy with chimeric antigen receptor (CAR)-engineered T cells is under investigation as an approach to restore productive T cell immunosurveillance in patients with pancreatic ductal adenocarcinoma. Early findings demonstrate safety of this cell-based therapy and the capacity of CAR-expressing T cells to mediate anti-tumor activity as well as induce endogeneous antitumoral immune responses. PMID:25050204

  9. Chimeric viruses containing the N-terminal ectodomains of GP5 and M proteins of porcine reproductive and respiratory syndrome do not change the cellular tropism of equine arteritis virus

    USDA-ARS?s Scientific Manuscript database

    Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are members of family Arteriviridae; they share many biological properties but differ significantly in cellular tropism. Using an infectious cDNA clone of EAV, we engineered a panel of six chimeric viruses b...

  10. An HPV 16 L1-based chimeric human papilloma virus-like particles containing a string of epitopes produced in plants is able to elicit humoral and cytotoxic T-cell activity in mice.

    PubMed

    Paz De la Rosa, Georgina; Monroy-García, Alberto; Mora-García, María de Lourdes; Peña, Cristina Gehibie Reynaga; Hernández-Montes, Jorge; Weiss-Steider, Benny; Gómez-Lim, Miguel Angel

    2009-01-06

    Even though two prophylactic vaccines against HPV are currently licensed, infections by the virus continue to be a major health problem mainly in developing countries. The cost of the vaccines limits wide-scale application in poor countries. A promising strategy for producing affordable and efficient vaccines involves the expression of recombinant immunogens in plants. Several HPV genes have been expressed in plants, including L1, which can self-assemble into virus-like particles. A plant-based, dual prophylactic/therapeutic vaccine remains an attractive possibility. We sought to express in tomato plants chimeric HPV 16 VLPs containing L1 fused to a string of epitopes from HPV 16 E6 and E7 proteins. The L1 employed had been modified to eliminate a strong inhibitory region at the 5' end of the molecule to increase expression levels. Several tomato lines were obtained expressing either L1 alone or L1-E6/E7 from 0.05% to 0.1% of total soluble protein. Stable integration of the transgenes was verified by Southern blot. Northern and western blot revealed successful expression of the transgenes at the mRNA and protein level. The chimeric VLPs were able to assemble adequately in tomato cells. Intraperitoneal administration in mice was able to elicit both neutralizing antibodies against the viral particle and cytotoxic T-lymphocytes activity against the epitopes. In this work, we report for the first time the expression in plants of a chimeric particle containing the HPV 16 L1 sequence and a string of T-cell epitopes from HPV 16 E6 and E7 fused to the C-terminus. The particles were able to induce a significant antibody and cytotoxic T-lymphocytes response. Experiments in vivo are in progress to determine whether the chimeric particles are able to induce regression of disease and resolution of viral infection in mice. Chimeric particles of the type described in this work may potentially be the basis for developing prophylactic/therapeutic vaccines. The fact that they are produced in plants, may lower production costs considerably.

  11. Spontaneous polyploidization in cucumber.

    PubMed

    Ramírez-Madera, Axel O; Miller, Nathan D; Spalding, Edgar P; Weng, Yiqun; Havey, Michael J

    2017-07-01

    This is the first quantitative estimation of spontaneous polyploidy in cucumber and we detected 2.2% polyploids in a greenhouse study. We provide evidence that polyploidization is consistent with endoreduplication and is an on-going process during plant growth. Cucumber occasionally produces polyploid plants, which are problematic for growers because these plants produce misshaped fruits with non-viable seeds. In this study, we undertook the first quantitative study to estimate the relative frequency of spontaneous polyploids in cucumber. Seeds of recombinant inbred lines were produced in different environments, plants were grown in the field and greenhouse, and flow cytometry was used to establish ploidies. From 1422 greenhouse-grown plants, the overall relative frequency of spontaneous polyploidy was 2.2%. Plants possessed nuclei of different ploidies in the same leaves (mosaic) and on different parts of the same plant (chimeric). Our results provide evidence of endoreduplication and polysomaty in cucumber, and that it is an on-going and dynamic process. There was a significant effect (p = 0.018) of seed production environment on the occurrence of polyploid plants. Seed and seedling traits were not accurate predictors of eventual polyploids, and we recommend that cucumber producers rogue plants based on stature and leaf serration to remove potential polyploids.

  12. Calorimetric study on pH-responsive block copolymer grafted lipid bilayers: rational design and development of liposomes.

    PubMed

    Pippa, Natassa; Chountoulesi, Maria; Kyrili, Aimilia; Meristoudi, Anastasia; Pispas, Stergios; Demetzos, Costas

    2016-09-01

    This study is focused on chimeric advanced drug delivery nanosystems and specifically on pH-sensitive liposomes, combining lipids and pH-responsive amphiphilic block copolymers. Chimeric liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and two different forms of block copolymers, i.e. poly(n-butylacrylate)-b-poly(acrylic acid) (PnBA-b-PAA) at 70 and 85% content of PAA at six different molar ratios, each form respectively. PAA block exhibits pH-responsiveness, because of the regulative group of -COOH. -COOH is protonated under acidic pH (pKa ca. 4.2), while remains ionized under basic or neutral pH, leading to liposomes repulse and eventually stability. Lipid bilayers were prepared composed of DPPC and PnBA-b-PAA. Experiments were carried out using differential scanning calorimetry (DSC) in order to investigate their thermotropic properties. DSC indicated disappearance of pre-transition at all chimeric lipid bilayers and slight thermotropic changes of the main transition temperature. Chimeric liposomes have been prepared and their physicochemical characteristics have been explored by measuring the size, size distribution and ζ-potential, owned to the presence of pH-responsive polymer. At percentages containing medium to high amounts of the polymer, chimeric liposomes were found to retain their size during the stability studies. These results were well correlated with those indicated in the DSC measurements of lipid bilayers incorporating polymers in order to explain their physicochemical behavior. The incorporation of the appropriate amount of these novel pH-responsive block copolymers affects thus the cooperativity, the liposomal stabilization and imparts pH-responsiveness.

  13. Mixed Donor Chimerism Following Simultaneous Pancreas-Kidney Transplant.

    PubMed

    Rashidi, Armin; Brennan, Daniel C; Amarillo, Ina E; Wellen, Jason R; Cashen, Amanda

    2018-06-01

    Graft-versus-host disease after solid-organ transplant is exceedingly rare. Although the precise pathogenetic mechanisms are unknown, a progressive increase in donor chimerism is a requirement for its development. The incidence of mixed donor chimerism and its timeline after simultaneous pancreas-kidney transplant is unknown. After encountering 2 cases of graft-versus-host disease after simultaneous pancreas-kidney transplant at our institution over a period of < 2 years, a collaborative pilot study was conducted by the bone marrow transplant, nephrology, and abdominal transplant surgery teams. We enrolled all consecutive patients undergoing sex-mismatched simultaneous pancreas-kidney transplant over 1 year and longitudinally monitored donor chimerism using fluorescence in situ hybridization for sex chromosomes. We found no evidence for chimerism in our 7 patients. In a comprehensive literature review, we found a total of 25 previously reported cases of graft-versus-host disease after kidney, pancreas, and simultaneous pancreas-kidney transplants. The median onset of graft-versus-host disease was approximately 5 weeks after transplant, with a median of about 2 weeks of delay between first presentation and diagnosis. Skin, gut, and bone marrow were almost equally affected at initial presentation, and fever of unknown origin occurred in more than half of patients. The median survival measured from the first manifestation of graft-versus-host disease was only 48 days. Within the limitations related to small sample size, our results argue against an unusually high risk of graft-versus-host disease after simultaneous pancreas-kidney transplant. Collaboration between solid-organ and stem cell transplant investigators can be fruitful and can improve our understanding of the complications that are shared between the 2 fields.

  14. Immunizations with chimeric hepatitis B virus-like particles to induce potential anti-hepatitis C virus neutralizing antibodies.

    PubMed

    Vietheer, Patricia T K; Boo, Irene; Drummer, Heidi E; Netter, Hans-Jürgen

    2007-01-01

    Virus-like particles (VLPs) are highly immunogenic and proven to induce protective immunity. The small surface antigen (HBsAg-S) of hepatitis B virus (HBV) self-assembles into VLPs and its use as a vaccine results in protective antiviral immunity against HBV infections. Chimeric HBsAg-S proteins carrying foreign epitopes allow particle formation and have the ability to induce anti-foreign humoral and cellular immune responses. The insertion of the hypervariable region 1 (HVR1) sequence derived from the envelope protein 2 (E2) of hepatitis C virus (HCV) into the major antigenic site of HBsAg-S ('a'-determinant) resulted in the formation of highly immunogenic VLPs that retained the antigenicity of the inserted HVR1 sequence. BALB/c mice were immunized with chimeric VLPs, which resulted in antisera with anti-HCV activity. The antisera were able to immunoprecipitate native HCV envelope complexes (E1E2) containing homologous or heterologous HVR1 sequences. HCV E1E2 pseudotyped HIV-1 particles (HCVpp) were used to measure entry into HuH-7 target cells in the presence or absence of antisera that were raised against chimeric VLPs. Anti-HVR1 VLP sera interfered with entry of entry-competent HCVpps containing either homologous or heterologous HVR1 sequences. Also, immunizations with chimeric VLPs induced antisurface antigen (HBsAg) antibodies, indicating that HBV-specific antigenicity and immunogenicity of the 'a'-determinant region is retained. A multivalent vaccine against different pathogens based on the HBsAg delivery platform should be possible. We hypothesize that custom design of VLPs with an appropriate set of HCV-neutralizing epitopes will induce antibodies that would serve to decrease the viral load at the initial infecting inoculum.

  15. Cord Blood Chimerism And Relapse After Haplo-Cord Transplantation

    PubMed Central

    van Besien, Koen; Koshy, Nebu; Gergis, Usama; Mayer, Sebastian; Cushing, Melissa; Rennert, Hannah; Slotky, Ronit; Mark, Tomer; Pearse, Roger; Rossi, Adriana; Phillips, Adrienne; Vasovic, Liljana; Ferrante, Rosanna; Hsu, Michael; Shore, Tsiporah

    2018-01-01

    Haplo-cord stem cell transplantation combines the infusion of CD34 selected hematopoietic progenitors from a haplo-identical donor with an umbilical cord blood graft from an unrelated donor and allows faster count recovery, with low rates of disease recurrence and chronic GVHD. But the contribution of the umbilical cord blood graft to long-term transplant outcome remains unclear. We analyzed 39 recipients of haplo-cord transplants with AML and MDS, engrafted and in remission at 2 months. Median age was 66 (18-72) and all had intermediate, high, or very high risk disease. Less than 20% UCB chimerism in the CD33 lineage was associated with an increased rate of disease recurrence (54% vs 11% P<0.0001) and decrease in one year progression-free (20% vs 55%, P=0.004) and overall survival (30% vs 62%, P=0.02). Less than 100% UCB chimerism in the CD3 lineage was associated with increase rate of disease recurrence (46% vs 12%, P=0.007) Persistent haplo-chimerism in the CD3 lineage was associated with an increased rate of disease recurrence (40% vs 15%, P=0.009) Chimerism did not predict for treatment related mortality. The cumulative incidence of acute GVHD by day 100 was 43%. The cumulative incidence of moderate/severe chronic GVHD was only 5%. Engraftment of the umbilical cord blood grafts provides powerful GVL effects which protect against disease recurrence and is associated with low risk of chronic GVHD. Engraftment of CD34 selected haplo-identical cells can lead to rapid development of circulating T-cells, but when these cells dominate, GVL-effects are limited and rates of disease recurrence are high. PMID:27333804

  16. Construction and Immunogenicity Evaluation of Recombinant Influenza A Viruses Containing Chimeric Hemagglutinin Genes Derived from Genetically Divergent Influenza A H1N1 Subtype Viruses

    PubMed Central

    McCormick, Kara; Jiang, Zhiyong; Zhu, Longchao; Lawson, Steven R.; Langenhorst, Robert; Ransburgh, Russell; Brunick, Colin; Tracy, Miranda C.; Hurtig, Heather R.; Mabee, Leah M.; Mingo, Mark; Li, Yanhua; Webby, Richard J.

    2015-01-01

    Background and Objectives Influenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling) technology to create a panel of chimeric HA genes. Methods and Results Each chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129) was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129) and a A/swine/Texas/4199-2/98 backbone (TX98-129). When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates. Conclusion This study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines. PMID:26061265

  17. Rapid induction of single donor chimerism after double umbilical cord blood transplantation preceded by reduced intensity conditioning: results of the HOVON 106 phase II study

    PubMed Central

    Somers, Judith A.E.; Braakman, Eric; van der Holt, Bronno; Petersen, Eefke J.; Marijt, Erik W.A.; Huisman, Cynthia; Sintnicolaas, Kees; Oudshoorn, Machteld; Groenendijk-Sijnke, Marlies E.; Brand, Anneke; Cornelissen, Jan J.

    2014-01-01

    Double umbilical cord blood transplantation is increasingly applied in the treatment of adult patients with high-risk hematological malignancies and has been associated with improved engraftment as compared to that provided by single unit cord blood transplantation. The mechanism of improved engraftment is, however, still incompletely understood as only one unit survives. In this multicenter phase II study we evaluated engraftment, early chimerism, recovery of different cell lineages and transplant outcome in 53 patients who underwent double cord blood transplantation preceded by a reduced intensity conditioning regimen. Primary graft failure occurred in one patient. Engraftment was observed in 92% of patients with a median time to neutrophil recovery of 36 days (range, 15–102). Ultimate single donor chimerism was established in 94% of patients. Unit predominance occurred by day 11 after transplantation and early CD4+ T-cell chimerism predicted for unit survival. Total nucleated cell viability was also associated with unit survival. With a median follow up of 35 months (range, 10–51), the cumulative incidence of relapse and non-relapse mortality rate at 2 years were 39% and 19%, respectively. Progressionfree survival and overall survival rates at 2 years were 42% (95% confidence interval, 28–56) and 57% (95% confidence interval, 43–70), respectively. Double umbilical cord blood transplantation preceded by a reduced intensity conditioning regimen using cyclophosphamide/fludarabine/4 Gy total body irradiation results in a high engraftment rate with low non-relapse mortality. Moreover, prediction of unit survival by early CD4+ lymphocyte chimerism might suggest a role for CD4+ lymphocyte mediated unit-versus-unit alloreactivity. www.trialregister.nl NTR1573. PMID:25107890

  18. A novel L-ficolin/mannose-binding lectin chimeric molecule with enhanced activity against Ebola virus.

    PubMed

    Michelow, Ian C; Dong, Mingdong; Mungall, Bruce A; Yantosca, L Michael; Lear, Calli; Ji, Xin; Karpel, Marshall; Rootes, Christina L; Brudner, Matthew; Houen, Gunnar; Eisen, Damon P; Kinane, T Bernard; Takahashi, Kazue; Stahl, Gregory L; Olinger, Gene G; Spear, Gregory T; Ezekowitz, R Alan B; Schmidt, Emmett V

    2010-08-06

    Ebola viruses constitute a newly emerging public threat because they cause rapidly fatal hemorrhagic fevers for which no treatment exists, and they can be manipulated as bioweapons. We targeted conserved N-glycosylated carbohydrate ligands on viral envelope surfaces using novel immune therapies. Mannose-binding lectin (MBL) and L-ficolin (L-FCN) were selected because they function as opsonins and activate complement. Given that MBL has a complex quaternary structure unsuitable for large scale cost-effective production, we sought to develop a less complex chimeric fusion protein with similar ligand recognition and enhanced effector functions. We tested recombinant human MBL and three L-FCN/MBL variants that contained the MBL carbohydrate recognition domain and varying lengths of the L-FCN collagenous domain. Non-reduced chimeric proteins formed predominantly nona- and dodecameric oligomers, whereas recombinant human MBL formed octadecameric and larger oligomers. Surface plasmon resonance revealed that L-FCN/MBL76 had the highest binding affinities for N-acetylglucosamine-bovine serum albumin and mannan. The same chimeric protein displayed superior complement C4 cleavage and binding to calreticulin (cC1qR), a putative receptor for MBL. L-FCN/MBL76 reduced infection by wild type Ebola virus Zaire significantly greater than the other molecules. Tapping mode atomic force microscopy revealed that L-FCN/MBL76 was significantly less tall than the other molecules despite similar polypeptide lengths. We propose that alterations in the quaternary structure of L-FCN/MBL76 resulted in greater flexibility in the collagenous or neck region. Similarly, a more pliable molecule might enhance cooperativity between the carbohydrate recognition domains and their cognate ligands, complement activation, and calreticulin binding dynamics. L-FCN/MBL chimeric proteins should be considered as potential novel therapeutics.

  19. Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy for Acute Lymphoblastic Leukemia.

    PubMed

    Fitzgerald, Julie C; Weiss, Scott L; Maude, Shannon L; Barrett, David M; Lacey, Simon F; Melenhorst, J Joseph; Shaw, Pamela; Berg, Robert A; June, Carl H; Porter, David L; Frey, Noelle V; Grupp, Stephan A; Teachey, David T

    2017-02-01

    Initial success with chimeric antigen receptor-modified T cell therapy for relapsed/refractory acute lymphoblastic leukemia is leading to expanded use through multicenter trials. Cytokine release syndrome, the most severe toxicity, presents a novel critical illness syndrome with limited data regarding diagnosis, prognosis, and therapy. We sought to characterize the timing, severity, and intensive care management of cytokine release syndrome after chimeric antigen receptor-modified T cell therapy. Retrospective cohort study. Academic children's hospital. Thirty-nine subjects with relapsed/refractory acute lymphoblastic leukemia treated with chimeric antigen receptor-modified T cell therapy on a phase I/IIa clinical trial (ClinicalTrials.gov number NCT01626495). All subjects received chimeric antigen receptor-modified T cell therapy. Thirteen subjects with cardiovascular dysfunction were treated with the interleukin-6 receptor antibody tocilizumab. Eighteen subjects (46%) developed grade 3-4 cytokine release syndrome, with prolonged fever (median, 6.5 d), hyperferritinemia (median peak ferritin, 60,214 ng/mL), and organ dysfunction. Fourteen (36%) developed cardiovascular dysfunction treated with vasoactive infusions a median of 5 days after T cell therapy. Six (15%) developed acute respiratory failure treated with invasive mechanical ventilation a median of 6 days after T cell therapy; five met criteria for acute respiratory distress syndrome. Encephalopathy, hepatic, and renal dysfunction manifested later than cardiovascular and respiratory dysfunction. Subjects had a median of 15 organ dysfunction days (interquartile range, 8-20). Treatment with tocilizumab in 13 subjects resulted in rapid defervescence (median, 4 hr) and clinical improvement. Grade 3-4 cytokine release syndrome occurred in 46% of patients following T cell therapy for relapsed/refractory acute lymphoblastic leukemia. Clinicians should be aware of expanding use of this breakthrough therapy and implications for critical care units in cancer centers.

  20. Mode of coreceptor use by R5 HIV type 1 correlates with disease stage: a study of paired plasma and cerebrospinal fluid isolates.

    PubMed

    Karlsson, Ulf; Antonsson, Liselotte; Repits, Johanna; Medstrand, Patrik; Owman, Christer; Kidd-Ljunggren, Karin; Hagberg, Lars; Svennerholm, Bo; Jansson, Marianne; Gisslén, Magnus; Ljungberg, Bengt

    2009-12-01

    Through the use of chimeric CXCR4/CCR5 receptors we have previously shown that CCR5-tropic (R5) HIV-1 isolates acquire a more flexible receptor use over time, and that this links to a reduced viral susceptibility to inhibition by the CCR5 ligand RANTES. These findings may have relevance with regards to the efficacy of antiretroviral compounds that target CCR5/virus interactions. Compartmentalized discrepancies in coreceptor use may occur, which could also affect the efficacy of these compounds at specific anatomical sites, such as within the CNS. In this cross-sectional study we have used wild-type CCR5 and CXCR4 as well as chimeric CXCR4/CCR5 receptors to characterize coreceptor use by paired plasma and cerebrospinal fluid (CSF) isolates from 28 HIV-1-infected individuals. Furthermore, selected R5 isolates, with varying chimeric receptor use, were tested for sensitivity to inhibition by the CCR5 antagonist TAK-779. Discordant CSF/plasma virus coreceptor use was found in 10/28 patients. Low CD4+ T cell counts correlated strongly with a more flexible mode of R5 virus CCR5 usage, as disclosed by an increased ability to utilize chimeric CXCR4/CCR5 receptors, specifically receptor FC-2. Importantly, an elevated ability to utilize chimeric receptors correlated with a reduced susceptibility to inhibition by TAK-779. Our findings show that a discordant CSF and plasma virus coreceptor use is not uncommon. Furthermore, we provide support for an emerging paradigm, where the acquisition of a more flexible mode of CCR5 usage is a key event in R5 virus pathogenesis. This may, in turn, negatively impact the efficacy of CCR5 antagonist treatment in late stage HIV-1 disease.

  1. Chimeric anterolateral thigh free flap for reconstruction of complex cranio-orbito-facial defects after skull base cancers resection.

    PubMed

    Cherubino, Mario; Turri-Zanoni, Mario; Battaglia, Paolo; Giudice, Marco; Pellegatta, Igor; Tamborini, Federico; Maggiulli, Francesca; Guzzetti, Luca; Di Giovanna, Danilo; Bignami, Maurizio; Calati, Carolina; Castelnuovo, Paolo; Valdatta, Luigi

    2017-01-01

    Complex cranio-orbito-facial defects after skull base cancers resection entail a functional and esthetic reconstruction. The introduction of endoscopic assisted techniques for excision surgery with the advances in reconstructive surgery and anesthesiology allowed to improve the management of such critical patients. We report a series of chimeric anterolateral thigh (ALT) flaps used to reconstruct complex cranio-orbital-facial defects after skull base surgery. A retrospective review of patients that underwent cranio-orbito-facial reconstruction using a chimeric ALT flap from March 2013 to October 2015 at a single tertiary care referral Institute was performed. All patients were affected by locally-advanced malignant tumor and the resulting defects involved the skull base in all cases. The ALT flaps were perforator-based flaps with different components: fascia, skin and muscle. The different flap territories had independent vascular supply and were independent of any physical interconnection except where linked by a common source vessel. Ten patients were included in the study. Three patients underwent adjuvant radiotherapy and to chemotherapy. The mean hospitalization time was 21 days (range, 8-24 days). One failure was observed. After a mean follow-up of 12.4 months, 3 patients died of the disease, 2 are alive with disease, while 5 patients (50%) are currently alive without evidence of disease. Chimeric ALT flap is a reliable and versatile reconstructive option for complex cranio-orbito-facial defects resulting from skull base surgery. The chimeric flap composed of different territories proved to be adequate for a patient-tailored three-dimensional reconstruction of the defects as well as able to resist to the postoperative adjuvant treatments. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  2. Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral replicon as a non-transmissible vaccine candidate against CSF and JE infections.

    PubMed

    Yang, Zhenhua; Wu, Rui; Li, Robert W; Li, Ling; Xiong, Zhongliang; Zhao, Haizhong; Guo, Deyin; Pan, Zishu

    2012-04-01

    A trans-complemented chimeric CSF-JE virus replicon was constructed using an infectious cDNA clone of the CSF virus (CSFV) Alfort/187 strain. The CSFV E2 gene was deleted, and a fragment containing the region encoding a truncated envelope protein (tE, amino acid 292-402, domain III) of JE virus (JEV) was inserted into the resultant plasmid, pA187delE2, to generate the recombinant cDNA clone pA187delE2/JEV-tE. Porcine kidney 15 (PK15) cells that constitutively express the CSFV E2p7 proteins were then transfected with in vitro-transcribed RNA from pA187delE2/JEV-tE. As a result, the chimeric CSF-JE virus replicon particle (VRP), rv187delE2/JEV-tE, was rescued. In a mouse model, immunization with the chimeric CSF-JE VRP induced strong production of JEV-specific antibody and conferred protection against a lethal JEV challenge. Pigs immunized with CSF-JE VRP displayed strong anti-CSFV and anti-JEV antibody responses and protection against CSFV and JEV challenge infections. Our evidence suggests that E2-complemented CSF-JE VRP not only has potential as a live-attenuated non-transmissible vaccine candidate against CSF and JE but also serves as a potential DIVA (Differentiating Infected from Vaccinated Animals) vaccine for CSF in pigs. Together, our data suggest that the non-transmissible chimeric VRP expressing foreign antigenic proteins may represent a promising strategy for bivalent DIVA vaccine design. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. ITS all right mama: investigating the formation of chimeric sequences in the ITS2 region by DNA metabarcoding analyses of fungal mock communities of different complexities.

    PubMed

    Bjørnsgaard Aas, Anders; Davey, Marie Louise; Kauserud, Håvard

    2017-07-01

    The formation of chimeric sequences can create significant methodological bias in PCR-based DNA metabarcoding analyses. During mixed-template amplification of barcoding regions, chimera formation is frequent and well documented. However, profiling of fungal communities typically uses the more variable rDNA region ITS. Due to a larger research community, tools for chimera detection have been developed mainly for the 16S/18S markers. However, these tools are widely applied to the ITS region without verification of their performance. We examined the rate of chimera formation during amplification and 454 sequencing of the ITS2 region from fungal mock communities of different complexities. We evaluated the chimera detecting ability of two common chimera-checking algorithms: perseus and uchime. Large proportions of the chimeras reported were false positives. No false negatives were found in the data set. Verified chimeras accounted for only 0.2% of the total ITS2 reads, which is considerably less than what is typically reported in 16S and 18S metabarcoding analyses. Verified chimeric 'parent sequences' had significantly higher per cent identity to one another than to random members of the mock communities. Community complexity increased the rate of chimera formation. GC content was higher around the verified chimeric break points, potentially facilitating chimera formation through base pair mismatching in the neighbouring regions of high similarity in the chimeric region. We conclude that the hypervariable nature of the ITS region seems to buffer the rate of chimera formation in comparison with other, less variable barcoding regions, due to shorter regions of high sequence similarity. © 2016 John Wiley & Sons Ltd.

  4. Chimeric Protein Complexes in Hybrid Species Generate Novel Phenotypes

    PubMed Central

    Piatkowska, Elzbieta M.; Naseeb, Samina; Knight, David; Delneri, Daniela

    2013-01-01

    Hybridization between species is an important mechanism for the origin of novel lineages and adaptation to new environments. Increased allelic variation and modification of the transcriptional network are the two recognized forces currently deemed to be responsible for the phenotypic properties seen in hybrids. However, since the majority of the biological functions in a cell are carried out by protein complexes, inter-specific protein assemblies therefore represent another important source of natural variation upon which evolutionary forces can act. Here we studied the composition of six protein complexes in two different Saccharomyces “sensu stricto” hybrids, to understand whether chimeric interactions can be freely formed in the cell in spite of species-specific co-evolutionary forces, and whether the different types of complexes cause a change in hybrid fitness. The protein assemblies were isolated from the hybrids via affinity chromatography and identified via mass spectrometry. We found evidence of spontaneous chimericity for four of the six protein assemblies tested and we showed that different types of complexes can cause a variety of phenotypes in selected environments. In the case of TRP2/TRP3 complex, the effect of such chimeric formation resulted in the fitness advantage of the hybrid in an environment lacking tryptophan, while only one type of parental combination of the MBF complex allowed the hybrid to grow under respiratory conditions. These phenotypes were dependent on both genetic and environmental backgrounds. This study provides empirical evidence that chimeric protein complexes can freely assemble in cells and reveals a new mechanism to generate phenotypic novelty and plasticity in hybrids to complement the genomic innovation resulting from gene duplication. The ability to exchange orthologous members has also important implications for the adaptation and subsequent genome evolution of the hybrids in terms of pattern of gene loss. PMID:24137105

  5. Expression Analysis of an R3-Type MYB Transcription Factor CPC-LIKE MYB4 (TRICHOMELESS2) and CPL4-Related Transcripts in Arabidopsis

    PubMed Central

    Tominaga-Wada, Rumi; Nukumizu, Yuka

    2012-01-01

    The CAPRICE (CPC)-like MYB gene family encodes R3-type MYB transcription factors in Arabidopsis. There are six additional CPC-like MYB sequences in the Arabidopsis genome, including TRYPTICHON (TRY), ENHANCER OF TRY AND CPC1 and 2 (ETC1 and ETC2), ENHANCER OF TRY AND CPC3/CPC-LIKE MYB3 (ETC3/CPL3), and TRICHOMELESS1 and 2 (TCL1 and TCL2). We independently identified CPC-LIKE MYB4 (CPL4), which was found to be identical to TCL2. RT-PCR analysis showed that CPL4 is strongly expressed in shoots, including true leaves, but not in roots. Promoter-GUS analyses indicated that CPL4 is specifically expressed in leaf blades. Although CPC expression was repressed in 35S::ETC1, 35S::ETC2 and 35S::CPL3 backgrounds, CPL4 expression was not affected by ETC1, ETC2 or CPL3 over-expression. Notably, several chimeric transcripts may result from inter-genic alternative splicing of CPL4 and ETC2, two tandemly repeated genes on chromosome II. At least two chimeric transcripts named CPL4-α and CPL4-β are expected to encode complete CPC-like MYB proteins. PMID:22489163

  6. Protection Conferred by recombinant Yersinia pestis Antigens Produced by a Rapid and Highly Scalable Plant Expression System

    DTIC Science & Technology

    2006-01-24

    translational fusions with dsRED (lanes 8), and cytosol-targeted GFP (lanes 9). RbcL, large subunit of Rubisco . 862 ! www.pnas.org"cgi"doi൒.1073...analysis of F1-V expression with SDS"PAGE-Coomassie staining was difficult because the chimeric protein comigrates with the large subunit of Rubisco , a...contaminated by the Rubisco large subunit, which is very similar in size to F1-V. Analysis of Purified Plant-Produced Antigens. Western blots were

  7. Chimeric Antigen Receptor-Redirected T cells return to the bench

    PubMed Central

    Geldres, Claudia; Savoldo, Barbara; Dotti, Gianpietro

    2016-01-01

    While the clinical progress of chimeric antigen receptor T cell (CAR-T) immunotherapy has garnered attention to the field, our understanding of the biology of these chimeric molecules is still emerging. Our aim within this review is to bring to light the mechanistic understanding of these multi-modular receptors and how these individual components confer particular properties to CAR-Ts. In addition, we will discuss extrinsic factors that can be manipulated to influence CAR-T performance such as choice of cellular population, culturing conditions and additional modifications that enhance their activity particularly in solid tumors. Finally, we will also consider the emerging toxicity associated with CAR-Ts. By breaking apart the CAR and examining the role of each piece, we can build a better functioning cellular vehicle for optimized treatment of cancer patients. PMID:26797495

  8. Production of unnaturally linked chimeric proteins using a combination of sortase-catalyzed transpeptidation and click chemistry

    PubMed Central

    Witte, Martin D.; Theile, Chris; Wu, Tongfei; Guimaraes, Carla P.; Blom, Annet E. M.; Ploegh, Hidde L.

    2014-01-01

    Chimeric proteins, including bi-specific antibodies, are biological tools with therapeutic applications. Genetic fusion and ligation methods allow the creation of N-to-C and C-toN fused recombinant proteins, but not the majority of non-template encoded fusions. The present protocol describes a simple procedure for the production of unnaturally linked N-to-N and C-to-C chimeric proteins. Equipping the N-terminus or C-terminus of the proteins of interest with a set of click handles using sortase A, followed by a click reaction, establishes unnatural N-to-N and C-to-C (hetero)dimer linked fusions. If the peptides, sortase A, and the proteins of interest are in hand, the unnaturally fused proteins can be obtained in 3–4 days. PMID:23989675

  9. Chemical and Biological Defense Test and Evaluation (T&E) Future Challenges

    DTIC Science & Technology

    2012-07-01

    considerations. For example, while chimeric organisms, which comprise genetic material, metabolic pathways, and capabilities of two or more organisms, may be...they would become a concern to T&E efforts. Chimeric organisms are those that have been genetically manipulated to include genes or entire...Even in the absence of intentional genetic engineering, on average, we see one new emerging disease per year just as a result of natural

  10. Dramatic Differences in Organophosphorus Hydrolase Activity between Human and Chimeric Recombinant Mammalian Paraoxonase-1 Enzymes

    DTIC Science & Technology

    2009-01-01

    Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Dramatic Differences in Organophosphorus Hydrolase Activity between Human and 5a... activity , V-agents, VX, bioscavenger, medical countermeasures 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...Organophosphorus Hydrolase Activity between Human and Chimeric Recombinant Mammalian Paraoxonase-1 Enzymes† Tamara C. Otto,‡ Christina K. Harsch,§ David T

  11. Lessons learned from a highly-active CD22-specific chimeric antigen receptor.

    PubMed

    Long, Adrienne H; Haso, Waleed M; Orentas, Rimas J

    2013-04-01

    CD22 is an attractive target for the development of immunotherapeutic approaches for the therapy of B-cell malignancies. In particular, an m971 antibody-derived, second generation chimeric antigen receptor (CAR) that targets CD22 holds significant therapeutic promise. The key aspect for the development of such a highly-active CAR was its ability to target a membrane-proximal epitope of CD22.

  12. Immunobiological Aspects of erbB Receptors in Breast Cancer

    DTIC Science & Technology

    2000-08-01

    receptor . The proliferation of cells expressing these chimeric receptors was EGF-dependent, and cells expressing EGFR/Y882F chimeric receptors were...determine Cells were washed twice with cold phosphate-buffered saline which cellular substrates couple with the receptor complex. (PBS) and lysed with 1...turnover, receptor proteins suggests that these substrates are properly lo- and cellular transformation in NEN757 cells (Qian et al., cated for

  13. Protein-like Nanoparticles Based on Orthogonal Self-Assembly of Chimeric Peptides.

    PubMed

    Jiang, Linhai; Xu, Dawei; Namitz, Kevin E; Cosgrove, Michael S; Lund, Reidar; Dong, He

    2016-10-01

    A novel two-component self-assembling chimeric peptide is designed where two orthogonal protein folding motifs are linked side by side with precisely defined position relative to one another. The self-assembly is driven by a combination of symmetry controlled molecular packing, intermolecular interactions, and geometric constraint to limit the assembly into compact dodecameric protein nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Recombinant production of a chimeric antimicrobial peptide in E. coli and assessment of its activity against some avian clinically isolated pathogens.

    PubMed

    Tanhaiean, Abass; Azghandi, Marjan; Razmyar, Jamshid; Mohammadi, Elyas; Sekhavati, Mohammad Hadi

    2018-06-08

    Over the last decades, poultry industry faced to the rapid emergence of multidrug-resistant bacteria as a global concern. Antimicrobial peptide (AMPs) known as potential antibiotic alternative and were considered as a new antimicrobial agent. Current methods of production and purification of AMPs have several limitations such as: costly, time-consuming and killing the producing host cells in recombinant form. In the present study, a chimeric peptide derived from camel lactoferrin was produced in Escherichia coli periplasmic space using a pET-based expression system and its antibacterial activity was determined on some avian pathogens in vitro. A carboxy-terminal polyhistidine tag was used for purification by Ni 2+ affinity chromatography with an average yield of 0.42 g/L. The His-tagged chimeric peptide showed different range of antimicrobial activity against clinically isolated avian pathogens with low chicken blood hemolysis activity and high serum stability. Overall, the results of this investigation showed the recombinant chimeric peptide was successfully expressed in pET-based expression system and could be considered as a proper alternative for some currently used antibiotics in poultry industry and drugs veterinary medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Depletion of CD8 Memory T Cells for Induction of Tolerance of a Previously Transplanted Kidney Allograft

    PubMed Central

    Koyama, I.; Nadazdin, O.; Boskovic, S.; Ochiai, T.; Smith, R. N.; Sykes, M.; Sogawa, H.; Murakami, T.; Strom, T. B.; Colvin, R. B.; Sachs, D. H.; Benichou, G.; Cosimi, A. B.; Kawai, T.

    2013-01-01

    Heterologous immunologic memory has been considered a potent barrier to tolerance induction in primates. Induction of such tolerance for a previously transplanted organ may be more difficult, because specific memory cells can be induced and activated by a transplanted organ. In the current study, we attempted to induce tolerance to a previously transplanted kidney allograft in nonhuman primates. The conditioning regimen consisted of low dose total body irradiation, thymic irradiation, antithymocyte globulin, and anti- CD154 antibody followed by a brief course of a calcineurin inhibitor. This regimen had been shown to induce mixed chimerism and allograft tolerance when kidney transplantation (KTx) and donor bone marrow transplantation (DBMT) were simultaneously performed. However, the same regimen failed to induce mixed chimerism when delayed DBMT was performed after KTx. We found that significant levels of memory T cells remained after conditioning, despite effective depletion of naïve T cells. By adding humanized anti-CD8 monoclonal antibody (cM-T807), CD8 memory T cells were effectively depleted and these recipients successfully achieved mixed chimerism and tolerance. The current studies provide ‘proof of principle’ that the mixed chimerism approach can induce renal allograft tolerance, even late after organ transplantation if memory T-cell function is adequately controlled. PMID:17286617

  16. A Modular Vaccine Development Platform Based on Sortase-Mediated Site-Specific Tagging of Antigens onto Virus-Like Particles

    PubMed Central

    Tang, Shubing; Xuan, Baoqin; Ye, Xiaohua; Huang, Zhong; Qian, Zhikang

    2016-01-01

    Virus-like particles (VLPs) can be used as powerful nanoscale weapons to fight against virus infection. In addition to direct use as vaccines, VLPs have been extensively exploited as platforms on which to display foreign antigens for prophylactic vaccination and immunotherapeutic treatment. Unfortunately, fabrication of new chimeric VLP vaccines in a versatile, site-specific and highly efficient manner is beyond the capability of traditional VLP vaccine design approaches, genetic insertion and chemical conjugation. In this study, we described a greatly improved VLP display strategy by chemoenzymatic site-specific tailoring antigens on VLPs surface with high efficiency. Through the transpeptidation mediated by sortase A, one protein and two epitopes containing N-terminal oligoglycine were conjugated to the LPET motif on the surface of hepatitis B virus core protein (HBc) VLPs with high density. All of the new chimeric VLPs induced strong specific IgG responses. Furthermore, the chimeric VLPs with sortase A tagged enterovirus 71 (EV71) SP70 epitope could elicit effective antibodies against EV71 lethal challenging as well as the genetic insertion chimeric VLPs. The sortase A mediated chemoenzymatic site-specific tailoring of the HBc VLP approach shows great potential in new VLP vaccine design for its simplicity, site specificity, high efficiency, and versatility. PMID:27170066

  17. High potential for formation and persistence of chimeras following aggregated larval settlement in the broadcast spawning coral, Acropora millepora

    PubMed Central

    Puill-Stephan, E.; van Oppen, M. J. H.; Pichavant-Rafini, K.; Willis, B. L.

    2012-01-01

    In sessile modular marine invertebrates, chimeras can originate from fusions of closely settling larvae or of colonies that come into contact through growth or movement. While it has been shown that juveniles of brooding corals fuse under experimental conditions, chimera formation in broadcast spawning corals, the most abundant group of reef corals, has not been examined. This study explores the capacity of the broadcast spawning coral Acropora millepora to form chimeras under experimental conditions and to persist as chimeras in the field. Under experimental conditions, 1.5-fold more larvae settled in aggregations than solitarily, and analyses of nine microsatellite loci revealed that 50 per cent of juveniles tested harboured different genotypes within the same colony. Significantly, some chimeric colonies persisted for 23 months post-settlement, when the study ended. Genotypes within persisting chimeric colonies all showed a high level of relatedness, whereas rejecting colonies displayed variable levels of relatedness. The nearly threefold greater sizes of chimeras compared with solitary juveniles, from settlement through to at least three months, suggest that chimerism is likely to be an important strategy for maximizing survival of vulnerable early life-history stages of corals, although longer-term studies are required to more fully explore the potential benefits of chimerism. PMID:21752820

  18. High potential for formation and persistence of chimeras following aggregated larval settlement in the broadcast spawning coral, Acropora millepora.

    PubMed

    Puill-Stephan, E; van Oppen, M J H; Pichavant-Rafini, K; Willis, B L

    2012-02-22

    In sessile modular marine invertebrates, chimeras can originate from fusions of closely settling larvae or of colonies that come into contact through growth or movement. While it has been shown that juveniles of brooding corals fuse under experimental conditions, chimera formation in broadcast spawning corals, the most abundant group of reef corals, has not been examined. This study explores the capacity of the broadcast spawning coral Acropora millepora to form chimeras under experimental conditions and to persist as chimeras in the field. Under experimental conditions, 1.5-fold more larvae settled in aggregations than solitarily, and analyses of nine microsatellite loci revealed that 50 per cent of juveniles tested harboured different genotypes within the same colony. Significantly, some chimeric colonies persisted for 23 months post-settlement, when the study ended. Genotypes within persisting chimeric colonies all showed a high level of relatedness, whereas rejecting colonies displayed variable levels of relatedness. The nearly threefold greater sizes of chimeras compared with solitary juveniles, from settlement through to at least three months, suggest that chimerism is likely to be an important strategy for maximizing survival of vulnerable early life-history stages of corals, although longer-term studies are required to more fully explore the potential benefits of chimerism.

  19. Generation of Potent T-cell Immunotherapy for Cancer using DAP12-based, Multichain, Chimeric Immunoreceptors

    PubMed Central

    Wang, Enxiu; Wang, Liang-Chuan; Tsai, Ching-Yi; Bhoj, Vijay; Gershenson, Zack; Moon, Edmund; Newick, Kheng; Sun, Jing; Lo, Albert; Baradet, Timothy; Feldman, Michael D.; Barrett, David; Puré, Ellen; Albelda, Steven; Milone, Michael C.

    2015-01-01

    Chimeric antigen receptors (CAR) bearing an antigen-binding domain linked in cis to the cytoplasmic domains of CD3ζ and costimulatory receptors have provided a potent method for engineering T-cell cytotoxicity towards B-cell leukemia and lymphoma. However, resistance to immunotherapy due to loss of T-cell effector function remains a significant barrier, especially in solid malignancies. We describe an alternative chimeric immunoreceptor design in which we have fused a single-chain variable fragment for antigen recognition to the transmembrane and cytoplasmic domains of KIR2DS2, a stimulatory killer immunoglobulin-like receptor (KIR). We show that this simple, KIR-based CAR (KIR-CAR) triggers robust antigen-specific proliferation and effector function in vitro when introduced into human T cells with DAP12, an immunotyrosine-based activation motifs (ITAM)-containing adaptor. T cells modified to express a KIR-CAR and DAP12 exhibit superior antitumor activity compared to standard first and second generation CD3ζ-based CARs in a xenograft model of mesothelioma highly resistant to immunotherapy. The enhanced antitumor activity is associated with improved retention of chimeric immunoreceptor expression and improved effector function of isolated tumor-infiltrating lymphocytes. These results support the exploration of KIR-CARs for adoptive T-cell immunotherapy, particularly in immunotherapy-resistant solid tumors. PMID:25941351

  20. Functional rescue of dystrophin-deficient mdx mice by a chimeric peptide-PMO.

    PubMed

    Yin, Haifang; Moulton, Hong M; Betts, Corinne; Merritt, Thomas; Seow, Yiqi; Ashraf, Shirin; Wang, Qingsong; Boutilier, Jordan; Wood, Matthew Ja

    2010-10-01

    Splice modulation using antisense oligonucleotides (AOs) has been shown to yield targeted exon exclusion to restore the open reading frame and generate truncated but partially functional dystrophin protein. This has been successfully demonstrated in dystrophin-deficient mdx mice and in Duchenne muscular dystrophy (DMD) patients. However, DMD is a systemic disease; successful therapeutic exploitation of this approach will therefore depend on effective systemic delivery of AOs to all affected tissues. We have previously shown the potential of a muscle-specific/arginine-rich chimeric peptide-phosphorodiamidate morpholino (PMO) conjugate, but its long-term activity, optimized dosing regimen, capacity for functional correction and safety profile remain to be established. Here, we report the results of this chimeric peptide-PMO conjugate in the mdx mouse using low doses (3 and 6 mg/kg) administered via a 6 biweekly systemic intravenous injection protocol. We show 100% dystrophin-positive fibers and near complete correction of the dystrophin transcript defect in all peripheral muscle groups, with restoration of 50% dystrophin protein over 12 weeks, leading to correction of the DMD pathological phenotype and restoration of muscle function in the absence of detectable toxicity or immune response. Chimeric muscle-specific/cell-penetrating peptides therefore represent highly promising agents for systemic delivery of splice-correcting PMO oligomers for DMD therapy.

  1. Mast Cell Targeted Chimeric Toxin Can Be Developed as an Adjunctive Therapy in Colon Cancer Treatment

    PubMed Central

    Wang, Shan; Li, Linmei; Shi, Renren; Liu, Xueting; Zhang, Junyan; Zou, Zehong; Hao, Zhuofang; Tao, Ailin

    2016-01-01

    The association of colitis with colorectal cancer has become increasingly clear with mast cells being identified as important inflammatory cells in the process. In view of the relationship between mast cells and cancer, we studied the effect and mechanisms of mast cells in the development of colon cancer. Functional and mechanistic insights were gained from ex vivo and in vivo studies of cell interactions between mast cells and CT26 cells. Further evidence was reversely obtained in studies of mast cell targeted Fcε-PE40 chimeric toxin. Experiments revealed mast cells could induce colon tumor cell proliferation and invasion. Cancer progression was found to be related to the density of mast cells in colonic submucosa. The activation of MAPK, Rho-GTPase, and STAT pathways in colon cancer cells was triggered by mast cells during cell-to-cell interaction. Lastly, using an Fcε-PE40 chimeric toxin we constructed, we confirmed the promoting effect of mast cells in development of colon cancer. Mast cells are a promoting factor of colon cancer and thus also a potential therapeutic target. The Fcε-PE40 chimeric toxin targeting mast cells could effectively prevent colon cancer in vitro and in vivo. Consequently, these data may demonstrate a novel immunotherapeutic approach for the treatment of tumors. PMID:26978404

  2. DNA profiling in peripheral blood, buccal swabs, hair follicles and semen from a patient following allogeneic hematopoietic stem cells transplantation

    PubMed Central

    LI, YA-TING; XIE, MING-KUN; WU, JIN

    2014-01-01

    Allogeneic peripheral blood stem cells transplantation (allo-PBSCT) or allogeneic bone marrow transplantation (allo-BMT) have been widely used to treat patients exhibiting certain severe illnesses. However, previous studies have shown that the biological materials of allo-PBSCT or allo-BMT recipients may not constitute credible materials for personal identification. In the present study, four types of commonly used samples were collected from a male individual following gender-matched allo-BMT. Autosomal short tandem repeat (STR) and Y-STR markers analysis, based on polymerase chain reaction, were used to evaluate the chimerism status. The results showed that the blood sample were all donor type, the buccal swab sample were mixed chimerism, and the sperm and hair follicle samples maintained a recipient origin of 100%. In conclusion, identical results were obtained by the two methods and it was confirmed that DNA extracted from hair follicles and sperm can be used as a reference for the pre-transplant genotype DNA profile of the recipient in the gender-match allo-BMT or -PBSCT. PMID:25279149

  3. Expression and Purification of a Novel Computationally Designed Antigen for Simultaneously Detection of HTLV-1 and HBV Antibodies.

    PubMed

    Heydari Zarnagh, Hafez; Ravanshad, Mehrdad; Pourfatollah, Ali Akbar; Rasaee, Mohammad Javad

    2015-04-01

    Computational tools are reliable alternatives to laborious work in chimeric protein design. In this study, a chimeric antigen was designed using computational techniques for simultaneous detection of anti-HTLV-I and anti-HBV in infected sera. Databases were searched for amino acid sequences of HBV/HLV-I diagnostic antigens. The immunodominant fragments were selected based on propensity scales. The diagnostic antigen was designed using these fragments. Secondary and tertiary structures were predicted and the B-cell epitopes were mapped on the surface of built model. The synthetic DNA coding antigen was sub-cloned into pGS21a expression vector. SDS-PAGE analysis showed that glutathione fused antigen was highly expressed in E. coli BL21 (DE3) cells. The recombinant antigen was purified by nickel affinity chromatography. ELISA results showed that soluble antigen could specifically react with the HTLV-I and HBV infected sera. This specific antigen could be used as suitable agent for antibody-antigen based screening tests and can help clinicians in order to perform quick and precise screening of the HBV and HTLV-I infections.

  4. Efficacy and safety of adoptive immunotherapy using anti-CD19 chimeric antigen receptor transduced T-cells: a systematic review of phase I clinical trials.

    PubMed

    Xu, Xiao-Jun; Zhao, Hai-Zhao; Tang, Yong-Min

    2013-02-01

    There remain some key questions regarding the adoptive infusion of chimeric antigen receptor (CAR) transduced T-cells in the clinical setting. This article systematically reviews the phase I clinical trials using CARs targeting CD19 in B-lineage malignancies. Twenty-nine patients were enrolled and the 6-month progression free survival for this cohort was 50.0 ± 9.9%. Univariate analysis showed that patients benefited from lymphodepletion before CAR+T-cell infusion and the administration of interleukin-2 (IL-2). Longer-term persistence (≥ 4 weeks) and stronger expansion of CAR+ T-cells in the blood and higher peak serum interferon-γ (IFN-γ) level (≥ 200 pg/mL) were also related to superior outcome. Regarding treatment-related adverse events, the most prominent toxicities were fever, rigors, chills, acute renal failure, hypotension and capillary leak syndrome. In conclusion, anti-CD19 CAR+ T-cells have shown some benefits in patients with B-lineage malignancies and are well tolerated in most patients. Preconditioning and cytokine supplement are required to improve the clinical outcome.

  5. Chimeric Antigen Receptors that Recognize Mesothelin for Cancer Immunotherapy | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the NCI have developed chimeric antigen receptors (CARs) with a high affinity for mesothelin to be used as an immunotherapy to treat pancreatic cancer, ovarian cancer, and mesothelioma. Cells that express CARs, most notably T cells, are highly reactive against their specific tumor antigen in an MHC-unrestricted manner to generate an immune response that promotes robust tumor cell elimination when infused into cancer patients.

  6. EVIR: chimeric receptors that enhance dendritic cell cross-dressing with tumor antigens.

    PubMed

    Squadrito, Mario Leonardo; Cianciaruso, Chiara; Hansen, Sarah K; De Palma, Michele

    2018-03-01

    We describe a lentivirus-encoded chimeric receptor, termed extracellular vesicle (EV)-internalizing receptor (EVIR), which enables the selective uptake of cancer-cell-derived EVs by dendritic cells (DCs). The EVIR enhances DC presentation of EV-associated tumor antigens to CD8 + T cells primarily through MHCI recycling and cross-dressing. EVIRs should facilitate exploring the mechanisms and implications of horizontal transfer of tumor antigens to antigen-presenting cells.

  7. Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral particles as a non-transmissible bivalent marker vaccine candidate against CSF and JE infections

    USDA-ARS?s Scientific Manuscript database

    A trans-complemented CSF- JE chimeric viral replicon was constructed using an infectious cDNA clone of the CSF virus (CSFV) Alfort/187 strain. The E2 gene of CSFV Alfort/187 strain was deleted and the resultant plasmid pA187delE2 was inserted by a fragment containing the region coding for a truncate...

  8. Functional evolution and structural conservation in chimeric cytochromes p450: calibrating a structure-guided approach.

    PubMed

    Otey, Christopher R; Silberg, Jonathan J; Voigt, Christopher A; Endelman, Jeffrey B; Bandara, Geethani; Arnold, Frances H

    2004-03-01

    Recombination generates chimeric proteins whose ability to fold depends on minimizing structural perturbations that result when portions of the sequence are inherited from different parents. These chimeric sequences can display functional properties characteristic of the parents or acquire entirely new functions. Seventeen chimeras were generated from two CYP102 members of the functionally diverse cytochrome p450 family. Chimeras predicted to have limited structural disruption, as defined by the SCHEMA algorithm, displayed CO binding spectra characteristic of folded p450s. Even this small population exhibited significant functional diversity: chimeras displayed altered substrate specificities, a wide range in thermostabilities, up to a 40-fold increase in peroxidase activity, and ability to hydroxylate a substrate toward which neither parent heme domain shows detectable activity. These results suggest that SCHEMA-guided recombination can be used to generate diverse p450s for exploring function evolution within the p450 structural framework.

  9. Trans-inner Cell Mass Injection of Embryonic Stem Cells Leads to Higher Chimerism Rates.

    PubMed

    Scott, Gregory J; Gruzdev, Artiom; Hagler, Thomas B; Ray, Manas K

    2018-05-29

    In an effort to increase efficiency in the creation of genetically modified mice via ES Cell methodologies, we present an adaptation to the current blastocyst injection protocol. Here we report that a simple rotation of the embryo, and injection through Trans-Inner cell mass (TICM) increased the percentage of chimeric mice from 31% to 50%, with no additional equipment or further specialized training. 26 different inbred clones, and 35 total clones were injected over a period of 9 months. There was no significant difference in either pregnancy rate or recovery rate of embryos between traditional injection techniques and TICM. Therefore, without any major alteration in the injection process and a simple positioning of the blastocyst and injecting through the ICM, releasing the ES cells into the blastocoel cavity can potentially improve the quantity of chimeric production and subsequent germline transmission.

  10. A new microcolumn-type microchip for examining the expression of chimeric fusion genes using a nucleic acid sandwich hybridization technique.

    PubMed

    Ohnishi, Michihiro; Sasaki, Naoyuki; Kishimoto, Takuya; Watanabe, Hidetoshi; Takagi, Masatoshi; Mizutani, Shuki; Kishii, Noriyuki; Yasuda, Akio

    2014-11-01

    We report a new type of microcolumn installed in a microchip. The architecture allows use of a nucleic acid sandwich hybridization technique to detect a messenger RNA (mRNA) chain as a target. Data are presented that demonstrate that the expression of a chimeric fusion gene can be detected. The microcolumn was filled with semi-transparent microbeads made of agarose gel that acted as carriers, allowing increased efficiency of the optical detection of fluorescence from the microcolumn. The hybrid between the target trapped on the microbeads and a probe DNA labeled with a fluorescent dye was detected by measuring the intensity of the fluorescence from the microcolumn directly. These results demonstrate an easy and simple method for determining the expression of chimeric fusion genes with no preamplification. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Probing receptor structure/function with chimeric G-protein-coupled receptors.

    PubMed

    Yin, Dezhong; Gavi, Shai; Wang, Hsien-yu; Malbon, Craig C

    2004-06-01

    Owing its name to an image borrowed from Greek mythology, a chimera is seen to represent a new entity created as a composite from existing creatures or, in this case, molecules. Making use of various combinations of three basic domains of the receptors (i.e., exofacial, transmembrane, and cytoplasmic segments) that couple agonist binding into activation of effectors through heterotrimeric G-proteins, molecular pharmacology has probed the basic organization, structure/function relationships of this superfamily of heptahelical receptors. Chimeric G-protein-coupled receptors obviate the need for a particular agonist ligand when the ligand is resistant to purification or, in the case of orphan receptors, is not known. Chimeric receptors created from distant members of the heptahelical receptors enable new strategies in understanding how these receptors transduce agonist binding into receptor activation and may be able to offer insights into the evolution of G-protein-coupled receptors from yeast to humans.

  12. Low-frequency chimeric yeast artificial chromosome libraries from flow-sorted human chromosomes 16 and 21.

    PubMed Central

    McCormick, M K; Campbell, E; Deaven, L; Moyzis, R

    1993-01-01

    Construction of chromosome-specific yeast artificial chromosome (YAC) libraries from sorted chromosomes was undertaken (i) to eliminate drawbacks associated with first-generation total genomic YAC libraries, such as the high frequency of chimeric YACs, and (ii) to provide an alternative method for generating chromosome-specific YAC libraries in addition to isolating such collections from a total genomic library. Chromosome-specific YAC libraries highly enriched for human chromosomes 16 and 21 were constructed. By maximizing the percentage of fragments with two ligatable ends and performing yeast transformations with less than saturating amounts of DNA in the presence of carrier DNA, YAC libraries with a low percentage of chimeric clones were obtained. The smaller number of YAC clones in these chromosome-specific libraries reduces the effort involved in PCR-based screening and allows hybridization methods to be a manageable screening approach. Images PMID:8430075

  13. Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides.

    PubMed

    Bolscher, Jan G M; Adão, Regina; Nazmi, Kamran; van den Keybus, Petra A M; van 't Hof, Wim; Nieuw Amerongen, Arie V; Bastos, Margarida; Veerman, Enno C I

    2009-01-01

    The innate immunity factor lactoferrin harbours two antimicrobial moieties, lactoferricin and lactoferrampin, situated in close proximity in the N1 domain of the molecule. Most likely they cooperate in many of the beneficial activities of lactoferrin. To investigate whether chimerization of both peptides forms a functional unit we designed a chimerical structure containing lactoferricin amino acids 17-30 and lactoferrampin amino acids 265-284. The bactericidal activity of this LFchimera was found to be drastically stronger than that of the constituent peptides, as was demonstrated by the need for lower dose, shorter incubation time and less ionic strength dependency. Likewise, strongly enhanced interaction with negatively charged model membranes was found for the LFchimera relative to the constituent peptides. Thus, chimerization of the two antimicrobial peptides resembling their structural orientation in the native molecule strikingly improves their biological activity.

  14. Antitumor activity of novel chimeric peptides derived from cyclinD/CDK4 and the protein transduction domain 4.

    PubMed

    Wang, Haili; Chen, Xi; Chen, Yanping; Sun, Lei; Li, Guodong; Zhai, Mingxia; Zhai, Wenjie; Kang, Qiaozhen; Gao, Yanfeng; Qi, Yuanming

    2013-02-01

    CyclinD1/CDK4 and cyclinD3/CDK4 complexes are key regulators of the cell progression and therefore constitute promising targets for the design of anticancer agents. In the present study, the key peptide motifs were selected from these two complexes. Chimeric peptides with these peptides conjugated to the protein transduction domain 4 (PTD4) were designed and synthesized. The chimeric peptides, PTD4-D1, PTD4-D3, PTD4-K4 exhibited significant anti-proliferation effects on cancer cell lines. These peptides could compete with the cyclinD/CDK4 complex and induce the G1/S phase arrest and apoptosis of cancer cells. In the tumor challenge experiment, these peptides showed potent antitumor effects with no significant side effects. Our results suggested that these peptides could be served as novel leading compounds with potent antitumor activity.

  15. Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals.

    PubMed

    Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G

    2014-05-09

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Performance Assessment of a Trypanosoma cruzi Chimeric Antigen in Multiplex Liquid Microarray Assays.

    PubMed

    Santos, Fred Luciano Neves; Celedon, Paola Alejandra Fiorani; Zanchin, Nilson Ivo Tonin; Leitolis, Amanda; Crestani, Sandra; Foti, Leonardo; de Souza, Wayner Vieira; Gomes, Yara de Miranda; Krieger, Marco Aurélio

    2017-10-01

    Diagnosing chronic Chagas disease (CD) requires antibody-antigen detection methods, which are traditionally based on enzymatic assay techniques whose performance depend on the type and quality of antigen used. Previously, 4 recombinant chimeric proteins from the Instituto de Biologia Molecular do Paraná (IBMP-8.1 to 8.4) comprising immuno-dominant regions of diverse Trypanosoma cruzi antigens showed excellent diagnostic performance in enzyme-linked immunosorbent assays. Considering that next-generation platforms offer improved CD diagnostic accuracy with different T. cruzi -specific recombinant antigens, we assessed the performance of these chimeras in liquid microarrays (LMAs). The chimeric proteins were expressed in Escherichia coli and purified by chromatography. Sera from 653 chagasic and 680 healthy individuals were used to assess the performance of these chimeras in detecting specific anti- T. cruzi antibodies. Accuracies ranged from 98.1 to 99.3%, and diagnostic odds ratio values were 3,548 for IBMP-8.3, 4,826 for IBMP-8.1, 7,882 for IBMP-8.2, and 25,000 for IBMP-8.4. A separate sera bank (851 samples) was employed to assess cross-reactivity with other tropical diseases. Leishmania , a pathogen with high similarity to T. cruzi , showed cross-reactivity rates ranging from 0 to 2.17%. Inconclusive results were negligible (0 to 0.71%). Bland-Altman and Deming regression analysis based on 200 randomly selected CD-positive and negative samples demonstrated interchangeability with respect to CD diagnostic performance in both singleplex and multiplex assays. Our results suggested that these chimeras can potentially replace antigens currently used in commercially available assay kits. Moreover, the use of multiplex platforms, such as LMA assays employing 2 or more IBMP antigens, would abrogate the need for 2 different testing techniques when diagnosing CD. Copyright © 2017 American Society for Microbiology.

  17. Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants

    PubMed Central

    Barkman, Todd J; McNeal, Joel R; Lim, Seok-Hong; Coat, Gwen; Croom, Henrietta B; Young, Nelson D; dePamphilis, Claude W

    2007-01-01

    Background Some of the most difficult phylogenetic questions in evolutionary biology involve identification of the free-living relatives of parasitic organisms, particularly those of parasitic flowering plants. Consequently, the number of origins of parasitism and the phylogenetic distribution of the heterotrophic lifestyle among angiosperm lineages is unclear. Results Here we report the results of a phylogenetic analysis of 102 species of seed plants designed to infer the position of all haustorial parasitic angiosperm lineages using three mitochondrial genes: atp1, coxI, and matR. Overall, the mtDNA phylogeny agrees with independent studies in terms of non-parasitic plant relationships and reveals at least 11 independent origins of parasitism in angiosperms, eight of which consist entirely of holoparasitic species that lack photosynthetic ability. From these results, it can be inferred that modern-day parasites have disproportionately evolved in certain lineages and that the endoparasitic habit has arisen by convergence in four clades. In addition, reduced taxon, single gene analyses revealed multiple horizontal transfers of atp1 from host to parasite lineage, suggesting that parasites may be important vectors of horizontal gene transfer in angiosperms. Furthermore, in Pilostyles we show evidence for a recent host-to-parasite atp1 transfer based on a chimeric gene sequence that indicates multiple historical xenologous gene acquisitions have occurred in this endoparasite. Finally, the phylogenetic relationships inferred for parasites indicate that the origins of parasitism in angiosperms are strongly correlated with horizontal acquisitions of the invasive coxI group I intron. Conclusion Collectively, these results indicate that the parasitic lifestyle has arisen repeatedly in angiosperm evolutionary history and results in increasing parasite genomic chimerism over time. PMID:18154671

  18. Genetic element from human surfactant protein SP-C gene confers bronchiolar-alveolar cell specificity in transgenic mice.

    PubMed

    Glasser, S W; Korfhagen, T R; Wert, S E; Bruno, M D; McWilliams, K M; Vorbroker, D K; Whitsett, J A

    1991-10-01

    Transgenic mice bearing chimeric genes consisting of 5'-sequences derived from the human surfactant protein C (SP-C) gene and the bacterial chloramphenicol acetyltransferase (CAT) gene were generated. Analysis of CAT activity was utilized to demonstrate tissue-specific and developmental expression of chimeric genes containing 3.7 kb of sequences from the human SP-C gene. Lung-specific expression of the 3.7 SP-C-CAT transgene was observed in eight distinct transgenic mouse lines. Expression of the 3.7 SP-C-CAT transgene was first detected in fetal lung on day 11 of gestation and increased dramatically with advancing gestational age, reaching adult levels of activity before birth. In situ hybridization demonstrated that expression of 3.7 SP-C-CAT mRNA was confined to the distal respiratory epithelium. Antisense CAT hybridization was detected in bronchiolar and type II epithelial cells in the adult lung of the 3.7 SP-C-CAT transgenic mice. In situ hybridization of four distinct 3.7 SP-C-CAT transgenic mouse lines demonstrated bronchiolar-alveolar expression of the chimeric CAT gene, although the relative intensity of expression at each site varied within the lines studied. Glucocorticoids increased murine SP-C mRNA in fetal lung organ culture. Likewise, expression of 3.7 SP-C-CAT transgene increased during fetal lung organ or explant culture and was further enhanced by glucocorticoid in vitro. The 5'-regions of human SP-C conferred developmental, lung epithelial, and glucocorticoid-enhanced expression of bacterial CAT in transgenic mice. The increased expression of SP-C accompanying prenatal lung development and exposure to glucocorticoid is mediated, at least in part, at the transcriptional level, being influenced by cis-active elements contained within the 5'-flanking region of the human SP-C gene.

  19. Uniparental chicken offsprings derived from oogenesis of chicken primordial germ cells (ZZ).

    PubMed

    Liu, Chunhai; Chang, Il-Kuk; Khazanehdari, Kamal A; Thomas, Shruti; Varghese, Preetha; Baskar, Vijaya; Alkhatib, Razan; Li, Wenhai; Kinne, Jörg; McGrew, Michael J; Wernery, Ulrich

    2017-03-01

    Cloning (somatic cell nuclear transfer) in avian species has proven unachievable due to the physical structure of the avian oocyte. Here, the sexual differentiation of primordial germ cells with genetic sex ZZ (ZZ PGCs) was investigated in female germline chimeric chicken hosts with the aim to produce uniparental offspring. ZZ PGCs were expanded in culture and transplanted into the same and opposite sex chicken embryos which were partially sterilized using irradiation. All tested chimeric roosters (ZZ/ZZ) showed germline transmission with transmission rates of 3.2%-91.4%. Unexpectedly, functional oogenesis of chicken ZZ PGCs was found in three chimeric hens, resulting in a transmission rate of 2.3%-27.8%. Matings were conducted between the germline chimeras (ZZ/ZZ and ZZ/ZW) which derived from the same ZZ PGCs line. Paternal uniparental chicken offspring were obtained with a transmission rate up to 28.4% and as expected, all uniparental offspring were phenotypic male (ZZ). Genotype analysis of uniparental offsprings was performed using 13 microsatellite markers. The genotype profile showed that uniparental offspring were 100% genetically identical to the donor ZZ PGC line, shared 69.2%-88.5% identity with the donor bird. Homozygosity of the tested birds varied from 61.5% to 84.6%, which was higher than the donor bird (38.5%). These results demonstrate that male avian ZZ PGCs can differentiate into functional ova in an ovary, and uniparental avian clones are possible. This technology suggests novel approaches for generating genetically similar flocks of birds and for the conservation of avian genetic resources. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Helicase Domain of West Nile Virus NS3 Protein Plays a Role in Inhibition of Type I Interferon Signalling.

    PubMed

    Setoh, Yin Xiang; Periasamy, Parthiban; Peng, Nias Yong Gao; Amarilla, Alberto A; Slonchak, Andrii; Khromykh, Alexander A

    2017-11-02

    West Nile virus (WNV) is a neurotropic flavivirus that can cause encephalitis in mammalian and avian hosts. In America, the virulent WNV strain (NY99) is causing yearly outbreaks of encephalitis in humans and horses, while in Australia the less virulent Kunjin strain of WNV strain has not been associated with significant disease outbreaks until a recent 2011 large outbreak in horses (but not in humans) caused by NSW2011 strain. Using chimeric viruses between NY99 and NSW2011 strains we previously identified a role for the non-structural proteins of NY99 strain and especially the NS3 protein, in enhanced virus replication in type I interferon response-competent cells and increased virulence in mice. To further define the role of NY99 NS3 protein in inhibition of type I interferon response, we have generated and characterised additional chimeric viruses containing the protease or the helicase domains of NY99 NS3 on the background of the NSW2011 strain. The results identified the role for the helicase but not the protease domain of NS3 protein in the inhibition of type I interferon signalling and showed that helicase domain of the more virulent NY99 strain performs this function more efficiently than helicase domain of the less virulent NSW2011 strain. Further analysis with individual amino acid mutants identified two amino acid residues in the helicase domain primarily responsible for this difference. Using chimeric replicons, we also showed that the inhibition of type I interferon (IFN) signalling was independent of other known functions of NS3 in RNA replication and assembly of virus particles.

  1. Partial sequence homogenization in the 5S multigene families may generate sequence chimeras and spurious results in phylogenetic reconstructions.

    PubMed

    Galián, José A; Rosato, Marcela; Rosselló, Josep A

    2014-03-01

    Multigene families have provided opportunities for evolutionary biologists to assess molecular evolution processes and phylogenetic reconstructions at deep and shallow systematic levels. However, the use of these markers is not free of technical and analytical challenges. Many evolutionary studies that used the nuclear 5S rDNA gene family rarely used contiguous 5S coding sequences due to the routine use of head-to-tail polymerase chain reaction primers that are anchored to the coding region. Moreover, the 5S coding sequences have been concatenated with independent, adjacent gene units in many studies, creating simulated chimeric genes as the raw data for evolutionary analysis. This practice is based on the tacitly assumed, but rarely tested, hypothesis that strict intra-locus concerted evolution processes are operating in 5S rDNA genes, without any empirical evidence as to whether it holds for the recovered data. The potential pitfalls of analysing the patterns of molecular evolution and reconstructing phylogenies based on these chimeric genes have not been assessed to date. Here, we compared the sequence integrity and phylogenetic behavior of entire versus concatenated 5S coding regions from a real data set obtained from closely related plant species (Medicago, Fabaceae). Our results suggest that within arrays sequence homogenization is partially operating in the 5S coding region, which is traditionally assumed to be highly conserved. Consequently, concatenating 5S genes increases haplotype diversity, generating novel chimeric genotypes that most likely do not exist within the genome. In addition, the patterns of gene evolution are distorted, leading to incorrect haplotype relationships in some evolutionary reconstructions.

  2. Protein-protein interactions and substrate channeling in orthologous and chimeric aldolase-dehydrogenase complexes.

    PubMed

    Baker, Perrin; Hillis, Colleen; Carere, Jason; Seah, Stephen Y K

    2012-03-06

    Bacterial aldolase-dehydrogenase complexes catalyze the last steps in the meta cleavage pathway of aromatic hydrocarbon degradation. The aldolase (TTHB246) and dehydrogenase (TTHB247) from Thermus thermophilus were separately expressed and purified from recombinant Escherichia coli. The aldolase forms a dimer, while the dehydrogenase is a monomer; these enzymes can form a stable tetrameric complex in vitro, consisting of two aldolase and two dehydrogenase subunits. Upon complex formation, the K(m) value of 4-hydroxy-2-oxopentanoate, the substrate of TTHB246, is decreased 4-fold while the K(m) of acetaldehyde, the substrate of TTHB247, is increased 3-fold. The k(cat) values of each enzyme were reduced by ~2-fold when they were in a complex. The half-life of TTHB247 at 50 °C increased by ~4-fold when it was in a complex with TTHB246. The acetaldehyde product from TTHB246 could be efficiently channelled directly to TTHB247, but the channeling efficiency for the larger propionaldehyde was ~40% lower. A single A324G substitution in TTHB246 increased the channeling efficiency of propionaldehyde to a value comparable to that of acetaldehyde. Stable and catalytically competent chimeric complexes could be formed between the T. thermophilus enzymes and the orthologous aldolase (BphI) and dehydrogenase (BphJ) from the biphenyl degradation pathway of Burkholderia xenovorans LB400. However, channeling efficiencies for acetaldehyde in these chimeric complexes were ~10%. Structural and sequence analysis suggests that interacting residues in the interface of the aldolase-dehydrogenase complex are highly conserved among homologues, but coevolution of partner enzymes is required to fine-tune this interaction to allow for efficient substrate channeling.

  3. The Cytoplasmic Region of α-1,6-Mannosyltransferase Mnn9p Is Crucial for Retrograde Transport from the Golgi Apparatus to the Endoplasmic Reticulum in Saccharomyces cerevisiae▿ †

    PubMed Central

    Okamoto, Michiyo; Yoko-o, Takehiko; Miyakawa, Tokichi; Jigami, Yoshifumi

    2008-01-01

    In Saccharomyces cerevisiae, Och1p and Mnn9p mannosyltransferases are localized in the cis-Golgi. Attempts to live image Och1p and Mnn9p tagged with green fluorescent protein or red fluorescent protein, respectively, using a high-performance confocal laser scanning microscope system resulted in simultaneous visualization of the native proteins in a living cell. Our observations revealed that Och1p and Mnn9p are not always colocalized to the same cisternae. The difference in the dynamics of these mannosyltransferases may reflect differences in the mechanisms for their retention in the cis-Golgi, since it has been reported that Mnn9p cycles between the endoplasmic reticulum and the cis-Golgi whereas Och1p does not (Z. Todorow, A. Spang, E. Carmack, J. Yates, and R. Schekman, Proc. Natl. Acad. Sci. USA 97:13643-13648, 2000). We investigated the localization of chimeric proteins of Mnn9p and Och1p in sec12 and erd1 mutant cells. A chimeric protein, M16/O16, which consists of the N-terminal cytoplasmic region of Mnn9p and the transmembrane and luminal region of Och1p, behaved like Mnn9p, suggesting that the N-terminal cytoplasmic region is important for the intracellular dynamics of Mnn9p. This observation is supported by results from subcellular-fractionation experiments. Mutational analysis revealed that two arginine residues in the N-terminal region of Mnn9p are important for the chimeric protein to cycle between the endoplasmic reticulum and the Golgi apparatus. PMID:18083825

  4. Helicase Domain of West Nile Virus NS3 Protein Plays a Role in Inhibition of Type I Interferon Signalling

    PubMed Central

    Periasamy, Parthiban; Peng, Nias Yong Gao; Amarilla, Alberto A.; Slonchak, Andrii; Khromykh, Alexander A.

    2017-01-01

    West Nile virus (WNV) is a neurotropic flavivirus that can cause encephalitis in mammalian and avian hosts. In America, the virulent WNV strain (NY99) is causing yearly outbreaks of encephalitis in humans and horses, while in Australia the less virulent Kunjin strain of WNV strain has not been associated with significant disease outbreaks until a recent 2011 large outbreak in horses (but not in humans) caused by NSW2011 strain. Using chimeric viruses between NY99 and NSW2011 strains we previously identified a role for the non-structural proteins of NY99 strain and especially the NS3 protein, in enhanced virus replication in type I interferon response-competent cells and increased virulence in mice. To further define the role of NY99 NS3 protein in inhibition of type I interferon response, we have generated and characterised additional chimeric viruses containing the protease or the helicase domains of NY99 NS3 on the background of the NSW2011 strain. The results identified the role for the helicase but not the protease domain of NS3 protein in the inhibition of type I interferon signalling and showed that helicase domain of the more virulent NY99 strain performs this function more efficiently than helicase domain of the less virulent NSW2011 strain. Further analysis with individual amino acid mutants identified two amino acid residues in the helicase domain primarily responsible for this difference. Using chimeric replicons, we also showed that the inhibition of type I interferon (IFN) signalling was independent of other known functions of NS3 in RNA replication and assembly of virus particles. PMID:29099073

  5. Simple Method for Markerless Gene Deletion in Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Oh, Man Hwan; Lee, Je Chul; Kim, Jungmin

    2015-01-01

    The traditional markerless gene deletion technique based on overlap extension PCR has been used for generating gene deletions in multidrug-resistant Acinetobacter baumannii. However, the method is time-consuming because it requires restriction digestion of the PCR products in DNA cloning and the construction of new vectors containing a suitable antibiotic resistance cassette for the selection of A. baumannii merodiploids. Moreover, the availability of restriction sites and the selection of recombinant bacteria harboring the desired chimeric plasmid are limited, making the construction of a chimeric plasmid more difficult. We describe a rapid and easy cloning method for markerless gene deletion in A. baumannii, which has no limitation in the availability of restriction sites and allows for easy selection of the clones carrying the desired chimeric plasmid. Notably, it is not necessary to construct new vectors in our method. This method utilizes direct cloning of blunt-end DNA fragments, in which upstream and downstream regions of the target gene are fused with an antibiotic resistance cassette via overlap extension PCR and are inserted into a blunt-end suicide vector developed for blunt-end cloning. Importantly, the antibiotic resistance cassette is placed outside the downstream region in order to enable easy selection of the recombinants carrying the desired plasmid, to eliminate the antibiotic resistance cassette via homologous recombination, and to avoid the necessity of constructing new vectors. This strategy was successfully applied to functional analysis of the genes associated with iron acquisition by A. baumannii ATCC 19606 and to ompA gene deletion in other A. baumannii strains. Consequently, the proposed method is invaluable for markerless gene deletion in multidrug-resistant A. baumannii. PMID:25746991

  6. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses.

    PubMed

    Furusawa, Tadashi; Ohkoshi, Katsuhiro; Kimura, Koji; Matsuyama, Shuichi; Akagi, Satoshi; Kaneda, Masahiro; Ikeda, Mitsumi; Hosoe, Misa; Kizaki, Keiichiro; Tokunaga, Tomoyuki

    2013-08-01

    Bovine embryonic stem (ES) cells have the potential to provide significant benefits in a range of agricultural and biomedical applications. Here, we employed a combination of conventional methods using glycogen synthase kinase 3 and mitogen-activated protein kinase inhibitors to establish ES cell lines from in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) bovine embryos. Five male cell lines were established from IVF embryos, and two female and three male cell lines from SCNT blastocysts; we named these lines bovine ES cell-like cells (bESLCs). The lines exhibited dome-shaped colonies, stained positively for alkaline phosphatase, and expressed pluripotent stem cell markers such as POU5F1, SOX2, and SSEA-1. The expression levels of these markers, especially for NANOG, varied among the cell lines. A DNA methylation assay showed the POU5F1 promoter region was hypomethylated compared to fibroblast cells. An in vitro differentiation assay showed that endoderm and ectoderm marker genes, but not mesoderm markers, were upregulated in differentiating bESLCs. To examine bESLCs in later embryonic stages, we created 22 chimeric blastocysts with a male bESLC line carrying a GFP marker gene and transferred these to a recipient cow. Four chimeric embryos were subsequently retrieved on Day 13 and retransferred to two recipient cows. One living fetus was obtained at Day 62. GFP signals were not identified in fetal cells by fluorescence microscopy; however, genomic PCR analysis detected the GFP gene in major organs. Clusters of GFP-positive cells were observed in amniotic membranes, suggesting that bESLCs can be categorized as a novel type of ICM-derived cells that can potentially differentiate into epiblast and hypoblast lineages.

  7. Hepatitis C virus resistance to broadly neutralizing antibodies measured using replication-competent virus and pseudoparticles

    PubMed Central

    Wasilewski, Lisa N.; Ray, Stuart C.

    2016-01-01

    A better understanding of natural variation in neutralization resistance and fitness of diverse hepatitis C virus (HCV) envelope (E1E2) variants will be critical to guide rational development of an HCV vaccine. This work has been hindered by inadequate genetic diversity in viral panels and by a lack of standardization of HCV entry assays. Neutralization assays generally use lentiviral pseudoparticles expressing HCV envelope proteins (HCVpp) or chimeric full-length viruses that are replication competent in cell culture (HCVcc). There have been few systematic comparisons of specific infectivities of E1E2-matched HCVcc and HCVpp, and to our knowledge, neutralization of E1E2-matched HCVpp and HCVcc has never been compared using a diverse panel of human broadly neutralizing monoclonal antibodies (bNAbs) targeting distinct epitopes. Here, we describe an efficient method for introduction of naturally occurring E1E2 genes into a full-length HCV genome, producing replication-competent chimeric HCVcc. We generated diverse panels of E1E2-matched HCVcc and HCVpp and measured the entry-mediating fitness of E1E2 variants using the two systems. We also compared neutralization of E1E2-matched HCVcc and HCVpp by a diverse panel of human bNAbs targeting epitopes across E1E2. We found no correlation between specific infectivities of E1E2-matched HCVcc versus HCVpp, but found a very strong positive correlation between relative neutralization resistance of these same E1E2-matched HCVcc and HCVpp variants. These results suggest that quantitative comparisons of neutralization resistance of E1E2 variants can be made with confidence using either HCVcc or HCVpp, allowing the use of either or both systems to maximize diversity of neutralization panels. PMID:27667373

  8. Elevated MLF1 expression correlates with malignant progression from myelodysplastic syndrome.

    PubMed

    Matsumoto, N; Yoneda-Kato, N; Iguchi, T; Kishimoto, Y; Kyo, T; Sawada, H; Tatsumi, E; Fukuhara, S

    2000-10-01

    MLF1 is a novel protein identified as the NPM-MLF1 chimeric protein produced by a t(3;5)(q25.1;q34) chromosomal translocation, which is associated with myelodysplastic syndrome (MDS), often prior to acute myeloid leukemia (AML), except for M3. The clinical features of t(3;5)-positive myeloid disorders suggest that this chimeric protein is involved in dysregulation of progenitor cells with the capability to differentiate into multiple lineages. So far, involvement of wild-type MLF1 in hematopoiesis or in leukemogenesis has not been fully investigated. In the present study, 65 patients with AML and 44 patients with MDS were tested for the expression of MLF1 using the quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) method. A significantly higher level of MLF1 expression (ratio of MLF1/beta-actin mRNA >0.4) was readily detected in seven of 65 patients with de novo AML, three of 12 with post-MDS AML and seven of 44 with MDS, but not in any patients with ALL (n = 18). According to the FAB classification, high levels of MLF1 were found in patients with relatively immature subtypes of AML (M1, M2, M6 and M7) and high risk MDS (RAEB and RAEB-T). These findings indicate that the pattern of MLF1 expression is identical to the clinical morphology appearing in the t(3;5)-positive myeloid disorders and is correlated to the MDS-associated AML and transformation phase of MDS in t(3;5)-negative myeloid disorders. A CD34+ population of normal bone marrow cells preferentially expressed MLF1 with obviously decreasing levels of expression during maturation. Therefore, MLF1 normally functions in multi-potent progenitor cells and its dysregulation may take part in leukemogenesis from MDS.

  9. Hepatitis C virus resistance to broadly neutralizing antibodies measured using replication-competent virus and pseudoparticles.

    PubMed

    Wasilewski, Lisa N; Ray, Stuart C; Bailey, Justin R

    2016-11-01

    A better understanding of natural variation in neutralization resistance and fitness of diverse hepatitis C virus (HCV) envelope (E1E2) variants will be critical to guide rational development of an HCV vaccine. This work has been hindered by inadequate genetic diversity in viral panels and by a lack of standardization of HCV entry assays. Neutralization assays generally use lentiviral pseudoparticles expressing HCV envelope proteins (HCVpp) or chimeric full-length viruses that are replication competent in cell culture (HCVcc). There have been few systematic comparisons of specific infectivities of E1E2-matched HCVcc and HCVpp, and to our knowledge, neutralization of E1E2-matched HCVpp and HCVcc has never been compared using a diverse panel of human broadly neutralizing monoclonal antibodies (bNAbs) targeting distinct epitopes. Here, we describe an efficient method for introduction of naturally occurring E1E2 genes into a full-length HCV genome, producing replication-competent chimeric HCVcc. We generated diverse panels of E1E2-matched HCVcc and HCVpp and measured the entry-mediating fitness of E1E2 variants using the two systems. We also compared neutralization of E1E2-matched HCVcc and HCVpp by a diverse panel of human bNAbs targeting epitopes across E1E2. We found no correlation between specific infectivities of E1E2-matched HCVcc versus HCVpp, but found a very strong positive correlation between relative neutralization resistance of these same E1E2-matched HCVcc and HCVpp variants. These results suggest that quantitative comparisons of neutralization resistance of E1E2 variants can be made with confidence using either HCVcc or HCVpp, allowing the use of either or both systems to maximize diversity of neutralization panels.

  10. Intergenic mRNA molecules resulting from trans-splicing.

    PubMed

    Finta, Csaba; Zaphiropoulos, Peter G

    2002-02-22

    Accumulated recent evidence is indicating that alternative splicing represents a generalized process that increases the complexity of human gene expression. Here we show that mRNA production may not necessarily be limited to single genes, as human liver also has the potential to produce a variety of hybrid cytochrome P450 3A mRNA molecules. The four known cytochrome P450 3A genes in humans, CYP3A4, CYP3A5, CYP3A7, and CYP3A43, share a high degree of similarity, consist of 13 exons with conserved exon-intron boundaries, and form a cluster on chromosome 7. The chimeric CYP3A mRNA molecules described herein are characterized by CYP3A43 exon 1 joined at canonical splice sites to distinct sets of CYP3A4 or CYP3A5 exons. Because the CYP3A43 gene is in a head-to-head orientation with the CYP3A4 and CYP3A5 genes, bypassing transcriptional termination can not account for the formation of hybrid CYP3A mRNAs. Thus, the mechanism generating these molecules has to be an RNA processing event that joins exons of independent pre-mRNA molecules, i.e. trans-splicing. Using quantitative real-time polymerase chain reaction, the ratio of one CYP3A43/3A4 intergenic combination was estimated to be approximately 0.15% that of the CYP3A43 mRNAs. Moreover, trans-splicing has been found not to interfere with polyadenylation. Heterologous expression of the chimeric species composed of CYP3A43 exon 1 joined to exons 2-13 of CYP3A4 revealed catalytic activity toward testosterone.

  11. An HPV 16 L1-based chimeric human papilloma virus-like particles containing a string of epitopes produced in plants is able to elicit humoral and cytotoxic T-cell activity in mice

    PubMed Central

    De la Rosa, Georgina Paz; Monroy-García, Alberto; Mora-García, María de Lourdes; Peña, Cristina Gehibie Reynaga; Hernández-Montes, Jorge; Weiss-Steider, Benny; Lim, Miguel Angel Gómez

    2009-01-01

    Background Even though two prophylactic vaccines against HPV are currently licensed, infections by the virus continue to be a major health problem mainly in developing countries. The cost of the vaccines limits wide-scale application in poor countries. A promising strategy for producing affordable and efficient vaccines involves the expression of recombinant immunogens in plants. Several HPV genes have been expressed in plants, including L1, which can self-assemble into virus-like particles. A plant-based, dual prophylactic/therapeutic vaccine remains an attractive possibility. Results We sought to express in tomato plants chimeric HPV 16 VLPs containing L1 fused to a string of epitopes from HPV 16 E6 and E7 proteins. The L1 employed had been modified to eliminate a strong inhibitory region at the 5' end of the molecule to increase expression levels. Several tomato lines were obtained expressing either L1 alone or L1-E6/E7 from 0.05% to 0.1% of total soluble protein. Stable integration of the transgenes was verified by Southern blot. Northern and western blot revealed successful expression of the transgenes at the mRNA and protein level. The chimeric VLPs were able to assemble adequately in tomato cells. Intraperitoneal administration in mice was able to elicit both neutralizing antibodies against the viral particle and cytotoxic T-lymphocytes activity against the epitopes. Conclusion In this work, we report for the first time the expression in plants of a chimeric particle containing the HPV 16 L1 sequence and a string of T-cell epitopes from HPV 16 E6 and E7 fused to the C-terminus. The particles were able to induce a significant antibody and cytotoxic T-lymphocytes response. Experiments in vivo are in progress to determine whether the chimeric particles are able to induce regression of disease and resolution of viral infection in mice. Chimeric particles of the type described in this work may potentially be the basis for developing prophylactic/therapeutic vaccines. The fact that they are produced in plants, may lower production costs considerably. PMID:19126233

  12. Lassa-Vesicular Stomatitis Chimeric Virus Safely Destroys Brain Tumors

    PubMed Central

    Wollmann, Guido; Drokhlyansky, Eugene; Davis, John N.; Cepko, Connie

    2015-01-01

    ABSTRACT High-grade tumors in the brain are among the deadliest of cancers. Here, we took a promising oncolytic virus, vesicular stomatitis virus (VSV), and tested the hypothesis that the neurotoxicity associated with the virus could be eliminated without blocking its oncolytic potential in the brain by replacing the neurotropic VSV glycoprotein with the glycoprotein from one of five different viruses, including Ebola virus, Marburg virus, lymphocytic choriomeningitis virus (LCMV), rabies virus, and Lassa virus. Based on in vitro infections of normal and tumor cells, we selected two viruses to test in vivo. Wild-type VSV was lethal when injected directly into the brain. In contrast, a novel chimeric virus (VSV-LASV-GPC) containing genes from both the Lassa virus glycoprotein precursor (GPC) and VSV showed no adverse actions within or outside the brain and targeted and completely destroyed brain cancer, including high-grade glioblastoma and melanoma, even in metastatic cancer models. When mice had two brain tumors, intratumoral VSV-LASV-GPC injection in one tumor (glioma or melanoma) led to complete tumor destruction; importantly, the virus moved contralaterally within the brain to selectively infect the second noninjected tumor. A chimeric virus combining VSV genes with the gene coding for the Ebola virus glycoprotein was safe in the brain and also selectively targeted brain tumors but was substantially less effective in destroying brain tumors and prolonging survival of tumor-bearing mice. A tropism for multiple cancer types combined with an exquisite tumor specificity opens a new door to widespread application of VSV-LASV-GPC as a safe and efficacious oncolytic chimeric virus within the brain. IMPORTANCE Many viruses have been tested for their ability to target and kill cancer cells. Vesicular stomatitis virus (VSV) has shown substantial promise, but a key problem is that if it enters the brain, it can generate adverse neurologic consequences, including death. We tested a series of chimeric viruses containing genes coding for VSV, together with a gene coding for the glycoprotein from other viruses, including Ebola virus, Lassa virus, LCMV, rabies virus, and Marburg virus, which was substituted for the VSV glycoprotein gene. Ebola and Lassa chimeric viruses were safe in the brain and targeted brain tumors. Lassa-VSV was particularly effective, showed no adverse side effects even when injected directly into the brain, and targeted and destroyed two different types of deadly brain cancer, including glioblastoma and melanoma. PMID:25878115

  13. Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme.

    PubMed

    Robin, Aélig; Roberts, Gareth A; Kisch, Johannes; Sabbadin, Federico; Grogan, Gideon; Bruce, Neil; Turner, Nicholas J; Flitsch, Sabine L

    2009-05-14

    A chimeric oxygenase, in which the P450cam domain was fused to the reductase host domains of a P450RhF from Rhodococcus sp. strain NCIMB 9784 was optimised to allow for a biotransformation at 30 mM substrate in 80% overall yield, with the linker region between P450 and FMN domain proving to be important for the effective biotransformation of (+)-camphor to 5-exo-hydroxycamphor.

  14. Preclinical Evaluation of Novel Dendritic Cell-Based Prostate Cancer Vaccines

    DTIC Science & Technology

    2008-01-01

    relative to other activation modalities(1). Hence the chimeric CD40 was named inducible CD40 (iCD40). The high utility of iCD40-activated DCs (iCD40...recent published (1) studies have suggested a new method to promote DC function in vivo, manipulation of a chimeric inducible CD40. While we have...number of HLA alleles using peptide candidate approach. This precluded the development of immunoassays for direct measurements of PSMA-specific Th

  15. Bovine papillomavirus-like particles presenting conserved epitopes from membrane-proximal external region of HIV-1 gp41 induced mucosal and systemic antibodies

    PubMed Central

    Zhai, Yougang; Zhong, Zhenyu; Zariffard, Mohammadreza; Spear, Gregory T.; Qiao, Liang

    2013-01-01

    Two conserved epitopes, located in the membrane-proximal external region (MPER) of the human immunodeficiency virus type 1 (HIV-1) gp41, are recognized by two HIV-1 broadly neutralizing antibodies 2F5 and 4E10, and are promising targets for vaccine design in efforts to elicit anti-HIV-1 broadly neutralizing antibodies. Since most HIV-1 infections initiate at mucosal surfaces, induction of mucosal neutralizing antibodies is necessary and of utmost importance to counteract HIV-1 infection. Here, we utilized a mucosal vaccine vector, bovine papillomavirus (BPV) virus-like particles (VLPs), as a platform to present HIV-1 neutralizing epitopes by inserting the extended 2F5 or 4E10 epitope or the MPER domain into D-E loop of BPV L1 respectively. The chimeric VLPs presenting MPER domain resembled the HIV-1 natural epitopes better than the chimeric VLPs presenting single epitopes. Oral immunization of mice with the chimeric VLPs displaying the 2F5 epitope or MPER domain elicited epitope-specific serum IgGs and mucosal secretory IgAs. The induced antibodies specifically recognized the native conformation of MPER in the context of HIV-1 envelope protein. The antibodies induced by chimeric VLPs presenting MPER domain are able to partially neutralize HIV-1 viruses from clade B and clade C. PMID:24055348

  16. Development of a high-throughput microfluidic integrated microarray for the detection of chimeric bioweapons.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppod, Timothy; Satterfield, Brent; Hukari, Kyle W.

    2006-10-01

    The advancement of DNA cloning has significantly augmented the potential threat of a focused bioweapon assault, such as a terrorist attack. With current DNA cloning techniques, toxin genes from the most dangerous (but environmentally labile) bacterial or viral organism can now be selected and inserted into robust organism to produce an infinite number of deadly chimeric bioweapons. In order to neutralize such a threat, accurate detection of the expressed toxin genes, rather than classification on strain or genealogical decent of these organisms, is critical. The development of a high-throughput microarray approach will enable the detection of unknowns chimeric bioweapons. Themore » development of a high-throughput microarray approach will enable the detection of unknown bioweapons. We have developed a unique microfluidic approach to capture and concentrate these threat genes (mRNA's) upto a 30 fold concentration. These captured oligonucleotides can then be used to synthesize in situ oligonucleotide copies (cDNA probes) of the captured genes. An integrated microfluidic architecture will enable us to control flows of reagents, perform clean-up steps and finally elute nanoliter volumes of synthesized oligonucleotides probes. The integrated approach has enabled a process where chimeric or conventional bioweapons can rapidly be identified based on their toxic function, rather than being restricted to information that may not identify the critical nature of the threat.« less

  17. Stabilizing effect of propionic acid derivative of anthraquinone--polyamine conjugate incorporated into α-β chimeric oligonucleotides on the alternate-stranded triple helix.

    PubMed

    Moriguchi, Tomohisa; Azam, A T M Zafrul; Shinozuka, Kazuo

    2011-06-15

    Two types of anthraquinone conjugates were synthesized as non-nucleosidic oligonucleotide components. These include an anthraquinone derivative conjugated with 2,2-bis(hydroxymethyl)propionic acid and an anthraquinone--polyamine derivative conjugated with 2,2-bis(hydroxymethyl)propionic acid. The conjugates were successfully incorporated into the "linking-region" of the α-β chimeric oligonucleotides via phosphoramidite method as non-nucleosidic backbone units. The resultant novel α-β chimeric oligonucleotides possessed two diastereomers that were generated by the introduction of the anthraquinone conjugate with a stereogenic carbon atom. The isomers were successfully separated by a reversed-phase HPLC. UV-melting experiments revealed that both stereoisomers formed a substantially stable alternate-strand triple helix, irrespective of the stereochemistry of the incorporated non-nucleosidic backbone unit. However, the enhancing effect on thermal stability depended on the length of the alkyl linker connecting anthraquinone moiety and the propionic acid moiety. The sequence discrimination ability of the chimeric oligonucleotides toward mismatch target duplex was also examined. The T(m) values of the triplexes containing the mismatch target were substantially lower than the T(m) values of those containing the full-match target. The thermodynamic parameters (ΔH°, ΔS°, and ΔG°) required for the dissociation of the triplexes into the third strand and target duplex were also measured.

  18. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iri-Sofla, Farnoush Jafari; Rahbarizadeh, Fatemeh, E-mail: rahbarif@modares.ac.ir; Ahmadvand, Davoud

    2011-11-01

    The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3{zeta}/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of Fc{gamma}RII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for highmore » and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy.« less

  19. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by φC31 integrase.

    PubMed

    Iri-Sofla, Farnoush Jafari; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud; Rasaee, Mohammad J

    2011-11-01

    The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3ζ/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of FcγRII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for high and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. A chimeric protein of aluminum-activated malate transporter generated from wheat and Arabidopsis shows enhanced response to trivalent cations.

    PubMed

    Sasaki, Takayuki; Tsuchiya, Yoshiyuki; Ariyoshi, Michiyo; Ryan, Peter R; Yamamoto, Yoko

    2016-07-01

    TaALMT1 from wheat (Triticum aestivum) and AtALMT1 from Arabidopsis thaliana encode aluminum (Al)-activated malate transporters, which confer acid-soil tolerance by releasing malate from roots. Chimeric proteins from TaALMT1 and AtALMT1 (Ta::At, At::Ta) were previously analyzed in Xenopus laevis oocytes. Those studies showed that Al could activate malate efflux from the Ta::At chimera but not from At::Ta. Here, functions of TaALMT1, AtALMT1 and the chimeric protein Ta::At were compared in cultured tobacco BY-2 cells. We focused on the sensitivity and specificity of their activation by trivalent cations. The activation of malate efflux by Al was at least two-fold greater in the chimera than the native proteins. All proteins were also activated by lanthanides (erbium, ytterbium, gadolinium, and lanthanum), but the chimera again released more malate than TaALMT1 or AtALMT1. In Xenopus oocytes, Al, ytterbium, and erbium activated inward currents from the native TaALMT1 and the chimeric protein, but gadolinium only activated currents from the chimera. Lanthanum inhibited currents from both proteins. These results demonstrated that function of the chimera protein was altered compared to the native proteins and was more responsive to a range of trivalent cations when expressed in plant cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Identification and characterization of metabolites of ASP015K, a novel oral Janus kinase inhibitor, in rats, chimeric mice with humanized liver, and humans.

    PubMed

    Nakada, Naoyuki; Oda, Kazuo

    2015-01-01

    1. Here, we elucidated the structure of metabolites of novel oral Janus kinase inhibitor ASP015K in rats and humans and evaluated the predictability of human metabolites using chimeric mice with humanized liver (PXB mice). 2. Rat biological samples collected after oral dosing of (14)C-labelled ASP015K were examined using a liquid chromatography-radiometric detector and mass spectrometer (LC-RAD/MS). The molecular weight of metabolites in human and the liver chimeric mouse biological samples collected after oral dosing of non-labelled ASP015K was also investigated via LC-MS. Metabolites were also isolated from rat bile samples and analyzed using nuclear magnetic resonance. 3. Metabolic pathways of ASP015K in rats and humans were found to be glucuronide conjugation, methyl conjugation, sulfate conjugation, glutathione conjugation, hydroxylation of the adamantane ring and N-oxidation of the 1H-pyrrolo[2,3-b]pyridine ring. The main metabolite of ASP015K in rats was the glucuronide conjugate, while the main metabolite in humans was the sulfate conjugate. Given that human metabolites were produced by human hepatocytes in chimeric mice with humanized liver, this human model mouse was believed to be useful in predicting the human metabolic profile of various drug candidates.

  2. Chimeric microbial rhodopsins for optical activation of Gs-proteins

    PubMed Central

    Yoshida, Kazuho; Yamashita, Takahiro; Sasaki, Kengo; Inoue, Keiichi; Shichida, Yoshinori; Kandori, Hideki

    2017-01-01

    We previously showed that the chimeric proteins of microbial rhodopsins, such as light-driven proton pump bacteriorhodopsin (BR) and Gloeobacter rhodopsin (GR) that contain cytoplasmic loops of bovine rhodopsin, are able to activate Gt protein upon light absorption. These facts suggest similar protein structural changes in both the light-driven proton pump and animal rhodopsin. Here we report two trials to engineer chimeric rhodopsins, one for the inserted loop, and another for the microbial rhodopsin template. For the former, we successfully activated Gs protein by light through the incorporation of the cytoplasmic loop of β2-adrenergic receptor (β2AR). For the latter, we did not observe any G-protein activation for the light-driven sodium pump from Indibacter alkaliphilus (IndiR2) or a light-driven chloride pump halorhodopsin from Natronomonas pharaonis (NpHR), whereas the light-driven proton pump GR showed light-dependent G-protein activation. This fact suggests that a helix opening motion is common to G protein coupled receptor (GPCR) and GR, but not to IndiR2 and NpHR. Light-induced difference FTIR spectroscopy revealed similar structural changes between WT and the third loop chimera for each light-driven pump. A helical structural perturbation, which was largest for GR, was further enhanced in the chimera. We conclude that similar structural dynamics that occur on the cytoplasmic side of GPCR are needed to design chimeric microbial rhodopsins. PMID:29362703

  3. Simultaneous LFA-1 and CD40 ligand antagonism prevents airway remodeling in orthotopic airway transplantation: implications for the role of respiratory epithelium as a modulator of fibrosis.

    PubMed

    Murakawa, Tomohiro; Kerklo, Michelle M; Zamora, Martin R; Wei, Yi; Gill, Ronald G; Henson, Peter M; Grover, Frederick L; Nicolls, Mark R

    2005-04-01

    Airway remodeling is a prominent feature of certain immune-mediated lung diseases such as asthma and chronic lung transplant rejection. Under conditions of airway inflammation, the respiratory epithelium may serve an important role in this remodeling process. Given the proposed role of respiratory epithelium in nonspecific injury models, we investigated the respiratory epithelium in an immune-specific orthotopic airway transplant model. MHC-mismatched tracheal transplants in mice were used to generate alloimmune-mediated airway lesions. Attenuation of this immune injury and alteration of antidonor reactivity were achieved by the administration of combined anti-LFA-1/anti-CD40L mAbs. By contrast, without immunotherapy, transplanted airways remodeled with a flattening of respiratory epithelium and significant subepithelial fibrosis. Unopposed alloimmune injury for 10 days was associated with subsequent epithelial transformation and subepithelial fibrosis that could not be reversed with immunotherapy. The relining of donor airways with recipient-derived epithelium was delayed with immunotherapy resulting in partially chimeric airways by 28 days. Partial chimerism was sufficient to prevent luminal fibrosis. However, epithelial chimerism was also associated with airway remodeling. Therefore, there appears to be an intimate relationship between the morphology and level of chimerism of the respiratory epithelium and the degree of airway remodeling following alloimmune injury.

  4. Wild-type cells rescue genotypically Math1-null hair cells in the inner ears of chimeric mice.

    PubMed

    Du, Xiaoping; Jensen, Patricia; Goldowitz, Daniel; Hamre, Kristin M

    2007-05-15

    The transcription factor Math1 has been shown to be critical in the formation of hair cells (HCs) in the inner ear. However, the influence of environmental factors in HC specification suggests that cell extrinsic factors are also crucial to their development. To test whether extrinsic factors impact development of Math1-null (Math1(beta-Gal/beta-Gal)) HCs, we examined neonatal (postnatal ages P0-P4.5) Math1-null chimeric mice in which genotypically mutant and wild-type cells intermingle to form the inner ear. We provide the first direct evidence that Math1-null HCs are able to be generated and survive in the conducive chimeric environment. beta-Galactosidase expression was used to identify genetically mutant cells while cells were phenotypically defined as HCs by morphological characteristics notably the expression of HC-specific markers. Genotypically mutant HCs were found in all sensory epithelia of the inner ear at all ages examined. Comparable results were obtained irrespective of the wild-type component of the chimeric mice. Thus, genotypically mutant cells retain the competence to differentiate into HCs. The implication is that the lack of the Math1 gene in HC precursors can be overcome by environmental influences, such as cell-cell interactions with wild-type cells, to ultimately result in the formation of HCs.

  5. Efficacy and safety of chimeric antigen receptor T-cell (CAR-T) therapy in patients with haematological and solid malignancies: protocol for a systematic review and meta-analysis.

    PubMed

    Grigor, Emma J M; Fergusson, Dean A; Haggar, Fatima; Kekre, Natasha; Atkins, Harold; Shorr, Risa; Holt, Robert A; Hutton, Brian; Ramsay, Tim; Seftel, Matthew; Jonker, Derek; Daugaard, Mads; Thavorn, Kednapa; Presseau, Justin; Lalu, Manoj M

    2017-12-29

    Patients with relapsed or refractory malignancies have a poor prognosis. Immunotherapy with chimeric antigen receptor T (CAR-T) cells redirects a patient's immune cells against the tumour antigen. CAR-T cell therapy has demonstrated promise in treating patients with several haematological malignancies, including acute B-cell lymphoblastic leukaemia and B-cell lymphomas. CAR-T cell therapy for patients with other solid tumours is also being tested. Safety is an important consideration in CAR-T cell therapy given the potential for serious adverse events, including death. Previous reviews on CAR-T cell therapy have been limited in scope and methodology. Herein, we present a protocol for a systematic review to identify CAR-T cell interventional studies and examine the safety and efficacy of this therapy in patients with haematology malignancies and solid tumours. We will search MEDLINE, including In-Process and Epub Ahead of Print, EMBASE and the Cochrane Central Register of Controlled Trials from 1946 to 22 February 2017. Studies will be screened by title, abstract and full text independently and in duplicate. Studies that report administering CAR-T cells of any chimeric antigen receptor construct targeting antigens in patients with haematological malignancies and solid tumours will be eligible for inclusion. Outcomes to be extracted will include complete response rate (primary outcome), overall response rate, overall survival, relapse and adverse events. A meta-analysis will be performed to synthesise the prevalence of outcomes reported as proportions with 95% CIs. The potential for bias within included studies will be assessed using a modified Institute of Health Economics tool. Heterogeneity of effect sizes will be determined using the Cochrane I 2 statistic. The review findings will be submitted for peer-reviewed journal publication and presented at relevant conferences and scientific meetings to promote knowledge transfer. CRD42017075331. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Chimeric Amino Acid Rearrangements as Immune Targets in Prostate Cancer

    DTIC Science & Technology

    2016-05-01

    plot showing gene fusions between exon boundaries Figure 3. Lum (PC141070) A B Figure 4. Recurrent fusion genes present in the TCGA intermediate and...class I restricted epitopes in 6 out of 50 patient tumors. One recurrent gene fusion encoded by the TMPRSS2:ERG type VI fusion was detected in 3...found to have high-affinity (IEDB score អ nM) MHC class I predicted epitopes. Recurrent fusions In a comparative analysis across the patient

  7. Transplantation Tolerance through Hematopoietic Chimerism: Progress and Challenges for Clinical Translation

    PubMed Central

    Mahr, Benedikt; Granofszky, Nicolas; Muckenhuber, Moritz; Wekerle, Thomas

    2017-01-01

    The perception that transplantation of hematopoietic stem cells can confer tolerance to any tissue or organ from the same donor is widely accepted but it has not yet become a treatment option in clinical routine. The reasons for this are multifaceted but can generally be classified into safety and efficacy concerns that also became evident from the results of the first clinical pilot trials. In comparison to standard immunosuppressive therapies, the infection risk associated with the cytotoxic pre-conditioning necessary to allow allogeneic bone marrow engraftment and the risk of developing graft-vs.-host disease (GVHD) constitute the most prohibitive hurdles. However, several approaches have recently been developed at the experimental level to reduce or even overcome the necessity for cytoreductive conditioning, such as costimulation blockade, pro-apoptotic drugs, or Treg therapy. But even in the absence of any hazardous pretreatment, the recipients are exposed to the risk of developing GVHD as long as non-tolerant donor T cells are present. Total lymphoid irradiation and enriching the stem cell graft with facilitating cells emerged as potential strategies to reduce this peril. On the other hand, the long-lasting survival of kidney allografts, seen with transient chimerism in some clinical series, questions the need for durable chimerism for robust tolerance. From a safety point of view, loss of chimerism would indeed be favorable as it eliminates the risk of GVHD, but also complicates the assessment of tolerance. Therefore, other biomarkers are warranted to monitor tolerance and to identify those patients who can safely be weaned off immunosuppression. In addition to these safety concerns, the limited efficacy of the current pilot trials with approximately 40–60% patients becoming tolerant remains an important issue that needs to be resolved. Overall, the road ahead to clinical routine may still be rocky but the first successful long-term patients and progress in pre-clinical research provide encouraging evidence that deliberately inducing tolerance through hematopoietic chimerism might eventually make it from dream to reality. PMID:29312303

  8. Replacement of the V3 domain in the surface subunit of the feline immunodeficiency virus envelope glycoprotein with the equivalent region of a T cell-tropic human immunodeficiency virus type 1 results in a chimeric surface protein that efficiently binds to CXCR4.

    PubMed

    González, Silvia A; Falcón, Juan I; Affranchino, José L

    2014-03-01

    Feline immunodeficiency virus (FIV) and the T cell-tropic strains of human immunodeficiency virus type 1 (HIV-1) share the use of the chemokine receptor CXCR4 for cell entry. To study this process further we developed a cell surface binding assay based on the expression of a soluble version of the FIV SU C-terminally tagged with the influenza virus hemagglutinin epitope (HA). The specificity of the assay was demonstrated by the following evidence: (1) the SU-HA protein bound to HeLa cells that express CXCR4 but not to MDCK cells that lack this chemokine receptor; and (2) binding of the SU-HA to HeLa cells was blocked by incubation with the CXCR4 antagonist AMD3100 as well as with the anti-CXCR4 monoclonal antibody (MAb) 12G5. Deletion of the V3 region from the FIV SU glycoprotein abolished its ability to bind CXCR4-expressing cells. Remarkably, substitution of the V3 domain of the FIV SU by the equivalent region of the HIV-1 NL4-3 isolate resulted in efficient cell surface binding of the chimeric SU protein to CXCR4. Moreover, transfection of MDCK cells with a plasmid encoding human CXCR4 allowed the association of the chimeric SU-HA glycoprotein to the transfected cells. Interestingly, while cell binding of the chimeric FIV-HIV SU was inhibited by an anti-HIV-1 V3 MAb, its association with CXCR4 was found to be resistant to AMD3100. Of note, the chimeric FIV-HIV Env glycoprotein was capable of promoting CXCR4-dependent cell-to-cell fusion.

  9. Characterization of a novel theme C glycoside hydrolase family 9 cellulase and its CBM-chimeric enzymes.

    PubMed

    Duan, Cheng-Jie; Huang, Ming-Yue; Pang, Hao; Zhao, Jing; Wu, Chao-Xing; Feng, Jia-Xun

    2017-07-01

    In bacterial cellulase systems, glycoside hydrolase family 9 (GH9) cellulases are generally regarded as the major cellulose-degrading factors besides GH48 exoglucanase. In this study, umcel9A, which was cloned from uncultured microorganisms from compost, with the encoded protein being theme C GH9 cellulase, was heterologously expressed in Escherichia coli, and the biochemical properties of the purified enzyme were characterized. Hydrolysis of carboxylmethylcellulose (CMC) by Umcel9A led to the decreased viscosity of CMC solution and production of reducing sugars. Interestingly, cellobiose was the major product when cellulosic materials were hydrolyzed by Umcel9A. Six representative carbohydrate-binding modules (CBMs) from different CBM families (CBM1, CBM2, CBM3, CBM4, CBM10, and CBM72) were fused with Umcel9A at the natural terminal position, resulting in significant enhancement of the binding capacity of the chimeric enzymes toward four different insoluble celluloses as compared with that of Umcel9A. Catalytic activity of the chimeric enzymes against insoluble celluloses, including phosphoric acid-swollen cellulose (PASC), alkali-pretreated sugarcane bagasse (ASB), filter paper powder (FPP), and Avicel, was higher than that of Umcel9A, except for Umcel9A-CBM3. In these chimeric enzymes, CBM4-Umcel9A exhibited the highest activity toward the four tested insoluble celluloses and displayed 4.2-, 3.0-, 2.4-, and 6.6-fold enhanced activity toward PASC, ASB, FPP, and Avicel, respectively, when compared with that of Umcel9A. CBM4-Umcel9A also showed highest V max and catalytic efficiency (k cat /K M ) against PASC. Construction of chimeric enzymes may have potential applications in biocatalytic processes and provides insight into the evolution of the molecular architecture of catalytic module and CBM in GH9 cellulases.

  10. Application of bluetongue Disabled Infectious Single Animal (DISA) vaccine for different serotypes by VP2 exchange or incorporation of chimeric VP2.

    PubMed

    Feenstra, Femke; Pap, Janny S; van Rijn, Piet A

    2015-02-04

    Bluetongue is a disease of ruminants caused by the bluetongue virus (BTV). Bluetongue outbreaks can be controlled by vaccination, however, currently available vaccines have several drawbacks. Further, there are at least 26 BTV serotypes, with low cross protection. A next-generation vaccine based on live-attenuated BTV without expression of non-structural proteins NS3/NS3a, named Disabled Infectious Single Animal (DISA) vaccine, was recently developed for serotype 8 by exchange of the serotype determining outer capsid protein VP2. DISA vaccines are replicating vaccines but do not cause detectable viremia, and induce serotype specific protection. Here, we exchanged VP2 of laboratory strain BTV1 for VP2 of European serotypes 2, 4, 8 and 9 using reverse genetics, without observing large effects on virus growth. Exchange of VP2 from serotype 16 and 25 was however not possible. Therefore, chimeric VP2 proteins of BTV1 containing possible immunogenic regions of these serotypes were studied. BTV1, expressing 1/16 chimeric VP2 proteins was functional in virus replication in vitro and contained neutralizing epitopes of both serotype 1 and 16. For serotype 25 this approach failed. We combined VP2 exchange with the NS3/NS3a negative phenotype in BTV1 as previously described for serotype 8 DISA vaccine. DISA vaccine with 1/16 chimeric VP2 containing amino acid region 249-398 of serotype 16 raised antibodies in sheep neutralizing both BTV1 and BTV16. This suggests that DISA vaccine could be protective for both parental serotypes present in chimeric VP2. We here demonstrate the application of the BT DISA vaccine platform for several serotypes and further extend the application for serotypes that are unsuccessful in single VP2 exchange. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Chimeric peptides as modulators of CK2-dependent signaling: Mechanism of action and off-target effects.

    PubMed

    Zanin, Sofia; Sandre, Michele; Cozza, Giorgio; Ottaviani, Daniele; Marin, Oriano; Pinna, Lorenzo A; Ruzzene, Maria

    2015-10-01

    Protein kinase CK2 is a tetrameric enzyme composed of two catalytic (α/α') and two regulatory (β) subunits. It has a global prosurvival function, especially in cancer, and represents an attractive therapeutic target. Most CK2 inhibitors available so far are ATP-competitive compounds; however, the possibility to block only the phosphorylation of few substrates has been recently explored, and a compound composed of a Tat cell-penetrating peptide and an active cyclic peptide, selected for its ability to bind to the CK2 substrate E7 protein of human papilloma virus, has been developed [Perea et al., Cancer Res. 2004; 64:7127-7129]. By using a similar chimeric peptide (CK2 modulatory chimeric peptide, CK2-MCP), we performed a study to dissect its molecular mechanism of action and the signaling pathways that it affects in cells. We found that it directly interacts with CK2 itself, counteracting the regulatory and stabilizing functions of the β subunit. Cell treatment with CK2-MCP induces a rapid decrease of the amount of CK2 subunits, as well as of other signaling proteins. Concomitant cell death is observed, more pronounced in tumor cells and not accompanied by apoptotic events. CK2 relocalizes to lysosomes, whose proteases are activated, while the proteasome machinery is inhibited. Several sequence variants of the chimeric peptide have been also synthesized, and their effects compared to those of the parental peptide. Intriguingly, the Tat moiety is essential not only for cell penetration but also for the in vitro efficacy of the peptide. We conclude that this class of chimeric peptides, in addition to altering some properties of CK2 holoenzyme, affects several other cellular targets, causing profound perturbations of cell biology. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Assurance of neuroattenuation of a live vaccine against West Nile virus: a comprehensive study of neuropathogenesis after infection with chimeric WN/DEN4Δ30 vaccine in comparison to two parental viruses and a surrogate flavivirus reference vaccine.

    PubMed

    Maximova, Olga A; Speicher, James M; Skinner, Jeff R; Murphy, Brian R; St Claire, Marisa C; Ragland, Danny R; Herbert, Richard L; Pare, Dan R; Moore, Rashida M; Pletnev, Alexander G

    2014-05-30

    The upsurge of West Nile virus (WNV) human infections in 2012 suggests that the US can expect periodic WNV outbreaks in the future. Availability of safe and effective vaccines against WNV in endemic areas, particularly for aging populations that are at high risk of West Nile neuroinvasive disease (WNND), could be beneficial. WN/DEN4Δ30 is a live, attenuated chimeric vaccine against WNV produced by replacement of the genes encoding the pre-membrane and envelope protein genes of the vaccine virus against dengue virus type 4 (DEN4Δ30) with corresponding sequences derived from a wild type WNV. Following intrathalamic inoculation of nonhuman primates (NHPs), a comprehensive neuropathogenesis study was performed and neurovirulence of WN/DEN4Δ30 vaccine candidate was compared to that of two parental viruses (i.e., WNV and DEN4Δ30), as well as to that of an attenuated flavivirus surrogate reference (i.e., yellow fever YF 17D). Clinical and virological data, as well as results of a semi-quantitative histopathological analysis, demonstrated that WN/DEN4Δ30 vaccine is highly attenuated for the central nervous system (CNS) of NHPs in comparison to a wild type WNV. Importantly, based on the virus replicative ability in the CNS of NHPs and the degree of induced histopathological changes, the level of neuroattenuation of WN/DEN4Δ30 vaccine was similar to that of YF 17D, and therefore within an acceptable range. In addition, we show that the DEN4Δ30 vaccine tested in this study also has a low neurovirulence profile. In summary, our results demonstrate a high level of neuroattenuation of two vaccine candidates, WN/DEN4Δ30 and DEN4Δ30. We also show here a remarkable sensitivity of our WNV-NY99 NHP model, as well as striking resemblance of the observed neuropathology to that seen in human WNND. These results support the use of this NHP model for translational studies of WNV neuropathogenesis and/or testing the effectiveness of vaccines and therapeutic approaches. Published by Elsevier Ltd.

  13. Assurance of neuroattenuation of a live vaccine against West Nile virus: A comprehensive study of neuropathogenesis after infection with chimeric WN/DEN4Δ30 vaccine in comparison to two parental viruses and a surrogate flavivirus reference vaccine

    PubMed Central

    Maximova, Olga A.; Speicher, James M.; Skinner, Jeff R.; Murphy, Brian R.; St Claire, Marisa C.; Ragland, Danny R.; Herbert, Richard L.; Pare, Dan R.; Moore, Rashida M.; Pletnev, Alexander G.

    2014-01-01

    The upsurge of West Nile virus (WNV) human infections in 2012 suggests that the US can expect periodic WNV outbreaks in the future. Availability of safe and effective vaccines against WNV in endemic areas, particularly for aging populations that are at high risk of West Nile neuroinvasive disease (WNND), could be beneficial. WN/DEN4Δ30 is a live, attenuated chimeric vaccine against WNV produced by replacement of the genes encoding the pre-membrane and envelope protein genes of the vaccine virus against dengue virus type 4 (DEN4Δ30) with corresponding sequences derived from a wild type WNV. Following intrathalamic inoculation of nonhuman primates (NHPs), a comprehensive neuropathogenesis study was performed and neurovirulence of WN/DEN4Δ30 vaccine candidate was compared to that of two parental viruses (i.e., WNV and DEN4Δ30), as well as to that of an attenuated flavivirus surrogate reference (i.e., yellow fever YF 17D). Clinical and virological data, as well as results of a semi-quantitative histopathological analysis, demonstrated that WN/DEN4Δ30 vaccine is highly attenuated for the central nervous system (CNS) of NHPs in comparison to a wild type WNV. Importantly, based on the virus replicative ability in the CNS of NHPs and the degree of induced histopathological changes, the level of neuroattenuation of WN/DEN4Δ30 vaccine was similar to that of YF 17D, and therefore within an acceptable range. In addition, we show that the DEN4Δ30 vaccine tested in this study also has a low neurovirulence profile. In summary, our results demonstrate a high level of neuroattenuation of two vaccine candidates, WN/DEN4Δ30 and DEN4Δ30. We also show here a remarkable sensitivity of our WNV-NY99 NHP model, as well as striking resemblance of the observed neuropathology to that seen in human WNND. These results support the use of this NHP model for translational studies of WNV neuropathogenesis and/or testing the effectiveness of vaccines and therapeutic approaches. PMID:24736001

  14. Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants.

    PubMed

    Walters, D A; Vetsch, C S; Potts, D E; Lundquist, R C

    1992-01-01

    Embryogenic maize (Zea mays L.) callus cultures were transformed by microprojectile bombardment with a chimeric hygromycin phosphotransferase (HPT) gene and three transformed lines were obtained by selecting for hygromycin resistance. All lines contained one or a few copies of the intact HPT coding sequence. Fertile, transgenic plants were regenerated and the transmission of the chimeric gene was demonstrated through two complete generations. One line inherited the gene in the manner expected for a single, dominant locus, whereas two did not.

  15. Generating and Expanding Autologous Chimeric Antigen Receptor T Cells from Patients with Acute Myeloid Leukemia.

    PubMed

    Kenderian, Saad S; June, Carl H; Gill, Saar

    2017-01-01

    Adoptive transfer of genetically engineered T cells can lead to profound and durable responses in patients with hematologic malignancies, generating enormous enthusiasm among scientists, clinicians, patients, and biotechnology companies. The success of adoptive cellular immunotherapy depends upon the ability to manufacture good quality T cells. We discuss here the methodologies and reagents that are used to generate T cells for the preclinical study of chimeric antigen receptor T cell therapy for acute myeloid leukemia (AML).

  16. Chimeric antigen receptor T-cell immunotherapy for glioblastoma: practical insights for neurosurgeons.

    PubMed

    Choi, Bryan D; Curry, William T; Carter, Bob S; Maus, Marcela V

    2018-06-01

    The prognosis for glioblastoma (GBM) remains exceedingly poor despite state-of-the-art multimodal therapy. Immunotherapy, particularly with cytotoxic T cells, represents a promising alternative. Perhaps the most prominent T-cell technology is the chimeric antigen receptor (CAR), which in 2017 received accelerated approval from the Food and Drug Administration for the treatment of hematological malignancies. Several CARs for GBM have been recently tested in clinical trials with exciting results. The authors review these clinical data and discuss areas of ongoing research.

  17. Engineering Chimeric Antigen Receptors

    PubMed Central

    Kulemzin, S. V.; Kuznetsova, V. V.; Mamonkin, M.; Taranin, A. V.; Gorchakov, A. A.

    2017-01-01

    Chimeric antigen receptors (CARs) are recombinant protein molecules that redirect cytotoxic lymphocytes toward malignant and other target cells. The high feasibility of manufacturing CAR-modified lymphocytes for the therapy of cancer has spurred the development and optimization of new CAR T cells directed against a broad range of target antigens. In this review, we describe the main structural and functional elements constituting a CAR, discuss the roles of these elements in modulating the anti-tumor activity of CAR T cells, and highlight alternative approaches to CAR engineering. PMID:28461969

  18. Resistance Phenotypes Mediated by Aminoacyl-Phosphatidylglycerol Synthases

    PubMed Central

    Arendt, Wiebke; Hebecker, Stefanie; Jäger, Sonja; Nimtz, Manfred

    2012-01-01

    The specific aminoacylation of the phospholipid phosphatidylglycerol (PG) with alanine or with lysine catalyzed by aminoacyl-phosphatidylglycerol synthases (aaPGS) was shown to render various organisms less susceptible to antibacterial agents. This study makes use of Pseudomonas aeruginosa chimeric mutant strains producing lysyl-phosphatidylglycerol (L-PG) instead of the naturally occurring alanyl-phosphatidylglycerol (A-PG) to study the resulting impact on bacterial resistance. Consequences of such artificial phospholipid composition were studied in the presence of an overall of seven antimicrobials (β-lactams, a lipopeptide antibiotic, cationic antimicrobial peptides [CAMPs]) to quantitatively assess the effect of A-PG substitution (with L-PG, L-PG and A-PG, increased A-PG levels). For the employed Gram-negative P. aeruginosa model system, an exclusive charge repulsion mechanism does not explain the attenuated antimicrobial susceptibility due to PG modification. Additionally, the specificity of nine orthologous aaPGS enzymes was experimentally determined. The newly characterized protein sequences allowed for the establishment of a significant group of A-PG synthase sequences which were bioinformatically compared to the related group of L-PG synthesizing enzymes. The analysis revealed a diverse origin for the evolution of A-PG and L-PG synthases, as the specificity of an individual enzyme is not reflected in terms of a characteristic sequence motif. This finding is relevant for future development of potential aaPGS inhibitors. PMID:22267511

  19. Superior In vivo Transduction of Human Hepatocytes Using Engineered AAV3 Capsid.

    PubMed

    Vercauteren, Koen; Hoffman, Brad E; Zolotukhin, Irene; Keeler, Geoffrey D; Xiao, Jing W; Basner-Tschakarjan, Etiena; High, Katherine A; Ertl, Hildegund Cj; Rice, Charles M; Srivastava, Arun; de Jong, Ype P; Herzog, Roland W

    2016-06-01

    Adeno-associated viral (AAV) vectors are currently being tested in multiple clinical trials for liver-directed gene transfer to treat the bleeding disorders hemophilia A and B and metabolic disorders. The optimal viral capsid for transduction of human hepatocytes has been under active investigation, but results across various models are inconsistent. We tested in vivo transduction in "humanized" mice. Methods to quantitate percent AAV transduced human and murine hepatocytes in chimeric livers were optimized using flow cytometry and confocal microscopy with image analysis. Distinct transduction efficiencies were noted following peripheral vein administration of a self-complementary vector expressing a gfp reporter gene. An engineered AAV3 capsid with two amino acid changes, S663V+T492V (AAV3-ST), showed best efficiency for human hepatocytes (~3-times, ~8-times, and ~80-times higher than for AAV9, AAV8, and AAV5, respectively). AAV5, 8, and 9 were more efficient in transducing murine than human hepatocytes. AAV8 yielded the highest transduction rate of murine hepatocytes, which was 19-times higher than that for human hepatocytes. In summary, our data show substantial differences among AAV serotypes in transduction of human and mouse hepatocytes, are the first to report on AAV5 in humanized mice, and support the use of AAV3-based vectors for human liver gene transfer.

  20. An infectious bat chimeric influenza virus harboring the entry machinery of a influenza A virus

    PubMed Central

    Juozapaitis, Mindaugas; Moreira, Étori Aguiar; Mena, Ignacio; Giese, Sebastian; Riegger, David; Pohlmann, Anne; Höper, Dirk; Zimmer, Gert; Beer, Martin; García-Sastre, Adolfo; Schwemmle, Martin

    2017-01-01

    In 2012 the complete genomic sequence of a new and potentially harmful influenza A-like virus from bats (H17N10) was identified. However, infectious influenza virus was neither isolated from infected bats nor reconstituted, impeding further characterization of this virus. Here we show the generation of an infectious chimeric virus containing six out of the eight bat virus genes, with the remaining two genes encoding the HA and NA proteins of a prototypic influenza A virus. This engineered virus replicates well in a broad range of mammalian cell cultures, human primary airway epithelial cells and mice, but poorly in avian cells and chicken embryos without further adaptation. Importantly, the bat chimeric virus is unable to reassort with other influenza A viruses. Although our data do not exclude the possibility of zoonotic transmission of bat influenza viruses into the human population, they indicate that multiple barriers exist that makes this an unlikely event. PMID:25055345

  1. Development and characterization of novel chimeric monoclonal antibodies for broad spectrum neutralization of rabies virus.

    PubMed

    Kim, Pan Kyeom; Keum, Sun Ju; Osinubi, Modupe O V; Franka, Richard; Shin, Ji Young; Park, Sang Tae; Kim, Man Su; Park, Mi Jung; Lee, Soo Young; Carson, William; Greenberg, Lauren; Yu, Pengcheng; Tao, Xiaoyan; Lihua, Wang; Tang, Qing; Liang, Guodong; Shampur, Madhusdana; Rupprecht, Charles E; Chang, Shin Jae

    2017-01-01

    Current post-exposure prophylaxis for rabies virus infection has several limitations in terms of supply, cost, safety, and efficacy. Attempts to replace human or equine rabies immune globulins (HRIG or ERIG) have been made by several companies and institutes. We developed potent monoclonal antibodies to neutralize a broad spectrum of rabies viruses by screening hybridomas received from the U.S. Centers for Disease Control and Prevention (CDC). Two kinds of chimeric human antibodies (chimeric #7 and #17) were constructed by cloning the variable regions from selected hybridomas and the constant region of a human antibody. Two antibodies were bound to antigenic site III and I/IV, respectively, and were able to neutralize 51 field isolates of rabies virus that were isolated at different times and places such as Asia, Africa, North America, South America, and Australia. These two antibodies neutralize rabies viruses with high efficacy in an in vivo test using Syrian hamster and mouse models and show low risk for adverse immunogenicity.

  2. A leftward bias however you look at it: Revisiting the emotional chimeric face task as a tool for measuring emotion lateralization.

    PubMed

    R Innes, Bobby; Burt, D Michael; Birch, Yan K; Hausmann, Markus

    2015-12-28

    Left hemiface biases observed within the Emotional Chimeric Face Task (ECFT) support emotional face perception models whereby all expressions are preferentially processed by the right hemisphere. However, previous research using this task has not considered that the visible midline between hemifaces might engage atypical facial emotion processing strategies in upright or inverted conditions, nor controlled for left visual field (thus right hemispheric) visuospatial attention biases. This study used novel emotional chimeric faces (blended at the midline) to examine laterality biases for all basic emotions. Left hemiface biases were demonstrated across all emotional expressions and were reduced, but not reversed, for inverted faces. The ECFT bias in upright faces was significantly increased in participants with a large attention bias. These results support the theory that left hemiface biases reflect a genuine bias in emotional face processing, and this bias can interact with attention processes similarly localized in the right hemisphere.

  3. Tolerance to MHC class II disparate allografts through genetic modification of bone marrow

    PubMed Central

    Jindra, Peter T.; Tripathi, Sudipta; Tian, Chaorui; Iacomini, John; Bagley, Jessamyn

    2012-01-01

    Induction of molecular chimerism through genetic modification of bone marrow is a powerful tool for the induction of tolerance. Here we demonstrate for the first time that expression of an allogeneic MHC class II gene in autologous bone marrow cells, resulting in a state of molecular chimerism, induces tolerance to MHC class II mismatched skin grafts, a stringent test of transplant tolerance. Reconstitution of recipients with syngeneic bone marrow transduced with retrovirus encoding H-2I-Ab (I-Ab) resulted the long-term expression of the retroviral gene product on the surface of MHC class II-expressing bone marrow derived cell types. Mechanistically, tolerance was maintained by the presence of regulatory T cells, which prevented proliferation and cytokine production by alloreactive host T cells. Thus, the introduction of MHC class II genes into bone marrow derived cells through genetic engineering results in tolerance. These results have the potential to extend the clinical applicability of molecular chimerism for tolerance induction. PMID:22833118

  4. Chimeric parasites as tools to study Plasmodium immunology and assess malaria vaccines.

    PubMed

    Cockburn, Ian

    2013-01-01

    The study of pathogen immunity relies upon being able to track antigen specific immune responses and assess their protective capacity. To study immunity to Plasmodium antigens, chimeric rodent or human malaria parasites that express proteins from other Plasmodium species or unrelated species have been developed. Different types of chimeric parasites have been used to address a range of specific questions. Parasites expressing model T cell epitopes have been used to monitor cellular immune responses to the preerythrocytic and blood stages of malaria. Other parasites have been used to assess the functional significance of immune responses targeting particular proteins. Finally, a number of rodent malaria parasites that express vaccine-candidate antigens from P. falciparum and P. vivax have been used in functional assays of vaccine-induced antibody responses. Here, I review the experimental contributions that have been made using these parasites, and discuss the potential of these approaches to continue advancing our understanding of malaria immunology and vaccine research.

  5. The dopamine-somatostatin chimeric compound BIM-23A760 exerts antiproliferative and cytotoxic effects in human non-functioning pituitary tumors by activating ERK1/2 and p38 pathways.

    PubMed

    Peverelli, Erika; Olgiati, Luca; Locatelli, Marco; Magni, Paolo; Fustini, Marco Faustini; Frank, Giorgio; Mantovani, Giovanna; Beck-Peccoz, Paolo; Spada, Anna; Lania, Andrea

    2010-02-28

    The study investigated the effects of the dopamine-somatostatin chimeric compound BIM-23A760 on cell proliferation and apoptosis in cultured cells from human non-functioning pituitary tumors (NFPTs). Both BIM-23A760 and the dopaminergic agonist BIM-53097 induced a significant inhibition of cell proliferation associated with increased p27 expression, together with a significant increase in caspase-3 activity. Conversely, null or marginal effects were elicited by somatostatin analogs. Moreover, BIM-23A760 and BIM-53097 induced ERK1/2 and p38 phosphorylation and the blockade of these pathways prevented both the antiproliferative and the pro-apoptotic effects of these drugs. In conclusions the chimeric compound BIM-23A760 is able to exert cytostatic and cytotoxic effects in NFPTs, these phenomena being mainly mediated by DR2D and involving ERK1/2 and p38 pathways activation. 2009 Elsevier Ireland Ltd. All rights reserved.

  6. Chimeric antigen receptor engineered stem cells: a novel HIV therapy.

    PubMed

    Zhen, Anjie; Carrillo, Mayra A; Kitchen, Scott G

    2017-03-01

    Despite the success of combination antiretroviral therapy (cART) for suppressing HIV and improving patients' quality of life, HIV persists in cART-treated patients and remains an incurable disease. Financial burdens and health consequences of lifelong cART treatment call for novel HIV therapies that result in a permanent cure. Cellular immunity is central in controlling HIV replication. However, HIV adopts numerous strategies to evade immune surveillance. Engineered immunity via genetic manipulation could offer a functional cure by generating cells that have enhanced antiviral activity and are resistant to HIV infection. Recently, encouraging reports from several human clinical trials using an anti-CD19 chimeric antigen receptor (CAR) modified T-cell therapy for treating B-cell malignancies have provided valuable insights and generated remarkable enthusiasm in engineered T-cell therapy. In this review, we discuss the development of HIV-specific chimeric antigen receptors and the use of stem cell based therapies to generate lifelong anti-HIV immunity.

  7. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency.

    PubMed

    Yang, Yang; Liu, Bei; Xu, Jun; Wang, Jinlin; Wu, Jun; Shi, Cheng; Xu, Yaxing; Dong, Jiebin; Wang, Chengyan; Lai, Weifeng; Zhu, Jialiang; Xiong, Liang; Zhu, Dicong; Li, Xiang; Yang, Weifeng; Yamauchi, Takayoshi; Sugawara, Atsushi; Li, Zhongwei; Sun, Fangyuan; Li, Xiangyun; Li, Chen; He, Aibin; Du, Yaqin; Wang, Ting; Zhao, Chaoran; Li, Haibo; Chi, Xiaochun; Zhang, Hongquan; Liu, Yifang; Li, Cheng; Duo, Shuguang; Yin, Ming; Shen, Huan; Belmonte, Juan Carlos Izpisua; Deng, Hongkui

    2017-04-06

    Of all known cultured stem cell types, pluripotent stem cells (PSCs) sit atop the landscape of developmental potency and are characterized by their ability to generate all cell types of an adult organism. However, PSCs show limited contribution to the extraembryonic placental tissues in vivo. Here, we show that a chemical cocktail enables the derivation of stem cells with unique functional and molecular features from mice and humans, designated as extended pluripotent stem (EPS) cells, which are capable of chimerizing both embryonic and extraembryonic tissues. Notably, a single mouse EPS cell shows widespread chimeric contribution to both embryonic and extraembryonic lineages in vivo and permits generating single-EPS-cell-derived mice by tetraploid complementation. Furthermore, human EPS cells exhibit interspecies chimeric competency in mouse conceptuses. Our findings constitute a first step toward capturing pluripotent stem cells with extraembryonic developmental potentials in culture and open new avenues for basic and translational research. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Chimeric antigen receptor engineered stem cells: a novel HIV therapy

    PubMed Central

    Zhen, Anjie; Carrillo, Mayra A; Kitchen, Scott G

    2017-01-01

    Despite the success of combination antiretroviral therapy (cART) for suppressing HIV and improving patients’ quality of life, HIV persists in cART-treated patients and remains an incurable disease. Financial burdens and health consequences of lifelong cART treatment call for novel HIV therapies that result in a permanent cure. Cellular immunity is central in controlling HIV replication. However, HIV adopts numerous strategies to evade immune surveillance. Engineered immunity via genetic manipulation could offer a functional cure by generating cells that have enhanced antiviral activity and are resistant to HIV infection. Recently, encouraging reports from several human clinical trials using an anti-CD19 chimeric antigen receptor (CAR) modified T-cell therapy for treating B-cell malignancies have provided valuable insights and generated remarkable enthusiasm in engineered T-cell therapy. In this review, we discuss the development of HIV-specific chimeric antigen receptors and the use of stem cell based therapies to generate lifelong anti-HIV immunity. PMID:28357916

  9. A novel chimeric Newcastle disease virus vectored vaccine against highly pathogenic avian influenza virus.

    PubMed

    Kim, Shin-Hee; Paldurai, Anandan; Samal, Siba K

    2017-03-01

    Avian influenza (AI) is an economically-important disease of poultry worldwide. The use of vaccines to control AI has increased because of frequent outbreaks of the disease in endemic countries. Newcastle disease virus (NDV) vectored vaccine has shown to be effective in protecting chickens against a highly pathogenic avian influenza virus (HPAIV) infection. However, preexisting antibodies to NDV vector might affect protective efficacy of the vaccine in the field. As an alternative strategy, we evaluated vaccine efficacy of a chimeric NDV vectored vaccine in which the ectodomains of F and HN proteins were replaced by those of avian paramyxovirus serotype-2. The chimeric NDV vector stably expressed the HA protein in vivo, did not cross-react with NDV, was attenuated to be used as a safe vaccine, and provided a partial protection of 1-day-old immunized chickens against HPAIV subtype H5N1challenge, indicating its potential use for early protection of chickens. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Interspecies Chimerism with Mammalian Pluripotent Stem Cells.

    PubMed

    Wu, Jun; Platero-Luengo, Aida; Sakurai, Masahiro; Sugawara, Atsushi; Gil, Maria Antonia; Yamauchi, Takayoshi; Suzuki, Keiichiro; Bogliotti, Yanina Soledad; Cuello, Cristina; Morales Valencia, Mariana; Okumura, Daiji; Luo, Jingping; Vilariño, Marcela; Parrilla, Inmaculada; Soto, Delia Alba; Martinez, Cristina A; Hishida, Tomoaki; Sánchez-Bautista, Sonia; Martinez-Martinez, M Llanos; Wang, Huili; Nohalez, Alicia; Aizawa, Emi; Martinez-Redondo, Paloma; Ocampo, Alejandro; Reddy, Pradeep; Roca, Jordi; Maga, Elizabeth A; Esteban, Concepcion Rodriguez; Berggren, W Travis; Nuñez Delicado, Estrella; Lajara, Jeronimo; Guillen, Isabel; Guillen, Pedro; Campistol, Josep M; Martinez, Emilio A; Ross, Pablo Juan; Izpisua Belmonte, Juan Carlos

    2017-01-26

    Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans. To date, however, whether human PSCs (hPSCs) can contribute to chimera formation in non-rodent species remains unknown. We systematically evaluate the chimeric competency of several types of hPSCs using a more diversified clade of mammals, the ungulates. We find that naïve hPSCs robustly engraft in both pig and cattle pre-implantation blastocysts but show limited contribution to post-implantation pig embryos. Instead, an intermediate hPSC type exhibits higher degree of chimerism and is able to generate differentiated progenies in post-implantation pig embryos. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. An infectious bat-derived chimeric influenza virus harbouring the entry machinery of an influenza A virus.

    PubMed

    Juozapaitis, Mindaugas; Aguiar Moreira, Étori; Mena, Ignacio; Giese, Sebastian; Riegger, David; Pohlmann, Anne; Höper, Dirk; Zimmer, Gert; Beer, Martin; García-Sastre, Adolfo; Schwemmle, Martin

    2014-07-23

    In 2012, the complete genomic sequence of a new and potentially harmful influenza A-like virus from bats (H17N10) was identified. However, infectious influenza virus was neither isolated from infected bats nor reconstituted, impeding further characterization of this virus. Here we show the generation of an infectious chimeric virus containing six out of the eight bat virus genes, with the remaining two genes encoding the haemagglutinin and neuraminidase proteins of a prototypic influenza A virus. This engineered virus replicates well in a broad range of mammalian cell cultures, human primary airway epithelial cells and mice, but poorly in avian cells and chicken embryos without further adaptation. Importantly, the bat chimeric virus is unable to reassort with other influenza A viruses. Although our data do not exclude the possibility of zoonotic transmission of bat influenza viruses into the human population, they indicate that multiple barriers exist that makes this an unlikely event.

  12. Fusion peptides from oncogenic chimeric proteins as putative specific biomarkers of cancer.

    PubMed

    Conlon, Kevin P; Basrur, Venkatesha; Rolland, Delphine; Wolfe, Thomas; Nesvizhskii, Alexey I; MacCoss, Michael J; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2013-10-01

    Chromosomal translocations encoding chimeric fusion proteins constitute one of the most common mechanisms underlying oncogenic transformation in human cancer. Fusion peptides resulting from such oncogenic chimeric fusions, though unique to specific cancer subtypes, are unexplored as cancer biomarkers. Here we show, using an approach termed fusion peptide multiple reaction monitoring mass spectrometry, the direct identification of different cancer-specific fusion peptides arising from protein chimeras that are generated from the juxtaposition of heterologous genes fused by recurrent chromosomal translocations. Using fusion peptide multiple reaction monitoring mass spectrometry in a clinically relevant scenario, we demonstrate the specific, sensitive, and unambiguous detection of a specific diagnostic fusion peptide in clinical samples of anaplastic large cell lymphoma, but not in a diverse array of benign lymph nodes or other forms of primary malignant lymphomas and cancer-derived cell lines. Our studies highlight the utility of fusion peptides as cancer biomarkers and carry broad implications for the use of protein biomarkers in cancer detection and monitoring.

  13. The use of chimeric vimentin citrullinated peptides for the diagnosis of rheumatoid arthritis.

    PubMed

    Malakoutikhah, Morteza; Gómara, María J; Gómez-Puerta, José A; Sanmartí, Raimon; Haro, Isabel

    2011-11-10

    Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes inflammation and, in many cases, destruction of the joints. To prevent progressive and irreversible structural damage, early diagnosis of RA is of paramount importance. The present study addresses the search of new RA citrullinated antigens that could supplement or complement diagnostic/prognostic existing tests. With this aim, the epitope anticitrullinated vimentin antibody response was mapped using synthetic peptides. To improve the sensitivity/specificity balance, a vimentin peptide that was selected, and its cyclic analogue, were combined with fibrin- and filaggrin-related peptides to render chimeric peptides. Our findings highlight the putative application of these chimeric peptides for the design of RA diagnosis systems and imply that more than one serological test is required to classify RA patients based on the presence or absence of ACPAs. Each of the target molecules reported here (fibrin, vimentin, filaggrin) has a specific utility in the identification of a particular subset of RA patients.

  14. Production of unnaturally linked chimeric proteins using a combination of sortase-catalyzed transpeptidation and click chemistry.

    PubMed

    Witte, Martin D; Theile, Christopher S; Wu, Tongfei; Guimaraes, Carla P; Blom, Annet E M; Ploegh, Hidde L

    2013-09-01

    Chimeric proteins, including bispecific antibodies, are biological tools with therapeutic applications. Genetic fusion and ligation methods allow the creation of N-to-C and C-to-N fused recombinant proteins, but not unnaturally linked N-to-N and C-to-C fusion proteins. This protocol describes a simple procedure for the production of such chimeric proteins, starting from correctly folded proteins and readily available peptides. By equipping the N terminus or C terminus of the proteins of interest with a set of click handles using sortase A, followed by a strain-promoted click reaction, unnatural N-to-N and C-to-C linked (hetero) fusion proteins are established. Examples of proteins that have been conjugated via this method include interleukin-2, interferon-α, ubiquitin, antibodies and several single-domain antibodies. If the peptides, sortase A and the proteins of interest are in hand, the unnaturally N-to-N and C-to-C fused proteins can be obtained in 3-4 d.

  15. The chimeric VirA-tar receptor protein is locked into a highly responsive state.

    PubMed Central

    Turk, S C; van Lange, R P; Sonneveld, E; Hooykaas, P J

    1993-01-01

    The wild-type VirA protein is known to be responsive not only to phenolic compounds but also to sugars via the ChvE protein (G. A. Cangelosi, R. G. Ankenbauer, and E. W. Nester, Proc. Natl. Acad. Sci. USA 87:6708-6712, 1990, and N. Shimoda, A. Toyoda-Yamamoto, J. Nagamine, S. Usami, M. Katayama, Y. Sakagami, and Y. Machida, Proc. Natl. Acad. Sci. USA 87:6684-6688, 1990). It is shown here that the mutant VirA(Ser-44, Arg-45) protein and the chimeric VirA-Tar protein are no longer responsive to sugars and the ChvE protein. However, whereas the chimeric VirA-Tar protein was found to be locked in a highly responsive state, the VirA(Ser-44, Arg-45) mutant protein appeared to be locked in a low responsive state. This difference turned out to be important for tumorigenicity of the host strains in virulence assays on Kalanchoë daigremontiana. Images PMID:8366057

  16. Engineering Chimeric Receptors To Investigate the Size- and Rigidity-Dependent Interaction of PEGylated Nanoparticles with Cells.

    PubMed

    Huang, Wei-Chiao; Burnouf, Pierre-Alain; Su, Yu-Cheng; Chen, Bing-Mae; Chuang, Kuo-Hsiang; Lee, Chia-Wei; Wei, Pei-Kuen; Cheng, Tian-Lu; Roffler, Steve R

    2016-01-26

    Attachment of ligands to the surface of nanoparticles (NPs) is an attractive approach to target specific cells and increase intracellular delivery of nanocargos. To expedite investigation of targeted NPs, we engineered human cancer cells to express chimeric receptors that bind polyethylene glycol (PEG) and internalize stealth NPs in a fashion similar to ligand-targeted liposomes against epidermal growth factor receptor 1 or 2 (HER1 or HER2), which are validated targets for cancer therapy. Measurement of the rate of endocytosis and lysosomal accumulation of small (80-94 nm) or large (180-220 nm) flexible liposomes or more rigid lipid-coated mesoporous silica particles in human HT29 colon cancer and SKBR3 breast cancer cells that express chimeric receptors revealed that larger and more rigid NPs were internalized more slowly than smaller and more flexible NPs. An exception is when both the small and large liposomes underwent endocytosis via HER2. HER1 mediated faster and greater uptake of NPs into cells but retained NPs less well as compared to HER2. Lysosomal accumulation of NPs internalized via HER1 was unaffected by NP rigidity but was inversely related to NP size, whereas large rigid NPs internalized by HER2 displayed increased lysosomal accumulation. Our results provide insight into the effects of NP properties on receptor-mediated endocytosis and suggest that anti-PEG chimeric receptors may help accelerate investigation of targeted stealth NPs.

  17. Chimeric creatures in Greek mythology and reflections in science.

    PubMed

    Bazopoulou-Kyrkanidou, E

    2001-04-15

    "The Chimaera" in Homer's Iliad, "was of divine stock, not of men, in the forepart a lion, in the hinder a serpent, and in the midst a goat, ellipsis Bellerophon slew her, trusting in the signs of the gods." In Hesiod's Theogony it is emphasized that "Chimaera ellipsis had three heads, one of a grim-eyed lion, another of a goat, and another of a snakeellipsis". In addition to this interspecies animal chimera, human/animal chimeras are referred to in Greek mythology, preeminent among them the Centaurs and the Minotaur. The Centaurs, as horse/men, first appear in Geometric and early Archaic art, but in the literature not until early in the fifth century B.C. The bullheaded-man Minotaur, who is not certainly attested in the literary evidence until circa 500 B.C., first appears in art about 650 B.C. Attempts, in the fourth century B.C. and thereafter, to rationalize their mythical appearance were in vain; their chimeric nature retained its fascinating and archetypal form over the centuries. Early in the 1980s, experimental sheep/goat chimeras were produced removing the reproductive barrier between these two animal species. Late in the 1990s, legal, political, ethical, and moral fights loomed over a patent bid on human/animal chimeras. Chimeric technology is recently developed; however, the concept of chimerism has existed in literary and artistic form in ancient mythology. This is yet another example where art and literature precede scientific research and development. Copyright 2001 Wiley-Liss. Inc.

  18. Human-animal chimeras: ethical issues about farming chimeric animals bearing human organs.

    PubMed

    Bourret, Rodolphe; Martinez, Eric; Vialla, François; Giquel, Chloé; Thonnat-Marin, Aurélie; De Vos, John

    2016-06-29

    Recent advances in stem cells and gene engineering have paved the way for the generation of interspecies chimeras, such as animals bearing an organ from another species. The production of a rat pancreas by a mouse has demonstrated the feasibility of this approach. The next step will be the generation of larger chimeric animals, such as pigs bearing human organs. Because of the dramatic organ shortage for transplantation, the medical needs for such a transgressive practice are indisputable. However, there are serious technical barriers and complex ethical issues that must be discussed and solved before producing human organs in animals. The main ethical issues are the risks of consciousness and of human features in the chimeric animal due to a too high contribution of human cells to the brain, in the first case, or for instance to limbs, in the second. Another critical point concerns the production of human gametes by such chimeric animals. These worst-case scenarios are obviously unacceptable and must be strictly monitored by careful risk assessment, and, if necessary, technically prevented. The public must be associated with this ethical debate. Scientists and physicians have a critical role in explaining the medical needs, the advantages and limits of this potential medical procedure, and the ethical boundaries that must not be trespassed. If these prerequisites are met, acceptance of such a new, borderline medical procedure may prevail, as happened before for in-vitro fertilization or preimplantation genetic diagnosis.

  19. Tears from children with chronic hepatitis B virus (HBV) infection are infectious vehicles of HBV transmission: experimental transmission of HBV by tears, using mice with chimeric human livers.

    PubMed

    Komatsu, Haruki; Inui, Ayano; Sogo, Tsuyoshi; Tateno, Akihiko; Shimokawa, Reiko; Fujisawa, Tomoo

    2012-08-15

    Body fluids such as saliva, urine, sweat, and tears from hepatitis B virus (HBV) carriers are potential sources of HBV transmission. Thirty-nine children and 8 adults who were chronically infected with HBV were enrolled. Real-time polymerase chain reaction was used for the quantification of HBV DNA. HBV DNA was detected in 73.7% of urine samples (14 of 19), 86.8% of saliva samples (33 of 38), 100% of tear samples (11 of 11), and 100% of sweat samples (9 of 9). Mean HBV DNA levels (±SD) in urine, saliva, tears, and sweat were 4.3 ± 1.1 log copies/mL, 5.9 ± 1.2 log copies/mL, 6.2 ± 0.7 log copies/mL, and 5.2 ± 0.6 log copies/mL, respectively. A statistically significant correlation was observed between the HBV DNA level in serum specimens and HBV DNA levels in saliva and tear specimens (r = 0.88; P < .001). Tear specimens from a child were injected intravenously into 2 human hepatocyte-transplanted chimeric mice. One week after inoculation, both chimeric mice had serum positive for HBV DNA. The levels of HBV DNA in tear specimens from young children were high. Tears were confirmed to be infectious, using chimeric mice. Strict precautions should be taken against direct contact with body fluids from HBV carriers with high-level viremia.

  20. Co-expression of interleukin 12 enhances antitumor effects of a novel chimeric promoter-mediated suicide gene therapy in an immunocompetent mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yu, E-mail: xuyu1001@gmail.com; Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071; Liu, Zhengchun, E-mail: l135027@126.com

    Highlights: {yields} A novel chimeric promoter consisting of CArG element and hTERT promoter was developed. {yields} The promoter was characterized with radiation-inducibility and tumor-specificity. {yields} Suicide gene system driven by the promoter showed remarkable cytotoxicity in vitro. {yields} Co-expression of IL12 enhanced the promoter mediated suicide gene therapy in vivo. -- Abstract: The human telomerase reverse transcriptase (hTERT) promoter has been widely used in target gene therapy of cancer. However, low transcriptional activity limited its clinical application. Here, we designed a novel dual radiation-inducible and tumor-specific promoter system consisting of CArG elements and the hTERT promoter, resulting in increased expressionmore » of reporter genes after gamma-irradiation. Therapeutic and side effects of adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic (IAA) system downstream of the chimeric promoter were evaluated in mice bearing Lewis lung carcinoma, combining with or without adenovirus-mediated interleukin 12 (IL12) gene driven by the cytomegalovirus promoter. The combination treatment showed more effective suppression of tumor growth than those with single agent alone, being associated with pronounced intratumoral T-lymphocyte infiltration and minor side effects. Our results suggest that the combination treatment with HRP/IAA system driven by the novel chimeric promoter and the co-expression of IL12 might be an effective and safe target gene therapy strategy of cancer.« less

Top