Sample records for quantitative clinical radiobiology

  1. OFFICE RADIOBIOLOGY AND THE TEST OF DIVIDED-DOSE IRRADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scanlon, P.W.

    1963-08-01

    A simple and quantitatively accurate radiobiologic test system for office use by the clinical radiotherapist is described. Radiation inhibition of Lemna minor, or duckweed grown in an aquarium, forms the basis of the test system. Results are reported from radiation-inhibition studies using this system with time-dose variables appropriate to the radiation dose. The system proved adequate for testing the relative biologic effectiveness of the various quantities of radiation employed in clinical radiotherapy. (C.H.)

  2. The significance of the choice of radiobiological (NTCP) models in treatment plan objective functions.

    PubMed

    Miller, J; Fuller, M; Vinod, S; Suchowerska, N; Holloway, L

    2009-06-01

    A Clinician's discrimination between radiation therapy treatment plans is traditionally a subjective process, based on experience and existing protocols. A more objective and quantitative approach to distinguish between treatment plans is to use radiobiological or dosimetric objective functions, based on radiobiological or dosimetric models. The efficacy of models is not well understood, nor is the correlation of the rank of plans resulting from the use of models compared to the traditional subjective approach. One such radiobiological model is the Normal Tissue Complication Probability (NTCP). Dosimetric models or indicators are more accepted in clinical practice. In this study, three radiobiological models, Lyman NTCP, critical volume NTCP and relative seriality NTCP, and three dosimetric models, Mean Lung Dose (MLD) and the Lung volumes irradiated at 10Gy (V10) and 20Gy (V20), were used to rank a series of treatment plans using, harm to normal (Lung) tissue as the objective criterion. None of the models considered in this study showed consistent correlation with the Radiation Oncologists plan ranking. If radiobiological or dosimetric models are to be used in objective functions for lung treatments, based on this study it is recommended that the Lyman NTCP model be used because it will provide most consistency with traditional clinician ranking.

  3. "Radiobiology of Proton Therapy": Results of an international expert workshop.

    PubMed

    Lühr, Armin; von Neubeck, Cläre; Pawelke, Jörg; Seidlitz, Annekatrin; Peitzsch, Claudia; Bentzen, Søren M; Bortfeld, Thomas; Debus, Jürgen; Deutsch, Eric; Langendijk, Johannes A; Loeffler, Jay S; Mohan, Radhe; Scholz, Michael; Sørensen, Brita S; Weber, Damien C; Baumann, Michael; Krause, Mechthild

    2018-05-31

    The physical properties of proton beams offer the potential to reduce toxicity in tumor-adjacent normal tissues. Toward this end, the number of proton radiotherapy facilities has steeply increased over the last 10-15 years to currently around 70 operational centers worldwide. However, taking full advantage of the opportunities offered by proton radiation for clinical radiotherapy requires a better understanding of the radiobiological effects of protons alone or combined with drugs or immunotherapy on normal tissues and tumors. This report summarizes the main results of the international expert workshop "Radiobiology of Proton Therapy" that was held in November 2016 in Dresden. It addresses the major topics (1) relative biological effectiveness (RBE) in proton beam therapy, (2) interaction of proton radiobiology with radiation physics in current treatment planning, (3) biological effects in proton therapy combined with systemic treatments, and (4) testing biological effects of protons in clinical trials. Finally, important research avenues for improvement of proton radiotherapy based on radiobiological knowledge are identified. The clinical distribution of radiobiological effectiveness of protons alone or in combination with systemic chemo- or immunotherapies as well as patient stratification based on biomarker expressions are key to reach the full potential of proton beam therapy. Dedicated preclinical experiments, innovative clinical trial designs, and large high-quality data repositories will be most important to achieve this goal. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Dosimetry in nuclear medicine therapy: radiobiology application and results.

    PubMed

    Strigari, L; Benassi, M; Chiesa, C; Cremonesi, M; Bodei, L; D'Andrea, M

    2011-04-01

    The linear quadratic model (LQM) has largely been used to assess the radiobiological damage to tissue by external beam fractionated radiotherapy and more recently has been extended to encompass a general continuous time varying dose rate protocol such as targeted radionuclide therapy (TRT). In this review, we provide the basic aspects of radiobiology, from a theoretical point of view, starting from the "four Rs" of radiobiology and introducing the biologically effective doses, which may be used to quantify the impact of a treatment on both tumors and normal tissues. We also present the main parameters required in the LQM, and illustrate the main models of tumor control probability and normal tissue complication probability and summarize the main dose-effect responses, reported in literature, which demonstrate the tentative link between targeted radiotherapy doses and those used in conventional radiotherapy. A better understanding of the radiobiology and mechanisms of action of TRT could contribute to describe the clinical data and guide the development of future compounds and the designing of prospective clinical trials.

  5. Bringing the heavy: carbon ion therapy in the radiobiological and clinical context

    PubMed Central

    2014-01-01

    Radiotherapy for the treatment of cancer is undergoing an evolution, shifting to the use of heavier ion species. For a plethora of malignancies, current radiotherapy using photons or protons yields marginal benefits in local control and survival. One hypothesis is that these malignancies have acquired, or are inherently radioresistant to low LET radiation. In the last decade, carbon ion radiotherapy facilities have slowly been constructed in Europe and Asia, demonstrating favorable results for many of the malignancies that do poorly with conventional radiotherapy. However, from a radiobiological perspective, much of how this modality works in overcoming radioresistance, and extending local control and survival are not yet fully understood. In this review, we will explain from a radiobiological perspective how carbon ion radiotherapy can overcome the classical and recently postulated contributors of radioresistance (α/β ratio, hypoxia, cell proliferation, the tumor microenvironment and metabolism, and cancer stem cells). Furthermore, we will make recommendations on the important factors to consider, such as anatomical location, in the future design and implementation of clinical trials. With the existing data available we believe that the expansion of carbon ion facilities into the United States is warranted. PMID:24679134

  6. Practical Radiobiology for Proton Therapy Planning

    NASA Astrophysics Data System (ADS)

    Jones, Bleddyn

    2017-12-01

    Practical Radiobiology for Proton Therapy Planning covers the principles, advantages and potential pitfalls that occur in proton therapy, especially its radiobiological modelling applications. This book is intended to educate, inform and to stimulate further research questions. Additionally, it will help proton therapy centres when designing new treatments or when unintended errors or delays occur. The clear descriptions of useful equations for high LET particle beam applications, worked examples of many important clinical situations, and discussion of how proton therapy may be optimized are all important features of the text. This important book blends the relevant physics, biology and medical aspects of this multidisciplinary subject. Part of Series in Physics and Engineering in Medicine and Biology.

  7. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp; Yamaguchi, Hajime; Kizaki, Hisao

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV,more » spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.« less

  8. On the use of published radiobiological parameters and the evaluation of NTCP models regarding lung pneumonitis in clinical breast radiotherapy.

    PubMed

    Svolos, Patricia; Tsougos, Ioannis; Kyrgias, Georgios; Kappas, Constantine; Theodorou, Kiki

    2011-04-01

    In this study we sought to evaluate and accent the importance of radiobiological parameter selection and implementation to the normal tissue complication probability (NTCP) models. The relative seriality (RS) and the Lyman-Kutcher-Burman (LKB) models were studied. For each model, a minimum and maximum set of radiobiological parameter sets was selected from the overall published sets applied in literature and a theoretical mean parameter set was computed. In order to investigate the potential model weaknesses in NTCP estimation and to point out the correct use of model parameters, these sets were used as input to the RS and the LKB model, estimating radiation induced complications for a group of 36 breast cancer patients treated with radiotherapy. The clinical endpoint examined was Radiation Pneumonitis. Each model was represented by a certain dose-response range when the selected parameter sets were applied. Comparing the models with their ranges, a large area of coincidence was revealed. If the parameter uncertainties (standard deviation) are included in the models, their area of coincidence might be enlarged, constraining even greater their predictive ability. The selection of the proper radiobiological parameter set for a given clinical endpoint is crucial. Published parameter values are not definite but should be accompanied by uncertainties, and one should be very careful when applying them to the NTCP models. Correct selection and proper implementation of published parameters provides a quite accurate fit of the NTCP models to the considered endpoint.

  9. Monte Carlo role in radiobiological modelling of radiotherapy outcomes

    NASA Astrophysics Data System (ADS)

    El Naqa, Issam; Pater, Piotr; Seuntjens, Jan

    2012-06-01

    Radiobiological models are essential components of modern radiotherapy. They are increasingly applied to optimize and evaluate the quality of different treatment planning modalities. They are frequently used in designing new radiotherapy clinical trials by estimating the expected therapeutic ratio of new protocols. In radiobiology, the therapeutic ratio is estimated from the expected gain in tumour control probability (TCP) to the risk of normal tissue complication probability (NTCP). However, estimates of TCP/NTCP are currently based on the deterministic and simplistic linear-quadratic formalism with limited prediction power when applied prospectively. Given the complex and stochastic nature of the physical, chemical and biological interactions associated with spatial and temporal radiation induced effects in living tissues, it is conjectured that methods based on Monte Carlo (MC) analysis may provide better estimates of TCP/NTCP for radiotherapy treatment planning and trial design. Indeed, over the past few decades, methods based on MC have demonstrated superior performance for accurate simulation of radiation transport, tumour growth and particle track structures; however, successful application of modelling radiobiological response and outcomes in radiotherapy is still hampered with several challenges. In this review, we provide an overview of some of the main techniques used in radiobiological modelling for radiotherapy, with focus on the MC role as a promising computational vehicle. We highlight the current challenges, issues and future potentials of the MC approach towards a comprehensive systems-based framework in radiobiological modelling for radiotherapy.

  10. AFRRI Neutron Dosimetry and Radiobiology Conference

    DTIC Science & Technology

    1988-11-09

    Neutron Dosimetry and Radiobiology 8 - 9 November 1988 Sponsored by Defense Nuclear Agency ARMED FORCES RADIOBIOLOGY RESEARCH INSTITUTE...neutron radiation is less amenable to amelioration by chemical radioprotectants and more difficult to assess by means of physical dosimetry . These...neutron dosimetry and radiobiology we have witnessed in the past several years,could not have been possible without the sustained efforts of many

  11. Radiotherapy of meningioma: a treatment in need of radiobiological research.

    PubMed

    Pinzi, Valentina; Bisogno, Ilaria; Prada, Francesco; Ciusani, Emilio; Fariselli, Laura

    2018-05-18

    Meningiomas account for one third of primary intracranial tumors, nevertheless information on meningioma cell lines and in vivo models is scant. Although radiotherapy is one of the most relevant therapeutic options for the treatment patients with meningioma, radiobiological research to understand tumor responses to this treatment is far from being thoroughly understood. The aim of this report is to provide a comprehensive picture of the current literature on this field, so as to foster s research in this regard. We carried out a review of meningioma radiobiology based on a peer-reviewed PubMed search. As a result of our study, we can confirm that the main limitation of radiobiological research into meningioma is the paucity of robust in vitro and in vivo models. Alternative approaches to overcome the already identified problems, and to allow better understanding of the entire histopathological spectrum of meningiomas have been explored. A radiobiological perspective of meningioma may help to improve clinical results both in terms of tumour control and healthy tissue sparing. Although we are far from drawing any conclusions, this review can lead researchers to identify some cues for future areas of study.

  12. Direct evaluation of radiobiological parameters from clinical data in the case of ion beam therapy: an alternative approach to the relative biological effectiveness.

    PubMed

    Cometto, A; Russo, G; Bourhaleb, F; Milian, F M; Giordanengo, S; Marchetto, F; Cirio, R; Attili, A

    2014-12-07

    The relative biological effectiveness (RBE) concept is commonly used in treatment planning for ion beam therapy. Whether models based on in vitro/in vivo RBE data can be used to predict human response to treatments is an open issue. In this work an alternative method, based on an effective radiobiological parameterization directly derived from clinical data, is presented. The method has been applied to the analysis of prostate cancer trials with protons and carbon ions.Prostate cancer trials with proton and carbon ion beams reporting 5 year-local control (LC5) and grade 2 (G2) or higher genitourinary toxicity rates (TOX) were selected from literature to test the method. Treatment simulations were performed on a representative subset of patients to produce dose and linear energy transfer distribution, which were used as explicative physical variables for the radiobiological modelling. Two models were taken into consideration: the microdosimetric kinetic model (MKM) and a linear model (LM). The radiobiological parameters of the LM and MKM were obtained by coupling them with the tumor control probability and normal tissue complication probability models to fit the LC5 and TOX data through likelihood maximization. The model ranking was based on the Akaike information criterion.Results showed large confidence intervals due to the limited variety of available treatment schedules. RBE values, such as RBE = 1.1 for protons in the treated volume, were derived as a by-product of the method, showing a consistency with current approaches. Carbon ion RBE values were also derived, showing lower values than those assumed for the original treatment planning in the target region, whereas higher values were found in the bladder. Most importantly, this work shows the possibility to infer the radiobiological parametrization for proton and carbon ion treatment directly from clinical data.

  13. Effects of radiobiological uncertainty on shield design for a 60-day lunar mission

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Nealy, John E.; Schimmerling, Walter

    1993-01-01

    Some consequences of uncertainties in radiobiological risk due to galactic cosmic ray exposure are analyzed to determine their effect on engineering designs for a first lunar outpost - a 60-day mission. Quantitative estimates of shield mass requirements as a function of a radiobiological uncertainty factor are given for a simplified vehicle structure. The additional shield mass required for compensation is calculated as a function of the uncertainty in galactic cosmic ray exposure, and this mass is found to be as large as a factor of 3 for a lunar transfer vehicle. The additional cost resulting from this mass is also calculated. These cost estimates are then used to exemplify the cost-effectiveness of research.

  14. Tumour and normal tissue radiobiology in mouse models: how close are mice to mini-humans?

    PubMed

    Koontz, Bridget F; Verhaegen, Frank; De Ruysscher, Dirk

    2017-01-01

    Animal modelling is essential to the study of radiobiology and the advancement of clinical radiation oncology by providing preclinical data. Mouse models in particular have been highly utilized in the study of both tumour and normal tissue radiobiology because of their cost effectiveness and versatility. Technology has significantly advanced in preclinical radiation techniques to allow highly conformal image-guided irradiation of small animals in an effort to mimic human treatment capabilities. However, the biological and physical limitations of animal modelling should be recognized and considered when interpreting preclinical radiotherapy (RT) studies. Murine tumour and normal tissue radioresponse has been shown to vary from human cellular and molecular pathways. Small animal irradiation techniques utilize different anatomical boundaries and may have different physical properties than human RT. This review addresses the difference between the human condition and mouse models and discusses possible strategies for future refinement of murine models of cancer and radiation for the benefit of both basic radiobiology and clinical translation.

  15. Tumour and normal tissue radiobiology in mouse models: how close are mice to mini-humans?

    PubMed Central

    Verhaegen, Frank; De Ruysscher, Dirk

    2017-01-01

    Animal modelling is essential to the study of radiobiology and the advancement of clinical radiation oncology by providing preclinical data. Mouse models in particular have been highly utilized in the study of both tumour and normal tissue radiobiology because of their cost effectiveness and versatility. Technology has significantly advanced in preclinical radiation techniques to allow highly conformal image-guided irradiation of small animals in an effort to mimic human treatment capabilities. However, the biological and physical limitations of animal modelling should be recognized and considered when interpreting preclinical radiotherapy (RT) studies. Murine tumour and normal tissue radioresponse has been shown to vary from human cellular and molecular pathways. Small animal irradiation techniques utilize different anatomical boundaries and may have different physical properties than human RT. This review addresses the difference between the human condition and mouse models and discusses possible strategies for future refinement of murine models of cancer and radiation for the benefit of both basic radiobiology and clinical translation. PMID:27612010

  16. LDR vs. HDR brachytherapy for localized prostate cancer: the view from radiobiological models.

    PubMed

    King, Christopher R

    2002-01-01

    Permanent LDR brachytherapy and temporary HDR brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never be conducted comparing these two forms of brachytherapy, a comparative radiobiological modeling analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. Radiobiological models based upon the linear quadratic equations are presented for fractionated external beam, fractionated (192)Ir HDR brachytherapy, and (125)I and (103)Pd LDR brachytherapy. These models incorporate the dose heterogeneities present in brachytherapy based upon patient-derived dose volume histograms (DVH) as well as tumor doubling times and repair kinetics. Radiobiological parameters are normalized to correspond to three accepted clinical risk factors based upon T-stage, PSA, and Gleason score to compare models with clinical series. Tumor control probabilities (TCP) for LDR and HDR brachytherapy (as monotherapy or combined with external beam) are compared with clinical bNED survival rates. Predictions are made for dose escalation with HDR brachytherapy regimens. Model predictions for dose escalation with external beam agree with clinical data and validate the models and their underlying assumptions. Both LDR and HDR brachytherapy achieve superior tumor control when compared with external beam at conventional doses (<70 Gy), but similar to results from dose escalation series. LDR brachytherapy as boost achieves superior tumor control than when used as monotherapy. Stage for stage, both LDR and current HDR regimens achieve similar tumor control rates, in agreement with current clinical data. HDR monotherapy with large-dose fraction sizes might achieve superior tumor control compared with LDR, especially if prostate cancer possesses a high sensitivity to dose fractionation (i.e., if the alpha/beta ratio is low). Radiobiological models support the

  17. Overview of research and therapy facilities for radiobiological experimental work in particle therapy. Report from the European Particle Therapy Network radiobiology group.

    PubMed

    Dosanjh, Manjit; Jones, Bleddyn; Pawelke, Jörg; Pruschy, Martin; Sørensen, Brita Singers

    2018-04-24

    Particle therapy (PT) as cancer treatment, using protons or heavier ions, can provide a more favorable dose distribution compared to X-rays. While the physical characteristics of particle radiation have been the aim of intense research, less focus has been placed on the actual biological responses arising from particle irradiation. One of the biggest challenges for proton radiobiology is the RBE, with an increasing concern that the clinically-applied generic RBE-value of 1.1 is an approximation, as RBE is a complex quantity, depending on both biological and physical parameters, such as dose, LET, cellular and tissue radiobiological characteristics, as well as the endpoints being studied. Most of the available RBE data derive from in vitro experiments, with very limited in vivo data available, especially in late-reacting tissues, which provide the main constraints and influence the quality of life endpoints in radiotherapy. There is a need for systematic, large-scale studies to thoroughly establish the biology of particle radiation in a number of different experimental models in order to refine biophysical mathematical models that can potentially be used to guide PT. The overall objective of the European Particle Therapy Network (EPTN) WP6 is to form a network of research and therapy facilities in order to coordinate and standardize the radiobiological experiments, to obtain more accurate predictive parameters than in the past. Coordinated research is required in order to obtain the most appropriate experimental data. The aim in this paper is to describe the available radiobiology infrastructure of the centers involved in EPTN WP6. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Comparison of treatment plans: a retrospective study by the method of radiobiological evaluation

    NASA Astrophysics Data System (ADS)

    Puzhakkal, Niyas; Kallikuzhiyil Kochunny, Abdullah; Manthala Padannayil, Noufal; Singh, Navin; Elavan Chalil, Jumanath; Kulangarakath Umer, Jamshad

    2016-09-01

    There are many situations in radiotherapy where multiple treatment plans need to be compared for selection of an optimal plan. In this study we performed the radiobiological method of plan evaluation to verify the treatment plan comparison procedure of our clinical practice. We estimated and correlated various radiobiological dose indices with physical dose metrics for a total of 30 patients representing typical cases of head and neck, prostate and brain tumors. Three sets of plans along with a clinically approved plan (final plan) treated by either Intensity Modulated Radiation Therapy (IMRT) or Rapid Arc (RA) techniques were considered. The study yielded improved target coverage for final plans, however, no appreciable differences in doses and the complication probabilities of organs at risk were noticed. Even though all four plans showed adequate dose distributions, from dosimetric point of view, the final plan had more acceptable dose distribution. The estimated biological outcome and dose volume histogram data showed least differences between plans for IMRT when compared to RA. Our retrospective study based on 120 plans, validated the radiobiological method of plan evaluation. The tumor cure or normal tissue complication probabilities were found to be correlated with the corresponding physical dose indices.

  19. Standards and Methodologies for Characterizing Radiobiological Impact of High-Z Nanoparticles

    PubMed Central

    Subiel, Anna; Ashmore, Reece; Schettino, Giuseppe

    2016-01-01

    Research on the application of high-Z nanoparticles (NPs) in cancer treatment and diagnosis has recently been the subject of growing interest, with much promise being shown with regards to a potential transition into clinical practice. In spite of numerous publications related to the development and application of nanoparticles for use with ionizing radiation, the literature is lacking coherent and systematic experimental approaches to fully evaluate the radiobiological effectiveness of NPs, validate mechanistic models and allow direct comparison of the studies undertaken by various research groups. The lack of standards and established methodology is commonly recognised as a major obstacle for the transition of innovative research ideas into clinical practice. This review provides a comprehensive overview of radiobiological techniques and quantification methods used in in vitro studies on high-Z nanoparticles and aims to provide recommendations for future standardization for NP-mediated radiation research. PMID:27446499

  20. Radiobiological research at JINR's accelerators

    NASA Astrophysics Data System (ADS)

    Krasavin, E. A.

    2016-04-01

    The half-a-century development of radiobiological studies at the Joint Institute for Nuclear Research (JINR) is reviewed on a stage-by-stage basis. With the use of the institute's accelerators, some key aspects of radiation biology have been settled, including the relative biological effectiveness (RBE) of various types of ionizing radiation with different physical characteristics; radiation-induced mutagenesis mechanisms, and the formation and repair of genetic structure damage. Practical space radiobiology problems that can be solved using high-energy charged particles are discussed.

  1. Radiobiological compensation: A case study of uterine cervix cancer with concurrent chemotherapy

    NASA Astrophysics Data System (ADS)

    Herrera, Higmar; Yañez, Elvia; López, Jesús

    2012-10-01

    The case of a patient diagnosed with uterine cervix cancer is presented as an example of the clinical application of the radiobiological compensation method implemented at Centro Estatal de Cancerología de Durango. Radiotherapy treatment was initially modified to compensate for the chemotherapy component and, as medical complications arose during treatment delivery resulting in an 18 days gap, new compensation followed. All physical and radiobiological assumptions to calculate the Biologically Effective Dose in the external beam and brachytherapy parts of the treatment are presented. Good local control of the tumor was achieved, the theoretical tolerance limits for the organs at risk were not surpassed and the patient manifested no extensive morbidity.

  2. Radiobiological compensation: A case study of uterine cervix cancer with concurrent chemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Higmar; Yanez, Elvia; Lopez, Jesus

    2012-10-23

    The case of a patient diagnosed with uterine cervix cancer is presented as an example of the clinical application of the radiobiological compensation method implemented at Centro Estatal de Cancerologia de Durango. Radiotherapy treatment was initially modified to compensate for the chemotherapy component and, as medical complications arose during treatment delivery resulting in an 18 days gap, new compensation followed. All physical and radiobiological assumptions to calculate the Biologically Effective Dose in the external beam and brachytherapy parts of the treatment are presented. Good local control of the tumor was achieved, the theoretical tolerance limits for the organs at riskmore » were not surpassed and the patient manifested no extensive morbidity.« less

  3. Changing paradigms in radiobiology.

    PubMed

    Mothersill, Carmel; Seymour, Colin

    2012-01-01

    The last 25 years have seen a major shift in emphasis in the field of radiobiology from a DNA-centric view of how radiation damage occurs to a much more biological view that appreciates the importance of macro-and micro-environments, hierarchical organization, underlying genetics, evolution, adaptation and signaling at all levels from atoms to ecosystems. The new view incorporates concepts of hormesis, nonlinear systems, bioenergy field theory, uncertainty and homeodynamics. While the mechanisms underlying these effects and responses are still far from clear, it is very apparent that their implications are much wider than the field of radiobiology. This reflection discusses the changing views and considers how they are influencing thought in environmental and medical science and systems biology. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Transformation of Physical DVHs to Radiobiologically Equivalent Ones in Hypofractionated Radiotherapy Analyzing Dosimetric and Clinical Parameters: A Practical Approach for Routine Clinical Practice in Radiation Oncology

    PubMed Central

    Thrapsanioti, Zoi; Karanasiou, Irene; Platoni, Kalliopi; Efstathopoulos, Efstathios P.; Matsopoulos, George; Dilvoi, Maria; Patatoukas, George; Chaldeopoulos, Demetrios; Kelekis, Nikolaos; Kouloulias, Vassilis

    2013-01-01

    Purpose. The purpose of this study was to transform DVHs from physical to radiobiological ones as well as to evaluate their reliability by correlations of dosimetric and clinical parameters for 50 patients with prostate cancer and 50 patients with breast cancer, who were submitted to Hypofractionated Radiotherapy. Methods and Materials. To achieve this transformation, we used both the linear-quadratic model (LQ model) and the Niemierko model. The outcome of radiobiological DVHs was correlated with acute toxicity score according to EORTC/RTOG criteria. Results. Concerning the prostate radiotherapy, there was a significant correlation between RTOG acute rectal toxicity and D 50 (P < 0.001) and V 60 (P = 0.001) dosimetric parameters, calculated for α/β = 10 Gy. Moreover, concerning the breast radiotherapy there was a significant correlation between RTOG skin toxicity and V ≥60 dosimetric parameter, calculated for both α/β = 2.3 Gy (P < 0.001) and α/β = 10 Gy (P < 0.001). The new tool seems reliable and user-friendly. Conclusions. Our proposed model seems user-friendly. Its reliability in terms of agreement with the presented acute radiation induced toxicity was satisfactory. However, more patients are needed to extract safe conclusions. PMID:24348743

  5. Radiobiological evaluation of the influence of dwell time modulation restriction in HIPO optimized HDR prostate brachytherapy implants.

    PubMed

    Mavroidis, Panayiotis; Katsilieri, Zaira; Kefala, Vasiliki; Milickovic, Natasa; Papanikolaou, Nikos; Karabis, Andreas; Zamboglou, Nikolaos; Baltas, Dimos

    2010-09-01

    One of the issues that a planner is often facing in HDR brachytherapy is the selective existence of high dose volumes around some few dominating dwell positions. If there is no information available about its necessity (e.g. location of a GTV), then it is reasonable to investigate whether this can be avoided. This effect can be eliminated by limiting the free modulation of the dwell times. HIPO, an inverse treatment plan optimization algorithm, offers this option. In treatment plan optimization there are various methods that try to regularize the variation of dose non-uniformity using purely dosimetric measures. However, although these methods can help in finding a good dose distribution they do not provide any information regarding the expected treatment outcome as described by radiobiology based indices. The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO and modulation restriction (MR) has been compared to alternative plans with HIPO and free modulation (without MR). All common dose-volume indices for the prostate and the organs at risk have been considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by calculating the response probabilities of the tumors and organs-at-risk (OARs) involved in these prostate cancer cases. The radiobiological models used are the Poisson and the relative seriality models. Furthermore, the complication-free tumor control probability, P + and the biologically effective uniform dose ([Formula: see text]) were used for treatment plan evaluation and comparison. Our results demonstrate that HIPO with a modulation restriction value of 0.1-0.2 delivers high quality plans which are practically equivalent to those achieved with free modulation regarding the clinically used dosimetric indices. In the comparison, many of the dosimetric and radiobiological indices showed significantly different results. The modulation restricted clinical

  6. In vivo radiobiological assessment of the new clinical carbon ion beams at CNAO.

    PubMed

    Facoetti, A; Vischioni, B; Ciocca, M; Ferrarini, M; Furusawa, Y; Mairani, A; Matsumoto, Y; Mirandola, A; Molinelli, S; Uzawa, A; Vilches, Freixas G; Orecchia, R

    2015-09-01

    In this article, the in vivo study performed to evaluate the uniformity of biological doses within an hypothetical target volume and calculate the values of relative biological effectiveness (RBE) at different depths in the spread-out Bragg peak (SOBP) of the new CNAO (National Centre for Oncological Hadrontherapy) carbon beams is presented, in the framework of a typical radiobiological beam calibration procedure. The RBE values (relative to (60)Co γ rays) of the CNAO active scanning carbon ion beams were determined using jejunal crypt regeneration in mice as biological system at the entrance, centre and distal end of a 6-cm SOBP. The RBE values calculated from the iso-effective doses to reduce crypt survival per circumference to 10, ranged from 1.52 at the middle of the SOBP to 1.75 at the distal position and are in agreement with those previously reported from other carbon ion facilities. In conclusion, this first set of in vivo experiments shows that the CNAO carbon beam is radiobiologically comparable with the NIRS (National Institute of Radiological Sciences, Chiba, Japan) and GSI (Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany) ones. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Radiobiological evaluation of the influence of dwell time modulation restriction in HIPO optimized HDR prostate brachytherapy implants

    PubMed Central

    Katsilieri, Zaira; Kefala, Vasiliki; Milickovic, Natasa; Papanikolaou, Nikos; Karabis, Andreas; Zamboglou, Nikolaos; Baltas, Dimos

    2010-01-01

    Purpose One of the issues that a planner is often facing in HDR brachytherapy is the selective existence of high dose volumes around some few dominating dwell positions. If there is no information available about its necessity (e.g. location of a GTV), then it is reasonable to investigate whether this can be avoided. This effect can be eliminated by limiting the free modulation of the dwell times. HIPO, an inverse treatment plan optimization algorithm, offers this option. In treatment plan optimization there are various methods that try to regularize the variation of dose non-uniformity using purely dosimetric measures. However, although these methods can help in finding a good dose distribution they do not provide any information regarding the expected treatment outcome as described by radiobiology based indices. Material and methods The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO and modulation restriction (MR) has been compared to alternative plans with HIPO and free modulation (without MR). All common dose-volume indices for the prostate and the organs at risk have been considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by calculating the response probabilities of the tumors and organs-at-risk (OARs) involved in these prostate cancer cases. The radiobiological models used are the Poisson and the relative seriality models. Furthermore, the complication-free tumor control probability, P+ and the biologically effective uniform dose (D¯¯) were used for treatment plan evaluation and comparison. Results Our results demonstrate that HIPO with a modulation restriction value of 0.1-0.2 delivers high quality plans which are practically equivalent to those achieved with free modulation regarding the clinically used dosimetric indices. In the comparison, many of the dosimetric and radiobiological indices showed significantly different results. The modulation

  8. Apoptosis, energy metabolism, and fraction of radiobiologically hypoxic cells: a study of human melanoma multicellular spheroids.

    PubMed

    Rofstad, E K; Eide, K; Skøyum, R; Hystad, M E; Lyng, H

    1996-09-01

    The magnitude of the fraction of radiobiologically hypoxic cells in tumours is generally believed to reflect the efficiency of the vascular network. Theoretical studies have suggested that the hypoxic fraction might also be influenced by biological properties of the tumour cells. Quantitative experimental results of cell energy metabolism, hypoxia- induced apoptosis, and radiobiological hypoxia are reported here. Human melanoma multicellular spheroids (BEX-c and WIX-c) were used as tumour models to avoid confounding effects of the vascular network. Radiobiological studies showed that the fractions of hypoxic cells in 1000-microM spheroids were 32 +/- 12% (BEX-c) and 2.5 +/- 1.1% (WIX-c). The spheroid hypoxic volume fractions (28 +/- 6% (BEX-c) and 1.4 +/- 7% (WIX-c)), calculated from the rate of oxygen consumption per cell, the cell packing density, and the thickness of the viable rim, were similar to the fractions of radiobiologically hypoxic cells. Large differences between tumours in fraction of hypoxic cells are therefore not necessarily a result of differences in the efficiency of the vascular network. Studies of monolayer cell cultures, performed to identify the biological properties of the BEX-c and WIX-c cells leading to this large difference in fraction of hypoxic cells, gave the following results: (1) WIX-c showed lower cell surviving fractions after exposure to hypoxia than BEX-c, (2) WIX-c showed higher glucose uptake and lactate release rates than BEX-c both under aerobic and hypoxic conditions, and (3) hypoxia induced apoptosis in WIX-c but not in BEX-c. These observations suggested that the difference between BEX-c and WIX-c spheroids in fraction of hypoxic cells resulted partly from differences in cell energy metabolism and partly from a difference in capacity to retain viability under hypoxic stress. The induction of apoptosis by hypoxia was identified as a phenomenon which has an important influence on the magnitude of the fraction of

  9. Quantitative Imaging in Cancer Clinical Trials

    PubMed Central

    Yankeelov, Thomas E.; Mankoff, David A.; Schwartz, Lawrence H.; Lieberman, Frank S.; Buatti, John M.; Mountz, James M.; Erickson, Bradley J.; Fennessy, Fiona M.M.; Huang, Wei; Kalpathy-Cramer, Jayashree; Wahl, Richard L.; Linden, Hannah M.; Kinahan, Paul; Zhao, Binsheng; Hylton, Nola M.; Gillies, Robert J.; Clarke, Laurence; Nordstrom, Robert; Rubin, Daniel L.

    2015-01-01

    As anti-cancer therapies designed to target specific molecular pathways have been developed, it has become critical to develop methods to assess the response induced by such agents. While traditional, anatomic CT and MRI exams are useful in many settings, there is increasing evidence that these methods cannot answer the fundamental biological and physiological questions essential for assessment and, eventually, prediction of treatment response in the clinical trial setting, especially in the critical period soon after treatment is initiated. To optimally apply advances in quantitative imaging methods to trials of targeted cancer therapy, new infrastructure improvements are needed that incorporate these emerging techniques into the settings where they are most likely to have impact. In this review, we first elucidate the needs for therapeutic response assessment in the era of molecularly targeted therapy and describe how quantitative imaging can most effectively provide scientifically and clinically relevant data. We then describe the tools and methods required to apply quantitative imaging and provide concrete examples of work making these advances practically available for routine application in clinical trials. We conclude by proposing strategies to surmount barriers to wider incorporation of these quantitative imaging methods into clinical trials and, eventually, clinical practice. Our goal is to encourage and guide the oncology community to deploy standardized quantitative imaging techniques in clinical trials to further personalize care for cancer patients, and to provide a more efficient path for the development of improved targeted therapies. PMID:26773162

  10. Use of the NASA Space Radiation Laboratory at Brookhaven National Laboratory to Conduct Charged Particle Radiobiology Studies Relevant to Ion Therapy

    PubMed Central

    Held, Kathryn D.; Blakely, Eleanor A.; Story, Michael D.; Lowenstein, Derek I.

    2016-01-01

    Although clinical studies with carbon ions have been conducted successfully in Japan and Europe, the limited radiobiological information about charged particles that are heavier than protons remains a significant impediment to exploiting the full potential of particle therapy. There is growing interest in the U.S. to build a cancer treatment facility that utilizes charged particles heavier than protons. Therefore, it is essential that additional radiobiological knowledge be obtained using state-of-the-art technologies and biological models and end points relevant to clinical outcome. Currently, most such ion radiotherapy-related research is being conducted outside the U.S. This article addresses the substantial contributions to that research that are possible at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), which is the only facility in the U.S. at this time where heavy-ion radiobiology research with the ion species and energies of interest for therapy can be done. Here, we briefly discuss the relevant facilities at NSRL and how selected charged particle biology research gaps could be addressed using those facilities. PMID:27195609

  11. Use of the NASA Space Radiation Laboratory at Brookhaven National Laboratory to Conduct Charged Particle Radiobiology Studies Relevant to Ion Therapy.

    PubMed

    Held, Kathryn D; Blakely, Eleanor A; Story, Michael D; Lowenstein, Derek I

    2016-06-01

    Although clinical studies with carbon ions have been conducted successfully in Japan and Europe, the limited radiobiological information about charged particles that are heavier than protons remains a significant impediment to exploiting the full potential of particle therapy. There is growing interest in the U.S. to build a cancer treatment facility that utilizes charged particles heavier than protons. Therefore, it is essential that additional radiobiological knowledge be obtained using state-of-the-art technologies and biological models and end points relevant to clinical outcome. Currently, most such ion radiotherapy-related research is being conducted outside the U.S. This article addresses the substantial contributions to that research that are possible at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), which is the only facility in the U.S. at this time where heavy-ion radiobiology research with the ion species and energies of interest for therapy can be done. Here, we briefly discuss the relevant facilities at NSRL and how selected charged particle biology research gaps could be addressed using those facilities.

  12. Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator.

    PubMed

    Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jörg

    2012-01-01

    The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy.

  13. Effects of radiobiological uncertainty on vehicle and habitat shield design for missions to the moon and Mars

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Nealy, John E.; Schimmerling, Walter; Cucinotta, Francis A.; Wood, James S.

    1993-01-01

    Some consequences of uncertainties in radiobiological risk due to galactic cosmic ray (GCR) exposure are analyzed for their effect on engineering designs for the first lunar outpost and a mission to explore Mars. This report presents the plausible effect of biological uncertainties, the design changes necessary to reduce the uncertainties to acceptable levels for a safe mission, and an evaluation of the mission redesign cost. Estimates of the amount of shield mass required to compensate for radiobiological uncertainty are given for a simplified vehicle and habitat. The additional amount of shield mass required to provide a safety factor for uncertainty compensation is calculated from the expected response to GCR exposure. The amount of shield mass greatly increases in the estimated range of biological uncertainty, thus, escalating the estimated cost of the mission. The estimates are used as a quantitative example for the cost-effectiveness of research in radiation biophysics and radiation physics.

  14. New challenges in high-energy particle radiobiology

    PubMed Central

    2014-01-01

    Densely ionizing radiation has always been a main topic in radiobiology. In fact, α-particles and neutrons are sources of radiation exposure for the general population and workers in nuclear power plants. More recently, high-energy protons and heavy ions attracted a large interest for two applications: hadrontherapy in oncology and space radiation protection in manned space missions. For many years, studies concentrated on measurements of the relative biological effectiveness (RBE) of the energetic particles for different end points, especially cell killing (for radiotherapy) and carcinogenesis (for late effects). Although more recently, it has been shown that densely ionizing radiation elicits signalling pathways quite distinct from those involved in the cell and tissue response to photons. The response of the microenvironment to charged particles is therefore under scrutiny, and both the damage in the target and non-target tissues are relevant. The role of individual susceptibility in therapy and risk is obviously a major topic in radiation research in general, and for ion radiobiology as well. Particle radiobiology is therefore now entering into a new phase, where beyond RBE, the tissue response is considered. These results may open new applications for both cancer therapy and protection in deep space. PMID:24198199

  15. Radiobiology of systemic radiation therapy.

    PubMed

    Murray, David; McEwan, Alexander J

    2007-02-01

    Although systemic radionuclide therapy (SRT) is effective as a palliative therapy in patients with metastatic cancer, there has been limited success in expanding patterns of utilization and in bringing novel systemic radiotherapeutic agents to routine clinical use. Although there are many factors that contribute to this situation, we hypothesize that a better understanding of the radiobiology and mechanism of action of SRT will facilitate the development of future compounds and the future designs of prospective clinical trials. If these trials can be rationalized to the biological basis of the therapy, it is likely that the long-term outcome would be enhanced therapeutic efficacy. In this review, we provide perspectives of the current state of low-dose-rate (LDR) radiation research and offer linkages where appropriate with current clinical knowledge. These include the recently described phenomena of low-dose hyper-radiosensitivity-increased radioresistance (LDH-IRR), adaptive responses, and biological bystander effects. Each of these areas require a major reconsideration of existing models for radiation action and an understanding of how this knowledge will integrate into the evolution of clinical SRT practice. Validation of a role in vivo for both LDH-IRR and biological bystander effects in SRT would greatly impact the way we would assess therapeutic response to SRT, the design of clinical trials of novel SRT radiopharmaceuticals, and risk estimates for both therapeutic and diagnostic radiopharmaceuticals. We believe that the current state of research in LDR effects offers a major opportunity to the nuclear medicine community to address the basic science of clinical SRT practice, to use this new knowledge to expand the use and roles of SRT, and to facilitate the introduction of new therapeutic radiopharmaceuticals.

  16. Clinical Utility of Quantitative Imaging

    PubMed Central

    Rosenkrantz, Andrew B; Mendiratta-Lala, Mishal; Bartholmai, Brian J.; Ganeshan, Dhakshinamoorthy; Abramson, Richard G.; Burton, Kirsteen R.; Yu, John-Paul J.; Scalzetti, Ernest M.; Yankeelov, Thomas E.; Subramaniam, Rathan M.; Lenchik, Leon

    2014-01-01

    Quantitative imaging (QI) is increasingly applied in modern radiology practice, assisting in the clinical assessment of many patients and providing a source of biomarkers for a spectrum of diseases. QI is commonly used to inform patient diagnosis or prognosis, determine the choice of therapy, or monitor therapy response. Because most radiologists will likely implement some QI tools to meet the patient care needs of their referring clinicians, it is important for all radiologists to become familiar with the strengths and limitations of QI. The Association of University Radiologists Radiology Research Alliance Quantitative Imaging Task Force has explored the clinical application of QI and summarizes its work in this review. We provide an overview of the clinical use of QI by discussing QI tools that are currently employed in clinical practice, clinical applications of these tools, approaches to reporting of QI, and challenges to implementing QI. It is hoped that these insights will help radiologists recognize the tangible benefits of QI to their patients, their referring clinicians, and their own radiology practice. PMID:25442800

  17. Radiobiological Determination of Dose Escalation and Normal Tissue Toxicity in Definitive Chemoradiation Therapy for Esophageal Cancer☆

    PubMed Central

    Warren, Samantha; Partridge, Mike; Carrington, Rhys; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A.

    2014-01-01

    Purpose This study investigated the trade-off in tumor coverage and organ-at-risk sparing when applying dose escalation for concurrent chemoradiation therapy (CRT) of mid-esophageal cancer, using radiobiological modeling to estimate local control and normal tissue toxicity. Methods and Materials Twenty-one patients with mid-esophageal cancer were selected from the SCOPE1 database (International Standard Randomised Controlled Trials number 47718479), with a mean planning target volume (PTV) of 327 cm3. A boost volume, PTV2 (GTV + 0.5 cm margin), was created. Radiobiological modeling of tumor control probability (TCP) estimated the dose required for a clinically significant (+20%) increase in local control as 62.5 Gy/25 fractions. A RapidArc (RA) plan with a simultaneously integrated boost (SIB) to PTV2 (RA62.5) was compared to a standard dose plan of 50 Gy/25 fractions (RA50). Dose-volume metrics and estimates of normal tissue complication probability (NTCP) for heart and lungs were compared. Results Clinically acceptable dose escalation was feasible for 16 of 21 patients, with significant gains (>18%) in tumor control from 38.2% (RA50) to 56.3% (RA62.5), and only a small increase in predicted toxicity: median heart NTCP 4.4% (RA50) versus 5.6% (RA62.5) P<.001 and median lung NTCP 6.5% (RA50) versus 7.5% (RA62.5) P<.001. Conclusions Dose escalation to the GTV to improve local control is possible when overlap between PTV and organ-at-risk (<8% heart volume and <2.5% lung volume overlap for this study) generates only negligible increase in lung or heart toxicity. These predictions from radiobiological modeling should be tested in future clinical trials. PMID:25304796

  18. Radiobiological Determination of Dose Escalation and Normal Tissue Toxicity in Definitive Chemoradiation Therapy for Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Samantha, E-mail: Samantha.warren@oncology.ox.ac.uk; Partridge, Mike; Carrington, Rhys

    2014-10-01

    Purpose: This study investigated the trade-off in tumor coverage and organ-at-risk sparing when applying dose escalation for concurrent chemoradiation therapy (CRT) of mid-esophageal cancer, using radiobiological modeling to estimate local control and normal tissue toxicity. Methods and Materials: Twenty-one patients with mid-esophageal cancer were selected from the SCOPE1 database (International Standard Randomised Controlled Trials number 47718479), with a mean planning target volume (PTV) of 327 cm{sup 3}. A boost volume, PTV2 (GTV + 0.5 cm margin), was created. Radiobiological modeling of tumor control probability (TCP) estimated the dose required for a clinically significant (+20%) increase in local control as 62.5more » Gy/25 fractions. A RapidArc (RA) plan with a simultaneously integrated boost (SIB) to PTV2 (RA{sub 62.5}) was compared to a standard dose plan of 50 Gy/25 fractions (RA{sub 50}). Dose-volume metrics and estimates of normal tissue complication probability (NTCP) for heart and lungs were compared. Results: Clinically acceptable dose escalation was feasible for 16 of 21 patients, with significant gains (>18%) in tumor control from 38.2% (RA{sub 50}) to 56.3% (RA{sub 62.5}), and only a small increase in predicted toxicity: median heart NTCP 4.4% (RA{sub 50}) versus 5.6% (RA{sub 62.5}) P<.001 and median lung NTCP 6.5% (RA{sub 50}) versus 7.5% (RA{sub 62.5}) P<.001. Conclusions: Dose escalation to the GTV to improve local control is possible when overlap between PTV and organ-at-risk (<8% heart volume and <2.5% lung volume overlap for this study) generates only negligible increase in lung or heart toxicity. These predictions from radiobiological modeling should be tested in future clinical trials.« less

  19. MO-D-BRD-03: Radiobiology and Commissioning of Electronic Brachytherapy for IORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014,more » a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of

  20. Treatment plan comparison between helical tomotherapy and MLC-based IMRT using radiobiological measures

    NASA Astrophysics Data System (ADS)

    Mavroidis, Panayiotis; Costa Ferreira, Brigida; Shi, Chengyu; Lind, Bengt K.; Papanikolaou, Nikos

    2007-07-01

    The rapid implementation of advanced treatment planning and delivery technologies for radiation therapy has brought new challenges in evaluating the most effective treatment modality. Intensity-modulated radiotherapy (IMRT) using multi-leaf collimators (MLC) and helical tomotherapy (HT) are becoming popular modes of treatment delivery and their application and effectiveness continues to be investigated. Presently, there are several treatment planning systems (TPS) that can generate and optimize IMRT plans based on user-defined objective functions for the internal target volume (ITV) and organs at risk (OAR). However, the radiobiological parameters of the different tumours and normal tissues are typically not taken into account during dose prescription and optimization of a treatment plan or during plan evaluation. The suitability of a treatment plan is typically decided based on dosimetric criteria such as dose-volume histograms (DVH), maximum, minimum, mean and standard deviation of the dose distribution. For a more comprehensive treatment plan evaluation, the biologically effective uniform dose ({\\bar{\\bar{D}}}) is applied together with the complication-free tumour control probability (P+). Its utilization is demonstrated using three clinical cases that were planned with two different forms of IMRT. In this study, three different cancer types at different anatomical sites were investigated: head and neck, lung and prostate cancers. For each cancer type, a linac MLC-based step-and-shoot IMRT plan and a HT plan were developed. The MLC-based IMRT treatment plans were developed on the Philips treatment-planning platform, using the Pinnacle 7.6 software release. For the tomotherapy HiArt plans, the dedicated tomotherapy treatment planning station was used, running version 2.1.2. By using {\\bar{\\bar{D}}} as the common prescription point of the treatment plans and plotting the tissue response probabilities versus {\\bar{\\bar{D}}} for a range of prescription doses

  1. Three-Dimensional Radiobiologic Dosimetry: Application of Radiobiologic Modeling to Patient-Specific 3-Dimensional Imaging–Based Internal Dosimetry

    PubMed Central

    Prideaux, Andrew R.; Song, Hong; Hobbs, Robert F.; He, Bin; Frey, Eric C.; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George

    2010-01-01

    Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. The methodology is illustrated using data from a thyroid cancer patient treated with radioiodine. Methods Three registered SPECT/CT scans were used to generate 3-dimensional images of radionuclide kinetics (clearance rate) and cumulated activity. The cumulated activity image and corresponding CT scan were provided as input into an EGSnrc-based Monte Carlo calculation: The cumulated activity image was used to define the distribution of decays, and an attenuation image derived from CT was used to define the corresponding spatial tissue density and composition distribution. The rate images were used to convert the spatial absorbed dose distribution to a biologically effective dose distribution, which was then used to estimate a single equivalent uniform dose for segmented volumes of interest. Equivalent uniform dose was also calculated from the absorbed dose distribution directly. Results We validate the method using simple models; compare the dose-volume histogram with a previously analyzed clinical case; and give the mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for an illustrative case of a pediatric thyroid cancer patient with diffuse lung metastases. The mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for the tumor were 57.7, 58.5, and 25.0 Gy, respectively. Corresponding values for normal lung tissue were 9.5, 9.8, and 8.3 Gy, respectively. Conclusion The analysis demonstrates the impact of radiobiologic modeling on response prediction. The 57% reduction in the equivalent dose value for the tumor reflects a high level of dose

  2. An Expanded Multi-scale Monte Carlo Simulation Method for Personalized Radiobiological Effect Estimation in Radiotherapy: a feasibility study

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Feng, Yuanming; Wang, Wei; Yang, Chengwen; Wang, Ping

    2017-03-01

    A novel and versatile “bottom-up” approach is developed to estimate the radiobiological effect of clinic radiotherapy. The model consists of multi-scale Monte Carlo simulations from organ to cell levels. At cellular level, accumulated damages are computed using a spectrum-based accumulation algorithm and predefined cellular damage database. The damage repair mechanism is modeled by an expanded reaction-rate two-lesion kinetic model, which were calibrated through replicating a radiobiological experiment. Multi-scale modeling is then performed on a lung cancer patient under conventional fractionated irradiation. The cell killing effects of two representative voxels (isocenter and peripheral voxel of the tumor) are computed and compared. At microscopic level, the nucleus dose and damage yields vary among all nucleuses within the voxels. Slightly larger percentage of cDSB yield is observed for the peripheral voxel (55.0%) compared to the isocenter one (52.5%). For isocenter voxel, survival fraction increase monotonically at reduced oxygen environment. Under an extreme anoxic condition (0.001%), survival fraction is calculated to be 80% and the hypoxia reduction factor reaches a maximum value of 2.24. In conclusion, with biological-related variations, the proposed multi-scale approach is more versatile than the existing approaches for evaluating personalized radiobiological effects in radiotherapy.

  3. The Importance of Dosimetry Standardization in Radiobiology

    PubMed Central

    Desrosiers, Marc; DeWerd, Larry; Deye, James; Lindsay, Patricia; Murphy, Mark K; Mitch, Michael; Macchiarini, Francesca; Stojadinovic, Strahinja; Stone, Helen

    2013-01-01

    Radiation dose is central to much of radiobiological research. Precision and accuracy of dose measurements and reporting of the measurement details should be sufficient to allow the work to be interpreted and repeated and to allow valid comparisons to be made, both in the same laboratory and by other laboratories. Despite this, a careful reading of published manuscripts suggests that measurement and reporting of radiation dosimetry and setup for radiobiology research is frequently inadequate, thus undermining the reliability and reproducibility of the findings. To address these problems and propose a course of action, the National Cancer Institute (NCI), the National Institute of Allergy and Infectious Diseases (NIAID), and the National Institute of Standards and Technology (NIST) brought together representatives of the radiobiology and radiation physics communities in a workshop in September, 2011. The workshop participants arrived at a number of specific recommendations as enumerated in this paper and they expressed the desirability of creating dosimetry standard operating procedures (SOPs) for cell culture and for small and large animal experiments. It was also felt that these SOPs would be most useful if they are made widely available through mechanism(s) such as the web, where they can provide guidance to both radiobiologists and radiation physicists, be cited in publications, and be updated as the field and needs evolve. Other broad areas covered were the need for continuing education through tutorials at national conferences, and for journals to establish standards for reporting dosimetry. This workshop did not address issues of dosimetry for studies involving radiation focused at the sub-cellular level, internally-administered radionuclides, biodosimetry based on biological markers of radiation exposure, or dose reconstruction for epidemiological studies. PMID:26401441

  4. [Systemic approach to radiobiological studies].

    PubMed

    Bulanova, K Ia; Lobanok, L M

    2004-01-01

    The principles of information theory were applied for analysis of radiobiological effects. The perception of ionizing radiations as a signal enables living organism to discern their benefits or harm, to react to absolute and relatively small deviations, to keep the logic and chronicle of events, to use the former experience for reacting in presence, to forecast consequences. The systemic analysis of organism's response to ionizing radiations allows explaining the peculiarities of effects of different absorbed doses, hormesis, apoptosis, remote consequences and other post-radiation effects.

  5. Radiobiological Optimization of Combination Radiopharmaceutical Therapy Applied to Myeloablative Treatment of Non-Hodgkin’s Lymphoma

    PubMed Central

    Hobbs, Robert F; Wahl, Richard L; Frey, Eric C; Kasamon, Yvette; Song, Hong; Huang, Peng; Jones, Richard J; Sgouros, George

    2014-01-01

    Combination treatment is a hallmark of cancer therapy. Although the rationale for combination radiopharmaceutical therapy was described in the mid ‘90s, such treatment strategies have only been implemented clinically recently, and without a rigorous methodology for treatment optimization. Radiobiological and quantitative imaging-based dosimetry tools are now available that enable rational implementation of combined targeted radiopharmaceutical therapy. Optimal implementation should simultaneously account for radiobiological normal organ tolerance while optimizing the ratio of two different radiopharmaceuticals required to maximize tumor control. We have developed such a methodology and applied it to hypothetical myeloablative treatment of non-hodgkin’s lymphoma (NHL) patients using 131I-tositumomab and 90Y-ibritumomab tiuxetan. Methods The range of potential administered activities (AA) is limited by the normal organ maximum tolerated biologic effective doses (MTBEDs) arising from the combined radiopharmaceuticals. Dose limiting normal organs are expected to be the lungs for 131I-tositumomab and the liver for 90Y-ibritumomab tiuxetan in myeloablative NHL treatment regimens. By plotting the limiting normal organ constraints as a function of the AAs and calculating tumor biological effective dose (BED) along the normal organ MTBED limits, the optimal combination of activities is obtained. The model was tested using previously acquired patient normal organ and tumor kinetic data and MTBED values taken from the literature. Results The average AA values based solely on normal organ constraints was (19.0 ± 8.2) GBq with a range of 3.9 – 36.9 GBq for 131I-tositumomab, and (2.77 ± 1.64) GBq with a range of 0.42 – 7.54 GBq for 90Y-ibritumomab tiuxetan. Tumor BED optimization results were calculated and plotted as a function of AA for 5 different cases, established using patient normal organ kinetics for the two radiopharmaceuticals. Results included AA ranges

  6. Radiobiological concepts for treatment planning of schemes that combines external beam radiotherapy and systemic targeted radiotherapy

    NASA Astrophysics Data System (ADS)

    Fabián Calderón Marín, Carlos; González González, Joaquín Jorge; Laguardia, Rodolfo Alfonso

    2017-09-01

    The combination of radiotherapy modalities with external bundles and systemic radiotherapy (CIERT) could be a reliable alternative for patients with multiple lesions or those where treatment planning maybe difficult because organ(s)-at-risk (OARs) constraints. Radiobiological models should have the capacity for predicting the biological irradiation response considering the differences in the temporal pattern of dose delivering in both modalities. Two CIERT scenarios were studied: sequential combination in which one modality is executed following the other one and concurrent combination when both modalities are running simultaneously. Expressions are provided for calculation of the dose-response magnitudes Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP). General results on radiobiological modeling using the linear-quadratic (LQ) model are also discussed. Inter-subject variation of radiosensitivity and volume irradiation effect in CIERT are studied. OARs should be under control during the planning in concurrent CIERT treatment as the administered activity is increased. The formulation presented here may be used for biological evaluation of prescriptions and biological treatment planning of CIERT schemes in clinical situation.

  7. Characterization and performances of DOSION, a dosimetry equipment dedicated to radiobiology experiments taking place at GANIL

    NASA Astrophysics Data System (ADS)

    Boissonnat, Guillaume; Fontbonne, Jean-Marc; Balanzat, Emmanuel; Boumard, Frederic; Carniol, Benjamin; Cassimi, Amine; Colin, Jean; Cussol, Daniel; Etasse, David; Fontbonne, Cathy; Frelin, Anne-Marie; Hommet, Jean; Salvador, Samuel

    2017-06-01

    Currently, radiobiology experiments using heavy ions at GANIL (Grand Accélérateur National d‧Ions Lourds) are conducted under the supervision of the CIMAP (Center for research on Ions, MAterials and Photonics). In this context, a new beam monitoring equipment named DOSION has been developed. It allows to perform measurements of accurate fluence and dose maps in near real time for each biological sample irradiated. In this paper, we present the detection system, its design, performances, calibration protocol and measurements performed during radiobiology experiments. This setup is currently available for any radiobiology experiments if one wishes to correlate one's own sample analysis to state-of-the-art dosimetric references.

  8. The European Radiobiology Archives (ERA)--content, structure and use illustrated by an example.

    PubMed

    Gerber, G B; Wick, R R; Kellerer, A M; Hopewell, J W; Di Majo, V; Dudoignon, N; Gössner, W; Stather, J

    2006-01-01

    The European Radiobiology Archives (ERA), supported by the European Commission and the European Late Effect Project Group (EULEP), together with the US National Radiobiology Archives (NRA) and the Japanese Radiobiology Archives (JRA) have collected all information still available on long-term animal experiments, including some selected human studies. The archives consist of a database in Microsoft Access, a website, databases of references and information on the use of the database. At present, the archives contain a description of the exposure conditions, animal strains, etc. from approximately 350,000 individuals; data on survival and pathology are available from approximately 200,000 individuals. Care has been taken to render pathological diagnoses compatible among different studies and to allow the lumping of pathological diagnoses into more general classes. 'Forms' in Access with an underlying computer code facilitate the use of the database. This paper describes the structure and content of the archives and illustrates an example for a possible analysis of such data.

  9. Grid Block Design Based on Monte Carlo Simulated Dosimetry, the Linear Quadratic and Hug–Kellerer Radiobiological Models

    PubMed Central

    Gholami, Somayeh; Nedaie, Hassan Ali; Longo, Francesco; Ay, Mohammad Reza; Dini, Sharifeh A.; Meigooni, Ali S.

    2017-01-01

    Purpose: The clinical efficacy of Grid therapy has been examined by several investigators. In this project, the hole diameter and hole spacing in Grid blocks were examined to determine the optimum parameters that give a therapeutic advantage. Methods: The evaluations were performed using Monte Carlo (MC) simulation and commonly used radiobiological models. The Geant4 MC code was used to simulate the dose distributions for 25 different Grid blocks with different hole diameters and center-to-center spacing. The therapeutic parameters of these blocks, namely, the therapeutic ratio (TR) and geometrical sparing factor (GSF) were calculated using two different radiobiological models, including the linear quadratic and Hug–Kellerer models. In addition, the ratio of the open to blocked area (ROTBA) is also used as a geometrical parameter for each block design. Comparisons of the TR, GSF, and ROTBA for all of the blocks were used to derive the parameters for an optimum Grid block with the maximum TR, minimum GSF, and optimal ROTBA. A sample of the optimum Grid block was fabricated at our institution. Dosimetric characteristics of this Grid block were measured using an ionization chamber in water phantom, Gafchromic film, and thermoluminescent dosimeters in Solid Water™ phantom materials. Results: The results of these investigations indicated that Grid blocks with hole diameters between 1.00 and 1.25 cm and spacing of 1.7 or 1.8 cm have optimal therapeutic parameters (TR > 1.3 and GSF~0.90). The measured dosimetric characteristics of the optimum Grid blocks including dose profiles, percentage depth dose, dose output factor (cGy/MU), and valley-to-peak ratio were in good agreement (±5%) with the simulated data. Conclusion: In summary, using MC-based dosimetry, two radiobiological models, and previously published clinical data, we have introduced a method to design a Grid block with optimum therapeutic response. The simulated data were reproduced by experimental data

  10. [Radiobiology and the lessons of Chernobyl].

    PubMed

    Baraboĭ, V A

    1990-01-01

    The Chernobyl accident has marked the beginning of a new stage of radiobiology development and revealed scantiness of old concepts. One should (1) search for effective protectors against the long-term influence of low-level radiation and means of removal of radionuclides using criteria that differ principally from those used previously in selecting among nontoxic antioxidants, immunomodulators, and adaptogens; (2) study systematically the synergism of low doses of harmful agents and review the hygienic standardization system with due regard for the risk from their combinations; (3) consider comprehensively, on the basis of the experimental and clinical experience, the problem of "hot" particles and remote consequences of their influence on the respiratory and digestive systems; (4) study independently the problem of chronic stress as a combination of radiation effects and psycho-emotional consequences of the accident and living in the exposed areas; (5) consider it inadmissible to include in the B category the population of the districts influenced by the accident and to use the concept: "35 rads during the lifetime" in standardizing the radiation load; (6) organize a comprehensive analysis of the Chernobyl accident consequences for public health within the contaminated areas as well as for animals and plants using a single approved methodology and programme, the principle of "other equal conditions" being provided.

  11. Consequences of anorectal cancer atlas implementation in the cooperative group setting: radiobiologic analysis of a prospective randomized in silico target delineation study.

    PubMed

    Mavroidis, Panayiotis; Giantsoudis, Drosoula; Awan, Musaddiq J; Nijkamp, Jasper; Rasch, Coen R N; Duppen, Joop C; Thomas, Charles R; Okunieff, Paul; Jones, William E; Kachnic, Lisa A; Papanikolaou, Niko; Fuller, Clifton D

    2014-09-01

    The aim of this study is to ascertain the subsequent radiobiological impact of using a consensus guideline target volume delineation atlas. Using a representative case and target volume delineation instructions derived from a proposed IMRT rectal cancer clinical trial, gross tumor volume (GTV) and clinical/planning target volumes (CTV/PTV) were contoured by 13 physician observers (Phase 1). The observers were then randomly assigned to follow (atlas) or not-follow (control) a consensus guideline/atlas for anorectal cancers, and instructed to re-contour the same case (Phase 2). The atlas group was found to have increased tumor control probability (TCP) after the atlas intervention for both the CTV (p<0.0001) and PTV1 (p=0.0011) with decreasing normal tissue complication probability (NTCP) for small intestine, while the control group did not. Additionally, the atlas group had reduced variance in TCP for all target volumes and reduced variance in NTCP for the bowel. In Phase 2, the atlas group had increased TCP relative to the control for CTV (p=0.03). Visual atlas and consensus treatment guideline usage in the development of rectal cancer IMRT treatment plans reduced the inter-observer radiobiological variation, with clinically relevant TCP alteration for CTV and PTV volumes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. SU-F-T-03: Radiobiological Evaluation of a Directional Brachytherapy Device Surgically Implanted Following EBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, MJ; Emrich, JG; Poli, J

    2016-06-15

    Purpose: Preceding surgical implantation following external-beam radiotherapy (EBRT) delivery, a radiobiological evaluation was performed for a new LDR Pd-103 directional brachytherapy device (CivaSheet). As this was the first case with the device used in combination with EBRT, there was concern to determine the appropriate prescription dose. Methods: The radiobiological model of Dale (1985, 1989) was used for a permanent LDR implant including radioactive decay. The biological effective dose (BED) was converted to the equivalent dose in 2 Gy fractions (EQD2) for comparison with EBRT prescription expectations. Given IMRT delivery of 50.4 Gy, an LDR brachytherapy dose of approximately 15–20 Gymore » EQD2 was desired. To be specific to the treatment site (leiomyosarcoma T2bN0M0, grade 2 with R1 surgical margin), the radiobiological model required several radiobiological parameters with values taken from the literature. A sensitivity analysis was performed to determine their relative importance on the calculated BED and subsequent EQD2. The Pd-103 decay constant (λ=0.0017 h{sup −1}) was also used. DVHs were prepared for pre- and post-surgical geometries to glean the possible and realized implant geometric configuration. DVHs prepared in VariSeed9 were converted to BEDVHs and subsequently EQD2 values for each volume-element. Results: For a physical dose of 28 Gy to a 0.5 cm depth, BED=21.7 Gy and EQD2=17.6 Gy, which was near the center of the desired EQD2 range. Tumor bed (CTV=4 cm{sup 3}) coverage was 99.2% with 48 sources implanted. In order of decreasing importance from the sensitivity analysis, the radiobiological parameters were α=0.25 Gy{sup −1}, T{sub POT}=23 days, α/β=8.6 Gy, and T=1.5 h. Percentage variations in these values produced EQD2 variations of 40%, 20%, 18%, and 1%, respectively. Conclusion: This radiobiological evaluation indicated that prescription dose may be determined for comparison with the desired EQD2, and that

  13. BNL accelerator-based radiobiology facilities

    NASA Technical Reports Server (NTRS)

    Lowenstein, D. I.

    2001-01-01

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40-3000 MeV/nucleon with maximum beam intensities of 10(10) to 10(11) ions per pulse. The BAF Project will be described and the future AGS and BAF operation plans will be presented.

  14. BNL accelerator-based radiobiology facilities.

    PubMed

    Lowenstein, D I

    2001-01-01

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40-3000 MeV/nucleon with maximum beam intensities of 10(10) to 10(11) ions per pulse. The BAF Project will be described and the future AGS and BAF operation plans will be presented.

  15. The radiobiology of laser-driven particle beams: focus on sub-lethal responses of normal human cells

    NASA Astrophysics Data System (ADS)

    Manti, L.; Perozziello, F. M.; Borghesi, M.; Candiano, G.; Chaudhary, P.; Cirrone, G. A. P.; Doria, D.; Gwynne, D.; Leanza, R.; Prise, K. M.; Romagnani, L.; Romano, F.; Scuderi, V.; Tramontana, A.

    2017-03-01

    Accelerated proton beams have become increasingly common for treating cancer. The need for cost and size reduction of particle accelerating machines has led to the pioneering investigation of optical ion acceleration techniques based on laser-plasma interactions as a possible alternative. Laser-matter interaction can produce extremely pulsed particle bursts of ultra-high dose rates (>= 109 Gy/s), largely exceeding those currently used in conventional proton therapy. Since biological effects of ionizing radiation are strongly affected by the spatio-temporal distribution of DNA-damaging events, the unprecedented physical features of such beams may modify cellular and tissue radiosensitivity to unexplored extents. Hence, clinical applications of laser-generated particles need thorough assessment of their radiobiological effectiveness. To date, the majority of studies have either used rodent cell lines or have focussed on cancer cell killing being local tumour control the main objective of radiotherapy. Conversely, very little data exist on sub-lethal cellular effects, of relevance to normal tissue integrity and secondary cancers, such as premature cellular senescence. Here, we discuss ultra-high dose rate radiobiology and present preliminary data obtained in normal human cells following irradiation by laser-accelerated protons at the LULI PICO2000 facility at Laser Lab Europe, France.

  16. SU-F-T-680: Radiobiological Analysis of the Impact of Daily Patient Deformation and Setup Variations Through the Use of the Cone Beam CT and Deformable Image Registration in Lung Cancer IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurkovic, I; Stathakis, S; Markovic, M

    Purpose: To estimate the dose distributions delivered to the patient in each treatment fraction using deformable image registration (DIR) and assess the radiobiological impact of the inter-fraction variations due to patient deformation and setup. Methods: The work is based on the cone beam CT (CBCT) images and treatment plans of two lung cancer patients. Both patients were treated with intensity modulated radiation therapy (IMRT) to 66Gy in 2Gy/fraction. The treatment plans were exported from the treatment planning system (TPS) to the Velocity AI where DIR was performed and the same deformation matrix was used for the deformation of the plannedmore » dose distribution and organ contours to each CBCT dataset. A radiobiological analysis was performed based on the radiobiological parameters of the involved organs at risk (OARs) and planning target volume (PTV). Using the complication free tumor control probability (P+) index, differences in P+ were observed between each CBCT as well as between CBCT and planning dose distributions. Results: The optimal CBCT P? values ranged from 91.6 % to 94.8 % for patient #1 and from 88.8 % to 90.6 % for patient #2. At the dose level of the clinical prescription, the CBCT P+ values ranged from 80.3% to 80.7% for patient #1 and from 80.7% to 81.0% for the patient #2. The planning CT P+ values were 81.0% and 80.7% for the two patients, respectively. These differences emphasize the significance of using the radiobiological analysis when assessing changes in the dose distribution due to the tumor motion and lung deformations. Conclusion: Daily setup variations yield to differences in the actual dose delivered versus the planned one. The observed differences were rather small when only looking at the dosimetric comparison of the dose distributions, however the radiobiology analysis was able to detect clinically relevant differences among the studied dose distributions.« less

  17. Dosimetry for radiobiological studies of the human hematopoietic system

    NASA Technical Reports Server (NTRS)

    Beck, W. L.; Stokes, T. R.; Lushbaugh, C. C.

    1972-01-01

    A system for estimating individual bone marrow doses in therapeutic radiation exposures of leukemia patients was studied. These measurements are used to make dose response correlations and to study the effect of dose protraction on peripheral blood cell levels. Three irradiators designed to produce a uniform field of high energy gamma radiation for total body exposures of large animals and man are also used for radiobiological studies.

  18. Influence of oxygen on the chemical stage of radiobiological mechanism

    NASA Astrophysics Data System (ADS)

    Barilla, Jiří; Lokajíček, Miloš V.; Pisaková, Hana; Simr, Pavel

    2016-07-01

    The simulation of the chemical stage of radiobiological mechanism may be very helpful in studying the radiobiological effect of ionizing radiation when the water radical clusters formed by the densely ionizing ends of primary or secondary charged particle may form DSBs damaging DNA molecules in living cells. It is possible to study not only the efficiency of individual radicals but also the influence of other species or radiomodifiers (mainly oxygen) being present in water medium during irradiation. The mathematical model based on Continuous Petri nets (proposed by us recently) will be described. It makes it possible to analyze two main processes running at the same time: chemical radical reactions and the diffusion of radical clusters formed during energy transfer. One may study the time change of radical concentrations due to the chemical reactions running during diffusion process. Some orientation results concerning the efficiency of individual radicals in DSB formation (in the case of Co60 radiation) will be presented; the influence of oxygen present in water medium during irradiation will be shown, too.

  19. SU-E-T-275: Radiobiological Evaluation of Intensity Modulated Radiotherapy Treatment for Locally Advanced Head and Neck Squamous Cell Carcinomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rekha Reddy, B.; Ravikumar, M.; Tanvir Pasha, C.R

    2014-06-01

    Purpose: To evaluate the radiobiological outcome of Intensity Modulated Radiotherapy Treatment (IMRT) for locally advanced head and neck squamous cell carcinomas using HART (Histogram Analysis in Radiation Therapy; J Appl Clin Med Phys 11(1): 137–157, 2010) program and compare with the clinical outcomes. Methods: We have treated 20 patients of stage III and IV HNSCC Oropharynx and hypopharynx with accelerated IMRT technique and concurrent chemotherapy. Delineation of tumor and normal tissues were done using Danish Head and Neck Cancer Group (DAHANCA) contouring guidelines and radiotherapy was delivered to a dose of 70Gy in 35 fractions to the primary and involvedmore » lymph nodes, 63Gy to intermediate risk areas and 56 Gy to lower risk areas, Monday to Saturday, 6 Days/week using 6 MV Photons with an expected overall treatment time of 6 weeks. The TCP and NTCP's were calculated from the dose-volume histogram (DVH) statistics using the Poisson Statistics (PS) and JT Lyman models respectively and the Resultwas correlated with clinical outcomes of the patients with mean follow up of 24 months. Results: Using HART program, the TCP (0.89± 0.01) of primary tumor and the NTCP for parotids (0.20±0.12), spinal cord (0.05±0.01), esophagus (0.30±0.2), mandible (0.35±0.21), Oral cavity (0.37±0.18), Larynx (0.30±0.15) were estimated and correlated with clinical outcome of the patients. Conclusion: Accelerated IMRT with Chemotherapy is a clinical feasible option in the treatment of locally advanced HNSCC with encouraging initial tumour response and acceptable acute toxicities. The correlation between the clinical outcomes and radiobiological model estimated parameters using HART programs are found to be satisfactory.« less

  20. Monte Carlo studies on photon interactions in radiobiological experiments

    PubMed Central

    Shahmohammadi Beni, Mehrdad; Krstic, D.; Nikezic, D.

    2018-01-01

    X-ray and γ-ray photons have been widely used for studying radiobiological effects of ionizing radiations. Photons are indirectly ionizing radiations so they need to set in motion electrons (which are a directly ionizing radiation) to perform the ionizations. When the photon dose decreases to below a certain limit, the number of electrons set in motion will become so small that not all cells in an “exposed” cell population can get at least one electron hit. When some cells in a cell population are not hit by a directly ionizing radiation (in other words not irradiated), there will be rescue effect between the irradiated cells and non-irradiated cells, and the resultant radiobiological effect observed for the “exposed” cell population will be different. In the present paper, the mechanisms underlying photon interactions in radiobiological experiments were studied using our developed NRUphoton computer code, which was benchmarked against the MCNP5 code by comparing the photon dose delivered to the cell layer underneath the water medium. The following conclusions were reached: (1) The interaction fractions decreased in the following order: 16O > 12C > 14N > 1H. Bulges in the interaction fractions (versus water medium thickness) were observed, which reflected changes in the energies of the propagating photons due to traversals of different amount of water medium as well as changes in the energy-dependent photon interaction cross-sections. (2) Photoelectric interaction and incoherent scattering dominated for lower-energy (10 keV) and high-energy (100 keV and 1 MeV) incident photons. (3) The fractions of electron ejection from different nuclei were mainly governed by the photoelectric effect cross-sections, and the fractions from the 1s subshell were the largest. (4) The penetration fractions in general decreased with increasing medium thickness, and increased with increasing incident photon energy, the latter being explained by the corresponding reduction in

  1. MO-A-BRC-00: TG167: Clinical Recommendations for Innovative Brachytherapy Devices and Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on

  2. Successful Teaching of Radiobiology Students in the Medical Management of Acute Radiation Effects From Real Case Histories Using Clinical Signs and Symptoms and Taking Advantage of Recently Developed Software Tools.

    PubMed

    Majewski, Matthäus; Combs, Stephanie E; Trott, Klaus-Rüdiger; Abend, Michael; Port, Matthias

    2018-07-01

    In 2015, the Bundeswehr Institute of Radiobiology organized a North Atlantic Treaty Organization exercise to examine the significance of clinical signs and symptoms for the prediction of late-occurring acute radiation syndrome. Cases were generated using either the Medical Treatment Protocols for Radiation Accident Victims (METREPOL, n = 167) system or using real-case descriptions extracted from a database system for evaluation and archiving of radiation accidents based on case histories (SEARCH, n = 24). The cases ranged from unexposed [response category 0 (RC 0, n = 89)] to mild (RC 1, n = 45), moderate (RC 2, n = 19), severe (RC 3, n = 20), and lethal (RC 4, n = 18) acute radiation syndrome. During the previous exercise, expert teams successfully predicted hematological acute radiation syndrome severity, determined whether hospitalization was required, and gave treatment recommendations, taking advantage of different software tools developed by the North Atlantic Treaty Organization teams. The authors provided the same data set to radiobiology students who were introduced to the medical management of acute effects after radiation exposure and the software tools during a class lasting 15 h. Corresponding to the previous results, difficulties in the discrimination between RC 0/RC 1 and RC 3/RC 4, as well as a systematic underestimation of RC 1 and RC 2, were observed. Nevertheless, after merging reported response categories into clinically relevant groups (RC 0-1, RC 2-3, and RC 3-4), it was found that the majority of cases (95.2% ± 2.2 standard deviations) were correctly identified and that 94.7% (±2.6 standard deviations) developing acute radiation syndrome and z96.4% (±1.6 standard deviations) requiring hospitalization were identified correctly. Two out of three student teams also provided a dose estimate. These results are comparable to the best-performing team of the 2015 North Atlantic Treaty Organization exercise (response category: 92.5%; acute

  3. A study of the radiobiological modeling of the conformal radiation therapy in cancer treatment

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil Prasad

    Cancer is one of the leading causes of mortalities in the world. The precise diagnosis of the disease helps the patients to select the appropriate modality of the treatments such as surgery, chemotherapy and radiation therapy. The physics of X-radiation and the advanced imaging technologies such as positron emission tomography (PET) and computed tomography (CT) plays an important role in the efficient diagnosis and therapeutic treatments in cancer. However, the accuracy of the measurements of the metabolic target volumes (MTVs) in the PET/CT dual-imaging modality is always limited. Similarly the external beam radiation therapy (XRT) such as 3D conformal radiotherapy (3DCRT) and intensity modulated radiation therapy (IMRT) is the most common modality in the radiotherapy treatment. These treatments are simulated and evaluated using the XRT plans and the standard methodologies in the commercial planning system. However, the normal organs are always susceptible to the radiation toxicity in these treatments due to lack of knowledge of the appropriate radiobiological models to estimate the clinical outcomes. We explored several methodologies to estimate MTVs by reviewing various techniques of the target volume delineation using the static phantoms in the PET scans. The review suggests that the more precise and practical method of delineating PET MTV should be an intermediate volume between the volume coverage for the standardized uptake value (SUV; 2.5) of glucose and the 50% (40%) threshold of the maximum SUV for the smaller (larger) volume delineations in the radiotherapy applications. Similarly various types of optimal XRT plans were designed using the CT and PET/CT scans for the treatment of various types of cancer patients. The qualities of these plans were assessed using the universal plan-indices. The dose-volume criteria were also examined in the targets and organs by analyzing the conventional dose-volume histograms (DVHs). The biological models such as tumor

  4. Towards a Clinical Decision Support System for External Beam Radiation Oncology Prostate Cancer Patients: Proton vs. Photon Radiotherapy? A Radiobiological Study of Robustness and Stability

    PubMed Central

    Walsh, Seán; Roelofs, Erik; Kuess, Peter; van Wijk, Yvonka; Lambin, Philippe; Jones, Bleddyn; Verhaegen, Frank

    2018-01-01

    We present a methodology which can be utilized to select proton or photon radiotherapy in prostate cancer patients. Four state-of-the-art competing treatment modalities were compared (by way of an in silico trial) for a cohort of 25 prostate cancer patients, with and without correction strategies for prostate displacements. Metrics measured from clinical image guidance systems were used. Three correction strategies were investigated; no-correction, extended-no-action-limit, and online-correction. Clinical efficacy was estimated via radiobiological models incorporating robustness (how probable a given treatment plan was delivered) and stability (the consistency between the probable best and worst delivered treatments at the 95% confidence limit). The results obtained at the cohort level enabled the determination of a threshold for likely clinical benefit at the individual level. Depending on the imaging system and correction strategy; 24%, 32% and 44% of patients were identified as suitable candidates for proton therapy. For the constraints of this study: Intensity-modulated proton therapy with online-correction was on average the most effective modality. Irrespective of the imaging system, each treatment modality is similar in terms of robustness, with and without the correction strategies. Conversely, there is substantial variation in stability between the treatment modalities, which is greatly reduced by correction strategies. This study provides a ‘proof-of-concept’ methodology to enable the prospective identification of individual patients that will most likely (above a certain threshold) benefit from proton therapy. PMID:29463018

  5. Mixed-field GCR Simulations for Radiobiological Research using Ground Based Accelerators

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20 percents accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  6. Mixed-field GCR Simulations for Radiobiological Research Using Ground Based Accelerators

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.

    2014-01-01

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20% accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  7. Ill-posed problem and regularization in reconstruction of radiobiological parameters from serial tumor imaging data

    NASA Astrophysics Data System (ADS)

    Chvetsov, Alevei V.; Sandison, George A.; Schwartz, Jeffrey L.; Rengan, Ramesh

    2015-11-01

    The main objective of this article is to improve the stability of reconstruction algorithms for estimation of radiobiological parameters using serial tumor imaging data acquired during radiation therapy. Serial images of tumor response to radiation therapy represent a complex summation of several exponential processes as treatment induced cell inactivation, tumor growth rates, and the rate of cell loss. Accurate assessment of treatment response would require separation of these processes because they define radiobiological determinants of treatment response and, correspondingly, tumor control probability. However, the estimation of radiobiological parameters using imaging data can be considered an inverse ill-posed problem because a sum of several exponentials would produce the Fredholm integral equation of the first kind which is ill posed. Therefore, the stability of reconstruction of radiobiological parameters presents a problem even for the simplest models of tumor response. To study stability of the parameter reconstruction problem, we used a set of serial CT imaging data for head and neck cancer and a simplest case of a two-level cell population model of tumor response. Inverse reconstruction was performed using a simulated annealing algorithm to minimize a least squared objective function. Results show that the reconstructed values of cell surviving fractions and cell doubling time exhibit significant nonphysical fluctuations if no stabilization algorithms are applied. However, after applying a stabilization algorithm based on variational regularization, the reconstruction produces statistical distributions for survival fractions and doubling time that are comparable to published in vitro data. This algorithm is an advance over our previous work where only cell surviving fractions were reconstructed. We conclude that variational regularization allows for an increase in the number of free parameters in our model which enables development of more

  8. Radiobiological studies using gamma and x rays.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R.

    2013-02-01

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  9. Fluctuations in energy loss and their implications for dosimetry and radiobiology

    NASA Technical Reports Server (NTRS)

    Baily, N. A.; Steigerwalt, J. E.

    1972-01-01

    Serious consideration of the physics of energy deposition indicates that a fundamental change in the interpretation of absorbed dose is required at least for considerations of effects in biological systems. In addition, theoretical approaches to radiobiology and microdosimetry seem to require statistical considerations incorporating frequency distributions of the magnitude of the event sizes within the volume of interest.

  10. ‘Survival’: a simulation toolkit introducing a modular approach for radiobiological evaluations in ion beam therapy

    NASA Astrophysics Data System (ADS)

    Manganaro, L.; Russo, G.; Bourhaleb, F.; Fausti, F.; Giordanengo, S.; Monaco, V.; Sacchi, R.; Vignati, A.; Cirio, R.; Attili, A.

    2018-04-01

    One major rationale for the application of heavy ion beams in tumour therapy is their increased relative biological effectiveness (RBE). The complex dependencies of the RBE on dose, biological endpoint, position in the field etc require the use of biophysical models in treatment planning and clinical analysis. This study aims to introduce a new software, named ‘Survival’, to facilitate the radiobiological computations needed in ion therapy. The simulation toolkit was written in C++ and it was developed with a modular architecture in order to easily incorporate different radiobiological models. The following models were successfully implemented: the local effect model (LEM, version I, II and III) and variants of the microdosimetric-kinetic model (MKM). Different numerical evaluation approaches were also implemented: Monte Carlo (MC) numerical methods and a set of faster analytical approximations. Among the possible applications, the toolkit was used to reproduce the RBE versus LET for different ions (proton, He, C, O, Ne) and different cell lines (CHO, HSG). Intercomparison between different models (LEM and MKM) and computational approaches (MC and fast approximations) were performed. The developed software could represent an important tool for the evaluation of the biological effectiveness of charged particles in ion beam therapy, in particular when coupled with treatment simulations. Its modular architecture facilitates benchmarking and inter-comparison between different models and evaluation approaches. The code is open source (GPL2 license) and available at https://github.com/batuff/Survival.

  11. Radiobiological evaluation of simultaneously dose-escalated versus non-escalated intensity-modulated radiation therapy for patients with upper thoracic esophageal cancer.

    PubMed

    Huang, Bao-Tian; Wu, Li-Li; Guo, Long-Jia; Xu, Liang-Yu; Huang, Rui-Hong; Lin, Pei-Xian; Chen, Jian-Zhou; Li, De-Rui; Chen, Chuang-Zhen

    2017-01-01

    To compare the radiobiological response between simultaneously dose-escalated and non-escalated intensity-modulated radiation therapy (DE-IMRT and NE-IMRT) for patients with upper thoracic esophageal cancer (UTEC) using radiobiological evaluation. Computed tomography simulation data sets for 25 patients pathologically diagnosed with primary UTEC were used in this study. DE-IMRT plan with an escalated dose of 64.8 Gy/28 fractions to the gross tumor volume (GTV) and involved lymph nodes from 25 patients pathologically diagnosed with primary UTEC, was compared to an NE-IMRT plan of 50.4 Gy/28 fractions. Dose-volume metrics, tumor control probability (TCP), and normal tissue complication probability for the lung and spinal cord were compared. In addition, the risk of acute esophageal toxicity (AET) and late esophageal toxicity (LET) were also analyzed. Compared with NE-IMRT plan, we found the DE-IMRT plan resulted in a 14.6 Gy dose escalation to the GTV. The tumor control was predicted to increase by 31.8%, 39.1%, and 40.9% for three independent TCP models. The predicted incidence of radiation pneumonitis was similar (3.9% versus 3.6%), and the estimated risk of radiation-induced spinal cord injury was extremely low (<0.13%) in both groups. Regarding the esophageal toxicities, the estimated grade ≥2 and grade ≥3 AET predicted by the Kwint model were increased by 2.5% and 3.8%. Grade ≥2 AET predicted using the Wijsman model was increased by 14.9%. The predicted incidence of LET was low (<0.51%) in both groups. Radiobiological evaluation reveals that the DE-IMRT dosing strategy is feasible for patients with UTEC, with significant gains in tumor control and minor or clinically acceptable increases in radiation-induced toxicities.

  12. SU-F-J-11: Radiobiologically Optimized Patient Localization During Prostate External Beam Localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y; Gardner, S; Liu, C

    2016-06-15

    Purpose: To present a novel positioning strategy which optimizes radiation delivery with radiobiological response knowledge, and to evaluate its application during prostate external beam radiotherapy. Methods: Ten patients with low or intermediate risk prostate cancer were evaluated retrospectively in this IRB-approved study. For each patient, a VMAT plan was generated on the planning CT (PCT) to deliver 78 Gy in 39 fractions with PTV = prostate + 7 mm margin, except for 5mm in the posterior direction. Five representative pretreatment CBCT images were selected for each patient, and prostate, rectum, and bladder were delineated on all CBCT images. Each CBCTmore » was auto-registered to the corresponding PCT. Starting from this auto-matched position (AM-position), a search for optimal treatment position was performed utilizing a score function based on radiobiological and dosimetric indices (D98-DTV, NTCP-rectum, and NTCP-bladder) for the daily target volume (DTV), rectum, and bladder. DTV was defined as prostate + 4 mm margin to account for intra-fraction motion as well as contouring variability on CBCT. We termed the optimal treatment position the radiobiologically optimized couch shift position (ROCS-position). Results: The indices, averaged over the 10 patients’ treatment plans, were (mean±SD): 77.7±0.2 Gy (D98-PTV), 12.3±2.7% (NTCP-rectum), and 53.2±11.2% (NTCP-bladder). The corresponding values calculated on all 50 CBCT images at the AM-positions were 72.9±11.3 Gy (D98-DTV), 15.8±6.4% (NTCP-rectum), and 53.0±21.1% (NTCP-bladder), respectively. In comparison, calculated on CBCT at the ROCS-positions, the indices were 77.0±2.1 Gy (D98-DTV), 12.1±5.7% (NTCP-rectum), and 60.7±16.4% (NTCP-bladder). Compared to autoregistration, ROCS-optimization recovered dose coverage to target volume and lowered the risk to rectum. Moreover, NTCPrectum for one patient remained high after ROCS-optimization and therefore could potentially benefit from adaptive planning

  13. Clinical Utility of Quantitative Gleason Grading in Prostate Biopsies and Prostatectomy Specimens.

    PubMed

    Sauter, Guido; Steurer, Stefan; Clauditz, Till Sebastian; Krech, Till; Wittmer, Corinna; Lutz, Florian; Lennartz, Maximilian; Janssen, Tim; Hakimi, Nayira; Simon, Ronald; von Petersdorff-Campen, Mareike; Jacobsen, Frank; von Loga, Katharina; Wilczak, Waldemar; Minner, Sarah; Tsourlakis, Maria Christina; Chirico, Viktoria; Haese, Alexander; Heinzer, Hans; Beyer, Burkhard; Graefen, Markus; Michl, Uwe; Salomon, Georg; Steuber, Thomas; Budäus, Lars Henrik; Hekeler, Elena; Malsy-Mink, Julia; Kutzera, Sven; Fraune, Christoph; Göbel, Cosima; Huland, Hartwig; Schlomm, Thorsten

    2016-04-01

    Gleason grading is the strongest prognostic parameter in prostate cancer. Gleason grading is categorized as Gleason ≤ 6, 3 + 4, 4 + 3, 8, and 9-10, but there is variability within these subgroups. For example, Gleason 4 components may range from 5-45% in a Gleason 3 + 4 = 7 cancer. To assess the clinical relevance of the fractions of Gleason patterns. Prostatectomy specimens from 12823 consecutive patients and of 2971 matched preoperative biopsies for which clinical data with an annual follow-up between 2005 and 2014 were available from the Martini-Klinik database. To evaluate the utility of quantitative grading, the fraction of Gleason 3, 4, and 5 patterns seen in biopsies and prostatectomies were recorded. Gleason grade fractions were compared with prostatectomy findings and prostate-specific antigen recurrence. Our data suggest a striking utility of quantitative Gleason grading. In prostatectomy specimens, there was a continuous increase of the risk of prostate-specific antigen recurrence with increasing percentage of Gleason 4 fractions with remarkably small differences in outcome at clinically important thresholds (0% vs 5%; 40% vs 60% Gleason 4), distinguishing traditionally established prognostic groups. Also, in biopsies, the quantitative Gleason scoring identified various intermediate risk groups with respect to Gleason findings in corresponding prostatectomies. Quantitative grading may also reduce the clinical impact of interobserver variability because borderline findings such as tumors with 5%, 40%, or 60% Gleason 4 fractions and very small Gleason 5 fractions (with pivotal impact on the Gleason score) are disclaimed. Quantitative Gleason pattern data should routinely be provided in addition to Gleason score categories, both in biopsies and in prostatectomy specimens. Gleason score is the most important prognostic parameter in prostate cancer, but prone to interobserver variation. The results of our study show that morphological aspects that define

  14. Radiobiological modeling of two stereotactic body radiotherapy schedules in patients with stage I peripheral non-small cell lung cancer.

    PubMed

    Huang, Bao-Tian; Lin, Zhu; Lin, Pei-Xian; Lu, Jia-Yang; Chen, Chuang-Zhen

    2016-06-28

    This study aims to compare the radiobiological response of two stereotactic body radiotherapy (SBRT) schedules for patients with stage I peripheral non-small cell lung cancer (NSCLC) using radiobiological modeling methods. Volumetric modulated arc therapy (VMAT)-based SBRT plans were designed using two dose schedules of 1 × 34 Gy (34 Gy in 1 fraction) and 4 × 12 Gy (48 Gy in 4 fractions) for 19 patients diagnosed with primary stage I NSCLC. Dose to the gross target volume (GTV), planning target volume (PTV), lung and chest wall (CW) were converted to biologically equivalent dose in 2 Gy fraction (EQD2) for comparison. Five different radiobiological models were employed to predict the tumor control probability (TCP) value. Three additional models were utilized to estimate the normal tissue complication probability (NTCP) value for the lung and the modified equivalent uniform dose (mEUD) value to the CW. Our result indicates that the 1 × 34 Gy dose schedule provided a higher EQD2 dose to the tumor, lung and CW. Radiobiological modeling revealed that the TCP value for the tumor, NTCP value for the lung and mEUD value for the CW were 7.4% (in absolute value), 7.2% (in absolute value) and 71.8% (in relative value) higher on average, respectively, using the 1 × 34 Gy dose schedule.

  15. Cell irradiation setup and dosimetry for radiobiological studies at ELBE

    NASA Astrophysics Data System (ADS)

    Zeil, K.; Beyreuther, E.; Lessmann, E.; Wagner, W.; Pawelke, J.

    2009-07-01

    The radiation source ELBE delivers different types of secondary radiation, which is used for cell irradiation studies in radiobiological research. Thereby an important issue is the determination of the biological effectiveness of photon radiation as a function of photon energy by using low-energetic, monochromatic channeling radiation (10-100 keV) and high-energetic bremsstrahlung (up to 40 MV). Radiobiological studies at the research facility ELBE demand special technical and dosimetric prerequisites. Therefore, a cell irradiation system (CIS) has been designed, constructed and installed at the beam line. The CIS allows automatic irradiation of a larger cell sample number and the compensation of spatial inhomogeneity of the dose distribution within the beam spot. The recently introduced GafChromic ® EBT radiochromic film model has been used to verify the cell irradiation dose deposition achieving a dose uncertainty of <5%. Both, the installed cell irradiation system and the developed dosimetric procedure based on the use of the EBT film have been experimentally tested at ELBE. The biological effectiveness of 34 MV bremsstrahlung with respect to 200 kV X-rays from a conventional X-ray tube has been determined. An RBE value of 0.75 has been measured in good agreement with literature.

  16. Quantitative Metrics in Clinical Radiology Reporting: A Snapshot Perspective from a Single Mixed Academic-Community Practice

    PubMed Central

    Abramson, Richard G.; Su, Pei-Fang; Shyr, Yu

    2012-01-01

    Quantitative imaging has emerged as a leading priority on the imaging research agenda, yet clinical radiology has traditionally maintained a skeptical attitude toward numerical measurement in diagnostic interpretation. To gauge the extent to which quantitative reporting has been incorporated into routine clinical radiology practice, and to offer preliminary baseline data against which the evolution of quantitative imaging can be measured, we obtained all clinical computed tomography (CT) and magnetic resonance imaging (MRI) reports from two randomly selected weekdays in 2011 at a single mixed academic-community practice and evaluated those reports for the presence of quantitative descriptors. We found that 44% of all reports contained at least one “quantitative metric” (QM), defined as any numerical descriptor of a physical property other than quantity, but only 2% of reports contained an “advanced quantitative metric” (AQM), defined as a numerical parameter reporting on lesion function or composition, excluding simple size and distance measurements. Possible reasons for the slow translation of AQMs into routine clinical radiology reporting include perceptions that the primary clinical question may be qualitative in nature or that a qualitative answer may be sufficient; concern that quantitative approaches may obscure important qualitative information, may not be adequately validated, or may not allow sufficient expression of uncertainty; the feeling that “gestalt” interpretation may be superior to quantitative paradigms; and practical workflow limitations. We suggest that quantitative imaging techniques will evolve primarily as dedicated instruments for answering specific clinical questions requiring precise and standardized interpretation. Validation in real-world settings, ease of use, and reimbursement economics will all play a role in determining the rate of translation of AQMs into broad practice. PMID:22795791

  17. Radiobiologically optimized couch shift: A new localization paradigm using cone-beam CT for prostate radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yimei, E-mail: yhuang2@hfhs.org; Gardner, Stephen J.; Wen, Ning

    2015-10-15

    Purpose: To present a novel positioning strategy which optimizes radiation delivery by utilizing radiobiological response knowledge and evaluate its use during prostate external beam radiotherapy. Methods: Five patients with low or intermediate risk prostate cancer were evaluated retrospectively in this IRB-approved study. For each patient, a VMAT plan with one 358° arc was generated on the planning CT (PCT) to deliver 78 Gy in 39 fractions. Five representative pretreatment cone beam CTs (CBCT) were selected for each patient. The CBCT images were registered to PCT by a human observer, which consisted of an initial automated registration with three degrees-of-freedom, followedmore » by manual adjustment for agreement at the prostate/rectal wall interface. To determine the optimal treatment position for each CBCT, a search was performed centering on the observer-matched position (OM-position) utilizing a score function based on radiobiological and dosimetric indices (EUD{sub prostate}, D99{sub prostate}, NTCP{sub rectum}, and NTCP{sub bladder}) for the prostate, rectum, and bladder. We termed the optimal treatment position the radiobiologically optimized couch shift position (ROCS-position). Results: The dosimetric indices, averaged over the five patients’ treatment plans, were (mean ± SD) 79.5 ± 0.3 Gy (EUD{sub prostate}), 78.2 ± 0.4 Gy (D99{sub prostate}), 11.1% ± 2.7% (NTCP{sub rectum}), and 46.9% ± 7.6% (NTCP{sub bladder}). The corresponding values from CBCT at the OM-positions were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.8 ± 0.7 Gy (D99{sub prostate}), 12.1% ± 5.6% (NTCP{sub rectum}), and 51.6% ± 15.2% (NTCP{sub bladder}), respectively. In comparison, from CBCT at the ROCS-positions, the dosimetric indices were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.3 ± 0.6 Gy (D99{sub prostate}), 8.0% ± 3.3% (NTCP{sub rectum}), and 46.9% ± 15.7% (NTCP{sub bladder}). Excessive NTCP{sub rectum} was observed on Patient 5 (19.5% ± 6.6%) corresponding to localization

  18. A Quantitative Proteomics Approach to Clinical Research with Non-Traditional Samples

    PubMed Central

    Licier, Rígel; Miranda, Eric; Serrano, Horacio

    2016-01-01

    The proper handling of samples to be analyzed by mass spectrometry (MS) can guarantee excellent results and a greater depth of analysis when working in quantitative proteomics. This is critical when trying to assess non-traditional sources such as ear wax, saliva, vitreous humor, aqueous humor, tears, nipple aspirate fluid, breast milk/colostrum, cervical-vaginal fluid, nasal secretions, bronco-alveolar lavage fluid, and stools. We intend to provide the investigator with relevant aspects of quantitative proteomics and to recognize the most recent clinical research work conducted with atypical samples and analyzed by quantitative proteomics. Having as reference the most recent and different approaches used with non-traditional sources allows us to compare new strategies in the development of novel experimental models. On the other hand, these references help us to contribute significantly to the understanding of the proportions of proteins in different proteomes of clinical interest and may lead to potential advances in the emerging field of precision medicine. PMID:28248241

  19. A Quantitative Proteomics Approach to Clinical Research with Non-Traditional Samples.

    PubMed

    Licier, Rígel; Miranda, Eric; Serrano, Horacio

    2016-10-17

    The proper handling of samples to be analyzed by mass spectrometry (MS) can guarantee excellent results and a greater depth of analysis when working in quantitative proteomics. This is critical when trying to assess non-traditional sources such as ear wax, saliva, vitreous humor, aqueous humor, tears, nipple aspirate fluid, breast milk/colostrum, cervical-vaginal fluid, nasal secretions, bronco-alveolar lavage fluid, and stools. We intend to provide the investigator with relevant aspects of quantitative proteomics and to recognize the most recent clinical research work conducted with atypical samples and analyzed by quantitative proteomics. Having as reference the most recent and different approaches used with non-traditional sources allows us to compare new strategies in the development of novel experimental models. On the other hand, these references help us to contribute significantly to the understanding of the proportions of proteins in different proteomes of clinical interest and may lead to potential advances in the emerging field of precision medicine.

  20. Establishing Quantitative Within-Subject Confidence Limits For Clinical Stereoroentgenographs

    NASA Astrophysics Data System (ADS)

    Korn, Edward L.; Baumrind, Sheldon; Chafetz, Neil; Curry, Sean; Moffitt, Francis

    1983-07-01

    It is now quite clear that under ideal conditions, discrete points can be located on x-ray films with standard deviations of less than 50 i. However, under routine clinical conditions, such considerations as individual variation in anatomy, movement of the subject between exposures, and variations in image quality combine to produce considerable reductions in the confidence which can be placed in quantitative assessments made from stereoroentgenographic films. This paper discusses some considerations involved in designing mathematical models in such a way as to optimize the use of imperfect data in answering specific clinical questions.

  1. Radioecology, radiobiology, and radiological protection: frameworks and fractures.

    PubMed

    Pentreath, R J

    2009-12-01

    A framework for the protection of the general public has been in existence for a very long time, although steps have recently been made by the ICRP to ensure that it is more fully comprehensive with regard to all actual and potential exposure situations. Protection of the environment, however, has only recently begun to be addressed in a structured manner, and is still an evolving subject. Nevertheless, it needs to be centred around some form of parallel framework to that which has evolved for the protection of human beings, although clearly on a different scale. It also needs to be embedded within the basic science of radiobiology, and form a central part of radioecology.

  2. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    NASA Astrophysics Data System (ADS)

    Adjei, Daniel; Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk; Vyšín, Luděk; Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M.; Pina, Ladislav; Davídková, Marie; Juha, Libor

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray "water window" spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280-540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 103 photons/μm2/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms' sensitivity to pulsed radiation in the "water window", where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET - Linear Energy Transfer) and dose-rate effects in radiobiology.

  3. [From microdosimetry to nanodosimetry--the link between radiobiology and radiation physics].

    PubMed

    Fu, Yuchuan; Li, Ping

    2014-06-01

    The link between micro- and macro-parameters for radiation interactions that take place in living biological systems is described in this paper. Meanwhile recent progress and development in microdosimetry and nanodosimetry are introduced, including the methods to measure and calculate these micro- or nano-parameters. The relationship between radiobiology and physical quantities in microdosimetry and nanodosimetry was presented. Both the current problems on their applications in radiation protection and radiotherapy and the future development direction are proposed.

  4. Comparison of methodologic quality and study/report characteristics between quantitative clinical nursing and nursing education research articles.

    PubMed

    Schneider, Barbara St Pierre; Nicholas, Jennifer; Kurrus, Jeffrey E

    2013-01-01

    To compare the methodologic quality and study/report characteristics between quantitative clinical nursing and nursing education research articles. The methodologic quality of quantitative nursing education research needs to advance to a higher level. Clinical research can provide guidance for nursing education to reach this level. One hundred quantitative clinical research articles from-high impact journals published in 2007 and 37 education research articles from high impact journals published in 2006 to 2007 were chosen for analysis. Clinical articles had significantly higher quality scores than education articles in three domains: number of institutions studied, type of data, and outcomes. The findings indicate three ways in which nursing education researchers can strengthen the methodologic quality of their quantitative research. With this approach, greater funding may be secured for advancing the science of nursing education.

  5. Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer.

    PubMed

    Brown, J Quincy; Vishwanath, Karthik; Palmer, Gregory M; Ramanujam, Nirmala

    2009-02-01

    Methods of optical spectroscopy that provide quantitative, physically or physiologically meaningful measures of tissue properties are an attractive tool for the study, diagnosis, prognosis, and treatment of various cancers. Recent development of methodologies to convert measured reflectance and fluorescence spectra from tissue to cancer-relevant parameters such as vascular volume, oxygenation, extracellular matrix extent, metabolic redox states, and cellular proliferation have significantly advanced the field of tissue optical spectroscopy. The number of publications reporting quantitative tissue spectroscopy results in the UV-visible wavelength range has increased sharply in the past three years, and includes new and emerging studies that correlate optically measured parameters with independent measures such as immunohistochemistry, which should aid in increased clinical acceptance of these technologies.

  6. Simulation and the Development of Clinical Judgment: A Quantitative Study

    ERIC Educational Resources Information Center

    Holland, Susan

    2015-01-01

    The purpose of this quantitative pretest posttest quasi-experimental research study was to explore the effect of the NESD on clinical judgment in associate degree nursing students and compare the differences between groups when the Nursing Education Simulation Design (NESD) guided simulation in order to identify educational strategies promoting…

  7. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET

    NASA Astrophysics Data System (ADS)

    Ahn, Sangtae; Ross, Steven G.; Asma, Evren; Miao, Jun; Jin, Xiao; Cheng, Lishui; Wollenweber, Scott D.; Manjeshwar, Ravindra M.

    2015-08-01

    Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs.

  8. Radiobiological characterization of post-lumpectomy focal brachytherapy with lipid nanoparticle-carried radionuclides

    NASA Astrophysics Data System (ADS)

    Hrycushko, Brian A.; Gutierrez, Alonso N.; Goins, Beth; Yan, Weiqiang; Phillips, William T.; Otto, Pamela M.; Bao, Ande

    2011-02-01

    Post-operative radiotherapy has commonly been used for early stage breast cancer to treat residual disease. The primary objective of this work was to characterize, through dosimetric and radiobiological modeling, a novel focal brachytherapy technique which uses direct intracavitary infusion of β-emitting radionuclides (186Re/188Re) carried by lipid nanoparticles (liposomes). Absorbed dose calculations were performed for a spherical lumpectomy cavity with a uniformly injected activity distribution using a dose point kernel convolution technique. Radiobiological indices were used to relate predicted therapy outcome and normal tissue complication of this technique with equivalent external beam radiotherapy treatment regimens. Modeled stromal damage was used as a measure of the inhibition of the stimulatory effect on tumor growth driven by the wound healing response. A sample treatment plan delivering 50 Gy at a therapeutic range of 2.0 mm for 186Re-liposomes and 5.0 mm for 188Re-liposomes takes advantage of the dose delivery characteristics of the β-emissions, providing significant EUD (58.2 Gy and 72.5 Gy for 186Re and 188Re, respectively) with a minimal NTCP (0.046%) of the healthy ipsilateral breast. Modeling of kidney BED and ipsilateral breast NTCP showed that large injected activity concentrations of both radionuclides could be safely administered without significant complications.

  9. Quantitative PET/CT scanner performance characterization based upon the society of nuclear medicine and molecular imaging clinical trials network oncology clinical simulator phantom.

    PubMed

    Sunderland, John J; Christian, Paul E

    2015-01-01

    The Clinical Trials Network (CTN) of the Society of Nuclear Medicine and Molecular Imaging (SNMMI) operates a PET/CT phantom imaging program using the CTN's oncology clinical simulator phantom, designed to validate scanners at sites that wish to participate in oncology clinical trials. Since its inception in 2008, the CTN has collected 406 well-characterized phantom datasets from 237 scanners at 170 imaging sites covering the spectrum of commercially available PET/CT systems. The combined and collated phantom data describe a global profile of quantitative performance and variability of PET/CT data used in both clinical practice and clinical trials. Individual sites filled and imaged the CTN oncology PET phantom according to detailed instructions. Standard clinical reconstructions were requested and submitted. The phantom itself contains uniform regions suitable for scanner calibration assessment, lung fields, and 6 hot spheric lesions with diameters ranging from 7 to 20 mm at a 4:1 contrast ratio with primary background. The CTN Phantom Imaging Core evaluated the quality of the phantom fill and imaging and measured background standardized uptake values to assess scanner calibration and maximum standardized uptake values of all 6 lesions to review quantitative performance. Scanner make-and-model-specific measurements were pooled and then subdivided by reconstruction to create scanner-specific quantitative profiles. Different makes and models of scanners predictably demonstrated different quantitative performance profiles including, in some cases, small calibration bias. Differences in site-specific reconstruction parameters increased the quantitative variability among similar scanners, with postreconstruction smoothing filters being the most influential parameter. Quantitative assessment of this intrascanner variability over this large collection of phantom data gives, for the first time, estimates of reconstruction variance introduced into trials from allowing

  10. Radiobiological effects of heavy ions and protons. [on cells of mammals, bacteria and viruses

    NASA Technical Reports Server (NTRS)

    Ryzhov, N. I.; Vorozhtsova, S. V.; Krasavin, Y. A.; Mashinskaya, T. Y.; Savchenko, N. Y.; Fedorov, B. S.; Khlaponina, V. F.; Shelegedin, V. N.; Gut, L.; Sabo, L.

    1974-01-01

    Radiobiological effects of heavy ions and protons are studied on cells of mammals, bacteria, viruses and DNA of bacteria. Results show that the dose effect dependence bears an exponential character; the reduction of RBE as LET of particle increases reflects the different character of microdistribution of absorbed energy in biological objects with different levels of biological organization.

  11. WE-H-BRA-02: Radiobiological Modeling of Tumor Control Probability (TCP) and Radiation-Induced Pneumonitis (RP) for Lung Cancer Patients Treated with Monte Carlo-Based Lung SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, D; Sood, S; Shen, X

    2016-06-15

    Purpose: To present radiobiological modeling of TCP using tumor size-adjusted BED(s-BED)and PTV(D99) to lung SBRT patients treated with X-ray Voxel Monte Carlo(XVMC) algorithm, apply parameterized Lyman-NTCP model to predict grade-2 RP and subsequently, compare with clinical outcomes/observations. Methods: Dosimetric parameters and clinical follow-up for XVMC-based lung-SBRT patients were retrospectively evaluated. Patients were treated at Novalis-TX with hybrid(2 non-coplanar partial-arcs plus 3–6 static-beams)plan using HD-MLC/6MV-SRS-beam.For TCP,s-BED modelling was utilized: TCP=EXP[sBED-TCD50]/k/(1.0+EXP[sBED-TCD50]/k), where k=31Gy corresponding to TCD50=0Gy and s-BED was defined as BED10 minus 10 times the tumor diameter(in centimeters)by Ohri et al.(IJROBP,2012). For 2-yr local-control, we used more-realistic MC-computed PTVD99 as amore » predictive parameter, s-BED(D99).Due to relatively shorter median follow-up interval(12-months),Kaplan-Meier curves were generated to estimate 2-yr observed local-control and compared to predicted-rate by TCP modeling. For NTCP, we employed parameterized Lyman-NTCP model utilizing normal-lung DVH and α/β=3Gy fitted to predict grade-2 RP after lung-SBRT. Results: Total 108 patients (137 tumors) treated for 35–70Gy in 3–5 fractions, either primary-lung(n=74)or metastatic-lung(n=53)tumors were included.F or the given prescription dose with MC-computed MUs, 2-yr local-control rates with s-BED(D99) was 87±8%. Kaplan-Meier generated observed local-control rate at 2-yr was 87.5%,suggesting that PTV(D99) could be a potential predictor (p-value=0.38). Observed vs predicted TCP for primary-lung tumors and metastatic tumors were 97% vs 88±7% and 94% vs 86±9%.NTCP model predicted well for symptomatic-RP with predicted vs observed (3±5% vs 2%). Radiographic and clinically significant RP was observed in 13% and 2% of patients. Higher rates of radiographic change were observed in patients who received >50Gy compared to

  12. Noise Maps for Quantitative and Clinical Severity Towards Long-Term ECG Monitoring.

    PubMed

    Everss-Villalba, Estrella; Melgarejo-Meseguer, Francisco Manuel; Blanco-Velasco, Manuel; Gimeno-Blanes, Francisco Javier; Sala-Pla, Salvador; Rojo-Álvarez, José Luis; García-Alberola, Arcadi

    2017-10-25

    Noise and artifacts are inherent contaminating components and are particularly present in Holter electrocardiogram (ECG) monitoring. The presence of noise is even more significant in long-term monitoring (LTM) recordings, as these are collected for several days in patients following their daily activities; hence, strong artifact components can temporarily impair the clinical measurements from the LTM recordings. Traditionally, the noise presence has been dealt with as a problem of non-desirable component removal by means of several quantitative signal metrics such as the signal-to-noise ratio (SNR), but current systems do not provide any information about the true impact of noise on the ECG clinical evaluation. As a first step towards an alternative to classical approaches, this work assesses the ECG quality under the assumption that an ECG has good quality when it is clinically interpretable. Therefore, our hypotheses are that it is possible (a) to create a clinical severity score for the effect of the noise on the ECG, (b) to characterize its consistency in terms of its temporal and statistical distribution, and (c) to use it for signal quality evaluation in LTM scenarios. For this purpose, a database of external event recorder (EER) signals is assembled and labeled from a clinical point of view for its use as the gold standard of noise severity categorization. These devices are assumed to capture those signal segments more prone to be corrupted with noise during long-term periods. Then, the ECG noise is characterized through the comparison of these clinical severity criteria with conventional quantitative metrics taken from traditional noise-removal approaches, and noise maps are proposed as a novel representation tool to achieve this comparison. Our results showed that neither of the benchmarked quantitative noise measurement criteria represent an accurate enough estimation of the clinical severity of the noise. A case study of long-term ECG is reported

  13. Computational modeling of radiobiological effects in bone metastases for different radionuclides.

    PubMed

    Liberal, Francisco D C Guerra; Tavares, Adriana Alexandre S; Tavares, João Manuel R S

    2017-06-01

    Computational simulation is a simple and practical way to study and to compare a variety of radioisotopes for different medical applications, including the palliative treatment of bone metastases. This study aimed to evaluate and compare cellular effects modelled for different radioisotopes currently in use or under research for treatment of bone metastases using computational methods. Computational models were used to estimate the radiation-induced cellular effects (Virtual Cell Radiobiology algorithm) post-irradiation with selected particles emitted by Strontium-89 ( 89 Sr), Samarium-153 ( 153 Sm), Lutetium-177 ( 177 Lu), and Radium-223 ( 223 Ra). Cellular kinetics post-irradiation using 89 Sr β - particles, 153 Sm β -  particles, 177 Lu β -  particles and 223 Ra α particles showed that the cell response was dose- and radionuclide-dependent. 177 Lu beta minus particles and, in particular, 223 Ra alpha particles, yielded the lowest survival fraction of all investigated particles. 223 Ra alpha particles induced the highest cell death of all investigated particles on metastatic prostate cells in comparison to irradiation with β -  radionuclides, two of the most frequently used radionuclides in the palliative treatment of bone metastases in clinical routine practice. Moreover, the data obtained suggest that the used computational methods might provide some perception about cellular effects following irradiation with different radionuclides.

  14. Correlation of quantitative sensorimotor tractography with clinical grade of cerebral palsy.

    PubMed

    Trivedi, Richa; Agarwal, Shruti; Shah, Vipul; Goyel, Puneet; Paliwal, Vimal K; Rathore, Ram K S; Gupta, Rakesh K

    2010-08-01

    The purpose of this study was to determine whether tract-specific diffusion tensor imaging measures in somatosensory and motor pathways correlate with clinical grades as defined using the Gross Motor Function Classification System (GMFCS) in cerebral palsy (CP) children. Quantitative diffusion tensor tractography was performed on 39 patients with spastic quadriparesis (mean age = 8 years) and 14 age/sex-matched controls. All patients were graded on the basis of GMFCS scale into grade II (n = 12), grade IV (n = 22), and grade V (n = 5) CP and quantitative analysis reconstruction of somatosensory and motor tracts performed. Significant inverse correlation between clinical grade and fractional anisotropy (FA) was observed in both right and left motor and sensory tracts. A significant direct correlation of mean diffusivity values from both motor and sensory tracts was also observed with clinical grades. Successive decrease in FA values was observed in all tracts except for left motor tracts moving from age/sex-matched controls to grade V through grades II and IV. We conclude that white matter tracts from both the somatosensory and the motor cortex play an important role in the pathophysiology of motor disability in patients with CP.

  15. Early experiences in establishing a regional quantitative imaging network for PET/CT clinical trials.

    PubMed

    Doot, Robert K; Thompson, Tove; Greer, Benjamin E; Allberg, Keith C; Linden, Hannah M; Mankoff, David A; Kinahan, Paul E

    2012-11-01

    The Seattle Cancer Care Alliance (SCCA) is a Pacific Northwest regional network that enables patients from community cancer centers to participate in multicenter oncology clinical trials where patients can receive some trial-related procedures at their local center. Results of positron emission tomography (PET) scans performed at community cancer centers are not currently used in SCCA Network trials since clinical trials customarily accept results from only trial-accredited PET imaging centers located at academic and large hospitals. Oncologists would prefer the option of using standard clinical PET scans from Network sites in multicenter clinical trials to increase accrual of patients for whom additional travel requirements for imaging are a barrier to recruitment. In an effort to increase accrual of rural and other underserved populations to Network trials, researchers and clinicians at the University of Washington, SCCA and its Network are assessing the feasibility of using PET scans from all Network sites in their oncology clinical trials. A feasibility study is required because the reproducibility of multicenter PET measurements ranges from approximately 3% to 40% at national academic centers. Early experiences from both national and local PET phantom imaging trials are discussed, and next steps are proposed for including patient PET scans from the emerging regional quantitative imaging network in clinical trials. There are feasible methods to determine and characterize PET quantitation errors and improve data quality by either prospective scanner calibration or retrospective post hoc corrections. These methods should be developed and implemented in multicenter clinical trials employing quantitative PET imaging of patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Quantitative metrics for evaluating the phased roll-out of clinical information systems.

    PubMed

    Wong, David; Wu, Nicolas; Watkinson, Peter

    2017-09-01

    We introduce a novel quantitative approach for evaluating the order of roll-out during phased introduction of clinical information systems. Such roll-outs are associated with unavoidable risk due to patients transferring between clinical areas using both the old and new systems. We proposed a simple graphical model of patient flow through a hospital. Using a simple instance of the model, we showed how a roll-out order can be generated by minimising the flow of patients from the new system to the old system. The model was applied to admission and discharge data acquired from 37,080 patient journeys at the Churchill Hospital, Oxford between April 2013 and April 2014. The resulting order was evaluated empirically and produced acceptable orders. The development of data-driven approaches to clinical Information system roll-out provides insights that may not necessarily be ascertained through clinical judgment alone. Such methods could make a significant contribution to the smooth running of an organisation during the roll-out of a potentially disruptive technology. Unlike previous approaches, which are based on clinical opinion, the approach described here quantitatively assesses the appropriateness of competing roll-out strategies. The data-driven approach was shown to produce strategies that matched clinical intuition and provides a flexible framework that may be used to plan and monitor Clinical Information System roll-out. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. Radiobiological Effectiveness of Ultrashort Laser-Driven Electron Bunches: Micronucleus Frequency, Telomere Shortening and Cell Viability.

    PubMed

    Andreassi, Maria Grazia; Borghini, Andrea; Pulignani, Silvia; Baffigi, Federica; Fulgentini, Lorenzo; Koester, Petra; Cresci, Monica; Vecoli, Cecilia; Lamia, Debora; Russo, Giorgio; Panetta, Daniele; Tripodi, Maria; Gizzi, Leonida A; Labate, Luca

    2016-09-01

    Laser-driven electron accelerators are capable of producing high-energy electron bunches in shorter distances than conventional radiofrequency accelerators. To date, our knowledge of the radiobiological effects in cells exposed to electrons using a laser-plasma accelerator is still very limited. In this study, we compared the dose-response curves for micronucleus (MN) frequency and telomere length in peripheral blood lymphocytes exposed to laser-driven electron pulse and X-ray radiations. Additionally, we evaluated the effects on cell survival of in vitro tumor cells after exposure to laser-driven electron pulse compared to electron beams produced by a conventional radiofrequency accelerator used for intraoperative radiation therapy. Blood samples from two different donors were exposed to six radiation doses ranging from 0 to 2 Gy. Relative biological effectiveness (RBE) for micronucleus induction was calculated from the alpha coefficients for electrons compared to X rays (RBE = alpha laser/alpha X rays). Cell viability was monitored in the OVCAR-3 ovarian cancer cell line using trypan blue exclusion assay at day 3, 5 and 7 postirradiation (2, 4, 6, 8 and 10 Gy). The RBE values obtained by comparing the alpha values were 1.3 and 1.2 for the two donors. Mean telomere length was also found to be reduced in a significant dose-dependent manner after irradiation with both electrons and X rays in both donors studied. Our findings showed a radiobiological response as mirrored by the induction of micronuclei and shortening of telomere as well as by the reduction of cell survival in blood samples and cancer cells exposed in vitro to laser-generated electron bunches. Additional studies are needed to improve preclinical validation of the radiobiological characteristics and efficacy of laser-driven electron accelerators in the future.

  18. SU-E-T-398: Evaluation of Radiobiological Parameters Using Serial Tumor Imaging During Radiotherapy as An Inverse Ill-Posed Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, A; Sandison, G; Schwartz, J

    Purpose: Combination of serial tumor imaging with radiobiological modeling can provide more accurate information on the nature of treatment response and what underlies resistance. The purpose of this article is to improve the algorithms related to imaging-based radiobilogical modeling of tumor response. Methods: Serial imaging of tumor response to radiation therapy represents a sum of tumor cell sensitivity, tumor growth rates, and the rate of cell loss which are not separated explicitly. Accurate treatment response assessment would require separation of these radiobiological determinants of treatment response because they define tumor control probability. We show that the problem of reconstruction ofmore » radiobiological parameters from serial imaging data can be considered as inverse ill-posed problem described by the Fredholm integral equation of the first kind because it is governed by a sum of several exponential processes. Therefore, the parameter reconstruction can be solved using regularization methods. Results: To study the reconstruction problem, we used a set of serial CT imaging data for the head and neck cancer and a two-level cell population model of tumor response which separates the entire tumor cell population in two subpopulations of viable and lethally damage cells. The reconstruction was done using a least squared objective function and a simulated annealing algorithm. Using in vitro data for radiobiological parameters as reference data, we shown that the reconstructed values of cell surviving fractions and potential doubling time exhibit non-physical fluctuations if no stabilization algorithms are applied. The variational regularization allowed us to obtain statistical distribution for cell surviving fractions and cell number doubling times comparable to in vitro data. Conclusion: Our results indicate that using variational regularization can increase the number of free parameters in the model and open the way to development of more advanced

  19. Design of a radiation facility for very small specimens used in radiobiology studies

    NASA Astrophysics Data System (ADS)

    Rodriguez, Manuel; Jeraj, Robert

    2008-06-01

    A design of a radiation facility for very small specimens used in radiobiology is presented. This micro-irradiator has been primarily designed to irradiate partial bodies in zebrafish embryos 3-4 mm in length. A miniature x-ray, 50 kV photon beam, is used as a radiation source. The source is inserted in a cylindrical brass collimator that has a pinhole of 1.0 mm in diameter along the central axis to produce a pencil photon beam. The collimator with the source is attached underneath a computer-controlled movable table which holds the specimens. Using a 45° tilted mirror, a digital camera, connected to the computer, takes pictures of the specimen and the pinhole collimator. From the image provided by the camera, the relative distance from the specimen to the pinhole axis is calculated and coordinates are sent to the movable table to properly position the samples in the beam path. Due to its monitoring system, characteristic of the radiation beam, accuracy and precision of specimen positioning, and automatic image-based specimen recognition, this radiation facility is a suitable tool to irradiate partial bodies in zebrafish embryos, cell cultures or any other small specimen used in radiobiology research.

  20. Quantitative analysis for peripheral vascularity assessment based on clinical photoacoustic and ultrasound images

    NASA Astrophysics Data System (ADS)

    Murakoshi, Dai; Hirota, Kazuhiro; Ishii, Hiroyasu; Hashimoto, Atsushi; Ebata, Tetsurou; Irisawa, Kaku; Wada, Takatsugu; Hayakawa, Toshiro; Itoh, Kenji; Ishihara, Miya

    2018-02-01

    Photoacoustic (PA) imaging technology is expected to be applied to clinical assessment for peripheral vascularity. We started a clinical evaluation with the prototype PA imaging system we recently developed. Prototype PA imaging system was composed with in-house Q-switched Alexandrite laser system which emits short-pulsed laser with 750 nm wavelength, handheld ultrasound transducer where illumination optics were integrated and signal processing for PA image reconstruction implemented in the clinical ultrasound (US) system. For the purpose of quantitative assessment of PA images, an image analyzing function has been developed and applied to clinical PA images. In this analyzing function, vascularity derived from PA signal intensity ranged for prescribed threshold was defined as a numerical index of vessel fulfillment and calculated for the prescribed region of interest (ROI). Skin surface was automatically detected by utilizing B-mode image acquired simultaneously with PA image. Skinsurface position is utilized to place the ROI objectively while avoiding unwanted signals such as artifacts which were imposed due to melanin pigment in the epidermal layer which absorbs laser emission and generates strong PA signals. Multiple images were available to support the scanned image set for 3D viewing. PA images for several fingers of patients with systemic sclerosis (SSc) were quantitatively assessed. Since the artifact region is trimmed off in PA images, the visibility of vessels with rather low PA signal intensity on the 3D projection image was enhanced and the reliability of the quantitative analysis was improved.

  1. Multifunctional Skin-like Electronics for Quantitative, Clinical Monitoring of Cutaneous Wound Healing

    PubMed Central

    Hattori, Yoshiaki; Falgout, Leo; Lee, Woosik; Jung, Sung-Young; Poon, Emily; Lee, Jung Woo; Na, Ilyoun; Geisler, Amelia; Sadhwani, Divya; Zhang, Yihui; Su, Yewang; Wang, Xiaoqi; Liu, Zhuangjian; Xia, Jing; Cheng, Huanyu; Webb, R. Chad; Bonifas, Andrew P.; Won, Philip; Jeong, Jae-Woong; Jang, Kyung-In; Song, Young Min; Nardone, Beatrice; Nodzenski, Michael; Fan, Jonathan A.; Huang, Yonggang; West, Dennis P.; Paller, Amy S.; Alam, Murad

    2014-01-01

    Non-invasive, biomedical devices have the potential to provide important, quantitative data for the assessment of skin diseases and wound healing. Traditional methods either rely on qualitative visual and tactile judgments of a professional and/or data obtained using instrumentation with forms that do not readily allow intimate integration with sensitive skin near a wound site. Here we report a skin-like electronics platform that can softly and reversibly laminate perilesionally at wounds to provide highly accurate, quantitative data of relevance to the management of surgical wound healing. Clinical studies on patients using thermal sensors and actuators in fractal layouts provide precise time-dependent mapping of temperature and thermal conductivity of the skin near the wounds. Analytical and simulation results establish the fundamentals of the sensing modalities, the mechanics of the system, and strategies for optimized design. The use of this type of ‘epidermal’ electronics system in a realistic, clinical setting with human subjects establishes a set of practical procedures in disinfection, reuse, and protocols for quantitative measurement. The results have the potential to address important unmet needs in chronic wound management. PMID:24668927

  2. Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing

    DOE PAGES

    Hattori, Yoshiaki; Falgout, Leo; Lee, Woosik; ...

    2014-03-26

    Non-invasive, biomedical devices have the potential to provide important, quantitative data for the assessment of skin diseases and wound healing. Traditional methods either rely on qualitative visual and tactile judgments of a professional and/or data obtained using instrumentation with forms that do not readily allow intimate integration with sensitive skin near a wound site. In this paper, an electronic sensor platform that can softly and reversibly laminate perilesionally at wounds to provide highly accurate, quantitative data of relevance to the management of surgical wound healing is reported. Clinical studies on patients using thermal sensors and actuators in fractal layouts providemore » precise time-dependent mapping of temperature and thermal conductivity of the skin near the wounds. Analytical and simulation results establish the fundamentals of the sensing modalities, the mechanics of the system, and strategies for optimized design. The use of this type of “epidermal” electronics system in a realistic clinical setting with human subjects establishes a set of practical procedures in disinfection, reuse, and protocols for quantitative measurement. Finally, the results have the potential to address important unmet needs in chronic wound management.« less

  3. Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing.

    PubMed

    Hattori, Yoshiaki; Falgout, Leo; Lee, Woosik; Jung, Sung-Young; Poon, Emily; Lee, Jung Woo; Na, Ilyoun; Geisler, Amelia; Sadhwani, Divya; Zhang, Yihui; Su, Yewang; Wang, Xiaoqi; Liu, Zhuangjian; Xia, Jing; Cheng, Huanyu; Webb, R Chad; Bonifas, Andrew P; Won, Philip; Jeong, Jae-Woong; Jang, Kyung-In; Song, Young Min; Nardone, Beatrice; Nodzenski, Michael; Fan, Jonathan A; Huang, Yonggang; West, Dennis P; Paller, Amy S; Alam, Murad; Yeo, Woon-Hong; Rogers, John A

    2014-10-01

    Non-invasive, biomedical devices have the potential to provide important, quantitative data for the assessment of skin diseases and wound healing. Traditional methods either rely on qualitative visual and tactile judgments of a professional and/or data obtained using instrumentation with forms that do not readily allow intimate integration with sensitive skin near a wound site. Here, an electronic sensor platform that can softly and reversibly laminate perilesionally at wounds to provide highly accurate, quantitative data of relevance to the management of surgical wound healing is reported. Clinical studies on patients using thermal sensors and actuators in fractal layouts provide precise time-dependent mapping of temperature and thermal conductivity of the skin near the wounds. Analytical and simulation results establish the fundamentals of the sensing modalities, the mechanics of the system, and strategies for optimized design. The use of this type of "epidermal" electronics system in a realistic clinical setting with human subjects establishes a set of practical procedures in disinfection, reuse, and protocols for quantitative measurement. The results have the potential to address important unmet needs in chronic wound management. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quantitative imaging of the human upper airway: instrument design and clinical studies

    NASA Astrophysics Data System (ADS)

    Leigh, M. S.; Armstrong, J. J.; Paduch, A.; Sampson, D. D.; Walsh, J. H.; Hillman, D. R.; Eastwood, P. R.

    2006-08-01

    Imaging of the human upper airway is widely used in medicine, in both clinical practice and research. Common imaging modalities include video endoscopy, X-ray CT, and MRI. However, no current modality is both quantitative and safe to use for extended periods of time. Such a capability would be particularly valuable for sleep research, which is inherently reliant on long observation sessions. We have developed an instrument capable of quantitative imaging of the human upper airway, based on endoscopic optical coherence tomography. There are no dose limits for optical techniques, and the minimally invasive imaging probe is safe for use in overnight studies. We report on the design of the instrument and its use in preliminary clinical studies, and we present results from a range of initial experiments. The experiments show that the instrument is capable of imaging during sleep, and that it can record dynamic changes in airway size and shape. This information is useful for research into sleep disorders, and potentially for clinical diagnosis and therapies.

  5. Organ culture as a technique for casual embryology and its application in radiobiology (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BORGHESE, ELIO

    1961-11-01

    The classical methods of experimental embryology in amplubia are compared with the more recently introduced technique of culture in vitro of embryonic organs of warmblooded animals. Some isolation and recombination experiments carried out by means of organ culture are described. It is shown, by examples taken from research in progress, how this technique is applicable radiobiological experiments.

  6. [Adequate application of quantitative and qualitative statistic analytic methods in acupuncture clinical trials].

    PubMed

    Tan, Ming T; Liu, Jian-ping; Lao, Lixing

    2012-08-01

    Recently, proper use of the statistical methods in traditional Chinese medicine (TCM) randomized controlled trials (RCTs) has received increased attention. Statistical inference based on hypothesis testing is the foundation of clinical trials and evidence-based medicine. In this article, the authors described the methodological differences between literature published in Chinese and Western journals in the design and analysis of acupuncture RCTs and the application of basic statistical principles. In China, qualitative analysis method has been widely used in acupuncture and TCM clinical trials, while the between-group quantitative analysis methods on clinical symptom scores are commonly used in the West. The evidence for and against these analytical differences were discussed based on the data of RCTs assessing acupuncture for pain relief. The authors concluded that although both methods have their unique advantages, quantitative analysis should be used as the primary analysis while qualitative analysis can be a secondary criterion for analysis. The purpose of this paper is to inspire further discussion of such special issues in clinical research design and thus contribute to the increased scientific rigor of TCM research.

  7. Modification of radiobiological effects of 171 MeV protons by elements of physical protection

    NASA Astrophysics Data System (ADS)

    Bulinina, Taisia; Shurshakov, Vyacheslav; Ivanov, Alexander; Molokanov, Alexander

    2016-07-01

    Space radiation includes protons of various energies. Physical protection is effective in the case of low energy protons (50-100 MeV) and becomes insufficient for radiation with a high part of high-energy protons. In the experiment performed on outbred mice, the purpose of the study was to evaluate the radiobiological effect of 171 MeV protons and protons modified by elements of physical protection of the spacecraft, on a complex of indicators of the functional condition of the system hematopoiesis and the central nervous system in 24 hours after irradiation at 20 cGy dose. The spacecraft radiation protection elements used in the experiment were a construction of wet hygiene wipes called a «protective curtain», and a glass plate imitating an ISS window. Mass thickness of the " protective curtain" in terms of water equivalent was ̴ 6,2 g/cm2. Physical shielding along the path of 171 MeV protons increases their linear energy transfer leading to the absorbed dose elevation and strengthening of the radiobiological effect. In the experiment, the two types of shielding together raised the absorbed dose from 20 to 23.2 cGy. Chemically different materials (glass and water in the wipes) were found to exert unequal modifying effects on physical and biological parameters of the proton-irradiated mice. There was a distinct dose-dependent reduction of bone marrow cellularity within the dose range from 20 cGy to 23.2 cGy in 24 hours after exposure. No modifying effect of the radiation protection elements on spontaneous motor activity was discovered when compared with entrance protons. The group of animals protected by the glass plate exhibited normal orientative-trying reactions and weakened grip with the forelimbs. The effects observed in the experiment indicate the necessity to carry out comprehensive radiobiological researches (physical, biological and mathematical) in assessing the effects of physical protection, that are actual for ensuring radiation safety of crews in

  8. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies.

    PubMed

    van Leeuwen, C M; Oei, A L; Crezee, J; Bel, A; Franken, N A P; Stalpers, L J A; Kok, H P

    2018-05-16

    Prediction of radiobiological response is a major challenge in radiotherapy. Of several radiobiological models, the linear-quadratic (LQ) model has been best validated by experimental and clinical data. Clinically, the LQ model is mainly used to estimate equivalent radiotherapy schedules (e.g. calculate the equivalent dose in 2 Gy fractions, EQD 2 ), but increasingly also to predict tumour control probability (TCP) and normal tissue complication probability (NTCP) using logistic models. The selection of accurate LQ parameters α, β and α/β is pivotal for a reliable estimate of radiation response. The aim of this review is to provide an overview of published values for the LQ parameters of human tumours as a guideline for radiation oncologists and radiation researchers to select appropriate radiobiological parameter values for LQ modelling in clinical radiotherapy. We performed a systematic literature search and found sixty-four clinical studies reporting α, β and α/β for tumours. Tumour site, histology, stage, number of patients, type of LQ model, radiation type, TCP model, clinical endpoint and radiobiological parameter estimates were extracted. Next, we stratified by tumour site and by tumour histology. Study heterogeneity was expressed by the I 2 statistic, i.e. the percentage of variance in reported values not explained by chance. A large heterogeneity in LQ parameters was found within and between studies (I 2  > 75%). For the same tumour site, differences in histology partially explain differences in the LQ parameters: epithelial tumours have higher α/β values than adenocarcinomas. For tumour sites with different histologies, such as in oesophageal cancer, the α/β estimates correlate well with histology. However, many other factors contribute to the study heterogeneity of LQ parameters, e.g. tumour stage, type of LQ model, TCP model and clinical endpoint (i.e. survival, tumour control and biochemical control). The value of LQ parameters for

  9. Radiobiological Impact of Planning Techniques for Prostate Cancer in Terms of Tumor Control Probability and Normal Tissue Complication Probability

    PubMed Central

    Rana, S; Cheng, CY

    2014-01-01

    Background: The radiobiological models describe the effects of the radiation treatment on cancer and healthy cells, and the radiobiological effects are generally characterized by the tumor control probability (TCP) and normal tissue complication probability (NTCP). Aim: The purpose of this study was to assess the radiobiological impact of RapidArc planning techniques for prostate cancer in terms of TCP and normal NTCP. Subjects and Methods: A computed tomography data set of ten cases involving low-risk prostate cancer was selected for this retrospective study. For each case, two RapidArc plans were created in Eclipse treatment planning system. The double arc (DA) plan was created using two full arcs and the single arc (SA) plan was created using one full arc. All treatment plans were calculated with anisotropic analytical algorithm. Radiobiological modeling response evaluation was performed by calculating Niemierko's equivalent uniform dose (EUD)-based Tumor TCP and NTCP values. Results: For prostate tumor, the average EUD in the SA plans was slightly higher than in the DA plans (78.10 Gy vs. 77.77 Gy; P = 0.01), but the average TCP was comparable (98.3% vs. 98.3%; P = 0.01). In comparison to the DA plans, the SA plans produced higher average EUD to bladder (40.71 Gy vs. 40.46 Gy; P = 0.03) and femoral heads (10.39 Gy vs. 9.40 Gy; P = 0.03), whereas both techniques produced NTCP well below 0.1% for bladder (P = 0.14) and femoral heads (P = 0.26). In contrast, the SA plans produced higher average NTCP compared to the DA plans (2.2% vs. 1.9%; P = 0.01). Furthermore, the EUD to rectum was slightly higher in the SA plans (62.88 Gy vs. 62.22 Gy; P = 0.01). Conclusion: The SA and DA techniques produced similar TCP for low-risk prostate cancer. The NTCP for femoral heads and bladder was comparable in the SA and DA plans; however, the SA technique resulted in higher NTCP for rectum in comparison with the DA technique. PMID:24761232

  10. A quantitative analysis of qualitative studies in clinical journals for the 2000 publishing year

    PubMed Central

    McKibbon, Kathleen Ann; Gadd, Cynthia S

    2004-01-01

    Background Quantitative studies are becoming more recognized as important to understanding health care with all of its richness and complexities. The purpose of this descriptive survey was to provide a quantitative evaluation of the qualitative studies published in 170 core clinical journals for 2000. Methods All identified studies that used qualitative methods were reviewed to ascertain which clinical journals publish qualitative studies and to extract research methods, content (persons and health care issues studied), and whether mixed methods (quantitative and qualitative methods) were used. Results 60 330 articles were reviewed. 355 reports of original qualitative studies and 12 systematic review articles were identified in 48 journals. Most of the journals were in the discipline of nursing. Only 4 of the most highly cited health care journals, based on ISI Science Citation Index (SCI) Impact Factors, published qualitative studies. 37 of the 355 original reports used both qualitative and quantitative (mixed) methods. Patients and non-health care settings were the most common groups of people studied. Diseases and conditions were cancer, mental health, pregnancy and childbirth, and cerebrovascular disease with many other diseases and conditions represented. Phenomenology and grounded theory were commonly used; substantial ethnography was also present. No substantial differences were noted for content or methods when articles published in all disciplines were compared with articles published in nursing titles or when studies with mixed methods were compared with studies that included only qualitative methods. Conclusions The clinical literature includes many qualitative studies although they are often published in nursing journals or journals with low SCI Impact Factor journals. Many qualitative studies incorporate both qualitative and quantitative methods. PMID:15271221

  11. The Radiobiology of Proton Therapy: Challenges and Opportunities Around Relative Biological Effectiveness.

    PubMed

    Jones, B; McMahon, S J; Prise, K M

    2018-05-01

    With the current UK expansion of proton therapy there is a great opportunity for clinical oncologists to develop a translational interest in the associated scientific base and clinical results. In particular, the underpinning controversy regarding the conversion of photon dose to proton dose by the relative biological effectiveness (RBE) must be understood, including its important implications. At the present time, the proton prescribed dose includes an RBE of 1.1 regardless of tissue, tumour and dose fractionation. A body of data has emerged against this pragmatic approach, including a critique of the existing evidence base, due to choice of dose, use of only acute-reacting in vivo assays, analysis methods and the reference radiations used to determine the RBE. Modelling systems, based on the best available scientific evidence, and which include the clinically useful biological effective dose (BED) concept, have also been developed to estimate proton RBEs for different dose and linear energy transfer (LET) values. The latter reflect ionisation density, which progressively increases along each proton track. Late-reacting tissues, such as the brain, where α/β = 2 Gy, show a higher RBE than 1.1 at a low dose per fraction (1.2-1.8 Gy) at LET values used to cover conventional target volumes and can be much higher. RBE changes with tissue depth seem to vary depending on the method of beam delivery used. To reduce unexpected toxicity, which does occasionally follow proton therapy, a more rational approach to RBE allocation, using a variable RBE that depends on dose per fraction and the tissue and tumour radiobiological characteristics such as α/β, is proposed. Copyright © 2018. Published by Elsevier Ltd.

  12. Quantitative 3D analysis of bone in hip osteoarthritis using clinical computed tomography.

    PubMed

    Turmezei, Tom D; Treece, Graham M; Gee, Andrew H; Fotiadou, Anastasia F; Poole, Kenneth E S

    2016-07-01

    To assess the relationship between proximal femoral cortical bone thickness and radiological hip osteoarthritis using quantitative 3D analysis of clinical computed tomography (CT) data. Image analysis was performed on clinical CT imaging data from 203 female volunteers with a technique called cortical bone mapping (CBM). Colour thickness maps were created for each proximal femur. Statistical parametric mapping was performed to identify statistically significant differences in cortical bone thickness that corresponded with the severity of radiological hip osteoarthritis. Kellgren and Lawrence (K&L) grade, minimum joint space width (JSW) and a novel CT-based osteophyte score were also blindly assessed from the CT data. For each increase in K&L grade, cortical thickness increased by up to 25 % in distinct areas of the superolateral femoral head-neck junction and superior subchondral bone plate. For increasing severity of CT osteophytes, the increase in cortical thickness was more circumferential, involving a wider portion of the head-neck junction, with up to a 7 % increase in cortical thickness per increment in score. Results were not significant for minimum JSW. These findings indicate that quantitative 3D analysis of the proximal femur can identify changes in cortical bone thickness relevant to structural hip osteoarthritis. • CT is being increasingly used to assess bony involvement in osteoarthritis • CBM provides accurate and reliable quantitative analysis of cortical bone thickness • Cortical bone is thicker at the superior femoral head-neck with worse osteoarthritis • Regions of increased thickness co-locate with impingement and osteophyte formation • Quantitative 3D bone analysis could enable clinical disease prediction and therapy development.

  13. A model to describe potential effects of chemotherapy on critical radiobiological treatments

    NASA Astrophysics Data System (ADS)

    Rodríguez-Pérez, D.; Desco, M. M.; Antoranz, J. C.

    2016-08-01

    Although chemo- and radiotherapy can annihilate tumors on their own. they are also used in coadjuvancy: improving local effects of radiotherapy using chemotherapy as a radiosensit.izer. The effects of radiotherapy are well described by current radiobiological models. The goal of this work is to describe a discrete radiotherapy model, that has been previously used describe high radiation dose response as well as unusual radio-responses of some types of tumors (e.g. prostate cancer), to obtain a model of chemo+radiotherapy that can describe how the outcome of their combination is a more efficient removal of the tumor. Our hypothesis is that, although both treatments haven different mechanisms, both affect similar key points of cell metabolism and regulation, that lead to cellular death. Hence, we will consider a discrete model where chemotherapy may affect a fraction of the same targets destroyed by radiotherapy. Although radiotherapy reaches all cells equally, chemotherapy diffuses through a tumor attaining lower concentration in its center and higher in its surface. With our simulations we study the enhanced effect of combined therapy treatment and how it depends on the tissue critical parameters (the parameters of the lion-extensive radiobiological model), the number of “targets” aimed at by chemotherapy, and the concentration and diffusion rate of the drug inside the tumor. The results show that an equivalent, cliemo-radio-dose can be computed that allows the prediction of the lower radiation dose that causes the same effect than a radio-only treatment.

  14. Enhancing value of clinical pharmacodynamics in oncology drug development: An alliance between quantitative pharmacology and translational science.

    PubMed

    Venkatakrishnan, K; Ecsedy, J A

    2017-01-01

    Clinical pharmacodynamic evaluation is a key component of the "pharmacologic audit trail" in oncology drug development. We posit that its value can and should be greatly enhanced via application of a robust quantitative pharmacology framework informed by biologically mechanistic considerations. Herein, we illustrate examples of intersectional blindspots across the disciplines of quantitative pharmacology and translational science and offer a roadmap aimed at enhancing the caliber of clinical pharmacodynamic research in the development of oncology therapeutics. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  15. QIN. Early experiences in establishing a regional quantitative imaging network for PET/CT clinical trials

    PubMed Central

    Doot, Robert K.; Thompson, Tove; Greer, Benjamin E.; Allberg, Keith C.; Linden, Hannah M.; Mankoff, David A.; Kinahan, Paul E.

    2012-01-01

    The Seattle Cancer Care Alliance (SCCA) is a Pacific Northwest regional network that enables patients from community cancer centers to participate in multicenter oncology clinical trials where patients can receive some trial-related procedures at their local center. Results of positron emission tomography (PET) scans performed at community cancer centers are not currently used in SCCA Network trials since clinical trials customarily accept results from only trial-accredited PET imaging centers located at academic and large hospitals. Oncologists would prefer the option of using standard clinical PET scans from Network sites in multicenter clinical trials to increase accrual of patients for whom additional travel requirements for imaging is a barrier to recruitment. In an effort to increase accrual of rural and other underserved populations to Network trials, researchers and clinicians at the University of Washington, SCCA and its Network are assessing feasibility of using PET scans from all Network sites in their oncology clinical trials. A feasibility study is required because the reproducibility of multicenter PET measurements ranges from approximately 3% to 40% at national academic centers. Early experiences from both national and local PET phantom imaging trials are discussed and next steps are proposed for including patient PET scans from the emerging regional quantitative imaging network in clinical trials. There are feasible methods to determine and characterize PET quantitation errors and improve data quality by either prospective scanner calibration or retrospective post hoc corrections. These methods should be developed and implemented in multicenter clinical trials employing quantitative PET imaging of patients. PMID:22795929

  16. Radiological and Environmental Research Division, Center for Human Radiobiology. Annual report, July 1980-June 1981. [Lead abstract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-03-01

    Separate abstracts were prepared for the 22 papers of this annual report of the Center for Human Radiobiology. Abstracts were not written for 2 appendices which contain data on the exposure and radium-induced malignancies of 2259 persons whose radium content has been determined at least once. (KRM)

  17. Statistical methods for clinical verification of dose response parameters related to esophageal stricture and AVM obliteration from radiotherapy

    NASA Astrophysics Data System (ADS)

    Mavroidis, Panayiotis; Lind, Bengt K.; Theodorou, Kyriaki; Laurell, Göran; Fernberg, Jan-Olof; Lefkopoulos, Dimitrios; Kappas, Constantin; Brahme, Anders

    2004-08-01

    The purpose of this work is to provide some statistical methods for evaluating the predictive strength of radiobiological models and the validity of dose-response parameters for tumour control and normal tissue complications. This is accomplished by associating the expected complication rates, which are calculated using different models, with the clinical follow-up records. These methods are applied to 77 patients who received radiation treatment for head and neck cancer and 85 patients who were treated for arteriovenous malformation (AVM). The three-dimensional dose distribution delivered to esophagus and AVM nidus and the clinical follow-up results were available for each patient. Dose-response parameters derived by a maximum likelihood fitting were used as a reference to evaluate their compatibility with the examined treatment methodologies. The impact of the parameter uncertainties on the dose-response curves is demonstrated. The clinical utilization of the radiobiological parameters is illustrated. The radiobiological models (relative seriality and linear Poisson) and the reference parameters are validated to prove their suitability in reproducing the treatment outcome pattern of the patient material studied (through the probability of finding a worse fit, area under the ROC curve and khgr2 test). The analysis was carried out for the upper 5 cm of the esophagus (proximal esophagus) where all the strictures are formed, and the total volume of AVM. The estimated confidence intervals of the dose-response curves appear to have a significant supporting role on their clinical implementation and use.

  18. Quantitative imaging biomarkers: the application of advanced image processing and analysis to clinical and preclinical decision making.

    PubMed

    Prescott, Jeffrey William

    2013-02-01

    The importance of medical imaging for clinical decision making has been steadily increasing over the last four decades. Recently, there has also been an emphasis on medical imaging for preclinical decision making, i.e., for use in pharamaceutical and medical device development. There is also a drive towards quantification of imaging findings by using quantitative imaging biomarkers, which can improve sensitivity, specificity, accuracy and reproducibility of imaged characteristics used for diagnostic and therapeutic decisions. An important component of the discovery, characterization, validation and application of quantitative imaging biomarkers is the extraction of information and meaning from images through image processing and subsequent analysis. However, many advanced image processing and analysis methods are not applied directly to questions of clinical interest, i.e., for diagnostic and therapeutic decision making, which is a consideration that should be closely linked to the development of such algorithms. This article is meant to address these concerns. First, quantitative imaging biomarkers are introduced by providing definitions and concepts. Then, potential applications of advanced image processing and analysis to areas of quantitative imaging biomarker research are described; specifically, research into osteoarthritis (OA), Alzheimer's disease (AD) and cancer is presented. Then, challenges in quantitative imaging biomarker research are discussed. Finally, a conceptual framework for integrating clinical and preclinical considerations into the development of quantitative imaging biomarkers and their computer-assisted methods of extraction is presented.

  19. Clinical performance of the LCx HCV RNA quantitative assay.

    PubMed

    Bertuzis, Rasa; Hardie, Alison; Hottentraeger, Barbara; Izopet, Jacques; Jilg, Wolfgang; Kaesdorf, Barbara; Leckie, Gregor; Leete, Jean; Perrin, Luc; Qiu, Chunfu; Ran, Iris; Schneider, George; Simmonds, Peter; Robinson, John

    2005-02-01

    This study was conducted to assess the performance of the Abbott laboratories LCx HCV RNA Quantitative Assay (LCx assay) in the clinical setting. Four clinical laboratories measured LCx assay precision, specificity, and linearity. In addition, a method comparison was conducted between the LCx assay and the Roche HCV Amplicor Monitor, version 2.0 (Roche Monitor 2.0) and the Bayer VERSANT HCV RNA 3.0 Assay (Bayer bDNA 3.0) quantitative assays. For precision, the observed LCx assay intra-assay standard deviation (S.D.) was 0.060-0.117 log IU/ml, the inter-assay S.D. was 0.083-0.133 log IU/ml, the inter-lot S.D. was 0.105-0.177 log IU/ml, the inter-site S.D. was 0.099-0.190 log IU/ml, and the total S.D. was 0.113-0.190 log IU/ml. The specificity of the LCx assay was 99.4% (542/545; 95% CI, 98.4-99.9%). For linearity, the mean pooled LCx assay results were linear (r=0.994) over the range of the panel (2.54-5.15 log IU/ml). A method comparison demonstrated a correlation coefficient of 0.881 between the LCx assay and Roche Monitor 2.0, 0.872 between the LCx assay and Bayer bDNA 3.0, and 0.870 between Roche Monitor 2.0 and Bayer bDNA 3.0. The mean LCx assay result was 0.04 log IU/ml (95% CI, -0.08, 0.01) lower than the mean Roche Monitor 2.0 result, but 0.57 log IU/ml (95% CI, 0.53, 0.61) higher than the mean Bayer bDNA 3.0 result. The mean Roche Monitor 2.0 result was 0.60 log IU/ml (95% CI, 0.56, 0.65) higher than the mean Bayer bDNA 3.0 result. The LCx assay quantitated genotypes 1-4 with statistical equivalency. The vast majority (98.9%, 278/281) of paired LCx assay-Roche Monitor 2.0 specimen results were within 1 log IU/ml. Similarly, 86.6% (240/277) of paired LCx assay and Bayer bDNA 3.0 specimen results were within 1 log, as were 85.6% (237/277) of paired Roche Monitor 2.0 and Bayer specimen results. These data demonstrate that the LCx assay may be used for quantitation of HCV RNA in HCV-infected individuals.

  20. Medical management of radiation accidents: capabilities and deployment principles of the Bundeswehr Institute of Radiobiology.

    PubMed

    Dörr, Harald; Meineke, Viktor

    2012-10-01

    Radiation accidents are fortunately infrequent occurrences, but since their consequences can be very serious as in the Chernobyl and the Fukushima nuclear accidents, medical management of radiation accidents is of great importance. Besides several other tasks, medical management of radiation accidents is one of the key tasks of the Bundeswehr Institute of Radiobiology. Within a Task Force Unit for medical chemical, biological, radiological, and nuclear (CBRN) Defense, the institute provides designated personnel who will perform clinical investigations on the scene and will liaise with the institute, where different methods for biological dosimetry and dose reconstruction will be performed. The most important aspects of efficient medical management of radiation accidents are diagnosis of radiation-induced health damage, determination of the cause, dealing with contamination/incorporation, pathophysiological and therapeutic principles, preparatory planning, national and international cooperation and training. Military and non-military institutions have to work closely together when it comes to radiation accidents and since national resources are limited and could be exhausted, international networks can help to ensure medical treatment for radiation accident victims.

  1. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground-Based Accelerators

    PubMed Central

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.

    2015-01-01

    For radiobiology research on the health risks of galactic cosmic rays (GCR) ground-based accelerators have been used with mono-energetic beams of single high charge, Z and energy, E (HZE) particles. In this paper, we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL), we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model) to define a GCR reference field using 9 HZE particle beam–energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and 4He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However, a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation, with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving knowledge of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology research. PMID:26090339

  2. Affordable, automatic quantitative fall risk assessment based on clinical balance scales and Kinect data.

    PubMed

    Colagiorgio, P; Romano, F; Sardi, F; Moraschini, M; Sozzi, A; Bejor, M; Ricevuti, G; Buizza, A; Ramat, S

    2014-01-01

    The problem of a correct fall risk assessment is becoming more and more critical with the ageing of the population. In spite of the available approaches allowing a quantitative analysis of the human movement control system's performance, the clinical assessment and diagnostic approach to fall risk assessment still relies mostly on non-quantitative exams, such as clinical scales. This work documents our current effort to develop a novel method to assess balance control abilities through a system implementing an automatic evaluation of exercises drawn from balance assessment scales. Our aim is to overcome the classical limits characterizing these scales i.e. limited granularity and inter-/intra-examiner reliability, to obtain objective scores and more detailed information allowing to predict fall risk. We used Microsoft Kinect to record subjects' movements while performing challenging exercises drawn from clinical balance scales. We then computed a set of parameters quantifying the execution of the exercises and fed them to a supervised classifier to perform a classification based on the clinical score. We obtained a good accuracy (~82%) and especially a high sensitivity (~83%).

  3. Laser-driven particle acceleration for radiobiology and radiotherapy: where we are and where we are going

    NASA Astrophysics Data System (ADS)

    Giulietti, Antonio

    2017-05-01

    Radiation therapy of tumors progresses continuously and so do devices, sharing a global market of about $ 4 billions, growing at an annual rate exceeding 5%. Most of the progress involves tumor targeting, multi-beam irradiation, reduction of damage on healthy tissues and critical organs, dose fractioning. This fast-evolving scenario is the moving benchmark for the progress of the laser-based accelerators towards clinical uses. As for electrons, both energy and dose requested by radiotherapy are available with plasma accelerators driven by lasers in the power range of tens of TW but several issues have still to be faced before getting a prototype device for clinical tests. They include capability of varying electron energy, stability of the process, reliability for medical users. On the other side hadron therapy, presently applied to a small fraction of cases but within an exponential growth, is a primary option for the future. With such a strong motivation, research on laser-based proton/ion acceleration has been supported in the last decade in order to get performances suitable to clinical standards. None of these performances has been achieved so far with laser techniques. In the meantime a rich crop of data have been obtained in radiobiological experiments performed with beams of particles produced with laser techniques. It is quite significant however that most of the experiments have been performed moving bio samples to laser labs, rather moving laser equipment to bio labs or clinical contexts. This give us the measure that laser community cannot so far provide practical devices usable by non-laser people.

  4. MO-C-BRB-06: Translating NIH / NIBIB funding to clinical reality in quantitative diagnostic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, E.

    Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, andmore » the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic

  5. A modular approach for assessing the effect of radiation environments on man in operational systems. The radiobiological vulnerability of man during task performance

    NASA Technical Reports Server (NTRS)

    Ewing, D. E.

    1972-01-01

    A modular approach for assessing the affects of radiation environments on man in operational systems has been developed. The feasibility of the model has been proved and the practicality has been assessed. It has been applied to one operational system to date and information obtained has been submitted to systems analysts and mission planners for the assessment of man's vulnerability and impact on systems survivability. In addition, the model has been developed so that the radiobiological data can be input to a sophisticated man-machine interface model to properly relate the radiobiological stress with other mission stresses including the effects of a degraded system.

  6. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness.

    PubMed

    Blakely, E A; Kronenberg, A

    1998-11-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  7. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  8. Comparison of dosimetric and radiobiological parameters on plans for prostate stereotactic body radiotherapy using an endorectal balloon for different dose-calculation algorithms and delivery-beam modes

    NASA Astrophysics Data System (ADS)

    Kang, Sang-Won; Suh, Tae-Suk; Chung, Jin-Beom; Eom, Keun-Yong; Song, Changhoon; Kim, In-Ah; Kim, Jae-Sung; Lee, Jeong-Woo; Cho, Woong

    2017-02-01

    The purpose of this study was to evaluate the impact of dosimetric and radiobiological parameters on treatment plans by using different dose-calculation algorithms and delivery-beam modes for prostate stereotactic body radiation therapy using an endorectal balloon. For 20 patients with prostate cancer, stereotactic body radiation therapy (SBRT) plans were generated by using a 10-MV photon beam with flattening filter (FF) and flattening-filter-free (FFF) modes. The total treatment dose prescribed was 42.7 Gy in 7 fractions to cover at least 95% of the planning target volume (PTV) with 95% of the prescribed dose. The dose computation was initially performed using an anisotropic analytical algorithm (AAA) in the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) and was then re-calculated using Acuros XB (AXB V. 11.0.34) with the same monitor units and multileaf collimator files. The dosimetric and the radiobiological parameters for the PTV and organs at risk (OARs) were analyzed from the dose-volume histogram. An obvious difference in dosimetric parameters between the AAA and the AXB plans was observed in the PTV and rectum. Doses to the PTV, excluding the maximum dose, were always higher in the AAA plans than in the AXB plans. However, doses to the other OARs were similar in both algorithm plans. In addition, no difference was observed in the dosimetric parameters for different delivery-beam modes when using the same algorithm to generate plans. As a result of the dosimetric parameters, the radiobiological parameters for the two algorithm plans presented an apparent difference in the PTV and the rectum. The average tumor control probability of the AAA plans was higher than that of the AXB plans. The average normal tissue complication probability (NTCP) to rectum was lower in the AXB plans than in the AAA plans. The AAA and the AXB plans yielded very similar NTCPs for the other OARs. In plans using the same algorithms, the NTCPs for delivery

  9. Clinical evidence vs preliminary speculation in newspaper coverage of diabetes innovations: a quantitative analysis.

    PubMed

    Vehof, H; Sanders, J; van Dooren, A; Heerdink, E; Das, E

    2018-05-04

    Researchers have discussed that journalistic reporting of medical developments is often characterised by exaggeration or lack of context, but additional quantitative evidence to support this claim is needed. This study introduces a quantitative approach to assessing coverage of medical innovations, by aiming at provided references to observed clinical effects. Although observed clinical effects reflect increased chances for future medical applications, it is unknown to which extent newspaper articles refer to it when spreading health information. We aimed to assess, over a 6-year period, newspaper publication characteristics of diabetes innovations, arising from all scientific areas of interest, regarding the total count and the proportion of articles that provide references to demonstrated clinical efficacy. Quantitative content analysis of newspaper articles covering innovative treatments for diabetes. We performed a systematic review of newspaper articles between 2011 and 2016 printed in the largest six Dutch newspapers. By assessing in-article references, it was possible to quickly distinguish between (1) articles that referred to actual clinical efficacy demonstrated in a scientific setting and (2) articles that presented either predictions, fundamental research, preclinical research or personal experiences and recommendations. Proportion differences between scientific areas of interest were analysed using the chi-squared test. A total of 613 articles were categorised. Total newspaper publication frequency increased with 9.9 articles per year (P = .031). In total, 17% of the articles contained a reference to any proven clinical efficacy. Articles about human nutrition science (7%; P = .001) and (neuro)psychology (4.3%; P = .014) less frequently provided a reference to actual clinical efficacy. Our findings show that less than one in five newspaper articles about diabetes research contains a reference to relevant clinical effects, while the publication

  10. [Clinical evaluation of a novel HBsAg quantitative assay].

    PubMed

    Takagi, Kazumi; Tanaka, Yasuhito; Naganuma, Hatsue; Hiramatsu, Kumiko; Iida, Takayasu; Takasaka, Yoshimitsu; Mizokami, Masashi

    2007-07-01

    The clinical implication of the hepatitis B surface antigen (HBsAg) concentrations in HBV-infected individuals remains unclear. The aim of this study was to evaluate a novel fully automated Chemiluminescence Enzyme Immunoassay (Sysmex HBsAg quantitative assay) by comparative measurements of the reference serum samples versus two independent commercial assays (Lumipulse f or Architect HBsAg QT). Furthermore, clinical usefulness was assessed for monitoring of the serum HBsAg levels during antiviral therapy. A dilution test using 5 reference-serum samples showed linear correlation curve in range from 0.03 to 2,360 IU/ml. The HBsAg was measured in total of 400 serum samples and 99.8% had consistent results between Sysmex and Lumipulse f. Additionally, a positive linear correlation was observed between Sysmex and Architect. To compare the Architect and Sysmex, both methods were applied to quantify the HBsAg in serum samples with different HBV genotypes/subgenotypes, as well as in serum contained HBV vaccine escape mutants (126S, 145R). Correlation between the methods was observed in results for escape mutants and common genotypes (A, B, C) in Japan. Observed during lamivudine therapy, an increase in HBsAg and HBV DNA concentrations preceded the aminotransferase (ALT) elevation associated with drug-resistant HBV variant emergence (breakthrough hepatitis). In conclusion, reliability of the Sysmex HBsAg quantitative assay was confirmed for all HBV genetic variants common in Japan. Monitoring of serum HBsAg concentrations in addition to HBV DNA quantification, is helpful in evaluation of the response to lamivudine treatment and diagnosis of the breakthrough hepatitis.

  11. Bedside to Bench: Integrating Quantitative Clinical Pharmacology and Reverse Translation to Optimize Drug Development.

    PubMed

    Gibbs, John P; Menon, Rajeev; Kasichayanula, Sreeneeranj

    2018-02-01

    With so much emphasis on reducing attrition and becoming more efficient in the delivery of healthcare, there are many opportunities to leverage existing clinical data in drug development and to foster the practice of reverse translation. The application of quantitative approaches to convert clinical trial and real-world data to knowledge will continue to drive innovation. Herein we discuss recent examples of reverse translation and consider future opportunities to capture critical clinical knowledge to inform decision-making in drug development. © 2017 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  12. SU-F-T-670: From the OR to the Radiobiology Lab: The Journey of a Small X-Ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, J; The University of Sydney, Sydney, NSW; The University of Newcastle, Newcastle, NSW

    Purpose: Irradiation of small animal tumor models within laboratories is vital to radiobiological experiments. Often the animals are not able to be brought back into the lab after being taken out for irradiation. Cell biology laboratories benefit from irradiation capability available around the clock without regard to patient load in an associated radiotherapy clinic. Commercial systems are available, but bulky and expensive. Methods: An intraoperative kV irradiation system (IntraBeam™) designed to deliver spherical dose distributions to surgical cavities has been repurposed for the irradiation of cell plates and small laboratory animals. An applicator has been altered to allow for simple,more » open fields. Special collimators are being developed. BEAMnrc Monte Carlo simulations with the “NRC swept BEAM” source model have been performed to characterize the dose distributions, to develop optimal collimators and as basis for dose prescription. Measurements with radiochromic film and with an ionization chamber were performed to characterize the beam and to validate the simulations. Results: Using its highest setting (50 kV and 40 µA) the x-ray unit is capable of delivering dose rates over 1 Gy/min homogeneously to standard cell plates even without an optimized collimator. Smaller areas (tumors in animals) can be irradiated with significantly higher dose rates (> 20 Gy/min) depending on distance of the source to the tumor. The HVL was found to be 0.21 mm Al which means the shielding requirements for the device are easily achievable in the lab. Conclusion: A mobile irradiation facility is feasible. It will allow easier access to radiation for radiobiology experiments. The modified system is versatile in that for cell plates homogenous irradiations can be achieved through distance from the source, while for high dose rate small field irradiations the source can be brought in close proximity to the target.« less

  13. Porous Silicon Antibody Microarrays for Quantitative Analysis: Measurement of Free and Total PSA in Clinical Plasma Samples

    PubMed Central

    Tojo, Axel; Malm, Johan; Marko-Varga, György; Lilja, Hans; Laurell, Thomas

    2014-01-01

    The antibody microarrays have become widespread, but their use for quantitative analyses in clinical samples has not yet been established. We investigated an immunoassay based on nanoporous silicon antibody microarrays for quantification of total prostate-specific-antigen (PSA) in 80 clinical plasma samples, and provide quantitative data from a duplex microarray assay that simultaneously quantifies free and total PSA in plasma. To further develop the assay the porous silicon chips was placed into a standard 96-well microtiter plate for higher throughput analysis. The samples analyzed by this quantitative microarray were 80 plasma samples obtained from men undergoing clinical PSA testing (dynamic range: 0.14-44ng/ml, LOD: 0.14ng/ml). The second dataset, measuring free PSA (dynamic range: 0.40-74.9ng/ml, LOD: 0.47ng/ml) and total PSA (dynamic range: 0.87-295ng/ml, LOD: 0.76ng/ml), was also obtained from the clinical routine. The reference for the quantification was a commercially available assay, the ProStatus PSA Free/Total DELFIA. In an analysis of 80 plasma samples the microarray platform performs well across the range of total PSA levels. This assay might have the potential to substitute for the large-scale microtiter plate format in diagnostic applications. The duplex assay paves the way for a future quantitative multiplex assay, which analyses several prostate cancer biomarkers simultaneously. PMID:22921878

  14. The Quantitative Evaluation of the Clinical and Translational Science Awards (CTSA) Program Based on Science Mapping and Scientometric Analysis

    PubMed Central

    Zhang, Yin; Wang, Lei

    2013-01-01

    Abstract The Clinical and Translational Science Awards (CTSA) program is one of the most important initiatives in translational medical funding. The quantitative evaluation of the efficiency and performance of the CTSA program has a significant referential meaning for the decision making of global translational medical funding. Using science mapping and scientometric analytic tools, this study quantitatively analyzed the scientific articles funded by the CTSA program. The results of the study showed that the quantitative productivities of the CTSA program had a stable increase since 2008. In addition, the emerging trends of the research funded by the CTSA program covered clinical and basic medical research fields. The academic benefits from the CTSA program were assisting its members to build a robust academic home for the Clinical and Translational Science and to attract other financial support. This study provided a quantitative evaluation of the CTSA program based on science mapping and scientometric analysis. Further research is required to compare and optimize other quantitative methods and to integrate various research results. PMID:24330689

  15. The quantitative evaluation of the Clinical and Translational Science Awards (CTSA) program based on science mapping and scientometric analysis.

    PubMed

    Zhang, Yin; Wang, Lei; Diao, Tianxi

    2013-12-01

    The Clinical and Translational Science Awards (CTSA) program is one of the most important initiatives in translational medical funding. The quantitative evaluation of the efficiency and performance of the CTSA program has a significant referential meaning for the decision making of global translational medical funding. Using science mapping and scientometric analytic tools, this study quantitatively analyzed the scientific articles funded by the CTSA program. The results of the study showed that the quantitative productivities of the CTSA program had a stable increase since 2008. In addition, the emerging trends of the research funded by the CTSA program covered clinical and basic medical research fields. The academic benefits from the CTSA program were assisting its members to build a robust academic home for the Clinical and Translational Science and to attract other financial support. This study provided a quantitative evaluation of the CTSA program based on science mapping and scientometric analysis. Further research is required to compare and optimize other quantitative methods and to integrate various research results. © 2013 Wiley Periodicals, Inc.

  16. Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer.

    PubMed

    Rajaram, Narasimhan; Reichenberg, Jason S; Migden, Michael R; Nguyen, Tri H; Tunnell, James W

    2010-12-01

    Several research groups have demonstrated the non-invasive diagnostic potential of diffuse optical spectroscopy (DOS) and laser-induced fluorescence (LIF) techniques for early cancer detection. By combining both modalities, one can simultaneously measure quantitative parameters related to the morphology, function and biochemical composition of tissue and use them to diagnose malignancy. The objective of this study was to use a quantitative reflectance/fluorescence spectroscopic technique to determine the optical properties of normal skin and non-melanoma skin cancers and the ability to accurately classify them. An additional goal was to determine the ability of the technique to differentiate non-melanoma skin cancers from normal skin. The study comprised 48 lesions measured from 40 patients scheduled for a biopsy of suspected non-melanoma skin cancers. White light reflectance and laser-induced fluorescence spectra (wavelength range = 350-700 nm) were collected from each suspected lesion and adjacent clinically normal skin using a custom-built, optical fiber-based clinical instrument. After measurement, the skin sites were biopsied and categorized according to histopathology. Using a quantitative model, we extracted various optical parameters from the measured spectra that could be correlated to the physiological state of tissue. Scattering from cancerous lesions was significantly lower than normal skin for every lesion group, whereas absorption parameters were significantly higher. Using numerical cut-offs for our optical parameters, our clinical instrument could classify basal cell carcinomas with a sensitivity and specificity of 94% and 89%, respectively. Similarly, the instrument classified actinic keratoses and squamous cell carcinomas with a sensitivity of 100% and specificity of 50%. The measured optical properties and fluorophore contributions of normal skin and non-melanoma skin cancers are significantly different from each other and correlate well

  17. Quantitative Ultrasound: Transition from the Laboratory to the Clinic

    NASA Astrophysics Data System (ADS)

    Hall, Timothy

    2014-03-01

    There is a long history of development and testing of quantitative methods in medical ultrasound. From the initial attempts to scan breasts with ultrasound in the early 1950's, there was a simultaneous attempt to classify tissue as benign or malignant based on the appearance of the echo signal on an oscilloscope. Since that time, there has been substantial improvement in the ultrasound systems used, the models to describe wave propagation in random media, the methods of signal detection theory, and the combination of those models and methods into parameter estimation techniques. One particularly useful measure in ultrasonics is the acoustic differential scattering cross section per unit volume in the special case of the 180° (as occurs in pulse-echo ultrasound imaging) which is known as the backscatter coefficient. The backscatter coefficient, and parameters derived from it, can be used to objectively measure quantities that are used clinically to subjectively describe ultrasound images. For example, the ``echogenicity'' (relative ultrasound image brightness) of the renal cortex is commonly compared to that of the liver. Investigating the possibility of liver disease, it is assumed the renal cortex echogenicity is normal. Investigating the kidney, it is assumed the liver echogenicity is normal. Objective measures of backscatter remove these assumptions. There is a 30-year history of accurate estimates of acoustic backscatter coefficients with laboratory systems. Twenty years ago that ability was extended to clinical imaging systems with array transducers. Recent studies involving multiple laboratories and a variety of clinical imaging systems has demonstrated system-independent estimates of acoustic backscatter coefficients in well-characterized media (agreement within about 1.5dB over about a 1-decade frequency range). Advancements that made this possible, transition of this and similar capabilities into medical practice and the prospects for quantitative image

  18. Optimizing oncology therapeutics through quantitative translational and clinical pharmacology: challenges and opportunities.

    PubMed

    Venkatakrishnan, K; Friberg, L E; Ouellet, D; Mettetal, J T; Stein, A; Trocóniz, I F; Bruno, R; Mehrotra, N; Gobburu, J; Mould, D R

    2015-01-01

    Despite advances in biomedical research that have deepened our understanding of cancer hallmarks, resulting in the discovery and development of targeted therapies, the success rates of oncology drug development remain low. Opportunities remain for objective dose selection informed by exposure-response understanding to optimize the benefit-risk balance of novel therapies for cancer patients. This review article discusses the principles and applications of modeling and simulation approaches across the lifecycle of development of oncology therapeutics. Illustrative examples are used to convey the value gained from integration of quantitative clinical pharmacology strategies from the preclinical-translational phase through confirmatory clinical evaluation of efficacy and safety. © 2014 American Society for Clinical Pharmacology and Therapeutics.

  19. Physiotherapists' beliefs and attitudes influence clinical practice in chronic low back pain: a systematic review of quantitative and qualitative studies.

    PubMed

    Gardner, Tania; Refshauge, Kathryn; Smith, Lorraine; McAuley, James; Hübscher, Markus; Goodall, Stephen

    2017-07-01

    What influence do physiotherapists' beliefs and attitudes about chronic low back pain have on their clinical management of people with chronic low back pain? Systematic review with data from quantitative and qualitative studies. Quantitative and qualitative studies were included if they investigated an association between physiotherapists' attitudes and beliefs about chronic low back pain and their clinical management of people with chronic low back pain. Five quantitative and five qualitative studies were included. Quantitative studies used measures of treatment orientation and fear avoidance to indicate physiotherapists' beliefs and attitudes about chronic low back pain. Quantitative studies showed that a higher biomedical orientation score (indicating a belief that pain and disability result from a specific structural impairment, and treatment is selected to address that impairment) was associated with: advice to delay return to work, advice to delay return to activity, and a belief that return to work or activity is a threat to the patient. Physiotherapists' fear avoidance scores were positively correlated with: increased certification of sick leave, advice to avoid return to work, and advice to avoid return to normal activity. Qualitative studies revealed two main themes attributed to beliefs and attitudes of physiotherapists who have a relationship to their management of chronic low back pain: treatment orientation and patient factors. Both quantitative and qualitative studies showed a relationship between treatment orientation and clinical practice. The inclusion of qualitative studies captured the influence of patient factors in clinical practice in chronic low back pain. There is a need to recognise that both beliefs and attitudes regarding treatment orientation of physiotherapists, and therapist-patient factors need to be considered when introducing new clinical practice models, so that the adoption of new clinical practice is maximised. [Gardner T

  20. Clinical radiobiology of stage T2-T3 bladder cancer.

    PubMed

    Majewski, Wojciech; Maciejewski, Boguslaw; Majewski, Stanislaw; Suwinski, Rafal; Miszczyk, Leszek; Tarnawski, Rafal

    2004-09-01

    To evaluate the relationship between total radiation dose and overall treatment time (OTT) with the treatment outcome, with adjustment for selected clinical factors, in patients with Stage T2-T3 bladder cancer treated with curative radiotherapy (RT). The analysis was based on 480 patients with Stage T2-T3 bladder cancer who were treated at the Center of Oncology in Gliwice between 1975 and 1995. The mean total radiation dose was 65.5 Gy, and the mean OTT was 51 days. In 261 patients (54%), planned and unplanned gaps occurred during RT. Four fractionation schedules were used: (1) conventional fractionation (once daily, 1.8-2.5 Gy/fraction); (2) protracted fractionation (pelvic RT, once daily, 1.6-1.7 Gy/fraction, boost RT, once daily, 2.0 Gy/fraction); (3) accelerated hyperfractionated boost (pelvic RT, once daily, 2.0 Gy/fraction; boost RT, twice daily, 1.3-1.4 Gy/fraction); and (4) accelerated hyperfractionation (pelvic and boost RT, twice daily, 1.2-1.5 Gy/fraction). In all fractionation schedules, the total radiation dose was similar (average 65.5 Gy), but the OTT was different (mean 53 days for conventional fractionation, 62 days for protracted fractionation, 45 days for accelerated hyperfractionated boost, and 41 days for accelerated hyperfractionation). A Cox proportional hazard model and maximum likelihood logistic model were used to evaluate the relationship between the treatment-related parameters (total radiation dose, dose per fraction, and OTT) and clinical factors (clinical T stage, hemoglobin level and bladder capacity before RT) and treatment outcome. With a median follow-up of 76 months, the actuarial 5-year local control rate was 47%, and the overall survival rate was 40%. The logistic analysis, which included the total dose, OTT, and T stage, revealed that all of these factors were significantly related to tumor control probability (p = 0.021 for total radiation dose, p = 0.038 for OTT, and p = 0.00068 for T stage). A multivariate Cox model, which

  1. Clinical applications of a quantitative analysis of regional lift ventricular wall motion

    NASA Technical Reports Server (NTRS)

    Leighton, R. F.; Rich, J. M.; Pollack, M. E.; Altieri, P. I.

    1975-01-01

    Observations were summarized which may have clinical application. These were obtained from a quantitative analysis of wall motion that was used to detect both hypokinesis and tardokinesis in left ventricular cineangiograms. The method was based on statistical comparisons with normal values for regional wall motion derived from the cineangiograms of patients who were found not to have heart disease.

  2. Quantitative CT characterization of pediatric lung development using routine clinical imaging

    PubMed Central

    Stein, Jill M.; Walkup, Laura L.; Brody, Alan S.; Fleck, Robert J.

    2016-01-01

    Background The use of quantitative CT analysis in children is limited by lack of normal values of lung parenchymal attenuation. These characteristics are important because normal lung development yields significant parenchymal attenuation changes as children age. Objective To perform quantitative characterization of normal pediatric lung parenchymal X-ray CT attenuation under routine clinical conditions in order to establish a baseline comparison to that seen in pathological lung conditions. Materials and methods We conducted a retrospective query of normal CT chest examinations in children ages 0–7 years from 2004 to 2014 using standard clinical protocol. During these examinations semi-automated lung parenchymal segmentation was performed to measure lung volume and mean lung attenuation. Results We analyzed 42 CT examinations in 39 children, ages 3 days to 83 months (mean ± standard deviation [SD] = 42±27 months). Lung volume ranged 0.10–1.72 liters (L). Mean lung attenuation was much higher in children younger than 12 months, with values as high as −380 Hounsfield units (HU) in neonates (lung volume 0.10 L). Lung volume decreased to approximately −650 HU by age 2 years (lung volume 0.47 L), with subsequently slower exponential decrease toward a relatively constant value of −860 HU as age and lung volume increased. Conclusion Normal lung parenchymal X-ray CT attenuation decreases with increasing lung volume and age; lung attenuation decreases rapidly in the first 2 years of age and more slowly thereafter. This change in normal lung attenuation should be taken into account as quantitative CT methods are translated to pediatric pulmonary imaging. PMID:27576458

  3. Quantitative assessment of isolated rapid eye movement (REM) sleep without atonia without clinical REM sleep behavior disorder: clinical and research implications.

    PubMed

    Sasai-Sakuma, Taeko; Frauscher, Birgit; Mitterling, Thomas; Ehrmann, Laura; Gabelia, David; Brandauer, Elisabeth; Inoue, Yuichi; Poewe, Werner; Högl, Birgit

    2014-09-01

    Rapid eye movement (REM) sleep without atonia (RWA) is observed in some patients without a clinical history of REM sleep behavior disorder (RBD). It remains unknown whether these patients meet the refined quantitative electromyographic (EMG) criteria supporting a clinical RBD diagnosis. We quantitatively evaluated EMG activity and investigated its overnight distribution in patients with isolated qualitative RWA. Fifty participants with an incidental polysomnographic finding of RWA (isolated qualitative RWA) were included. Tonic, phasic, and 'any' EMG activity during REM sleep on PSG were quantified retrospectively. Referring to the quantitative cut-off values for a polysomnographic diagnosis of RBD, 7/50 (14%) and 6/50 (12%) of the patients showed phasic and 'any' EMG activity in the mentalis muscle above the respective cut-off values. No patient was above the cut-off value for tonic EMG activity or phasic EMG activity in the anterior tibialis muscles. Patients with RWA above the cut-off value showed higher amounts of RWA during later REM sleep periods. This is the first study showing that some subjects with incidental RWA meet the refined quantitative EMG criteria for a diagnosis of RBD. Future longitudinal studies must investigate whether this subgroup with isolated qualitative RWA is at an increased risk of developing fully expressed RBD and/or neurodegenerative disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Clinical significance of quantitative analysis of facial nerve enhancement on MRI in Bell's palsy.

    PubMed

    Song, Mee Hyun; Kim, Jinna; Jeon, Ju Hyun; Cho, Chang Il; Yoo, Eun Hye; Lee, Won-Sang; Lee, Ho-Ki

    2008-11-01

    Quantitative analysis of the facial nerve on the lesion side as well as the normal side, which allowed for more accurate measurement of facial nerve enhancement in patients with facial palsy, showed statistically significant correlation with the initial severity of facial nerve inflammation, although little prognostic significance was shown. This study investigated the clinical significance of quantitative measurement of facial nerve enhancement in patients with Bell's palsy by analyzing the enhancement pattern and correlating MRI findings with initial severity of facial palsy and clinical outcome. Facial nerve enhancement was measured quantitatively by using the region of interest on pre- and postcontrast T1-weighted images in 44 patients diagnosed with Bell's palsy. The signal intensity increase on the lesion side was first compared with that of the contralateral side and then correlated with the initial degree of facial palsy and prognosis. The lesion side showed significantly higher signal intensity increase compared with the normal side in all of the segments except for the mastoid segment. Signal intensity increase at the internal auditory canal and labyrinthine segments showed correlation with the initial degree of facial palsy but no significant difference was found between different prognostic groups.

  5. SU-G-TeP3-11: Radiobiological-Cum-Dosimetric Quality Assurance of Complex Radiotherapy Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudel, N; Narayanasamy, G; Zhang, X

    2016-06-15

    Purpose: Dosimetric gamma-analysis used for QA of complex radiotherapy plans tests the dosimetric equivalence of a delivered plan with the treatment planning system (TPS) optimized plan. It does not examine whether a dosimetric difference results in any radiobiological difference. This study introduces a method to test the radiobiological and dosimetric equivalence between a delivered and the TPS optimized plan. Methods: Six head and neck and seven lung cancer VMAT or IMRT plans optimized for patient treatment were calculated and delivered to an ArcCheck phantom. ArcCheck measured dose distributions were compared with the TPS calculated dose distributions using a 2-D gamma-analysis.more » Dose volume histograms (DVHs) for various patient structures were obtained by using measured data in 3DVH software and compared against the TPS calculated DVHs using 3-D gamma analysis. DVH data were used in the Poisson model to calculate tumor control probability (TCP) for the treatment targets and in the sigmoid dose response model to calculate normal tissue complication probability (NTCP) for the normal structures. Results: Two-D and three-D gamma passing rates among six H&N patient plans differed by 0 to 2.7% and among seven lung plans by 0.1 to 4.5%. Average ± SD TCPs based on measurement and TPS were 0.665±0.018 and 0.674±0.044 for H&N, and 0.791±0.027 and 0.733±0.031 for lung plans, respectively. Differences in NTCPs were usually negligible. The differences in dosimetric results, TCPs and NTCPs were insignificant. Conclusion: The 2-D and 3-D gamma-analysis based agreement between measured and planned dose distributions may indicate their dosimetric equivalence. Small and insignificant differences in TCPs and NTCPs based on measured and planned dose distributions indicate the radiobiological equivalence between the measured and optimized plans. However, patient plans showing larger differences between 2-D and 3-D gamma-analysis can help us make a more definite

  6. Monte Carlo simulations of a low energy proton beamline for radiobiological experiments.

    PubMed

    Dahle, Tordis J; Rykkelid, Anne Marit; Stokkevåg, Camilla H; Mairani, Andrea; Görgen, Andreas; Edin, Nina J; Rørvik, Eivind; Fjæra, Lars Fredrik; Malinen, Eirik; Ytre-Hauge, Kristian S

    2017-06-01

    In order to determine the relative biological effectiveness (RBE) of protons with high accuracy, radiobiological experiments with detailed knowledge of the linear energy transfer (LET) are needed. Cell survival data from high LET protons are sparse and experiments with low energy protons to achieve high LET values are therefore required. The aim of this study was to quantify LET distributions from a low energy proton beam by using Monte Carlo (MC) simulations, and to further compare to a proton beam representing a typical minimum energy available at clinical facilities. A Markus ionization chamber and Gafchromic films were employed in dose measurements in the proton beam at Oslo Cyclotron Laboratory. Dose profiles were also calculated using the FLUKA MC code, with the MC beam parameters optimized based on comparisons with the measurements. LET spectra and dose-averaged LET (LET d ) were then estimated in FLUKA, and compared with LET calculated from an 80 MeV proton beam. The initial proton energy was determined to be 15.5 MeV, with a Gaussian energy distribution of 0.2% full width at half maximum (FWHM) and a Gaussian lateral spread of 2 mm FWHM. The LET d increased with depth, from approximately 5 keV/μm in the entrance to approximately 40 keV/μm in the distal dose fall-off. The LET d values were considerably higher and the LET spectra were much narrower than the corresponding spectra from the 80 MeV beam. MC simulations accurately modeled the dose distribution from the proton beam and could be used to estimate the LET at any position in the setup. The setup can be used to study the RBE for protons at high LET d , which is not achievable in clinical proton therapy facilities.

  7. Radiation transport codes for potential applications related to radiobiology and radiotherapy using protons, neutrons, and negatively charged pions

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.

    1972-01-01

    Several Monte Carlo radiation transport computer codes are used to predict quantities of interest in the fields of radiotherapy and radiobiology. The calculational methods are described and comparisions of calculated and experimental results are presented for dose distributions produced by protons, neutrons, and negatively charged pions. Comparisons of calculated and experimental cell survival probabilities are also presented.

  8. Clinical application of a light-pen computer system for quantitative angiography

    NASA Technical Reports Server (NTRS)

    Alderman, E. L.

    1975-01-01

    The important features in a clinical system for quantitative angiography were examined. The human interface for data input, whether an electrostatic pen, sonic pen, or light-pen must be engineered to optimize the quality of margin definition. The computer programs which the technician uses for data entry and computation of ventriculographic measurements must be convenient to use on a routine basis in a laboratory performing multiple studies per day. The method used for magnification correction must be continuously monitored.

  9. Prostate volumetric‐modulated arc therapy: dosimetry and radiobiological model variation between the single‐arc and double‐arc technique

    PubMed Central

    Jiang, Runqing

    2013-01-01

    This study investigates the dosimetry and radiobiological model variation when a second photon arc was added to prostate volumetric‐modulated arc therapy (VMAT) using the single‐arc technique. Dosimetry and radiobiological model comparison between the single‐arc and double‐arc prostate VMAT plans were performed on five patients with prostate volumes ranging from 29−68.1 cm3. The prescription dose was 78 Gy/39 fractions and the photon beam energy was 6 MV. Dose‐volume histogram, mean and maximum dose of targets (planning and clinical target volume) and normal tissues (rectum, bladder and femoral heads), dose‐volume criteria in the treatment plan (D99% of PTV; D30%,D50%,V17Gy and V35Gy of rectum and bladder; D5% of femoral heads), and dose profiles along the vertical and horizontal axis crossing the isocenter were determined using the single‐arc and double‐arc VMAT technique. For comparison, the monitor unit based on the RapidArc delivery method, prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman‐Burman‐Kutcher algorithm were calculated. It was found that though the double‐arc technique required almost double the treatment time than the single‐arc, the double‐arc plan provided a better rectal and bladder dose‐volume criteria by shifting the delivered dose in the patient from the anterior–posterior direction to the lateral. As the femoral head was less radiosensitive than the rectum and bladder, the double‐arc technique resulted in a prostate VMAT plan with better prostate coverage and rectal dose‐volume criteria compared to the single‐arc. The prostate TCP of the double‐arc plan was found slightly increased (0.16%) compared to the single‐arc. Therefore, when the rectal dose‐volume criteria are very difficult to achieve in a single‐arc prostate VMAT plan, it is worthwhile to consider the double‐arc technique. PACS number: 87.55.D‐, 87.55.dk, 87.55.K

  10. Semi-Automatic Segmentation Software for Quantitative Clinical Brain Glioblastoma Evaluation

    PubMed Central

    Zhu, Y; Young, G; Xue, Z; Huang, R; You, H; Setayesh, K; Hatabu, H; Cao, F; Wong, S.T.

    2012-01-01

    Rationale and Objectives Quantitative measurement provides essential information about disease progression and treatment response in patients with Glioblastoma multiforme (GBM). The goal of this paper is to present and validate a software pipeline for semi-automatic GBM segmentation, called AFINITI (Assisted Follow-up in NeuroImaging of Therapeutic Intervention), using clinical data from GBM patients. Materials and Methods Our software adopts the current state-of-the-art tumor segmentation algorithms and combines them into one clinically usable pipeline. Both the advantages of the traditional voxel-based and the deformable shape-based segmentation are embedded into the software pipeline. The former provides an automatic tumor segmentation scheme based on T1- and T2-weighted MR brain data, and the latter refines the segmentation results with minimal manual input. Results Twenty six clinical MR brain images of GBM patients were processed and compared with manual results. The results can be visualized using the embedded graphic user interface (GUI). Conclusion Validation results using clinical GBM data showed high correlation between the AFINITI results and manual annotation. Compared to the voxel-wise segmentation, AFINITI yielded more accurate results in segmenting the enhanced GBM from multimodality MRI data. The proposed pipeline could be used as additional information to interpret MR brain images in neuroradiology. PMID:22591720

  11. Quantitative echocardiographic measures in the assessment of single ventricle function post-Fontan: Incorporation into routine clinical practice.

    PubMed

    Rios, Rodrigo; Ginde, Salil; Saudek, David; Loomba, Rohit S; Stelter, Jessica; Frommelt, Peter

    2017-01-01

    Quantitative echocardiographic measurements of single ventricular (SV) function have not been incorporated into routine clinical practice. A clinical protocol, which included quantitative measurements of SV deformation (global circumferential and longitudinal strain and strain rate), standard deviation of time to peak systolic strain, myocardial performance index (MPI), dP/dT from an atrioventricular valve regurgitant jet, and superior mesenteric artery resistance index, was instituted for all patients with a history of Fontan procedure undergoing echocardiography. All measures were performed real time during clinically indicated studies and were included in clinical reports. A total of 100 consecutive patients (mean age = 11.95±6.8 years, range 17 months-31.3 years) completed the protocol between September 1, 2014 to April 29, 2015. Deformation measures were completed in 100% of the studies, MPI in 93%, dP/dT in 55%, and superior mesenteric artery Doppler in 82%. The studies were reviewed to assess for efficiency in completing the protocol. The average time for image acquisition was 27.4±8.8 (range 10-62 minutes). The average time to perform deformation measures was 10.8±5.5 minutes (range 5-35 minutes) and time from beginning of imaging to report completion was 53.4±13.7 minutes (range 27-107 minutes). There was excellent inter-observer reliability when deformation indices were blindly repeated. Patients with a single left ventricle had significantly higher circumferential strain and strain rate, longitudinal strain and strain rate, and dP/dT compared to a single right ventricle. There were no differences in quantitative indices of ventricular function between patients <10 vs. >10 years post-Fontan. Advanced quantitative assessment of SV function post-Fontan can be consistently and efficiently performed real time during clinically indicated echocardiograms with excellent reliability. © 2016, Wiley Periodicals, Inc.

  12. Dosimetric and radiobiological comparison of TG-43 and Monte Carlo calculations in 192Ir breast brachytherapy applications.

    PubMed

    Peppa, V; Pappas, E P; Karaiskos, P; Major, T; Polgár, C; Papagiannis, P

    2016-10-01

    To investigate the clinical significance of introducing model based dose calculation algorithms (MBDCAs) as an alternative to TG-43 in 192 Ir interstitial breast brachytherapy. A 57 patient cohort was used in a retrospective comparison between TG-43 based dosimetry data exported from a treatment planning system and Monte Carlo (MC) dosimetry performed using MCNP v. 6.1 with plan and anatomy information in DICOM-RT format. Comparison was performed for the target, ipsilateral lung, heart, skin, breast and ribs, using dose distributions, dose-volume histograms (DVH) and plan quality indices clinically used for plan evaluation, as well as radiobiological parameters. TG-43 overestimation of target DVH parameters is statistically significant but small (less than 2% for the target coverage indices and 4% for homogeneity indices, on average). Significant dose differences (>5%) were observed close to the skin and at relatively large distances from the implant leading to a TG-43 dose overestimation for the organs at risk. These differences correspond to low dose regions (<50% of the prescribed dose), being less than 2% of the prescribed dose. Detected dosimetric differences did not induce clinically significant differences in calculated tumor control probabilities (mean absolute difference <0.2%) and normal tissue complication probabilities. While TG-43 shows a statistically significant overestimation of most indices used for plan evaluation, differences are small and therefore not clinically significant. Improved MBDCA dosimetry could be important for re-irradiation, technique inter-comparison and/or the assessment of secondary cancer induction risk, where accurate dosimetry in the whole patient anatomy is of the essence. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Detailed characterization of the 1087 MeV/nucleon iron-56 beam used for radiobiology at the alternating gradient synchrotron

    NASA Technical Reports Server (NTRS)

    Zeitlin, C.; Heilbronn, L.; Miller, J.

    1998-01-01

    We report beam characterization and dosimetric measurements made using a 56Fe beam extracted from the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS) with a kinetic energy of 1087 MeV/nucleon. The measurements reveal that the depth-dose distribution of this beam differs significantly from that obtained with a 600 MeV/nucleon iron beam used in several earlier radiobiology experiments at the Lawrence Berkeley National Laboratory's BEVALAC. We present detailed measurements of beam parameters relevant for radiobiology, including track- and dose-averaged linear energy transfer (LET), fragment composition and LET spectra measured behind sample holders used in irradiations of biological samples. We also report measurements of fluence behind three depths (1.94, 4.68 and 9.35 g cm(-2)) of polyethylene targets with the 1087 MeV/nucleon beam, and behind 1.94 g cm(-2) of polyethylene with a 610 MeV/nucleon beam delivered by the AGS. These results are compared to earlier measurements with the 600 MeV/nucleon beam at the BEVALAC.

  14. Clinical neurophysiology and quantitative sensory testing in the investigation of orofacial pain and sensory function.

    PubMed

    Jääskeläinen, Satu K

    2004-01-01

    Chronic orofacial pain represents a diagnostic and treatment challenge for the clinician. Some conditions, such as atypical facial pain, still lack proper diagnostic criteria, and their etiology is not known. The recent development of neurophysiological methods and quantitative sensory testing for the examination of the trigeminal somatosensory system offers several tools for diagnostic and etiological investigation of orofacial pain. This review presents some of these techniques and the results of their application in studies on orofacial pain and sensory dysfunction. Clinical neurophysiological investigation has greater diagnostic accuracy and sensitivity than clinical examination in the detection of the neurogenic abnormalities of either peripheral or central origin that may underlie symptoms of orofacial pain and sensory dysfunction. Neurophysiological testing may also reveal trigeminal pathology when magnetic resonance imaging has failed to detect it, so these methods should be considered complementary to each other in the investigation of orofacial pain patients. The blink reflex, corneal reflex, jaw jerk, sensory neurography of the inferior alveolar nerve, and the recording of trigeminal somatosensory-evoked potentials with near-nerve stimulation have all proved to be sensitive and reliable in the detection of dysfunction of the myelinated sensory fibers of the trigeminal nerve or its central connections within the brainstem. With appropriately small thermodes, thermal quantitative sensory testing is useful for the detection of trigeminal small-fiber dysfunction (Adelta and C). In neuropathic conditions, it is most sensitive to lesions causing axonal injury. By combining different techniques for investigation of the trigeminal system, an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. Neurophysiological and quantitative sensory tests have already highlighted some similarities among various orofacial pain conditions

  15. Cell survivor: Modeling radiobiological phenomena with a new kind of simulation

    NASA Astrophysics Data System (ADS)

    Spencer, Melissa A.

    Despite widespread societal fear of radiation, whether justified or unjustified, and whether related to medicine (e.g., CT scans) or other forms of nuclear and atomic radiation (e.g., nuclear power) there is a fundamental lack of basic understanding of radiation effects on the human body. Different types of radiation are psychologically grouped into the same general fear category irrespective of their different potential to do harm, and this fear is not balanced by their potential beneficial effects. By modeling certain types of radiation biology experiments within a game engine, it is possible to enhance the player's intuitive understanding of radiobiology, both the effects of different types of radiation as well as different environmental factors that can enhance or suppress repair. For this dissertation, a game/simulation has been developed that intends to narrow the gap between public perception and the reality of these physical processes. The building blocks of this simulation are cells, which are damaged by incident radiation, accumulating either single or double strand breaks. They grow and reproduce, and are especially vulnerable during certain phases of the cell cycle (e.g. mitosis). Two dominant damage mechanisms are modeled, along with multiple repair mechanisms, for example, double strand breaks can be repaired by either non-homologous end joining or homologous repair. The output of the developed simulation was compared to data collected in experimental studies and the simulation appears to be a valid representation of the dominant mechanisms of radiobiology, as far as can be determined within the scope of this dissertation. Cell survival curves generated from playtest data display shoulders that depend on the LET of incident radiation, and rest time restores repair capability. In addition to public outreach, the presented code can be used to aid investigators by collecting data during play that can be used as a distributed Monte Carlo simulation

  16. Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome.

    PubMed

    Davatzikos, Christos; Rathore, Saima; Bakas, Spyridon; Pati, Sarthak; Bergman, Mark; Kalarot, Ratheesh; Sridharan, Patmaa; Gastounioti, Aimilia; Jahani, Nariman; Cohen, Eric; Akbari, Hamed; Tunc, Birkan; Doshi, Jimit; Parker, Drew; Hsieh, Michael; Sotiras, Aristeidis; Li, Hongming; Ou, Yangming; Doot, Robert K; Bilello, Michel; Fan, Yong; Shinohara, Russell T; Yushkevich, Paul; Verma, Ragini; Kontos, Despina

    2018-01-01

    The growth of multiparametric imaging protocols has paved the way for quantitative imaging phenotypes that predict treatment response and clinical outcome, reflect underlying cancer molecular characteristics and spatiotemporal heterogeneity, and can guide personalized treatment planning. This growth has underlined the need for efficient quantitative analytics to derive high-dimensional imaging signatures of diagnostic and predictive value in this emerging era of integrated precision diagnostics. This paper presents cancer imaging phenomics toolkit (CaPTk), a new and dynamically growing software platform for analysis of radiographic images of cancer, currently focusing on brain, breast, and lung cancer. CaPTk leverages the value of quantitative imaging analytics along with machine learning to derive phenotypic imaging signatures, based on two-level functionality. First, image analysis algorithms are used to extract comprehensive panels of diverse and complementary features, such as multiparametric intensity histogram distributions, texture, shape, kinetics, connectomics, and spatial patterns. At the second level, these quantitative imaging signatures are fed into multivariate machine learning models to produce diagnostic, prognostic, and predictive biomarkers. Results from clinical studies in three areas are shown: (i) computational neuro-oncology of brain gliomas for precision diagnostics, prediction of outcome, and treatment planning; (ii) prediction of treatment response for breast and lung cancer, and (iii) risk assessment for breast cancer.

  17. Past and Future Work on Radiobiology Mega-Studies: A Case Study At Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, Benjamin; Wang, Qiong; Wanzer, Beau

    2011-09-06

    Between 1952 and 1992, more than 200 large radiobiology studies were conducted in research institutes throughout Europe, North America, and Japan to determine the effects of external irradiation and internal emitters on the lifespan and tissue toxicity development in animals. At Argonne National Laboratory, 22 external beam studies were conducted on nearly 700 beagle dogs and 50,000 mice between 1969 and 1992. These studies helped to characterize the effects of neutron and gamma irradiation on lifespan, tumorigenesis, and mutagenesis across a range of doses and dosing patterns. The records and tissues collected at Argonne during that time period have beenmore » carefully preserved and redisseminated. Using these archived data, ongoing statistical work has been done and continues to characterize quality of radiation, dose, dose rate, tissue, and gender-specific differences in the radiation responses of exposed animals. The ongoing application of newly-developed molecular biology techniques to the archived tissues has revealed gene-specific mutation rates following exposure to ionizing irradiation. The original and ongoing work with this tissue archive is presented here as a case study of a more general trend in the radiobiology megastudies. These experiments helped form the modern understanding of radiation responses in animals and continue to inform development of new radiation models. Recent archival efforts have facilitated open access to the data and materials produced by these studies, and so a unique opportunity exists to expand this continued research.« less

  18. The effectiveness of clinical networks in improving quality of care and patient outcomes: a systematic review of quantitative and qualitative studies.

    PubMed

    Brown, Bernadette Bea; Patel, Cyra; McInnes, Elizabeth; Mays, Nicholas; Young, Jane; Haines, Mary

    2016-08-08

    Reorganisation of healthcare services into networks of clinical experts is increasing as a strategy to promote the uptake of evidence based practice and to improve patient care. This is reflected in significant financial investment in clinical networks. However, there is still some question as to whether clinical networks are effective vehicles for quality improvement. The aim of this systematic review was to ascertain the effectiveness of clinical networks and identify how successful networks improve quality of care and patient outcomes. A systematic search was undertaken in accordance with the PRISMA approach in Medline, Embase, CINAHL and PubMed for relevant papers between 1 January 1996 and 30 September 2014. Established protocols were used separately to examine and assess the evidence from quantitative and qualitative primary studies and then integrate findings. A total of 22 eligible studies (9 quantitative; 13 qualitative) were included. Of the quantitative studies, seven focused on improving quality of care and two focused on improving patient outcomes. Quantitative studies were limited by a lack of rigorous experimental design. The evidence indicates that clinical networks can be effective vehicles for quality improvement in service delivery and patient outcomes across a range of clinical disciplines. However, there was variability in the networks' ability to make meaningful network- or system-wide change in more complex processes such as those requiring intensive professional education or more comprehensive redesign of care pathways. Findings from qualitative studies indicated networks that had a positive impact on quality of care and patients outcomes were those that had adequate resources, credible leadership and efficient management coupled with effective communication strategies and collaborative trusting relationships. There is evidence that clinical networks can improve the delivery of healthcare though there are few high quality quantitative

  19. Radiobiological study by using laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sugiyama, H.; Sasao, H.; Wakai, D.; Kawachi, T.; Nishimura, H.; Bolton, P. R.; Daido, H.

    2009-07-01

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  20. Feasibility of BNCT radiobiological experiments at the HYTHOR facility

    NASA Astrophysics Data System (ADS)

    Esposito, J.; Ceballos, C.; Soncin, M.; Fabris, C.; Friso, E.; Moro, D.; Colautti, P.; Jori, G.; Rosi, G.; Nava, E.

    2008-06-01

    HYTHOR (HYbrid Thermal spectrum sHifter tapirO Reactor) is a new thermal-neutron irradiation facility, which was installed and became operative in mid 2005 at the TAPIRO (TAratura PIla Rapida potenza 0) fast reactor, in the Casaccia research centre (near Rome) of ENEA (Ente per le Nuove tecnologie Energia ed Ambiente). The facility has been designed for in vivo radiobiological studies. In HYTHOR irradiation cavity, 1-6 mice can be simultaneously irradiated to study skin melanoma treatments with the BNCT (boron neutron capture therapy). The therapeutic effects of HYTHOR radiation field on mouse melanoma has been studied as a preliminary investigation before studying the tumour local control due to boron neutron capture effect after boronated molecule injection. The method to properly irradiate small animals has been precisely defined. Results show that HYTHOR radiation field is by itself effective in reducing the tumour-growth rate. This finding has to be taken into account in studying the effectiveness of new 10B carriers. A method to properly measure the reduction of the tumour-growth rate is reported and discussed.

  1. Clinical Outcome of Degenerative Mitral Regurgitation: Critical Importance of Echocardiographic Quantitative Assessment in Routine Practice.

    PubMed

    Antoine, Clemence; Benfari, Giovanni; Michelena, Hector I; Malouf, Joseph F; Nkomo, Vuyisile T; Thapa, Prabin; Enriquez-Sarano, Maurice

    2018-05-31

    Background -Echocardiographic quantitation of degenerative mitral regurgitation (DMR) is recommended whenever possible in clinical guidelines but is criticized and its scalability to routine clinical practice doubted. We hypothesized that echocardiographic DMR quantitation, performed in routine clinical practice by multiple practitioners predicts independently long-term survival, and thus is essential to DMR management. Methods -We included patients diagnosed with isolated mitral-valve-prolapse 2003-2011 and any degree of MR quantified by any physician/sonographer in routine clinical practice. Clinical/echocardiographic data acquired at diagnosis were retrieved electronically. Endpoint was mortality under medical treatment analyzed by Kaplan-Meir method and Proportional-Hazard models. Results -The cohort included 3914 patients (55% male) aged 62±17 years, with left ventricular ejection fraction (LVEF) 63±8% and routinely measured effective regurgitant orifice area (EROA) 19[0-40] mm 2 During follow-up (6.7±3.1 years) 696 patients died under medical management and 1263 underwent mitral surgery. In multivariate analysis, routinely measured EROA was associated with mortality (adjusted-hazard-ratio 1.19[1.13-1.24] p<0.0001 per-10mm 2 ) independently of LVEF and end-systolic diameter, symptoms and age/comorbidities. The association between routinely measured EROA and mortality persisted with competitive risk modeling (adjusted hazard-ratio 1.15[1.10-1.20] per 10mm 2 p<0.0001), or in patients without guideline-based Class I/II surgical triggers (adjusted hazard ratio 1.19[1.10-1.28] per 10mm 2 p<0.0001) and in all subgroups examined (all p<0.01). Spline curve analysis showed that, compared with general population mortality, excess mortality appears for moderate DMR (EROA ≥20mm 2 ) becomes notable ≥EROA 30mm 2 and steadily increases with higher EROA levels, > 40 mm 2 threshold. Conclusions -Echocardiographic DMR quantitation is scalable to routine practice and is

  2. Chasing Ghosts in Space Radiobiology Research: The Lost Focus on Non-Targeted Effects

    NASA Astrophysics Data System (ADS)

    Cucinotta, Francis; Saganti, Premkumar; Cacao, Eliedonna

    2016-07-01

    The doses and dose-rates of astronaut exposures to galactic cosmic rays (GCR) are accurately known, and lead to particle hits per cell nucleus from high charge and energy (HZE) particles of much less than one hit per cell per week. A large number of experiments have shown that additivity of biological effects is a valid assumption for space radiation exposures, while experiments at higher doses and dose-rates than occur in space continue to be a focus of the majority of space radiobiology research. Furthermore HZE particle exposures with mono-energetic particles manifest themselves as a mixed-radiation field due to the contributions of delta-rays and the random impact parameter of a particles track core to DNA and non-DNA targets in cells and tissues. The mixed-field manifestation of mono-energetic HZE particle exposures is well known from theoretical studies of microdosimetry and track structure. Additional mixed-field effects occur for single species experiments due to nuclear fragmentation in particle accelerator beam-lines and biological samples along with energy straggling. In contrast to these well known aspects of space radiobiology there are many open questions on the contribution of non-targeted effects to low dose and dose-rate exposures. Non-targeted effects (NTEs) include bystander effects and genomic instability, and have been shown to be the most important outstanding question for reducing uncertainties in space radiation cancer risk assessment. The dose-rate and radiation quality dependence of NTE's has not been established, while there is an over-arching need to develop 21st century experimental models of human cancer risk. We review possible mechanisms of NTE's and how new experiments to address these issues could be designed.

  3. Radiobiological basis of SBRT and SRS.

    PubMed

    Song, Chang W; Kim, Mi-Sook; Cho, L Chinsoo; Dusenbery, Kathryn; Sperduto, Paul W

    2014-08-01

    Stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) have been demonstrated to be highly effective for a variety of tumors. However, the radiobiological principles of SBRT and SRS have not yet been clearly defined. It is well known that newly formed tumor blood vessels are fragile and extremely sensitive to ionizing radiation. Various lines of evidence indicate that irradiation of tumors with high dose per fraction, i.e. >10 Gy per fraction, not only kills tumor cells but also causes significant damage in tumor vasculatures. Such vascular damage and ensuing deterioration of the intratumor environment then cause ischemic or indirect/secondary tumor cell death within a few days after radiation exposure, indicating that vascular damage plays an important role in the response of tumors to SBRT and SRS. Indications are that the extensive tumor cell death due to the direct effect of radiation on tumor cells and the secondary effect through vascular damage may lead to massive release of tumor-associated antigens and various pro-inflammatory cytokines, thereby triggering an anti-tumor immune response. However, the precise role of immune assault on tumor cells in SBRT and SRS has not yet been clearly defined. The "4 Rs" for conventional fractionated radiotherapy do not include indirect cell death and thus 4 Rs cannot account for the effective tumor control by SBRT and SRS. The linear-quadratic model is for cell death caused by DNA breaks and thus the usefulness of this model for ablative high-dose SBRT and SRS is limited.

  4. High-resolution dynamic imaging and quantitative analysis of lung cancer xenografts in nude mice using clinical PET/CT

    PubMed Central

    Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong

    2017-01-01

    Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification. PMID:28881772

  5. High-resolution dynamic imaging and quantitative analysis of lung cancer xenografts in nude mice using clinical PET/CT.

    PubMed

    Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong

    2017-08-08

    Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification.

  6. Comparison of different fractionation schedules toward a single fraction in high-dose-rate brachytherapy as monotherapy for low-risk prostate cancer using 3-dimensional radiobiological models.

    PubMed

    Mavroidis, Panayiotis; Milickovic, Natasa; Cruz, Wilbert F; Tselis, Nikolaos; Karabis, Andreas; Stathakis, Sotirios; Papanikolaou, Nikos; Zamboglou, Nikolaos; Baltas, Dimos

    2014-01-01

    The aim of the present study was the investigation of different fractionation schemes to estimate their clinical impact. For this purpose, widely applied radiobiological models and dosimetric measures were used to associate their results with clinical findings. The dose distributions of 12 clinical high-dose-rate brachytherapy implants for prostate were evaluated in relation to different fractionation schemes. The fractionation schemes compared were: (1) 1 fraction of 20 Gy; (2) 2 fractions of 14 Gy; (3) 3 fractions of 11 Gy; and (4) 4 fractions of 9.5 Gy. The clinical effectiveness of the different fractionation schemes was estimated through the complication-free tumor control probability (P+), the biologically effective uniform dose, and the generalized equivalent uniform dose index. For the different fractionation schemes, the tumor control probabilities were 98.5% in 1×20 Gy, 98.6% in 2×14 Gy, 97.5% in 3×11 Gy, and 97.8% in 4×9.5 Gy. The corresponding P+ values were 88.8% in 1×20 Gy, 83.9% in 2×14 Gy, 86.0% in 3×11 Gy, and 82.3% in 4×9.5 Gy. With use of the fractionation scheme 4×9.5 Gy as reference, the isoeffective schemes regarding tumor control for 1, 2, and 3 fractions were 1×19.68 Gy, 2×13.75 Gy, and 3×11.05 Gy. The optimum fractionation schemes for 1, 2, 3, and 4 fractions were 1×19.16 Gy with a P+ of 91.8%, 2×13.2 Gy with a P+ of 89.6%, 3×10.6 Gy with a P+ of 88.4%, and 4×9.02 Gy with a P+ of 86.9%. Among the fractionation schemes 1×20 Gy, 2×14 Gy, 3×11 Gy, and 4×9.5 Gy, the first scheme was more effective in terms of P+. After performance of a radiobiological optimization, it was shown that a single fraction of 19.2 to 19.7 Gy (average 19.5 Gy) should produce at least the same benefit as that given by the 4×9.5 Gy scheme, and it should reduce the expected total complication probability by approximately 40% to 55%. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Comparison of Different Fractionation Schedules Toward a Single Fraction in High-Dose-Rate Brachytherapy as Monotherapy for Low-Risk Prostate Cancer Using 3-Dimensional Radiobiological Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavroidis, Panayiotis, E-mail: mavroidis@uthscsa.edu; Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, Stockholm; Milickovic, Natasa

    2014-01-01

    Purpose: The aim of the present study was the investigation of different fractionation schemes to estimate their clinical impact. For this purpose, widely applied radiobiological models and dosimetric measures were used to associate their results with clinical findings. Methods and Materials: The dose distributions of 12 clinical high-dose-rate brachytherapy implants for prostate were evaluated in relation to different fractionation schemes. The fractionation schemes compared were: (1) 1 fraction of 20 Gy; (2) 2 fractions of 14 Gy; (3) 3 fractions of 11 Gy; and (4) 4 fractions of 9.5 Gy. The clinical effectiveness of the different fractionation schemes was estimatedmore » through the complication-free tumor control probability (P{sub +}), the biologically effective uniform dose, and the generalized equivalent uniform dose index. Results: For the different fractionation schemes, the tumor control probabilities were 98.5% in 1 × 20 Gy, 98.6% in 2 × 14 Gy, 97.5% in 3 × 11 Gy, and 97.8% in 4 × 9.5 Gy. The corresponding P{sub +} values were 88.8% in 1 × 20 Gy, 83.9% in 2 × 14 Gy, 86.0% in 3 × 11 Gy, and 82.3% in 4 × 9.5 Gy. With use of the fractionation scheme 4 × 9.5 Gy as reference, the isoeffective schemes regarding tumor control for 1, 2, and 3 fractions were 1 × 19.68 Gy, 2 × 13.75 Gy, and 3 × 11.05 Gy. The optimum fractionation schemes for 1, 2, 3, and 4 fractions were 1 × 19.16 Gy with a P{sub +} of 91.8%, 2 × 13.2 Gy with a P{sub +} of 89.6%, 3 × 10.6 Gy with a P{sub +} of 88.4%, and 4 × 9.02 Gy with a P{sub +} of 86.9%. Conclusions: Among the fractionation schemes 1 × 20 Gy, 2 × 14 Gy, 3 × 11 Gy, and 4 × 9.5 Gy, the first scheme was more effective in terms of P{sub +}. After performance of a radiobiological optimization, it was shown that a single fraction of 19.2 to 19.7 Gy (average 19.5 Gy) should produce at least the same benefit as that given by the 4 × 9.5 Gy scheme, and it should reduce the expected total complication probability by

  8. SU-E-T-248: An Extended Generalized Equivalent Uniform Dose Accounting for Dose-Range Dependency of Radio-Biological Parameters.

    PubMed

    Troeller, A; Soehn, M; Yan, D

    2012-06-01

    Introducing an extended, phenomenological, generalized equivalent uniform dose (eEUD) that incorporates multiple volume-effect parameters for different dose-ranges. The generalized EUD (gEUD) was introduced as an estimate of the EUD that incorporates a single, tissue-specific parameter - the volume-effect-parameter (VEP) 'a'. As a purely phenomenological concept, its radio-biological equivalency to a given inhomogeneous dose distribution is not a priori clear and mechanistic models based on radio-biological parameters are assumed to better resemble the underlying biology. However, for normal organs mechanistic models are hard to derive, since the structural organization of the tissue plays a significant role. Consequently, phenomenological approaches might be especially useful in order to describe dose-response for normal tissues. However, the single parameter used to estimate the gEUD may not suffice in accurately representing more complex biological effects that have been discussed in the literature. For instance, radio-biological parameters and hence the effects of fractionation are known to be dose-range dependent. Therefore, we propose an extended phenomenological eEUD formula that incorporates multiple VEPs accounting for dose-range dependency. The eEUD introduced is a piecewise polynomial expansion of the gEUD formula. In general, it allows for an arbitrary number of VEPs, each valid for a certain dose-range. We proved that the formula fulfills required mathematical and physical criteria such as invertibility of the underlying dose-effect and continuity in dose. Furthermore, it contains the gEUD as a special case, if all VEPs are equal to 'a' from the gEUD model. The eEUD is a concept that expands the gEUD such that it can theoretically represent dose-range dependent effects. Its practicality, however, remains to be shown. As a next step, this will be done by estimating the eEUD from patient data using maximum-likelihood based NTCP modelling in the same way

  9. Quantitative gene expression deregulation in mantle-cell lymphoma: correlation with clinical and biologic factors.

    PubMed

    Kienle, Dirk; Katzenberger, Tiemo; Ott, German; Saupe, Doreen; Benner, Axel; Kohlhammer, Holger; Barth, Thomas F E; Höller, Sylvia; Kalla, Jörg; Rosenwald, Andreas; Müller-Hermelink, Hans Konrad; Möller, Peter; Lichter, Peter; Döhner, Hartmut; Stilgenbauer, Stephan

    2007-07-01

    There is evidence for a direct role of quantitative gene expression deregulation in mantle-cell lymphoma (MCL) pathogenesis. Our aim was to investigate gene expression associations with other pathogenic factors and the significance of gene expression in a multivariate survival analysis. Quantitative expression of 20 genes of potential relevance for MCL prognosis and pathogenesis were analyzed using real-time reverse transcriptase polymerase chain reaction and correlated with clinical and genetic factors, tumor morphology, and Ki-67 index in 65 MCL samples. Genomic losses at the loci of TP53, RB1, and P16 were associated with reduced transcript levels of the respective genes, indicating a gene-dosage effect as the pathomechanism. Analysis of gene expression correlations between the candidate genes revealed a separation into two clusters, one dominated by proliferation activators, another by proliferation inhibitors and regulators of apoptosis. Whereas only weak associations were identified between gene expression and clinical parameters or blastoid morphology, several genes were correlated closely with the Ki-67 index, including the short CCND1 variant (positive correlation) and RB1, ATM, P27, and BMI (negative correlation). In multivariate survival analysis, expression levels of MYC, MDM2, EZH2, and CCND1 were the strongest prognostic factors independently of tumor proliferation and clinical factors. These results indicate a pathogenic contribution of several gene transcript levels to the biology and clinical course of MCL. Genes can be differentiated into factors contributing to proliferation deregulation, either by enhancement or loss of inhibition, and proliferation-independent factors potentially contributing to MCL pathogenesis by apoptosis impairment.

  10. Quantitative 3D high resolution transmission ultrasound tomography: creating clinically relevant images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wiskin, James; Klock, John; Iuanow, Elaine; Borup, Dave T.; Terry, Robin; Malik, Bilal H.; Lenox, Mark

    2017-03-01

    There has been a great deal of research into ultrasound tomography for breast imaging over the past 35 years. Few successful attempts have been made to reconstruct high-resolution images using transmission ultrasound. To this end, advances have been made in 2D and 3D algorithms that utilize either time of arrival or full wave data to reconstruct images with high spatial and contrast resolution suitable for clinical interpretation. The highest resolution and quantitative accuracy result from inverse scattering applied to full wave data in 3D. However, this has been prohibitively computationally expensive, meaning that full inverse scattering ultrasound tomography has not been considered clinically viable. Here we show the results of applying a nonlinear inverse scattering algorithm to 3D data in a clinically useful time frame. This method yields Quantitative Transmission (QT) ultrasound images with high spatial and contrast resolution. We reconstruct sound speeds for various 2D and 3D phantoms and verify these values with independent measurements. The data are fully 3D as is the reconstruction algorithm, with no 2D approximations. We show that 2D reconstruction algorithms can introduce artifacts into the QT breast image which are avoided by using a full 3D algorithm and data. We show high resolution gross and microscopic anatomic correlations comparing cadaveric breast QT images with MRI to establish imaging capability and accuracy. Finally, we show reconstructions of data from volunteers, as well as an objective visual grading analysis to confirm clinical imaging capability and accuracy.

  11. Quantitative Assessment of the Safety Benefits Associated with Increasing Clinical Peanut Thresholds Through Immunotherapy.

    PubMed

    Baumert, Joseph L; Taylor, Steve L; Koppelman, Stef J

    Peanut immunotherapy studies are conducted with the aim to decrease the sensitivity of patients to peanut exposure with the outcome evaluated by testing the threshold for allergic response in a double-blind placebo-controlled food challenge. The clinical relevance of increasing this threshold is not well characterized. We aimed to quantify the clinical benefit of an increased threshold for peanut-allergic patients. Quantitative risk assessment was performed by matching modeled exposure to peanut protein with individual threshold levels. Exposure was modeled by pairing US consumption data for various food product categories with potential contamination levels of peanut that have been demonstrated to be present on occasion in such food products. Cookies, ice cream, doughnuts/snack cakes, and snack chip mixes were considered in the risk assessment. Increasing the baseline threshold before immunotherapy from 100 mg or less peanut protein to 300 mg peanut protein postimmunotherapy reduces the risk of experiencing an allergic reaction by more than 95% for all 4 food product categories that may contain trace levels of peanut residue. Further increase in the threshold to 1000 mg of peanut protein had an additional quantitative benefit in risk reduction for all patients reacting to 300 mg or less at baseline. We conclude that achieving thresholds of 300 mg and 1000 mg of peanut protein by peanut immunotherapy is clinically relevant, and that the risk for peanut-allergic patients who have achieved this increased threshold to experience an allergic reaction is reduced in a clinically meaningful way. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Quantitative Medical Image Analysis for Clinical Development of Therapeutics

    NASA Astrophysics Data System (ADS)

    Analoui, Mostafa

    There has been significant progress in development of therapeutics for prevention and management of several disease areas in recent years, leading to increased average life expectancy, as well as of quality of life, globally. However, due to complexity of addressing a number of medical needs and financial burden of development of new class of therapeutics, there is a need for better tools for decision making and validation of efficacy and safety of new compounds. Numerous biological markers (biomarkers) have been proposed either as adjunct to current clinical endpoints or as surrogates. Imaging biomarkers are among rapidly increasing biomarkers, being examined to expedite effective and rational drug development. Clinical imaging often involves a complex set of multi-modality data sets that require rapid and objective analysis, independent of reviewer's bias and training. In this chapter, an overview of imaging biomarkers for drug development is offered, along with challenges that necessitate quantitative and objective image analysis. Examples of automated and semi-automated analysis approaches are provided, along with technical review of such methods. These examples include the use of 3D MRI for osteoarthritis, ultrasound vascular imaging, and dynamic contrast enhanced MRI for oncology. Additionally, a brief overview of regulatory requirements is discussed. In conclusion, this chapter highlights key challenges and future directions in this area.

  13. The effect of dose escalation on gastric toxicity when treating lower oesophageal tumours: a radiobiological investigation.

    PubMed

    Carrington, Rhys; Staffurth, John; Warren, Samantha; Partridge, Mike; Hurt, Chris; Spezi, Emiliano; Gwynne, Sarah; Hawkins, Maria A; Crosby, Thomas

    2015-11-19

    Using radiobiological modelling to estimate normal tissue toxicity, this study investigates the effects of dose escalation for concurrent chemoradiation therapy (CRT) in lower third oesophageal tumours on the stomach. 10 patients with lower third oesophageal cancer were selected from the SCOPE 1 database (ISCRT47718479) with a mean planning target volume (PTV) of 348 cm(3). The original 3D conformal plans (50 Gy3D) were compared to newly created RapidArc plans of 50 GyRA and 60 GyRA, the latter using a simultaneous integrated boost (SIB) technique using a boost volume, PTV2. Dose-volume metrics and estimates of normal tissue complication probability (NTCP) were compared. There was a significant increase in NTCP of the stomach wall when moving from the 50 GyRA to the 60 GyRA plans (11-17 %, Wilcoxon signed rank test, p = 0.01). There was a strong correlation between the NTCP values of the stomach wall and the volume of the stomach wall/PTV 1 and stomach wall/PTV2 overlap structures (R = 0.80 and R = 0.82 respectively) for the 60 GyRA plans. Radiobiological modelling suggests that increasing the prescribed dose to 60 Gy may be associated with a significantly increased risk of toxicity to the stomach. It is recommended that stomach toxicity be closely monitored when treating patients with lower third oesophageal tumours with 60 Gy.

  14. Validity of a quantitative clinical measurement tool of trunk posture in idiopathic scoliosis.

    PubMed

    Fortin, Carole; Feldman, Debbie E; Cheriet, Farida; Labelle, Hubert

    2010-09-01

    Concurrent validity between postural indices obtained from digital photographs (two-dimensional [2D]), surface topography imaging (three-dimensional [3D]), and radiographs. To assess the validity of a quantitative clinical postural assessment tool of the trunk based on photographs (2D) as compared to a surface topography system (3D) as well as indices calculated from radiographs. To monitor progression of scoliosis or change in posture over time in young persons with idiopathic scoliosis (IS), noninvasive and nonionizing methods are recommended. In a clinical setting, posture can be quite easily assessed by calculating key postural indices from photographs. Quantitative postural indices of 70 subjects aged 10 to 20 years old with IS (Cobb angle, 15 degrees -60 degrees) were measured from photographs and from 3D trunk surface images taken in the standing position. Shoulder, scapula, trunk list, pelvis, scoliosis, and waist angles indices were calculated with specially designed software. Frontal and sagittal Cobb angles and trunk list were also calculated on radiographs. The Pearson correlation coefficients (r) was used to estimate concurrent validity of the 2D clinical postural tool of the trunk with indices extracted from the 3D system and with those obtained from radiographs. The correlation between 2D and 3D indices was good to excellent for shoulder, pelvis, trunk list, and thoracic scoliosis (0.81>r<0.97; P<0.01) but fair to moderate for thoracic kyphosis, lumbar lordosis, and thoracolumbar or lumbar scoliosis (0.30>r<0.56; P<0.05). The correlation between 2D and radiograph spinal indices was fair to good (-0.33 to -0.80 with Cobb angles and 0.76 for trunk list; P<0.05). This tool will facilitate clinical practice by monitoring trunk posture among persons with IS. Further, it may contribute to a reduction in the use of radiographs to monitor scoliosis progression.

  15. Predictive values of semi-quantitative procalcitonin test and common biomarkers for the clinical outcomes of community-acquired pneumonia.

    PubMed

    Ugajin, Motoi; Yamaki, Kenichi; Hirasawa, Natsuko; Yagi, Takeo

    2014-04-01

    The semi-quantitative serum procalcitonin test (Brahms PCT-Q) is available conveniently in clinical practice. However, there are few data on the relationship between results for this semi-quantitative procalcitonin test and clinical outcomes of community-acquired pneumonia (CAP). We investigated the usefulness of this procalcitonin test for predicting the clinical outcomes of CAP in comparison with severity scoring systems and the blood urea nitrogen/serum albumin (B/A) ratio, which has been reported to be a simple but reliable prognostic indicator in our prior CAP study. This retrospective study included data from subjects who were hospitalized for CAP from August 2010 through October 2012 and who were administered the semi-quantitative serum procalcitonin test on admission. The demographic characteristics; laboratory biomarkers; microbiological test results; Pneumonia Severity Index scores; confusion, urea nitrogen, breathing frequency, blood pressure, ≥ 65 years of age (CURB-65) scale scores; and age, dehydration, respiratory failure, orientation disturbance, pressure (A-DROP) scale scores on hospital admission were retrieved from their medical charts. The outcomes were mortality within 28 days of hospital admission and the need for intensive care. Of the 213 subjects with CAP who were enrolled in the study, 20 died within 28 days of hospital admission, and 32 required intensive care. Mortality did not differ significantly among subjects with different semi-quantitative serum procalcitonin levels; however, subjects with serum procalcitonin levels ≥ 10.0 ng/mL were more likely to require intensive care than those with lower levels (P < .001). The elevation of semi-quantitative serum procalcitonin levels was more frequently observed in subjects with proven etiology, especially pneumococcal pneumonia. Using the receiver operating characteristic curves for mortality, the area under the curve was 0.86 for Pneumonia Severity Index class, 0.81 for B/A ratio, 0

  16. A Computer-Aided Analysis Method of SPECT Brain Images for Quantitative Treatment Monitoring: Performance Evaluations and Clinical Applications.

    PubMed

    Zheng, Xiujuan; Wei, Wentao; Huang, Qiu; Song, Shaoli; Wan, Jieqing; Huang, Gang

    2017-01-01

    The objective and quantitative analysis of longitudinal single photon emission computed tomography (SPECT) images are significant for the treatment monitoring of brain disorders. Therefore, a computer aided analysis (CAA) method is introduced to extract a change-rate map (CRM) as a parametric image for quantifying the changes of regional cerebral blood flow (rCBF) in longitudinal SPECT brain images. The performances of the CAA-CRM approach in treatment monitoring are evaluated by the computer simulations and clinical applications. The results of computer simulations show that the derived CRMs have high similarities with their ground truths when the lesion size is larger than system spatial resolution and the change rate is higher than 20%. In clinical applications, the CAA-CRM approach is used to assess the treatment of 50 patients with brain ischemia. The results demonstrate that CAA-CRM approach has a 93.4% accuracy of recovered region's localization. Moreover, the quantitative indexes of recovered regions derived from CRM are all significantly different among the groups and highly correlated with the experienced clinical diagnosis. In conclusion, the proposed CAA-CRM approach provides a convenient solution to generate a parametric image and derive the quantitative indexes from the longitudinal SPECT brain images for treatment monitoring.

  17. Evaluation of a web based informatics system with data mining tools for predicting outcomes with quantitative imaging features in stroke rehabilitation clinical trials

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Kim, Bokkyu; Park, Ji Hoon; Wang, Erik; Forsyth, Sydney; Lim, Cody; Ravi, Ragini; Karibyan, Sarkis; Sanchez, Alexander; Liu, Brent

    2017-03-01

    Quantitative imaging biomarkers are used widely in clinical trials for tracking and evaluation of medical interventions. Previously, we have presented a web based informatics system utilizing quantitative imaging features for predicting outcomes in stroke rehabilitation clinical trials. The system integrates imaging features extraction tools and a web-based statistical analysis tool. The tools include a generalized linear mixed model(GLMM) that can investigate potential significance and correlation based on features extracted from clinical data and quantitative biomarkers. The imaging features extraction tools allow the user to collect imaging features and the GLMM module allows the user to select clinical data and imaging features such as stroke lesion characteristics from the database as regressors and regressands. This paper discusses the application scenario and evaluation results of the system in a stroke rehabilitation clinical trial. The system was utilized to manage clinical data and extract imaging biomarkers including stroke lesion volume, location and ventricle/brain ratio. The GLMM module was validated and the efficiency of data analysis was also evaluated.

  18. Biological effective dose evaluation in gynaecological brachytherapy: LDR and HDR treatments, dependence on radiobiological parameters, and treatment optimisation.

    PubMed

    Bianchi, C; Botta, F; Conte, L; Vanoli, P; Cerizza, L

    2008-10-01

    This study was undertaken to compare the biological efficacy of different high-dose-rate (HDR) and low-dose-rate (LDR) treatments of gynaecological lesions, to identify the causes of possible nonuniformity and to optimise treatment through customised calculation. The study considered 110 patients treated between 2001 and 2006 with external beam radiation therapy and/or brachytherapy with either LDR (afterloader Selectron, (137)Cs) or HDR (afterloader microSelectron Classic, (192)Ir). The treatments were compared in terms of biologically effective dose (BED) to the tumour and to the rectum (linear-quadratic model) by using statistical tests for comparisons between independent samples. The difference between the two treatments was statistically significant in one case only. However, within each technique, we identified considerable nonuniformity in therapeutic efficacy due to differences in fractionation schemes and overall treatment time. To solve this problem, we created a Microsoft Excel spreadsheet allowing calculation of the optimal treatment for each patient: best efficacy (BED(tumour)) without exceeding toxicity threshold (BED(rectum)). The efficacy of a treatment may vary as a result of several factors. Customised radiobiological evaluation is a useful adjunct to clinical evaluation in planning equivalent treatments that satisfy all dosimetric constraints.

  19. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women.

    PubMed

    Alizai, Hamza; Nardo, Lorenzo; Karampinos, Dimitrios C; Joseph, Gabby B; Yap, Samuel P; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M

    2012-07-01

    The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Sixty-two women (age 61 ± 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P < 0.0001, R values ranging from 0.79 to 0.88). Goutallier grades 0-4 had a fat fraction ranging from 3.5 to 19%. Intra-observer and inter-observer agreement values of 0.83 and 0.81 were calculated for the semi-quantitative grading. Semi-quantitative grading of intramuscular fat and quantitative fat fraction were significantly correlated and both techniques had excellent reproducibility. However, the clinical grading was found to overestimate muscle fat. Fat infiltration of muscle commonly occurs in many metabolic and neuromuscular diseases. • Image-based semi-quantitative classifications for assessing fat infiltration are not well validated. • Quantitative MRI techniques provide an accurate assessment of muscle fat.

  20. Systematic review of quantitative clinical gait analysis in patients with dementia.

    PubMed

    van Iersel, M B; Hoefsloot, W; Munneke, M; Bloem, B R; Olde Rikkert, M G M

    2004-02-01

    Diminished mobility often accompanies dementia and has a great impact on independence and quality of life. New treatment strategies for dementia are emerging, but the effects on gait remains to be studied objectively. In this review we address the general effects of dementia on gait as revealed by quantitative gait analysis. A systematic literature search with the (MESH) terms: 'dementia' and 'gait disorders' in Medline, CC, Psychlit and CinaHL between 1980-2002. Main inclusion criteria: controlled studies; patients with dementia; quantitative gait data. Seven publications met the inclusion criteria. All compared gait in Alzheimer's Disease (AD) with healthy elderly controls; one also assessed gait in Vascular Dementia (VaD). The methodology used was inconsistent and often had many shortcomings. However, there were several consistent findings: walking velocity decreased in dementia compared to healthy controls and decreased further with progressing severity of dementia. VaD was associated with a significant decrease in walking velocity compared to AD subjects. Dementia was associated with a shortened step length, an increased double support time and step to step variability. Gait in dementia is hardly analyzed in a well-designed manner. Despite this, the literature suggests that quantitative gait analysis can be sufficiently reliable and responsive to measure decline in walking velocity between subjects with and without dementia. More research is required to assess, both on an individual and a group level, how the minimal clinically relevant changes in gait in elderly demented patients should be defined and what would be the most responsive method to measure these changes.

  1. Transnational science and collaborative networks. The case of Genetics and Radiobiology in Mexico, 1950-1970.

    PubMed

    Barahona, Ana

    2015-01-01

    The transnational approach of the science and technology studies (S&TS) abandons the nation as a unit of analysis in order to understand the development of science history. It also abandons Euro-US-centred narratives in order to explain the role of international collaborative networks and the circulation of knowledge, people, artefacts and scientific practices. It is precisely under this perspective that the development of genetics and radiobiology in Mexico shall be analyzed, together with the pioneering work of the Mexican physician-turned-geneticist Alfonso León de Garay who spent two years in the Galton Laboratory in London under the supervision of Lionel Penrose. Upon his return de Garay funded the Genetics and Radiobiology Program of the National Commission of Nuclear Energy based on local needs and the aim of working beyond geographical limitations to thus facilitate the circulation of knowledge, practices and people. The three main lines of research conducted in the years after its foundation that were in line with international projects while responding to the national context were, first, cytogenetic studies of certain abnormalities, and the cytogenetics and anthropological studies of the Olympic Games held in Mexico in 1968; second, the study of the effects of radiation on hereditary material; and third, the study of population genetics in Drosophila and in Mexican indigenous groups. The program played a key role in reshaping the scientific careers of Mexican geneticists, and in transferring locally sourced research into broader networks. This case shows the importance of international collaborative networks and circulation in the constitution of national scientific elites, and also shows the national and transnational concerns that shaped local practices.

  2. Development of a relational database to capture and merge clinical history with the quantitative results of radionuclide renography.

    PubMed

    Folks, Russell D; Savir-Baruch, Bital; Garcia, Ernest V; Verdes, Liudmila; Taylor, Andrew T

    2012-12-01

    Our objective was to design and implement a clinical history database capable of linking to our database of quantitative results from (99m)Tc-mercaptoacetyltriglycine (MAG3) renal scans and export a data summary for physicians or our software decision support system. For database development, we used a commercial program. Additional software was developed in Interactive Data Language. MAG3 studies were processed using an in-house enhancement of a commercial program. The relational database has 3 parts: a list of all renal scans (the RENAL database), a set of patients with quantitative processing results (the Q2 database), and a subset of patients from Q2 containing clinical data manually transcribed from the hospital information system (the CLINICAL database). To test interobserver variability, a second physician transcriber reviewed 50 randomly selected patients in the hospital information system and tabulated 2 clinical data items: hydronephrosis and presence of a current stent. The CLINICAL database was developed in stages and contains 342 fields comprising demographic information, clinical history, and findings from up to 11 radiologic procedures. A scripted algorithm is used to reliably match records present in both Q2 and CLINICAL. An Interactive Data Language program then combines data from the 2 databases into an XML (extensible markup language) file for use by the decision support system. A text file is constructed and saved for review by physicians. RENAL contains 2,222 records, Q2 contains 456 records, and CLINICAL contains 152 records. The interobserver variability testing found a 95% match between the 2 observers for presence or absence of ureteral stent (κ = 0.52), a 75% match for hydronephrosis based on narrative summaries of hospitalizations and clinical visits (κ = 0.41), and a 92% match for hydronephrosis based on the imaging report (κ = 0.84). We have developed a relational database system to integrate the quantitative results of MAG3 image

  3. Failure to Integrate Quantitative Measurement Methods of Ocular Inflammation Hampers Clinical Practice and Trials on New Therapies for Posterior Uveitis.

    PubMed

    Herbort, Carl P; Tugal-Tutkun, Ilknur; Neri, Piergiorgio; Pavésio, Carlos; Onal, Sumru; LeHoang, Phuc

    2017-05-01

    Uveitis is one of the fields in ophthalmology where a tremendous evolution took place in the past 25 years. Not only did we gain access to more efficient, more targeted, and better tolerated therapies, but also in parallel precise and quantitative measurement methods developed allowing the clinician to evaluate these therapies and adjust therapeutic intervention with a high degree of precision. Objective and quantitative measurement of the global level of intraocular inflammation became possible for most inflammatory diseases with direct or spill-over anterior chamber inflammation, thanks to laser flare photometry. The amount of retinal inflammation could be quantified by using fluorescein angiography to score retinal angiographic signs. Indocyanine green angiography gave imaging insight into the hitherto inaccessible choroidal compartment, rendering possible the quantification of choroiditis by scoring indocyanine green angiographic signs. Optical coherence tomography has enabled measurement and objective monitoring of retinal and choroidal thickness. This multimodal quantitative appraisal of intraocular inflammation represents an exquisite security in monitoring uveitis. What is enigmatic, however, is the slow pace with which these improvements are integrated in some areas. What is even more difficult to understand is the fact that clinical trials to assess new therapeutic agents still mostly rely on subjective parameters such as clinical evaluation of vitreous haze as a main endpoint; whereas a whole array of precise, quantitative, and objective modalities are available for the design of clinical studies. The scope of this work was to review the quantitative investigations that improved the management of uveitis in the past 2-3 decades.

  4. Present Status of Radiotherapy in Clinical Practice

    NASA Astrophysics Data System (ADS)

    Duehmke, Eckhart

    Aims of radiation oncology are cure from malignant diseases and - at the same time preservation of anatomy (e.g. female breast, uterus, prostate) and organ functions (e.g. brain, eye, voice, sphincter ani). At present, methods and results of clinical radiotherapy (RT) are based on experiences with natural history and radiobiology of malignant tumors in properly defined situations as well as on technical developments since World War II in geometrical and biological treatment planning in teletherapy and brachytherapy. Radiobiological research revealed tolerance limits of healthy tissues to be respected, effective total treatment doses of high cure probability depending on histology and tumor volume, and - more recently - altered fractionation schemes to be adapted to specific growth fractions and intrinsic radiosensitivities of clonogenic tumor cells. In addition, Biological Response Modifiers (BRM), such as cis-platinum, oxygen and hyperthermia may steepen cell survival curves of hypoxic tumor cells, others - such as tetrachiordekaoxid (TCDO) - may enhance repair of normal tissues. Computer assisted techniques in geometrical RT-planning based on individual healthy and pathologic anatomy (CT, MRT) provide high precision RT for well defined brain lesions by using dedicated linear accelerators (Stereotaxy). CT-based individual tissue compensators help with homogenization of distorted dose distributions in magna field irradiation for malignant lymphomas and with total body irradiation (TBI) before allogeneic bone marrow transplantation, e.g. for leukemia. RT with fast neutrons, Boron Neutron Capture Therapy (BNCT), RT with protons and heavy ions need to be tested in randomized trials before implementation into clinical routine.

  5. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women

    PubMed Central

    Nardo, Lorenzo; Karampinos, Dimitrios C.; Joseph, Gabby B.; Yap, Samuel P.; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M.

    2013-01-01

    Objective The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Methods Sixty-two women (age 61±6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. Results A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P<0.0001, R values ranging from 0.79 to 0.88). Goutallier grades 0–4 had a fat fraction ranging from 3.5 to 19%. Intra-observer and inter-observer agreement values of 0.83 and 0.81 were calculated for the semi-quantitative grading. Conclusion Semi-quantitative grading of intramuscular fat and quantitative fat fraction were significantly correlated and both techniques had excellent reproducibility. However, the clinical grading was found to overestimate muscle fat. PMID:22411305

  6. Quantitative Clinical Chemistry Proteomics (qCCP) using mass spectrometry: general characteristics and application.

    PubMed

    Lehmann, Sylvain; Hoofnagle, Andrew; Hochstrasser, Denis; Brede, Cato; Glueckmann, Matthias; Cocho, José A; Ceglarek, Uta; Lenz, Christof; Vialaret, Jérôme; Scherl, Alexander; Hirtz, Christophe

    2013-05-01

    Proteomics studies typically aim to exhaustively detect peptides/proteins in a given biological sample. Over the past decade, the number of publications using proteomics methodologies has exploded. This was made possible due to the availability of high-quality genomic data and many technological advances in the fields of microfluidics and mass spectrometry. Proteomics in biomedical research was initially used in 'functional' studies for the identification of proteins involved in pathophysiological processes, complexes and networks. Improved sensitivity of instrumentation facilitated the analysis of even more complex sample types, including human biological fluids. It is at that point the field of clinical proteomics was born, and its fundamental aim was the discovery and (ideally) validation of biomarkers for the diagnosis, prognosis, or therapeutic monitoring of disease. Eventually, it was recognized that the technologies used in clinical proteomics studies [particularly liquid chromatography-tandem mass spectrometry (LC-MS/MS)] could represent an alternative to classical immunochemical assays. Prior to deploying MS in the measurement of peptides/proteins in the clinical laboratory, it seems likely that traditional proteomics workflows and data management systems will need to adapt to the clinical environment and meet in vitro diagnostic (IVD) regulatory constraints. This defines a new field, as reviewed in this article, that we have termed quantitative Clinical Chemistry Proteomics (qCCP).

  7. Quantitation of Oxidative Modifications of Commercial Human Albumin for Clinical Use.

    PubMed

    Takahashi, Teppei; Terada, Tomoyoshi; Arikawa, Hajime; Kizaki, Kazuha; Terawaki, Hiroyuki; Imai, Hajime; Itoh, Yoshinori; Era, Seiichi

    2016-01-01

    We investigated the quantitation of oxidative chemical modifications, such as thiol oxidation and carbonylation, in medical-grade human serum albumin (HSA) preparations, in comparison with those of healthy and diseased subjects. Four kinds of HSA products were obtained from three major suppliers in Japan. Eight male collegiate students and six healthy male volunteers were recruited as the young (21.6 years) and older (57.2 years) groups, respectively. Four male stable patients (64.3 years) treated with regular hemodialysis (HD) also enrolled in this study. Quantitative analyses for thiol oxidation and carbonylation were performed using HPLC and spectroscopic methods, respectively. Structural characterization was further investigated by differential scanning calorimetry (DSC) and circular dichroism (CD) spectropolarimetry. Significantly larger amounts of thiol-oxidized and carbonylated HSA products were observed than HSA obtained from healthy subjects. In the structural characterization, the midpoint temperature of the denaturation curve (Tm) analyzed by DSC was relatively high, and may have been caused by the added albumin-specific stabilizers, and CD-resolved secondary structure showed that HSA products had a helical conformation. Commercial HSA products for clinical use have a more thermally stable state and remain in a helix-rich structure, even though their specific amino acids (mainly Cys and Lys residues) are oxidatively modified.

  8. Quantitative Clinical Imaging Methods for Monitoring Intratumoral Evolution.

    PubMed

    Kim, Joo Yeun; Gatenby, Robert A

    2017-01-01

    images in landscape ecology and, with appropriate application of Darwinian first principles and sophisticated image analytic methods, can be used to estimate regional variations in the molecular properties of cancer cells.We have initially examined this technique in glioblastoma, a malignant brain neoplasm which is morphologically complex and notorious for a fast progression from diagnosis to recurrence and death, making a suitable subject of noninvasive, rapidly repeated assessment of intratumoral evolution. Quantitative imaging analysis of routine clinical MRIs from glioblastoma has identified macroscopic morphologic characteristics which correlate with proteogenomics and prognosis. The key to the accurate detection and forecasting of intratumoral evolution using quantitative imaging analysis is likely to be in the understanding of the synergistic interactions between observable intratumoral subregions and the resulting tumor behavior.

  9. Cerebral Blood Volume ASPECTS Is the Best Predictor of Clinical Outcome in Acute Ischemic Stroke: A Retrospective, Combined Semi-Quantitative and Quantitative Assessment.

    PubMed

    Padroni, Marina; Bernardoni, Andrea; Tamborino, Carmine; Roversi, Gloria; Borrelli, Massimo; Saletti, Andrea; De Vito, Alessandro; Azzini, Cristiano; Borgatti, Luca; Marcello, Onofrio; d'Esterre, Christopher; Ceruti, Stefano; Casetta, Ilaria; Lee, Ting-Yim; Fainardi, Enrico

    2016-01-01

    The capability of CT perfusion (CTP) Alberta Stroke Program Early CT Score (ASPECTS) to predict outcome and identify ischemia severity in acute ischemic stroke (AIS) patients is still questioned. 62 patients with AIS were imaged within 8 hours of symptom onset by non-contrast CT, CT angiography and CTP scans at admission and 24 hours. CTP ASPECTS was calculated on the affected hemisphere using cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) maps by subtracting 1 point for any abnormalities visually detected or measured within multiple cortical circular regions of interest according to previously established thresholds. MTT-CBV ASPECTS was considered as CTP ASPECTS mismatch. Hemorrhagic transformation (HT), recanalization status and reperfusion grade at 24 hours, final infarct volume at 7 days and modified Rankin scale (mRS) at 3 months after onset were recorded. Semi-quantitative and quantitative CTP ASPECTS were highly correlated (p<0.00001). CBF, CBV and MTT ASPECTS were higher in patients with no HT and mRS ≤ 2 and inversely associated with final infarct volume and mRS (p values: from p<0.05 to p<0.00001). CTP ASPECTS mismatch was slightly associated with radiological and clinical outcomes (p values: from p<0.05 to p<0.02) only if evaluated quantitatively. A CBV ASPECTS of 9 was the optimal semi-quantitative value for predicting outcome. Our findings suggest that visual inspection of CTP ASPECTS recognizes infarct and ischemic absolute values. Semi-quantitative CBV ASPECTS, but not CTP ASPECTS mismatch, represents a strong prognostic indicator, implying that core extent is the main determinant of outcome, irrespective of penumbra size.

  10. Cerebral Blood Volume ASPECTS Is the Best Predictor of Clinical Outcome in Acute Ischemic Stroke: A Retrospective, Combined Semi-Quantitative and Quantitative Assessment

    PubMed Central

    Padroni, Marina; Bernardoni, Andrea; Tamborino, Carmine; Roversi, Gloria; Borrelli, Massimo; Saletti, Andrea; De Vito, Alessandro; Azzini, Cristiano; Borgatti, Luca; Marcello, Onofrio; d’Esterre, Christopher; Ceruti, Stefano; Casetta, Ilaria; Lee, Ting-Yim; Fainardi, Enrico

    2016-01-01

    Introduction The capability of CT perfusion (CTP) Alberta Stroke Program Early CT Score (ASPECTS) to predict outcome and identify ischemia severity in acute ischemic stroke (AIS) patients is still questioned. Methods 62 patients with AIS were imaged within 8 hours of symptom onset by non-contrast CT, CT angiography and CTP scans at admission and 24 hours. CTP ASPECTS was calculated on the affected hemisphere using cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) maps by subtracting 1 point for any abnormalities visually detected or measured within multiple cortical circular regions of interest according to previously established thresholds. MTT-CBV ASPECTS was considered as CTP ASPECTS mismatch. Hemorrhagic transformation (HT), recanalization status and reperfusion grade at 24 hours, final infarct volume at 7 days and modified Rankin scale (mRS) at 3 months after onset were recorded. Results Semi-quantitative and quantitative CTP ASPECTS were highly correlated (p<0.00001). CBF, CBV and MTT ASPECTS were higher in patients with no HT and mRS≤2 and inversely associated with final infarct volume and mRS (p values: from p<0.05 to p<0.00001). CTP ASPECTS mismatch was slightly associated with radiological and clinical outcomes (p values: from p<0.05 to p<0.02) only if evaluated quantitatively. A CBV ASPECTS of 9 was the optimal semi-quantitative value for predicting outcome. Conclusions Our findings suggest that visual inspection of CTP ASPECTS recognizes infarct and ischemic absolute values. Semi-quantitative CBV ASPECTS, but not CTP ASPECTS mismatch, represents a strong prognostic indicator, implying that core extent is the main determinant of outcome, irrespective of penumbra size. PMID:26824672

  11. Multidimensional electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research.

    PubMed

    Loroch, Stefan; Schommartz, Tim; Brune, Wolfram; Zahedi, René Peiman; Sickmann, Albert

    2015-05-01

    Quantitative proteomics and phosphoproteomics have become key disciplines in understanding cellular processes. Fundamental research can be done using cell culture providing researchers with virtually infinite sample amounts. In contrast, clinical, pre-clinical and biomedical research is often restricted to minute sample amounts and requires an efficient analysis with only micrograms of protein. To address this issue, we generated a highly sensitive workflow for combined LC-MS-based quantitative proteomics and phosphoproteomics by refining an ERLIC-based 2D phosphoproteomics workflow into an ERLIC-based 3D workflow covering the global proteome as well. The resulting 3D strategy was successfully used for an in-depth quantitative analysis of both, the proteome and the phosphoproteome of murine cytomegalovirus-infected mouse fibroblasts, a model system for host cell manipulation by a virus. In a 2-plex SILAC experiment with 150 μg of a tryptic digest per condition, the 3D strategy enabled the quantification of ~75% more proteins and even ~134% more peptides compared to the 2D strategy. Additionally, we could quantify ~50% more phosphoproteins by non-phosphorylated peptides, concurrently yielding insights into changes on the levels of protein expression and phosphorylation. Beside its sensitivity, our novel three-dimensional ERLIC-strategy has the potential for semi-automated sample processing rendering it a suitable future perspective for clinical, pre-clinical and biomedical research. Copyright © 2015. Published by Elsevier B.V.

  12. Measurement and Evaluation of Quantitative Performance of PET/CT Images before a Multicenter Clinical Trial.

    PubMed

    Zhu, Yanjia; Geng, Caizheng; Huang, Jia; Liu, Juzhen; Wu, Ning; Xin, Jun; Xu, Hao; Yu, Lijuan; Geng, Jianhua

    2018-06-13

    To ensure the reliability of the planned multi-center clinical trial, we assessed the consistence and comparability of the quantitative parameters of the eight PET/CT units that will be used in this trial. PET/CT images were scanned using a PET NEMA image quality phantom (Biodex) on the eight units of Discovery PET/CT 690 from GE Healthcare. The scanning parameters were the same with the ones to be used in the planned trial. The 18 F-NaF concentration in the background was 5.3 kBq/ml, while the ones in the spheres of diameter 37 mm, 22 mm, 17 mm and 10 mm were 8:1 as to that of the background and the ones in the spheres of diameter 28 mm and 13 mm were 0 kBq/ml. The consistency of hot sphere recovery coefficient (HRC), cold sphere recovery coefficient (CRC), hot sphere contrast (Q H ) and cold sphere contrast (Q c ) among these 8 PET/CTs was analyzed. The variation of the main quantitative parameters of the eight PET/CT systems was within 10%, which is acceptable for the clinical trial.

  13. Radiobiological Implications of Fukushima Nuclear Accident for Personalized Medical Approach.

    PubMed

    Fukunaga, Hisanori; Yokoya, Akinari; Taki, Yasuyuki; Prise, Kevin M

    2017-05-01

    On March 11, 2011, a devastating earthquake and subsequent tsunami caused serious damage to areas of the Pacific coast in Fukushima prefecture and prompted fears among the residents about a possible meltdown of the Fukushima Daiichi Nuclear Power Plant reactors. As of 2017, over six years have passed since the Fukushima nuclear crisis and yet the full ramifications of the biological exposures to this accidental release of radioactive substances remain unclear. Furthermore, although several genetic studies have determined that the variation in radiation sensitivity among different individuals is wider than expected, personalized medical approaches for Fukushima victims have seemed to be insufficient. In this commentary, we discuss radiobiological issues arising from low-dose radiation exposure, from the cell-based to the population level. We also introduce the scientific utility of the Integrative Japanese Genome Variation Database (iJGVD), an online database released by the Tohoku Medical Megabank Organization, Tohoku University that covered the whole genome sequences of 2,049 healthy individuals in the northeastern part of Japan in 2016. Here we propose a personalized radiation risk assessment and medical approach, which considers the genetic variation of radiation sensitivity among individuals, for next-step developments in radiological protection.

  14. SU-F-J-112: Clinical Feasibility Test of An RF Pulse-Based MRI Method for the Quantitative Fat-Water Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, S; Wloch, J; Pirkola, M

    Purpose: Quantitative fat-water segmentation is important not only because of the clinical utility of fat-suppressed MRI images in better detecting lesions of clinical significance (in the midst of bright fat signal) but also because of the possible physical need, in which CT-like images based on the materials’ photon attenuation properties may have to be generated from MR images; particularly, as in the case of MR-only radiation oncology environment to obtain radiation dose calculation or as in the case of hybrid PET/MR modality to obtain attenuation correction map for the quantitative PET reconstruction. The majority of such fat-water quantitative segmentations havemore » been performed by utilizing the Dixon’s method and its variations, which have to enforce the proper settings (often predefined) of echo time (TE) in the pulse sequences. Therefore, such methods have been unable to be directly combined with those ultrashort TE (UTE) sequences that, taking the advantage of very low TE values (∼ 10’s microsecond), might be beneficial to directly detect bones. Recently, an RF pulse-based method (http://dx.doi.org/10.1016/j.mri.2015.11.006), termed as PROD pulse method, was introduced as a method of quantitative fat-water segmentation that does not have to depend on predefined TE settings. Here, the clinical feasibility of this method is verified in brain tumor patients by combining the PROD pulse with several sequences. Methods: In a clinical 3T MRI, the PROD pulse was combined with turbo spin echo (e.g. TR=1500, TE=16 or 60, ETL=15) or turbo field echo (e.g. TR=5.6, TE=2.8, ETL=12) sequences without specifying TE values. Results: The fat-water segmentation was possible without having to set specific TE values. Conclusion: The PROD pulse method is clinically feasible. Although not yet combined with UTE sequences in our laboratory, the method is potentially compatible with UTE sequences, and thus, might be useful to directly segment fat, water, bone and air.« less

  15. Routine Clinical Quantitative Rest Stress Myocardial Perfusion for Managing Coronary Artery Disease: Clinical Relevance of Test-Retest Variability.

    PubMed

    Kitkungvan, Danai; Johnson, Nils P; Roby, Amanda E; Patel, Monika B; Kirkeeide, Richard; Gould, K Lance

    2017-05-01

    Positron emission tomography (PET) quantifies stress myocardial perfusion (in cc/min/g) and coronary flow reserve to guide noninvasively the management of coronary artery disease. This study determined their test-retest precision within minutes and daily biological variability essential for bounding clinical decision-making or risk stratification based on low flow ischemic thresholds or follow-up changes. Randomized trials of fractional flow reserve-guided percutaneous coronary interventions established an objective, quantitative, outcomes-driven standard of physiological stenosis severity. However, pressure-derived fractional flow reserve requires invasive coronary angiogram and was originally validated by comparison to noninvasive PET. The time course and test-retest precision of serial quantitative rest-rest and stress-stress global myocardial perfusion by PET within minutes and days apart in the same patient were compared in 120 volunteers undergoing serial 708 quantitative PET perfusion scans using rubidium 82 (Rb-82) and dipyridamole stress with a 2-dimensional PET-computed tomography scanner (GE DST 16) and University of Texas HeartSee software with our validated perfusion model. Test-retest methodological precision (coefficient of variance) for serial quantitative global myocardial perfusion minutes apart is ±10% (mean ΔSD at rest ±0.09, at stress ±0.23 cc/min/g) and for days apart is ±21% (mean ΔSD at rest ±0.2, at stress ±0.46 cc/min/g) reflecting added biological variability. Global myocardial perfusion at 8 min after 4-min dipyridamole infusion is 10% higher than at standard 4 min after dipyridamole. Test-retest methodological precision of global PET myocardial perfusion by serial rest or stress PET minutes apart is ±10%. Day-to-different-day biological plus methodological variability is ±21%, thereby establishing boundaries of variability on physiological severity to guide or follow coronary artery disease management. Maximum stress

  16. Nursing students' conception of clinical skills training before and after their first clinical placement: A quantitative, evaluative study.

    PubMed

    Struksnes, Solveig; Engelien, Ragna Ingeborg

    2016-01-01

    Education institution and practice field have a joint responsibility with regard to facilitating a learning environment for the nursing students that provides learning outcomes in accordance with the National Curriculum. Using simulated patient situations is about ensuring a safe learning environment where mistakes are not putting real patients' lives in danger. To compare nursing students' experiences with a skills training situation immediately after the training and after their ten weeks clinical placement in nursing homes. Quantitative, cross-sectional and evaluative. Full- and part-time students in their first year of a Bachelor of Nursing degree. The students answered a questionnaire on two different occasions, immediately after skills training and after internship in a nursing home. Being a "patient" and a "nurse" in simulation was experienced as useful to clinical practice. Students with previous experience had a significantly higher perception of mastering the procedure after the internship, while unexperienced fellow students did not report any significant increase with regard to a sense of coping during their clinical practice. The findings raise questions if there are aspects with the education institution or the practice field that should be improved to help facilitate a better learning process for students without any previous experience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Professor Hassan K. Awwad; The Father of Radiation Oncology and Radiobiology in Egypt and the Arab World, His Good Deeds Last Forever and Inspire us for the Future.

    PubMed

    Zaghloul, Mohamed S; El-Badawi, Samy A; Abd Elbaky, Hoda

    2007-03-01

    , Libya, Palastine, Iraq, Uganda, Nigeria and other countries. He himself had many teaching missions in different Arab countries (Saudi Arabia, Kuwait and others) for the sake of groups of his students that could not come to Egypt. He served as the head of the Department of Radiation Oncology for more than 15 years (1970-1985), full time Professor in Radiation Oncology and Radiobiology (1985-2007), Professor of Radiotherapy, Alexandria University (1954-1970), Chief of the Department of Nuclear Medicine, Medical Research Institute, University of Alexandria (1963-1964), Chief of the Radiotherapy Unit in the Heliopolis Hospital, Ministry of Public Health, 1985-2007. He was co-founder of the Egyptian Society of Cancer and acted as vice present and head of the scientific committee of the society. He shared the activities of many Egyptian, Arab and international scientific societies. His activities in these societies were great. Prof. Awwad had direct contact with his students that never ended, even after some of them left to work in other places in USA, Canada, Europe or Arab Countries. His students' specialty varied between radiobiology, pharmacology, biochemistry, tumor biology, radiation oncology, medical oncology and surgical oncology. Prof. Awwad had more than 100 published articles on hypoxia and hypoxic cell radiosensitizers, biology of growth of human tumors, biology and clinical models of the time factor in external beam radiotherapy, biology and mathematical models of time factor in brachytherapy, radioactive dynamic cancer studies of plasma protein metabolism, radioactive dynamic factor studies of blood disorders and lymphoma, radiation damage of DNA and normal tissues,head and neck cancer, bladder cancer, breast cancer, cervical cancer and development and optimization of clinical radiotherapy. He had continuous cooperation and collaboration with many of the great scientists and clinicians in Holland, France, United Kingdom, USA and Japan. He continued to exchange

  18. Clinical use of quantitative cardiac perfusion PET: rationale, modalities and possible indications. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM).

    PubMed

    Sciagrà, Roberto; Passeri, Alessandro; Bucerius, Jan; Verberne, Hein J; Slart, Riemer H J A; Lindner, Oliver; Gimelli, Alessia; Hyafil, Fabien; Agostini, Denis; Übleis, Christopher; Hacker, Marcus

    2016-07-01

    Until recently, PET was regarded as a luxurious way of performing myocardial perfusion scintigraphy, with excellent image quality and diagnostic capabilities that hardly justified the additional cost and procedural effort. Quantitative perfusion PET was considered a major improvement over standard qualitative imaging, because it allows the measurement of parameters not otherwise available, but for many years its use was confined to academic and research settings. In recent years, however, several factors have contributed to the renewal of interest in quantitative perfusion PET, which has become a much more readily accessible technique due to progress in hardware and the availability of dedicated and user-friendly platforms and programs. In spite of this evolution and of the growing evidence that quantitative perfusion PET can play a role in the clinical setting, there are not yet clear indications for its clinical use. Therefore, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, decided to examine the current literature on quantitative perfusion PET to (1) evaluate the rationale for its clinical use, (2) identify the main methodological requirements, (3) identify the remaining technical difficulties, (4) define the most reliable interpretation criteria, and finally (5) tentatively delineate currently acceptable and possibly appropriate clinical indications. The present position paper must be considered as a starting point aiming to promote a wider use of quantitative perfusion PET and to encourage the conception and execution of the studies needed to definitely establish its role in clinical practice.

  19. Microdose clinical trial: quantitative determination of nicardipine and prediction of metabolites in human plasma.

    PubMed

    Yamane, Naoe; Takami, Tomonori; Tozuka, Zenzaburo; Sugiyama, Yuichi; Yamazaki, Akira; Kumagai, Yuji

    2009-01-01

    A sample treatment procedure and high-sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for quantitative determination of nicardipine in human plasma were developed for a microdose clinical trial with nicardipine, a non-radioisotope labeled drug. The calibration curve was linear in the range of 1-500 pg/mL using 1 mL of plasma. Analytical method validation for the clinical dose, for which the calibration curve was linear in the range of 0.2-100 ng/mL using 20 microL of plasma, was also conducted. Each method was successfully applied to making determinations in plasma using LC/MS/MS after administration of a microdose (100 microg) and clinical dose (20 mg) to each of six healthy volunteers. We tested new approaches in the search for metabolites in plasma after microdosing. In vitro metabolites of nicardipine were characterized using linear ion trap-fourier transform ion cyclotron resonance mass spectrometry (LIT-FTICRMS) and the nine metabolites predicted to be in plasma were analyzed using LC/MS/MS. There is a strong possibility that analysis of metabolites by LC/MS/MS may advance to utilization in microdose clinical trials with non-radioisotope labeled drugs.

  20. Clinical application of microsampling versus conventional sampling techniques in the quantitative bioanalysis of antibiotics: a systematic review.

    PubMed

    Guerra Valero, Yarmarly C; Wallis, Steven C; Lipman, Jeffrey; Stove, Christophe; Roberts, Jason A; Parker, Suzanne L

    2018-03-01

    Conventional sampling techniques for clinical pharmacokinetic studies often require the removal of large blood volumes from patients. This can result in a physiological or emotional burden, particularly for neonates or pediatric patients. Antibiotic pharmacokinetic studies are typically performed on healthy adults or general ward patients. These may not account for alterations to a patient's pathophysiology and can lead to suboptimal treatment. Microsampling offers an important opportunity for clinical pharmacokinetic studies in vulnerable patient populations, where smaller sample volumes can be collected. This systematic review provides a description of currently available microsampling techniques and an overview of studies reporting the quantitation and validation of antibiotics using microsampling. A comparison of microsampling to conventional sampling in clinical studies is included.

  1. Impact of hypoxia and the metabolic microenvironment on radiotherapy of solid tumors. Introduction of a multi-institutional research project.

    PubMed

    Zips, Daniel; Adam, Markus; Flentje, Michael; Haase, Axel; Molls, Michael; Mueller-Klieser, Wolfgang; Petersen, Cordula; Philbrook, Christine; Schmitt, Peter; Thews, Oliver; Walenta, Stefan; Baumann, Michael

    2004-10-01

    Recent developments in imaging technology and tumor biology have led to new techniques to detect hypoxia and related alterations of the metabolic microenvironment in tumors. However, whether these new methods can predict radiobiological hypoxia and outcome after fractionated radiotherapy still awaits experimental evaluation. The present article will introduce a multi-institutional research project addressing the impact of hypoxia and the metabolic microenvironment on radiotherapy of solid tumors. The four laboratories involved are situated at the universities of Dresden, Mainz, Munich and Würzburg, Germany. The joint scientific project started to collect data obtained on a set of ten different human tumor xenografts growing in nude mice by applying various imaging techniques to detect tumor hypoxia and related parameters of the metabolic microenvironment. These techniques include magnetic resonance imaging and spectroscopy, metabolic mapping with quantitative bioluminescence and single-photon imaging, histological multiparameter analysis of biochemical hypoxia, perfusion and vasculature, and immunohistochemistry of factors related to angiogenesis, invasion and metastasis. To evaluate the different methods, baseline functional radiobiological data including radiobiological hypoxic fraction and outcome after fractionated irradiation will be determined. Besides increasing our understanding of tumor biology, the project will focus on new, clinically applicable strategies for microenvironment profiling and will help to identify those patients that might benefit from targeted interventions to improve tumor oxygenation.

  2. Correlation between quantitative whole-body muscle magnetic resonance imaging and clinical muscle weakness in Pompe disease.

    PubMed

    Horvath, Jeffrey J; Austin, Stephanie L; Case, Laura E; Greene, Karla B; Jones, Harrison N; Soher, Brian J; Kishnani, Priya S; Bashir, Mustafa R

    2015-05-01

    Previous examination of whole-body muscle involvement in Pompe disease has been limited to physical examination and/or qualitative magnetic resonance imaging (MRI). In this study we assess the feasibility of quantitative proton-density fat-fraction (PDFF) whole-body MRI in late-onset Pompe disease (LOPD) and compare the results with manual muscle testing. Seven LOPD patients and 11 disease-free controls underwent whole-body PDFF MRI. Quantitative MR muscle group assessments were compared with physical testing of muscle groups. The 95% upper limits of confidence intervals for muscle groups were 4.9-12.6% in controls and 6.8-76.4% in LOPD patients. LOPD patients showed severe and consistent tongue and axial muscle group involvement, with less marked involvement of peripheral musculature. MRI was more sensitive than physical examination for detection of abnormality in multiple muscle groups. This integrated, quantitative approach to muscle assessment provides more detailed data than physical examination and may have clinical utility for monitoring disease progression and treatment response. © 2014 Wiley Periodicals, Inc.

  3. Quantitative magnetic resonance imaging in traumatic brain injury.

    PubMed

    Bigler, E D

    2001-04-01

    Quantitative neuroimaging has now become a well-established method for analyzing magnetic resonance imaging in traumatic brain injury (TBI). A general review of studies that have examined quantitative changes following TBI is presented. The consensus of quantitative neuroimaging studies is that most brain structures demonstrate changes in volume or surface area after injury. The patterns of atrophy are consistent with the generalized nature of brain injury and diffuse axonal injury. Various clinical caveats are provided including how quantitative neuroimaging findings can be used clinically and in predicting rehabilitation outcome. The future of quantitative neuroimaging also is discussed.

  4. An Interlaboratory Comparison of Dosimetry for a Multi-institutional Radiobiological

    PubMed Central

    Seed, TM; Xiao, S; Manley, N; Nikolich-Zugich, J; Pugh, J; van den Brink, M; Hirabayashi, Y; Yasutomo, K; Iwama, A; Koyasu, S; Shterev, I; Sempowski, G; Macchiarini, F; Nakachi, K; Kunugi, KC; Hammer, CG; DeWerd, LA

    2016-01-01

    Purpose An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. Methods Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. Results The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤ 5%. Comparable rates of ‘dosimetric compliance’ were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between ‘measured’ and ‘target’ doses, with errors falling largely between 0–20%. Outliers were most notable for OSL-based tests, while multiple tests by ‘non-compliant’ laboratories using orthovoltage x-rays contributed heavily to the wide variation in dosing errors. Conclusions For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized. PMID:26857121

  5. Quality evaluation of LC-MS/MS-based E. coli H antigen typing (MS-H) through label-free quantitative data analysis in a clinical sample setup.

    PubMed

    Cheng, Keding; Sloan, Angela; McCorrister, Stuart; Peterson, Lorea; Chui, Huixia; Drebot, Mike; Nadon, Celine; Knox, J David; Wang, Gehua

    2014-12-01

    The need for rapid and accurate H typing is evident during Escherichia coli outbreak situations. This study explores the transition of MS-H, a method originally developed for rapid H antigen typing of E. coli using LC-MS/MS of flagella digest of reference strains and some clinical strains, to E. coli isolates in clinical scenario through quantitative analysis and method validation. Motile and nonmotile strains were examined in batches to simulate clinical sample scenario. Various LC-MS/MS batch run procedures and MS-H typing rules were compared and summarized through quantitative analysis of MS-H data output for a standard method development. Label-free quantitative data analysis of MS-H typing was proven very useful for examining the quality of MS-H result and the effects of some sample carryovers from motile E. coli isolates. Based on this, a refined procedure and protein identification rule specific for clinical MS-H typing was established and validated. With LC-MS/MS batch run procedure and database search parameter unique for E. coli MS-H typing, the standard procedure maintained high accuracy and specificity in clinical situations, and its potential to be used in a clinical setting was clearly established. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Automated Tracking of Quantitative Assessments of Tumor Burden in Clinical Trials1

    PubMed Central

    Rubin, Daniel L; Willrett, Debra; O'Connor, Martin J; Hage, Cleber; Kurtz, Camille; Moreira, Dilvan A

    2014-01-01

    There are two key challenges hindering effective use of quantitative assessment of imaging in cancer response assessment: 1) Radiologists usually describe the cancer lesions in imaging studies subjectively and sometimes ambiguously, and 2) it is difficult to repurpose imaging data, because lesion measurements are not recorded in a format that permits machine interpretation and interoperability. We have developed a freely available software platform on the basis of open standards, the electronic Physician Annotation Device (ePAD), to tackle these challenges in two ways. First, ePAD facilitates the radiologist in carrying out cancer lesion measurements as part of routine clinical trial image interpretation workflow. Second, ePAD records all image measurements and annotations in a data format that permits repurposing image data for analyses of alternative imaging biomarkers of treatment response. To determine the impact of ePAD on radiologist efficiency in quantitative assessment of imaging studies, a radiologist evaluated computed tomography (CT) imaging studies from 20 subjects having one baseline and three consecutive follow-up imaging studies with and without ePAD. The radiologist made measurements of target lesions in each imaging study using Response Evaluation Criteria in Solid Tumors 1.1 criteria, initially with the aid of ePAD, and then after a 30-day washout period, the exams were reread without ePAD. The mean total time required to review the images and summarize measurements of target lesions was 15% (P < .039) shorter using ePAD than without using this tool. In addition, it was possible to rapidly reanalyze the images to explore lesion cross-sectional area as an alternative imaging biomarker to linear measure. We conclude that ePAD appears promising to potentially improve reader efficiency for quantitative assessment of CT examinations, and it may enable discovery of future novel image-based biomarkers of cancer treatment response. PMID:24772204

  7. Light ion production for a future radiobiological facility at CERN: preliminary studies.

    PubMed

    Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Röhrich, Jörg; Scrivens, Richard

    2014-02-01

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.

  8. 3D OCT imaging in clinical settings: toward quantitative measurements of retinal structures

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Fuller, Alfred R.; Zhao, Mingtao; Wiley, David F.; Choi, Stacey S.; Bower, Bradley A.; Hamann, Bernd; Izatt, Joseph A.; Werner, John S.

    2006-02-01

    The acquisition speed of current FD-OCT (Fourier Domain - Optical Coherence Tomography) instruments allows rapid screening of three-dimensional (3D) volumes of human retinas in clinical settings. To take advantage of this ability requires software used by physicians to be capable of displaying and accessing volumetric data as well as supporting post processing in order to access important quantitative information such as thickness maps and segmented volumes. We describe our clinical FD-OCT system used to acquire 3D data from the human retina over the macula and optic nerve head. B-scans are registered to remove motion artifacts and post-processed with customized 3D visualization and analysis software. Our analysis software includes standard 3D visualization techniques along with a machine learning support vector machine (SVM) algorithm that allows a user to semi-automatically segment different retinal structures and layers. Our program makes possible measurements of the retinal layer thickness as well as volumes of structures of interest, despite the presence of noise and structural deformations associated with retinal pathology. Our software has been tested successfully in clinical settings for its efficacy in assessing 3D retinal structures in healthy as well as diseased cases. Our tool facilitates diagnosis and treatment monitoring of retinal diseases.

  9. Influence of Prostatic Edema on {sup 131}CS Permanent Prostate Seed Implants: A Dosimetric and Radiobiological Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehwar, Than S., E-mail: kehwarts@upmc.ed; Jones, Heather A.; Huq, M. Saiful

    2011-06-01

    Purpose: To study the influence of prostatic edema on postimplant physical and radiobiological parameters using {sup 131}Cs permanent prostate seed implants. Methods and Materials: Thirty-one patients with early prostate cancer who underwent {sup 131}Cs permanent seed implantation were evaluated. Dose-volume histograms were generated for each set of prostate volumes obtained at preimplantation and postimplantion days 0, 14, and 28 to compute quality indices (QIs) and fractional doses at level x (FD{sub x}). A set of equations for QI, FD{sub x}, and biologically effective doses at dose level D{sub x} (BED{sub x}) were defined to account for edema changes with timemore » after implant. Results: There were statistically significant differences found between QIs of pre- and postimplant plans at day 0, except for the overdose index (ODI). QIs correlated with postimplant time, and FD{sub x} was found to increase with increasing postimplant time. With the effect of edema, BED at different dose levels showed less improvement due to the short half-life of {sup 131}Cs, which delivers about 85% of the prescribed dose before the prostate reaches its original volume due to dissipation of edema. Conclusions: Results of the study show that QIs, FD{sub x}, and BEDs at the level of D{sub x} changed from preneedle plans to postimplant plans and have statistically significant differences (p < 0.05), except for the ODI (p = 0.106), which suggests that at the time of {sup 131}C seed implantation, the effect of edema must be accounted for when defining the seed positions, to avoid the possibility of poor dosimetric and radiobiologic results for {sup 131}Cs seed implants.« less

  10. Heavy Charged Particle Radiobiology: Using Enhanced Biological Effectiveness and Improved Beam Focusing to Advance Cancer Therapy

    PubMed Central

    Allen, Christopher; Borak, Thomas B.; Tsujii, Hirohiko; Nickoloff, Jac A.

    2011-01-01

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. PMID:21376738

  11. A comparison of quantitative methods for clinical imaging with hyperpolarized (13)C-pyruvate.

    PubMed

    Daniels, Charlie J; McLean, Mary A; Schulte, Rolf F; Robb, Fraser J; Gill, Andrew B; McGlashan, Nicholas; Graves, Martin J; Schwaiger, Markus; Lomas, David J; Brindle, Kevin M; Gallagher, Ferdia A

    2016-04-01

    Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized (13)C-labelled molecules, such as the conversion of [1-(13)C]pyruvate to [1-(13)C]lactate, to be dynamically and non-invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model-free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two-way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time-to-peak and the lactate-to-pyruvate area under the curve ratio were simple model-free approaches that accurately represented the full reaction, with the time-to-peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized (13)C data. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  12. Tumor-volume simulation during radiotherapy for head-and-neck cancer using a four-level cell population model.

    PubMed

    Chvetsov, Alexei V; Dong, Lei; Palta, Jantinder R; Amdur, Robert J

    2009-10-01

    To develop a fast computational radiobiologic model for quantitative analysis of tumor volume during fractionated radiotherapy. The tumor-volume model can be useful for optimizing image-guidance protocols and four-dimensional treatment simulations in proton therapy that is highly sensitive to physiologic changes. The analysis is performed using two approximations: (1) tumor volume is a linear function of total cell number and (2) tumor-cell population is separated into four subpopulations: oxygenated viable cells, oxygenated lethally damaged cells, hypoxic viable cells, and hypoxic lethally damaged cells. An exponential decay model is used for disintegration and removal of oxygenated lethally damaged cells from the tumor. We tested our model on daily volumetric imaging data available for 14 head-and-neck cancer patients treated with an integrated computed tomography/linear accelerator system. A simulation based on the averaged values of radiobiologic parameters was able to describe eight cases during the entire treatment and four cases partially (50% of treatment time) with a maximum 20% error. The largest discrepancies between the model and clinical data were obtained for small tumors, which may be explained by larger errors in the manual tumor volume delineation procedure. Our results indicate that the change in gross tumor volume for head-and-neck cancer can be adequately described by a relatively simple radiobiologic model. In future research, we propose to study the variation of model parameters by fitting to clinical data for a cohort of patients with head-and-neck cancer and other tumors. The potential impact of other processes, like concurrent chemotherapy, on tumor volume should be evaluated.

  13. Quantitative imaging methods in osteoporosis.

    PubMed

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  14. Radiobiological studies with the nematode Caenorhabditis elegans. Genetic and developmental effects of high LET radiation

    NASA Technical Reports Server (NTRS)

    Nelson, G. A.; Schubert, W. W.; Marshall, T. M.

    1992-01-01

    The biological effects of heavy charged particle (HZE) radiation are of particular interest to travellers and planners for long-duration space flights where exposure levels represent a potential health hazard. The unique feature of HZE radiation is the structured pattern of its energy deposition in targets. There are many consequences of this feature to biological endpoints when compared with effects of ionizing photons. Dose vs response and dose-rate kinetics may be modified, DNA and cellular repair systems may be altered in their abilities to cope with damage, and the qualitative features of damage may be unique for different ions. The nematode Caenorhabditis elegans is being used to address these and related questions associated with exposure to radiation. HZE-induced mutation, chromosome aberration, cell inactivation and altered organogenesis are discussed along with plans for radiobiological experiments in space.

  15. Animation and radiobiological analysis of 3D motion in conformal radiotherapy.

    PubMed

    MacKay, R I; Graham, P A; Moore, C J; Logue, J P; Sharrock, P J

    1999-07-01

    To allow treatment plans to be evaluated against the range of expected organ motion and set up error anticipated during treatment. Planning tools have been developed to allow concurrent animation and radiobiological analysis of three dimensional (3D) target and organ motion in conformal radiotherapy. Surfaces fitted to structures outlined on CT studies are projected onto pre-treatment images or onto megavoltage images collected during the patient treatment. Visual simulation of tumour and normal tissue movement is then performed by the application of three dimensional affine transformations, to the selected surface. Concurrent registration of the surface motion with the 3D dose distribution allows calculation of the change in dose to the volume. Realistic patterns of motion can be applied to the structure to simulate inter-fraction motion and set-up error. The biologically effective dose for the structure is calculated for each fraction as the surface moves over the course of the treatment and is used to calculate the normal tissue complication probability (NTCP) or tumour control probability (TCP) for the moving structure. The tool has been used to evaluate conformal therapy plans against set up measurements recorded during patient treatments. NTCP and TCP were calculated for a patient whose set up had been corrected after systematic deviations from plan geometry were measured during treatment, the effect of not making the correction were also assessed. TCP for the moving tumour was reduced if inadequate margins were set for the treatment. Modelling suggests that smaller margins could have been set for the set up corrected during the course of the treatment. The NTCP for the rectum was also higher for the uncorrected set up due to a more rectal tissue falling in the high dose region. This approach provides a simple way for clinical users to utilise information incrementally collected throughout the whole of a patient's treatment. In particular it is possible to

  16. MO-D-BRD-01: Clinical Implementation of An Electronic Brachytherapy Program for the Skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouhib, Z.

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014,more » a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of

  17. Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment.

    PubMed

    Mordini, Federico E; Haddad, Tariq; Hsu, Li-Yueh; Kellman, Peter; Lowrey, Tracy B; Aletras, Anthony H; Bandettini, W Patricia; Arai, Andrew E

    2014-01-01

    This study's primary objective was to determine the sensitivity, specificity, and accuracy of fully quantitative stress perfusion cardiac magnetic resonance (CMR) versus a reference standard of quantitative coronary angiography. We hypothesized that fully quantitative analysis of stress perfusion CMR would have high diagnostic accuracy for identifying significant coronary artery stenosis and exceed the accuracy of semiquantitative measures of perfusion and qualitative interpretation. Relatively few studies apply fully quantitative CMR perfusion measures to patients with coronary disease and comparisons to semiquantitative and qualitative methods are limited. Dual bolus dipyridamole stress perfusion CMR exams were performed in 67 patients with clinical indications for assessment of myocardial ischemia. Stress perfusion images alone were analyzed with a fully quantitative perfusion (QP) method and 3 semiquantitative methods including contrast enhancement ratio, upslope index, and upslope integral. Comprehensive exams (cine imaging, stress/rest perfusion, late gadolinium enhancement) were analyzed qualitatively with 2 methods including the Duke algorithm and standard clinical interpretation. A 70% or greater stenosis by quantitative coronary angiography was considered abnormal. The optimum diagnostic threshold for QP determined by receiver-operating characteristic curve occurred when endocardial flow decreased to <50% of mean epicardial flow, which yielded a sensitivity of 87% and specificity of 93%. The area under the curve for QP was 92%, which was superior to semiquantitative methods: contrast enhancement ratio: 78%; upslope index: 82%; and upslope integral: 75% (p = 0.011, p = 0.019, p = 0.004 vs. QP, respectively). Area under the curve for QP was also superior to qualitative methods: Duke algorithm: 70%; and clinical interpretation: 78% (p < 0.001 and p < 0.001 vs. QP, respectively). Fully quantitative stress perfusion CMR has high diagnostic accuracy for

  18. Impaired limb position sense after stroke: a quantitative test for clinical use.

    PubMed

    Carey, L M; Oke, L E; Matyas, T A

    1996-12-01

    A quantitative measure of wrist position sense was developed to advance clinical measurement of proprioceptive limb sensibility after stroke. Test-retest reliability, normative standards, and ability to discriminate impaired and unimpaired performance were investigated. Retest reliability was assessed over three sessions, and a matched-pairs study compared stroke and unimpaired subjects. Both wrists were tested, in counterbalanced order. Patients were tested in hospital-based rehabilitation units. Reliability was investigated on a consecutive sample of 35 adult stroke patients with a range of proprioceptive discrimination abilities and no evidence of neglect. A consecutive sample of 50 stroke patients and convenience sample of 50 healthy volunteers, matched for age, sex, and hand dominance, were tested in the normative-discriminative study. Age and sex were representative of the adult stroke population. The test required matching of imposed wrist positions using a pointer aligned with the axis of movement and a protractor scale. The test was reliable (r = .88 and .92) and observed changes of 8 degrees can be interpreted, with 95% confidence, as genuine. Scores of healthy volunteers ranged from 3.1 degrees to 10.9 degrees average error. The criterion of impairment was conservatively defined as 11 degrees (+/-4.8 degrees) average error. Impaired and unimpaired performance were well differentiated. Clinicians can confidently and quantitatively sample one aspect of proprioceptive sensibility in stroke patients using the wrist position sense test. Development of tests on other joints using the present approach is supported by our findings.

  19. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    PubMed

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-03

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. 2011 Elsevier B.V. All rights reserved.

  20. Water versus DNA: New insights into proton track-structure modeling in radiobiology and radiotherapy

    DOE PAGES

    Champion, Christophe; Quinto, Michele A.; Monti, Juan M.; ...

    2015-09-25

    Water is a common surrogate of DNA for modelling the charged particle-induced ionizing processes in living tissue exposed to radiations. The present study aims at scrutinizing the validity of this approximation and then revealing new insights into proton-induced energy transfers by a comparative analysis between water and realistic biological medium. In this context, a self-consistent quantum mechanical modelling of the ionization and electron capture processes is reported within the continuum distorted wave-eikonal initial state framework for both isolated water molecules and DNA components impacted by proton beams. Their respective probability of occurrence-expressed in terms of total cross sections-as well asmore » their energetic signature (potential and kinetic) are assessed in order to clearly emphasize the differences existing between realistic building blocks of living matter and the controverted water-medium surrogate. Thus the consequences in radiobiology and radiotherapy will be discussed in particular in view of treatment planning refinement aiming at better radiotherapy strategies.« less

  1. Water versus DNA: new insights into proton track-structure modelling in radiobiology and radiotherapy.

    PubMed

    Champion, C; Quinto, M A; Monti, J M; Galassi, M E; Weck, P F; Fojón, O A; Hanssen, J; Rivarola, R D

    2015-10-21

    Water is a common surrogate of DNA for modelling the charged particle-induced ionizing processes in living tissue exposed to radiations. The present study aims at scrutinizing the validity of this approximation and then revealing new insights into proton-induced energy transfers by a comparative analysis between water and realistic biological medium. In this context, a self-consistent quantum mechanical modelling of the ionization and electron capture processes is reported within the continuum distorted wave-eikonal initial state framework for both isolated water molecules and DNA components impacted by proton beams. Their respective probability of occurrence-expressed in terms of total cross sections-as well as their energetic signature (potential and kinetic) are assessed in order to clearly emphasize the differences existing between realistic building blocks of living matter and the controverted water-medium surrogate. Consequences in radiobiology and radiotherapy will be discussed in particular in view of treatment planning refinement aiming at better radiotherapy strategies.

  2. SU-E-T-385: 4D Radiobiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourkal, E; Hossain, M; Veltchev, I

    2014-06-01

    Purpose: The linear-quadratic model is the most prevalent model for planning dose fractionation in radiation therapy in the low dose per fraction regimens. However for high-dose fractions, used in SRS/SBRT/HDR treatments the LQ model does not yield accurate predictions, due to neglecting the reduction in the number of sublethal lesions as a result of their conversion to lethal lesions with subsequent irradiation. Proper accounting for this reduction in the number of sublethally damaged lesions leads to the dependence of the survival fraction on the temporal structure of the dose. The main objective of this work is to show that themore » functional dependence of the dose rate on time in each voxel is an important additional factor that can significantly influence the TCP. Methods: Two SBRT lung plans have been used to calculate the TCPs for the same patient. One plan is a 3D conformal plan and the other is an IMRT plan. Both plans are normalized so that 99.5% of PTV volume receives the same prescription dose of 50 Gy in 5 fractions. The dose rate in each individual voxel is calculated as a function of treatment time and subsequently used in the calculation of TCP. Results: The calculated TCPs show that shorter delivery times lead to greater TCP, despite all delivery times being short compared to the repair half-time for sublethal lesions. Furthermore, calculated TCP(IMRT) =0.308 for the IMRT plan is smaller than TCP(3D) =0.425 for 3D conformal, even though it shows greater tumor hot spots and equal PTV coverage. The calculated TCPs are considerably lower compared to those based on the LQ model for which TCP=1 for both plans. Conclusion: The functional dependence of the voxel-by-voxel dose rate on time may be an important factor in predicting the treatment outcome and cannot be neglected in radiobiological modeling.« less

  3. Role of Quantitative Clinical Pharmacology in Pediatric Approval and Labeling.

    PubMed

    Mehrotra, Nitin; Bhattaram, Atul; Earp, Justin C; Florian, Jeffry; Krudys, Kevin; Lee, Jee Eun; Lee, Joo Yeon; Liu, Jiang; Mulugeta, Yeruk; Yu, Jingyu; Zhao, Ping; Sinha, Vikram

    2016-07-01

    Dose selection is one of the key decisions made during drug development in pediatrics. There are regulatory initiatives that promote the use of model-based drug development in pediatrics. Pharmacometrics or quantitative clinical pharmacology enables development of models that can describe factors affecting pharmacokinetics and/or pharmacodynamics in pediatric patients. This manuscript describes some examples in which pharmacometric analysis was used to support approval and labeling in pediatrics. In particular, the role of pharmacokinetic (PK) comparison of pediatric PK to adults and utilization of dose/exposure-response analysis for dose selection are highlighted. Dose selection for esomeprazole in pediatrics was based on PK matching to adults, whereas for adalimumab, exposure-response, PK, efficacy, and safety data together were useful to recommend doses for pediatric Crohn's disease. For vigabatrin, demonstration of similar dose-response between pediatrics and adults allowed for selection of a pediatric dose. Based on model-based pharmacokinetic simulations and safety data from darunavir pediatric clinical studies with a twice-daily regimen, different once-daily dosing regimens for treatment-naïve human immunodeficiency virus 1-infected pediatric subjects 3 to <12 years of age were evaluated. The role of physiologically based pharmacokinetic modeling (PBPK) in predicting pediatric PK is rapidly evolving. However, regulatory review experiences and an understanding of the state of science indicate that there is a lack of established predictive performance of PBPK in pediatric PK prediction. Moving forward, pharmacometrics will continue to play a key role in pediatric drug development contributing toward decisions pertaining to dose selection, trial designs, and assessing disease similarity to adults to support extrapolation of efficacy. Copyright © 2016 U.S. Government work not protected by U.S. copyright.

  4. Light ion production for a future radiobiological facility at CERN: Preliminary studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stafford-Haworth, Joshua, E-mail: Joshua.Stafford-Haworth@cern.ch; John Adams Institute at Royal Holloway, University of London, Egham, Surrey TW20 0EX; Bellodi, Giulia

    2014-02-15

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented alongmore » with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.« less

  5. Effect of ethnicity on performance in a final objective structured clinical examination: qualitative and quantitative study

    PubMed Central

    Wass, Val; Roberts, Celia; Hoogenboom, Ron; Jones, Roger; Van der Vleuten, Cees

    2003-01-01

    Objective To assess the effect of ethnicity on student performance in stations assessing communication skills within an objective structured clinical examination. Design Quantitative and qualitative study. Setting A final UK clinical examination consisting of a two day objective structured clinical examination with 22 stations. Participants 82 students from ethnic minorities and 97 white students. Main outcome measures Mean scores for stations (quantitative) and observations made using discourse analysis on selected communication stations (qualitative). Results Mean performance of students from ethnic minorities was significantly lower than that of white students for stations assessing communication skills on days 1 (67.0% (SD 6.8%) and 72.3% (7.6%); P=0.001) and 2 (65.2% (6.6%) and 69.5% (6.3%); P=0.003). No examples of overt discrimination were found in 309 video recordings. Transcriptions showed subtle differences in communication styles in some students from ethnic minorities who performed poorly. Examiners' assumptions about what is good communication may have contributed to differences in grading. Conclusions There was no evidence of explicit discrimination between students from ethnic minorities and white students in the objective structured clinical examination. A small group of male students from ethnic minorities used particularly poorly rated communicative styles, and some subtle problems in assessing communication skills may have introduced bias. Tests need to reflect issues of diversity to ensure that students from ethnic minorities are not disadvantaged. What is already known on this topicUK medical schools are concerned that students from ethnic minorities may perform less well than white students in examinationsIt is important to understand whether our examination system disadvantages themWhat this study addsMean performance of students from ethnic minorities was significantly lower than that of white students in a final year objective structured

  6. Clinical study of quantitative diagnosis of early cervical cancer based on the classification of acetowhitening kinetics

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Cheung, Tak-Hong; Yim, So-Fan; Qu, Jianan Y.

    2010-03-01

    A quantitative colposcopic imaging system for the diagnosis of early cervical cancer is evaluated in a clinical study. This imaging technology based on 3-D active stereo vision and motion tracking extracts diagnostic information from the kinetics of acetowhitening process measured from the cervix of human subjects in vivo. Acetowhitening kinetics measured from 137 cervical sites of 57 subjects are analyzed and classified using multivariate statistical algorithms. Cross-validation methods are used to evaluate the performance of the diagnostic algorithms. The results show that an algorithm for screening precancer produced 95% sensitivity (SE) and 96% specificity (SP) for discriminating normal and human papillomavirus (HPV)-infected tissues from cervical intraepithelial neoplasia (CIN) lesions. For a diagnostic algorithm, 91% SE and 90% SP are achieved for discriminating normal tissue, HPV infected tissue, and low-grade CIN lesions from high-grade CIN lesions. The results demonstrate that the quantitative colposcopic imaging system could provide objective screening and diagnostic information for early detection of cervical cancer.

  7. Impact of the NTCP modeling on medical decision to select eligible patient for proton therapy: the usefulness of EUD as an indicator to rank modern photon vs proton treatment plans.

    PubMed

    Chaikh, Abdulhamid; Calugaru, Valentin; Bondiau, Pierre-Yves; Thariat, Juliette; Balosso, Jacques

    2018-06-07

    The aim of this study is to evaluate the impact of normal tissue complication probability (NTCP)-based radiobiological models on the estimated risk for late radiation lung damages. The second goal is to propose a medical decision-making approach to select the eligible patient for particle therapy. 14 pediatric patients undergoing cranio-spinal irradiation were evaluated. For each patient, two treatment plans were generated using photon and proton therapy with the same dose prescriptions. Late radiation damage to lung was estimated using three NTCP concepts: the Lyman-Kutcher-Burman, the equivalent uniform dose (EUD) and the mean lung dose according to the quantitative analysis of normal tissue effects in the clinic QUANTEC review. Wilcoxon paired test was used to calculate p-value. Proton therapy achieved lower lung EUD (Gy). The average NTCP values were significantly lower with proton plans, p < 0.05, using the three NTCP concepts. However, applying the same TD 50/5 using radiobiological models to compare NTCP from proton and photon therapy, the ΔNTCP was not a convincing method to measure the potential benefit of proton therapy. Late radiation pneumonitis estimated from the mean lung dose model correlated with QUANTEC data better. treatment effectiveness assessed on NTCP reduction depends on radiobiological predictions and parameters used as inputs for in silico evaluation. Since estimates of absolute NTCP values from LKB and GN models are imprecise due to EUD ≪ TD 50/5 , a reduction of the EUD value with proton plans would better predict a reduction of dose/toxicity. The EUD concept appears as a robust radiobiological surrogate of the dose distribution to select the optimal patient's plan.

  8. Assessment of the clinical relevance of quantitative sensory testing with Von Frey monofilaments in patients with allodynia and neuropathic pain. A pilot study.

    PubMed

    Keizer, D; van Wijhe, M; Post, W J; Uges, D R A; Wierda, J M K H

    2007-08-01

    Allodynia is a common and disabling symptom in many patients with neuropathic pain. Whereas quantification of pain mostly depends on subjective pain reports, allodynia can also be measured objectively with quantitative sensory testing. In this pilot study, we investigated the clinical relevance of quantitative sensory testing with Von Frey monofilaments in patients with allodynia as a consequence of a neuropathic pain syndrome, by means of correlating subjective pain scores with pain thresholds obtained with quantitative sensory testing. During a 4-week trial, we administered a cannabis extract to 17 patients with allodynia. We quantified the severity of the allodynia with Von Frey monofilaments before, during and after the patients finished the trial. We also asked the patients to rate their pain on a numeric rating scale at these three moments. We found that most of the effect of the cannabis occurred in the last 2 weeks of the trial. In this phase, we observed that the pain thresholds, as measured with Von Frey monofilaments, were inversely correlated with a decrease of the perceived pain intensity. These preliminary findings indicate clinical relevance of quantitative sensory testing with Von Frey monofilaments in the quantification of allodynia in patients with neuropathic pain, although confirmation of our data is still required in further studies to position this method of quantitative sensory testing as a valuable tool, for example, in the evaluation of therapeutic interventions for neuropathic pain.

  9. Manned Mars mission radiation environment and radiobiology

    NASA Technical Reports Server (NTRS)

    Nachtwey, D. S.

    1986-01-01

    Potential radiation hazards to crew members on manned Mars missions are discussed. It deals briefly with radiation sources and environments likely to be encountered during various phases of such missions, providing quantitative estimates of these environments. Also provided are quantitative data and discussions on the implications of such radiation on the human body. Various sorts of protective measures are suggested. Recent re-evaluation of allowable dose limits by the National Council of Radiation Protection is discussed, and potential implications from such activity are assessed.

  10. Improved Protein Arrays for Quantitative Systems Analysis of the Dynamics of Signaling Pathway Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chin-Rang

    Astronauts and workers in nuclear plants who repeatedly exposed to low doses of ionizing radiation (IR, <10 cGy) are likely to incur specific changes in signal transduction and gene expression in various tissues of their body. Remarkable advances in high throughput genomics and proteomics technologies enable researchers to broaden their focus from examining single gene/protein kinetics to better understanding global gene/protein expression profiling and biological pathway analyses, namely Systems Biology. An ultimate goal of systems biology is to develop dynamic mathematical models of interacting biological systems capable of simulating living systems in a computer. This Glue Grant is to complementmore » Dr. Boothman’s existing DOE grant (No. DE-FG02-06ER64186) entitled “The IGF1/IGF-1R-MAPK-Secretory Clusterin (sCLU) Pathway: Mediator of a Low Dose IR-Inducible Bystander Effect” to develop sensitive and quantitative proteomic technology that suitable for low dose radiobiology researches. An improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states for systems biology modeling is presented. The signals are amplified by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots and show the good linearity that is impossible for the signals of HRP-amplification. Therefore this improved protein array technology is suitable to detect weak responses of low dose radiation. Software is developed to facilitate the quantitative readout of signaling network activities. Kinetics of EGFRvIII mutant signaling was analyzed to quantify cross-talks between EGFR and other signaling pathways.« less

  11. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    PubMed

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted. © 2016 American Heart Association, Inc.

  12. Quantitation of heat-shock proteins in clinical samples using mass spectrometry.

    PubMed

    Kaur, Punit; Asea, Alexzander

    2011-01-01

    Mass spectrometry (MS) is a powerful analytical tool for proteomics research and drug and biomarker discovery. MS enables identification and quantification of known and unknown compounds by revealing their structural and chemical properties. Proper sample preparation for MS-based analysis is a critical step in the proteomics workflow because the quality and reproducibility of sample extraction and preparation for downstream analysis significantly impact the separation and identification capabilities of mass spectrometers. The highly expressed proteins represent potential biomarkers that could aid in diagnosis, therapy, or drug development. Because the proteome is so complex, there is no one standard method for preparing protein samples for MS analysis. Protocols differ depending on the type of sample, source, experiment, and method of analysis. Molecular chaperones play significant roles in almost all biological functions due to their capacity for detecting intracellular denatured/unfolded proteins, initiating refolding or denaturation of such malfolded protein sequences and more recently for their role in the extracellular milieu as chaperokines. In this chapter, we describe the latest techniques for quantitating the expression of molecular chaperones in human clinical samples.

  13. Quantitative methods in assessment of neurologic function.

    PubMed

    Potvin, A R; Tourtellotte, W W; Syndulko, K; Potvin, J

    1981-01-01

    Traditionally, neurologists have emphasized qualitative techniques for assessing results of clinical trials. However, in recent years qualitative evaluations have been increasingly augmented by quantitative tests for measuring neurologic functions pertaining to mental state, strength, steadiness, reactions, speed, coordination, sensation, fatigue, gait, station, and simulated activities of daily living. Quantitative tests have long been used by psychologists for evaluating asymptomatic function, assessing human information processing, and predicting proficiency in skilled tasks; however, their methodology has never been directly assessed for validity in a clinical environment. In this report, relevant contributions from the literature on asymptomatic human performance and that on clinical quantitative neurologic function are reviewed and assessed. While emphasis is focused on tests appropriate for evaluating clinical neurologic trials, evaluations of tests for reproducibility, reliability, validity, and examiner training procedures, and for effects of motivation, learning, handedness, age, and sex are also reported and interpreted. Examples of statistical strategies for data analysis, scoring systems, data reduction methods, and data display concepts are presented. Although investigative work still remains to be done, it appears that carefully selected and evaluated tests of sensory and motor function should be an essential factor for evaluating clinical trials in an objective manner.

  14. A review of empirical research related to the use of small quantitative samples in clinical outcome scale development.

    PubMed

    Houts, Carrie R; Edwards, Michael C; Wirth, R J; Deal, Linda S

    2016-11-01

    There has been a notable increase in the advocacy of using small-sample designs as an initial quantitative assessment of item and scale performance during the scale development process. This is particularly true in the development of clinical outcome assessments (COAs), where Rasch analysis has been advanced as an appropriate statistical tool for evaluating the developing COAs using a small sample. We review the benefits such methods are purported to offer from both a practical and statistical standpoint and detail several problematic areas, including both practical and statistical theory concerns, with respect to the use of quantitative methods, including Rasch-consistent methods, with small samples. The feasibility of obtaining accurate information and the potential negative impacts of misusing large-sample statistical methods with small samples during COA development are discussed.

  15. Clinical Implications of Quantitative JAK2 V617F Analysis using Droplet Digital PCR in Myeloproliferative Neoplasms

    PubMed Central

    Lee, Eunyoung; Lee, Kyoung Joo; Park, Hyein; Chung, Jin Young; Lee, Mi-Na; Chang, Myung Hee; Yoo, Jongha; Lee, Hyewon

    2018-01-01

    Background JAK2 V617F is the most common mutation in myeloproliferative neoplasms (MPNs) and is a major diagnostic criterion. Mutation quantification is useful for classifying patients with MPN into subgroups and for prognostic prediction. Droplet digital PCR (ddPCR) can provide accurate and reproducible quantitative analysis of DNA. This study was designed to verify the correlation of ddPCR with pyrosequencing results in the diagnosis of MPN and to investigate clinical implications of the mutational burden. Methods Peripheral blood or bone marrow samples were obtained from 56 patients newly diagnosed with MPN or previously diagnosed with MPN but not yet indicated for JAK2 inhibitor treatment between 2012 and 2016. The JAK2 V617F mutation was detected by pyrosequencing as a diagnostic work-up. The same samples were used for ddPCR to determine the correlation between assays and establish a detection sensitivity cut-off. Clinical and hematologic aspects were reviewed. Results Forty-two (75%) and 46 (82.1%) patients were positive for JAK2 V617F by pyrosequencing and ddPCR, respectively. The mean mutated allele frequency at diagnosis was 37.5±30.1% and was 40.7±31.2% with ddPCR, representing a strong correlation (r=0.9712, P<0.001). Follow-up samples were available for 12 patients, including eight that were JAK2 V617F-positive. Of these, mutational burden reduction after treatment was observed in six patients (75%), consistent with trends of hematologic improvement. Conclusions Quantitative analysis of the JAK2 V617F mutation using ddPCR was highly correlated with pyrosequencing data and may reflect the clinical response to treatment. PMID:29214759

  16. Fluorescence-based Western blotting for quantitation of protein biomarkers in clinical samples.

    PubMed

    Zellner, Maria; Babeluk, Rita; Diestinger, Michael; Pirchegger, Petra; Skeledzic, Senada; Oehler, Rudolf

    2008-09-01

    Since most high throughput techniques used in biomarker discovery are very time and cost intensive, highly specific and quantitative analytical alternative application methods are needed for the routine analysis. Conventional Western blotting allows detection of specific proteins to the level of single isotypes while its quantitative accuracy is rather limited. We report a novel and improved quantitative Western blotting method. The use of fluorescently labelled secondary antibodies strongly extends the dynamic range of the quantitation and improves the correlation with the protein amount (r=0.997). By an additional fluorescent staining of all proteins immediately after their transfer to the blot membrane, it is possible to visualise simultaneously the antibody binding and the total protein profile. This allows for an accurate correction for protein load. Applying this normalisation it could be demonstrated that fluorescence-based Western blotting is able to reproduce a quantitative analysis of two specific proteins in blood platelet samples from 44 subjects with different diseases as initially conducted by 2D-DIGE. These results show that the proposed fluorescence-based Western blotting is an adequate application technique for biomarker quantitation and suggest possibilities of employment that go far beyond.

  17. Factors defining the mentoring competencies of clinical midwives: An exploratory quantitative research study in Japan.

    PubMed

    Hishinuma, Yuri; Horiuchi, Shigeko; Yanai, Haruo

    2016-01-01

    Clinical education is an extremely important process in cultivating healthcare professionals, and the quality of educators has a major impact on the quality of future practitioners. Although practicing clinical midwives contribute to the education of pre-registered midwives and those qualified within the past year (new midwives), the factors defining the educational competencies of clinical midwives have not been clarified. The purpose of this study was to explore the factors that define the mentoring competencies of clinical midwives involved in educating new midwives. An exploratory quantitative research study. Questionnaires were distributed to 694 midwives who had previously conducted educational activities with new midwives at the 63 facilities whose administrator or nurse manager in charge of all staff, including midwives, consented to participate. Of the 694 midwives, 464 (66.9%) returned the questionnaire and 451 (65.1%) valid responses were analyzed. Exploratory factor analyses were performed on the following three concepts: [competency as a professional], [competency as an educator], and [personal characteristics]. [Competency as a professional] consisted of two factors: and ; [competency as an educator] consisted of four factors: , , and ; and [personal characteristics consisted of three factors: , and . These three concepts were defined by a total of nine sub-concepts (factors), and 41 items were extracted with a reliability coefficient (Cronbach's α) of 0.944 CONCLUSIONS: "Mentoring competencies of clinical midwives (MCCM)" are defined by three concepts and nine sub-concepts, which can be evaluated by 41 items regarding

  18. Specialist antenatal clinics for women at high risk of preterm birth: a systematic review of qualitative and quantitative research.

    PubMed

    Malouf, Reem; Redshaw, Maggie

    2017-02-02

    Preterm birth (PTB) is the leading cause of perinatal morbidity and mortality. Women with previous prenatal loss are at higher risk of preterm birth. A specialist antenatal clinic is considered as one approach to improve maternity and pregnancy outcomes. A systematic review of quantitative, qualitative and mixed method studies conducted on women at high risk of preterm birth (PTB). The review primary outcomes were to report on the specialist antenatal clinics effect in preventing or reducing preterm birth, perinatal mortality and morbidity and women's perceptions and experiences of a specialist clinic whether compared or not compared with standard antenatal care. Other secondary maternal, infant and economic outcomes were also determined. A comprehensive search strategy was carried out in English within electronic databases as far back as 1980. The reviewers selected studies, assessed the quality, and extracted data independently. Results were summarized and tabulated. Eleven studies fully met the review inclusion criteria, ten were quantitative design studies and only one was a qualitative design study. No mixed method design study was included in the review. All were published after 1989, seven were conducted in the USA and four in the UK. Results from five good to low quality randomised controlled trials (RCTs), all conducted before 1990, did not illustrate the efficacy of the clinic in reducing preterm birth. Whereas results from more recent low quality cohort studies showed some positive neonatal outcomes. Themes from one good quality qualitative study reflected on the emotional and psychological need to reduce anxiety and stress of women referred to such a clinic. Women expressed their negative emotional responses at being labelled as high risk and positive responses to being assessed and treated in the clinic. Women also reported that their partners were struggling to cope emotionally. Findings from this review were mixed. Evidence from cohort studies

  19. Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications

    PubMed Central

    Liu, Chunlei; Wei, Hongjiang; Gong, Nan-Jie; Cronin, Matthew; Dibb, Russel; Decker, Kyle

    2016-01-01

    Quantitative susceptibility mapping (QSM) is a recently developed MRI technique for quantifying the spatial distribution of magnetic susceptibility within biological tissues. It first uses the frequency shift in the MRI signal to map the magnetic field profile within the tissue. The resulting field map is then used to determine the spatial distribution of the underlying magnetic susceptibility by solving an inverse problem. The solution is achieved by deconvolving the field map with a dipole field, under the assumption that the magnetic field is a result of the superposition of the dipole fields generated by all voxels and that each voxel has its unique magnetic susceptibility. QSM provides improved contrast to noise ratio for certain tissues and structures compared to its magnitude counterpart. More importantly, magnetic susceptibility is a direct reflection of the molecular composition and cellular architecture of the tissue. Consequently, by quantifying magnetic susceptibility, QSM is becoming a quantitative imaging approach for characterizing normal and pathological tissue properties. This article reviews the mechanism generating susceptibility contrast within tissues and some associated applications. PMID:26844301

  20. Quantitative Clinical Diagnostic Analysis of Acetone in Human Blood by HPLC: A Metabolomic Search for Acetone as Indicator

    PubMed Central

    Akgul Kalkan, Esin; Sahiner, Mehtap; Ulker Cakir, Dilek; Alpaslan, Duygu; Yilmaz, Selehattin

    2016-01-01

    Using high-performance liquid chromatography (HPLC) and 2,4-dinitrophenylhydrazine (2,4-DNPH) as a derivatizing reagent, an analytical method was developed for the quantitative determination of acetone in human blood. The determination was carried out at 365 nm using an ultraviolet-visible (UV-Vis) diode array detector (DAD). For acetone as its 2,4-dinitrophenylhydrazone derivative, a good separation was achieved with a ThermoAcclaim C18 column (15 cm × 4.6 mm × 3 μm) at retention time (t R) 12.10 min and flowrate of 1 mL min−1 using a (methanol/acetonitrile) water elution gradient. The methodology is simple, rapid, sensitive, and of low cost, exhibits good reproducibility, and allows the analysis of acetone in biological fluids. A calibration curve was obtained for acetone using its standard solutions in acetonitrile. Quantitative analysis of acetone in human blood was successfully carried out using this calibration graph. The applied method was validated in parameters of linearity, limit of detection and quantification, accuracy, and precision. We also present acetone as a useful tool for the HPLC-based metabolomic investigation of endogenous metabolism and quantitative clinical diagnostic analysis. PMID:27298750

  1. Quantitative Neuroimaging Software for Clinical Assessment of Hippocampal Volumes on MR Imaging

    PubMed Central

    Ahdidan, Jamila; Raji, Cyrus A.; DeYoe, Edgar A.; Mathis, Jedidiah; Noe, Karsten Ø.; Rimestad, Jens; Kjeldsen, Thomas K.; Mosegaard, Jesper; Becker, James T.; Lopez, Oscar

    2015-01-01

    Background: Multiple neurological disorders including Alzheimer’s disease (AD), mesial temporal sclerosis, and mild traumatic brain injury manifest with volume loss on brain MRI. Subtle volume loss is particularly seen early in AD. While prior research has demonstrated the value of this additional information from quantitative neuroimaging, very few applications have been approved for clinical use. Here we describe a US FDA cleared software program, NeuroreaderTM, for assessment of clinical hippocampal volume on brain MRI. Objective: To present the validation of hippocampal volumetrics on a clinical software program. Method: Subjects were drawn (n = 99) from the Alzheimer Disease Neuroimaging Initiative study. Volumetric brain MR imaging was acquired in both 1.5 T (n = 59) and 3.0 T (n = 40) scanners in participants with manual hippocampal segmentation. Fully automated hippocampal segmentation and measurement was done using a multiple atlas approach. The Dice Similarity Coefficient (DSC) measured the level of spatial overlap between NeuroreaderTM and gold standard manual segmentation from 0 to 1 with 0 denoting no overlap and 1 representing complete agreement. DSC comparisons between 1.5 T and 3.0 T scanners were done using standard independent samples T-tests. Results: In the bilateral hippocampus, mean DSC was 0.87 with a range of 0.78–0.91 (right hippocampus) and 0.76–0.91 (left hippocampus). Automated segmentation agreement with manual segmentation was essentially equivalent at 1.5 T (DSC = 0.879) versus 3.0 T (DSC = 0.872). Conclusion: This work provides a description and validation of a software program that can be applied in measuring hippocampal volume, a biomarker that is frequently abnormal in AD and other neurological disorders. PMID:26484924

  2. Urine Sample Preparation in 96-Well Filter Plates for Quantitative Clinical Proteomics

    PubMed Central

    2015-01-01

    Urine is an important, noninvasively collected body fluid source for the diagnosis and prognosis of human diseases. Liquid chromatography mass spectrometry (LC-MS) based shotgun proteomics has evolved as a sensitive and informative technique to discover candidate disease biomarkers from urine specimens. Filter-aided sample preparation (FASP) generates peptide samples from protein mixtures of cell lysate or body fluid origin. Here, we describe a FASP method adapted to 96-well filter plates, named 96FASP. Soluble urine concentrates containing ∼10 μg of total protein were processed by 96FASP and LC-MS resulting in 700–900 protein identifications at a 1% false discovery rate (FDR). The experimental repeatability, as assessed by label-free quantification and Pearson correlation analysis for shared proteins among replicates, was high (R ≥ 0.97). Application to urinary pellet lysates which is of particular interest in the context of urinary tract infection analysis was also demonstrated. On average, 1700 proteins (±398) were identified in five experiments. In a pilot study using 96FASP for analysis of eight soluble urine samples, we demonstrated that protein profiles of technical replicates invariably clustered; the protein profiles for distinct urine donors were very different from each other. Robust, highly parallel methods to generate peptide mixtures from urine and other body fluids are critical to increase cost-effectiveness in clinical proteomics projects. This 96FASP method has potential to become a gold standard for high-throughput quantitative clinical proteomics. PMID:24797144

  3. Low LET protons focused to submicrometer shows enhanced radiobiological effectiveness

    NASA Astrophysics Data System (ADS)

    Schmid, T. E.; Greubel, C.; Hable, V.; Zlobinskaya, O.; Michalski, D.; Girst, S.; Siebenwirth, C.; Schmid, E.; Molls, M.; Multhoff, G.; Dollinger, G.

    2012-10-01

    This study shows that enhanced radiobiological effectiveness (RBE) values can be generated focusing low linear energy transfer (LET) radiation and thus changing the microdose distribution. 20 MeV protons (LET = 2.65 keV µm-1) are focused to submicrometer diameter at the ion microprobe superconducting nanoprobe for applied nuclear (Kern) physics experiments of the Munich tandem accelerator. The RBE values, as determined by measuring micronuclei (RBEMN = 1.48 ± 0.07) and dicentrics (RBED = 1.92 ± 0.15), in human-hamster hybrid (AL) cells are significantly higher when 117 protons were focused to a submicrometer irradiation field within a 5.4 × 5.4 µm2 matrix compared to quasi homogeneous in a 1 × 1 µm2 matrix applied protons (RBEMN = 1.28 ± 0.07; RBED = 1.41 ± 0.14) at the same average dose of 1.7 Gy. The RBE values are normalized to standard 70 kV (dicentrics) or 200 kV (micronuclei) x-ray irradiation. The 117 protons applied per point deposit the same amount of energy like a 12C ion with 55 MeV total energy (4.48 MeV u-1). The enhancements are about half of that obtained for 12C ions (RBEMN = 2.20 ± 0.06 and RBED = 3.21 ± 0.10) and they are attributed to intertrack interactions of the induced damages. The measured RBE values show differences from predictions of the local effect model (LEM III) that is used to calculate RBE values for irradiation plans to treat tumors with high LET particles.

  4. Quantitative proteomic view associated with resistance to clinically important antibiotics in Gram-positive bacteria: a systematic review

    PubMed Central

    Lee, Chang-Ro; Lee, Jung Hun; Park, Kwang Seung; Jeong, Byeong Chul; Lee, Sang Hee

    2015-01-01

    The increase of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) poses a worldwide and serious health threat. Although new antibiotics, such as daptomycin and linezolid, have been developed for the treatment of infections of Gram-positive pathogens, the emergence of daptomycin-resistant and linezolid-resistant strains during therapy has now increased clinical treatment failures. In the past few years, studies using quantitative proteomic methods have provided a considerable progress in understanding antibiotic resistance mechanisms. In this review, to understand the resistance mechanisms to four clinically important antibiotics (methicillin, vancomycin, linezolid, and daptomycin) used in the treatment of Gram-positive pathogens, we summarize recent advances in studies on resistance mechanisms using quantitative proteomic methods, and also examine proteins playing an important role in the bacterial mechanisms of resistance to the four antibiotics. Proteomic researches can identify proteins whose expression levels are changed in the resistance mechanism to only one antibiotic, such as LiaH in daptomycin resistance and PrsA in vancomycin resistance, and many proteins simultaneously involved in resistance mechanisms to various antibiotics. Most of resistance-related proteins, which are simultaneously associated with resistance mechanisms to several antibiotics, play important roles in regulating bacterial envelope biogenesis, or compensating for the fitness cost of antibiotic resistance. Therefore, proteomic data confirm that antibiotic resistance requires the fitness cost and the bacterial envelope is an important factor in antibiotic resistance. PMID:26322035

  5. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNAmore » populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.« less

  6. Development of the quantitative indicator of abdominal examination for clinical application: a pilot study.

    PubMed

    Ko, Seok-Jae; Lee, Hyunju; Kim, Seul-Ki; Kim, Minji; Kim, Jinsung; Lee, Beom-Joon; Park, Jae-Woo

    2015-06-01

    Abdominal examination (AE) is the evaluation of the status of illness by examining the abdominal region in traditional Korean medicine (TKM). Although AE is currently considered an important diagnostic method in TKM, owing to its clinical usage, no studies have been conducted to objectively assess its accuracy and develop standards. Twelve healthy subjects and 21 patients with functional dyspepsia have participated in this study. The patients were classified into epigastric discomfort group (n=11) and epigastric discomfort with tenderness group (n=10) according to the clinical diagnosis by AE. After evaluating the subjective epigastric discomfort in all subjects, two independent clinicians measured the pressure pain threshold (PPT) two times at an acupoint (CV 14) using an algometer. We then assessed the interrater and intrarater reliability of the PPT measurements and evaluated the validity (sensitivity and specificity) via a receiver operating characteristic plot and optimal cutoff value. The results of the interrater reliability test showed a very strong correlation (correlation coefficient range: 0.82-0.91). The results of intrarater reliability test also showed a higher than average correlation (intraclass correlation coefficient: 0.58-0.70). The optimal cutoff value of PPT in the epigastric area was 1.8 kg/cm(2) with 100% sensitivity and 54.54% specificity. PPT measurements in the epigastric area with an algometer demonstrated high reliability and validity for AE, which makes this approach potentially useful in clinical applications as a new quantitative measurement in TKM.

  7. UK quantitative WB-DWI technical workgroup: consensus meeting recommendations on optimisation, quality control, processing and analysis of quantitative whole-body diffusion-weighted imaging for cancer.

    PubMed

    Barnes, Anna; Alonzi, Roberto; Blackledge, Matthew; Charles-Edwards, Geoff; Collins, David J; Cook, Gary; Coutts, Glynn; Goh, Vicky; Graves, Martin; Kelly, Charles; Koh, Dow-Mu; McCallum, Hazel; Miquel, Marc E; O'Connor, James; Padhani, Anwar; Pearson, Rachel; Priest, Andrew; Rockall, Andrea; Stirling, James; Taylor, Stuart; Tunariu, Nina; van der Meulen, Jan; Walls, Darren; Winfield, Jessica; Punwani, Shonit

    2018-01-01

    Application of whole body diffusion-weighted MRI (WB-DWI) for oncology are rapidly increasing within both research and routine clinical domains. However, WB-DWI as a quantitative imaging biomarker (QIB) has significantly slower adoption. To date, challenges relating to accuracy and reproducibility, essential criteria for a good QIB, have limited widespread clinical translation. In recognition, a UK workgroup was established in 2016 to provide technical consensus guidelines (to maximise accuracy and reproducibility of WB-MRI QIBs) and accelerate the clinical translation of quantitative WB-DWI applications for oncology. A panel of experts convened from cancer centres around the UK with subspecialty expertise in quantitative imaging and/or the use of WB-MRI with DWI. A formal consensus method was used to obtain consensus agreement regarding best practice. Questions were asked about the appropriateness or otherwise on scanner hardware and software, sequence optimisation, acquisition protocols, reporting, and ongoing quality control programs to monitor precision and accuracy and agreement on quality control. The consensus panel was able to reach consensus on 73% (255/351) items and based on consensus areas made recommendations to maximise accuracy and reproducibly of quantitative WB-DWI studies performed at 1.5T. The panel were unable to reach consensus on the majority of items related to quantitative WB-DWI performed at 3T. This UK Quantitative WB-DWI Technical Workgroup consensus provides guidance on maximising accuracy and reproducibly of quantitative WB-DWI for oncology. The consensus guidance can be used by researchers and clinicians to harmonise WB-DWI protocols which will accelerate clinical translation of WB-DWI-derived QIBs.

  8. A comparison of manual and quantitative elbow strength testing.

    PubMed

    Shahgholi, Leili; Bengtson, Keith A; Bishop, Allen T; Shin, Alexander Y; Spinner, Robert J; Basford, Jeffrey R; Kaufman, Kenton R

    2012-10-01

    The aim of this study was to compare the clinical ratings of elbow strength obtained by skilled clinicians with objective strength measurement obtained through quantitative testing. A retrospective comparison of subject clinical records with quantitative strength testing results in a motion analysis laboratory was conducted. A total of 110 individuals between the ages of 8 and 65 yrs with traumatic brachial plexus injuries were identified. Patients underwent manual muscle strength testing as assessed on the 5-point British Medical Research Council Scale (5/5, normal; 0/5, absent) and quantitative elbow flexion and extension strength measurements. A total of 92 subjects had elbow flexion testing. Half of the subjects clinically assessed as having normal (5/5) elbow flexion strength on manual muscle testing exhibited less than 42% of their age-expected strength on quantitative testing. Eighty-four subjects had elbow extension strength testing. Similarly, half of those displaying normal elbow extension strength on manual muscle testing were found to have less than 62% of their age-expected values on quantitative testing. Significant differences between manual muscle testing and quantitative findings were not detected for the lesser (0-4) strength grades. Manual muscle testing, even when performed by experienced clinicians, may be more misleading than expected for subjects graded as having normal (5/5) strength. Manual muscle testing estimates for the lesser strength grades (1-4/5) seem reasonably accurate.

  9. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: application to the treatment of experimental oral cancer.

    PubMed

    Pozzi, E; Nigg, D W; Miller, M; Thorp, S I; Heber, E M; Zarza, L; Estryk, G; Monti Hughes, A; Molinari, A J; Garabalino, M; Itoiz, M E; Aromando, R F; Quintana, J; Trivillin, V A; Schwint, A E

    2009-07-01

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1 x 10(9) n cm(-2)s(-1) and the fast neutron flux was 2.5 x 10(6) n cm(-2)s(-1), indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in (6)Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  10. Challenges and Opportunities for Quantitative Clinical Pharmacology in Cancer Immunotherapy: Something Old, Something New, Something Borrowed, and Something Blue.

    PubMed

    Stroh, M; Carlile, D J; Li, C-C; Wagg, J; Ribba, B; Ramanujan, S; Jin, J; Xu, J; Charoin, J-E; Xhu, Z-X; Morcos, P N; Davis, J D; Phipps, A

    2015-09-01

    Cancer immunotherapy (CIT) initiates or enhances the host immune response against cancer. Following decades of development, patients with previously few therapeutic options may now benefit from CIT. Although the quantitative clinical pharmacology (qCP) of previous classes of anticancer drugs has matured during this time, application to CIT may not be straightforward since CIT acts via the immune system. Here we discuss where qCP approaches might best borrow or start anew for CIT.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granzotto, Adeline; Benadjaoud, Mohamed Amine; Vogin, Guillaume

    Purpose: Whereas post–radiation therapy overreactions (OR) represent a clinical and societal issue, there is still no consensual radiobiological endpoint to predict clinical radiosensitivity. Since 2003, skin biopsy specimens have been collected from patients treated by radiation therapy against different tumor localizations and showing a wide range of OR. Here, we aimed to establish quantitative links between radiobiological factors and OR severity grades that would be relevant to radioresistant and genetic hyperradiosensitive cases. Methods and Materials: Immunofluorescence experiments were performed on a collection of skin fibroblasts from 12 radioresistant, 5 hyperradiosensitive, and 100 OR patients irradiated at 2 Gy. The numbers ofmore » micronuclei, γH2AX, and pATM foci that reflect different steps of DNA double-strand breaks (DSB) recognition and repair were assessed from 10 minutes to 24 hours after irradiation and plotted against the severity grades established by the Common Terminology Criteria for Adverse Events and the Radiation Therapy Oncology Group. Results: OR patients did not necessarily show a gross DSB repair defect but a systematic delay in the nucleoshuttling of the ATM protein required for complete DSB recognition. Among the radiobiological factors, the maximal number of pATM foci provided the best discrimination among OR patients and a significant correlation with each OR severity grade, independently of tumor localization and of the early or late nature of reactions. Conclusions: Our results are consistent with a general classification of human radiosensitivity based on 3 groups: radioresistance (group I); moderate radiosensitivity caused by delay of nucleoshuttling of ATM, which includes OR patients (group II); and hyperradiosensitivity caused by a gross DSB repair defect, which includes fatal cases (group III).« less

  12. Charged-particle therapy in cancer: clinical uses and future perspectives.

    PubMed

    Durante, Marco; Orecchia, Roberto; Loeffler, Jay S

    2017-08-01

    Radiotherapy with high-energy charged particles has become an attractive therapeutic option for patients with several tumour types because this approach better spares healthy tissue from radiation than conventional photon therapy. The cost associated with the delivery of charged particles, however, is higher than that of even the most elaborate photon-delivery technologies. Reliable evidence of the relative cost-effectiveness of both modalities can only come from the results of randomized clinical trials. Thus, the hurdles that currently limit direct comparisons of these two approaches in clinical trials, especially those related to insurance coverage, should be removed. Herein, we review several randomized trials of charged-particle therapies that are ongoing, with results that will enable selective delivery to patients who are most likely to benefit from them. We also discuss aspects related to radiobiology, including the immune response and hypoxia, which will need to be taken into consideration in future randomized trials to fully exploit the potential of charged particles.

  13. Brachytherapy optimization using radiobiological-based planning for high dose rate and permanent implants for prostate cancer treatment

    NASA Astrophysics Data System (ADS)

    Seeley, Kaelyn; Cunha, J. Adam; Hong, Tae Min

    2017-01-01

    We discuss an improvement in brachytherapy--a prostate cancer treatment method that directly places radioactive seeds inside target cancerous regions--by optimizing the current standard for delivering dose. Currently, the seeds' spatiotemporal placement is determined by optimizing the dose based on a set of physical, user-defined constraints. One particular approach is the ``inverse planning'' algorithms that allow for tightly fit isodose lines around the target volumes in order to reduce dose to the patient's organs at risk. However, these dose distributions are typically computed assuming the same biological response to radiation for different types of tissues. In our work, we consider radiobiological parameters to account for the differences in the individual sensitivities and responses to radiation for tissues surrounding the target. Among the benefits are a more accurate toxicity rate and more coverage to target regions for planning high-dose-rate treatments as well as permanent implants.

  14. Quantitative molecular analysis in mantle cell lymphoma.

    PubMed

    Brízová, H; Hilská, I; Mrhalová, M; Kodet, R

    2011-07-01

    A molecular analysis has three major roles in modern oncopathology--as an aid in the differential diagnosis, in molecular monitoring of diseases, and in estimation of the potential prognosis. In this report we review the application of the molecular analysis in a group of patients with mantle cell lymphoma (MCL). We demonstrate that detection of the cyclin D1 mRNA level is a molecular marker in 98% of patients with MCL. Cyclin D1 quantitative monitoring is specific and sensitive for the differential diagnosis and for the molecular monitoring of the disease in the bone marrow. Moreover, the dynamics of cyclin D1 in bone marrow reflects the disease development and it predicts the clinical course. We employed the molecular analysis for a precise quantitative detection of proliferation markers, Ki-67, topoisomerase IIalpha, and TPX2, that are described as effective prognostic factors. Using the molecular approach it is possible to measure the proliferation rate in a reproducible, standard way which is an essential prerequisite for using the proliferation activity as a routine clinical tool. Comparing with immunophenotyping we may conclude that the quantitative PCR-based analysis is a useful, reliable, rapid, reproducible, sensitive and specific method broadening our diagnostic tools in hematopathology. In comparison to interphase FISH in paraffin sections quantitative PCR is less technically demanding and less time-consuming and furthermore it is more sensitive in detecting small changes in the mRNA level. Moreover, quantitative PCR is the only technology which provides precise and reproducible quantitative information about the expression level. Therefore it may be used to demonstrate the decrease or increase of a tumor-specific marker in bone marrow in comparison with a previously aspirated specimen. Thus, it has a powerful potential to monitor the course of the disease in correlation with clinical data.

  15. Low LET protons focused to submicrometer shows enhanced radiobiological effectiveness.

    PubMed

    Schmid, T E; Greubel, C; Hable, V; Zlobinskaya, O; Michalski, D; Girst, S; Siebenwirth, C; Schmid, E; Molls, M; Multhoff, G; Dollinger, G

    2012-10-07

    This study shows that enhanced radiobiological effectiveness (RBE) values can be generated focusing low linear energy transfer (LET) radiation and thus changing the microdose distribution. 20 MeV protons (LET = 2.65 keV µm(-1)) are focused to submicrometer diameter at the ion microprobe superconducting nanoprobe for applied nuclear (Kern) physics experiments of the Munich tandem accelerator. The RBE values, as determined by measuring micronuclei (RBE(MN) = 1.48 ± 0.07) and dicentrics (RBE(D) = 1.92 ± 0.15), in human-hamster hybrid (A(L)) cells are significantly higher when 117 protons were focused to a submicrometer irradiation field within a 5.4 × 5.4 µm(2) matrix compared to quasi homogeneous in a 1 × 1 µm(2) matrix applied protons (RBE(MN) = 1.28 ± 0.07; RBE(D) = 1.41 ± 0.14) at the same average dose of 1.7 Gy. The RBE values are normalized to standard 70 kV (dicentrics) or 200 kV (micronuclei) x-ray irradiation. The 117 protons applied per point deposit the same amount of energy like a (12)C ion with 55 MeV total energy (4.48 MeV u(-1)). The enhancements are about half of that obtained for (12)C ions (RBE(MN) = 2.20 ± 0.06 and RBE(D) = 3.21 ± 0.10) and they are attributed to intertrack interactions of the induced damages. The measured RBE values show differences from predictions of the local effect model (LEM III) that is used to calculate RBE values for irradiation plans to treat tumors with high LET particles.

  16. Painful polyneuropathy in patients with and without diabetes: clinical, neurophysiologic, and quantitative sensory characteristics.

    PubMed

    Vrethem, Magnus; Boivie, Jörgen; Arnqvist, Hans; Holmgren, Helen; Lindström, Torbjörn

    2002-01-01

    To study pain characteristics and peripheral nerve involvement in patients with painful diabetic and nondiabetic polyneuropathy in comparison with patients with non-painful polyneuropathy. Fifty-five patients with polyneuropathy (37 with painful polyneuropathy, of whom 19 had diabetes and 18 had no diabetes; and 18 with painless polyneuropathy of different etiologies) were examined clinically using quantitative sensory tests and neurophysiology. Pain intensity and characteristics were analyzed by daily ratings on a 10-step verbal scale and by a questionnaire. Most patients experienced pain of more than one character. There was no clear difference in character or duration of pain between patients with and without diabetes. The mean value of the daily rating of pain intensity showed that pain was more severe in the evenings than in the mornings and that diabetic patients reported worse pain than nondiabetic patients. Thirty-two of the 37 patients with pain had paresthesias and/or dysesthesias, whereas only 7 of 18 patients without pain had paresthesias. Pain was always located in the feet, and, in most patients, also in the lower part of the legs. Some patients also experienced pain in the hands. Tactile sensibility, measured by quantitative tests, was more affected in both diabetic and nondiabetic patients with painful polyneuropathy compared with patients without pain (p = 0.02). Temperature, pain, and vibratory sensibility were equally affected in all patient groups. Nerve conduction velocity, amplitudes, and distal latency were equally affected in the pain group as compared with the control group, indicating that both thin and thick nerve afferents are affected in patients with painful as well as non-painful polyneuropathy and that etiology has no clear impact on nerve involvement. Neuropathy pain was always located in the feet and more severe in diabetic patients compared with patients with neuropathy pain of other etiologies. The authors also found evidence for

  17. Dosimetric and radiobiological characterizations of prostate intensity-modulated radiotherapy and volumetric-modulated arc therapy: A single-institution review of ninety cases

    PubMed Central

    Khan, Muhammad Isa; Jiang, Runqing; Kiciak, Alexander; ur Rehman, Jalil; Afzal, Muhammad; Chow, James C. L.

    2016-01-01

    This study reviewed prostate volumetric-modulated arc therapy (VMAT) plans with intensity-modulated radiotherapy (IMRT) plans after prostate IMRT technique was replaced by VMAT in an institution. Characterizations of dosimetry and radiobiological variation in prostate were determined based on treatment plans of 40 prostate IMRT patients (planning target volume = 77.8–335 cm3) and 50 VMAT patients (planning target volume = 120–351 cm3) treated before and after 2013, respectively. Both IMRT and VMAT plans used the same dose-volume criteria in the inverse planning optimization. Dose-volume histogram, mean doses of target and normal tissues (rectum, bladder and femoral heads), dose-volume points (D99% of planning target volume; D30%, D50%, V30 Gy and V35 Gy of rectum and bladder; D5%, V14 Gy, V22 Gy of femoral heads), conformity index (CI), homogeneity index (HI), gradient index (GI), prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman-Burman-Kutcher algorithm were calculated for each IMRT and VMAT plan. From our results, VMAT plan was found better due to its higher (1.05%) CI, lower (0.83%) HI and (0.75%) GI than IMRT. Comparing doses in normal tissues between IMRT and VMAT, it was found that IMRT mostly delivered higher doses of about 1.05% to the normal tissues than VMAT. Prostate TCP and rectal NTCP were found increased (1%) for VMAT than IMRT. It is seen that VMAT technique can decrease the dose-volume evaluation criteria for the normal tissues. Based on our dosimetric and radiobiological results in treatment plans, it is concluded that our VMAT implementation could produce comparable or slightly better target coverage and normal tissue sparing with a faster treatment time in prostate radiotherapy. PMID:27651562

  18. MO-A-BRC-02: TG167 Report - Detailed Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, M.

    Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on

  19. MO-A-BRC-01: TG167 Report - Introduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nath, R.

    Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on

  20. Data capture by digital pen in clinical trials: a qualitative and quantitative study.

    PubMed

    Estellat, Candice; Tubach, Florence; Costa, Yolande; Hoffmann, Isabelle; Mantz, Jean; Ravaud, Philippe

    2008-05-01

    To investigate the use of the digital pen (DP) system to collect data in a clinical trial. To assess the accuracy of the system in this setting. Qualitative study based on semistructured interviews and a focus group. Quantitative study comparing the DP system and a double manual data-entry system in accuracy of acquiring data by variable type (tick boxes, dates, numbers, letters). An ongoing randomised multicentric clinical trial in tertiary care in France. 27 investigators involved in the trial (anaesthetists) who did or did not include patients, 4 study monitors and the study coordinator. Six key findings emerged: 1) the DP system was easy to use; its utilisation was intuitive, even for investigators inexperienced in informatics; 2) despite its portability, the DP was not always used in front of patients; 3) the DP system did not affect patient recruitment; 4) most of the technical problems of the system occurred during setup (compatibility, password access, antivirus software); 5) the main advantage was quickness of data availability for the study coordination staff and the main hindrance was the extra time required for online verification; and 6) all investigators were ready to use the system again. The investigators had to check 16% of data obtained by the DP system during the verification step. There is no relevant difference between the number of errors for the DP and the double manual data-entry systems: 8/5022 versus 6/5022 data entries. 5 out of 8 DP-system failures were due to the intelligent character recognition system. The DP system has a good acceptability among all investigators in a clinical setting, whether they are experienced with computers or not, and a good accuracy, as compared with double manual data entry.

  1. Agreement between clinical estimation and a new quantitative analysis by Photoshop software in fundus and angiographic image variables.

    PubMed

    Ramezani, Alireza; Ahmadieh, Hamid; Azarmina, Mohsen; Soheilian, Masoud; Dehghan, Mohammad H; Mohebbi, Mohammad R

    2009-12-01

    To evaluate the validity of a new method for the quantitative analysis of fundus or angiographic images using Photoshop 7.0 (Adobe, USA) software by comparing with clinical evaluation. Four hundred and eighteen fundus and angiographic images of diabetic patients were evaluated by three retina specialists and then by computing using Photoshop 7.0 software. Four variables were selected for comparison: amount of hard exudates (HE) on color pictures, amount of HE on red-free pictures, severity of leakage, and the size of the foveal avascular zone (FAZ). The coefficient of agreement (Kappa) between the two methods in the amount of HE on color and red-free photographs were 85% (0.69) and 79% (0.59), respectively. The agreement for severity of leakage was 72% (0.46). In the two methods for the evaluation of the FAZ size using the magic and lasso software tools, the agreement was 54% (0.09) and 89% (0.77), respectively. Agreement in the estimation of the FAZ size by the lasso magnetic tool was excellent and was almost as good in the quantification of HE on color and on red-free images. Considering the agreement of this new technique for the measurement of variables in fundus images using Photoshop software with the clinical evaluation, this method seems to have sufficient validity to be used for the quantitative analysis of HE, leakage, and FAZ size on the angiograms of diabetic patients.

  2. Why do children decide not to participate in clinical research: a quantitative and qualitative study.

    PubMed

    Hein, Irma M; Troost, Pieter W; de Vries, Martine C; Knibbe, Catherijne A J; van Goudoever, Johannes B; Lindauer, Ramón J L

    2015-07-01

    More pediatric drug trials are needed, but although specific pediatric regulations warrant safety, recruitment of children for these trials remains one of the main difficulties. Therefore, we investigated potential determining factors of nonparticipation in clinical research, in order to optimize research participation of children by recommending improved recruitment strategies. Between 1 January 2012 and 1 January 2014, we performed a prospective study among161 pediatric patients, aged 6 to 18 y, who were eligible for clinical research. We quantitatively analyzed the association of potential explanatory variables (e.g., age, cognitive development, experience, ethnicity) with nonparticipation and qualitatively analyzed interviews on reasons for nonparticipation. Sixty percent of the children did not participate in the research project on offer (39% decided not to participate, 21% were indecisive). Lower age, less disease experience, and less complex research with lower risk were predictive for not participating. Time constraint and extra burden were expressed as decisive reasons for not participating. Strategies to optimize research participation should be aimed at younger children and their families, who are logistically challenged and unfamiliar with health care and research. Recommendations include informing pediatric patients and their families of the value of research; minimizing logistic burdens; and improving accessibility.

  3. Microdosimetric investigation of a fast neutron radiobiology facility utilising the d(4)-9Be reaction.

    PubMed

    Waker, A J; Maughan, R L

    1986-11-01

    For fast neutron therapy and radiobiology beams, knowledge of the primary neutron spectrum is the most fundamental requirement for the definition of radiation quality. However, microdosimetric measurements in the form of single-event spectra not only complement the primary neutron spectrum as a statement of radiation quality but also provide a sensitive method of detecting changes in the radiation field in situations where it is no longer possible to have precise knowledge of the primary neutron spectrum, for example after collimator changes and in positions where the radiation field consists of a large scattered component. For the various collimator arrangements employed at the Gray Laboratory facility small perturbations of the radiation field are observed which can be related to a softening of the primary neutron spectrum with increasing field size of the collimator. Gamma fraction determinations are in very good agreement with measurements employing the dual chamber technique and also show small changes with collimator field size giving rise to gamma components ranging from 0.09 to 0.12, the higher values being measured for the larger field sizes. Quality changes represented by the shape of the measured event-size spectra and the derived microdosimetric parameters were greatest for off axis and phantom measurements. With increasing depth in water, yD was found to decrease from 47.3 keV micron-1 at 5 cm to 35.6 keV micron-1 at 15 cm depth, and the gamma fraction was found to increase from 0.23 to 0.40. Although there is no generally accepted and agreed method of relating microdosimetric information to biological effectiveness, the dual radiation theory in its original form (Kellerer and Rossi 1972) has been shown to be a very useful model for the assessment of the biological effectiveness of fast neutrons (Kellerer et al 1976). The microdosimetric parameter which is used in the dual radiation model is the dose mean specific energy corrected for saturation zeta

  4. Quantitative imaging for clinical dosimetry

    NASA Astrophysics Data System (ADS)

    Bardiès, Manuel; Flux, Glenn; Lassmann, Michael; Monsieurs, Myriam; Savolainen, Sauli; Strand, Sven-Erik

    2006-12-01

    Patient-specific dosimetry in nuclear medicine is now a legal requirement in many countries throughout the EU for targeted radionuclide therapy (TRT) applications. In order to achieve that goal, an increased level of accuracy in dosimetry procedures is needed. Current research in nuclear medicine dosimetry should not only aim at developing new methods to assess the delivered radiation absorbed dose at the patient level, but also to ensure that the proposed methods can be put into practice in a sufficient number of institutions. A unified dosimetry methodology is required for making clinical outcome comparisons possible.

  5. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams

    PubMed Central

    Niklas, Martin; Zimmermann, Ferdinand; Chaudhri, Naved; Krunic, Damir; Tessonnier, Thomas; Ferrari, Alfredo; Parodi, Katia; Jäkel, Oliver; Debus, Jürgen; Haberer, Thomas; Abdollahi, Amir

    2016-01-01

    The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break (DSB) formation and repair kinetic. The size and the number of residual nuclear γ-H2AX foci increased as a function of linear energy transfer (LET) and RBE, reminiscent of enhanced DNA-damage complexity and accumulation of non-repairable DSB. These data confirm the high relevance of complex DSB formation as a central determinant of cell fate and reliable biological surrogates for cell survival/RBE. The multi-scale simulation, physical and radiobiological characterization of novel clinical quality beams presented here constitutes a first step towards development of high precision biologically individualized radiotherapy. PMID:27494855

  6. Quantitative Susceptibility Mapping after Sports-Related Concussion.

    PubMed

    Koch, K M; Meier, T B; Karr, R; Nencka, A S; Muftuler, L T; McCrea, M

    2018-06-07

    Quantitative susceptibility mapping using MR imaging can assess changes in brain tissue structure and composition. This report presents preliminary results demonstrating changes in tissue magnetic susceptibility after sports-related concussion. Longitudinal quantitative susceptibility mapping metrics were produced from imaging data acquired from cohorts of concussed and control football athletes. One hundred thirty-six quantitative susceptibility mapping datasets were analyzed across 3 separate visits (24 hours after injury, 8 days postinjury, and 6 months postinjury). Longitudinal quantitative susceptibility mapping group analyses were performed on stability-thresholded brain tissue compartments and selected subregions. Clinical concussion metrics were also measured longitudinally in both cohorts and compared with the measured quantitative susceptibility mapping. Statistically significant increases in white matter susceptibility were identified in the concussed athlete group during the acute (24 hour) and subacute (day 8) period. These effects were most prominent at the 8-day visit but recovered and showed no significant difference from controls at the 6-month visit. The subcortical gray matter showed no statistically significant group differences. Observed susceptibility changes after concussion appeared to outlast self-reported clinical recovery metrics at a group level. At an individual subject level, susceptibility increases within the white matter showed statistically significant correlations with return-to-play durations. The results of this preliminary investigation suggest that sports-related concussion can induce physiologic changes to brain tissue that can be detected using MR imaging-based magnetic susceptibility estimates. In group analyses, the observed tissue changes appear to persist beyond those detected on clinical outcome assessments and were associated with return-to-play duration after sports-related concussion. © 2018 by American Journal of

  7. Quantitative Stratification of Diffuse Parenchymal Lung Diseases

    PubMed Central

    Raghunath, Sushravya; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Maldonado, Fabien; Peikert, Tobias; Moua, Teng; Ryu, Jay H.; Bartholmai, Brian J.; Robb, Richard A.

    2014-01-01

    Diffuse parenchymal lung diseases (DPLDs) are characterized by widespread pathological changes within the pulmonary tissue that impair the elasticity and gas exchange properties of the lungs. Clinical-radiological diagnosis of these diseases remains challenging and their clinical course is characterized by variable disease progression. These challenges have hindered the introduction of robust objective biomarkers for patient-specific prediction based on specific phenotypes in clinical practice for patients with DPLD. Therefore, strategies facilitating individualized clinical management, staging and identification of specific phenotypes linked to clinical disease outcomes or therapeutic responses are urgently needed. A classification schema consistently reflecting the radiological, clinical (lung function and clinical outcomes) and pathological features of a disease represents a critical need in modern pulmonary medicine. Herein, we report a quantitative stratification paradigm to identify subsets of DPLD patients with characteristic radiologic patterns in an unsupervised manner and demonstrate significant correlation of these self-organized disease groups with clinically accepted surrogate endpoints. The proposed consistent and reproducible technique could potentially transform diagnostic staging, clinical management and prognostication of DPLD patients as well as facilitate patient selection for clinical trials beyond the ability of current radiological tools. In addition, the sequential quantitative stratification of the type and extent of parenchymal process may allow standardized and objective monitoring of disease, early assessment of treatment response and mortality prediction for DPLD patients. PMID:24676019

  8. Radiobiology of hypofractionated stereotactic radiotherapy: what are the optimal fractionation schedules?

    PubMed Central

    Shibamoto, Yuta; Miyakawa, Akifumi; Otsuka, Shinya; Iwata, Hiromitsu

    2016-01-01

    In hypofractionated stereotactic radiotherapy (SRT), high doses per fraction are usually used and the dose delivery pattern is different from that of conventional radiation. The daily dose is usually given intermittently over a longer time compared with conventional radiotherapy. During prolonged radiation delivery, sublethal damage repair takes place, leading to the decreased effect of radiation. In in vivo tumors, however, this decrease in effect may be counterbalanced by rapid reoxygenation. Another issue related to hypofractionated SRT is the mathematical model for dose evaluation and conversion. The linear–quadratic (LQ) model and biologically effective dose (BED) have been suggested to be incorrect when used for hypofractionation. The LQ model overestimates the effect of high fractional doses of radiation. BED is particularly incorrect when used for tumor responses in vivo, since it does not take reoxygenation into account. Correction of the errors, estimated at 5–20%, associated with the use of BED is necessary when it is used for SRT. High fractional doses have been reported to exhibit effects against tumor vasculature and enhance host immunity, leading to increased antitumor effects. This may be an interesting topic that should be further investigated. Radioresistance of hypoxic tumor cells is more problematic in hypofractionated SRT, so trials of hypoxia-targeted agents are encouraged in the future. In this review, the radiobiological characteristics of hypofractionated SRT are summarized, and based on the considerations, we would like to recommend 60 Gy in eight fractions delivered three times a week for lung tumors larger than 2 cm in diameter. PMID:27006380

  9. Nuclear medicine and quantitative imaging research (instrumentation and quantitative methods of evaluation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, R.N.; Cooper, M.D.

    1990-09-01

    This report summarizes goals and accomplishments of the research program supported under DOE Grant No. FG02-86ER60418 entitled Instrumentation and Quantitative Methods of Evaluation, with R. Beck, P. I. and M. Cooper, Co-P.I. during the period January 15, 1990 through September 1, 1990. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development andmore » transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 7 figs.« less

  10. Clinical application of a light-pen computer system for quantitative angiography

    NASA Technical Reports Server (NTRS)

    Alderman, E. L.

    1975-01-01

    The paper describes an angiographic analysis system which uses a video disk for recording and playback, a light-pen for data input, minicomputer processing, and an electrostatic printer/plotter for hardcopy output. The method is applied to quantitative analysis of ventricular volumes, sequential ventriculography for assessment of physiologic and pharmacologic interventions, analysis of instantaneous time sequence of ventricular systolic and diastolic events, and quantitation of segmental abnormalities. The system is shown to provide the capability for computation of ventricular volumes and other measurements from operator-defined margins by greatly reducing the tedium and errors associated with manual planimetry.

  11. Assessing achievement in nephrology training: using clinic chart audits to quantitatively screen competency.

    PubMed

    Yuan, Christina M; Prince, Lisa K; Zwettler, Amy J; Nee, Robert; Oliver, James D; Abbott, Kevin C

    2014-11-01

    Entrustable professional activities (EPAs) are complex tasks representing vital physician functions in multiple competencies, used to demonstrate trainee development along milestones. Managing a nephrology outpatient clinic has been proposed as an EPA for nephrology fellowship training. Retrospective cohort study of nephrology fellow outpatient clinic performance using a previously validated chart audit tool. Outpatient encounter chart audits for training years 2008-2009 through 2012-2013, corresponding to participation in the Nephrology In-Training Examination (ITE). A median of 7 auditors (attending nephrologists) audited a mean of 1,686±408 (SD) charts per year. 18 fellows were audited; 12, in both of their training years. Proportion of chart audit and quality indicator deficiencies. Longitudinal deficiency and ITE performance. Among fellows audited in both their training years, chart audit deficiencies were fewer in the second versus the first year (5.4%±2.0% vs 17.3%±7.0%; P<0.001) and declined between the first and second halves of the first year (22.2%±6.4% vs 12.3%±9.5%; P=0.002). Most deficiencies were omission errors, regardless of training year. Quality indicator deficiencies for hypertension and chronic kidney disease-associated anemia recognition and management were fewer during the second year (P<0.001). Yearly audit deficiencies ≥5% were associated with an ITE score less than the 25th percentile for second-year fellows (P=0.03), with no significant association for first-year fellows. Auditor-reported deficiencies declined between the first and second halves of the year (17.0% vs 11.1%; P<0.001), with a stable positive/neutral comment rate (17.3% vs 17.8%; P=0.6), suggesting that the decline was not due to auditor fatigue. Retrospective design and small trainee numbers. Managing a nephrology outpatient clinic is an EPA. The chart audit tool was used to assess longitudinal fellow performance in managing a nephrology outpatient clinic. Failure

  12. Extracting quantitative measures from EAP: a small clinical study using BFOR.

    PubMed

    Hosseinbor, A Pasha; Chung, Moo K; Wu, Yu-Chien; Fleming, John O; Field, Aaron S; Alexander, Andrew L

    2012-01-01

    The ensemble average propagator (EAP) describes the 3D average diffusion process of water molecules, capturing both its radial and angular contents, and hence providing rich information about complex tissue microstructure properties. Bessel Fourier orientation reconstruction (BFOR) is one of several analytical, non-Cartesian EAP reconstruction schemes employing multiple shell acquisitions that have recently been proposed. Such modeling bases have not yet been fully exploited in the extraction of rotationally invariant q-space indices that describe the degree of diffusion anisotropy/restrictivity. Such quantitative measures include the zero-displacement probability (P(o)), mean squared displacement (MSD), q-space inverse variance (QIV), and generalized fractional anisotropy (GFA), and all are simply scalar features of the EAP. In this study, a general relationship between MSD and q-space diffusion signal is derived and an EAP-based definition of GFA is introduced. A significant part of the paper is dedicated to utilizing BFOR in a clinical dataset, comprised of 5 multiple sclerosis (MS) patients and 4 healthy controls, to estimate P(o), MSD, QIV, and GFA of corpus callosum, and specifically, to see if such indices can detect changes between normal appearing white matter (NAWM) and healthy white matter (WM). Although the sample size is small, this study is a proof of concept that can be extended to larger sample sizes in the future.

  13. Correlation of Clinical Outcomes with Quantitative Polymerase Chain Reaction DNA Copy Number in Patients with Acute Retinal Necrosis.

    PubMed

    Calvo, Charles M; Khan, Mohammed Ali; Mehta, Sonia; Garg, Sunir J; Dunn, James P

    2017-04-01

    To correlate visual acuity outcomes and clinical features with quantitative PCR DNA copy number in patients with acute retinal necrosis (ARN). Retrospective, consecutive case series. In total, 14 eyes of 13 patients were diagnosed with ARN, based on the American Uveitis Society criteria, and were followed for a mean of 324.5 days (median 250.5 days, SD ± 214 days). Anterior chamber fluid analyzed by quantitative PCR identified viral DNA in 11 of 14 eyes (78.5%). Varicella zoster virus (VZV) was identified in seven eyes (50%) and herpes simplex virus (HSV) in four eyes (28.5%). Mean DNA copy number was 7.9 × 10 6 /mL (median 2.10 × 10 6 /mL, range: 0-5.60 × 10 7 /mL). Eyes with quantitative PCR DNA copy number of ≥5.0 × 10 6 /mL (n = 6 eyes) had worse baseline visual acuity (logMAR 1.48 ± 0.71 vs 0.94 ± 0.76, p = 0.196) and final visual acuity (logMAR 2.10 ± 0.60 vs 0.82 ± 0.81, p = 0.007) compared with patients with a DNA copy number <5.0 × 10 6 /mL (n = 8 eyes). Patients with a DNA copy number of ≥5.0 × 10 6 /mL were more likely to have at least 5 clock hours of retinitis on funduscopic exam (p = 0.03) and developed retinal detachment more frequently (p = 0.08). Quantitative DNA copy number of ≥5.0 × 10 6 /mL is associated with more extensive retinitis, worse visual acuity, and development of retinal detachment in patients with acute retinal necrosis.

  14. Cross-sectional evaluation of electrical impedance myography and quantitative ultrasound for the assessment of Duchenne muscular dystrophy in a clinical trial setting.

    PubMed

    Rutkove, Seward B; Geisbush, Tom R; Mijailovic, Aleksandar; Shklyar, Irina; Pasternak, Amy; Visyak, Nicole; Wu, Jim S; Zaidman, Craig; Darras, Basil T

    2014-07-01

    Electrical impedance myography and quantitative ultrasound are two noninvasive, painless, and effort-independent approaches for assessing neuromuscular disease. Both techniques have potential to serve as useful biomarkers in clinical trials in Duchenne muscular dystrophy. However, their comparative sensitivity to disease status and how they relate to one another are unknown. We performed a cross-sectional analysis of electrical impedance myography and quantitative ultrasound in 24 healthy boys and 24 with Duchenne muscular dystrophy, aged 2 to 14 years with trained research assistants performing all measurements. Three upper and three lower extremity muscles were studied unilaterally in each child, and the data averaged for each individual. Both electrical impedance myography and quantitative ultrasound differentiated healthy boys from those with Duchenne muscular dystrophy (P < 0.001 for both). Quantitative ultrasound values correlated with age in Duchenne muscular dystrophy boys (rho = 0.45; P = 0.029), whereas electrical impedance myography did not (rho = -0.31; P = 0.14). However, electrical impedance myography phase correlated with age in healthy boys (rho = 0.51; P = 0.012), whereas quantitative ultrasound did not (rho = -0.021; P = 0.92). In Duchenne muscular dystrophy boys, electrical impedance myography phase correlated with the North Star Ambulatory Assessment (rho = 0.65; P = 0.022); quantitative ultrasound revealed a near-significant association (rho = -0.56; P = 0.060). The two technologies trended toward a moderate correlation with one another in the Duchenne muscular dystrophy cohort but not in the healthy group (rho = -0.40; P = 0.054 and rho = -0.32; P = 0.13, respectively). Electrical impedance myography and quantitative ultrasound are complementary modalities for the assessment of boys with Duchenne muscular dystrophy; further study and application of these two modalities alone or in combination in a longitudinal fashion are warranted. Copyright

  15. Biomarkers and Surrogate Endpoints in Uveitis: The Impact of Quantitative Imaging.

    PubMed

    Denniston, Alastair K; Keane, Pearse A; Srivastava, Sunil K

    2017-05-01

    Uveitis is a major cause of sight loss across the world. The reliable assessment of intraocular inflammation in uveitis ('disease activity') is essential in order to score disease severity and response to treatment. In this review, we describe how 'quantitative imaging', the approach of using automated analysis and measurement algorithms across both standard and emerging imaging modalities, can develop objective instrument-based measures of disease activity. This is a narrative review based on searches of the current world literature using terms related to quantitative imaging techniques in uveitis, supplemented by clinical trial registry data, and expert knowledge of surrogate endpoints and outcome measures in ophthalmology. Current measures of disease activity are largely based on subjective clinical estimation, and are relatively insensitive, with poor discrimination and reliability. The development of quantitative imaging in uveitis is most established in the use of optical coherence tomographic (OCT) measurement of central macular thickness (CMT) to measure severity of macular edema (ME). The transformative effect of CMT in clinical assessment of patients with ME provides a paradigm for the development and impact of other forms of quantitative imaging. Quantitative imaging approaches are now being developed and validated for other key inflammatory parameters such as anterior chamber cells, vitreous haze, retinovascular leakage, and chorioretinal infiltrates. As new forms of quantitative imaging in uveitis are proposed, the uveitis community will need to evaluate these tools against the current subjective clinical estimates and reach a new consensus for how disease activity in uveitis should be measured. The development, validation, and adoption of sensitive and discriminatory measures of disease activity is an unmet need that has the potential to transform both drug development and routine clinical care for the patient with uveitis.

  16. The mathematics of cancer: integrating quantitative models.

    PubMed

    Altrock, Philipp M; Liu, Lin L; Michor, Franziska

    2015-12-01

    Mathematical modelling approaches have become increasingly abundant in cancer research. The complexity of cancer is well suited to quantitative approaches as it provides challenges and opportunities for new developments. In turn, mathematical modelling contributes to cancer research by helping to elucidate mechanisms and by providing quantitative predictions that can be validated. The recent expansion of quantitative models addresses many questions regarding tumour initiation, progression and metastases as well as intra-tumour heterogeneity, treatment responses and resistance. Mathematical models can complement experimental and clinical studies, but also challenge current paradigms, redefine our understanding of mechanisms driving tumorigenesis and shape future research in cancer biology.

  17. [Clinical importance of semi-quantitative monitoring of lymphomas using the comparative polymerase chain reaction].

    PubMed

    Slavícková, A; Ivánek, R; Cerný, J; Sálková, J; Trnĕný, M

    2002-11-22

    PCR techniques detecting interchromosomal translocation and clonal immunoglobulin gene rearrangement (IgH) as disease markers in non-Hodgkin's lymphomas (NHL) has been utilised past ten years. However, qualitative PCR detection of persisted minimal residual disease cannot provide clinically useful prognostic information and presently, quantitative approaches are required to predict patient outcome and assess response to the treatment. In some cases, "end-point" quantifying techniques, such as comparative PCR, are applicable and the relative estimation of differences in target quantity may serve in disease monitoring rather than absolute number of target copies. Our method of comparative PCR employs co-amplification of sequences of interest (clonal CDR3, bcl2/Jh) and the segment of Hras 1 gene(ras) as an internal standard. Serial dilutions of stored diagnostic DNAs from blood and bone marrow are examined in the same PCR and, after gel densitometry, the amount of initial target is assessed by comparing exponential products of co-amplification. The comparative PCR assay was utilized in monitoring of NHL patients cured either with conventional therapy, or with high-dose regimens and transplantation with stem cells, or with chimaeric anti-CD20 monoclonal antibody (Rituximab). Results from 50 monitored intervals obtained during several months up to several years were supplemented with clinical statements retrospectively. Some of patients became PCR-negative, reappearance of PCR-positivity was observed as well. The decrease or increase of disease marker corresponded to clinical observations. Results obtained from bone marrow were in agreement with those obtained from blood. End-point quantifying PCR comparative assay may provide an information on the increased risk of relapse and impact of the therapy. The predictive value of these methods depends on the frequency of sample taking and on the sensitivity of the method, which should be monitored in negative cases.

  18. Quantitative somatosensory testing of the penis: optimizing the clinical neurological examination.

    PubMed

    Bleustein, Clifford B; Eckholdt, Haftan; Arezzo, Joseph C; Melman, Arnold

    2003-06-01

    Quantitative somatosensory testing, including vibration, pressure, spatial perception and thermal thresholds of the penis, has demonstrated neuropathy in patients with a history of erectile dysfunction of all etiologies. We evaluated which measurement of neurological function of the penis was best at predicting erectile dysfunction and examined the impact of location on the penis for quantitative somatosensory testing measurements. A total of 107 patients were evaluated. All patients were required to complete the erectile function domain of the International Index of Erectile Function (IIEF) questionnaire, of whom 24 had no complaints of erectile dysfunction and scored within the "normal" range on the IIEF. Patients were subsequently tested on ventral middle penile shaft, proximal dorsal midline penile shaft and glans penis (with foreskin retracted) for vibration, pressure, spatial perception, and warm and cold thermal thresholds. Mixed models repeated measures analysis of variance controlling for age, diabetes and hypertension revealed that method of measurement (quantitative somatosensory testing) was predictive of IIEF score (F = 209, df = 4,1315, p <0.001), while site of measurement on the penis was not. To determine the best method of measurement, we used hierarchical regression, which revealed that warm temperature was the best predictor of erectile dysfunction with pseudo R(2) = 0.19, p <0.0007. There was no significant improvement in predicting erectile dysfunction when another test was added. Using 37C and greater as the warm thermal threshold yielded a sensitivity of 88.5%, specificity 70.0% and positive predictive value 85.5%. Quantitative somatosensory testing using warm thermal threshold measurements taken at the glans penis can be used alone to assess the neurological status of the penis. Warm thermal thresholds alone offer a quick, noninvasive accurate method of evaluating penile neuropathy in an office setting.

  19. Quantitative multimodality imaging in cancer research and therapy.

    PubMed

    Yankeelov, Thomas E; Abramson, Richard G; Quarles, C Chad

    2014-11-01

    Advances in hardware and software have enabled the realization of clinically feasible, quantitative multimodality imaging of tissue pathophysiology. Earlier efforts relating to multimodality imaging of cancer have focused on the integration of anatomical and functional characteristics, such as PET-CT and single-photon emission CT (SPECT-CT), whereas more-recent advances and applications have involved the integration of multiple quantitative, functional measurements (for example, multiple PET tracers, varied MRI contrast mechanisms, and PET-MRI), thereby providing a more-comprehensive characterization of the tumour phenotype. The enormous amount of complementary quantitative data generated by such studies is beginning to offer unique insights into opportunities to optimize care for individual patients. Although important technical optimization and improved biological interpretation of multimodality imaging findings are needed, this approach can already be applied informatively in clinical trials of cancer therapeutics using existing tools. These concepts are discussed herein.

  20. WE-AB-202-11: Radiobiological Modeling of Tumor Response During Radiotherapy Based On Pre-Treatment Dynamic PET Imaging Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crispin-Ortuzar, M; Grkovski, M; Beattie, B

    Purpose: To evaluate the ability of a multiscale radiobiological model of tumor response to predict mid-treatment hypoxia images, based on pretreatment imaging of perfusion and hypoxia with [18-F]FMISO dynamic PET and glucose metabolism with [18-F]FDG PET. Methods: A mechanistic tumor control probability (TCP) radiobiological model describing the interplay between tumor cell proliferation and hypoxia (Jeong et al., PMB 2013) was extended to account for intra-tumor nutrient heterogeneity, dynamic cell migration due to nutrient gradients, and stromal cells. This extended model was tested on 10 head and neck cancer patients treated with chemoradiotherapy, randomly drawn from a larger MSKCC protocol involvingmore » baseline and mid-therapy dynamic PET scans. For each voxel, initial fractions of proliferative and hypoxic tumor cells were obtained by finding an approximate solution to a system of linear equations relating cell fractions to voxel-level FDG uptake, perfusion (FMISO K{sub 1}) and hypoxia (FMISO k{sub 3}). The TCP model then predicted their evolution over time up until the mid treatment scan. Finally, the linear model was reapplied to predict each lesion’s median hypoxia level (k{sub 3}[med,sim]) which in turn was compared to the FMISO k{sub 3}[med] measured at mid-therapy. Results: The average k3[med] of the tumors in pre-treatment scans was 0.0035 min{sup −1}, with an inter-tumor standard deviation of σ[pre]=0.0034 min{sup −1}. The initial simulated k{sub 3}[med,sim] of each tumor agreed with the corresponding measurements within 0.1σ[pre]. In 7 out of 10 lesions, the mid-treatment k{sub 3}[med,sim] prediction agreed with the data within 0.3σ[pre]. The remaining cases corresponded to the most extreme relative changes in k{sub 3}[med]. Conclusion: This work presents a method to personalize the prediction of a TCP model using pre-treatment kinetic imaging data, and validates the modeling of radiotherapy response by predicting changes in median

  1. Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment.

    PubMed

    Raunig, David L; McShane, Lisa M; Pennello, Gene; Gatsonis, Constantine; Carson, Paul L; Voyvodic, James T; Wahl, Richard L; Kurland, Brenda F; Schwarz, Adam J; Gönen, Mithat; Zahlmann, Gudrun; Kondratovich, Marina V; O'Donnell, Kevin; Petrick, Nicholas; Cole, Patricia E; Garra, Brian; Sullivan, Daniel C

    2015-02-01

    Technological developments and greater rigor in the quantitative measurement of biological features in medical images have given rise to an increased interest in using quantitative imaging biomarkers to measure changes in these features. Critical to the performance of a quantitative imaging biomarker in preclinical or clinical settings are three primary metrology areas of interest: measurement linearity and bias, repeatability, and the ability to consistently reproduce equivalent results when conditions change, as would be expected in any clinical trial. Unfortunately, performance studies to date differ greatly in designs, analysis method, and metrics used to assess a quantitative imaging biomarker for clinical use. It is therefore difficult or not possible to integrate results from different studies or to use reported results to design studies. The Radiological Society of North America and the Quantitative Imaging Biomarker Alliance with technical, radiological, and statistical experts developed a set of technical performance analysis methods, metrics, and study designs that provide terminology, metrics, and methods consistent with widely accepted metrological standards. This document provides a consistent framework for the conduct and evaluation of quantitative imaging biomarker performance studies so that results from multiple studies can be compared, contrasted, or combined. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Clinical and quantitative analysis of patients with crowned dens syndrome.

    PubMed

    Takahashi, Teruyuki; Tamura, Masato; Takasu, Toshiaki; Kamei, Satoshi

    2017-05-15

    Crowned dens syndrome (CDS) is a radioclinical entity defined by calcium deposition on the transverse ligament of atlas (TLA). In this study, the novel semi-quantitative diagnostic criteria for CDS to evaluate the degree of calcification on TLA by cervical CT are proposed. From January 2010 to September 2014, 35 patients who were diagnosed with CDS by cervical CT were adopted as subjects in this study. Based on novel criteria, calcium deposition on TLA was classified into "Stage" and "Grade", to make a score, which was evaluated semi-quantitatively. The correlation between calcification score and CRP level or pain score, and the effects of treatments, such as NSAIDs and corticosteroids, were statistically analyzed. The total calcification score from added "Stage" and "Grade" scores demonstrated a significantly strong and linear correlation with CRP level (R 2 =0.823, **p<0.01). In the multiple comparison test for the treatment effects, significant improvement of the CRP level and pain score were demonstrated after corticosteroid therapy (**p<0.01) compared with NSAIDs. In the conditional logistic regression analysis, the rapid end of corticosteroid therapy was an independent risk factor for relapse of cervico-occipital pain [OR=50.761, *p=0.0419]. The degree of calcification on TLA evaluated by the novel semi-quantitative criteria significantly correlated with CRP level. In the treatment of CDS, it is recommended that a low dosage (15-30mg) of corticosteroids be used as first-line drugs rather than conventional NSAID therapy. Additionally, it is also recommended to gradually decrease the dosage of corticosteroids. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A systematic review of quantitative burn wound microbiology in the management of burns patients.

    PubMed

    Halstead, Fenella D; Lee, Kwang Chear; Kwei, Johnny; Dretzke, Janine; Oppenheim, Beryl A; Moiemen, Naiem S

    2018-02-01

    The early diagnosis of infection or sepsis in burns are important for patient care. Globally, a large number of burn centres advocate quantitative cultures of wound biopsies for patient management, since there is assumed to be a direct link between the bioburden of a burn wound and the risk of microbial invasion. Given the conflicting study findings in this area, a systematic review was warranted. Bibliographic databases were searched with no language restrictions to August 2015. Study selection, data extraction and risk of bias assessment were performed in duplicate using pre-defined criteria. Substantial heterogeneity precluded quantitative synthesis, and findings were described narratively, sub-grouped by clinical question. Twenty six laboratory and/or clinical studies were included. Substantial heterogeneity hampered comparisons across studies and interpretation of findings. Limited evidence suggests that (i) more than one quantitative microbiology sample is required to obtain reliable estimates of bacterial load; (ii) biopsies are more sensitive than swabs in diagnosing or predicting sepsis; (iii) high bacterial loads may predict worse clinical outcomes, and (iv) both quantitative and semi-quantitative culture reports need to be interpreted with caution and in the context of other clinical risk factors. The evidence base for the utility and reliability of quantitative microbiology for diagnosing or predicting clinical outcomes in burns patients is limited and often poorly reported. Consequently future research is warranted. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Transfer of Minibeam Radiation Therapy into a cost-effective equipment for radiobiological studies: a proof of concept.

    PubMed

    Prezado, Y; Dos Santos, M; Gonzalez, W; Jouvion, G; Guardiola, C; Heinrich, S; Labiod, D; Juchaux, M; Jourdain, L; Sebrie, C; Pouzoulet, F

    2017-12-11

    Minibeam radiation therapy (MBRT) is an innovative synchrotron radiotherapy technique able to shift the normal tissue complication probability curves to significantly higher doses. However, its exploration was hindered due to the limited and expensive beamtime at synchrotrons. The aim of this work was to develop a cost-effective equipment to perform systematic radiobiological studies in view of MBRT. Tumor control for various tumor entities will be addressable as well as studies to unravel the distinct biological mechanisms involved in normal and tumor tissues responses when applying MBRT. With that aim, a series of modifications of a small animal irradiator were performed to make it suitable for MBRT experiments. In addition, the brains of two groups of rats were irradiated. Half of the animals received a standard irradiation, the other half, MBRT. The animals were followed-up for 6.5 months. Substantial brain damage was observed in the group receiving standard RT, in contrast to the MBRT group, where no significant lesions were observed. This work proves the feasibility of the transfer of MBRT outside synchrotron sources towards a small animal irradiator.

  5. The craniocaudal extension of posterolateral approaches and their combination: a quantitative anatomic and clinical analysis.

    PubMed

    Safavi-Abbasi, Sam; de Oliveira, Jean G; Deshmukh, Pushpa; Reis, Cassius V; Brasiliense, Leonardo B C; Crawford, Neil R; Feiz-Erfan, Iman; Spetzler, Robert F; Preul, Mark C

    2010-03-01

    The aim of this study was to describe quantitatively the properties of the posterolateral approaches and their combination. Six silicone-injected cadaveric heads were dissected bilaterally. Quantitative data were generated with the Optotrak 3020 system (Northern Digital, Waterloo, Canada) and Surgiscope (Elekta Instruments, Inc., Atlanta, GA), including key anatomic points on the skull base and brainstem. All parameters were measured after the basic retrosigmoid craniectomy and then after combination with a basic far-lateral extension. The clinical results of 20 patients who underwent a combined retrosigmoid and far-lateral approach were reviewed. The change in accessibility to the lower clivus was greatest after the far-lateral extension (mean change, 43.62 +/- 10.98 mm2; P = .001). Accessibility to the constant landmarks, Meckel's cave, internal auditory meatus, and jugular foramen did not change significantly between the 2 approaches (P > .05). The greatest change in accessibility to soft tissue between the 2 approaches was to the lower brainstem (mean change, 33.88 +/- 5.25 mm2; P = .0001). Total removal was achieved in 75% of the cases. The average postoperative Glasgow Outcome Scale score of patients who underwent the combined retrosigmoid and far-lateral approach improved significantly, compared with the preoperative scores. The combination of the far-lateral and simple retrosigmoid approaches significantly increases the petroclival working area and access to the cranial nerves. However, risk of injury to neurovascular structures and time needed to extend the craniotomy must be weighed against the increased working area and angles of attack.

  6. Objective and quantitative equilibriometric evaluation of individual locomotor behaviour in schizophrenia: Translational and clinical implications.

    PubMed

    Haralanov, Svetlozar; Haralanova, Evelina; Milushev, Emil; Shkodrova, Diana; Claussen, Claus-Frenz

    2018-04-17

    Psychiatry is the only medical specialty that lacks clinically applicable biomarkers for objective evaluation of the existing pathology at a single-patient level. On the basis of an original translational equilibriometric method for evaluation of movement patterns, we have introduced in the everyday clinical practice of psychiatry an easy-to-perform computerized objective quantification of the individual locomotor behaviour during execution of the Unterberger stepping test. For the last 20 years, we have gradually collected a large database of more than 1000 schizophrenic patients, their relatives, and matched psychiatric, neurological, and healthy controls via cross-sectional and longitudinal investigations. Comparative analyses revealed transdiagnostic locomotor similarities among schizophrenic patients, high-risk schizotaxic individuals, and neurological patients with multiple sclerosis and cerebellar ataxia, thus suggesting common underlying brain mechanisms. In parallel, intradiagnostic dissimilarities were revealed, which allow to separate out subclinical locomotor subgroups within the diagnostic categories. Prototypical qualitative (dysmetric and ataxic) locomotor abnormalities in schizophrenic patients were differentiated from 2 atypical quantitative ones, manifested as either hypolocomotion or hyperlocomotion. Theoretical analyses suggested that these 3 subtypes of locomotor abnormalities could be conceived as objectively measurable biomarkers of 3 schizophrenic subgroups with dissimilar brain mechanisms, which require different treatment strategies. Analogies with the prominent role of locomotor measures in some well-known animal models of mental disorders advocate for a promising objective translational research in the so far over-subjective field of psychiatry. Distinctions among prototypical, atypical, and diagnostic biomarkers, as well as between neuromotor and psychomotor locomotor abnormalities, are discussed. Conclusions are drawn about the

  7. Development and Validation of a Quantitative PCR Assay Using Multiplexed Hydrolysis Probes for Detection and Quantification of Theileria orientalis Isolates and Differentiation of Clinically Relevant Subtypes

    PubMed Central

    Bogema, D. R.; Deutscher, A. T.; Fell, S.; Collins, D.; Eamens, G. J.

    2015-01-01

    Theileria orientalis is an emerging pathogen of cattle in Asia, Australia, and New Zealand. This organism is a vector-borne hemoprotozoan that causes clinical disease characterized by anemia, abortion, and death, as well as persistent subclinical infections. Molecular methods of diagnosis are preferred due to their sensitivity and utility in differentiating between pathogenic and apathogenic genotypes. Conventional PCR (cPCR) assays for T. orientalis detection and typing are laborious and do not provide an estimate of parasite load. Current real-time PCR assays cannot differentiate between clinically relevant and benign genotypes or are only semiquantitative without a defined clinical threshold. Here, we developed and validated a hydrolysis probe quantitative PCR (qPCR) assay which universally detects and quantifies T. orientalis and identifies the clinically associated Ikeda and Chitose genotypes (UIC assay). Comparison of the UIC assay results with previously validated universal and genotype-specific cPCR results demonstrated that qPCR detects and differentiates T. orientalis with high sensitivity and specificiy. Comparison of quantitative results based on percent parasitemia, determined via blood film analysis and packed cell volume (PCV) revealed significant positive and negative correlations, respectively. One-way analysis of variance (ANOVA) indicated that blood samples from animals with clinical signs of disease contained statistically higher concentrations of T. orientalis DNA than animals with subclinical infections. We propose clinical thresholds to assist in classifying high-, moderate-, and low-level infections and describe how parasite load and the presence of the Ikeda and Chitose genotypes relate to disease. PMID:25588653

  8. Dosimetric and radiobiologic comparison of 3D conformal versus intensity modulated planning techniques for prostate bed radiotherapy.

    PubMed

    Koontz, Bridget F; Das, Shiva; Temple, Kathy; Bynum, Sigrun; Catalano, Suzanne; Koontz, Jason I; Montana, Gustavo S; Oleson, James R

    2009-01-01

    Adjuvant radiotherapy for locally advanced prostate cancer improves biochemical and clinical disease-free survival. While comparisons in intact prostate cancer show a benefit for intensity modulated radiation therapy (IMRT) over 3D conformal planning, this has not been studied for post-prostatectomy radiotherapy (RT). This study compares normal tissue and target dosimetry and radiobiological modeling of IMRT vs. 3D conformal planning in the postoperative setting. 3D conformal plans were designed for 15 patients who had been treated with IMRT planning for salvage post-prostatectomy RT. The same computed tomography (CT) and target/normal structure contours, as well as prescription dose, was used for both IMRT and 3D plans. Normal tissue complication probabilities (NTCPs) were calculated based on the dose given to the bladder and rectum by both plans. Dose-volume histogram and NTCP data were compared by paired t-test. Bladder and rectal sparing were improved with IMRT planning compared to 3D conformal planning. The volume of the bladder receiving at least 75% (V75) and 50% (V50) of the dose was significantly reduced by 28% and 17%, respectively (p = 0.002 and 0.037). Rectal dose was similarly reduced, V75 by 33% and V50 by 17% (p = 0.001 and 0.004). While there was no difference in the volume of rectum receiving at least 65 Gy (V65), IMRT planning significant reduced the volume receiving 40 Gy or more (V40, p = 0.009). Bladder V40 and V65 were not significantly different between planning modalities. Despite these dosimetric differences, there was no significant difference in the NTCP for either bladder or rectal injury. IMRT planning reduces the volume of bladder and rectum receiving high doses during post-prostatectomy RT. Because of relatively low doses given to the bladder and rectum, there was no statistically significant improvement in NTCP between the 3D conformal and IMRT plans.

  9. Temporal lobe epilepsy: quantitative MR volumetry in detection of hippocampal atrophy.

    PubMed

    Farid, Nikdokht; Girard, Holly M; Kemmotsu, Nobuko; Smith, Michael E; Magda, Sebastian W; Lim, Wei Y; Lee, Roland R; McDonald, Carrie R

    2012-08-01

    To determine the ability of fully automated volumetric magnetic resonance (MR) imaging to depict hippocampal atrophy (HA) and to help correctly lateralize the seizure focus in patients with temporal lobe epilepsy (TLE). This study was conducted with institutional review board approval and in compliance with HIPAA regulations. Volumetric MR imaging data were analyzed for 34 patients with TLE and 116 control subjects. Structural volumes were calculated by using U.S. Food and Drug Administration-cleared software for automated quantitative MR imaging analysis (NeuroQuant). Results of quantitative MR imaging were compared with visual detection of atrophy, and, when available, with histologic specimens. Receiver operating characteristic analyses were performed to determine the optimal sensitivity and specificity of quantitative MR imaging for detecting HA and asymmetry. A linear classifier with cross validation was used to estimate the ability of quantitative MR imaging to help lateralize the seizure focus. Quantitative MR imaging-derived hippocampal asymmetries discriminated patients with TLE from control subjects with high sensitivity (86.7%-89.5%) and specificity (92.2%-94.1%). When a linear classifier was used to discriminate left versus right TLE, hippocampal asymmetry achieved 94% classification accuracy. Volumetric asymmetries of other subcortical structures did not improve classification. Compared with invasive video electroencephalographic recordings, lateralization accuracy was 88% with quantitative MR imaging and 85% with visual inspection of volumetric MR imaging studies but only 76% with visual inspection of clinical MR imaging studies. Quantitative MR imaging can depict the presence and laterality of HA in TLE with accuracy rates that may exceed those achieved with visual inspection of clinical MR imaging studies. Thus, quantitative MR imaging may enhance standard visual analysis, providing a useful and viable means for translating volumetric analysis into

  10. Bone Health Monitoring in Astronauts: Recommended Use of Quantitative Computed Tomography [QCT] for Clinical and Operational Decisions

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Truskowski, P.

    2010-01-01

    This slide presentation reviews the concerns that astronauts in long duration flights might have a greater risk of bone fracture as they age than the general population. A panel of experts was convened to review the information and recommend mechanisms to monitor the health of bones in astronauts. The use of Quantitative Computed Tomography (QCT) scans for risk surveillance to detect the clinical trigger and to inform countermeasure evaluation is reviewed. An added benefit of QCT is that it facilitates an individualized estimation of bone strength by Finite Element Modeling (FEM), that can inform approaches for bone rehabilitation. The use of FEM is reviewed as a process that arrives at a composite number to estimate bone strength, because it integrates multiple factors.

  11. Clinically Relevant Subregions of Articular Cartilage of the Hip for Analysis and Reporting Quantitative Magnetic Resonance Imaging: A Technical Note.

    PubMed

    Surowiec, Rachel K; Lucas, Erin P; Wilson, Katharine J; Saroki, Adriana J; Ho, Charles P

    2014-01-01

    Before quantitative imaging techniques can become clinically valuable, the method, and more specifically, the regions of locating and reporting these values should be standardized toward reproducibility comparisons across centers and longitudinal follow-up of individual patients. The purpose of this technical note is to describe a rigorous and reproducible method of locating, analyzing, and reporting quantitative MRI values in hip articular cartilage with an approach that is consistent with current orthopedic literature. To demonstrate this localization and documentation, 3 patients (age, 23 ± 5.1 years; 2 males, 1 female) who presented with symptomatic mixed-type femoroacetabular impingement (α angle, 63.3° ± 2.1°; center edge angle, 39° ± 4.2°) were evaluated with T2-mapping at 3 T MRI prior to hip arthroscopy. Manual segmentation was performed and cartilage of the acetabulum and femur was divided into 12 subregions adapted from the geographic zone method. Bone landmarks in the acetabulum and femur, identifiable both in arthroscopy and MR images, were manually selected and the coordinates exported for division of cartilage. Mean T2 values in each zone are presented. The current work outlines a standardized system to locate and describe quantitative mapping values that could aid in surgical decision making, planning, and the noninvasive longitudinal follow-up of implemented cartilage preservation and restoration techniques.

  12. Quantitative computed tomography features and clinical manifestations associated with the extent of bronchiectasis in patients with moderate-to-severe COPD

    PubMed Central

    Bak, So Hyeon; Kim, Soohyun; Hong, Yoonki; Heo, Jeongwon; Lim, Myoung-Nam; Kim, Woo Jin

    2018-01-01

    Background Few studies have investigated the quantitative computed tomography (CT) features associated with the severity of bronchiectasis in COPD patients. The purpose of this study was to identify the quantitative CT features and clinical values to determine the extent of bronchiectasis in moderate-to-severe COPD patients. Methods A total of 127 moderate-to-severe COPD patients were selected from the cohort of COPD in Dusty Areas (CODA). The study subjects were classified into three groups according to the extent of bronchiectasis on CT: no bronchiectasis, mild bronchiectasis, and moderate-to-severe bronchiectasis. The three groups were compared with respect to demographic data, symptoms, medical history, serum inflammatory markers, pulmonary function, and quantitative CT values. Results Among 127 moderate-to-severe COPD subjects, 73 patients (57.5%) were detected to have bronchiectasis, 51 patients (40.2%) to have mild bronchiectasis, and 22 patients (17.3%) to have moderate-to-severe bronchiectasis. Compared with COPD patients without bronchiectasis, those with bronchiectasis were older and had higher frequency of prior tuberculosis, lower prevalence of bronchodilator reversibility (BDR), and more severe air trapping (P < 0.05). Moderate-to-severe bronchiectasis patients had lower body mass index (BMI), higher frequency of prior tuberculosis, lower prevalence of BDR, worse pulmonary function, and more severe air trapping (P < 0.05) than those in the mild bronchiectasis group. Conclusion Moderate-to-severe bronchiectasis was associated with a history of pulmonary tuberculosis, lower BMI, severe airflow obstruction, and lower BDR in moderate-to-severe COPD patients. Quantitative analysis of CT showed that severe air trapping was associated with the extent of bronchiectasis in these patients. PMID:29750028

  13. Hand-arm vibration syndrome: clinical characteristics, conventional electrophysiology and quantitative sensory testing.

    PubMed

    Rolke, Roman; Rolke, Silke; Vogt, Thomas; Birklein, Frank; Geber, Christian; Treede, Rolf-Detlef; Letzel, Stephan; Voelter-Mahlknecht, Susanne

    2013-08-01

    Workers exposed to vibrating tools may develop hand-arm vibration syndrome (HAVS). We assessed the somatosensory phenotype using quantitative sensory testing (QST) in comparison to electrophysiology to characterize (1) the most sensitive QST parameter for detecting sensory loss, (2) the correlation of QST and electrophysiology, and (3) the frequency of a carpal tunnel syndrome (CTS) in HAVS. QST, cold provocation tests, fine motor skills, and median nerve neurography were used. QST included thermal and mechanical detection and pain thresholds. Thirty-two patients were examined (54 ± 11 years, 91% men) at the more affected hand compared to 16 matched controls. Vibration detection threshold was the most sensitive parameter to detect sensory loss that was more pronounced in the sensitivity range of Pacinian (150 Hz, x12) than Meissner's corpuscles (20 Hz, x3). QST (84% abnormal) was more sensitive to detect neural dysfunction than conventional electrophysiology (37% abnormal). Motor (34%) and sensory neurography (25%) were abnormal in HAVS. CTS frequency was not increased (9.4%). Findings are consistent with a mechanically-induced, distally pronounced motor and sensory neuropathy independent of CTS. HAVS involves a neuropathy predominantly affecting large fibers with a sensory damage related to resonance frequencies of vibrating tools. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Clinical manifestations and quantitative analysis of virus load in Taiwanese children with Epstein-Barr virus-associated infectious mononucleosis.

    PubMed

    Cheng, Chia Chi; Chang, Luan Yin; Shao, Pei Lan; Lee, Ping Ing; Chen, Jong Min; Lu, Chun Yi; Lee, Chin Yun; Huang, Li Min

    2007-06-01

    To delineate the clinical manifestations in different age groups and to define the viral load in patients with Epstein-Barr virus-associated infectious mononucleosis (EBV-associated IM). We reviewed data on 69 children with EBV-associated IM from November 2001 to October 2005. Clinical features were evaluated among four age groups: <3 years, 3 to 5 years, 6 to 9 years and 10 to 18 years. EBV viral load was measured by quantitative real-time polymerase chain reaction (PCR) in 13 patients with 15 specimens. Majority of the children were younger than 7 years of age (76.8%) and the male-to-female ratio was 1.6:1. The symptoms and signs included fever (91.3%), tonsillopharyngitis (88.4%), lymphadenopathy (78.3%) and hepatitis (75.4%). The younger age group had higher monocyte count, lower occurrence of hepatitis, and lower glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) levels than the older age group. The median (range) EBV viral load of peripheral blood mononuclear cells (PBMCs) and plasma in IM patients was 738 (0-7455) copies/mug DNA and 51 (0-957) copies/mL plasma, respectively. The PBMC detection rate was high in the early (within 10 days after onset) and late phase (>10 days after onset) [90-100%]. The plasma detection rate in the early phase (66.7%) was higher than that in the late phase (40%). The younger age group of EBV-associated IM patients had higher monocyte count, lower occurrence of hepatitis, and lower GOT and GPT levels than the older age group. The PBMC detection rate was almost equally high in both the early and late phases, while the plasma detection rate was higher in the early phase. Quantitative real-time PCR of EBV DNA is useful for diagnosing and monitoring EBV-associated IM, especially in younger children.

  15. QUANTITATIVE MAGNETIC RESONANCE IMAGING OF ARTICULAR CARTILAGE AND ITS CLINICAL APPLICATIONS

    PubMed Central

    Li, Xiaojuan; Majumdar, Sharmila

    2013-01-01

    Cartilage is one of the most essential tissues for healthy joint function and is compromised in degenerative and traumatic joint diseases. There have been tremendous advances during the past decade using quantitative MRI techniques as a non-invasive tool for evaluating cartilage, with a focus on assessing cartilage degeneration during osteoarthritis (OA). In this review, after a brief overview of cartilage composition and degeneration, we discuss techniques that grade and quantify morphologic changes as well as the techniques that quantify changes in the extracellular matrix. The basic principles, in vivo applications, advantages and challenges for each technique are discussed. Recent studies using the OA Initiative (OAI) data are also summarized. Quantitative MRI provides non-invasive measures of cartilage degeneration at the earliest stages of joint degeneration, which is essential for efforts towards prevention and early intervention in OA. PMID:24115571

  16. Quantitative Systems Pharmacology: A Case for Disease Models.

    PubMed

    Musante, C J; Ramanujan, S; Schmidt, B J; Ghobrial, O G; Lu, J; Heatherington, A C

    2017-01-01

    Quantitative systems pharmacology (QSP) has emerged as an innovative approach in model-informed drug discovery and development, supporting program decisions from exploratory research through late-stage clinical trials. In this commentary, we discuss the unique value of disease-scale "platform" QSP models that are amenable to reuse and repurposing to support diverse clinical decisions in ways distinct from other pharmacometrics strategies. © 2016 The Authors Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of The American Society for Clinical Pharmacology and Therapeutics.

  17. Multicenter Evaluation of a Commercial Cytomegalovirus Quantitative Standard: Effects of Commutability on Interlaboratory Concordance

    PubMed Central

    Shahbazian, M. D.; Valsamakis, A.; Boonyaratanakornkit, J.; Cook, L.; Pang, X. L.; Preiksaitis, J. K.; Schönbrunner, E. R.; Caliendo, A. M.

    2013-01-01

    Commutability of quantitative reference materials has proven important for reliable and accurate results in clinical chemistry. As international reference standards and commercially produced calibration material have become available to address the variability of viral load assays, the degree to which such materials are commutable and the effect of commutability on assay concordance have been questioned. To investigate this, 60 archived clinical plasma samples, which previously tested positive for cytomegalovirus (CMV), were retested by five different laboratories, each using a different quantitative CMV PCR assay. Results from each laboratory were calibrated both with lab-specific quantitative CMV standards (“lab standards”) and with common, commercially available standards (“CMV panel”). Pairwise analyses among laboratories were performed using mean results from each clinical sample, calibrated first with lab standards and then with the CMV panel. Commutability of the CMV panel was determined based on difference plots for each laboratory pair showing plotted values of standards that were within the 95% prediction intervals for the clinical specimens. Commutability was demonstrated for 6 of 10 laboratory pairs using the CMV panel. In half of these pairs, use of the CMV panel improved quantitative agreement compared to use of lab standards. Two of four laboratory pairs for which the CMV panel was noncommutable showed reduced quantitative agreement when that panel was used as a common calibrator. Commutability of calibration material varies across different quantitative PCR methods. Use of a common, commutable quantitative standard can improve agreement across different assays; use of a noncommutable calibrator can reduce agreement among laboratories. PMID:24025907

  18. The selected reaction monitoring/multiple reaction monitoring-based mass spectrometry approach for the accurate quantitation of proteins: clinical applications in the cardiovascular diseases.

    PubMed

    Gianazza, Erica; Tremoli, Elena; Banfi, Cristina

    2014-12-01

    Selected reaction monitoring, also known as multiple reaction monitoring, is a powerful targeted mass spectrometry approach for a confident quantitation of proteins/peptides in complex biological samples. In recent years, its optimization and application have become pivotal and of great interest in clinical research to derive useful outcomes for patient care. Thus, selected reaction monitoring/multiple reaction monitoring is now used as a highly sensitive and selective method for the evaluation of protein abundances and biomarker verification with potential applications in medical screening. This review describes technical aspects for the development of a robust multiplex assay and discussing its recent applications in cardiovascular proteomics: verification of promising disease candidates to select only the highest quality peptides/proteins for a preclinical validation, as well as quantitation of protein isoforms and post-translational modifications.

  19. A simplified immunoprecipitation method for quantitatively measuring antibody responses in clinical sera samples by using mammalian-produced Renilla luciferase-antigen fusion proteins.

    PubMed

    Burbelo, Peter D; Goldman, Radoslav; Mattson, Thomas L

    2005-08-18

    Assays detecting human antigen-specific antibodies are medically useful. However, the usefulness of existing simple immunoassay formats is limited by technical considerations such as sera antibodies to contaminants in insufficiently pure antigen, a problem likely exacerbated when antigen panels are screened to obtain clinically useful data. We developed a novel and simple immunoprecipitation technology for identifying clinical sera containing antigen-specific antibodies and for generating quantitative antibody response profiles. This method is based on fusing protein antigens to an enzyme reporter, Renilla luciferase (Ruc), and expressing these fusions in mammalian cells, where mammalian-specific post-translational modifications can be added. After mixing crude extracts, sera and protein A/G beads together and incubating, during which the Ruc-antigen fusion become immobilized on the A/G beads, antigen-specific antibody is quantitated by washing the beads and adding coelenterazine substrate and measuring light production. We have characterized this technology with sera from patients having three different types of cancers. We show that 20-85% of these sera contain significant titers of antibodies against at least one of five frequently mutated and/or overexpressed tumor-associated proteins. Five of six colon cancer sera tested gave responses that were statistically significantly greater than the average plus three standard deviations of 10 control sera. The results of competition experiments, preincubating positive sera with unmodified E. coli-produced antigens, varied dramatically. This technology has several advantages over current quantitative immunoassays including its relative simplicity, its avoidance of problems associated with E. coli-produced antigens and its use of antigens that can carry mammalian or disease-specific post-translational modifications. This assay should be generally useful for analyzing sera for antibodies recognizing any protein or its

  20. A simplified immunoprecipitation method for quantitatively measuring antibody responses in clinical sera samples by using mammalian-produced Renilla luciferase-antigen fusion proteins

    PubMed Central

    Burbelo, Peter D; Goldman, Radoslav; Mattson, Thomas L

    2005-01-01

    Background Assays detecting human antigen-specific antibodies are medically useful. However, the usefulness of existing simple immunoassay formats is limited by technical considerations such as sera antibodies to contaminants in insufficiently pure antigen, a problem likely exacerbated when antigen panels are screened to obtain clinically useful data. Results We developed a novel and simple immunoprecipitation technology for identifying clinical sera containing antigen-specific antibodies and for generating quantitative antibody response profiles. This method is based on fusing protein antigens to an enzyme reporter, Renilla luciferase (Ruc), and expressing these fusions in mammalian cells, where mammalian-specific post-translational modifications can be added. After mixing crude extracts, sera and protein A/G beads together and incubating, during which the Ruc-antigen fusion become immobilized on the A/G beads, antigen-specific antibody is quantitated by washing the beads and adding coelenterazine substrate and measuring light production. We have characterized this technology with sera from patients having three different types of cancers. We show that 20–85% of these sera contain significant titers of antibodies against at least one of five frequently mutated and/or overexpressed tumor-associated proteins. Five of six colon cancer sera tested gave responses that were statistically significantly greater than the average plus three standard deviations of 10 control sera. The results of competition experiments, preincubating positive sera with unmodified E. coli-produced antigens, varied dramatically. Conclusion This technology has several advantages over current quantitative immunoassays including its relative simplicity, its avoidance of problems associated with E. coli-produced antigens and its use of antigens that can carry mammalian or disease-specific post-translational modifications. This assay should be generally useful for analyzing sera for antibodies

  1. [A new method of processing quantitative PCR data].

    PubMed

    Ke, Bing-Shen; Li, Guang-Yun; Chen, Shi-Min; Huang, Xiang-Yan; Chen, Ying-Jian; Xu, Jun

    2003-05-01

    Today standard PCR can't satisfy the need of biotechnique development and clinical research any more. After numerous dynamic research, PE company found there is a linear relation between initial template number and cycling time when the accumulating fluorescent product is detectable.Therefore,they developed a quantitative PCR technique to be used in PE7700 and PE5700. But the error of this technique is too great to satisfy the need of biotechnique development and clinical research. A better quantitative PCR technique is needed. The mathematical model submitted here is combined with the achievement of relative science,and based on the PCR principle and careful analysis of molecular relationship of main members in PCR reaction system. This model describes the function relation between product quantity or fluorescence intensity and initial template number and other reaction conditions, and can reflect the accumulating rule of PCR product molecule accurately. Accurate quantitative PCR analysis can be made use this function relation. Accumulated PCR product quantity can be obtained from initial template number. Using this model to do quantitative PCR analysis,result error is only related to the accuracy of fluorescence intensity or the instrument used. For an example, when the fluorescence intensity is accurate to 6 digits and the template size is between 100 to 1,000,000, the quantitative result accuracy will be more than 99%. The difference of result error is distinct using same condition,same instrument but different analysis method. Moreover,if the PCR quantitative analysis system is used to process data, it will get result 80 times of accuracy than using CT method.

  2. SU-E-T-375: Passive Scattering to Pencil-Beam-Scanning Comparison for Medulloblastoma Proton Therapy: LET Distributions and Radiobiological Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giantsoudi, D; MacDonald, S; Paganetti, H

    2014-06-01

    Purpose: To compare the linear energy transfer (LET) distributions between passive scattering and pencil beam scanning proton radiation therapy techniques for medulloblastoma patients and study the potential radiobiological implications. Methods: A group of medulloblastoma patients, previously treated with passive scattering (PS) proton craniospinal irradiation followed by prosterior fossa or involved field boost, were selected from the patient database of our institution. Using the beam geometry and planning computed tomography (CT) image sets of the original treatment plans, pencil beam scanning (PBS) treatment plans were generated for the cranial treatment for each patient, with average beam spot size of 8mm (sigmamore » in air at isocenter). 3-dimensional dose and LET distributions were calculated by Monte Carlo methods (TOPAS) both for the original passive scattering and new pencil beam scanning treatment plans. LET volume histograms were calculated for the target and OARs and compared for the two delivery methods. Variable RBE weighted dose distributions and volume histograms were also calculated using a variable dose and LET-based model. Results: Better dose conformity was achieved with PBS planning compared to PS, leading to increased dose coverage for the boost target area and decreased average dose to the structures adjacent to it and critical structures outside the whole brain treatment field. LET values for the target were lower for PBS plans. Elevated LET values for OARs close to the boosted target areas were noticed, due to end of range of proton beams falling inside these structures, resulting in higher RBE weighted dose for these structures compared to the clinical RBE value of 1.1. Conclusion: Transitioning from passive scattering to pencil beam scanning proton radiation treatment can be dosimetrically beneficial for medulloblastoma patients. LET–guided treatment planning could contribute to better decision making for these cases, especially

  3. Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility.

    PubMed

    Percy, Andrew J; Chambers, Andrew G; Yang, Juncong; Hardie, Darryl B; Borchers, Christoph H

    2014-05-01

    Accurate and rapid protein quantitation is essential for screening biomarkers for disease stratification and monitoring, and to validate the hundreds of putative markers in human biofluids, including blood plasma. An analytical method that utilizes stable isotope-labeled standard (SIS) peptides and selected/multiple reaction monitoring-mass spectrometry (SRM/MRM-MS) has emerged as a promising technique for determining protein concentrations. This targeted approach has analytical merit, but its true potential (in terms of sensitivity and multiplexing) has yet to be realized. Described herein is a method that extends the multiplexing ability of the MRM method to enable the quantitation 142 high-to-moderate abundance proteins (from 31mg/mL to 44ng/mL) in undepleted and non-enriched human plasma in a single run. The proteins have been reported to be associated to a wide variety of non-communicable diseases (NCDs), from cardiovascular disease (CVD) to diabetes. The concentrations of these proteins in human plasma are inferred from interference-free peptides functioning as molecular surrogates (2 peptides per protein, on average). A revised data analysis strategy, involving the linear regression equation of normal control plasma, has been instituted to enable the facile application to patient samples, as demonstrated in separate nutrigenomics and CVD studies. The exceptional robustness of the LC/MS platform and the quantitative method, as well as its high throughput, makes the assay suitable for application to patient samples for the verification of a condensed or complete protein panel. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge. © 2013.

  4. Quantitative clinical nonpulsatile and localized visible light oximeter: design of the T-Stat tissue oximeter

    NASA Astrophysics Data System (ADS)

    Benaron, David A.; Parachikov, Ilian H.; Cheong, Wai-Fung; Friedland, Shai; Duckworth, Joshua L.; Otten, David M.; Rubinsky, Boris E.; Horchner, Uwe B.; Kermit, Eben L.; Liu, Frank W.; Levinson, Carl J.; Murphy, Aileen L.; Price, John W.; Talmi, Yair; Weersing, James P.

    2003-07-01

    We report the development of a general, quantitative, and localized visible light clinical tissue oximeter, sensitive to both hypoxemia and ischemia. Monitor design and operation were optimized over four instrument generations. A range of clinical probes were developed, including non-contact wands, invasive catheters, and penetrating needles with injection ports. Real-time data were collected (a) from probes, standards, and reference solutions to optimize each component, (b) from ex vivo hemoglobin solutions co-analyzed for StO2% and pO2 during deoxygenation, and (c) from normoxic human subject skin and mucosal tissue surfaces. Results show that (a) differential spectroscopy allows extraction of features with minimization of the effects of scattering, (b) in vitro oximetry produces a hemoglobin saturation binding curve of expected sigmoid shape and values, and (c) that monitoring human tissues allows real-time tissue spectroscopic features to be monitored. Unlike with near-infrared (NIRS) or pulse oximetry (SpO2%) methods, we found non-pulsatile, diffusion-based tissue oximetry (StO2%) to work most reliably for non-contact reflectance monitoring and for invasive catheter- or needle-based monitoring, using blue to orange light (475-600 nm). Measured values were insensitive to motion artifact. Down time was non-existent. We conclude that the T-Stat oximeter design is suitable for the collection of spectroscopic data from human subjects, and that the oximeter may have application in the monitoring of regional hemoglobin oxygen saturation in the capillary tissue spaces of human subjects.

  5. Preliminary Discussion On The Three Dimensional Space Quantitative Analysis Of Erythrocytes By SEMP And Some Applications On The Clinic And Research Of Blood Disease.

    NASA Astrophysics Data System (ADS)

    Lian-Huang, Lu; Wen-Meng, Tong; Zhi-Jun, Zhang; Gui-Huan, He; Su-Hui, Huan

    1989-04-01

    The abnormity of the quality and quantity for erythrocytes is one of the important changes of blood disease. It shows the abnormal blood-making function of human body. Therefore, the study of the change of shape of erythrocytes is the indispensible and important basis of reference in the clinic, diagnose and research of blood disease. In this paper, a preliminary discussion is made on the acquisition of scanning stereographs for erythrocytes, the application of the theory of photographic measurement on the three dimensional space quantitative analysis of erythrocytes, drawings of isoline map and section map of various erythrocytes for normal persons, paroxysmal nocturanal hemoglobinuria (PNH) patients and aplastic anemia patients, study of the shape characteristics of normal erythrocytes and various abnormal erytnrocytes and the applications in clinic, diagnose and research. This research is a combination of microphotogrammetry and erythrocyte morphology. It is polssible to push fotward the study of erythrocyte morphology from LM, SEM to a higher stage of scanning electron micrographic photogrammetry(SEMP) for stereograpic observationand three diamensional quantitative analysis to explore a new path for the further study of the shape of erthrocytes.

  6. From Inverse Problems in Mathematical Physiology to Quantitative Differential Diagnoses

    PubMed Central

    Zenker, Sven; Rubin, Jonathan; Clermont, Gilles

    2007-01-01

    The improved capacity to acquire quantitative data in a clinical setting has generally failed to improve outcomes in acutely ill patients, suggesting a need for advances in computer-supported data interpretation and decision making. In particular, the application of mathematical models of experimentally elucidated physiological mechanisms could augment the interpretation of quantitative, patient-specific information and help to better target therapy. Yet, such models are typically complex and nonlinear, a reality that often precludes the identification of unique parameters and states of the model that best represent available data. Hypothesizing that this non-uniqueness can convey useful information, we implemented a simplified simulation of a common differential diagnostic process (hypotension in an acute care setting), using a combination of a mathematical model of the cardiovascular system, a stochastic measurement model, and Bayesian inference techniques to quantify parameter and state uncertainty. The output of this procedure is a probability density function on the space of model parameters and initial conditions for a particular patient, based on prior population information together with patient-specific clinical observations. We show that multimodal posterior probability density functions arise naturally, even when unimodal and uninformative priors are used. The peaks of these densities correspond to clinically relevant differential diagnoses and can, in the simplified simulation setting, be constrained to a single diagnosis by assimilating additional observations from dynamical interventions (e.g., fluid challenge). We conclude that the ill-posedness of the inverse problem in quantitative physiology is not merely a technical obstacle, but rather reflects clinical reality and, when addressed adequately in the solution process, provides a novel link between mathematically described physiological knowledge and the clinical concept of differential diagnoses

  7. Comparison of quantitative cytomegalovirus (CMV) PCR in plasma and CMV antigenemia assay: clinical utility of the prototype AMPLICOR CMV MONITOR test in transplant recipients.

    PubMed

    Caliendo, A M; St George, K; Kao, S Y; Allega, J; Tan, B H; LaFontaine, R; Bui, L; Rinaldo, C R

    2000-06-01

    The correlation between the prototype AMPLICOR CMV MONITOR test (Roche Molecular Systems), a quantitative PCR assay, and the cytomegalovirus (CMV) pp65 antigenemia assay was evaluated in transplant recipients. Sequential blood specimens were collected on 29 patients (491 specimens), the leukocyte fraction was tested by CMV antigenemia, and quantitative PCR was performed on plasma specimens. None of the 15 patients (242 specimens) who were antigenemia negative were positive for CMV DNA by PCR, and none of these patients developed active CMV disease. There were 14 antigenemia-positive patients, 8 of whom developed active CMV disease. In all patients, there was a good association between the antigenemia and PCR assays. Ganciclovir-resistant virus was isolated from three patients with active CMV disease. These three patients had persistently elevated levels of antigenemia and CMV DNA by PCR when resistance to ganciclovir developed. This standardized, quantitative CMV PCR assay on plasma has clinical utility for the diagnosis of active disease and in monitoring the response to antiviral therapy in transplant recipients.

  8. Comparison of Quantitative Cytomegalovirus (CMV) PCR in Plasma and CMV Antigenemia Assay: Clinical Utility of the Prototype AMPLICOR CMV MONITOR Test in Transplant Recipients

    PubMed Central

    Caliendo, Angela M.; St. George, Kirsten; Kao, Shaw-Yi; Allega, Jessica; Tan, Ban-Hock; LaFontaine, Robert; Bui, Larry; Rinaldo, Charles R.

    2000-01-01

    The correlation between the prototype AMPLICOR CMV MONITOR test (Roche Molecular Systems), a quantitative PCR assay, and the cytomegalovirus (CMV) pp65 antigenemia assay was evaluated in transplant recipients. Sequential blood specimens were collected on 29 patients (491 specimens), the leukocyte fraction was tested by CMV antigenemia, and quantitative PCR was performed on plasma specimens. None of the 15 patients (242 specimens) who were antigenemia negative were positive for CMV DNA by PCR, and none of these patients developed active CMV disease. There were 14 antigenemia-positive patients, 8 of whom developed active CMV disease. In all patients, there was a good association between the antigenemia and PCR assays. Ganciclovir-resistant virus was isolated from three patients with active CMV disease. These three patients had persistently elevated levels of antigenemia and CMV DNA by PCR when resistance to ganciclovir developed. This standardized, quantitative CMV PCR assay on plasma has clinical utility for the diagnosis of active disease and in monitoring the response to antiviral therapy in transplant recipients. PMID:10834964

  9. 3D-modelling of radon-induced cellular radiobiological effects in bronchial airway bifurcations: direct versus bystander effects.

    PubMed

    Szőke, István; Farkas, Arpád; Balásházy, Imre; Hofmann, Werner; Madas, Balázs G; Szőke, Réka

    2012-06-01

    The primary objective of this paper was to investigate the distribution of radiation doses and the related biological responses in cells of a central airway bifurcation of the human lung of a hypothetical worker of the New Mexico uranium mines during approximately 12 hours of exposure to short-lived radon progenies. State-of-the-art computational modelling techniques were applied to simulate the relevant biophysical and biological processes in a central human airway bifurcation. The non-uniform deposition pattern of inhaled radon daughters caused a non-uniform distribution of energy deposition among cells, and of related cell inactivation and cell transformation probabilities. When damage propagation via bystander signalling was assessed, it produced more cell killing and cell transformation events than did direct effects. If bystander signalling was considered, variations of the average probabilities of cell killing and cell transformation were supra-linear over time. Our results are very sensitive to the radiobiological parameters, derived from in vitro experiments (e.g., range of bystander signalling), applied in this work and suggest that these parameters may not be directly applicable to realistic three-dimensional (3D) epithelium models.

  10. Radiobiological long-term accumulation of environmental alpha radioactivity in extracted human teeth and animal bones in Malaysia.

    PubMed

    Almayahi, B A; Tajuddin, A A; Jaafar, M S

    2014-03-01

    In this study, the radiobiological analysis of natural alpha emitters in extracted human teeth and animal bones from Malaysia was estimated. The microdistributions of alpha particles in tooth and bone samples were measured using CR-39 alpha-particle track detectors. The lowest and highest alpha emission rates in teeth in the Kedah and Perak states were 0.0080 ± 0.0005 mBq cm(-2) and 0.061 ± 0.008 mBq cm(-2), whereas those of bones in the Perlis and Kedah states were 0.0140 ± 0.0001 mBq cm(-2) and 0.7700 ± 0.0282 mBq cm(-2), respectively. The average alpha emission rate in male teeth was 0.0209 ± 0.0008 mBq cm(-2), whereas that of female teeth was 0.0199 ± 0.0010 mBq cm(-2). The alpha emission rate in teeth is higher in smokers (0.0228 ± 0.0008 mBq cm(-2)) than in non-smokers (0.0179 ± 0.0008 mBq cm(-2)). Such difference was found statistically significant (p < 0.01). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Temporal Lobe Epilepsy: Quantitative MR Volumetry in Detection of Hippocampal Atrophy

    PubMed Central

    Farid, Nikdokht; Girard, Holly M.; Kemmotsu, Nobuko; Smith, Michael E.; Magda, Sebastian W.; Lim, Wei Y.; Lee, Roland R.

    2012-01-01

    Purpose: To determine the ability of fully automated volumetric magnetic resonance (MR) imaging to depict hippocampal atrophy (HA) and to help correctly lateralize the seizure focus in patients with temporal lobe epilepsy (TLE). Materials and Methods: This study was conducted with institutional review board approval and in compliance with HIPAA regulations. Volumetric MR imaging data were analyzed for 34 patients with TLE and 116 control subjects. Structural volumes were calculated by using U.S. Food and Drug Administration–cleared software for automated quantitative MR imaging analysis (NeuroQuant). Results of quantitative MR imaging were compared with visual detection of atrophy, and, when available, with histologic specimens. Receiver operating characteristic analyses were performed to determine the optimal sensitivity and specificity of quantitative MR imaging for detecting HA and asymmetry. A linear classifier with cross validation was used to estimate the ability of quantitative MR imaging to help lateralize the seizure focus. Results: Quantitative MR imaging–derived hippocampal asymmetries discriminated patients with TLE from control subjects with high sensitivity (86.7%–89.5%) and specificity (92.2%–94.1%). When a linear classifier was used to discriminate left versus right TLE, hippocampal asymmetry achieved 94% classification accuracy. Volumetric asymmetries of other subcortical structures did not improve classification. Compared with invasive video electroencephalographic recordings, lateralization accuracy was 88% with quantitative MR imaging and 85% with visual inspection of volumetric MR imaging studies but only 76% with visual inspection of clinical MR imaging studies. Conclusion: Quantitative MR imaging can depict the presence and laterality of HA in TLE with accuracy rates that may exceed those achieved with visual inspection of clinical MR imaging studies. Thus, quantitative MR imaging may enhance standard visual analysis, providing a

  12. Prognostic Value of Quantitative Stress Perfusion Cardiac Magnetic Resonance.

    PubMed

    Sammut, Eva C; Villa, Adriana D M; Di Giovine, Gabriella; Dancy, Luke; Bosio, Filippo; Gibbs, Thomas; Jeyabraba, Swarna; Schwenke, Susanne; Williams, Steven E; Marber, Michael; Alfakih, Khaled; Ismail, Tevfik F; Razavi, Reza; Chiribiri, Amedeo

    2018-05-01

    This study sought to evaluate the prognostic usefulness of visual and quantitative perfusion cardiac magnetic resonance (CMR) ischemic burden in an unselected group of patients and to assess the validity of consensus-based ischemic burden thresholds extrapolated from nuclear studies. There are limited data on the prognostic value of assessing myocardial ischemic burden by CMR, and there are none using quantitative perfusion analysis. Patients with suspected coronary artery disease referred for adenosine-stress perfusion CMR were included (n = 395; 70% male; age 58 ± 13 years). The primary endpoint was a composite of cardiovascular death, nonfatal myocardial infarction, aborted sudden death, and revascularization after 90 days. Perfusion scans were assessed visually and with quantitative analysis. Cross-validated Cox regression analysis and net reclassification improvement were used to assess the incremental prognostic value of visual or quantitative perfusion analysis over a baseline clinical model, initially as continuous covariates, then using accepted thresholds of ≥2 segments or ≥10% myocardium. After a median 460 days (interquartile range: 190 to 869 days) follow-up, 52 patients reached the primary endpoint. At 2 years, the addition of ischemic burden was found to increase prognostic value over a baseline model of age, sex, and late gadolinium enhancement (baseline model area under the curve [AUC]: 0.75; visual AUC: 0.84; quantitative AUC: 0.85). Dichotomized quantitative ischemic burden performed better than visual assessment (net reclassification improvement 0.043 vs. 0.003 against baseline model). This study was the first to address the prognostic benefit of quantitative analysis of perfusion CMR and to support the use of consensus-based ischemic burden thresholds by perfusion CMR for prognostic evaluation of patients with suspected coronary artery disease. Quantitative analysis provided incremental prognostic value to visual assessment and

  13. Using a Standardized Clinical Quantitative Sensory Testing Battery to Judge the Clinical Relevance of Sensory Differences Between Adjacent Body Areas.

    PubMed

    Dimova, Violeta; Oertel, Bruno G; Lötsch, Jörn

    2017-01-01

    Skin sensitivity to sensory stimuli varies among different body areas. A standardized clinical quantitative sensory testing (QST) battery, established for the diagnosis of neuropathic pain, was used to assess whether the magnitude of differences between test sites reaches clinical significance. Ten different sensory QST measures derived from thermal and mechanical stimuli were obtained from 21 healthy volunteers (10 men) and used to create somatosensory profiles bilateral from the dorsum of the hands (the standard area for the assessment of normative values for the upper extremities as proposed by the German Research Network on Neuropathic Pain) and bilateral at volar forearms as a neighboring nonstandard area. The parameters obtained were statistically compared between test sites. Three of the 10 QST parameters differed significantly with respect to the "body area," that is, warmth detection, thermal sensory limen, and mechanical pain thresholds. After z-transformation and interpretation according to the QST battery's standard instructions, 22 abnormal values were obtained at the hand. Applying the same procedure to parameters assessed at the nonstandard site forearm, that is, z-transforming them to the reference values for the hand, 24 measurements values emerged as abnormal, which was not significantly different compared with the hand (P=0.4185). Sensory differences between neighboring body areas are statistically significant, reproducing prior knowledge. This has to be considered in scientific assessments where a small variation of the tested body areas may not be an option. However, the magnitude of these differences was below the difference in sensory parameters that is judged as abnormal, indicating a robustness of the QST instrument against protocol deviations with respect to the test area when using the method of comparison with a 95 % confidence interval of a reference dataset.

  14. Quantitative Quality Assurance in a Multicenter HARDI Clinical Trial at 3T

    PubMed Central

    Zhou, Xiaopeng; Sakaie, Ken E.; Debbins, Josef P.; Kirsch, John E.; Tatsuoka, Curtis; Fox, Robert J.; Lowe, Mark J.

    2016-01-01

    A phantom-based quality assurance (QA) protocol was developed for a multicenter clinical trial including high angular resolution diffusion imaging (HARDI). A total of 27 3T MR scanners from 2 major manufacturers, GE (Discovery and Signa scanners) and Siemens (Trio and Skyra scanners), were included in this trial. With this protocol, agar phantoms doped to mimic relaxation properties of brain tissue are scanned on a monthly basis, and quantitative procedures are used to detect spiking and to evaluate eddy current and Nyquist ghosting artifacts. In this study, simulations were used to determine alarm thresholds for minimal acceptable signal-to-noise ratio (SNR). Our results showed that spiking artifact was the most frequently observed type of artifact. Overall, Trio scanners exhibited less eddy current distortion than GE scanners, which in turn showed less distortion than Skyra scanners. This difference was mainly caused by the different sequences used on these scanners. The SNR for phantom scans was closely correlated with the SNR from volunteers. Nearly all of the phantom measurements with artifact-free images were above the alarm threshold, suggesting that the scanners are stable longitudinally. Software upgrades and hardware replacement sometimes affected SNR substantially but sometimes did not. In light of these results, it is important to monitor longitudinal SNR with phantom QA to help interpret potential effects on in vivo measurements. Our phantom QA procedure for HARDI scans was successful in tracking scanner performance and detecting unwanted artifacts. PMID:27587227

  15. Quantitative Imaging in Cancer Evolution and Ecology

    PubMed Central

    Grove, Olya; Gillies, Robert J.

    2013-01-01

    Cancer therapy, even when highly targeted, typically fails because of the remarkable capacity of malignant cells to evolve effective adaptations. These evolutionary dynamics are both a cause and a consequence of cancer system heterogeneity at many scales, ranging from genetic properties of individual cells to large-scale imaging features. Tumors of the same organ and cell type can have remarkably diverse appearances in different patients. Furthermore, even within a single tumor, marked variations in imaging features, such as necrosis or contrast enhancement, are common. Similar spatial variations recently have been reported in genetic profiles. Radiologic heterogeneity within tumors is usually governed by variations in blood flow, whereas genetic heterogeneity is typically ascribed to random mutations. However, evolution within tumors, as in all living systems, is subject to Darwinian principles; thus, it is governed by predictable and reproducible interactions between environmental selection forces and cell phenotype (not genotype). This link between regional variations in environmental properties and cellular adaptive strategies may permit clinical imaging to be used to assess and monitor intratumoral evolution in individual patients. This approach is enabled by new methods that extract, report, and analyze quantitative, reproducible, and mineable clinical imaging data. However, most current quantitative metrics lack spatialness, expressing quantitative radiologic features as a single value for a region of interest encompassing the whole tumor. In contrast, spatially explicit image analysis recognizes that tumors are heterogeneous but not well mixed and defines regionally distinct habitats, some of which appear to harbor tumor populations that are more aggressive and less treatable than others. By identifying regional variations in key environmental selection forces and evidence of cellular adaptation, clinical imaging can enable us to define intratumoral

  16. SU-G-206-01: A Fully Automated CT Tool to Facilitate Phantom Image QA for Quantitative Imaging in Clinical Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahi-Anwar, M; Lo, P; Kim, H

    Purpose: The use of Quantitative Imaging (QI) methods in Clinical Trials requires both verification of adherence to a specified protocol and an assessment of scanner performance under that protocol, which are currently accomplished manually. This work introduces automated phantom identification and image QA measure extraction towards a fully-automated CT phantom QA system to perform these functions and facilitate the use of Quantitative Imaging methods in clinical trials. Methods: This study used a retrospective cohort of CT phantom scans from existing clinical trial protocols - totaling 84 phantoms, across 3 phantom types using various scanners and protocols. The QA system identifiesmore » the input phantom scan through an ensemble of threshold-based classifiers. Each classifier - corresponding to a phantom type - contains a template slice, which is compared to the input scan on a slice-by-slice basis, resulting in slice-wise similarity metric values for each slice compared. Pre-trained thresholds (established from a training set of phantom images matching the template type) are used to filter the similarity distribution, and the slice with the most optimal local mean similarity, with local neighboring slices meeting the threshold requirement, is chosen as the classifier’s matched slice (if it existed). The classifier with the matched slice possessing the most optimal local mean similarity is then chosen as the ensemble’s best matching slice. If the best matching slice exists, image QA algorithm and ROIs corresponding to the matching classifier extracted the image QA measures. Results: Automated phantom identification performed with 84.5% accuracy and 88.8% sensitivity on 84 phantoms. Automated image quality measurements (following standard protocol) on identified water phantoms (n=35) matched user QA decisions with 100% accuracy. Conclusion: We provide a fullyautomated CT phantom QA system consistent with manual QA performance. Further work will include

  17. QUEST‐RA: quantitative clinical assessment of patients with rheumatoid arthritis seen in standard rheumatology care in 15 countries

    PubMed Central

    Sokka, Tuulikki; Kautiainen, Hannu; Toloza, Sergio; Mäkinen, Heidi; Verstappen, Suzan M M; Hetland, Merete Lund; Naranjo, Antonio; Baecklund, Eva; Herborn, Gertraud; Rau, Rolf; Cazzato, Massimiliano; Gossec, Laure; Skakic, Vlado; Gogus, Feride; Sierakowski, Stanislaw; Bresnihan, Barry; Taylor, Peter; McClinton, Catherine; Pincus, Theodore

    2007-01-01

    Objective To conduct a cross‐sectional review of non‐selected consecutive outpatients with rheumatoid arthritis (RA) as part of standard clinical care in 15 countries for an overview of the characteristics of patients with RA. Methods The review included current disease activity using data from clinical assessment and a patient self‐report questionnaire, which was translated into each language. Data on demographic, disease and treatment‐related variables were collected and analysed using descriptive statistics. Variation in disease activity on DAS28 (disease activity score on 28‐joint count) within and between countries was graphically analysed. A median regression model was applied to analyse differences in disease activity between countries. Results Between January 2005 and October 2006, the QUEST‐RA (Quantitative Patient Questionnaires in Standard Monitoring of Patients with Rheumatoid Arthritis) project included 4363 patients from 48 sites in 15 countries; 78% were female, >90% Caucasian, mean age was 57 years and mean disease duration was 11.5 years. More than 80% of patients had been treated with methotrexate in all but three countries. Overall, patients had an active disease with a median DAS28 of 4.0, with a significant variation between countries (p<0.001). Among 42 sites with >50 patients included, low disease activity of DAS28 ⩽3.2 was found in the majority of patients in seven sites in five countries; in eight sites in five other countries, >50% of patients had high disease activity of DAS28 >5.1. Conclusions This international multicentre cross‐sectional database provides an overview of clinical status and treatments of patients with RA in standard clinical care in 2005–6 including countries that are infrequently involved in clinical research projects. PMID:17412740

  18. Charged Particle Therapy Steps Into the Clinical Environment

    NASA Astrophysics Data System (ADS)

    Haberer, Th.

    Beams of heavy charged particles like protons or carbon ions represent the ideal tool for the treatment of deep-seated, inoperable and radioresistant tumors. For more than 4 decades research with beams of charged particles has been performed. In total more than 40000 patients have been treated, mostly using protons being delivered by accelerators that were designed for basic research centers. In Berkeley, USA heavier particles like helium or neon ions were used to conduct clinical trials until 1992. Based on that somewhat limited technological standard and triggered by the promising results from Berkeley the first dedicated charged particle facilities were constructed. In order to maximally exploit the advantageous physical and radiobiological characteristics of these beams enormous effort was put into developing dynamic beam delivery techniques and tailoring the capabilities of the accelerators, the planning systems and the quality assurance procedures and equipment to the requirements resulting from these new treatment modalities. Active beam delivery systems integrated in rotating gantries, if necessary, will allow the production of superior dose distributions that precisely follow the medical prescription. The technological progress being made during the last 10 years defines the state of the art of the upcoming next-generation facilities for the clinical environment in Europe and Japan.

  19. Quantitative Muscle Ultrasonography in Carpal Tunnel Syndrome.

    PubMed

    Lee, Hyewon; Jee, Sungju; Park, Soo Ho; Ahn, Seung-Chan; Im, Juneho; Sohn, Min Kyun

    2016-12-01

    To assess the reliability of quantitative muscle ultrasonography (US) in healthy subjects and to evaluate the correlation between quantitative muscle US findings and electrodiagnostic study results in patients with carpal tunnel syndrome (CTS). The clinical significance of quantitative muscle US in CTS was also assessed. Twenty patients with CTS and 20 age-matched healthy volunteers were recruited. All control and CTS subjects underwent a bilateral median and ulnar nerve conduction study (NCS) and quantitative muscle US. Transverse US images of the abductor pollicis brevis (APB) and abductor digiti minimi (ADM) were obtained to measure muscle cross-sectional area (CSA), thickness, and echo intensity (EI). EI was determined using computer-assisted, grayscale analysis. Inter-rater and intra-rater reliability for quantitative muscle US in control subjects, and differences in muscle thickness, CSA, and EI between the CTS patient and control groups were analyzed. Relationships between quantitative US parameters and electrodiagnostic study results were evaluated. Quantitative muscle US had high inter-rater and intra-rater reliability in the control group. Muscle thickness and CSA were significantly decreased, and EI was significantly increased in the APB of the CTS group (all p<0.05). EI demonstrated a significant positive correlation with latency of the median motor and sensory NCS in CTS patients (p<0.05). These findings suggest that quantitative muscle US parameters may be useful for detecting muscle changes in CTS. Further study involving patients with other neuromuscular diseases is needed to evaluate peripheral muscle change using quantitative muscle US.

  20. Quantitating Human Optic Disc Topography

    NASA Astrophysics Data System (ADS)

    Graebel, William P.; Cohan, Bruce E.; Pearch, Andrew C.

    1980-07-01

    A method is presented for quantitatively expressing the topography of the human optic disc, applicable in a clinical setting to the diagnosis and management of glaucoma. Pho-tographs of the disc illuminated by a pattern of fine, high contrast parallel lines are digitized. From the measured deviation of the lines as they traverse the disc surface, disc topography is calculated, using the principles of optical sectioning. The quantitators applied to express this topography have the the following advantages : sensitivity to disc shape; objectivity; going beyond the limits of cup-disc ratio estimates and volume calculations; perfect generality in a mathematical sense; an inherent scheme for determining a non-subjective reference frame to compare different discs or the same disc over time.

  1. Cardiovascular and pulmonary dynamics by quantitative imaging

    NASA Technical Reports Server (NTRS)

    Wood, E. H.

    1976-01-01

    The accuracy and range of studies on cardiovascular and pulmonary functions can be greatly facilitated if the motions of the underlying organ systems throughout individual cycles can be directly visualized and readily measured with minimum or preferably no effect on these motions. Achievement of this objective requires development of techniques for quantitative noninvasive or minimally invasive dynamic and stop-action imaging of the organ systems. A review of advances in dynamic quantitative imaging of moving organs reveals that the revolutionary value of cross-sectional and three-dimensional images produced by various types of radiant energy such as X-rays and gamma rays, positrons, electrons, protons, light, and ultrasound for clinical diagnostic and biomedical research applications is just beginning to be realized. The fabrication of a clinically useful cross-section reconstruction device with sensing capabilities for both anatomical structural composition and chemical composition may be possible and awaits future development.

  2. Quantitative PCR for human herpesviruses 6 and 7.

    PubMed Central

    Secchiero, P; Zella, D; Crowley, R W; Gallo, R C; Lusso, P

    1995-01-01

    A quantitative PCR assay for the detection of human herpesvirus 6 (HHV-6) (variants A and B) and HHV-7 DNAs in clinical samples was developed. The assay uses a nonhomologous internal standard (IS) for each virus that is coamplified with the wild-type target sequence in the same vial and with the same pair of primers. This method allows for a correction of the variability of efficiency of the PCR technique. A standard curve is constructed for each experiment by coamplification of known quantities of the cloned HHV-6 or HHV-7 target templates with the respective IS. Absolute quantitation of the test samples is then achieved by determining the viral target/IS ratio of the hybridization signals of the amplification products and plotting this value against the standard curve. Using this assay, we quantitated the amount of HHV-6 or HHV-7 DNA in infected cell cultures and demonstrated an inhibitory effect of phosphonoformic acid on the replication of HHV-6 and HHV-7 in vitro. As the first clinical application of this procedure, we performed preliminary measurements of the loads of HHV-6 and HHV-7 in lymph nodes from patients with Hodgkin's disease and AIDS. Application of this quantitative PCR method should be helpful for elucidating the pathogenic roles of HHV-6 and HHV-7. PMID:7559960

  3. Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography.

    PubMed

    Willett, N J; Thote, T; Hart, M; Moran, S; Guldberg, R E; Kamath, R V

    2016-09-01

    The development of effective therapies for cartilage protection has been limited by a lack of efficient quantitative cartilage imaging modalities in pre-clinical in vivo models. Our objectives were two-fold: first, to validate a new contrast-enhanced 3D imaging analysis technique, equilibrium partitioning of an ionic contrast agent-micro computed tomography (EPIC-μCT), in a rat medial meniscal transection (MMT) osteoarthritis (OA) model; and second, to quantitatively assess the sensitivity of EPIC-μCT to detect the effects of matrix metalloproteinase inhibitor (MMPi) therapy on cartilage degeneration. Rats underwent MMT surgery and tissues were harvested at 1, 2, and 3 weeks post-surgery or rats received an MMPi or vehicle treatment and tissues harvested 3 weeks post-surgery. Parameters of disease progression were evaluated using histopathology and EPIC-μCT. Correlations and power analyses were performed to compare the techniques. EPIC-μCT was shown to provide simultaneous 3D quantification of multiple parameters, including cartilage degeneration and osteophyte formation. In MMT animals treated with MMPi, OA progression was attenuated, as measured by 3D parameters such as lesion volume and osteophyte size. A post-hoc power analysis showed that 3D parameters for EPIC-μCT were more sensitive than 2D parameters requiring fewer animals to detect a therapeutic effect of MMPi. 2D parameters were comparable between EPIC-μCT and histopathology. This study demonstrated that EPIC-μCT has high sensitivity to provide 3D structural and compositional measurements of cartilage and bone in the joint. EPIC-μCT can be used in combination with histology to provide a comprehensive analysis to screen new potential therapies. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Radiobiology of Small Hive Beetle (Coleoptera: Nitidulidae) and Prospects for Management Using Sterile Insect Releases.

    PubMed

    Downey, Danielle; Chun, Stacey; Follett, Peter

    2015-06-01

    Small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is considered a serious threat to beekeeping in the Western Hemisphere, Australia, and Europe mainly due to larval feeding on honey, pollen, and brood of the European honeybee, Apis mellifera L. Control methods are limited for this pest. Studies were conducted to provide information on the radiobiology of small hive beetle and determine the potential for sterile insect releases as a control strategy. Adult males and females were equally sensitive to a radiation dose of 80 Gy and died within 5-7 d after treatment. In reciprocal crossing studies, irradiation of females only lowered reproduction to a greater extent than irradiation of males only. For matings between unirradiated males and irradiated females, mean reproduction was reduced by >99% at 45 and 60 Gy compared with controls, and no larvae were produced at 75 Gy. Irradiation of prereproductive adults of both sexes at 45 Gy under low oxygen (1-4%) caused a high level of sterility (>99%) while maintaining moderate survivorship for several weeks, and should suffice for sterile insect releases. Sterile insect technique holds potential for suppressing small hive beetle populations in newly invaded areas and limiting its spread. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  5. Four-hour quantitative real-time polymerase chain reaction-based comprehensive chromosome screening and accumulating evidence of accuracy, safety, predictive value, and clinical efficacy.

    PubMed

    Treff, Nathan R; Scott, Richard T

    2013-03-15

    Embryonic comprehensive chromosomal euploidy may represent a powerful biomarker to improve the success of IVF. However, there are a number of aneuploidy screening strategies to consider, including different technologic platforms with which to interrogate the embryonic DNA, and different embryonic developmental stages from which DNA can be analyzed. Although there are advantages and disadvantages associated with each strategy, a series of experiments producing evidence of accuracy, safety, clinical predictive value, and clinical efficacy indicate that trophectoderm biopsy and quantitative real-time polymerase chain reaction (qPCR)-based comprehensive chromosome screening (CCS) may represent a useful strategy to improve the success of IVF. This Biomarkers in Reproductive Medicine special issue review summarizes the accumulated experience with the development and clinical application of a 4-hour blastocyst qPCR-based CCS technology. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Qualified nurses' perceptions of nursing graduates' abilities vary according to specific demographic and clinical characteristics. A descriptive quantitative study.

    PubMed

    Missen, Karen; McKenna, Lisa; Beauchamp, Alison; Larkins, Jo-Ann

    2016-10-01

    Evidence from the literature and anecdotally from clinical settings suggests that newly graduated nurses are not fully prepared to be independent practitioners in healthcare settings. The aim of this study was to explore perceptions of qualified nurses in relation to the practice readiness of newly registered nursing graduates and determine whether these views differ according to specific demographic characteristics, clinical settings, and geographical locations. A descriptive quantitative design was used. An online survey tool was used to assess how qualified nurses (n=201) in Victoria, Australia, rated newly graduated nurses' abilities on 51 individual clinical skills/competencies in eight key skill areas. A composite score was calculated for each skill area and a comparative analysis was undertaken on the various cohorts of participants according to their demographic and clinical characteristics using one-way ANOVA and post hoc tests. Newly graduated nurses were found to be lacking competence in two key skill areas and were rated as performing adequately in the remaining six skill areas assessed. Significant differences (p≤0.05) in performance were found according to the age of the nurse, number of years registered, the educational setting in which they undertook their nurse education, their role, and the clinical area in which they worked. There were no significant differences according to whether the nurse worked in the private or public healthcare sector. Few differences were found between nurses working in a metropolitan vs. regional/rural healthcare setting. This is the first study to quantify the scale of this problem. Our findings serve as a reference for both nurse education providers and healthcare settings in better preparing nursing graduates to be competent, safe practitioners in all clinical areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Quantitative Systems Pharmacology: A Case for Disease Models

    PubMed Central

    Ramanujan, S; Schmidt, BJ; Ghobrial, OG; Lu, J; Heatherington, AC

    2016-01-01

    Quantitative systems pharmacology (QSP) has emerged as an innovative approach in model‐informed drug discovery and development, supporting program decisions from exploratory research through late‐stage clinical trials. In this commentary, we discuss the unique value of disease‐scale “platform” QSP models that are amenable to reuse and repurposing to support diverse clinical decisions in ways distinct from other pharmacometrics strategies. PMID:27709613

  8. Quantitative structural MRI for early detection of Alzheimer’s disease

    PubMed Central

    McEvoy, Linda K; Brewer, James B

    2011-01-01

    Alzheimer’s disease (AD) is a common progressive neurodegenerative disorder that is not currently diagnosed until a patient reaches the stage of dementia. There is a pressing need to identify AD at an earlier stage, so that treatment, when available, can begin early. Quantitative structural MRI is sensitive to the neurodegeneration that occurs in mild and preclinical AD, and is predictive of decline to dementia in individuals with mild cognitive impairment. Objective evidence of ongoing brain atrophy will be critical for risk/benefit decisions once potentially aggressive, disease-modifying treatments become available. Recent advances have paved the way for the use of quantitative structural MRI in clinical practice, and initial clinical use has been promising. However, further experience with these measures in the relatively unselected patient populations seen in clinical practice is needed to complete translation of the recent enormous advances in scientific knowledge of AD into the clinical realm. PMID:20977326

  9. Metrological approach to quantitative analysis of clinical samples by LA-ICP-MS: A critical review of recent studies.

    PubMed

    Sajnóg, Adam; Hanć, Anetta; Barałkiewicz, Danuta

    2018-05-15

    Analysis of clinical specimens by imaging techniques allows to determine the content and distribution of trace elements on the surface of the examined sample. In order to obtain reliable results, the developed procedure should be based not only on the properly prepared sample and performed calibration. It is also necessary to carry out all phases of the procedure in accordance with the principles of chemical metrology whose main pillars are the use of validated analytical methods, establishing the traceability of the measurement results and the estimation of the uncertainty. This review paper discusses aspects related to sampling, preparation and analysis of clinical samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with emphasis on metrological aspects, i.e. selected validation parameters of the analytical method, the traceability of the measurement result and the uncertainty of the result. This work promotes the introduction of metrology principles for chemical measurement with emphasis to the LA-ICP-MS which is the comparative method that requires studious approach to the development of the analytical procedure in order to acquire reliable quantitative results. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Serial semi-quantitative measurement of fecal calprotectin in patients with ulcerative colitis in remission.

    PubMed

    Garcia-Planella, Esther; Mañosa, Míriam; Chaparro, María; Beltrán, Belén; Barreiro-de-Acosta, Manuel; Gordillo, Jordi; Ricart, Elena; Bermejo, Fernando; García-Sánchez, Valle; Piqueras, Marta; Llaó, Jordina; Gisbert, Javier P; Cabré, Eduard; Domènech, Eugeni

    2018-02-01

    Fecal calprotectin (FC) correlates with clinical and endoscopic activity in ulcerative colitis (UC), and it is a good predictor of relapse. However, its use in clinical practice is constrained by the need for the patient to deliver stool samples, and for their handling and processing in the laboratory. The availability of hand held devices might spread the use of FC in clinical practice. To evaluate the usefulness of a rapid semi-quantitative test of FC in predicting relapse in patients with UC in remission. Prospective, multicenter study that included UC patients in clinical remission for ≥6 months on maintenance treatment with mesalamine. Patients were evaluated clinically and semi-quantitative FC was measured using a monoclonal immunochromatography rapid test at baseline and every three months until relapse or 12 months of follow-up. One hundred and ninety-one patients had at least one determination of FC. At the end of follow-up, 33 patients (17%) experienced clinical relapse. Endoscopic activity at baseline (p = .043) and having had at least one FC > 60 μg/g during the study period (p = .03) were associated with a higher risk of relapse during follow-up. We obtained a total of 636 semi-quantitative FC determinations matched with a three-month follow-up clinical assessment. Having undetectable FC was inversely associated with early relapse (within three months), with a negative predictive value of 98.6% and a sensitivity of 93.9%. Serial, rapid semi-quantitative measurement of FC may be a useful, easy and cheap monitoring tool for patients with UC in remission.

  11. Usefulness of the automatic quantitative estimation tool for cerebral blood flow: clinical assessment of the application software tool AQCEL.

    PubMed

    Momose, Mitsuhiro; Takaki, Akihiro; Matsushita, Tsuyoshi; Yanagisawa, Shin; Yano, Kesato; Miyasaka, Tadashi; Ogura, Yuka; Kadoya, Masumi

    2011-01-01

    AQCEL enables automatic reconstruction of single-photon emission computed tomogram (SPECT) without image degradation and quantitative analysis of cerebral blood flow (CBF) after the input of simple parameters. We ascertained the usefulness and quality of images obtained by the application software AQCEL in clinical practice. Twelve patients underwent brain perfusion SPECT using technetium-99m ethyl cysteinate dimer at rest and after acetazolamide (ACZ) loading. Images reconstructed using AQCEL were compared with those reconstructed using conventional filtered back projection (FBP) method for qualitative estimation. Two experienced nuclear medicine physicians interpreted the image quality using the following visual scores: 0, same; 1, slightly superior; 2, superior. For quantitative estimation, the mean CBF values of the normal hemisphere of the 12 patients using ACZ calculated by the AQCEL method were compared with those calculated by the conventional method. The CBF values of the 24 regions of the 3-dimensional stereotaxic region of interest template (3DSRT) calculated by the AQCEL method at rest and after ACZ loading were compared to those calculated by the conventional method. No significant qualitative difference was observed between the AQCEL and conventional FBP methods in the rest study. The average score by the AQCEL method was 0.25 ± 0.45 and that by the conventional method was 0.17 ± 0.39 (P = 0.34). There was a significant qualitative difference between the AQCEL and conventional methods in the ACZ loading study. The average score for AQCEL was 0.83 ± 0.58 and that for the conventional method was 0.08 ± 0.29 (P = 0.003). During quantitative estimation using ACZ, the mean CBF values of 12 patients calculated by the AQCEL method were 3-8% higher than those calculated by the conventional method. The square of the correlation coefficient between these methods was 0.995. While comparing the 24 3DSRT regions of 12 patients, the squares of the correlation

  12. Clinical and electrophysiologic correlates of quantitative sensory testing in patients with incomplete spinal cord injury.

    PubMed

    Hayes, Keith C; Wolfe, Dalton L; Hsieh, Jane T; Potter, Patrick J; Krassioukov, Andrei; Durham, Carmen E

    2002-11-01

    To determine the degree of association among indices of preserved sensation derived from quantitative sensory testing (QST), somatosensory evoked potentials (SEPs), and the clinical characteristics of patients with spinal cord injury (SCI). A controlled correlational study of diverse measures of preserved sensory function. Regional SCI rehabilitation center in Ontario, Canada. Thirty-three patients with incomplete SCI and 14 able-bodied controls. Not applicable. QST measures of perceptual threshold for temperature and vibration, American Spinal Injury Association sensory scores (light touch, pinprick), and tibial nerve SEPs. There was a low degree of association (kappa) between QST results and sensory scores (|kappa|=.05-.44). QST measures yielded greater numbers of patients with SCI being classified as impaired, suggesting a greater sensitivity of QST to detect more subtle sensory deficits. QST measures of vibration threshold generally corresponded to the patients' SEP recordings. QST measures of modalities conveyed within the same tract were significantly (P<.05) correlated (|r|=.46-.84) in patients with SCI, but not in controls, whereas those modalities mediated by different pathways had lower and generally nonsignificant correlations (|r|=.05-.44) in both patients and controls. The low degree of association between QST measures and sensory scores is likely attributable to measurement limitations of both assessments, as well as various neuroanatomic and neuropathologic factors. QST provides more sensitive detection of preserved sensory function than does standard clinical examination in patients with incomplete SCI. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  13. A Radiobiological Analysis of Multicenter Data for Postoperative Keloid Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flickinger, John C., E-mail: flickingerjc@upmc.ed

    2011-03-15

    Purpose: To identify factors significantly affecting recurrence rates after postoperative external beam radiotherapy (XRT) of keloids, and to delineate any radiation dose response and effects of radiation dose per fraction. Methods and Materials: A comprehensive literature review was performed to compile a database of 2,515 resected keloids (36.9% earlobe). Postoperative XRT was 45- to 100-kV X-rays in 27.0% or 120- to 250-kV X-rays in 11.1%, Co-60 in 1.9%, Sr-90 in 4.7%, 1.5- to 9-MeV electrons in 26.5%, and no XRT in 28.8%. In the 1,791 irradiated patients, the median radiation parameters were as follows: total dose, 15 Gy (range, 6-30more » Gy); dose per fraction, 5.0 Gy (range, 2-15 Gy); fractions, 3 (range, 1-10); and time, 7 days (range, 0-33 days). Results: Multivariate stepwise logistic regression correlated decreased keloid recurrence with earlobe location (p = 1.98E-10; odds ratio, 0.34), biologically effective dose (p = 1.01E-27), and treatment with electron beam or Co-60 vs. other techniques (p = 0.0014; odds ratio, 0.72). Different radiobiological models calculated values of {alpha}/{beta} = 1.12 to 2.86 (mean, 2.08) and time (repopulation) correction factors for biologically effective dose from 0.98 to 2.13 Gy per day (mean, 1.34) starting 10 days after surgery. Different models (with {alpha}/{beta} = 2.08) predicted that doses needed for 90% and 95% control with 3 fractions of postoperative electron beam were 16.0 to 16.2 Gy and 18.3 to 19.2 Gy, respectively, in less than 10 days for earlobe keloids and 21.5 to 22.2 Gy and 23.4 to 24.8 Gy, respectively, in less than 10 days for other sites. Conclusions: Postoperative keloid radiotherapy requires moderately high doses and optimal technique to be effective. The relatively low {alpha}/{beta} ratio indicates that radiotherapy with a limited number of fractions and high doses per fraction is the best strategy.« less

  14. Evaluation of dose response models and parameters predicting radiation induced pneumonitis using clinical data from breast cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Tsougos, Ioannis; Mavroidis, Panayiotis; Rajala, Juha; Theodorou, Kyriaki; Järvenpää, Ritva; Pitkänen, Maunu A.; Holli, Kaija; Ojala, Antti T.; Lind, Bengt K.; Hyödynmaa, Simo; Kappas, Constantin

    2005-08-01

    The purpose of this work is to evaluate the predictive strength of the relative seriality, parallel and LKB normal tissue complication probability (NTCP) models regarding the incidence of radiation pneumonitis, in a large group of patients following breast cancer radiotherapy, and furthermore, to illustrate statistical methods for examining whether certain published radiobiological parameters are compatible with a clinical treatment methodology and patient group characteristics. The study is based on 150 consecutive patients who received radiation therapy for breast cancer. For each patient, the 3D dose distribution delivered to lung and the clinical treatment outcome were available. Clinical symptoms and radiological findings, along with a patient questionnaire, were used to assess the manifestation of radiation-induced complications. Using this material, different methods of estimating the likelihood of radiation effects were evaluated. This was attempted by analysing patient data based on their full dose distributions and associating the calculated complication rates with the clinical follow-up records. Additionally, the need for an update of the criteria that are being used in the current clinical practice was also examined. The patient material was selected without any conscious bias regarding the radiotherapy treatment technique used. The treatment data of each patient were applied to the relative seriality, LKB and parallel NTCP models, using published parameter sets. Of the 150 patients, 15 experienced radiation-induced pneumonitis (grade 2) according to the radiation pneumonitis scoring criteria used. Of the NTCP models examined, the relative seriality model was able to predict the incidence of radiation pneumonitis with acceptable accuracy, although radiation pneumonitis was developed by only a few patients. In the case of modern breast radiotherapy, radiobiological modelling appears to be very sensitive to model and parameter selection giving clinically

  15. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer.

    PubMed

    Yang, Ruijie; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang

    2016-01-01

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D90 of 34Gy in 8.5Gy per fraction, and 145Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2Gy per fraction, EQD2) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The Dmean (EQD2) of rectum decreased 22.36Gy in HDR and 17.01Gy in LDR from 30.24Gy in VMAT, respectively. The Dmean (EQD2) of bladder decreased 6.91Gy in HDR and 2.53Gy in LDR from 13.46Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD2) was 80.26, 70.23, and 104.91Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  16. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ruijie, E-mail: ruijyang@yahoo.com; Zhao, Nan; Liao, Anyan

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5 mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78 Gy in 39 fractions were prescribed for PTV. For HDR andmore » LDR plans, the dose prescription was D{sub 90} of 34 Gy in 8.5 Gy per fraction, and 145 Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2 Gy per fraction, EQD{sub 2}) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The D{sub mean} (EQD{sub 2}) of rectum decreased 22.36 Gy in HDR and 17.01 Gy in LDR from 30.24 Gy in VMAT, respectively. The D{sub mean} (EQD{sub 2}) of bladder decreased 6.91 Gy in HDR and 2.53 Gy in LDR from 13.46 Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD{sub 2}) was 80.26, 70.23, and 104.91 Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR.« less

  17. Generalized PSF modeling for optimized quantitation in PET imaging.

    PubMed

    Ashrafinia, Saeed; Mohy-Ud-Din, Hassan; Karakatsanis, Nicolas A; Jha, Abhinav K; Casey, Michael E; Kadrmas, Dan J; Rahmim, Arman

    2017-06-21

    Point-spread function (PSF) modeling offers the ability to account for resolution degrading phenomena within the PET image generation framework. PSF modeling improves resolution and enhances contrast, but at the same time significantly alters image noise properties and induces edge overshoot effect. Thus, studying the effect of PSF modeling on quantitation task performance can be very important. Frameworks explored in the past involved a dichotomy of PSF versus no-PSF modeling. By contrast, the present work focuses on quantitative performance evaluation of standard uptake value (SUV) PET images, while incorporating a wide spectrum of PSF models, including those that under- and over-estimate the true PSF, for the potential of enhanced quantitation of SUVs. The developed framework first analytically models the true PSF, considering a range of resolution degradation phenomena (including photon non-collinearity, inter-crystal penetration and scattering) as present in data acquisitions with modern commercial PET systems. In the context of oncologic liver FDG PET imaging, we generated 200 noisy datasets per image-set (with clinically realistic noise levels) using an XCAT anthropomorphic phantom with liver tumours of varying sizes. These were subsequently reconstructed using the OS-EM algorithm with varying PSF modelled kernels. We focused on quantitation of both SUV mean and SUV max , including assessment of contrast recovery coefficients, as well as noise-bias characteristics (including both image roughness and coefficient of-variability), for different tumours/iterations/PSF kernels. It was observed that overestimated PSF yielded more accurate contrast recovery for a range of tumours, and typically improved quantitative performance. For a clinically reasonable number of iterations, edge enhancement due to PSF modeling (especially due to over-estimated PSF) was in fact seen to lower SUV mean bias in small tumours. Overall, the results indicate that exactly matched PSF

  18. Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments

    PubMed Central

    Lau, Ivan Wen Wen; Liu, Dongting; Xu, Lei; Fan, Zhanming

    2018-01-01

    Objective Current diagnostic assessment tools remain suboptimal in demonstrating complex morphology of congenital heart disease (CHD). This limitation has posed several challenges in preoperative planning, communication in medical practice, and medical education. This study aims to investigate the dimensional accuracy and the clinical value of 3D printed model of CHD in the above three areas. Methods Using cardiac computed tomography angiography (CCTA) data, a patient-specific 3D model of a 20-month-old boy with double outlet right ventricle was printed in Tango Plus material. Pearson correlation coefficient was used to evaluate correlation of the quantitative measurements taken at analogous anatomical locations between the CCTA images pre- and post-3D printing. Qualitative analysis was conducted by distributing surveys to six health professionals (two radiologists, two cardiologists and two cardiac surgeons) and three medical academics to assess the clinical value of the 3D printed model in these three areas. Results Excellent correlation (r = 0.99) was noted in the measurements between CCTA and 3D printed model, with a mean difference of 0.23 mm. Four out of six health professionals found the model to be useful in facilitating preoperative planning, while all of them thought that the model would be invaluable in enhancing patient-doctor communication. All three medical academics found the model to be helpful in teaching, and thought that the students will be able to learn the pathology quicker with better understanding. Conclusion The complex cardiac anatomy can be accurately replicated in flexible material using 3D printing technology. 3D printed heart models could serve as an excellent tool in facilitating preoperative planning, communication in medical practice, and medical education, although further studies with inclusion of more clinical cases are needed. PMID:29561912

  19. Simultaneous integrated intensity-modulated radiotherapy boost for locally advanced gynecological cancer: Radiobiological and dosimetric considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, Mariana; Li, X. Allen; Ma Lijun

    2005-07-01

    Purpose: Whole-pelvis irradiation (WPI) followed by a boost to the tumor site is the standard of practice for the radiotherapeutic management of locally advanced gynecologic cancers. The boost is frequently administered by use of brachytherapy or, occasionally, external-beam radiotherapy (EBRT) when brachytherapy does not provide sufficient coverage because of the size of the tumor or the geometry of the patient. In this work, we propose using an intensity-modulated radiotherapy (IMRT) simultaneous integrated boost (SIB), which is a single-phase process, to replace the conventional two-phase process involving WPI plus a boost. Radiobiological modeling is used to design appropriate regimens for themore » IMRT SIB. To demonstrate feasibility, a dosimetric study is carried out on an example patient. Methods and Materials: The standard linear-quadratic (LQ) model is used to calculate the biologically effective dose (BED) and equivalent uniform dose (EUD). A series of regimens that are biologically equivalent to those conventional two-phase treatments is calculated for the proposed SIB. A commercial inverse planning system (Corvus) was used to generate IMRT SIB plans for a sample patient case that used the newly designed fractionations. The dose-volume histogram (DVH) and EUD of both the target and normal structures for conventional treatments and the SIB are compared. A sparing factor was introduced to characterize the sparing of normal structures. Results: Fractionation regimes that are equivalent to the conventional treatments and are suitable for the IMRT SIB are deduced. For example, a SIB plan with 25 x 3.1 Gy (77.5 Gy) to a tumor is equivalent to a conventional treatment of EBRT of 45 Gy to the whole pelvis in 25 fractions plus a high-dose rate (HDR) brachytherapy boost with 30 Gy in 5 fractions. The normal tissue BED is found to be lower for the SIB plan than for the whole-pelvis plus HDR scheme when a sparing factor for the critical structures is considered

  20. Quantitative PET and SPECT performance characteristics of the Albira Trimodal pre-clinical tomograph

    NASA Astrophysics Data System (ADS)

    Spinks, T. J.; Karia, D.; Leach, M. O.; Flux, G.

    2014-02-01

    The Albira Trimodal pre-clinical scanner comprises PET, SPECT and CT sub-systems and thus provides a range of pre-clinical imaging options. The PET component consists of three rings of single-crystal LYSO detectors with axial/transverse fields-of-view (FOVs) of 148/80 mm. The SPECT component has two opposing CsI detectors (100 × 100 mm2) with single-pinhole (SPH) or multi(9)-pinhole (MPH) collimators; the detectors rotate in 6° increments and their spacing can be adjusted to provide different FOVs (25 to 120 mm). The CT sub-system provides ‘low’ (200 µA, 35 kVp) or ‘high’ (400 µA, 45 kVp) power x-rays onto a flat-panel CsI detector. This study examines the performance characteristics and quantitative accuracy of the PET and SPECT components. Using the NEMA NU 4-2008 specifications (22Na point source), the PET spatial resolution is 1.5 + 0.1 mm on axis and sensitivity 6.3% (axial centre) and 4.6% (central 70 mm). The usable activity range is ≤ 10 MBq (18F) over which good linearity (within 5%) is obtained for a uniform cylinder spanning the axial FOV; increasing deviation from linearity with activity is, however, observed for the NEMA (mouse) line source phantom. Image uniformity axially is within 5%. Spatial resolution (SPH/MPH) for the minimum SPECT FOV used for mouse imaging (50 mm) is 1.5/1.7 mm and point source sensitivity 69/750 cps MBq-1. Axial uniformity of SPECT images (%CV of regions-of-interest counts along the axis) is mostly within 8% although there is a range of 30-40% for the largest FOV. The variation is significantly smaller within the central 40 mm. Instances of count rate nonlinearity (PET) and axial non-uniformity (SPECT) were found to be reproducible and thus amenable to empirical correction.

  1. Basic principles of molecular effects of irradiation.

    PubMed

    Selzer, Edgar; Hebar, Alexandra

    2012-02-01

    In order to understand the consequences of radiation a thorough understanding of the radiobiological mechanisms of the molecular up to the clinical level is of importance. Radiobiology therefore combines the basic principles of physics as well as biology and medicine and is concerned with the action of radiation from the subcellular level up to the living organism. Topics of interest and relevance are covered in much more broadness as is possible in the short following article in the literature to which the interested reader is referred to. Classical books in this field were written by Steel et al. (1989) as well as by Hall (1994). Topics usually covered by radiobiological reviews are the classification of different types of radiation, cell cycle dependency of radiation effects, types of radiation damage and cell death, dose response curves, measurement of radiation damage, the oxygen effect, relative biological effectiveness, the influence of dose rate, and several other important research areas. This short overview will concentrate on a subset of radiobiological topics of high importance and relative novelty.

  2. Quantitative Imaging Biomarkers of NAFLD

    PubMed Central

    Kinner, Sonja; Reeder, Scott B.

    2016-01-01

    Conventional imaging modalities, including ultrasonography (US), computed tomography (CT), and magnetic resonance (MR), play an important role in the diagnosis and management of patients with nonalcoholic fatty liver disease (NAFLD) by allowing noninvasive diagnosis of hepatic steatosis. However, conventional imaging modalities are limited as biomarkers of NAFLD for various reasons. Multi-parametric quantitative MRI techniques overcome many of the shortcomings of conventional imaging and allow comprehensive and objective evaluation of NAFLD. MRI can provide unconfounded biomarkers of hepatic fat, iron, and fibrosis in a single examination—a virtual biopsy has become a clinical reality. In this article, we will review the utility and limitation of conventional US, CT, and MR imaging for the diagnosis NAFLD. Recent advances in imaging biomarkers of NAFLD are also discussed with an emphasis in multi-parametric quantitative MRI. PMID:26848588

  3. Quantitative quality assurance in a multicenter HARDI clinical trial at 3T.

    PubMed

    Zhou, Xiaopeng; Sakaie, Ken E; Debbins, Josef P; Kirsch, John E; Tatsuoka, Curtis; Fox, Robert J; Lowe, Mark J

    2017-01-01

    A phantom-based quality assurance (QA) protocol was developed for a multicenter clinical trial including high angular resolution diffusion imaging (HARDI). A total of 27 3T MR scanners from 2 major manufacturers, GE (Discovery and Signa scanners) and Siemens (Trio and Skyra scanners), were included in this trial. With this protocol, agar phantoms doped to mimic relaxation properties of brain tissue are scanned on a monthly basis, and quantitative procedures are used to detect spiking and to evaluate eddy current and Nyquist ghosting artifacts. In this study, simulations were used to determine alarm thresholds for minimal acceptable signal-to-noise ratio (SNR). Our results showed that spiking artifact was the most frequently observed type of artifact. Overall, Trio scanners exhibited less eddy current distortion than GE scanners, which in turn showed less distortion than Skyra scanners. This difference was mainly caused by the different sequences used on these scanners. The SNR for phantom scans was closely correlated with the SNR from volunteers. Nearly all of the phantom measurements with artifact-free images were above the alarm threshold, suggesting that the scanners are stable longitudinally. Software upgrades and hardware replacement sometimes affected SNR substantially but sometimes did not. In light of these results, it is important to monitor longitudinal SNR with phantom QA to help interpret potential effects on in vivo measurements. Our phantom QA procedure for HARDI scans was successful in tracking scanner performance and detecting unwanted artifacts. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A radiobiology-based inverse treatment planning method for optimisation of permanent l-125 prostate implants in focal brachytherapy.

    PubMed

    Haworth, Annette; Mears, Christopher; Betts, John M; Reynolds, Hayley M; Tack, Guido; Leo, Kevin; Williams, Scott; Ebert, Martin A

    2016-01-07

    Treatment plans for ten patients, initially treated with a conventional approach to low dose-rate brachytherapy (LDR, 145 Gy to entire prostate), were compared with plans for the same patients created with an inverse-optimisation planning process utilising a biologically-based objective. The 'biological optimisation' considered a non-uniform distribution of tumour cell density through the prostate based on known and expected locations of the tumour. Using dose planning-objectives derived from our previous biological-model validation study, the volume of the urethra receiving 125% of the conventional prescription (145 Gy) was reduced from a median value of 64% to less than 8% whilst maintaining high values of TCP. On average, the number of planned seeds was reduced from 85 to less than 75. The robustness of plans to random seed displacements needs to be carefully considered when using contemporary seed placement techniques. We conclude that an inverse planning approach to LDR treatments, based on a biological objective, has the potential to maintain high rates of tumour control whilst minimising dose to healthy tissue. In future, the radiobiological model will be informed using multi-parametric MRI to provide a personalised medicine approach.

  5. A radiobiology-based inverse treatment planning method for optimisation of permanent l-125 prostate implants in focal brachytherapy

    NASA Astrophysics Data System (ADS)

    Haworth, Annette; Mears, Christopher; Betts, John M.; Reynolds, Hayley M.; Tack, Guido; Leo, Kevin; Williams, Scott; Ebert, Martin A.

    2016-01-01

    Treatment plans for ten patients, initially treated with a conventional approach to low dose-rate brachytherapy (LDR, 145 Gy to entire prostate), were compared with plans for the same patients created with an inverse-optimisation planning process utilising a biologically-based objective. The ‘biological optimisation’ considered a non-uniform distribution of tumour cell density through the prostate based on known and expected locations of the tumour. Using dose planning-objectives derived from our previous biological-model validation study, the volume of the urethra receiving 125% of the conventional prescription (145 Gy) was reduced from a median value of 64% to less than 8% whilst maintaining high values of TCP. On average, the number of planned seeds was reduced from 85 to less than 75. The robustness of plans to random seed displacements needs to be carefully considered when using contemporary seed placement techniques. We conclude that an inverse planning approach to LDR treatments, based on a biological objective, has the potential to maintain high rates of tumour control whilst minimising dose to healthy tissue. In future, the radiobiological model will be informed using multi-parametric MRI to provide a personalised medicine approach.

  6. Blending quantitative and qualitative methods in language research and intervention.

    PubMed

    Brinton, Bonnie; Fujiki, Martin

    2003-05-01

    Best practice in speech-language pathology should be informed by current research findings. Traditional research methods are not always geared to address some of the complex, individual questions that arise in clinical intervention, however. Qualitative research methods may provide useful tools for bridging the gap from research to practice. Combinations of qualitative and quantitative procedures may be particularly helpful in sorting out some of the important issues surrounding language intervention in both clinical and research contexts. Examples of research blending qualitative and quantitative methods, as well as the case study of Sid, an 11-year-old boy with specific language impairment, are presented to illustrate how a combination of procedures can be used to enhance language research and intervention.

  7. Targeted methods for quantitative analysis of protein glycosylation

    PubMed Central

    Goldman, Radoslav; Sanda, Miloslav

    2018-01-01

    Quantification of proteins by LC-MS/MS-MRM has become a standard method with broad projected clinical applicability. MRM quantification of protein modifications is, however, far less utilized, especially in the case of glycoproteins. This review summarizes current methods for quantitative analysis of protein glycosylation with a focus on MRM methods. We describe advantages of this quantitative approach, analytical parameters that need to be optimized to achieve reliable measurements, and point out the limitations. Differences between major classes of N- and O-glycopeptides are described and class-specific glycopeptide assays are demonstrated. PMID:25522218

  8. Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research, with an Emphasis on DNA Damage/Repair

    PubMed Central

    Mohamad, Osama; Sishc, Brock J.; Saha, Janapriya; Pompos, Arnold; Rahimi, Asal; Story, Michael D.; Davis, Anthony J.; Kim, D.W. Nathan

    2017-01-01

    Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT. PMID:28598362

  9. Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research, with an Emphasis on DNA Damage/Repair.

    PubMed

    Mohamad, Osama; Sishc, Brock J; Saha, Janapriya; Pompos, Arnold; Rahimi, Asal; Story, Michael D; Davis, Anthony J; Kim, D W Nathan

    2017-06-09

    Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.

  10. E-Alerts: Environmental pollution and control (environmental health and safety). E-mail newsletter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Topics of discussion include the following: Effects of pollution on public health and safety; Toxicology; Industrial health; Physiology; Psychology; Clinical medicine; Radiobiology; Animals used as research experimental models.

  11. Quantitative versus semiquantitative MR imaging of cartilage in blood-induced arthritic ankles: preliminary findings.

    PubMed

    Doria, Andrea S; Zhang, Ningning; Lundin, Bjorn; Hilliard, Pamela; Man, Carina; Weiss, Ruth; Detzler, Gary; Blanchette, Victor; Moineddin, Rahim; Eckstein, Felix; Sussman, Marshall S

    2014-05-01

    Recent advances in hemophilia prophylaxis have raised the need for accurate noninvasive methods for assessment of early cartilage damage in maturing joints to guide initiation of prophylaxis. Such methods can either be semiquantitative or quantitative. Whereas semiquantitative scores are less time-consuming to be performed than quantitative methods, they are prone to subjective interpretation. To test the feasibility of a manual segmentation and a quantitative methodology for cross-sectional evaluation of articular cartilage status in growing ankles of children with blood-induced arthritis, as compared with a semiquantitative scoring system and clinical-radiographic constructs. Twelve boys, 11 with hemophilia (A, n = 9; B, n = 2) and 1 with von Willebrand disease (median age: 13; range: 6-17), underwent physical examination and MRI at 1.5 T. Two radiologists semiquantitatively scored the MRIs for cartilage pathology (surface erosions, cartilage loss) with blinding to clinical information. An experienced operator applied a validated quantitative 3-D MRI method to determine the percentage area of denuded bone (dAB) and the cartilage thickness (ThCtAB) in the joints' MRIs. Quantitative and semiquantitative MRI methods and clinical-radiographic constructs (Hemophilia Joint Health Score [HJHS], Pettersson radiograph scores) were compared. Moderate correlations were noted between erosions and dAB (r = 0.62, P = 0.03) in the talus but not in the distal tibia (P > 0.05). Whereas substantial to high correlations (r range: 0.70-0.94, P < 0.05) were observed between erosions, cartilage loss, HJHS and Pettersson scores both at the distal tibia and talus levels, moderate/borderline substantial (r range: 0.55-0.61, P < 0.05) correlations were noted between dAB/ThCtAB and clinical-radiographic constructs. Whereas the semiquantitative method of assessing cartilage status is closely associated with clinical-radiographic scores in cross-sectional studies

  12. Osteopontin and splice variant expression level in human malignant glioma: radiobiologic effects and prognosis after radiotherapy.

    PubMed

    Güttler, Antje; Giebler, Maria; Cuno, Peter; Wichmann, Henri; Keßler, Jacqueline; Ostheimer, Christian; Söling, Ariane; Strauss, Christian; Illert, Jörg; Kappler, Matthias; Vordermark, Dirk; Bache, Matthias

    2013-09-01

    We investigated the role of the hypoxia-associated secreted glycoprotein osteopontin (OPN) in the response of malignant glioma to radiotherapy by characterizing OPN and its splice variants in vitro and in patient material. The effect of siRNA knockdown of OPN splice variants on cellular and radiobiologic behavior was analyzed in U251MG cells using OpnS siRNA (inhibition of all OPN splice variants) and OpnAC siRNA (knockdown only of OPNa and OPNc). OPN and splice variant mRNA levels were quantified in archival material of 41 glioblastoma tumor samples. Plasma OPN was prospectively measured in 33 malignant glioma patients. Inhibition of OPNa and OPNc (OpnAC) reduced clonogenic survival in U251MG cells but did not affect proliferation, migration or apoptosis. Knockdown of all OPN splice variants (OpnS) resulted in an even stronger inhibition of clonogenic survival, while cell proliferation and migration were reduced and rate of apoptosis was increased. Additional irradiation had additive effects with both siRNAs. Plasma OPN increased continuously in malignant glioma patients and was associated with poor survival. OPNb is partially able to compensate the effects of OPNa and OPNc knockdown in U251MG cells. High OPN plasma levels at the end of radiotherapy are associated with poor survival. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Role of particle radiotherapy in the management of head and neck cancer.

    PubMed

    Laramore, George E

    2009-05-01

    Modern imaging techniques and powerful computers allow a radiation oncologist to design treatments delivering higher doses of radiation than previously possible. Dose distributions imposed by the physics of 'standard' photon and electron beams limit further dose escalation. Hadron radiotherapy offers advantages in either dose distribution and/or improved radiobiology that may significantly improve the treatment of certain head and neck malignancies. Clinical studies support the effectiveness of fast-neutron radiotherapy in the treatment of major and minor salivary gland tumors. Data show highly favorable outcomes with proton radiotherapy for skull-base malignancies and tumors near highly critical normal tissues compared with that expected with standard radiotherapy. Heavy-ion radiotherapy clinical studies are mainly being conducted with fully stripped carbon ions, and limited data seem to indicate a possible improvement over proton radiotherapy for the same subset of radioresistant tumors where neutrons show a benefit over photons. Fast-neutron radiotherapy has different radiobiological properties compared with standard radiotherapy but similar depth dose distributions. Its role in the treatment of head and neck cancer is currently limited to salivary gland malignancies and certain radioresistant tumors such as sarcomas. Protons have the same radiobiological properties as standard radiotherapy beams but more optimal depth dose distributions, making it particularly advantageous when treating tumors adjacent to highly critical structures. Heavy ions combine the radiobiological properties of fast neutrons with the physical dose distributions of protons, and preliminary data indicate their utility for radioresistant tumors adjacent to highly critical structures.

  14. Idiopathic bile acid malabsorption: qualitative and quantitative clinical features and response to cholestyramine.

    PubMed

    Sinha, L; Liston, R; Testa, H J; Moriarty, K J

    1998-09-01

    Idiopathic bile acid malabsorption is a poorly recognized cause of chronic diarrhoea. The SeHCAT (75Selenium HomotauroCholic Acid Test) can accurately diagnose this condition. To identify patients with idiopathic bile acid malabsorption, to describe their clinical features, both qualitatively and quantitatively, and to assess the response to cholestyramine. Idiopathic bile acid malabsorption was considered in all patients complaining of chronic diarrhoea. They were included in the study if their SeHCATs were positive (< 15% retention) and secondary causes of bile acid malabsorption were excluded. The response to therapy with cholestyramine was assessed. Nine patients were diagnosed with idiopathic bile acid malabsorption (median SeHCAT retention 8%, range 3-12.6). Their median daily faecal weight was 285 g (range 85-676) and median faecal fat output was 17 mmol/24 h (range 8.3-38.8). Six patients had an immediate response to cholestyramine. There was a marked reduction in stool frequency (median stool frequency pre-treatment 5/day vs. 2/day post-treatment, P = 0.03). Five patients had large volume diarrhoea (faecal weight > 200 g/day) and three had steatorrhoea. Idiopathic bile acid malabsorption, once suspected, especially by documenting true 'large volume' watery diarrhoea or steatorrhoea, is easily diagnosed and response to therapy is often very good. There is often a previous history of gastrointestinal infection and this condition should be considered in patients with chronic diarrhoea of undetermined origin, especially before they are labelled as having irritable bowel syndrome.

  15. Quantitative computed tomography assessment of transfusional iron overload.

    PubMed

    Wood, John C; Mo, Ashley; Gera, Aakansha; Koh, Montre; Coates, Thomas; Gilsanz, Vicente

    2011-06-01

    Quantitative computed tomography (QCT) has been proposed for iron quantification for more than 30 years, however there has been little clinical validation. We compared liver attenuation by QCT with magnetic resonance imaging (MRI)-derived estimates of liver iron concentration (LIC) in 37 patients with transfusional siderosis. MRI and QCT measurements were performed as clinically indicated monitoring of LIC and vertebral bone-density respectively, over a 6-year period. Mean time difference between QCT and MRI studies was 14 d, with 25 studies performed on the same day. For liver attenuation outside the normal range, attenuation values rose linearly with LIC (r(2) = 0·94). However, intersubject variability in intrinsic liver attenuation prevented quantitation of LIC <8 mg/g dry weight of liver, and was the dominant source of measurement uncertainty. Calculated QCT and MRI accuracies were equivalent for LIC values approaching 22 mg/g dry weight, with QCT having superior performance at higher LIC's. Although not suitable for monitoring patients with good iron control, QCT may nonetheless represent a viable technique for liver iron quantitation in patients with moderate to severe iron in regions where MRI resources are limited because of its low cost, availability, and high throughput. © 2011 Blackwell Publishing Ltd.

  16. Quantitative radiomic profiling of glioblastoma represents transcriptomic expression.

    PubMed

    Kong, Doo-Sik; Kim, Junhyung; Ryu, Gyuha; You, Hye-Jin; Sung, Joon Kyung; Han, Yong Hee; Shin, Hye-Mi; Lee, In-Hee; Kim, Sung-Tae; Park, Chul-Kee; Choi, Seung Hong; Choi, Jeong Won; Seol, Ho Jun; Lee, Jung-Il; Nam, Do-Hyun

    2018-01-19

    Quantitative imaging biomarkers have increasingly emerged in the field of research utilizing available imaging modalities. We aimed to identify good surrogate radiomic features that can represent genetic changes of tumors, thereby establishing noninvasive means for predicting treatment outcome. From May 2012 to June 2014, we retrospectively identified 65 patients with treatment-naïve glioblastoma with available clinical information from the Samsung Medical Center data registry. Preoperative MR imaging data were obtained for all 65 patients with primary glioblastoma. A total of 82 imaging features including first-order statistics, volume, and size features, were semi-automatically extracted from structural and physiologic images such as apparent diffusion coefficient and perfusion images. Using commercially available software, NordicICE, we performed quantitative imaging analysis and collected the dataset composed of radiophenotypic parameters. Unsupervised clustering methods revealed that the radiophenotypic dataset was composed of three clusters. Each cluster represented a distinct molecular classification of glioblastoma; classical type, proneural and neural types, and mesenchymal type. These clusters also reflected differential clinical outcomes. We found that extracted imaging signatures does not represent copy number variation and somatic mutation. Quantitative radiomic features provide a potential evidence to predict molecular phenotype and treatment outcome. Radiomic profiles represents transcriptomic phenotypes more well.

  17. Towards in vivo focal cortical dysplasia phenotyping using quantitative MRI.

    PubMed

    Adler, Sophie; Lorio, Sara; Jacques, Thomas S; Benova, Barbora; Gunny, Roxana; Cross, J Helen; Baldeweg, Torsten; Carmichael, David W

    2017-01-01

    Focal cortical dysplasias (FCDs) are a range of malformations of cortical development each with specific histopathological features. Conventional radiological assessment of standard structural MRI is useful for the localization of lesions but is unable to accurately predict the histopathological features. Quantitative MRI offers the possibility to probe tissue biophysical properties in vivo and may bridge the gap between radiological assessment and ex-vivo histology. This review will cover histological, genetic and radiological features of FCD following the ILAE classification and will explain how quantitative voxel- and surface-based techniques can characterise these features. We will provide an overview of the quantitative MRI measures available, their link with biophysical properties and finally the potential application of quantitative MRI to the problem of FCD subtyping. Future research linking quantitative MRI to FCD histological properties should improve clinical protocols, allow better characterisation of lesions in vivo and tailored surgical planning to the individual.

  18. Diagnostic performance of semi-quantitative and quantitative stress CMR perfusion analysis: a meta-analysis.

    PubMed

    van Dijk, R; van Assen, M; Vliegenthart, R; de Bock, G H; van der Harst, P; Oudkerk, M

    2017-11-27

    analysis our results show similar diagnostic accuracy comparing anatomical (AUC 0.86(0.83-0.89)) and functional reference standards (AUC 0.88(0.84-0.90)). Only the per territory analysis sensitivity did not show significant heterogeneity. None of the groups showed signs of publication bias. The clinical value of semi-quantitative and quantitative CMR perfusion analysis remains uncertain due to extensive inter-study heterogeneity and large differences in CMR perfusion acquisition protocols, reference standards, and methods of assessment of myocardial perfusion parameters. For wide spread implementation, standardization of CMR perfusion techniques is essential. CRD42016040176 .

  19. Evaluation of airway protection: Quantitative timing measures versus penetration/aspiration score.

    PubMed

    Kendall, Katherine A

    2017-10-01

    Quantitative measures of swallowing function may improve the reliability and accuracy of modified barium swallow (MBS) study interpretation. Quantitative study analysis has not been widely instituted, however, secondary to concerns about the time required to make measures and a lack of research demonstrating impact on MBS interpretation. This study compares the accuracy of the penetration/aspiration (PEN/ASP) scale (an observational visual-perceptual assessment tool) to quantitative measures of airway closure timing relative to the arrival of the bolus at the upper esophageal sphincter in identifying a failure of airway protection during deglutition. Retrospective review of clinical swallowing data from a university-based outpatient clinic. Swallowing data from 426 patients were reviewed. Patients with normal PEN/ASP scores were identified, and the results of quantitative airway closure timing measures for three liquid bolus sizes were evaluated. The incidence of significant airway closure delay with and without a normal PEN/ASP score was determined. Inter-rater reliability for the quantitative measures was calculated. In patients with a normal PEN/ASP score, 33% demonstrated a delay in airway closure on at least one swallow during the MBS study. There was no correlation between PEN/ASP score and airway closure delay. Inter-rater reliability for the quantitative measure of airway closure timing was nearly perfect (intraclass correlation coefficient = 0.973). The use of quantitative measures of swallowing function, in conjunction with traditional visual perceptual methods of MBS study interpretation, improves the identification of airway closure delay, and hence, potential aspiration risk, even when no penetration or aspiration is apparent on the MBS study. 4. Laryngoscope, 127:2314-2318, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    PubMed Central

    Jungmann, Pia M.; Baum, Thomas; Bauer, Jan S.; Karampinos, Dimitrios C.; Link, Thomas M.; Li, Xiaojuan; Trattnig, Siegfried; Rummeny, Ernst J.; Woertler, Klaus; Welsch, Goetz H.

    2014-01-01

    Background. New quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), and diffusion weighted imaging (DWI) are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair. PMID:24877139

  1. A quantitative swab is a good non-invasive alternative to a quantitative biopsy for quantifying bacterial load in wounds healing by second intention in horses.

    PubMed

    Van Hecke, L L; Hermans, K; Haspeslagh, M; Chiers, K; Pint, E; Boyen, F; Martens, A M

    2017-07-01

    The aim of this study was to evaluate different techniques for diagnosing wound infection in wounds healing by second intention in horses and to assess the effect of a vortex and sonication protocol on quantitative bacteriology in specimens with a histologically confirmed biofilm. In 50 wounds healing by second intention, a clinical assessment, a quantitative swab, a semi-quantitative swab, and a swab for cytology were compared to a quantitative tissue biopsy (reference standard). Part of the biopsy specimen was examined histologically for evidence of a biofilm. There was a significant, high correlation (P<0.001; r=0.747) between the outcome of the quantitative swabs and the quantitative biopsies. The semi-quantitative swabs showed a significant, moderate correlation with the quantitative biopsies (P<0.001; ρ=0.524). Higher white blood cell counts for cytology were significantly associated with lower log 10 colony-forming units (CFU) in the wounds (P=0.02). Wounds with black granulation tissue showed significantly higher log 10 CFU (P=0.003). Specimens with biofilms did not yield higher bacteriological counts after a vortex and sonication protocol was performed to release bacteria from the biofilm. Based on these findings, a quantitative swab is an acceptable non-invasive alternative to a quantitative biopsy for quantifying bacterial load in equine wounds healing by second intention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research.

    PubMed

    Fedorov, Andriy; Clunie, David; Ulrich, Ethan; Bauer, Christian; Wahle, Andreas; Brown, Bartley; Onken, Michael; Riesmeier, Jörg; Pieper, Steve; Kikinis, Ron; Buatti, John; Beichel, Reinhard R

    2016-01-01

    Background. Imaging biomarkers hold tremendous promise for precision medicine clinical applications. Development of such biomarkers relies heavily on image post-processing tools for automated image quantitation. Their deployment in the context of clinical research necessitates interoperability with the clinical systems. Comparison with the established outcomes and evaluation tasks motivate integration of the clinical and imaging data, and the use of standardized approaches to support annotation and sharing of the analysis results and semantics. We developed the methodology and tools to support these tasks in Positron Emission Tomography and Computed Tomography (PET/CT) quantitative imaging (QI) biomarker development applied to head and neck cancer (HNC) treatment response assessment, using the Digital Imaging and Communications in Medicine (DICOM(®)) international standard and free open-source software. Methods. Quantitative analysis of PET/CT imaging data collected on patients undergoing treatment for HNC was conducted. Processing steps included Standardized Uptake Value (SUV) normalization of the images, segmentation of the tumor using manual and semi-automatic approaches, automatic segmentation of the reference regions, and extraction of the volumetric segmentation-based measurements. Suitable components of the DICOM standard were identified to model the various types of data produced by the analysis. A developer toolkit of conversion routines and an Application Programming Interface (API) were contributed and applied to create a standards-based representation of the data. Results. DICOM Real World Value Mapping, Segmentation and Structured Reporting objects were utilized for standards-compliant representation of the PET/CT QI analysis results and relevant clinical data. A number of correction proposals to the standard were developed. The open-source DICOM toolkit (DCMTK) was improved to simplify the task of DICOM encoding by introducing new API abstractions

  3. DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research

    PubMed Central

    Clunie, David; Ulrich, Ethan; Bauer, Christian; Wahle, Andreas; Brown, Bartley; Onken, Michael; Riesmeier, Jörg; Pieper, Steve; Kikinis, Ron; Buatti, John; Beichel, Reinhard R.

    2016-01-01

    Background. Imaging biomarkers hold tremendous promise for precision medicine clinical applications. Development of such biomarkers relies heavily on image post-processing tools for automated image quantitation. Their deployment in the context of clinical research necessitates interoperability with the clinical systems. Comparison with the established outcomes and evaluation tasks motivate integration of the clinical and imaging data, and the use of standardized approaches to support annotation and sharing of the analysis results and semantics. We developed the methodology and tools to support these tasks in Positron Emission Tomography and Computed Tomography (PET/CT) quantitative imaging (QI) biomarker development applied to head and neck cancer (HNC) treatment response assessment, using the Digital Imaging and Communications in Medicine (DICOM®) international standard and free open-source software. Methods. Quantitative analysis of PET/CT imaging data collected on patients undergoing treatment for HNC was conducted. Processing steps included Standardized Uptake Value (SUV) normalization of the images, segmentation of the tumor using manual and semi-automatic approaches, automatic segmentation of the reference regions, and extraction of the volumetric segmentation-based measurements. Suitable components of the DICOM standard were identified to model the various types of data produced by the analysis. A developer toolkit of conversion routines and an Application Programming Interface (API) were contributed and applied to create a standards-based representation of the data. Results. DICOM Real World Value Mapping, Segmentation and Structured Reporting objects were utilized for standards-compliant representation of the PET/CT QI analysis results and relevant clinical data. A number of correction proposals to the standard were developed. The open-source DICOM toolkit (DCMTK) was improved to simplify the task of DICOM encoding by introducing new API abstractions

  4. Quantitative Susceptibility Mapping of the Midbrain in Parkinson’s Disease

    PubMed Central

    Du, Guangwei; Liu, Tian; Lewis, Mechelle M.; Kong, Lan; Wang, Yi; Connor, James; Mailman, Richard B.; Huang, Xuemei

    2017-01-01

    Background Parkinson’s disease (PD) is marked pathologically by dopamine neuron loss and iron overload in the substantia nigra pars compacta. Midbrain iron content is reported to be increased in PD based on magnetic resonance imaging (MRI) R2* changes. Because quantitative susceptibility mapping is a novel MRI approach to measure iron content, we compared it with R2* for assessing midbrain changes in PD. Methods Quantitative susceptibility mapping and R2* maps were obtained from 47 PD patients and 47 healthy controls. Midbrain susceptibility and R2* values were analyzed by using both voxel-based and region-of-interest approaches in normalized space, and analyzed along with clinical data, including disease duration, Unified Parkinson’s Disease Rating Scale (UPDRS) I, II, and III sub-scores, and levodopa-equivalent daily dosage. All studies were done while PD patients were “on drug.” Results Compared with controls, PD patients showed significantly increased susceptibility values in both right (cluster size = 106 mm3) and left (164 mm3) midbrain, located ventrolateral to the red nucleus that corresponded to the substantia nigra pars compacta. Susceptibility values in this region were correlated significantly with disease duration, UPDRS II, and levodopa-equivalent daily dosage. Conversely, R2* was increased significantly only in a much smaller region (62 mm3) of the left lateral substantia nigra pars compacta and was not significantly correlated with clinical parameters. Conclusion The use of quantitative susceptibility mapping demonstrated marked nigral changes that correlated with clinical PD status more sensitively than R2*. These data suggest that quantitative susceptibility mapping may be a superior imaging biomarker to R2* for estimating brain iron levels in PD. PMID:26362242

  5. Multi-modality imaging of tumor phenotype and response to therapy

    NASA Astrophysics Data System (ADS)

    Nyflot, Matthew J.

    2011-12-01

    Imaging and radiation oncology have historically been closely linked. However, the vast majority of techniques used in the clinic involve anatomical imaging. Biological imaging offers the potential for innovation in the areas of cancer diagnosis and staging, radiotherapy target definition, and treatment response assessment. Some relevant imaging techniques are FDG PET (for imaging cellular metabolism), FLT PET (proliferation), CuATSM PET (hypoxia), and contrast-enhanced CT (vasculature and perfusion). Here, a technique for quantitative spatial correlation of tumor phenotype is presented for FDG PET, FLT PET, and CuATSM PET images. Additionally, multimodality imaging of treatment response with FLT PET, CuATSM, and dynamic contrast-enhanced CT is presented, in a trial of patients receiving an antiangiogenic agent (Avastin) combined with cisplatin and radiotherapy. Results are also presented for translational applications in animal models, including quantitative assessment of proliferative response to cetuximab with FLT PET and quantification of vascular volume with a blood-pool contrast agent (Fenestra). These techniques have clear applications to radiobiological research and optimized treatment strategies, and may eventually be used for personalized therapy for patients.

  6. Average stopping powers for electron and photon sources for radiobiological modeling and microdosimetric applications

    NASA Astrophysics Data System (ADS)

    Vassiliev, Oleg N.; Kry, Stephen F.; Grosshans, David R.; Mohan, Radhe

    2018-03-01

    This study concerns calculation of the average electronic stopping power for photon and electron sources. It addresses two problems that have not yet been fully resolved. The first is defining the electron spectrum used for averaging in a way that is most suitable for radiobiological modeling. We define it as the spectrum of electrons entering the sensitive to radiation volume (SV) within the cell nucleus, at the moment they enter the SV. For this spectrum we derive a formula that combines linearly the fluence spectrum and the source spectrum. The latter is the distribution of initial energies of electrons produced by a source. Previous studies used either the fluence or source spectra, but not both, thereby neglecting a part of the complete spectrum. Our derived formula reduces to these two prior methods in the case of high and low energy sources, respectively. The second problem is extending electron spectra to low energies. Previous studies used an energy cut-off on the order of 1 keV. However, as we show, even for high energy sources, such as 60Co, electrons with energies below 1 keV contribute about 30% to the dose. In this study all the spectra were calculated with Geant4-DNA code and a cut-off energy of only 11 eV. We present formulas for calculating frequency- and dose-average stopping powers, numerical results for several important electron and photon sources, and tables with all the data needed to use our formulas for arbitrary electron and photon sources producing electrons with initial energies up to  ∼1 MeV.

  7. Evaluation of the radiobiological gamma index with motion interplay in tangential IMRT breast treatment

    PubMed Central

    Sumida, Iori; Yamaguchi, Hajime; Das, Indra J.; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yamada, Yuji; Tamari, Kiesuke; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko

    2016-01-01

    The purpose of this study was to evaluate the impact of the motion interplay effect in early-stage left-sided breast cancer intensity-modulated radiation therapy (IMRT), incorporating the radiobiological gamma index (RGI). The IMRT dosimetry for various breathing amplitudes and cycles was investigated in 10 patients. The predicted dose was calculated using the convolution of segmented measured doses. The physical gamma index (PGI) of the planning target volume (PTV) and the organs at risk (OAR) was calculated by comparing the original with the predicted dose distributions. The RGI was calculated from the PGI using the tumor control probability (TCP) and the normal tissue complication probability (NTCP). The predicted mean dose and the generalized equivalent uniform dose (gEUD) to the target with various breathing amplitudes were lower than the original dose (P < 0.01). The predicted mean dose and gEUD to the OARs with motion were higher than for the original dose to the OARs (P < 0.01). However, the predicted data did not differ significantly between the various breathing cycles for either the PTV or the OARs. The mean RGI gamma passing rate for the PTV was higher than that for the PGI (P < 0.01), and for OARs, the RGI values were higher than those for the PGI (P < 0.01). The gamma passing rates of the RGI for the target and the OARs other than the contralateral lung differed significantly from those of the PGI under organ motion. Provided an NTCP value <0.05 is considered acceptable, it may be possible, by taking breathing motion into consideration, to escalate the dose to achieve the PTV coverage without compromising the TCP. PMID:27534793

  8. Quantitative Imaging Biomarkers: A Review of Statistical Methods for Technical Performance Assessment

    PubMed Central

    2017-01-01

    Technological developments and greater rigor in the quantitative measurement of biological features in medical images have given rise to an increased interest in using quantitative imaging biomarkers (QIBs) to measure changes in these features. Critical to the performance of a QIB in preclinical or clinical settings are three primary metrology areas of interest: measurement linearity and bias, repeatability, and the ability to consistently reproduce equivalent results when conditions change, as would be expected in any clinical trial. Unfortunately, performance studies to date differ greatly in designs, analysis method and metrics used to assess a QIB for clinical use. It is therefore, difficult or not possible to integrate results from different studies or to use reported results to design studies. The Radiological Society of North America (RSNA) and the Quantitative Imaging Biomarker Alliance (QIBA) with technical, radiological and statistical experts developed a set of technical performance analysis methods, metrics and study designs that provide terminology, metrics and methods consistent with widely accepted metrological standards. This document provides a consistent framework for the conduct and evaluation of QIB performance studies so that results from multiple studies can be compared, contrasted or combined. PMID:24919831

  9. Quantitative Ultrasound for Measuring Obstructive Severity in Children with Hydronephrosis.

    PubMed

    Cerrolaza, Juan J; Peters, Craig A; Martin, Aaron D; Myers, Emmarie; Safdar, Nabile; Linguraru, Marius George

    2016-04-01

    We define sonographic biomarkers for hydronephrotic renal units that can predict the necessity of diuretic nuclear renography. We selected a cohort of 50 consecutive patients with hydronephrosis of varying severity in whom 2-dimensional sonography and diuretic mercaptoacetyltriglycine renography had been performed. A total of 131 morphological parameters were computed using quantitative image analysis algorithms. Machine learning techniques were then applied to identify ultrasound based safety thresholds that agreed with the t½ for washout. A best fit model was then derived for each threshold level of t½ that would be clinically relevant at 20, 30 and 40 minutes. Receiver operating characteristic curve analysis was performed. Sensitivity, specificity and area under the receiver operating characteristic curve were determined. Improvement obtained by the quantitative imaging method compared to the Society for Fetal Urology grading system and the hydronephrosis index was statistically verified. For the 3 thresholds considered and at 100% sensitivity the specificities of the quantitative imaging method were 94%, 70% and 74%, respectively. Corresponding area under the receiver operating characteristic curve values were 0.98, 0.94 and 0.94, respectively. Improvement obtained by the quantitative imaging method over the Society for Fetal Urology grade and hydronephrosis index was statistically significant (p <0.05 in all cases). Quantitative imaging analysis of renal sonograms in children with hydronephrosis can identify thresholds of clinically significant washout times with 100% sensitivity to decrease the number of diuretic renograms in up to 62% of children. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Informatics methods to enable sharing of quantitative imaging research data.

    PubMed

    Levy, Mia A; Freymann, John B; Kirby, Justin S; Fedorov, Andriy; Fennessy, Fiona M; Eschrich, Steven A; Berglund, Anders E; Fenstermacher, David A; Tan, Yongqiang; Guo, Xiaotao; Casavant, Thomas L; Brown, Bartley J; Braun, Terry A; Dekker, Andre; Roelofs, Erik; Mountz, James M; Boada, Fernando; Laymon, Charles; Oborski, Matt; Rubin, Daniel L

    2012-11-01

    The National Cancer Institute Quantitative Research Network (QIN) is a collaborative research network whose goal is to share data, algorithms and research tools to accelerate quantitative imaging research. A challenge is the variability in tools and analysis platforms used in quantitative imaging. Our goal was to understand the extent of this variation and to develop an approach to enable sharing data and to promote reuse of quantitative imaging data in the community. We performed a survey of the current tools in use by the QIN member sites for representation and storage of their QIN research data including images, image meta-data and clinical data. We identified existing systems and standards for data sharing and their gaps for the QIN use case. We then proposed a system architecture to enable data sharing and collaborative experimentation within the QIN. There are a variety of tools currently used by each QIN institution. We developed a general information system architecture to support the QIN goals. We also describe the remaining architecture gaps we are developing to enable members to share research images and image meta-data across the network. As a research network, the QIN will stimulate quantitative imaging research by pooling data, algorithms and research tools. However, there are gaps in current functional requirements that will need to be met by future informatics development. Special attention must be given to the technical requirements needed to translate these methods into the clinical research workflow to enable validation and qualification of these novel imaging biomarkers. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsenko, Marina A.; Xu, Zhe; Liu, Tao

    Comprehensive, quantitative information on abundances of proteins and their post-translational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labelling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification andmore » quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples, and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.« less

  12. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.

    PubMed

    Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D

    2016-01-01

    Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.

  13. An interlaboratory comparison of dosimetry for a multi-institutional radiobiological research project: Observations, problems, solutions and lessons learned.

    PubMed

    Seed, Thomas M; Xiao, Shiyun; Manley, Nancy; Nikolich-Zugich, Janko; Pugh, Jason; Van den Brink, Marcel; Hirabayashi, Yoko; Yasutomo, Koji; Iwama, Atsushi; Koyasu, Shigeo; Shterev, Ivo; Sempowski, Gregory; Macchiarini, Francesca; Nakachi, Kei; Kunugi, Keith C; Hammer, Clifford G; Dewerd, Lawrence A

    2016-01-01

    An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤5%. Comparable rates of 'dosimetric compliance' were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between 'measured' and 'target' doses, with errors falling largely between 0 and 20%. Outliers were most notable for OSL-based tests, while multiple tests by 'non-compliant' laboratories using orthovoltage X-rays contributed heavily to the wide variation in dosing errors. For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized.

  14. Quantitation of clinical feedback on image quality differences between two CT scanner models.

    PubMed

    Bache, Steven T; Stauduhar, Paul J; Liu, Xinming; Loyer, Evelyne M; John, Rong X

    2017-03-01

    The aim of this work was to quantitate differences in image quality between two GE CT scanner models - the LightSpeed VCT ("VCT") and Discovery HD750 ("HD") - based upon feedback from radiologists at our institution. First, 3 yrs of daily QC images of the manufacturer-provided QC phantom from 10 scanners - five of each model - were analyzed for both noise magnitude, measured as CT-number standard deviation, and noise power spectrum within the uniform water section. The same phantom was then scanned on four of each model and analyzed for low contrast detectability (LCD) using a built-in LCD tool at the scanner console. An anthropomorphic phantom was scanned using the same eight scanners. A slice within the abdomen section was chosen and three ROIs were placed in regions representing liver, stomach, and spleen. Both standard deviation of CT-number and LCD value was calculated for each image. Noise magnitude was 8.5% higher in HD scanners compared to VCT scanners. An associated increase in the magnitude of the noise power spectra were also found, but both peak and mean NPS frequency were not different between the two models. VCT scanners outperformed HD scanners with respect to LCD by an average of 13.1% across all scanners and phantoms. Our results agree with radiologist feedback, and necessitate a closer look at our body CT protocols among different scanner models at our institution. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  15. An image-guided precision proton radiation platform for preclinical in vivo research

    NASA Astrophysics Data System (ADS)

    Ford, E.; Emery, R.; Huff, D.; Narayanan, M.; Schwartz, J.; Cao, N.; Meyer, J.; Rengan, R.; Zeng, J.; Sandison, G.; Laramore, G.; Mayr, N.

    2017-01-01

    There are many unknowns in the radiobiology of proton beams and other particle beams. We describe the development and testing of an image-guided low-energy proton system optimized for radiobiological research applications. A 50 MeV proton beam from an existing cyclotron was modified to produce collimated beams (as small as 2 mm in diameter). Ionization chamber and radiochromic film measurements were performed and benchmarked with Monte Carlo simulations (TOPAS). The proton beam was aligned with a commercially-available CT image-guided x-ray irradiator device (SARRP, Xstrahl Inc.). To examine the alternative possibility of adapting a clinical proton therapy system, we performed Monte Carlo simulations of a range-shifted 100 MeV clinical beam. The proton beam exhibits a pristine Bragg Peak at a depth of 21 mm in water with a dose rate of 8.4 Gy min-1 (3 mm depth). The energy of the incident beam can be modulated to lower energies while preserving the Bragg peak. The LET was: 2.0 keV µm-1 (water surface), 16 keV µm-1 (Bragg peak), 27 keV µm-1 (10% peak dose). Alignment of the proton beam with the SARRP system isocenter was measured at 0.24 mm agreement. The width of the beam changes very little with depth. Monte Carlo-based calculations of dose using the CT image data set as input demonstrate in vivo use. Monte Carlo simulations of the modulated 100 MeV clinical proton beam show a significantly reduced Bragg peak. We demonstrate the feasibility of a proton beam integrated with a commercial x-ray image-guidance system for preclinical in vivo studies. To our knowledge this is the first description of an experimental image-guided proton beam for preclinical radiobiology research. It will enable in vivo investigations of radiobiological effects in proton beams.

  16. Integration of radiobiological modeling and indices in comparative plan evaluation: A study comparing VMAT and 3D-CRT in patients with NSCLC.

    PubMed

    Roy, Soumyajit; Badragan, Iulian; Ahmed, Sheikh Nisar; Sia, Michael; Singh, Jorawur; Bahl, Gaurav

    2018-03-01

    The purpose of this article was to generate an algorithm to calculate radiobiological endpoints and composite indices and use them to compare volumetric modulated arc therapy (VMAT) and 3-dimensional conformal radiation therapy (3D-CRT) techniques in patients with locally advanced non-small cell lung cancer. The study included 25 patients with locally advanced non-small cell lung cancer treated with 3D-CRT at our center between January 1, 2010, and December 31, 2014. The planner generated VMAT plans using clones of the original computed tomography scans and regions of interest volumes, which did not include the original 3D plans. Both 3D-CRT and VMAT plans were generated using the same dose-volume constraint worksheet. The dose-volume histogram parameters for planning target volume and relevant organs at risk (OAR) were reviewed. The calculation engine was written in the R programming language; the user interface was developed with the "shiny" R Web library. Dose-volume histogram data were imported into the calculation engine and tumor control probability (TCP), normal tissue complication probability (NTCP), composite cardiopulmonary toxicity index (CPTI), morbidity index: MI = ∑ j = 1 #ofrelevantOARs (w j  ∗ NTCP j ), uncomplicated TCP (UTCP=TCP∗∏k=1#ofOARs1-NTCP K 100, and therapeutic gain (TG): ie, TG = TCP ∗ (100 - MI) were calculated. TCP was better with 3D-CRT (12.62% vs 11.71%, P < .001), whereas VMAT demonstrated superior NTCP esophagus (4.45% vs 7.39%, P = .02). NTCP spinal cord (0.001% vs 0.009%, P = .001), and NTCP heart/perfusion defect (44.57% vs 56.42%, P = .016). There was no difference in NTCP lung (6.27% vs 7.62%, P = .221) and NTCP heart/pericarditis (0.001% vs 0.15%, P = .129) between 2 techniques. VMAT showed substantial improvement in morbidity index (11.06% vs. 14.31%, P = 0.01), CPTI (47.59% vs 59.41%, P = .03), TG (P = .035), and trend toward superiority in UTCP (5.89 vs 4.75, P

  17. Dependence of quantitative accuracy of CT perfusion imaging on system parameters

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Guang-Hong

    2017-03-01

    Deconvolution is a popular method to calculate parametric perfusion parameters from four dimensional CT perfusion (CTP) source images. During the deconvolution process, the four dimensional space is squeezed into three-dimensional space by removing the temporal dimension, and a prior knowledge is often used to suppress noise associated with the process. These additional complexities confound the understanding about deconvolution-based CTP imaging system and how its quantitative accuracy depends on parameters and sub-operations involved in the image formation process. Meanwhile, there has been a strong clinical need in answering this question, as physicians often rely heavily on the quantitative values of perfusion parameters to make diagnostic decisions, particularly during an emergent clinical situation (e.g. diagnosis of acute ischemic stroke). The purpose of this work was to develop a theoretical framework that quantitatively relates the quantification accuracy of parametric perfusion parameters with CTP acquisition and post-processing parameters. This goal was achieved with the help of a cascaded systems analysis for deconvolution-based CTP imaging systems. Based on the cascaded systems analysis, the quantitative relationship between regularization strength, source image noise, arterial input function, and the quantification accuracy of perfusion parameters was established. The theory could potentially be used to guide developments of CTP imaging technology for better quantification accuracy and lower radiation dose.

  18. Quantitative Lymphoscintigraphy to Predict the Possibility of Lymphedema Development After Breast Cancer Surgery: Retrospective Clinical Study.

    PubMed

    Kim, Paul; Lee, Ju Kang; Lim, Oh Kyung; Park, Heung Kyu; Park, Ki Deok

    2017-12-01

    To predict the probability of lymphedema development in breast cancer patients in the early post-operation stage, we investigated the ability of quantitative lymphoscintigraphic assessment. This retrospective study included 201 patients without lymphedema after unilateral breast cancer surgery. Lymphoscintigraphy was performed between 4 and 8 weeks after surgery to evaluate the lymphatic system in the early postoperative stage. Quantitative lymphoscintigraphy was performed using four methods: ratio of radiopharmaceutical clearance rate of the affected to normal hand; ratio of radioactivity of the affected to normal hand; ratio of radiopharmaceutical uptake rate of the affected to normal axilla (RUA); and ratio of radioactivity of the affected to normal axilla (RRA). During a 1-year follow-up, patients with a circumferential interlimb difference of 2 cm at any measurement location and a 200-mL interlimb volume difference were diagnosed with lymphedema. We investigated the difference in quantitative lymphoscintigraphic assessment between the non-lymphedema and lymphedema groups. Quantitative lymphoscintigraphic assessment revealed that the RUA and RRA were significantly lower in the lymphedema group than in the non-lymphedema group. After adjusting the model for all significant variables (body mass index, N-stage, T-stage, type of surgery, and type of lymph node surgery), RRA was associated with lymphedema (odds ratio=0.14; 95% confidence interval, 0.04-0.46; p=0.001). In patients in the early postoperative stage after unilateral breast cancer surgery, quantitative lymphoscintigraphic assessment can be used to predict the probability of developing lymphedema.

  19. Quantitative imaging as cancer biomarker

    NASA Astrophysics Data System (ADS)

    Mankoff, David A.

    2015-03-01

    The ability to assay tumor biologic features and the impact of drugs on tumor biology is fundamental to drug development. Advances in our ability to measure genomics, gene expression, protein expression, and cellular biology have led to a host of new targets for anticancer drug therapy. In translating new drugs into clinical trials and clinical practice, these same assays serve to identify patients most likely to benefit from specific anticancer treatments. As cancer therapy becomes more individualized and targeted, there is an increasing need to characterize tumors and identify therapeutic targets to select therapy most likely to be successful in treating the individual patient's cancer. Thus far assays to identify cancer therapeutic targets or anticancer drug pharmacodynamics have been based upon in vitro assay of tissue or blood samples. Advances in molecular imaging, particularly PET, have led to the ability to perform quantitative non-invasive molecular assays. Imaging has traditionally relied on structural and anatomic features to detect cancer and determine its extent. More recently, imaging has expanded to include the ability to image regional biochemistry and molecular biology, often termed molecular imaging. Molecular imaging can be considered an in vivo assay technique, capable of measuring regional tumor biology without perturbing it. This makes molecular imaging a unique tool for cancer drug development, complementary to traditional assay methods, and a potentially powerful method for guiding targeted therapy in clinical trials and clinical practice. The ability to quantify, in absolute measures, regional in vivo biologic parameters strongly supports the use of molecular imaging as a tool to guide therapy. This review summarizes current and future applications of quantitative molecular imaging as a biomarker for cancer therapy, including the use of imaging to (1) identify patients whose tumors express a specific therapeutic target; (2) determine

  20. A Quantitative Methodology to Examine the Development of Moral Judgment

    ERIC Educational Resources Information Center

    Buchanan, James P.; Thompson, Spencer K.

    1973-01-01

    Unlike Piaget's clinical procedure, the experiment's methodology allowed substantiation of the ability of children to simultaneously weigh damage and intent information when making a moral judgment. Other advantages of this quantitative methodology are also presented. (Authors)

  1. Quantitative methods for evaluating the efficacy of thalamic deep brain stimulation in patients with essential tremor.

    PubMed

    Wastensson, Gunilla; Holmberg, Björn; Johnels, Bo; Barregard, Lars

    2013-01-01

    Deep brain stimulation (DBS) of the thalamus is a safe and efficient method for treatment of disabling tremor in patient with essential tremor (ET). However, successful tremor suppression after surgery requires careful selection of stimulus parameters. Our aim was to examine the possible use of certain quantitative methods for evaluating the efficacy of thalamic DBS in ET patients in clinical practice, and to compare these methods with traditional clinical tests. We examined 22 patients using the Essential Tremor Rating Scale (ETRS) and quantitative assessment of tremor with the stimulator both activated and deactivated. We used an accelerometer (CATSYS tremor Pen) for quantitative measurement of postural tremor, and a eurythmokinesimeter (EKM) to evaluate kinetic tremor in a rapid pointing task. The efficacy of DBS on tremor suppression was prominent irrespective of the method used. The agreement between clinical rating of postural tremor and tremor intensity as measured by the CATSYS tremor pen was relatively high (rs = 0.74). The agreement between kinetic tremor as assessed by the ETRS and the main outcome variable from the EKM test was low (rs = 0.34). The lack of agreement indicates that the EKM test is not comparable with the clinical test. Quantitative methods, such as the CATSYS tremor pen, could be a useful complement to clinical tremor assessment in evaluating the efficacy of DBS in clinical practice. Future studies should evaluate the precision of these methods and long-term impact on tremor suppression, activities of daily living (ADL) function and quality of life.

  2. Low-frequency quantitative ultrasound imaging of cell death in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi-Naini, Ali; Falou, Omar; Czarnota, Gregory J.

    Purpose: Currently, no clinical imaging modality is used routinely to assess tumor response to cancer therapies within hours to days of the delivery of treatment. Here, the authors demonstrate the efficacy of ultrasound at a clinically relevant frequency to quantitatively detect changes in tumors in response to cancer therapies using preclinical mouse models.Methods: Conventional low-frequency and corresponding high-frequency ultrasound (ranging from 4 to 28 MHz) were used along with quantitative spectroscopic and signal envelope statistical analyses on data obtained from xenograft tumors treated with chemotherapy, x-ray radiation, as well as a novel vascular targeting microbubble therapy.Results: Ultrasound-based spectroscopic biomarkers indicatedmore » significant changes in cell-death associated parameters in responsive tumors. Specifically changes in the midband fit, spectral slope, and 0-MHz intercept biomarkers were investigated for different types of treatment and demonstrated cell-death related changes. The midband fit and 0-MHz intercept biomarker derived from low-frequency data demonstrated increases ranging approximately from 0 to 6 dBr and 0 to 8 dBr, respectively, depending on treatments administrated. These data paralleled results observed for high-frequency ultrasound data. Statistical analysis of ultrasound signal envelope was performed as an alternative method to obtain histogram-based biomarkers and provided confirmatory results. Histological analysis of tumor specimens indicated up to 61% cell death present in the tumors depending on treatments administered, consistent with quantitative ultrasound findings indicating cell death. Ultrasound-based spectroscopic biomarkers demonstrated a good correlation with histological morphological findings indicative of cell death (r{sup 2}= 0.71, 0.82; p < 0.001).Conclusions: In summary, the results provide preclinical evidence, for the first time, that quantitative ultrasound used at a clinically relevant

  3. Magnetic fingerprints of rolling cells for quantitative flow cytometry in whole blood

    NASA Astrophysics Data System (ADS)

    Reisbeck, Mathias; Helou, Michael Johannes; Richter, Lukas; Kappes, Barbara; Friedrich, Oliver; Hayden, Oliver

    2016-09-01

    Over the past 50 years, flow cytometry has had a profound impact on preclinical and clinical applications requiring single cell function information for counting, sub-typing and quantification of epitope expression. At the same time, the workflow complexity and high costs of such optical systems still limit flow cytometry applications to specialized laboratories. Here, we present a quantitative magnetic flow cytometer that incorporates in situ magnetophoretic cell focusing for highly accurate and reproducible rolling of the cellular targets over giant magnetoresistance sensing elements. Time-of-flight analysis is used to unveil quantitative single cell information contained in its magnetic fingerprint. Furthermore, we used erythrocytes as a biological model to validate our methodology with respect to precise analysis of the hydrodynamic cell diameter, quantification of binding capacity of immunomagnetic labels, and discrimination of cell morphology. The extracted time-of-flight information should enable point-of-care quantitative flow cytometry in whole blood for clinical applications, such as immunology and primary hemostasis.

  4. Clinical implications of hepatitis B surface antigen quantitation in the natural history of chronic hepatitis B virus infection.

    PubMed

    Tan, Zhaoxia; Li, Maoshi; Kuang, Xuemei; Tang, Yu; Fan, Yi; Deng, Guohong; Wang, Yuming; He, Dengming

    2014-04-01

    HBsAg quantitation may be useful for managing patients with hepatitis B virus (HBV) infection. We explored the clinical implications of HBsAg quantitation for patients with HBsAg levels >250IU/ml (Abbott Diagnostics). Two hundred and thirty-three HBV-infected patients comprising 29 immune tolerance cases, 49 treatment-naïve HBeAg-positive chronic hepatitis B (CHB) cases, 91 inactive HBV carrier cases, and 64 treatment-naïve HBeAg-negative CHB cases were analyzed. HBsAg was quantified by the Architect HBsAg assay (Abbott Diagnostics) after a 1:500 automated dilution. HBsAg (log10IU/ml) was established for immune tolerance (4.50±0.43), HBeAg-positive CHB (4.17±0.66), inactive HBV carrier (3.32±0.44), and HBeAg-negative CHB (3.23±0.40); (p=4.92×10(-35)). No significant difference was observed between inactive HBV carrier and HBeAg-negative CHB (p=0.247). The proportions of HBsAg <2000IU/ml for inactive HBV carrier and HBeAg-negative CHB were 51.6% and 59.3%, respectively (p=0.341). Positive correlations between HBsAg and HBV DNA were observed for immune tolerance (p=1.23×10(-4)) and HBeAg-positive CHB (p=0.003), but not for HBeAg-negative CHB (p=0.432). A negative correlation between HBsAg and age was observed for immune tolerance (p=0.030), HBeAg-positive CHB (p=0.016), and inactive HBV carrier (p=0.001), but not in HBeAg-negative CHB (p=0.249). No significant differences between HBsAg and ALT for HBeAg-positive (p=0.338) or HBeAg-negative CHB (p=0.564) were observed. For patients with HBsAg quantitation >250IU/ml, HBsAg may reflect HBV DNA replication for HBeAg-positive cases. HBsAg is not a suitable marker for evaluating hepatitis activity and distinguishing between cases of HBeAg-negative CHB and inactive HBV carrier state. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Manhattan transfer: lethal radiation, bone marrow transplantation, and the birth of stem cell biology, ca. 1942-1961.

    PubMed

    Kraft, Alison

    2009-01-01

    This study investigates how, in the late 1940s and 1950s, fears of nuclear accidents and nuclear warfare shaped postwar radiobiology. The new and intense forms of radiation generated by nuclear reactor technology, and which would be released in the event of a nuclear war, created concerns about a public-health hazard unprecedented in form and scale. Fears of inadvertent exposure to acute and potentially lethal radiation launched a search for anti-radiation therapies, out of which emerged the new technique of bone marrow transplantation (BMT). This study analyzes the use of BMT first as a research tool to explore the biological effects of ionizing radiation, and then as an adjunct to radiotherapy for the treatment of cancer. In highlighting how BMT became the province of different research and clinical constituencies, this study develops an understanding of the forces and contingencies that shaped its development. Exploring the emergence of BMT and the uses to which it was put, it reveals that BMT remained a technique in the making -- unstable and far from standardized, even as it became both a widely used research tool and rapidly made its way into the clinic. More broadly, it casts new light on one route through which the Manhattan Project influenced postwar radiobiology; it also affords new insights into one means by which radiobiology came to serve the interests of the Cold War state. In its focus on BMT this paper provides a new perspective on the evolving relationship between radiobiology and biomedicine in the postwar period.

  6. Validation of Greyscale-Based Quantitative Ultrasound in Manual Wheelchair Users

    PubMed Central

    Collinger, Jennifer L.; Fullerton, Bradley; Impink, Bradley G.; Koontz, Alicia M.; Boninger, Michael L.

    2010-01-01

    Objective The primary aim of this study is to establish the validity of greyscale-based quantitative ultrasound (QUS) measures of the biceps and supraspinatus tendons. Design Nine QUS measures of the biceps and supraspinatus tendons were computed from ultrasound images collected from sixty-seven manual wheelchair users. Shoulder pathology was measured using questionnaires, physical examination maneuvers, and a clinical ultrasound grading scale. Results Increased age, duration of wheelchair use, and body mass correlated with a darker, more homogenous tendon appearance. Subjects with pain during physical examination tests for biceps tenderness and acromioclavicular joint tenderness exhibited significantly different supraspinatus QUS values. Even when controlling for tendon depth, QUS measures of the biceps tendon differed significantly between subjects with healthy tendons, mild tendinosis, and severe tendinosis. Clinical grading of supraspinatus tendon health was correlated with QUS measures of the supraspinatus tendon. Conclusions Quantitative ultrasound is valid method to quantify tendinopathy and may allow for early detection of tendinosis. Manual wheelchair users are at a high risk for developing shoulder tendon pathology and may benefit from quantitative ultrasound-based research that focuses on identifying interventions designed to reduce this risk. PMID:20407304

  7. Quantitative measures of walking and strength provide insight into brain corticospinal tract pathology in multiple sclerosis.

    PubMed

    Fritz, Nora E; Keller, Jennifer; Calabresi, Peter A; Zackowski, Kathleen M

    2017-01-01

    At least 85% of individuals with multiple sclerosis report walking dysfunction as their primary complaint. Walking and strength measures are common clinical measures to mark increasing disability or improvement with rehabilitation. Previous studies have shown an association between strength or walking ability and spinal cord MRI measures, and strength measures with brainstem corticospinal tract magnetization transfer ratio. However, the relationship between walking performance and brain corticospinal tract magnetization transfer imaging measures and the contribution of clinical measurements of walking and strength to the underlying integrity of the corticospinal tract has not been explored in multiple sclerosis. The objectives of this study were explore the relationship of quantitative measures of walking and strength to whole-brain corticospinal tract-specific MRI measures and to determine the contribution of quantitative measures of function in addition to basic clinical measures (age, gender, symptom duration and Expanded Disability Status Scale) to structural imaging measures of the corticospinal tract. We hypothesized that quantitative walking and strength measures would be related to brain corticospinal tract-specific measures, and would provide insight into the heterogeneity of brain pathology. Twenty-nine individuals with relapsing-remitting multiple sclerosis (mean(SD) age 48.7 (11.5) years; symptom duration 11.9(8.7); 17 females; median[range] Expanded Disability Status Scale 4.0 [1.0-6.5]) and 29 age and gender-matched healthy controls (age 50.8(11.6) years; 20 females) participated in clinical tests of strength and walking (Timed Up and Go, Timed 25 Foot Walk, Two Minute Walk Test ) as well as 3 T imaging including diffusion tensor imaging and magnetization transfer imaging. Individuals with multiple sclerosis were weaker (p = 0.0024) and walked slower (p = 0.0013) compared to controls. Quantitative measures of walking and strength were

  8. Nursing students' evaluation of a new feedback and reflection tool for use in high-fidelity simulation - Formative assessment of clinical skills. A descriptive quantitative research design.

    PubMed

    Solheim, Elisabeth; Plathe, Hilde Syvertsen; Eide, Hilde

    2017-11-01

    Clinical skills training is an important part of nurses' education programmes. Clinical skills are complex. A common understanding of what characterizes clinical skills and learning outcomes needs to be established. The aim of the study was to develop and evaluate a new reflection and feedback tool for formative assessment. The study has a descriptive quantitative design. 129 students participated who were at the end of the first year of a Bachelor degree in nursing. After highfidelity simulation, data were collected using a questionnaire with 19 closed-ended and 2 open-ended questions. The tool stimulated peer assessment, and enabled students to be more thorough in what to assess as an observer in clinical skills. The tool provided a structure for selfassessment and made visible items that are important to be aware of in clinical skills. This article adds to simulation literature and provides a tool that is useful in enhancing peer learning, which is essential for nurses in practice. The tool has potential for enabling students to learn about reflection and developing skills for guiding others in practice after they have graduated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Quantitative risk stratification in Markov chains with limiting conditional distributions.

    PubMed

    Chan, David C; Pollett, Philip K; Weinstein, Milton C

    2009-01-01

    Many clinical decisions require patient risk stratification. The authors introduce the concept of limiting conditional distributions, which describe the equilibrium proportion of surviving patients occupying each disease state in a Markov chain with death. Such distributions can quantitatively describe risk stratification. The authors first establish conditions for the existence of a positive limiting conditional distribution in a general Markov chain and describe a framework for risk stratification using the limiting conditional distribution. They then apply their framework to a clinical example of a treatment indicated for high-risk patients, first to infer the risk of patients selected for treatment in clinical trials and then to predict the outcomes of expanding treatment to other populations of risk. For the general chain, a positive limiting conditional distribution exists only if patients in the earliest state have the lowest combined risk of progression or death. The authors show that in their general framework, outcomes and population risk are interchangeable. For the clinical example, they estimate that previous clinical trials have selected the upper quintile of patient risk for this treatment, but they also show that expanded treatment would weakly dominate this degree of targeted treatment, and universal treatment may be cost-effective. Limiting conditional distributions exist in most Markov models of progressive diseases and are well suited to represent risk stratification quantitatively. This framework can characterize patient risk in clinical trials and predict outcomes for other populations of risk.

  10. QUANTITATIVE TEMPLATE FOR SUBTYPING PRIMARY PROGRESSIVE APHASIA

    PubMed Central

    Mesulam, Marsel; Wieneke, Christina; Rogalski, Emily; Cobia, Derin; Thompson, Cynthia; Weintraub, Sandra

    2009-01-01

    Objective To provide a quantitative algorithm for classifying primary progressive aphasia (PPA) into agrammatic (PPA-G), semantic (PPA-S) and logopenic (PPA-L) variants, each of which is known to have a different probability of association with Alzheimer’s disease (AD) versus frontotemporal lobar degeneration (FTLD). Design Prospectively and consecutively enrolled 16 PPA patients tested with neuropsychological instruments and magnetic resonance imaging (MRI). Setting University medical center. Participants PPA patients recruited nationally in the USA as part of a longitudinal study. Results A two-dimensional template, reflecting performance on tests of syntax (Northwestern Anagram Test) and lexical semantics (Peabody Picture Vocabulary Test), classified all 16 patients in concordance with a clinical diagnosis that had been made prior to the administration of the quantitative tests. All three subtypes had distinctly asymmetrical atrophy of the left perisylvian language network. Each subtype also had distinctive peak atrophy sites. Only PPA-G had peak atrophy in the IFG (Broca’s area), only PPA-S had peak atrophy in the anterior temporal lobe, and only PPA-L had peak atrophy in area 37. Conclusions Once an accurate root diagnosis of PPA is made, subtyping can be quantitatively guided using a two-dimensional template based on orthogonal tasks of grammatical competence and word comprehension. Although the choice of tasks and precise cut-off levels may evolve in time, this set of 16 patients demonstrates the feasibility of using a simple algorithm for clinico-anatomical classification in PPA. Prospective studies will show whether this suptyping can improve the clinical prediction of underlying neuropathology. PMID:20008661

  11. Quantitative genetics

    USDA-ARS?s Scientific Manuscript database

    The majority of economically important traits targeted for cotton improvement are quantitatively inherited. In this chapter, the current state of cotton quantitative genetics is described and separated into four components. These components include: 1) traditional quantitative inheritance analysis, ...

  12. Modulation of renal oxygenation and perfusion in rat kidney monitored by quantitative diffusion and blood oxygen level dependent magnetic resonance imaging on a clinical 1.5T platform.

    PubMed

    Jerome, Neil P; Boult, Jessica K R; Orton, Matthew R; d'Arcy, James; Collins, David J; Leach, Martin O; Koh, Dow-Mu; Robinson, Simon P

    2016-10-03

    To investigate the combined use of intravoxel incoherent motion (IVIM) diffusion-weighted (DW) and blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) to assess rat renal function using a 1.5T clinical platform. Multiple b-value DW and BOLD MR images were acquired from adult rats using a parallel clinical coil arrangement, enabling quantitation of the apparent diffusion coefficient (ADC), IVIM-derived diffusion coefficient (D), pseudodiffusion coefficient (D*) and perfusion fraction (f), and the transverse relaxation time T 2 *, for whole kidney, renal cortex, and medulla. Following the acquisition of two baseline datasets to assess measurement repeatability, images were acquired following i.v. administration of hydralazine, furosemide, or angiotensin II for up to 40 min. Excellent repeatability (CoV <10 %) was observed for ADC, D, f and T 2 * measured over the whole kidney. Hydralazine induced a marked and significant (p < 0.05) reduction in whole kidney ADC, D, and T 2 *, and a significant (p < 0.05) increase in D* and f. Furosemide significantly (p < 0.05) increased whole kidney ADC, D, and T 2 *. A more variable response to angiotensin II was determined, with a significant (p < 0.05) increase in medulla D* and significant (p < 0.05) reduction in whole kidney T 2 * established. Multiparametric MRI, incorporating quantitation of IVIM DWI and BOLD biomarkers and performed on a clinical platform, can be used to monitor the acute effects of vascular and tubular modulating drugs on rat kidney function in vivo. Clinical adoption of such functional imaging biomarkers can potentially inform on treatment effects in patients with renal dysfunction.

  13. Modified Ashworth Scale (MAS) Model based on Clinical Data Measurement towards Quantitative Evaluation of Upper Limb Spasticity

    NASA Astrophysics Data System (ADS)

    Puzi, A. Ahmad; Sidek, S. N.; Mat Rosly, H.; Daud, N.; Yusof, H. Md

    2017-11-01

    Spasticity is common symptom presented amongst people with sensorimotor disabilities. Imbalanced signals from the central nervous systems (CNS) which are composed of the brain and spinal cord to the muscles ultimately leading to the injury and death of motor neurons. In clinical practice, the therapist assesses muscle spasticity using a standard assessment tool like Modified Ashworth Scale (MAS), Modified Tardiue Scale (MTS) or Fugl-Meyer Assessment (FMA). This is done subjectively based on the experience and perception of the therapist subjected to the patient fatigue level and body posture. However, the inconsistency in the assessment is prevalent and could affect the efficacy of the rehabilitation process. Thus, the aim of this paper is to describe the methodology of data collection and the quantitative model of MAS developed to satisfy its description. Two subjects with MAS of 2 and 3 spasticity levels were involved in the clinical data measurement. Their level of spasticity was verified by expert therapist using current practice. Data collection was established using mechanical system equipped with data acquisition system and LABVIEW software. The procedure engaged repeated series of flexion of the affected arm that was moved against the platform using a lever mechanism and performed by the therapist. The data was then analyzed to investigate the characteristics of spasticity signal in correspondence to the MAS description. Experimental results revealed that the methodology used to quantify spasticity satisfied the MAS tool requirement according to the description. Therefore, the result is crucial and useful towards the development of formal spasticity quantification model.

  14. SU-C-BRE-02: BED Vs. Local Control: Radiobiological Effect of Tumor Volume in Monte Carlo (MC) Lung SBRT Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, D; Badkul, R; Jiang, H

    2014-06-15

    radiobiological effect of target volume and dose calculation algorithm significantly affects TCP for lung SBRT patients. Dose calculation using MC-based algorithm is more realistic with tissue heterogeneities and is routinely performed in our clinic. Patients will be followed up to determine whether TCP prediction correlate clinical outcomes.« less

  15. [Quantitative and qualitative research methods, can they coexist yet?].

    PubMed

    Hunt, Elena; Lavoie, Anne-Marise

    2011-06-01

    Qualitative design is gaining ground in Nursing research. In spite of a relative progress however, the evidence based practice movement continues to dominate and to underline the exclusive value of quantitative design (particularly that of randomized clinical trials) for clinical decision making. In the actual context convenient to those in power making utilitarian decisions on one hand, and facing nursing criticism of the establishment in favor of qualitative research on the other hand, it is difficult to chose a practical and ethical path that values the nursing role within the health care system, keeping us committed to quality care and maintaining researcher's integrity. Both qualitative and quantitative methods have advantages and disadvantages, and clearly, none of them can, by itself, capture, describe and explain reality adequately. Therefore, a balance between the two methods is needed. Researchers bare responsibility to society and science, and they should opt for the appropriate design susceptible to answering the research question, not promote the design favored by the research funding distributors.

  16. Comprehensive Comparison of Self-Administered Questionnaires for Measuring Quantitative Autistic Traits in Adults

    ERIC Educational Resources Information Center

    Nishiyama, Takeshi; Suzuki, Masako; Adachi, Katsunori; Sumi, Satoshi; Okada, Kensuke; Kishino, Hirohisa; Sakai, Saeko; Kamio, Yoko; Kojima, Masayo; Suzuki, Sadao; Kanne, Stephen M.

    2014-01-01

    We comprehensively compared all available questionnaires for measuring quantitative autistic traits (QATs) in terms of reliability and construct validity in 3,147 non-clinical and 60 clinical subjects with normal intelligence. We examined four full-length forms, the Subthreshold Autism Trait Questionnaire (SATQ), the Broader Autism Phenotype…

  17. TECHNOLOGICAL INNOVATION IN NEUROSURGERY: A QUANTITATIVE STUDY

    PubMed Central

    Marcus, Hani J; Hughes-Hallett, Archie; Kwasnicki, Richard M; Darzi, Ara; Yang, Guang-Zhong; Nandi, Dipankar

    2015-01-01

    Object Technological innovation within healthcare may be defined as the introduction of a new technology that initiates a change in clinical practice. Neurosurgery is a particularly technologically intensive surgical discipline, and new technologies have preceded many of the major advances in operative neurosurgical technique. The aim of the present study was to quantitatively evaluate technological innovation in neurosurgery using patents and peer-reviewed publications as metrics of technology development and clinical translation respectively. Methods A patent database was searched between 1960 and 2010 using the search terms “neurosurgeon” OR “neurosurgical” OR “neurosurgery”. The top 50 performing patent codes were then grouped into technology clusters. Patent and publication growth curves were then generated for these technology clusters. A top performing technology cluster was then selected as an exemplar for more detailed analysis of individual patents. Results In all, 11,672 patents and 208,203 publications relating to neurosurgery were identified. The top performing technology clusters over the 50 years were: image guidance devices, clinical neurophysiology devices, neuromodulation devices, operating microscopes and endoscopes. Image guidance and neuromodulation devices demonstrated a highly correlated rapid rise in patents and publications, suggesting they are areas of technology expansion. In-depth analysis of neuromodulation patents revealed that the majority of high performing patents were related to Deep Brain Stimulation (DBS). Conclusions Patent and publication data may be used to quantitatively evaluate technological innovation in neurosurgery. PMID:25699414

  18. Technological innovation in neurosurgery: a quantitative study.

    PubMed

    Marcus, Hani J; Hughes-Hallett, Archie; Kwasnicki, Richard M; Darzi, Ara; Yang, Guang-Zhong; Nandi, Dipankar

    2015-07-01

    Technological innovation within health care may be defined as the introduction of a new technology that initiates a change in clinical practice. Neurosurgery is a particularly technology-intensive surgical discipline, and new technologies have preceded many of the major advances in operative neurosurgical techniques. The aim of the present study was to quantitatively evaluate technological innovation in neurosurgery using patents and peer-reviewed publications as metrics of technology development and clinical translation, respectively. The authors searched a patent database for articles published between 1960 and 2010 using the Boolean search term "neurosurgeon OR neurosurgical OR neurosurgery." The top 50 performing patent codes were then grouped into technology clusters. Patent and publication growth curves were then generated for these technology clusters. A top-performing technology cluster was then selected as an exemplar for a more detailed analysis of individual patents. In all, 11,672 patents and 208,203 publications related to neurosurgery were identified. The top-performing technology clusters during these 50 years were image-guidance devices, clinical neurophysiology devices, neuromodulation devices, operating microscopes, and endoscopes. In relation to image-guidance and neuromodulation devices, the authors found a highly correlated rapid rise in the numbers of patents and publications, which suggests that these are areas of technology expansion. An in-depth analysis of neuromodulation-device patents revealed that the majority of well-performing patents were related to deep brain stimulation. Patent and publication data may be used to quantitatively evaluate technological innovation in neurosurgery.

  19. Quantitative Oxygenation Venography from MRI Phase

    PubMed Central

    Fan, Audrey P.; Bilgic, Berkin; Gagnon, Louis; Witzel, Thomas; Bhat, Himanshu; Rosen, Bruce R.; Adalsteinsson, Elfar

    2014-01-01

    Purpose To demonstrate acquisition and processing methods for quantitative oxygenation venograms that map in vivo oxygen saturation (SvO2) along cerebral venous vasculature. Methods Regularized quantitative susceptibility mapping (QSM) is used to reconstruct susceptibility values and estimate SvO2 in veins. QSM with ℓ1 and ℓ2 regularization are compared in numerical simulations of vessel structures with known magnetic susceptibility. Dual-echo, flow-compensated phase images are collected in three healthy volunteers to create QSM images. Bright veins in the susceptibility maps are vectorized and used to form a three-dimensional vascular mesh, or venogram, along which to display SvO2 values from QSM. Results Quantitative oxygenation venograms that map SvO2 along brain vessels of arbitrary orientation and geometry are shown in vivo. SvO2 values in major cerebral veins lie within the normal physiological range reported by 15O positron emission tomography. SvO2 from QSM is consistent with previous MR susceptometry methods for vessel segments oriented parallel to the main magnetic field. In vessel simulations, ℓ1 regularization results in less than 10% SvO2 absolute error across all vessel tilt orientations and provides more accurate SvO2 estimation than ℓ2 regularization. Conclusion The proposed analysis of susceptibility images enables reliable mapping of quantitative SvO2 along venograms and may facilitate clinical use of venous oxygenation imaging. PMID:24006229

  20. Quantitative assessment of upper extremities motor function in multiple sclerosis.

    PubMed

    Daunoraviciene, Kristina; Ziziene, Jurgita; Griskevicius, Julius; Pauk, Jolanta; Ovcinikova, Agne; Kizlaitiene, Rasa; Kaubrys, Gintaras

    2018-05-18

    Upper extremity (UE) motor function deficits are commonly noted in multiple sclerosis (MS) patients and assessing it is challenging because of the lack of consensus regarding its definition. Instrumented biomechanical analysis of upper extremity movements can quantify coordination with different spatiotemporal measures and facilitate disability rating in MS patients. To identify objective quantitative parameters for more accurate evaluation of UE disability and relate it to existing clinical scores. Thirty-four MS patients and 24 healthy controls (CG) performed a finger-to-nose test as fast as possible and, in addition, clinical evaluation kinematic parameters of UE were measured by using inertial sensors. Generally, a higher disability score was associated with an increase of several temporal parameters, like slower task performance. The time taken to touch their nose was longer when the task was fulfilled with eyes closed. Time to peak angular velocity significantly changed in MS patients (EDSS > 5.0). The inter-joint coordination significantly decreases in MS patients (EDSS 3.0-5.5). Spatial parameters indicated that maximal ROM changes were in elbow flexion. Our findings have revealed that spatiotemporal parameters are related to the UE motor function and MS disability level. Moreover, they facilitate clinical rating by supporting clinical decisions with quantitative data.

  1. Quantitative and multiplexed detection for blood typing based on quantum dot-magnetic bead assay.

    PubMed

    Xu, Ting; Zhang, Qiang; Fan, Ya-Han; Li, Ru-Qing; Lu, Hua; Zhao, Shu-Ming; Jiang, Tian-Lun

    2017-01-01

    Accurate and reliable blood grouping is essential for safe blood transfusion. However, conventional methods are qualitative and use only single-antigen detection. We overcame these limitations by developing a simple, quantitative, and multiplexed detection method for blood grouping using quantum dots (QDs) and magnetic beads. In the QD fluorescence assay (QFA), blood group A and B antigens were quantified using QD labeling and magnetic beads, and the blood groups were identified according to the R value (the value was calculated with the fluorescence intensity from dual QD labeling) of A and B antigens. The optimized performance of QFA was established by blood typing 791 clinical samples. Quantitative and multiplexed detection for blood group antigens can be completed within 35 min with more than 10 5 red blood cells. When conditions are optimized, the assay performance is satisfactory for weak samples. The coefficients of variation between and within days were less than 10% and the reproducibility was good. The ABO blood groups of 791 clinical samples were identified by QFA, and the accuracy obtained was 100% compared with the tube test. Receiver-operating characteristic curves revealed that the QFA has high sensitivity and specificity toward clinical samples, and the cutoff points of the R value of A and B antigens were 1.483 and 1.576, respectively. In this study, we reported a novel quantitative and multiplexed method for the identification of ABO blood groups and presented an effective alternative for quantitative blood typing. This method can be used as an effective tool to improve blood typing and further guarantee clinical transfusion safety.

  2. Quantitative measures detect sensory and motor impairments in multiple sclerosis.

    PubMed

    Newsome, Scott D; Wang, Joseph I; Kang, Jonathan Y; Calabresi, Peter A; Zackowski, Kathleen M

    2011-06-15

    Sensory and motor dysfunction in multiple sclerosis (MS) is often assessed with rating scales which rely heavily on clinical judgment. Quantitative devices may be more precise than rating scales. To quantify lower extremity sensorimotor measures in individuals with MS, evaluate the extent to which they can detect functional systems impairments, and determine their relationship to global disability measures. We tested 145 MS subjects and 58 controls. Vibration thresholds were quantified using a Vibratron-II device. Strength was quantified by a hand-held dynamometer. We also recorded Expanded Disability Status Scale (EDSS) and Timed 25-Foot Walk (T25FW). t-tests and Wilcoxon-rank sum were used to compare group data. Spearman correlations were used to assess relationships between each measure. We also used a step-wise linear regression model to determine how much the quantitative measures explain the variance in the respective functional systems scores (FSS). EDSS scores ranged from 0-7.5, mean disease duration was 10.4 ± 9.6 years, and 66% were female. In relapsing-remitting MS, but not progressive MS, poorer vibration sensation correlated with a worse EDSS score, whereas progressive groups' ankle/hip strength changed significantly with EDSS progression. Interestingly, not only did sensorimotor measures significantly correlate with global disability measures (i.e., EDSS), but they had improved sensitivity, as they detected impairments in up to 32% of MS subjects with normal sensory and pyramidal FSS. Sensory and motor deficits in MS can be quantified using clinically accessible tools and distinguish differences among MS subtypes. We show that quantitative sensorimotor measures are more sensitive than FSS from the EDSS. These tools have the potential to be used as clinical outcome measures in practice and for future MS clinical trials of neurorehabilitative and neuroreparative interventions. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Quantitative measures detect sensory and motor impairments in multiple sclerosis

    PubMed Central

    Newsome, Scott D.; Wang, Joseph I.; Kang, Jonathan Y.; Calabresi, Peter A.; Zackowski, Kathleen M.

    2011-01-01

    Background Sensory and motor dysfunction in multiple sclerosis (MS) is often assessed with rating scales which rely heavily on clinical judgment. Quantitative devices may be more precise than rating scales. Objective To quantify lower extremity sensorimotor measures in individuals with MS, evaluate the extent to which they can detect functional systems impairments, and determine their relationship to global disability measures. Methods We tested 145 MS subjects and 58 controls. Vibration thresholds were quantified using a Vibratron-II device. Strength was quantified by a hand-held dynamometer. We also recorded Expanded Disability Status Scale (EDSS) and timed 25-foot walk (T25FW). T-tests and Wilcoxon-rank sum were used to compare group data. Spearman correlations were used to assess relationships between each measure. We also used a step-wise linear regression model to determine how much the quantitative measures explain the variance in the respective functional systems scores (FSS). Results EDSS scores ranged from 0-7.5, mean disease duration was 10.4±9.6 years, and 66% were female. In RRMS, but not progressive MS, poorer vibration sensation correlated with a worse EDSS score, whereas progressive groups’ ankle/hip strength changed significantly with EDSS progression. Interestingly, not only did sensorimotor measures significantly correlate with global disability measures (EDSS), but they had improved sensitivity, as they detected impairments in up to 32% of MS subjects with normal sensory FSS. Conclusions Sensory and motor deficits can be quantified using clinically accessible tools and distinguish differences among MS subtypes. We show that quantitative sensorimotor measures are more sensitive than FSS from the EDSS. These tools have the potential to be used as clinical outcome measures in practice and for future MS clinical trials of neurorehabilitative and neuroreparative interventions. PMID:21458828

  4. Improved salvage of complicated microvascular transplants monitored with quantitative fluorometry.

    PubMed

    Whitney, T M; Lineaweaver, W C; Billys, J B; Siko, P P; Buncke, G M; Alpert, B S; Oliva, A; Buncke, H J

    1992-07-01

    Quantitative fluorometry has been used to monitor circulation in transplanted toes and cutaneous flaps in our unit since 1982. Analysis of 177 uncomplicated transplants monitored by quantitative fluorometry shows that this technique has low false indication rates for arterial occlusion (0.6 percent of patients) and venous occlusion (6.2 percent of patients). None of these patients was reexplored because of a false monitor reading, and except for single abnormal sequences, monitoring appropriately indicated intact circulation throughout the postoperative period. Quantitative fluorometry has correctly indicated vascular complications in 21 (91.3 percent) of 23 transplants over an 8-year period. The salvage rate (85.7 percent) of the fluorescein-monitored reexplored transplants was significantly higher than the salvage rates of similar reexplored transplants not monitored with fluorescein and of reexplored muscle flaps (which cannot be monitored with the fluorometer used at this unit). These clinical data indicate that quantitative fluorometry is a valid and useful postoperative monitor for transplanted toes and cutaneous flaps.

  5. Comparative Evaluation of Four Real-Time PCR Methods for the Quantitative Detection of Epstein-Barr Virus from Whole Blood Specimens.

    PubMed

    Buelow, Daelynn; Sun, Yilun; Tang, Li; Gu, Zhengming; Pounds, Stanley; Hayden, Randall

    2016-07-01

    Monitoring of Epstein-Barr virus (EBV) load in immunocompromised patients has become integral to their care. An increasing number of reagents are available for quantitative detection of EBV; however, there are little published comparative data. Four real-time PCR systems (one using laboratory-developed reagents and three using analyte-specific reagents) were compared with one another for detection of EBV from whole blood. Whole blood specimens seeded with EBV were used to determine quantitative linearity, analytical measurement range, lower limit of detection, and CV for each assay. Retrospective testing of 198 clinical samples was performed in parallel with all methods; results were compared to determine relative quantitative and qualitative performance. All assays showed similar performance. No significant difference was found in limit of detection (3.12-3.49 log10 copies/mL; P = 0.37). A strong qualitative correlation was seen with all assays that used clinical samples (positive detection rates of 89.5%-95.8%). Quantitative correlation of clinical samples across assays was also seen in pairwise regression analysis, with R(2) ranging from 0.83 to 0.95. Normalizing clinical sample results to IU/mL did not alter the quantitative correlation between assays. Quantitative EBV detection by real-time PCR can be performed over a wide linear dynamic range, using three different commercially available reagents and laboratory-developed methods. EBV was detected with comparable sensitivity and quantitative correlation for all assays. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  6. Fifteen symposia on microdosimetry: implications for modern particle-beam cancer radiotherapy.

    PubMed

    Wambersie, A; Menzel, H; Gueulette, J; Pihet, P

    2015-09-01

    The objective of microdosimetry was, and still is, to identify physical descriptions of the initial physical processes of ionising radiation interacting with biological matter which correlate with observed radiobiological effects with a view to improve the understanding of radiobiological mechanisms and effects. The introduction of therapy with particles starting with fast neutrons followed by negative pions, protons and light ions necessitated the application of biological weighting factors for absorbed dose in order to account for differences of the relative biological effectiveness (RBE). Dedicated radiobiological experiments in therapy beams with mammalian cells and with laboratory animals provided sets of RBE values which are used to evaluate empirical 'clinical RBE values'. The combination of such experiments with microdosimetric measurements in identical conditions offered the possibility to establish semi-empirical relationships between microdosimetric parameters and results of RBE studies. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Clinical evaluation of the COBAS Ampliprep/COBAS TaqMan for HCV RNA quantitation in comparison with the branched-DNA assay.

    PubMed

    Pittaluga, Fabrizia; Allice, Tiziano; Abate, Maria Lorena; Ciancio, Alessia; Cerutti, Francesco; Varetto, Silvia; Colucci, Giuseppe; Smedile, Antonina; Ghisetti, Valeria

    2008-02-01

    Diagnosis and monitoring of HCV infection relies on sensitive and accurate HCV RNA detection and quantitation. The performance of the COBAS AmpliPrep/COBAS TaqMan 48 (CAP/CTM) (Roche, Branchburg, NJ), a fully automated, real-time PCR HCV RNA quantitative test was assessed and compared with the branched-DNA (bDNA) assay. Clinical evaluation on 576 specimens obtained from patients with chronic hepatitis C showed a good correlation (r = 0.893) between the two test, but the CAP/CTM scored higher HCV RNA titers than the bDNA across all viral genotypes. The mean bDNA versus CAP/CTM log10 IU/ml differences were -0.49, -0.4, -0.54, -0.26 for genotype 1a, 1b, 2a/2c, 3a, and 4, respectively. These differences reached statistical significance for genotypes 1b, 2a/c, and 3a. The ability of the CAP/CTM to monitor patients undergoing antiviral therapy and correctly identify the weeks 4 and 12 rapid and early virological responses was confirmed. The broader dynamic range of the CAP/CTM compared with the bDNA allowed for a better definition of viral kinetics. In conclusion, the CAP/CTM appears as a reliable and user-friendly assay to monitor HCV viremia during treatment of patients with chronic hepatitis. Its high sensitivity and wide dynamic range may help a better definition of viral load changes during antiviral therapy. (Copyright) 2007 Wiley-Liss, Inc.

  8. Timed function tests, motor function measure, and quantitative thigh muscle MRI in ambulant children with Duchenne muscular dystrophy: A cross-sectional analysis.

    PubMed

    Schmidt, Simone; Hafner, Patricia; Klein, Andrea; Rubino-Nacht, Daniela; Gocheva, Vanya; Schroeder, Jonas; Naduvilekoot Devasia, Arjith; Zuesli, Stephanie; Bernert, Guenther; Laugel, Vincent; Bloetzer, Clemens; Steinlin, Maja; Capone, Andrea; Gloor, Monika; Tobler, Patrick; Haas, Tanja; Bieri, Oliver; Zumbrunn, Thomas; Fischer, Dirk; Bonati, Ulrike

    2018-01-01

    The development of new therapeutic agents for the treatment of Duchenne muscular dystrophy has put a focus on defining outcome measures most sensitive to capture treatment effects. This cross-sectional analysis investigates the relation between validated clinical assessments such as the 6-minute walk test, motor function measure and quantitative muscle MRI of thigh muscles in ambulant Duchenne muscular dystrophy patients, aged 6.5 to 10.8 years (mean 8.2, SD 1.1). Quantitative muscle MRI included the mean fat fraction using a 2-point Dixon technique, and transverse relaxation time (T2) measurements. All clinical assessments were highly significantly inter-correlated with p < 0.001. The strongest correlation with the motor function measure and its D1-subscore was shown by the 6-minute walk test. Clinical assessments showed no correlation with age. Importantly, quantitative muscle MRI values significantly correlated with all clinical assessments with the extensors showing the strongest correlation. In contrast to the clinical assessments, quantitative muscle MRI values were highly significantly correlated with age. In conclusion, the motor function measure and timed function tests measure disease severity in a highly comparable fashion and all tests correlated with quantitative muscle MRI values quantifying fatty muscle degeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Quantitative imaging of bilirubin by photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2013-03-01

    Noninvasive detection of both bilirubin concentration and its distribution is important for disease diagnosis. Here we implemented photoacoustic microscopy (PAM) to detect bilirubin distribution. We first demonstrate that our PAM system can measure the absorption spectra of bilirubin and blood. We also image bilirubin distributions in tissuemimicking samples, both without and with blood mixed. Our results show that PAM has the potential to quantitatively image bilirubin in vivo for clinical applications.

  10. Leaflet manual of external beam radiation therapy for hepatocellular carcinoma: a review of the indications, evidences, and clinical trials.

    PubMed

    Rim, Chai Hong; Yoon, Won Sup

    2018-01-01

    The use of external beam radiation therapy (EBRT) in the treatment of hepatocellular carcinoma (HCC), which was rarely performed due to liver toxicity with a previous technique, has increased. Palliation of portal vein thrombosis, supplementation for insufficient transarterial chemoembolization, and provision of new curative opportunities using stereotactic body radiotherapy are the potential indications for use of EBRT. The mechanism of EBRT treatment, with its radiobiological and physical perspectives, differs from those of conventional medical treatment or surgery. Therefore, understanding the effects of EBRT may be unfamiliar to physicians other than radiation oncologists, especially in the field of HCC, where EBRT has recently begun to be applied. The first objective of this review was to concisely explain the indications for use of EBRT for HCC for all physicians treating HCC. Therefore, this review focuses on the therapeutic outcomes rather than the detailed biological and physical background. We also reviewed recent clinical trials that may extend the indications for use of EBRT. Finally, we reviewed the current clinical practice guidelines for the treatment of HCC and discuss the current recommendations and future perspectives.

  11. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network

    PubMed Central

    Fedorov, Andriy; Beichel, Reinhard; Kalpathy-Cramer, Jayashree; Finet, Julien; Fillion-Robin, Jean-Christophe; Pujol, Sonia; Bauer, Christian; Jennings, Dominique; Fennessy, Fiona; Sonka, Milan; Buatti, John; Aylward, Stephen; Miller, James V.; Pieper, Steve; Kikinis, Ron

    2012-01-01

    Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm, and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future

  12. Quantitative template for subtyping primary progressive aphasia.

    PubMed

    Mesulam, Marsel; Wieneke, Christina; Rogalski, Emily; Cobia, Derin; Thompson, Cynthia; Weintraub, Sandra

    2009-12-01

    The syndrome of primary progressive aphasia (PPA) is diagnosed when a gradual failure of word usage or comprehension emerges as the principal feature of a neurodegenerative disease. To provide a quantitative algorithm for classifying PPA into agrammatic (PPA-G), semantic (PPA-S), and logopenic (PPA-L) variants, each of which is known to have a different probability of association with Alzheimer disease vs frontotemporal lobar degeneration. Prospective study. University medical center. Sixteen consecutively enrolled patients with PPA who underwent neuropsychological testing and magnetic resonance imaging recruited nationally in the United States as part of a longitudinal study. A 2-dimensional template that reflects performance on tests of syntax (Northwestern Anagram Test) and lexical semantics (Peabody Picture Vocabulary Test-Fourth Edition) classified all 16 patients in concordance with a clinical diagnosis that had been made before the administration of quantitative tests. All 3 PPA subtypes had distinctly asymmetrical atrophy of the left perisylvian language network. Each subtype also had distinctive peak atrophy sites: PPA-G in the inferior frontal gyrus (Broca area), PPA-S in the anterior temporal lobe, and PPA-L in Brodmann area 37. Once an accurate root diagnosis of PPA is made, subtyping can be quantitatively guided using a 2-dimensional template based on orthogonal tasks of grammatical competence and word comprehension. Although the choice of tasks and the precise cutoff levels may need to be adjusted to fit linguistic and educational backgrounds, these 16 patients demonstrate the feasibility of using a simple algorithm for clinicoanatomical classification in PPA. Prospective studies will show whether this subtyping can improve clinical prediction of the underlying neuropathologic condition.

  13. Clinical Pedodontics: An Approach Based on Comprehensive Care.

    ERIC Educational Resources Information Center

    And Others; Bennett, Carroll G.

    1981-01-01

    The University of Florida uses a comprehensive care system to teach clinical pedodontics. Several block clinics permit further experience with children. Details of the program are described, and quantitative results of patient treatment are compared with those of other clinical pedodontics programs. (MSE)

  14. Quantitative systems toxicology

    PubMed Central

    Bloomingdale, Peter; Housand, Conrad; Apgar, Joshua F.; Millard, Bjorn L.; Mager, Donald E.; Burke, John M.; Shah, Dhaval K.

    2017-01-01

    The overarching goal of modern drug development is to optimize therapeutic benefits while minimizing adverse effects. However, inadequate efficacy and safety concerns remain to be the major causes of drug attrition in clinical development. For the past 80 years, toxicity testing has consisted of evaluating the adverse effects of drugs in animals to predict human health risks. The U.S. Environmental Protection Agency recognized the need to develop innovative toxicity testing strategies and asked the National Research Council to develop a long-range vision and strategy for toxicity testing in the 21st century. The vision aims to reduce the use of animals and drug development costs through the integration of computational modeling and in vitro experimental methods that evaluates the perturbation of toxicity-related pathways. Towards this vision, collaborative quantitative systems pharmacology and toxicology modeling endeavors (QSP/QST) have been initiated amongst numerous organizations worldwide. In this article, we discuss how quantitative structure-activity relationship (QSAR), network-based, and pharmacokinetic/pharmacodynamic modeling approaches can be integrated into the framework of QST models. Additionally, we review the application of QST models to predict cardiotoxicity and hepatotoxicity of drugs throughout their development. Cell and organ specific QST models are likely to become an essential component of modern toxicity testing, and provides a solid foundation towards determining individualized therapeutic windows to improve patient safety. PMID:29308440

  15. Quantitative methods in electroencephalography to access therapeutic response.

    PubMed

    Diniz, Roseane Costa; Fontenele, Andrea Martins Melo; Carmo, Luiza Helena Araújo do; Ribeiro, Aurea Celeste da Costa; Sales, Fábio Henrique Silva; Monteiro, Sally Cristina Moutinho; Sousa, Ana Karoline Ferreira de Castro

    2016-07-01

    Pharmacometrics or Quantitative Pharmacology aims to quantitatively analyze the interaction between drugs and patients whose tripod: pharmacokinetics, pharmacodynamics and disease monitoring to identify variability in drug response. Being the subject of central interest in the training of pharmacists, this work was out with a view to promoting this idea on methods to access the therapeutic response of drugs with central action. This paper discusses quantitative methods (Fast Fourier Transform, Magnitude Square Coherence, Conditional Entropy, Generalised Linear semi-canonical Correlation Analysis, Statistical Parametric Network and Mutual Information Function) used to evaluate the EEG signals obtained after administration regimen of drugs, the main findings and their clinical relevance, pointing it as a contribution to construction of different pharmaceutical practice. Peter Anderer et. al in 2000 showed the effect of 20mg of buspirone in 20 healthy subjects after 1, 2, 4, 6 and 8h after oral ingestion of the drug. The areas of increased power of the theta frequency occurred mainly in the temporo-occipital - parietal region. It has been shown by Sampaio et al., 2007 that the use of bromazepam, which allows the release of GABA (gamma amino butyric acid), an inhibitory neurotransmitter of the central nervous system could theoretically promote dissociation of cortical functional areas, a decrease of functional connectivity, a decrease of cognitive functions by means of smaller coherence (electrophysiological magnitude measured from the EEG by software) values. Ahmad Khodayari-Rostamabad et al. in 2015 talk that such a measure could be a useful clinical tool potentially to assess adverse effects of opioids and hence give rise to treatment guidelines. There was the relation between changes in pain intensity and brain sources (at maximum activity locations) during remifentanil infusion despite its potent analgesic effect. The statement of mathematical and computational

  16. Rapid quantitation of neuraminidase inhibitor drug resistance in influenza virus quasispecies.

    PubMed

    Lackenby, Angie; Democratis, Jane; Siqueira, Marilda M; Zambon, Maria C

    2008-01-01

    Emerging resistance of influenza viruses to neuraminidase inhibitors is a concern, both in surveillance of global circulating strains and in treatment of individual patients. Current methodologies to detect resistance rely on the use of cultured virus, thus taking time to complete or lacking the sensitivity to detect mutations in viral quasispecies. Methodology for rapid detection of clinically meaningful resistance is needed to assist individual patient management and to track the transmission of resistant viruses in the community. We have developed a pyrosequencing methodology to detect and quantitate influenza neuraminidase inhibitor resistance mutations in cultured virus and directly in clinical material. Our assays target polymorphisms associated with drug resistance in the neuraminidase genes of human influenza A H1N1 as well as human and avian H5N1 viruses. Quantitation can be achieved using viral RNA extracted directly from respiratory or tissue samples, thus eliminating the need for virus culture and allowing the assay of highly pathogenic viruses such as H5N1 without high containment laboratory facilities. Antiviral-resistant quasispecies are detected and quantitated accurately when present in the total virus population at levels as low as 10%. Pyrosequencing is a real-time assay; therefore, results can be obtained within a clinically relevant timeframe and provide information capable of informing individual patient or outbreak management. Pyrosequencing is ideally suited for early identification of emerging antiviral resistance in human and avian influenza infection and is a useful tool for laboratory surveillance and pandemic preparedness.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaorsky, Nicholas G.; Malatesta, Theresa M.; Den, Robert B.

    Purpose: Few medical students are given proper clinical training in oncology, much less radiation oncology. We attempted to assess the value of adding a radiation oncology clinical rotation to the medical school curriculum. Methods and Materials: In July 2010, Jefferson Medical College began to offer a 3-week radiation oncology rotation as an elective course for third-year medical students during the core surgical clerkship. During 2010 to 2012, 52 medical students chose to enroll in this rotation. The rotation included outpatient clinics, inpatient consults, didactic sessions, and case-based presentations by the students. Tests of students' knowledge of radiation oncology were administeredmore » anonymously before and after the rotation to evaluate the educational effectiveness of the rotation. Students and radiation oncology faculty were given surveys to assess feedback about the rotation. Results: The students' prerotation test scores had an average of 64% (95% confidence interval [CI], 61-66%). The postrotation test scores improved to an average of 82% (95% CI, 80-83%; 18% absolute improvement). In examination question analysis, scores improved in clinical oncology from 63% to 79%, in radiobiology from 70% to 77%, and in medical physics from 62% to 88%. Improvements in all sections but radiobiology were statistically significant. Students rated the usefulness of the rotation as 8.1 (scale 1-9; 95% CI, 7.3-9.0), their understanding of radiation oncology as a result of the rotation as 8.8 (95% CI, 8.5-9.1), and their recommendation of the rotation to a classmate as 8.2 (95% CI, 7.6-9.0). Conclusions: Integrating a radiation oncology clinical rotation into the medical school curriculum improves student knowledge of radiation oncology, including aspects of clinical oncology, radiobiology, and medical physics. The rotation is appreciated by both students and faculty.« less

  18. The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions.

    PubMed

    Kessler, Larry G; Barnhart, Huiman X; Buckler, Andrew J; Choudhury, Kingshuk Roy; Kondratovich, Marina V; Toledano, Alicia; Guimaraes, Alexander R; Filice, Ross; Zhang, Zheng; Sullivan, Daniel C

    2015-02-01

    The development and implementation of quantitative imaging biomarkers has been hampered by the inconsistent and often incorrect use of terminology related to these markers. Sponsored by the Radiological Society of North America, an interdisciplinary group of radiologists, statisticians, physicists, and other researchers worked to develop a comprehensive terminology to serve as a foundation for quantitative imaging biomarker claims. Where possible, this working group adapted existing definitions derived from national or international standards bodies rather than invent new definitions for these terms. This terminology also serves as a foundation for the design of studies that evaluate the technical performance of quantitative imaging biomarkers and for studies of algorithms that generate the quantitative imaging biomarkers from clinical scans. This paper provides examples of research studies and quantitative imaging biomarker claims that use terminology consistent with these definitions as well as examples of the rampant confusion in this emerging field. We provide recommendations for appropriate use of quantitative imaging biomarker terminological concepts. It is hoped that this document will assist researchers and regulatory reviewers who examine quantitative imaging biomarkers and will also inform regulatory guidance. More consistent and correct use of terminology could advance regulatory science, improve clinical research, and provide better care for patients who undergo imaging studies. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  19. WE-F-BRB-01: The Power of Ontologies and Standardized Terminologies for Capturing Clinical Knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabriel, P.

    2015-06-15

    Advancements in informatics in radiotherapy are opening up opportunities to improve our ability to assess treatment plans. Models on individualizing patient dose constraints from prior patient data and shape relationships have been extensively researched and are now making their way into commercial products. New developments in knowledge based treatment planning involve understanding the impact of the radiation dosimetry on the patient. Akin to radiobiology models that have driven intensity modulated radiotherapy optimization, toxicity and outcome predictions based on treatment plans and prior patient experiences may be the next step in knowledge based planning. In order to realize these predictions, itmore » is necessary to understand how the clinical information can be captured, structured and organized with ontologies and databases designed for recall. Large databases containing radiation dosimetry and outcomes present the opportunity to evaluate treatment plans against predictions of toxicity and disease response. Such evaluations can be based on dose volume histogram or even the full 3-dimensional dose distribution and its relation to the critical anatomy. This session will provide an understanding of ontologies and standard terminologies used to capture clinical knowledge into structured databases; How data can be organized and accessed to utilize the knowledge in planning; and examples of research and clinical efforts to incorporate that clinical knowledge into planning for improved care for our patients. Learning Objectives: Understand the role of standard terminologies, ontologies and data organization in oncology Understand methods to capture clinical toxicity and outcomes in a clinical setting Understand opportunities to learn from clinical data and its application to treatment planning Todd McNutt receives funding from Philips, Elekta and Toshiba for some of the work presented.« less

  20. [Evaluation on methodological problems in reports concerning quantitative analysis of syndrome differentiation of diabetes mellitus].

    PubMed

    Chen, Bi-Cang; Wu, Qiu-Ying; Xiang, Cheng-Bin; Zhou, Yi; Guo, Ling-Xiang; Zhao, Neng-Jiang; Yang, Shu-Yu

    2006-01-01

    To evaluate the quality of reports published in recent 10 years in China about quantitative analysis of syndrome differentiation for diabetes mellitus (DM) in order to explore the methodological problems in these reports and find possible solutions. The main medical literature databases in China were searched. Thirty-one articles were included and evaluated by the principles of clinical epidemiology. There were many mistakes and deficiencies in these articles, such as clinical trial designs, diagnosis criteria for DM, standards of syndrome differentiation of DM, case inclusive and exclusive criteria, sample size and estimation, data comparability and statistical methods. It is necessary and important to improve the quality of reports concerning quantitative analysis of syndrome differentiation of DM in light of the principles of clinical epidemiology.

  1. Impact of amyloid-beta changes on cognitive outcomes in Alzheimer's disease: analysis of clinical trials using a quantitative systems pharmacology model.

    PubMed

    Geerts, Hugo; Spiros, Athan; Roberts, Patrick

    2018-02-02

    Despite a tremendous amount of information on the role of amyloid in Alzheimer's disease (AD), almost all clinical trials testing this hypothesis have failed to generate clinically relevant cognitive effects. We present an advanced mechanism-based and biophysically realistic quantitative systems pharmacology computer model of an Alzheimer-type neuronal cortical network that has been calibrated with Alzheimer Disease Assessment Scale, cognitive subscale (ADAS-Cog) readouts from historical clinical trials and simulated the differential impact of amyloid-beta (Aβ40 and Aβ42) oligomers on glutamate and nicotinic neurotransmission. Preclinical data suggest a beneficial effect of shorter Aβ forms within a limited dose range. Such a beneficial effect of Aβ40 on glutamate neurotransmission in human patients is absolutely necessary to reproduce clinical data on the ADAS-Cog in minimal cognitive impairment (MCI) patients with and without amyloid load, the effect of APOE genotype effect on the slope of the cognitive trajectory over time in placebo AD patients and higher sensitivity to cholinergic manipulation with scopolamine associated with higher Aβ in MCI subjects. We further derive a relationship between units of Aβ load in our model and the standard uptake value ratio from amyloid imaging. When introducing the documented clinical pharmacodynamic effects on Aβ levels for various amyloid-related clinical interventions in patients with low Aβ baseline, the platform predicts an overall significant worsening for passive vaccination with solanezumab, beta-secretase inhibitor verubecestat and gamma-secretase inhibitor semagacestat. In contrast, all three interventions improved cognition in subjects with moderate to high baseline Aβ levels, with verubecestat anticipated to have the greatest effect (around ADAS-Cog value 1.5 points), solanezumab the lowest (0.8 ADAS-Cog value points) and semagacestat in between. This could explain the success of many amyloid

  2. Identification of Novel Tumor-Associated Cell Surface Sialoglycoproteins in Human Glioblastoma Tumors Using Quantitative Proteomics

    PubMed Central

    Autelitano, François; Loyaux, Denis; Roudières, Sébastien; Déon, Catherine; Guette, Frédérique; Fabre, Philippe; Ping, Qinggong; Wang, Su; Auvergne, Romane; Badarinarayana, Vasudeo; Smith, Michael; Guillemot, Jean-Claude; Goldman, Steven A.; Natesan, Sridaran; Ferrara, Pascual; August, Paul

    2014-01-01

    Glioblastoma multiform (GBM) remains clinical indication with significant “unmet medical need”. Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG) cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR) in combination with label-free quantitative mass spectrometry (LFQ-MS) to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs). We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72%) are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells. PMID:25360666

  3. Identification of novel tumor-associated cell surface sialoglycoproteins in human glioblastoma tumors using quantitative proteomics.

    PubMed

    Autelitano, François; Loyaux, Denis; Roudières, Sébastien; Déon, Catherine; Guette, Frédérique; Fabre, Philippe; Ping, Qinggong; Wang, Su; Auvergne, Romane; Badarinarayana, Vasudeo; Smith, Michael; Guillemot, Jean-Claude; Goldman, Steven A; Natesan, Sridaran; Ferrara, Pascual; August, Paul

    2014-01-01

    Glioblastoma multiform (GBM) remains clinical indication with significant "unmet medical need". Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG) cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR) in combination with label-free quantitative mass spectrometry (LFQ-MS) to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs). We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72%) are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells.

  4. Quantitative imaging test approval and biomarker qualification: interrelated but distinct activities.

    PubMed

    Buckler, Andrew J; Bresolin, Linda; Dunnick, N Reed; Sullivan, Daniel C; Aerts, Hugo J W L; Bendriem, Bernard; Bendtsen, Claus; Boellaard, Ronald; Boone, John M; Cole, Patricia E; Conklin, James J; Dorfman, Gary S; Douglas, Pamela S; Eidsaunet, Willy; Elsinger, Cathy; Frank, Richard A; Gatsonis, Constantine; Giger, Maryellen L; Gupta, Sandeep N; Gustafson, David; Hoekstra, Otto S; Jackson, Edward F; Karam, Lisa; Kelloff, Gary J; Kinahan, Paul E; McLennan, Geoffrey; Miller, Colin G; Mozley, P David; Muller, Keith E; Patt, Rick; Raunig, David; Rosen, Mark; Rupani, Haren; Schwartz, Lawrence H; Siegel, Barry A; Sorensen, A Gregory; Wahl, Richard L; Waterton, John C; Wolf, Walter; Zahlmann, Gudrun; Zimmerman, Brian

    2011-06-01

    Quantitative imaging biomarkers could speed the development of new treatments for unmet medical needs and improve routine clinical care. However, it is not clear how the various regulatory and nonregulatory (eg, reimbursement) processes (often referred to as pathways) relate, nor is it clear which data need to be collected to support these different pathways most efficiently, given the time- and cost-intensive nature of doing so. The purpose of this article is to describe current thinking regarding these pathways emerging from diverse stakeholders interested and active in the definition, validation, and qualification of quantitative imaging biomarkers and to propose processes to facilitate the development and use of quantitative imaging biomarkers. A flexible framework is described that may be adapted for each imaging application, providing mechanisms that can be used to develop, assess, and evaluate relevant biomarkers. From this framework, processes can be mapped that would be applicable to both imaging product development and to quantitative imaging biomarker development aimed at increasing the effectiveness and availability of quantitative imaging. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.10100800/-/DC1. RSNA, 2011

  5. Clinical Comparison of an Enhanced-Sensitivity Branched-DNA Assay and Reverse Transcription-PCR for Quantitation of Human Immunodeficiency Virus Type 1 RNA in Plasma

    PubMed Central

    Nolte, Frederick S.; Boysza, Jodi; Thurmond, Cathy; Clark, W. Scott; Lennox, Jeffrey L.

    1998-01-01

    The performance characteristics of an enhanced-sensitivity branched-DNA assay (bDNA) (Quantiplex HIV-1 version 2.0; Chiron Corp., Emeryville, Calif.) and a reverse transcription (RT)-PCR assay (AMPLICOR HIV-1 Monitor; Roche Diagnostic Systems, Inc., Branchburg, N.J.) were compared in a molecular diagnostic laboratory. Samples used in this evaluation included linearity and reproducibility panels made by dilution of a human immunodeficiency virus type 1 (HIV-1) stock culture of known virus particle count in HIV-1-negative plasma, a subtype panel consisting of HIV-1 subtypes A through F at a standardized level, and 64 baseline plasma specimens from HIV-1-infected individuals. Plots of log10 HIV RNA copies per milliliter versus log10 nominal virus particles per milliliter demonstrated that both assays were linear over the stated dynamic ranges (bDNA, r = 0.98; RT-PCR, r = 0.99), but comparison of the slopes of the regression lines (bDNA, m = 0.96; RT-PCR, m = 0.83) suggested that RT-PCR had greater proportional systematic error. The between-run coefficients of variation for bDNA and RT-PCR were 24.3 and 34.3%, respectively, for a sample containing 1,650 nominal virus particles/ml and 44.0 and 42.7%, respectively, for a sample containing 165 nominal virus particles/ml. Subtypes B, C, and D were quantitated with similar efficiencies by bDNA and RT-PCR; however, RT-PCR was less efficient in quantitating subtypes A, E, and F. One non-B subtype was recognized in our clinical specimens based on the ratio of values obtained with the two methods. HIV-1 RNA was quantitated in 53 (83%) baseline plasma specimens by bDNA and in 55 (86%) specimens by RT-PCR. RT-PCR values were consistently greater than bDNA values, with population means of 142,419 and 67,580 copies/ml, respectively (P < 0.01). The results were highly correlated (r = 0.91), but the agreement was poor (mean difference in log10 copies per milliliter ± 2 standard deviations, 0.45 ± 0.61) for the 50 clinical specimens

  6. Quantitative versus qualitative cultures of respiratory secretions for clinical outcomes in patients with ventilator-associated pneumonia.

    PubMed

    Berton, Danilo Cortozi; Kalil, Andre C; Cavalcanti, Manuela; Teixeira, Paulo José Zimermann

    2008-10-08

    Ventilator-associated pneumonia (VAP) is a common infectious disease in intensive care units (ICUs). The best diagnostic approach to resolve this condition remains uncertain. To evaluate whether quantitative cultures of respiratory secretions are effective in reducing mortality in immunocompetent patients with VAP, compared with qualitative cultures. We also considered changes in antibiotic use, length of ICU stay and mechanical ventilation. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2007, issue 4), which contains the Acute Respiratory Infections Group's Specialized Register; MEDLINE (1966 to December 2007); EMBASE (1974 to December 2007); and LILACS (1982 to December 2007). Randomized controlled trials (RCTs) comparing respiratory samples processed quantitatively or qualitatively, obtained by invasive or non-invasive methods from immunocompetent patients with VAP, and which analyzed the impact of these methods on antibiotic use and mortality rates. Two review authors independently reviewed and selected trials from the search results, and assessed studies for suitability, methodology and quality. We analyzed data using Review Manager software. We pooled the included studies to yield the risk ratio (RR) for mortality and antibiotic change with 95% confidence intervals (CI). Of the 3931 references identified from the electronic databases, five RCTs (1367 patients) met the inclusion criteria. Three studies compared invasive methods using quantitative cultures versus non-invasive methods using qualitative cultures, and were used to answer the main objective of this review. The other two studies compared invasive versus non-invasive methods, both using quantitative cultures. All five studies were combined to compare invasive versus non-invasive interventions for diagnosing VAP. The studies that compared quantitative and qualitative cultures (1240 patients) showed no statistically significant differences in mortality

  7. Quantitative Evaluation of Performance during Robot-assisted Treatment.

    PubMed

    Peri, E; Biffi, E; Maghini, C; Servodio Iammarrone, F; Gagliardi, C; Germiniasi, C; Pedrocchi, A; Turconi, A C; Reni, G

    2016-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Methodologies, Models and Algorithms for Patients Rehabilitation". The great potential of robots in extracting quantitative and meaningful data is not always exploited in clinical practice. The aim of the present work is to describe a simple parameter to assess the performance of subjects during upper limb robotic training exploiting data automatically recorded by the robot, with no additional effort for patients and clinicians. Fourteen children affected by cerebral palsy (CP) performed a training with Armeo®Spring. Each session was evaluated with P, a simple parameter that depends on the overall performance recorded, and median and interquartile values were computed to perform a group analysis. Median (interquartile) values of P significantly increased from 0.27 (0.21) at T0 to 0.55 (0.27) at T1 . This improvement was functionally validated by a significant increase of the Melbourne Assessment of Unilateral Upper Limb Function. The parameter described here was able to show variations in performance over time and enabled a quantitative evaluation of motion abilities in a way that is reliable with respect to a well-known clinical scale.

  8. 42 CFR Appendix E to Part 75 - Standards for Accreditation of Educational Programs for Radiation Therapy Technologists

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... universities; (b) Hospitals, clinics, or autonomous radiation oncology centers meeting the criteria for major... structure and function; (f) Oncologic pathology; (g) Radiation oncology; (h) Radiobiology; (i) Mathematics; (j) Radiation physics; (k) Radiation protection; (l) Radiation oncology technique; (m) Radiographic...

  9. 42 CFR Appendix E to Part 75 - Standards for Accreditation of Educational Programs for Radiation Therapy Technologists

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... universities; (b) Hospitals, clinics, or autonomous radiation oncology centers meeting the criteria for major... structure and function; (f) Oncologic pathology; (g) Radiation oncology; (h) Radiobiology; (i) Mathematics; (j) Radiation physics; (k) Radiation protection; (l) Radiation oncology technique; (m) Radiographic...

  10. 42 CFR Appendix E to Part 75 - Standards for Accreditation of Educational Programs for Radiation Therapy Technologists

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... universities; (b) Hospitals, clinics, or autonomous radiation oncology centers meeting the criteria for major... structure and function; (f) Oncologic pathology; (g) Radiation oncology; (h) Radiobiology; (i) Mathematics; (j) Radiation physics; (k) Radiation protection; (l) Radiation oncology technique; (m) Radiographic...

  11. 42 CFR Appendix E to Part 75 - Standards for Accreditation of Educational Programs for Radiation Therapy Technologists

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... universities; (b) Hospitals, clinics, or autonomous radiation oncology centers meeting the criteria for major... structure and function; (f) Oncologic pathology; (g) Radiation oncology; (h) Radiobiology; (i) Mathematics; (j) Radiation physics; (k) Radiation protection; (l) Radiation oncology technique; (m) Radiographic...

  12. Transforming clinical practice guidelines and clinical pathways into fast-and-frugal decision trees to improve clinical care strategies.

    PubMed

    Djulbegovic, Benjamin; Hozo, Iztok; Dale, William

    2018-02-27

    Contemporary delivery of health care is inappropriate in many ways, largely due to suboptimal Q5 decision-making. A typical approach to improve practitioners' decision-making is to develop evidence-based clinical practice guidelines (CPG) by guidelines panels, who are instructed to use their judgments to derive practice recommendations. However, mechanisms for the formulation of guideline judgments remains a "black-box" operation-a process with defined inputs and outputs but without sufficient knowledge of its internal workings. Increased explicitness and transparency in the process can be achieved by implementing CPG as clinical pathways (CPs) (also known as clinical algorithms or flow-charts). However, clinical recommendations thus derived are typically ad hoc and developed by experts in a theory-free environment. As any recommendation can be right (true positive or negative), or wrong (false positive or negative), the lack of theoretical structure precludes the quantitative assessment of the management strategies recommended by CPGs/CPs. To realize the full potential of CPGs/CPs, they need to be placed on more solid theoretical grounds. We believe this potential can be best realized by converting CPGs/CPs within the heuristic theory of decision-making, often implemented as fast-and-frugal (FFT) decision trees. This is possible because FFT heuristic strategy of decision-making can be linked to signal detection theory, evidence accumulation theory, and a threshold model of decision-making, which, in turn, allows quantitative analysis of the accuracy of clinical management strategies. Fast-and-frugal provides a simple and transparent, yet solid and robust, methodological framework connecting decision science to clinical care, a sorely needed missing link between CPGs/CPs and patient outcomes. We therefore advocate that all guidelines panels express their recommendations as CPs, which in turn should be converted into FFTs to guide clinical care. © 2018 John Wiley

  13. Quantitative Susceptibility Mapping in Parkinson's Disease.

    PubMed

    Langkammer, Christian; Pirpamer, Lukas; Seiler, Stephan; Deistung, Andreas; Schweser, Ferdinand; Franthal, Sebastian; Homayoon, Nina; Katschnig-Winter, Petra; Koegl-Wallner, Mariella; Pendl, Tamara; Stoegerer, Eva Maria; Wenzel, Karoline; Fazekas, Franz; Ropele, Stefan; Reichenbach, Jürgen Rainer; Schmidt, Reinhold; Schwingenschuh, Petra

    2016-01-01

    Quantitative susceptibility mapping (QSM) and R2* relaxation rate mapping have demonstrated increased iron deposition in the substantia nigra of patients with idiopathic Parkinson's disease (PD). However, the findings in other subcortical deep gray matter nuclei are converse and the sensitivity of QSM and R2* for morphological changes and their relation to clinical measures of disease severity has so far been investigated only sparsely. The local ethics committee approved this study and all subjects gave written informed consent. 66 patients with idiopathic Parkinson's disease and 58 control subjects underwent quantitative MRI at 3T. Susceptibility and R2* maps were reconstructed from a spoiled multi-echo 3D gradient echo sequence. Mean susceptibilities and R2* rates were measured in subcortical deep gray matter nuclei and compared between patients with PD and controls as well as related to clinical variables. Compared to control subjects, patients with PD had increased R2* values in the substantia nigra. QSM also showed higher susceptibilities in patients with PD in substantia nigra, in the nucleus ruber, thalamus, and globus pallidus. Magnetic susceptibility of several of these structures was correlated with the levodopa-equivalent daily dose (LEDD) and clinical markers of motor and non-motor disease severity (total MDS-UPDRS, MDS-UPDRS-I and II). Disease severity as assessed by the Hoehn & Yahr scale was correlated with magnetic susceptibility in the substantia nigra. The established finding of higher R2* rates in the substantia nigra was extended by QSM showing superior sensitivity for PD-related tissue changes in nigrostriatal dopaminergic pathways. QSM additionally reflected the levodopa-dosage and disease severity. These results suggest a more widespread pathologic involvement and QSM as a novel means for its investigation, more sensitive than current MRI techniques.

  14. Quantitative influence of risk factors on blood glucose level.

    PubMed

    Chen, Songjing; Luo, Senlin; Pan, Limin; Zhang, Tiemei; Han, Longfei; Zhao, Haixiu

    2014-01-01

    The aim of this study is to quantitatively analyze the influence of risk factors on the blood glucose level, and to provide theory basis for understanding the characteristics of blood glucose change and confirming the intervention index for type 2 diabetes. The quantitative method is proposed to analyze the influence of risk factors on blood glucose using back propagation (BP) neural network. Ten risk factors are screened first. Then the cohort is divided into nine groups by gender and age. According to the minimum error principle, nine BP models are trained respectively. The quantitative values of the influence of different risk factors on the blood glucose change can be obtained by sensitivity calculation. The experiment results indicate that weight is the leading cause of blood glucose change (0.2449). The second factors are cholesterol, age and triglyceride. The total ratio of these four factors reaches to 77% of the nine screened risk factors. And the sensitivity sequences can provide judgment method for individual intervention. This method can be applied to risk factors quantitative analysis of other diseases and potentially used for clinical practitioners to identify high risk populations for type 2 diabetes as well as other disease.

  15. Scientific background of contemporary approach in the priority areas of medical science in the field of radiation medicine and radiobiology.

    PubMed

    Chumak, A A; Medvedovska, N V; Ovsannikova, L M

    2013-01-01

    OBJECTIVE. To analyze the results of scientific research on the problems of radiation medicine and radiobiology for the further outlining of the priority fields of research in this area. MATERIALS. Perspective plans and annual summary of research (R & D) NAMS of Ukraine, interim and final reports on implementation of research, reports on the activities of institutions, thematic scientific publications. METHODS. Semantic and content analysis, bibliometry, historical and logical analysis. RESULTS. The definition of major oncological risks of radiation effects, study of radiation risks of morbidity and mortality from cardiovascular and cerebrovascular diseases, cognitive effects and cataract in liquidators of the Chornobyl nuclear power plant accident, study of transgenic effects of the brain irradiation, other organs and systems in various stages of ontogenesis in exposed in utero, in offspring of exposed parents; study of the effects of occupational exposure were recognized as perspective and requiring further research in radiation medicine. CONCLUSION. Issues of NNCRM scientific activity are consistent with priority areas of research in Ukraine defined by the Law "On priority directions of science and technology", namely, aimed at substantiating of the development and preservation of human potential, aimed at the creation of modern technologies on prevention and treatment of most common diseases. Chumak A. A., Medvedovska N. V., Ovsjannikova L. M. 2013.

  16. Quantitative proteomics to study carbapenem resistance in Acinetobacter baumannii

    PubMed Central

    Tiwari, Vishvanath; Tiwari, Monalisa

    2014-01-01

    Acinetobacter baumannii is an opportunistic pathogen causing pneumonia, respiratory infections and urinary tract infections. The prevalence of this lethal pathogen increases gradually in the clinical setup where it can grow on artificial surfaces, utilize ethanol as a carbon source. Moreover it resists desiccation. Carbapenems, a β-lactam, are the most commonly prescribed drugs against A. baumannii. Resistance against carbapenem has emerged in Acinetobacter baumannii which can create significant health problems and is responsible for high morbidity and mortality. With the development of quantitative proteomics, a considerable progress has been made in the study of carbapenem resistance of Acinetobacter baumannii. Recent updates showed that quantitative proteomics has now emerged as an important tool to understand the carbapenem resistance mechanism in Acinetobacter baumannii. Present review also highlights the complementary nature of different quantitative proteomic methods used to study carbapenem resistance and suggests to combine multiple proteomic methods for understanding the response to antibiotics by Acinetobacter baumannii. PMID:25309531

  17. Clinical application of quantitative computed tomography in osteogenesis imperfecta-suspected cat.

    PubMed

    Won, Sungjun; Chung, Woo-Jo; Yoon, Junghee

    2017-09-30

    One-year-old male Persian cat presented with multiple fractures and no known traumatic history. Marked decrease of bone radiopacity and thin cortices of all long bones were identified on radiography. Tentative diagnosis was osteogenesis imperfecta, a congenital disorder characterized by fragile bone. To determine bone mineral density (BMD), quantitative computed tomography (QCT) was performed. The QCT results revealed a mean trabecular BMD of vertebral bodies of 149.9 ± 86.5 mg/cm 3 . After bisphosphonate therapy, BMD of the same site increased significantly (218.5 ± 117.1 mg/cm 3 , p < 0.05). QCT was a useful diagnostic tool to diagnose osteopenia and quantify response to medical treatment.

  18. Quantitation without Calibration: Response Profile as an Indicator of Target Amount.

    PubMed

    Debnath, Mrittika; Farace, Jessica M; Johnson, Kristopher D; Nesterova, Irina V

    2018-06-21

    Quantitative assessment of biomarkers is essential in numerous contexts from decision-making in clinical situations to food quality monitoring to interpretation of life-science research findings. However, appropriate quantitation techniques are not as widely addressed as detection methods. One of the major challenges in biomarker's quantitation is the need to have a calibration for correlating a measured signal to a target amount. The step complicates the methodologies and makes them less sustainable. In this work we address the issue via a new strategy: relying on position of response profile rather than on an absolute signal value for assessment of a target's amount. In order to enable the capability we develop a target-probe binding mechanism based on a negative cooperativity effect. A proof-of-concept example demonstrates that the model is suitable for quantitative analysis of nucleic acids over a wide concentration range. The general principles of the platform will be applicable toward a variety of biomarkers such as nucleic acids, proteins, peptides, and others.

  19. Lower reference limits of quantitative cord glucose-6-phosphate dehydrogenase estimated from healthy term neonates according to the clinical and laboratory standards institute guidelines: a cross sectional retrospective study

    PubMed Central

    2013-01-01

    Background Previous studies have reported the lower reference limit (LRL) of quantitative cord glucose-6-phosphate dehydrogenase (G6PD), but they have not used approved international statistical methodology. Using common standards is expecting to yield more true findings. Therefore, we aimed to estimate LRL of quantitative G6PD detection in healthy term neonates by using statistical analyses endorsed by the International Federation of Clinical Chemistry (IFCC) and the Clinical and Laboratory Standards Institute (CLSI) for reference interval estimation. Methods This cross sectional retrospective study was performed at King Abdulaziz Hospital, Saudi Arabia, between March 2010 and June 2012. The study monitored consecutive neonates born to mothers from one Arab Muslim tribe that was assumed to have a low prevalence of G6PD-deficiency. Neonates that satisfied the following criteria were included: full-term birth (37 weeks); no admission to the special care nursery; no phototherapy treatment; negative direct antiglobulin test; and fathers of female neonates were from the same mothers’ tribe. The G6PD activity (Units/gram Hemoglobin) was measured spectrophotometrically by an automated kit. This study used statistical analyses endorsed by IFCC and CLSI for reference interval estimation. The 2.5th percentiles and the corresponding 95% confidence intervals (CI) were estimated as LRLs, both in presence and absence of outliers. Results 207 males and 188 females term neonates who had cord blood quantitative G6PD testing met the inclusion criteria. Method of Horn detected 20 G6PD values as outliers (8 males and 12 females). Distributions of quantitative cord G6PD values exhibited a normal distribution in absence of the outliers only. The Harris-Boyd method and proportion criteria revealed that combined gender LRLs were reliable. The combined bootstrap LRL in presence of the outliers was 10.0 (95% CI: 7.5-10.7) and the combined parametric LRL in absence of the outliers was 11

  20. Is quantitative oestrogen receptor expression useful in the evaluation of the clinical prognosis? Analysis of a homogeneous series of 797 patients with prospective determination of the ER status using simultaneous EIA and IHC.

    PubMed

    Mazouni, Chafika; Bonnier, Pascal; Goubar, Aïcha; Romain, Sylvie; Martin, Pierre-Marie

    2010-10-01

    Oestrogen receptor (ER) determination in breast cancer (BC) is a major yardstick for the prognosis and for response to hormonal therapy (HT). As several techniques have been proposed for ER quantification, the purpose of our study was to assess whether the qualitative or quantitative analysis of ER expression might influence the prognosis and response to treatment. We analysed overall survival (OS) and disease-free survival (DFS) in 797 primary BC cases with ER determination by enzyme immunoassay (EIA) and immunohistochemistry (IHC). The clinical impact according to qualitative or quantitative analysis of ER expression was assessed. Response to HT was evaluated according to quantitative EIA-determined ER expression levels. According to the qualitative analysis of ER expression, patients with EIA-determined and IHC-determined ER-positive tumours had significantly longer OS and DFS (p<0.001). The analysis stratified on quartiles of ER levels showed significantly different outcomes according to EIA- and IHC-determined subgroups. In the group of patients who received adjuvant treatment, 5-year OS was significantly different between the groups, with a clear benefit for the highest EIA-determined ER quartiles (p<0.001). Comparatively, in terms of 5-year DFS, a clear separation was noted between groups for adjuvant treatment (p<0.001). The group with moderate ER+ values was clearly distinct from the ER-negative population. Quantitative ER expression helped to better distinguish the beneficial or detrimental effect of HT within quartiles of ER-expressing tumours. Based on the STEPP analysis which showed a trend towards an ER effect on DFS as a function of HT assignment, we confirm the benefit of HT in patients with a very high EIA-determined ER level and a detrimental impact on negative and weakly positive groups. Quantitative ER expression in BC helps to better discriminate heterogeneity in clinical outcome and response to HT. Copyright © 2010 Elsevier Ltd. All rights

  1. Methodological aspects of multicenter studies with quantitative PET.

    PubMed

    Boellaard, Ronald

    2011-01-01

    Quantification of whole-body FDG PET studies is affected by many physiological and physical factors. Much of the variability in reported standardized uptake value (SUV) data seen in the literature results from the variability in methodology applied among these studies, i.e., due to the use of different scanners, acquisition and reconstruction settings, region of interest strategies, SUV normalization, and/or corrections methods. To date, the variability in applied methodology prohibits a proper comparison and exchange of quantitative FDG PET data. Consequently, the promising role of quantitative PET has been demonstrated in several monocentric studies, but these published results cannot be used directly as a guideline for clinical (multicenter) trials performed elsewhere. In this chapter, the main causes affecting whole-body FDG PET quantification and strategies to minimize its inter-institute variability are addressed.

  2. Radiobiological equivalent of low/high dose rate brachytherapy and evaluation of tumor and normal responses to the dose.

    PubMed

    Manimaran, S

    2007-06-01

    The aim of this study was to compare the biological equivalent of low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy in terms of the more recent linear quadratic (LQ) model, which leads to theoretical estimation of biological equivalence. One of the key features of the LQ model is that it allows a more systematic radiobiological comparison between different types of treatment because the main parameters alpha/beta and micro are tissue-specific. Such comparisons also allow assessment of the likely change in the therapeutic ratio when switching between LDR and HDR treatments. The main application of LQ methodology, which focuses on by increasing the availability of remote afterloading units, has been to design fractionated HDR treatments that can replace existing LDR techniques. In this study, with LDR treatments (39 Gy in 48 h) equivalent to 11 fractions of HDR irradiation at the experimental level, there are increasing reports of reproducible animal models that may be used to investigate the biological basis of brachytherapy and to help confirm theoretical predictions. This is a timely development owing to the nonavailability of sufficient retrospective patient data analysis. It appears that HDR brachytherapy is likely to be a viable alternative to LDR only if it is delivered without a prohibitively large number of fractions (e.g., fewer than 11). With increased scientific understanding and technological capability, the prospect of a dose equivalent to HDR brachytherapy will allow greater utilization of the concepts discussed in this article.

  3. Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner.

    PubMed

    Müller-Lutz, Anja; Khalil, Nadia; Schmitt, Benjamin; Jellus, Vladimir; Pentang, Gael; Oeltzschner, Georg; Antoch, Gerald; Lanzman, Rotem S; Wittsack, Hans-Jörg

    2014-12-01

    The objective of this study was to show the feasibility to perform Iopamidol-based pH imaging via clinical 3T magnetic resonance imaging (MRI) using chemical exchange saturation transfer (CEST) imaging with pulse train presaturation. The pulse train presaturation scheme of a CEST sequence was investigated for Iopamidol-based pH measurements using a 3T magnetic resonance (MR) scanner. The CEST sequence was applied to eight tubes filled with 100-mM Iopamidol solutions with pH values ranging from 5.6 to 7.0. Calibration curves for pH quantification were determined. The dependence of pH values on the concentration of Iopamidol was investigated. An in vivo measurement was performed in one patient who had undergone a previous contrast-enhanced computed tomography (CT) scan with Iopamidol. The pH values of urine measured with CEST MRI and with a pH meter were compared. In the measured pH range, pH imaging using CEST imaging with pulse train presaturation was possible. Dependence between the pH value and the concentration of Iopamidol was not observed. In the in vivo investigation, the pH values in the human bladder measured by the Iopamidol CEST sequence and in urine were consistent. Our study shows the feasibility of using CEST imaging with Iopamidol for quantitative pH mapping in vitro and in vivo on a 3T MR scanner.

  4. Physiologic basis for understanding quantitative dehydration assessment.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W; Charkoudian, Nisha; Sawka, Michael N

    2013-03-01

    Dehydration (body water deficit) is a physiologic state that can have profound implications for human health and performance. Unfortunately, dehydration can be difficult to assess, and there is no single, universal gold standard for decision making. In this article, we review the physiologic basis for understanding quantitative dehydration assessment. We highlight how phenomenologic interpretations of dehydration depend critically on the type (dehydration compared with volume depletion) and magnitude (moderate compared with severe) of dehydration, which in turn influence the osmotic (plasma osmolality) and blood volume-dependent compensatory thresholds for antidiuretic and thirst responses. In particular, we review new findings regarding the biological variation in osmotic responses to dehydration and discuss how this variation can help provide a quantitative and clinically relevant link between the physiology and phenomenology of dehydration. Practical measures with empirical thresholds are provided as a starting point for improving the practice of dehydration assessment.

  5. Quantitative nephelometry

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003545.htm Quantitative nephelometry test To use the sharing features on this page, please enable JavaScript. Quantitative nephelometry is a lab test to quickly and ...

  6. Guidelines by the AAPM and GEC-ESTRO on the use of innovative brachytherapy devices and applications: Report of Task Group 167

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nath, Ravinder; Rivard, Mark J., E-mail: mark.j.rivard@gmail.com; DeWerd, Larry A.

    Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used in the evaluation of innovative devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining the equivalence of the innovative treatment modality to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of innovative radiotherapy devices or applications is a critical part in which physicists should be actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative brachytherapy devices and applications andmore » includes evaluation of (1) dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, (2) risks and benefits from a regulatory and safety perspective, and (3) resource assessment and preparedness. Further, it is suggested that any developed calibration methods be traceable to a primary standards dosimetry laboratory (PSDL) such as the National Institute of Standards and Technology in the U.S. or to other PSDLs located elsewhere such as in Europe. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the Accredited Dosimetry Calibration Laboratories in the U.S. is encouraged before a source is introduced into widespread routine clinical use. The American Association of Physicists in Medicine and the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO) have developed guidelines for the safe and consistent application of brachytherapy using innovative

  7. Decreased Lung Perfusion After Breast/Chest Wall Irradiation: Quantitative Results From a Prospective Clinical Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liss, Adam L., E-mail: adamliss68@gmail.com; Marsh, Robin B.; Kapadia, Nirav S.

    Purpose: To quantify lung perfusion changes after breast/chest wall radiation therapy (RT) using pre- and post-RT single photon emission computed tomography/computed tomography (SPECT/CT) attenuation-corrected perfusion scans; and correlate decreased perfusion with adjuvant RT dose for breast cancer in a prospective clinical trial. Methods and Materials: As part of an institutional review board–approved trial studying the impact of RT technique on lung function in node-positive breast cancer, patients received breast/chest wall and regional nodal irradiation including superior internal mammary node RT to 50 to 52.2 Gy with a boost to the tumor bed/mastectomy scar. All patients underwent quantitative SPECT/CT lung perfusion scanningmore » before RT and 1 year after RT. The SPECT/CT scans were co-registered, and the ratio of decreased perfusion after RT relative to the pre-RT perfusion scan was calculated to allow for direct comparison of SPECT/CT perfusion changes with delivered RT dose. The average ratio of decreased perfusion was calculated in 10-Gy dose increments from 0 to 60 Gy. Results: Fifty patients had complete lung SPECT/CT perfusion data available. No patient developed symptoms consistent with pulmonary toxicity. Nearly all patients demonstrated decreased perfusion in the left lung according to voxel-based analyses. The average ratio of lung perfusion deficits increased for each 10-Gy increment in radiation dose to the lung, with the largest changes in regions of lung that received 50 to 60 Gy (ratio 0.72 [95% confidence interval 0.64-0.79], P<.001) compared with the 0- to 10-Gy region. For each increase in 10 Gy to the left lung, the lung perfusion ratio decreased by 0.06 (P<.001). Conclusions: In the assessment of 50 patients with node-positive breast cancer treated with RT in a prospective clinical trial, decreased lung perfusion by SPECT/CT was demonstrated. Our study allowed for quantification of lung perfusion defects in a prospective

  8. Quantitative Ultrasound Imaging Using Acoustic Backscatter Coefficients.

    NASA Astrophysics Data System (ADS)

    Boote, Evan Jeffery

    Current clinical ultrasound scanners render images which have brightness levels related to the degree of backscattered energy from the tissue being imaged. These images offer the interpreter a qualitative impression of the scattering characteristics of the tissue being examined, but due to the complex factors which affect the amplitude and character of the echoed acoustic energy, it is difficult to make quantitative assessments of scattering nature of the tissue, and thus, difficult to make precise diagnosis when subtle disease effects are present. In this dissertation, a method of data reduction for determining acoustic backscatter coefficients is adapted for use in forming quantitative ultrasound images of this parameter. In these images, the brightness level of an individual pixel corresponds to the backscatter coefficient determined for the spatial position represented by that pixel. The data reduction method utilized rigorously accounts for extraneous factors which affect the scattered echo waveform and has been demonstrated to accurately determine backscatter coefficients under a wide range of conditions. The algorithms and procedures used to form backscatter coefficient images are described. These were tested using tissue-mimicking phantoms which have regions of varying scattering levels. Another phantom has a fat-mimicking layer for testing these techniques under more clinically relevant conditions. Backscatter coefficient images were also formed of in vitro human liver tissue. A clinical ultrasound scanner has been adapted for use as a backscatter coefficient imaging platform. The digital interface between the scanner and the computer used for data reduction are described. Initial tests, using phantoms are presented. A study of backscatter coefficient imaging of in vivo liver was performed using several normal, healthy human subjects.

  9. Ongoing advances in quantitative PpIX fluorescence guided intracranial tumor resection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Olson, Jonathan D.; Kanick, Stephen C.; Bravo, Jaime J.; Roberts, David W.; Paulsen, Keith D.

    2016-03-01

    Aminolevulinc-acid induced protoporphyrin IX (ALA-PpIX) is being investigated as a biomarker to guide neurosurgical resection of brain tumors. ALA-PpIX fluorescence can be observed visually in the surgical field; however, raw fluorescence emissions can be distorted by factors other than the fluorophore concentration. Specifically, fluorescence emissions are mixed with autofluorescence and attenuated by background absorption and scattering properties of the tissue. Recent work at Dartmouth has developed advanced fluorescence detection approaches that return quantitative assessments of PpIX concentration, which are independent of background optical properties. The quantitative fluorescence imaging (qFI) approach has increased sensitivity to residual disease within the resection cavity at the end of surgery that was not visible to the naked eye through the operating microscope. This presentation outlines clinical observations made during an ongoing investigation of ALA-PpIX based guidance of tumor resection. PpIX fluorescence measurements made in a wide-field hyperspectral imaging approach are co-registered with point-assessment using a fiber optic probe. Data show variations in the measured PpIX accumulation among different clinical tumor grades (i.e. high grade glioma, low grade glioma), types (i.e. primary tumors. metastases) and normal structures of interest (e.g. normal cortex, hippocampus). These results highlight the contrast enhancement and underscore the potential clinical benefit offered from quantitative measurements of PpIX concentration during resection of intracranial tumors.

  10. Providing Quantitative Information and a Nudge to Undergo Stool Testing in a Colorectal Cancer Screening Decision Aid: A Randomized Clinical Trial.

    PubMed

    Schwartz, Peter H; Perkins, Susan M; Schmidt, Karen K; Muriello, Paul F; Althouse, Sandra; Rawl, Susan M

    2017-08-01

    Guidelines recommend that patient decision aids should provide quantitative information about probabilities of potential outcomes, but the impact of this information is unknown. Behavioral economics suggests that patients confused by quantitative information could benefit from a "nudge" towards one option. We conducted a pilot randomized trial to estimate the effect sizes of presenting quantitative information and a nudge. Primary care patients (n = 213) eligible for colorectal cancer screening viewed basic screening information and were randomized to view (a) quantitative information (quantitative module), (b) a nudge towards stool testing with the fecal immunochemical test (FIT) (nudge module), (c) neither a nor b, or (d) both a and b. Outcome measures were perceived colorectal cancer risk, screening intent, preferred test, and decision conflict, measured before and after viewing the decision aid, and screening behavior at 6 months. Patients viewing the quantitative module were more likely to be screened than those who did not ( P = 0.012). Patients viewing the nudge module had a greater increase in perceived colorectal cancer risk than those who did not ( P = 0.041). Those viewing the quantitative module had a smaller increase in perceived risk than those who did not ( P = 0.046), and the effect was moderated by numeracy. Among patients with high numeracy who did not view the nudge module, those who viewed the quantitative module had a greater increase in intent to undergo FIT ( P = 0.028) than did those who did not. The limitations of this study were the limited sample size and single healthcare system. Adding quantitative information to a decision aid increased uptake of colorectal cancer screening, while adding a nudge to undergo FIT did not increase uptake. Further research on quantitative information in decision aids is warranted.

  11. Clinical evaluation of demineralization and remineralization of intact root surface lesions in the clinic by a quantitative light-induced fluorescence system.

    PubMed

    Durmusoglu, Oykü; Tağtekin, Dilek Arslantunali; Yanikoğlu, Funda

    2012-03-01

    Detection of demineralization of root surface caries is an important issue since preventive approaches prolong tooth life. Quantitative light-induced fluorescence (QLF) has been shown to be useful for the laboratory assessment of demineralization of root surfaces. The aim of this study was to determine the demineralization and remineralization of root surface intact and cavitated caries lesions using a QLF system as a nondestructive in vivo method. Noncavitated and demineralized root surface lesions were detected and scored using the QLF system. Oral hygiene education was given and periodontal cleaning was completed before the remineralization treatment. After obtaining baseline QLF data, the patients were informed about the remineralization treatment. Fluoride varnish was applied to the carious lesions at the baseline visit, and the patients were then reviewed after 1, 2, 3 and 4 weeks, with QLF assessment and fluoride varnish application repeated at each review. Repeated-measures ANOVA (α = 0.05) showed significant differences between ΔQ values at each visit (p < 0.001); ΔQ showed marked decreases at all the cut-off values (15, 20, 25, 30). The changes in ΔQ were not affected by the cut-off value. The ΔQ values of QLF showed differences at all visits. The QLF system was able to detect early root surface caries lesions in vivo. Bifluoride 12 varnish improved mineral levels as shown by the QLF system. The treatment response to chemicals of intact noncavitated root surface carious lesions could be followed nondestructively in the clinic using QLF to quantify remineralization at recall visits. Teeth with root surface caries can be kept by controlling their remineralization.

  12. Brain Injury Lesion Imaging Using Preconditioned Quantitative Susceptibility Mapping without Skull Stripping.

    PubMed

    Soman, S; Liu, Z; Kim, G; Nemec, U; Holdsworth, S J; Main, K; Lee, B; Kolakowsky-Hayner, S; Selim, M; Furst, A J; Massaband, P; Yesavage, J; Adamson, M M; Spincemallie, P; Moseley, M; Wang, Y

    2018-04-01

    ; they were worse on preconditioned quantitative susceptibility mapping. Preconditioned quantitative susceptibility mapping MR imaging can bring the benefits of quantitative susceptibility mapping imaging to clinical practice without the limitations of mask-based quantitative susceptibility mapping, especially for evaluating cerebral microhemorrhage-associated pathologies, such as traumatic brain injury. © 2018 by American Journal of Neuroradiology.

  13. WE-F-304-00: Outcomes of Hypofractionated Treatments - Results of the WGSBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Stereotactic Body Radiation Therapy (SBRT) was introduced clinically more than twenty years ago, and many subsequent publications have reported safety and efficacy data. The AAPM Working Group on Biological Effects of Hypofractionated Radiotherapy/SBRT (WGSBRT) extracted published treatment outcomes data from extensive literature searches to summarize and construct tumor control probability (TCP) and normal tissue complication probability (NTCP) models for six anatomical regions: Cranial, Head and Neck, Thoracic, Abdominal, Pelvic, and Spinal. In this session, we present the WGSBRT’s work for cranial sites, and recurrent head and neck cancer. From literature-based data and associated models, guidelines to aid with safe andmore » effective hypofractionated radiotherapy treatment are being determined. Further, the ability of existing and proposed radiobiological models to fit these data is considered as to the ability to distinguish between the linear-quadratic and alternative radiobiological models such as secondary cell death from vascular damage, immunogenic, or bystander effects. Where appropriate, specific model parameters are estimated. As described in “The lessons of QUANTEC,” (1), lack of adequate reporting standards continues to limit the amount of useful quantitative information that can be extracted from peer-reviewed publications. Recommendations regarding reporting standards are considered, to enable such reviews to achieve more complete characterization of clinical outcomes. 1 Jackson A, Marks LB, Bentzen SM, Eisbruch A, Yorke ED, Ten Haken RK, Constine LS, Deasy JO. The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S155–60. Learning Objectives: Describe the techniques, types of cancer and dose schedules used in treating recurrent H&N cancers with SBRT List the radiobiological models that compete with the linear

  14. WE-F-304-05: Cranial TCP/NTCP Modeling Insights and Caveats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Naqa, I.

    Stereotactic Body Radiation Therapy (SBRT) was introduced clinically more than twenty years ago, and many subsequent publications have reported safety and efficacy data. The AAPM Working Group on Biological Effects of Hypofractionated Radiotherapy/SBRT (WGSBRT) extracted published treatment outcomes data from extensive literature searches to summarize and construct tumor control probability (TCP) and normal tissue complication probability (NTCP) models for six anatomical regions: Cranial, Head and Neck, Thoracic, Abdominal, Pelvic, and Spinal. In this session, we present the WGSBRT’s work for cranial sites, and recurrent head and neck cancer. From literature-based data and associated models, guidelines to aid with safe andmore » effective hypofractionated radiotherapy treatment are being determined. Further, the ability of existing and proposed radiobiological models to fit these data is considered as to the ability to distinguish between the linear-quadratic and alternative radiobiological models such as secondary cell death from vascular damage, immunogenic, or bystander effects. Where appropriate, specific model parameters are estimated. As described in “The lessons of QUANTEC,” (1), lack of adequate reporting standards continues to limit the amount of useful quantitative information that can be extracted from peer-reviewed publications. Recommendations regarding reporting standards are considered, to enable such reviews to achieve more complete characterization of clinical outcomes. 1 Jackson A, Marks LB, Bentzen SM, Eisbruch A, Yorke ED, Ten Haken RK, Constine LS, Deasy JO. The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S155–60. Learning Objectives: Describe the techniques, types of cancer and dose schedules used in treating recurrent H&N cancers with SBRT List the radiobiological models that compete with the linear

  15. WE-F-304-03: Optic Nerve/Chiasm Hypofractionated SRS/SRT Dose Tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milano, M.

    Stereotactic Body Radiation Therapy (SBRT) was introduced clinically more than twenty years ago, and many subsequent publications have reported safety and efficacy data. The AAPM Working Group on Biological Effects of Hypofractionated Radiotherapy/SBRT (WGSBRT) extracted published treatment outcomes data from extensive literature searches to summarize and construct tumor control probability (TCP) and normal tissue complication probability (NTCP) models for six anatomical regions: Cranial, Head and Neck, Thoracic, Abdominal, Pelvic, and Spinal. In this session, we present the WGSBRT’s work for cranial sites, and recurrent head and neck cancer. From literature-based data and associated models, guidelines to aid with safe andmore » effective hypofractionated radiotherapy treatment are being determined. Further, the ability of existing and proposed radiobiological models to fit these data is considered as to the ability to distinguish between the linear-quadratic and alternative radiobiological models such as secondary cell death from vascular damage, immunogenic, or bystander effects. Where appropriate, specific model parameters are estimated. As described in “The lessons of QUANTEC,” (1), lack of adequate reporting standards continues to limit the amount of useful quantitative information that can be extracted from peer-reviewed publications. Recommendations regarding reporting standards are considered, to enable such reviews to achieve more complete characterization of clinical outcomes. 1 Jackson A, Marks LB, Bentzen SM, Eisbruch A, Yorke ED, Ten Haken RK, Constine LS, Deasy JO. The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S155–60. Learning Objectives: Describe the techniques, types of cancer and dose schedules used in treating recurrent H&N cancers with SBRT List the radiobiological models that compete with the linear

  16. WE-F-304-04: Radiosurgery for Vestibular Schwannomas: Tumor Control Probability Analyses and Recommended Reporting Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltys, S.

    Stereotactic Body Radiation Therapy (SBRT) was introduced clinically more than twenty years ago, and many subsequent publications have reported safety and efficacy data. The AAPM Working Group on Biological Effects of Hypofractionated Radiotherapy/SBRT (WGSBRT) extracted published treatment outcomes data from extensive literature searches to summarize and construct tumor control probability (TCP) and normal tissue complication probability (NTCP) models for six anatomical regions: Cranial, Head and Neck, Thoracic, Abdominal, Pelvic, and Spinal. In this session, we present the WGSBRT’s work for cranial sites, and recurrent head and neck cancer. From literature-based data and associated models, guidelines to aid with safe andmore » effective hypofractionated radiotherapy treatment are being determined. Further, the ability of existing and proposed radiobiological models to fit these data is considered as to the ability to distinguish between the linear-quadratic and alternative radiobiological models such as secondary cell death from vascular damage, immunogenic, or bystander effects. Where appropriate, specific model parameters are estimated. As described in “The lessons of QUANTEC,” (1), lack of adequate reporting standards continues to limit the amount of useful quantitative information that can be extracted from peer-reviewed publications. Recommendations regarding reporting standards are considered, to enable such reviews to achieve more complete characterization of clinical outcomes. 1 Jackson A, Marks LB, Bentzen SM, Eisbruch A, Yorke ED, Ten Haken RK, Constine LS, Deasy JO. The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S155–60. Learning Objectives: Describe the techniques, types of cancer and dose schedules used in treating recurrent H&N cancers with SBRT List the radiobiological models that compete with the linear

  17. WE-F-304-02: Recurrent HNC Treated with SBRT: TCP-Based Outcome Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clump, D.

    Stereotactic Body Radiation Therapy (SBRT) was introduced clinically more than twenty years ago, and many subsequent publications have reported safety and efficacy data. The AAPM Working Group on Biological Effects of Hypofractionated Radiotherapy/SBRT (WGSBRT) extracted published treatment outcomes data from extensive literature searches to summarize and construct tumor control probability (TCP) and normal tissue complication probability (NTCP) models for six anatomical regions: Cranial, Head and Neck, Thoracic, Abdominal, Pelvic, and Spinal. In this session, we present the WGSBRT’s work for cranial sites, and recurrent head and neck cancer. From literature-based data and associated models, guidelines to aid with safe andmore » effective hypofractionated radiotherapy treatment are being determined. Further, the ability of existing and proposed radiobiological models to fit these data is considered as to the ability to distinguish between the linear-quadratic and alternative radiobiological models such as secondary cell death from vascular damage, immunogenic, or bystander effects. Where appropriate, specific model parameters are estimated. As described in “The lessons of QUANTEC,” (1), lack of adequate reporting standards continues to limit the amount of useful quantitative information that can be extracted from peer-reviewed publications. Recommendations regarding reporting standards are considered, to enable such reviews to achieve more complete characterization of clinical outcomes. 1 Jackson A, Marks LB, Bentzen SM, Eisbruch A, Yorke ED, Ten Haken RK, Constine LS, Deasy JO. The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S155–60. Learning Objectives: Describe the techniques, types of cancer and dose schedules used in treating recurrent H&N cancers with SBRT List the radiobiological models that compete with the linear

  18. WE-F-304-01: Overview of the Working Group On Stereotactic Body Radiation Therapy (WGSBRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yorke, E.

    Stereotactic Body Radiation Therapy (SBRT) was introduced clinically more than twenty years ago, and many subsequent publications have reported safety and efficacy data. The AAPM Working Group on Biological Effects of Hypofractionated Radiotherapy/SBRT (WGSBRT) extracted published treatment outcomes data from extensive literature searches to summarize and construct tumor control probability (TCP) and normal tissue complication probability (NTCP) models for six anatomical regions: Cranial, Head and Neck, Thoracic, Abdominal, Pelvic, and Spinal. In this session, we present the WGSBRT’s work for cranial sites, and recurrent head and neck cancer. From literature-based data and associated models, guidelines to aid with safe andmore » effective hypofractionated radiotherapy treatment are being determined. Further, the ability of existing and proposed radiobiological models to fit these data is considered as to the ability to distinguish between the linear-quadratic and alternative radiobiological models such as secondary cell death from vascular damage, immunogenic, or bystander effects. Where appropriate, specific model parameters are estimated. As described in “The lessons of QUANTEC,” (1), lack of adequate reporting standards continues to limit the amount of useful quantitative information that can be extracted from peer-reviewed publications. Recommendations regarding reporting standards are considered, to enable such reviews to achieve more complete characterization of clinical outcomes. 1 Jackson A, Marks LB, Bentzen SM, Eisbruch A, Yorke ED, Ten Haken RK, Constine LS, Deasy JO. The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S155–60. Learning Objectives: Describe the techniques, types of cancer and dose schedules used in treating recurrent H&N cancers with SBRT List the radiobiological models that compete with the linear

  19. SEMIANNUAL PROGRESS REPORT ON RADIOBIOLOGY FOR THE PERIOD ENDING DECEMBER 31, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-10-31

    Biochemistry: Progress is reported in studies on alterations in brain lipids with aging and irradiation; investigations on lipids of the starfish, Pisaster ochraceus; the constituents of the leaf cuticle wax of the ornamental rubber plant, Ficus elastica; interactions of blood serum with synthetic polypeptides; and investigations on the source of energy for single beating heart cells. Radiobiology. Progress is reported in studies on the effects of gamma radiation on aqueous solutions of pyrimidine compounds and cysteine, tracer studies of phosphate and sulfur metabolism in chlorella, the morphology and physiology of mitochondria, and photosynthesis and respiration in Euglena gracilis. Pharmacology andmore » Toxicology: The radioprotective activity of 204 amines and amine oxide compounds was investigated and the relation between structure and protective activity is discussed. Progress is reported in studies on the effect of psychotropic drugs on the kangaroo rat and the effect of irradiation on intestinal absorption of nicotinamide by rats. Nuclear Radiology Applications of radioisotope tracer methods in the diagnosis and management of liver and kidney diseases are reported. Progress is reported in the photoscanning of the stomach, heart, liver, and spleen following intravenous injection of inorganic radioiodine or of colloidal aggregates of human serum albumin labeled with I/sup 131/; studies on the antigenicity of colloidal aggregates; animal studies on renal artery occlusion; and studies on the retention of I/sup 131/ labeled human serum albumin and the absorption of Ca/sup 47/ in man. The effects of pretreatment with aminoethylisothiuronium or 5- hydroxytryptamine on survival of irradiated rats were measured. A total of 24 newborn infants was examined in a whole-body counter for radioiodine contamination. No radioiodine or any other radionuclides, except K/sup 40/, was observed. Medicine: Data are summarized from studies on the role of desoxyribonucleic acid

  20. Renal geology (quantitative renal stone analysis) by 'Fourier transform infrared spectroscopy'.

    PubMed

    Singh, Iqbal

    2008-01-01

    To prospectively determine the precise stone composition (quantitative analysis) by using infrared spectroscopy in patients with urinary stone disease presenting to our clinic. To determine an ideal method for stone analysis suitable for use in a clinical setting. After routine and a detailed metabolic workup of all patients of urolithiasis, stone samples of 50 patients of urolithiasis satisfying the entry criteria were subjected to the Fourier transform infrared spectroscopic analysis after adequate sample homogenization at a single testing center. Calcium oxalate monohydrate and dihydrate stone mixture was most commonly encountered in 35 (71%) followed by calcium phosphate, carbonate apatite, magnesium ammonium hexahydrate and xanthine stones. Fourier transform infrared spectroscopy allows an accurate, reliable quantitative method of stone analysis. It also helps in maintaining a computerized large reference library. Knowledge of precise stone composition may allow the institution of appropriate prophylactic therapy despite the absence of any detectable metabolic abnormalities. This may prevent and or delay stone recurrence.

  1. Quantitative evaluations of ankle spasticity and stiffness in neurological disorders using manual spasticity evaluator.

    PubMed

    Peng, Qiyu; Park, Hyung-Soon; Shah, Parag; Wilson, Nicole; Ren, Yupeng; Wu, Yi-Ning; Liu, Jie; Gaebler-Spira, Deborah J; Zhang, Li-Qun

    2011-01-01

    Spasticity and contracture are major sources of disability in people with neurological impairments that have been evaluated using various instruments: the Modified Ashworth Scale, tendon reflex scale, pendulum test, mechanical perturbations, and passive joint range of motion (ROM). These measures generally are either convenient to use in clinics but not quantitative or they are quantitative but difficult to use conveniently in clinics. We have developed a manual spasticity evaluator (MSE) to evaluate spasticity/contracture quantitatively and conveniently, with ankle ROM and stiffness measured at a controlled low velocity and joint resistance and Tardieu catch angle measured at several higher velocities. We found that the Tardieu catch angle was linearly related to the velocity, indicating that increased resistance at higher velocities was felt at further stiffer positions and, thus, that the velocity dependence of spasticity may also be position-dependent. This finding indicates the need to control velocity in spasticity evaluation, which is achieved with the MSE. Quantitative measurements of spasticity, stiffness, and ROM can lead to more accurate characterizations of pathological conditions and outcome evaluations of interventions, potentially contributing to better healthcare services for patients with neurological disorders such as cerebral palsy, spinal cord injury, traumatic brain injury, and stroke.

  2. Quantitative modeling of clinical, cellular, and extracellular matrix variables suggest prognostic indicators in cancer: a model in neuroblastoma.

    PubMed

    Tadeo, Irene; Piqueras, Marta; Montaner, David; Villamón, Eva; Berbegall, Ana P; Cañete, Adela; Navarro, Samuel; Noguera, Rosa

    2014-02-01

    Risk classification and treatment stratification for cancer patients is restricted by our incomplete picture of the complex and unknown interactions between the patient's organism and tumor tissues (transformed cells supported by tumor stroma). Moreover, all clinical factors and laboratory studies used to indicate treatment effectiveness and outcomes are by their nature a simplification of the biological system of cancer, and cannot yet incorporate all possible prognostic indicators. A multiparametric analysis on 184 tumor cylinders was performed. To highlight the benefit of integrating digitized medical imaging into this field, we present the results of computational studies carried out on quantitative measurements, taken from stromal and cancer cells and various extracellular matrix fibers interpenetrated by glycosaminoglycans, and eight current approaches to risk stratification systems in patients with primary and nonprimary neuroblastoma. New tumor tissue indicators from both fields, the cellular and the extracellular elements, emerge as reliable prognostic markers for risk stratification and could be used as molecular targets of specific therapies. The key to dealing with personalized therapy lies in the mathematical modeling. The use of bioinformatics in patient-tumor-microenvironment data management allows a predictive model in neuroblastoma.

  3. Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom.

    PubMed

    Keenan, Kathryn E; Ainslie, Maureen; Barker, Alex J; Boss, Michael A; Cecil, Kim M; Charles, Cecil; Chenevert, Thomas L; Clarke, Larry; Evelhoch, Jeffrey L; Finn, Paul; Gembris, Daniel; Gunter, Jeffrey L; Hill, Derek L G; Jack, Clifford R; Jackson, Edward F; Liu, Guoying; Russek, Stephen E; Sharma, Samir D; Steckner, Michael; Stupic, Karl F; Trzasko, Joshua D; Yuan, Chun; Zheng, Jie

    2018-01-01

    The MRI community is using quantitative mapping techniques to complement qualitative imaging. For quantitative imaging to reach its full potential, it is necessary to analyze measurements across systems and longitudinally. Clinical use of quantitative imaging can be facilitated through adoption and use of a standard system phantom, a calibration/standard reference object, to assess the performance of an MRI machine. The International Society of Magnetic Resonance in Medicine AdHoc Committee on Standards for Quantitative Magnetic Resonance was established in February 2007 to facilitate the expansion of MRI as a mainstream modality for multi-institutional measurements, including, among other things, multicenter trials. The goal of the Standards for Quantitative Magnetic Resonance committee was to provide a framework to ensure that quantitative measures derived from MR data are comparable over time, between subjects, between sites, and between vendors. This paper, written by members of the Standards for Quantitative Magnetic Resonance committee, reviews standardization attempts and then details the need, requirements, and implementation plan for a standard system phantom for quantitative MRI. In addition, application-specific phantoms and implementation of quantitative MRI are reviewed. Magn Reson Med 79:48-61, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Visual Aggregate Analysis of Eligibility Features of Clinical Trials

    PubMed Central

    He, Zhe; Carini, Simona; Sim, Ida; Weng, Chunhua

    2015-01-01

    Objective To develop a method for profiling the collective populations targeted for recruitment by multiple clinical studies addressing the same medical condition using one eligibility feature each time. Methods Using a previously published database COMPACT as the backend, we designed a scalable method for visual aggregate analysis of clinical trial eligibility features. This method consists of four modules for eligibility feature frequency analysis, query builder, distribution analysis, and visualization, respectively. This method is capable of analyzing (1) frequently used qualitative and quantitative features for recruiting subjects for a selected medical condition, (2) distribution of study enrollment on consecutive value points or value intervals of each quantitative feature, and (3) distribution of studies on the boundary values, permissible value ranges, and value range widths of each feature. All analysis results were visualized using Google Charts API. Five recruited potential users assessed the usefulness of this method for identifying common patterns in any selected eligibility feature for clinical trial participant selection. Results We implemented this method as a Web-based analytical system called VITTA (Visual Analysis Tool of Clinical Study Target Populations). We illustrated the functionality of VITTA using two sample queries involving quantitative features BMI and HbA1c for conditions “hypertension” and “Type 2 diabetes”, respectively. The recruited potential users rated the user-perceived usefulness of VITTA with an average score of 86.4/100. Conclusions We contributed a novel aggregate analysis method to enable the interrogation of common patterns in quantitative eligibility criteria and the collective target populations of multiple related clinical studies. A larger-scale study is warranted to formally assess the usefulness of VITTA among clinical investigators and sponsors in various therapeutic areas. PMID:25615940

  5. Visual aggregate analysis of eligibility features of clinical trials.

    PubMed

    He, Zhe; Carini, Simona; Sim, Ida; Weng, Chunhua

    2015-04-01

    To develop a method for profiling the collective populations targeted for recruitment by multiple clinical studies addressing the same medical condition using one eligibility feature each time. Using a previously published database COMPACT as the backend, we designed a scalable method for visual aggregate analysis of clinical trial eligibility features. This method consists of four modules for eligibility feature frequency analysis, query builder, distribution analysis, and visualization, respectively. This method is capable of analyzing (1) frequently used qualitative and quantitative features for recruiting subjects for a selected medical condition, (2) distribution of study enrollment on consecutive value points or value intervals of each quantitative feature, and (3) distribution of studies on the boundary values, permissible value ranges, and value range widths of each feature. All analysis results were visualized using Google Charts API. Five recruited potential users assessed the usefulness of this method for identifying common patterns in any selected eligibility feature for clinical trial participant selection. We implemented this method as a Web-based analytical system called VITTA (Visual Analysis Tool of Clinical Study Target Populations). We illustrated the functionality of VITTA using two sample queries involving quantitative features BMI and HbA1c for conditions "hypertension" and "Type 2 diabetes", respectively. The recruited potential users rated the user-perceived usefulness of VITTA with an average score of 86.4/100. We contributed a novel aggregate analysis method to enable the interrogation of common patterns in quantitative eligibility criteria and the collective target populations of multiple related clinical studies. A larger-scale study is warranted to formally assess the usefulness of VITTA among clinical investigators and sponsors in various therapeutic areas. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Research activities at the Loma Linda University and Proton Treatment Facility--an overview

    NASA Technical Reports Server (NTRS)

    Nelson, G. A.; Green, L. M.; Gridley, D. S.; Archambeau, J. O.; Slater, J. M.

    2001-01-01

    The Loma Linda University (LLU) Radiobiology Program coordinates basic research and proton beam service activities for the university and extramural communities. The current focus of the program is on the biological and physical properties of protons and the operation of radiobiology facilities for NASA-sponsored projects. The current accelerator, supporting facilities and operations are described along with a brief review of extramural research projects supported by the program. These include space craft electronic parts and shielding testing as well as tumorigenesis and animal behavior experiments. An overview of research projects currently underway at LLU is also described. These include: 1) acute responses of the C57Bl/6 mouse immune system, 2) modulation of gene expression in the nematode C. elegans and rat thyroid cells, 3) quantitation of dose tolerance in rat CNS microvasculature, 4) behavioral screening of whole body proton and iron ion-irradiated C57Bl/6 mice, and 5) investigation of the role of cell integration into epithelial structures on responses to radiation.

  7. Studies Relative to the Radiosensitivity of Man: Based on Retrospective Evaluations of Therapeutic and Accidental Total-Body Irradiation

    NASA Technical Reports Server (NTRS)

    Ricks, R. C. (Compiler); Lushbaugh, C. C. (Compiler)

    1975-01-01

    The radiobiologic studies carried out with joint (AEC) ERDA and NASA support during the years 1964 to 1974 at the Medical Division of Oak Ridge Associated Universities are presented. The physiologic data generated were similar in many ways to those previously observed in other medical radiobiologic experiences. They differed, however, in the methods of data acquisition and analysis. Instead of more conventional analytical methods, pulmonary impedance was recorded and quantitated as a measure of radiation-induced gastrointestinal distress and fatiguability. While refinements in dose response related to gastrointestinal distress were accomplished, it was also found that through the use of Fourier analysis of pulmonary impedance waveform GI distress could easily be recognized and quantified even when the initial stages of nausea were below the subjects subjective level of recognition. The results demonstrate that change in pulmonary impedance waveform closely parallel well-defined stages of GI distress, i.e., initial nausea, a progressive increase in nausea, and finally vomiting episodes.

  8. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, M.D.; Beck, R.N.

    1990-09-01

    This is a report of progress in Year Two (January 1, 1990--December 31, 1990) of Grant FG02-86ER60438, Quantitative Studies in Radiopharmaceutical Science,'' awarded for the three-year period January 1, 1989--December 31, 1991 as a competitive renewal following site visit in the fall of 1988. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further themore » development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 25 refs., 13 figs., 1 tab.« less

  9. Quantitative Assessment of Commutability for Clinical Viral Load Testing Using a Digital PCR-Based Reference Standard

    PubMed Central

    Tang, L.; Sun, Y.; Buelow, D.; Gu, Z.; Caliendo, A. M.; Pounds, S.

    2016-01-01

    Given recent advances in the development of quantitative standards, particularly WHO international standards, efforts to better understand the commutability of reference materials have been made. Existing approaches in evaluating commutability include prediction intervals and correspondence analysis; however, the results obtained from existing approaches may be ambiguous. We have developed a “deviation-from-ideal” (DFI) approach to evaluate commutability of standards and applied it to the assessment of Epstein-Bar virus (EBV) load testing in four quantitative PCR assays, treating digital PCR as a reference assay. We then discuss advantages and limitations of the DFI approach as well as experimental design to best evaluate the commutability of an assay in practice. PMID:27076654

  10. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications.

    PubMed

    2016-07-01

    DNA methylation patterns are altered in numerous diseases and often correlate with clinically relevant information such as disease subtypes, prognosis and drug response. With suitable assays and after validation in large cohorts, such associations can be exploited for clinical diagnostics and personalized treatment decisions. Here we describe the results of a community-wide benchmarking study comparing the performance of all widely used methods for DNA methylation analysis that are compatible with routine clinical use. We shipped 32 reference samples to 18 laboratories in seven different countries. Researchers in those laboratories collectively contributed 21 locus-specific assays for an average of 27 predefined genomic regions, as well as six global assays. We evaluated assay sensitivity on low-input samples and assessed the assays' ability to discriminate between cell types. Good agreement was observed across all tested methods, with amplicon bisulfite sequencing and bisulfite pyrosequencing showing the best all-round performance. Our technology comparison can inform the selection, optimization and use of DNA methylation assays in large-scale validation studies, biomarker development and clinical diagnostics.

  11. Development and validation of a reverse transcription quantitative polymerase chain reaction for tilapia lake virus detection in clinical samples and experimentally challenged fish.

    PubMed

    Tattiyapong, P; Sirikanchana, K; Surachetpong, W

    2018-02-01

    Tilapia lake virus (TiLV) is an emerging pathogen associated with high mortalities of wild and farm-raised tilapia in different countries. In this study, a SYBR green-based reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay targeting segment three of the virus was developed to detect and quantify TiLV in clinical samples and experimentally challenged fish. All 30 field samples with clinical signs and history consistent with TiLV infection were positive for TiLV as detected by the developed RT-qPCR method. The RT-qPCR technique provided 100 and 10,000 times more sensitive for virus detection than those offered by the RT-PCR and virus isolation in cell culture methods, respectively. The detection limit of the RT-qPCR method was as low as two viral copies/μl. Moreover, the RT-qPCR technique could be applied for TiLV detection in various fish tissues including gills, liver, brain, heart, anterior kidney and spleen. Significantly, this study delivered an accurate and reliable method for rapid detection of TiLV viruses that facilitates active surveillance programme and disease containment. © 2017 John Wiley & Sons Ltd.

  12. Quantitative Cardiac Positron Emission Tomography: The Time Is Coming!

    PubMed Central

    Sciagrà, Roberto

    2012-01-01

    In the last 20 years, the use of positron emission tomography (PET) has grown dramatically because of its oncological applications, and PET facilities are now easily accessible. At the same time, various groups have explored the specific advantages of PET in heart disease and demonstrated the major diagnostic and prognostic role of quantitation in cardiac PET. Nowadays, different approaches for the measurement of myocardial blood flow (MBF) have been developed and implemented in user-friendly programs. There is large evidence that MBF at rest and under stress together with the calculation of coronary flow reserve are able to improve the detection and prognostication of coronary artery disease. Moreover, quantitative PET makes possible to assess the presence of microvascular dysfunction, which is involved in various cardiac diseases, including the early stages of coronary atherosclerosis, hypertrophic and dilated cardiomyopathy, and hypertensive heart disease. Therefore, it is probably time to consider the routine use of quantitative cardiac PET and to work for defining its place in the clinical scenario of modern cardiology. PMID:24278760

  13. Quantitative proteomics in cardiovascular research: global and targeted strategies

    PubMed Central

    Shen, Xiaomeng; Young, Rebeccah; Canty, John M.; Qu, Jun

    2014-01-01

    Extensive technical advances in the past decade have substantially expanded quantitative proteomics in cardiovascular research. This has great promise for elucidating the mechanisms of cardiovascular diseases (CVD) and the discovery of cardiac biomarkers used for diagnosis and treatment evaluation. Global and targeted proteomics are the two major avenues of quantitative proteomics. While global approaches enable unbiased discovery of altered proteins via relative quantification at the proteome level, targeted techniques provide higher sensitivity and accuracy, and are capable of multiplexed absolute quantification in numerous clinical/biological samples. While promising, technical challenges need to be overcome to enable full utilization of these techniques in cardiovascular medicine. Here we discuss recent advances in quantitative proteomics and summarize applications in cardiovascular research with an emphasis on biomarker discovery and elucidating molecular mechanisms of disease. We propose the integration of global and targeted strategies as a high-throughput pipeline for cardiovascular proteomics. Targeted approaches enable rapid, extensive validation of biomarker candidates discovered by global proteomics. These approaches provide a promising alternative to immunoassays and other low-throughput means currently used for limited validation. PMID:24920501

  14. Pursuing Improvement in Clinical Reasoning: Development of the Clinical Coaching Interactions Inventory.

    PubMed

    Jessee, Mary Ann; Tanner, Christine A

    2016-09-01

    Clinical coaching has been identified as a signature pedagogy in nursing education. Recent findings indicate that clinical coaching interactions in the clinical learning environment fail to engage students in the higher order thinking skills believed to promote clinical reasoning. The Clinical Coaching Interactions Inventory (CCII) was based on evidence of supervisor questioning techniques, the Tanner clinical judgment model, Bloom's Taxonomy, and simulation evaluation tools. Content validity was established with expert assessment, student testing for clarity, and calculation of scale-content validity index/average (S-CVI/Ave). Reliability was established with Kuder-Richardson Formula 20 (KR-20). CVI (S-CVI/Ave) was .91, and KR-20 was .70. The CCII identified differences in clinical coaching behaviors in university faculty supervisors and staff nurse preceptor supervisors. The CCII advances the measurement of clinical coaching interactions from qualitative to quantitative. Ultimately, results from use of this inventory may facilitate the design of prelicensure clinical coaching strategies that promote the improvement of students' clinical reasoning skill. [J Nurs Educ. 2016;55(9):495-504.]. Copyright 2016, SLACK Incorporated.

  15. Capillary nano-immunoassays: advancing quantitative proteomics analysis, biomarker assessment, and molecular diagnostics.

    PubMed

    Chen, Jin-Qiu; Wakefield, Lalage M; Goldstein, David J

    2015-06-06

    There is an emerging demand for the use of molecular profiling to facilitate biomarker identification and development, and to stratify patients for more efficient treatment decisions with reduced adverse effects. In the past decade, great strides have been made to advance genomic, transcriptomic and proteomic approaches to address these demands. While there has been much progress with these large scale approaches, profiling at the protein level still faces challenges due to limitations in clinical sample size, poor reproducibility, unreliable quantitation, and lack of assay robustness. A novel automated capillary nano-immunoassay (CNIA) technology has been developed. This technology offers precise and accurate measurement of proteins and their post-translational modifications using either charge-based or size-based separation formats. The system not only uses ultralow nanogram levels of protein but also allows multi-analyte analysis using a parallel single-analyte format for increased sensitivity and specificity. The high sensitivity and excellent reproducibility of this technology make it particularly powerful for analysis of clinical samples. Furthermore, the system can distinguish and detect specific protein post-translational modifications that conventional Western blot and other immunoassays cannot easily capture. This review will summarize and evaluate the latest progress to optimize the CNIA system for comprehensive, quantitative protein and signaling event characterization. It will also discuss how the technology has been successfully applied in both discovery research and clinical studies, for signaling pathway dissection, proteomic biomarker assessment, targeted treatment evaluation and quantitative proteomic analysis. Lastly, a comparison of this novel system with other conventional immuno-assay platforms is performed.

  16. Quantitative motor assessment of muscular weakness in myasthenia gravis: a pilot study.

    PubMed

    Hoffmann, Sarah; Siedler, Jana; Brandt, Alexander U; Piper, Sophie K; Kohler, Siegfried; Sass, Christian; Paul, Friedemann; Reilmann, Ralf; Meisel, Andreas

    2015-12-23

    Muscular weakness in myasthenia gravis (MG) is commonly assessed using Quantitative Myasthenia Gravis Score (QMG). More objective and quantitative measures may complement the use of clinical scales and might detect subclinical affection of muscles. We hypothesized that muscular weakness in patients with MG can be quantified with the non-invasive Quantitative Motor (Q-Motor) test for Grip Force Assessment (QGFA) and Involuntary Movement Assessment (QIMA) and that pathological findings correlate with disease severity as measured by QMG. This was a cross-sectional pilot study investigating patients with confirmed diagnosis of MG. Data was compared to healthy controls (HC). Subjects were asked to lift a device (250 and 500 g) equipped with electromagnetic sensors that measured grip force (GF) and three-dimensional changes in position and orientation. These were used to calculate the position index (PI) and orientation index (OI) as measures for involuntary movements due to muscular weakness. Overall, 40 MG patients and 23 HC were included. PI and OI were significantly higher in MG patients for both weights in the dominant and non-dominant hand. Subgroup analysis revealed that patients with clinically ocular myasthenia gravis (OMG) also showed significantly higher values for PI and OI in both hands and for both weights. Disease severity correlates with QIMA performance in the non-dominant hand. Q-Motor tests and particularly QIMA may be useful objective tools for measuring motor impairment in MG and seem to detect subclinical generalized motor signs in patients with OMG. Q-Motor parameters might serve as sensitive endpoints for clinical trials in MG.

  17. SU-C-BRA-06: Developing Clinical and Quantitative Guidelines for a 4DCT-Ventilation Functional Avoidance Clinical Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradskiy, Y; Waxweiler, T; Diot, Q

    Purpose: 4DCT-ventilation is an exciting new imaging modality that uses 4DCTs to calculate lung ventilation. Because 4DCTs are acquired as part of routine care, calculating 4DCT-ventilation allows for lung function evaluation without additional cost or inconvenience to the patient. Development of a clinical trial is underway at our institution to use 4DCT-ventilation for thoracic functional avoidance with the idea that preferential sparing of functional lung regions can decrease pulmonary toxicity. The purpose of our work was to develop the practical aspects of a 4DCT-ventilation functional avoidance clinical trial including: 1.assessing patient eligibility 2.developing trial inclusion criteria and 3.developing treatment planningmore » and dose-function evaluation strategies. Methods: 96 stage III lung cancer patients from 2 institutions were retrospectively reviewed. 4DCT-ventilation maps were calculated using the patient’s 4DCTs, deformable image registrations, and a density-change-based algorithm. To assess patient eligibility and develop trial inclusion criteria we used an observer-based binary end point noting the presence or absence of a ventilation defect and developed an algorithm based on the percent ventilation in each lung third. Functional avoidance planning integrating 4DCT-ventilation was performed using rapid-arc and compared to the patient’s clinically used plan. Results: Investigator-determined clinical ventilation defects were present in 69% of patients. Our regional/lung-thirds ventilation algorithm identified that 59% of patients have lung functional profiles suitable for functional avoidance. Compared to the clinical plan, functional avoidance planning was able to reduce the mean dose to functional lung by 2 Gy while delivering comparable target coverage and cord/heart doses. Conclusions: 4DCT-ventilation functional avoidance clinical trials have great potential to reduce toxicity, and our data suggest that 59% of lung cancer patients

  18. Validity and sensitivity to change of the semi-quantitative OMERACT ultrasound scoring system for tenosynovitis in patients with rheumatoid arthritis.

    PubMed

    Ammitzbøll-Danielsen, Mads; Østergaard, Mikkel; Naredo, Esperanza; Terslev, Lene

    2016-12-01

    The aim was to evaluate the metric properties of the semi-quantitative OMERACT US scoring system vs a novel quantitative US scoring system for tenosynovitis, by testing its intra- and inter-reader reliability, sensitivity to change and comparison with clinical tenosynovitis scoring in a 6-month follow-up study. US and clinical assessments of the tendon sheaths of the clinically most affected hand and foot were performed at baseline, 3 and 6 months in 51 patients with RA. Tenosynovitis was assessed using the semi-quantitative scoring system (0-3) proposed by the OMERACT US group and a new quantitative US evaluation (0-100). A sum for US grey scale (GS), colour Doppler (CD) and pixel index (PI), respectively, was calculated for each patient. In 20 patients, intra- and inter-observer agreement was established between two independent investigators. A binary clinical tenosynovitis score was performed, calculating a sum score per patient. The intra- and inter-observer agreements for US tenosynovitis assessments were very good at baseline and for change for GS and CD, but less good for PI. The smallest detectable change was 0.97 for GS, 0.93 for CD and 30.1 for PI. The sensitivity to change from month 0 to 6 was high for GS and CD, and slightly higher than for clinical tenosynovitis score and PI. This study demonstrated an excellent intra- and inter-reader agreement between two investigators for the OMERACT US scoring system for tenosynovitis and a high ability to detect changes over time. Quantitative assessment by PI did not add further information. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Iodine 125 source in interstitial tumor therapy. Clinical and biological considerations.

    PubMed

    Kim, J H; Hilaris, B

    1975-01-01

    Our clinical experience with interstitial tumor therapy is presented in 2 groups of patients: 98 patients with metastatic carcinoma in neck lymph nodes implanted with iodine 125, iridium 192 or radon 222 encapsulated sources, and 105 patients with primary unresectable lung tumors, which were implanted either with radon 222 or iodine 125 seeds. The local tumor control rates with iodine 125, radon 222 and iridium 192 were 78 per cent (38/49), 65 per cent (15/23) and 58 per cent (7/12), while the local complication rates were 17 per cent, 35 per cent and 43 per cent, respectively. An analysis of the tumor control rate as a function of the implanted tumor dose shows that the iodine 125 implants with a delivery of the minimal effective tumor dose of 16,000 rads have a higher therapeutic effect than either radon 222 or iridium 192. The results of the patients with unresectable lung tumors similarly show that the implants with iodine 125 sources are superior to those with radon 222. The advantages could stem from the better spatial dose distribution, and from radiobiologic considerations associated with low dose rates, continous irradiation, and possibly gains in RBE. There present clinical data clearly demonstrate that iodine 125 seeds have a higher therapeutic ratio than radon 222 seeds. There are, in addition, distinct physical advantages making iodine 125 an attractive substitute for radon 222 for the interstitial implantation of malignant tumors.

  20. SU-E-I-51: Quantitative Assessment of X-Ray Imaging Detector Performance in a Clinical Setting - a Simple Approach Using a Commercial Instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoeberg, J; Bujila, R; Omar, A

    2015-06-15

    Purpose: To measure and compare the performance of X-ray imaging detectors in a clinical setting using a dedicated instrument for the quantitative determination of detector performance. Methods: The DQEPro (DQE Instruments Inc., London, Ontario Canada) was used to determine the MTF, NPS and DQE using an IEC compliant methodology for three different imaging modalities: conventional radiography (CsI-based detector), general-purpose radioscopy (CsI-based detector), and mammography (a-Se based detector). The radiation qualities (IEC) RQA-5 and RQA-M-2 were used for the CsI-based and a-Se-based detectors, respectively. The DQEPro alleviates some of the difficulties associated with DQE measurements by automatically positioning test devices overmore » the detector, guiding the user through the image acquisition process and providing software for calculations. Results: A comparison of the NPS showed that the image noise of the a-Se detector was less correlated than the CsI detectors. A consistently higher performance was observed for the a-Se detector at all spatial frequencies (MTF: 0.97@0.25 cy/mm, DQE: 0.72@0.25 cy/mm) and the DQE drops off slower than for the CsI detectors. The CsI detector used for conventional radiography displayed a higher performance at low spatial frequencies compared to the CsI detector used for radioscopy (DQE: 0.65 vs 0.60@0.25 cy/mm). However, at spatial frequencies above 1.3 cy/mm, the radioscopy detector displayed better performance than the conventional radiography detector (DQE: 0.35 vs 0.24@2.00 cy/mm). Conclusion: The difference in the MTF, NPS and DQE that was observed for the two different CsI detectors and the a-Se detector reflect the imaging tasks that the different detector types are intended for. The DQEPro has made the determination and calculation of quantitative metrics of X-ray imaging detector performance substantially more convenient and accessible to undertake in a clinical setting.« less

  1. Quantitative measures of gingival recession and the influence of gender, race, and attrition.

    PubMed

    Handelman, Chester S; Eltink, Anthony P; BeGole, Ellen

    2018-01-29

    Gingival recession in dentitions with otherwise healthy periodontium is a common occurrence in adults. Recession is clinically measured using a periodontal probe to the nearest millimeter. The aim of this study is to establish quantitative measures of recession, the clinical crown height, and a new measure the gingival margin-papillae measurement. The latter is seen as the shortest apico-coronal distance measured from the depth of the gingival margin to a line connecting the tips of the two adjacent papillae. Measurements on all teeth up to and including the first molar were performed on pretreatment study models of 120 adult Caucasian and African-American subjects divided into four groups of 30 by gender and race. Both the clinical crown height and the gingival margin-papillae measurements gave a true positive result for changes associated with gingival recession. Tooth wear shortens the clinical crown, and therefore, the measure of clinical crown height can give a false negative result when gingival recession is present. However, the gingival margin-papillae measurement was not affected by tooth wear and gave a true positive result for gingival recession. Tooth wear (attrition) was not associated with an increase in gingival recession. These measures are also useful in detecting recession prior to cemental exposure. Measures for recession and tooth wear were different for the four demographic groups studied. These measures can be used as quantitative standards in both clinical dentistry, research, and epidemiological studies.

  2. Autopsy-confirmed Alzheimer's disease versus clinically diagnosed Alzheimer's disease in the Cache County Study on Memory and Aging: a comparison of quantitative MRI and neuropsychological findings.

    PubMed

    Fearing, Michael A; Bigler, Erin D; Norton, Maria; Tschanz, Jo Ann; Hulette, Christine; Leslie, Carol; Welsh-Bohmer, Kathleen

    2007-07-01

    Atrophy of specific, regional, and generalized brain structures occurs as a result of the Alzheimer's disease (AD) process. Comparing AD patients with histopathological confirmation of the disease at autopsy to those without autopsy but who were clinically diagnosed using the same antemortem criteria will provide further evidence of the utility and accuracy of neuropsychological assessments at the time of diagnosis, as well as the efficacy of quantitative magnetic resonance imaging (qMRI) in demonstrating gross neuropathological changes associated with the disease. The Cache County Study of Aging provides a unique opportunity to determine how closely AD subjects with only the clinical diagnosis match similarly diagnosed AD subjects but with postmortem confirmation of the disease. qMRI volumes of various brain structures, as well as neuropsychological outcome measures from an expanded battery, were obtained in 31 autopsy-confirmed AD subjects and 45 clinically diagnosed AD subjects. Of the various qMRI variables examined, only total temporal lobe volume was different, where those with postmortem confirmation had reduced volume. No significant differences between the two groups were found with any of the neuropsychological outcome measures. These findings confirm the similarity in neuroimaging and neuropsychological assessment findings between those with just the clinical diagnosis of AD and those with an autopsy-confirmed diagnosis in the moderate-to-severe stage of the disease at the time of diagnosis.

  3. Connecting qualitative observation and quantitative measurement for enhancing quantitative literacy in plant anatomy course

    NASA Astrophysics Data System (ADS)

    Nuraeni, E.; Rahmat, A.

    2018-05-01

    Forming of cognitive schemes of plant anatomy concepts is performed by processing of qualitative and quantitative data obtained from microscopic observations. To enhancing student’s quantitative literacy, strategy of plant anatomy course was modified by adding the task to analyze quantitative data produced by quantitative measurement of plant anatomy guided by material course. Participant in this study was 24 biology students and 35 biology education students. Quantitative Literacy test, complex thinking in plant anatomy test and questioner used to evaluate the course. Quantitative literacy capability data was collected by quantitative literacy test with the rubric from the Association of American Colleges and Universities, Complex thinking in plant anatomy by test according to Marzano and questioner. Quantitative literacy data are categorized according to modified Rhodes and Finley categories. The results showed that quantitative literacy of biology education students is better than biology students.

  4. Current understanding of cancer stem cells: Review of their radiobiology and role in head and neck cancers.

    PubMed

    Reid, Paul Ambrose; Wilson, Puthenparampil; Li, Yanrui; Marcu, Loredana Gabriela; Bezak, Eva

    2017-09-01

    Evidence of cancer cells that bear attributes analogous to those of normal stem cells has developed a hierarchical model of cancer's architecture and progression. This subset of cancer stem cells (CSCs) drives the progression and therapy resistance of cancers. Research to identify the phenotypes of these CSCs presents evidence of a subpopulation that is more resistant to therapy and may proliferate in response. Literature shows that CSCs typically represent around 1%-10% of cell populations in head and neck cancer but this proportion may increase in response to a therapeutic radiation dose. This is shown to be not just as a result of preferential killing, but also their capacity to alter divisional dynamics and enlist the support of a complicit microenvironment in therapy resistance and proliferation. The CSCs represent the apex of a hierarchy in the heterogeneity of cancer cells and may be seen as the agents of treatment failure, metastasis, and tumor recurrence, the principal cause of mortality in head and neck cancers. Greater than 90% of head and neck cancers are squamous cell carcinomas (HNSCCs), and among these an increasing incidence of the involvement of the human papillomavirus (HPV) is reported. Chemoradiotherapy along with surgical resection are the interventions of choice for control and cure of HNSCC, but given CSCs therapy resistance and proliferative responses to radiation, the identification and understanding of the radiobiology of this subpopulation is critical to their targeted elimination. This article reviews the current evidence on CSC generally and in HNSCC specifically to identify their phenotype, evaluate their responses to radiotherapy, and evaluate the defensive mechanisms used to resist therapeutic control. © 2017 Wiley Periodicals, Inc.

  5. International Standards and Reference Materials for Quantitative Molecular Infectious Disease Testing

    PubMed Central

    Madej, Roberta M.; Davis, Jack; Holden, Marcia J.; Kwang, Stan; Labourier, Emmanuel; Schneider, George J.

    2010-01-01

    The utility of quantitative molecular diagnostics for patient management depends on the ability to relate patient results to prior results or to absolute values in clinical practice guidelines. To do this, those results need to be comparable across time and methods, either by producing the same value across methods and test versions or by using reliable and stable conversions. Universally available standards and reference materials specific to quantitative molecular technologies are critical to this process but are few in number. This review describes recent history in the establishment of international standards for nucleic acid test development, organizations involved in current efforts, and future issues and initiatives. PMID:20075208

  6. Influence of echo time in quantitative proton MR spectroscopy using LCModel.

    PubMed

    Yamamoto, Tetsuya; Isobe, Tomonori; Akutsu, Hiroyoshi; Masumoto, Tomohiko; Ando, Hiroki; Sato, Eisuke; Takada, Kenta; Anno, Izumi; Matsumura, Akira

    2015-06-01

    The objective of this study was to elucidate the influence on quantitative analysis using LCModel with the condition of echo time (TE) longer than the recommended values in the spectrum acquisition specifications. A 3T magnetic resonance system was used to perform proton magnetic resonance spectroscopy. The participants were 5 healthy volunteers and 11 patients with glioma. Data were collected at TE of 72, 144 and 288ms. LCModel was used to quantify several metabolites (N-acetylaspartate, creatine and phosphocreatine, and choline-containing compounds). The results were compared with quantitative values obtained by using the T2-corrected internal reference method. In healthy volunteers, when TE was long, the quantitative values obtained using LCModel were up to 6.8-fold larger (p<0.05) than those obtained using the T2-corrected internal reference method. The ratios of the quantitative values obtained by the two methods differed between metabolites (p<0.05). In patients with glioma, the ratios of quantitative values obtained by the two methods tended to be larger at longer TE, similarly to the case of healthy volunteers, and large between-individual variation in the ratios was observed. In clinical practice, TE is sometimes set longer than the value recommended for LCModel. If TE is long, LCModel overestimates the quantitative value since it cannot compensate for signal attenuation, and this effect is different for each metabolite and condition. Therefore, if TE is longer than recommended, it is necessary to account for the possibly reduced reliability of quantitative values calculated using LCModel. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Quantitative High-Resolution Genomic Analysis of Single Cancer Cells

    PubMed Central

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A.; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics. PMID:22140428

  8. Quantitative high-resolution genomic analysis of single cancer cells.

    PubMed

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  9. I Vivo Quantitative Ultrasound Imaging and Scatter Assessments.

    NASA Astrophysics Data System (ADS)

    Lu, Zheng Feng

    There is evidence that "instrument independent" measurements of ultrasonic scattering properties would provide useful diagnostic information that is not available with conventional ultrasound imaging. This dissertation is a continuing effort to test the above hypothesis and to incorporate quantitative ultrasound methods into clinical examinations for early detection of diffuse liver disease. A well-established reference phantom method was employed to construct quantitative ultrasound images of tissue in vivo. The method was verified by extensive phantom tests. A new method was developed to measure the effective attenuation coefficient of the body wall. The method relates the slope of the difference between the echo signal power spectrum from a uniform region distal to the body wall and the echo signal power spectrum from a reference phantom to the body wall attenuation. The accuracy obtained from phantom tests suggests further studies with animal experiments. Clinically, thirty-five healthy subjects and sixteen patients with diffuse liver disease were studied by these quantitative ultrasound methods. The average attenuation coefficient in normals agreed with previous investigators' results; in vivo backscatter coefficients agreed with the results from normals measured by O'Donnell. Strong discriminating power (p < 0.001) was found for both attenuation and backscatter coefficients between fatty livers and normals; a significant difference (p < 0.01) was observed in the backscatter coefficient but not in the attenuation coefficient between cirrhotic livers and normals. An in vivo animal model of steroid hepatopathy was used to investigate the system sensitivity in detecting early changes in canine liver resulting from corticosteroid administration. The average attenuation coefficient slope increased from 0.7 dB/cm/MHz in controls to 0.82 dB/cm/MHz (at 6 MHz) in treated animals on day 14 into the treatment, and the backscatter coefficient was 26times 10^{ -4}cm^{-1}sr

  10. A quantitative assessment of alkaptonuria: testing the reliability of two disease severity scoring systems.

    PubMed

    Cox, Trevor F; Ranganath, Lakshminarayan

    2011-12-01

    Alkaptonuria (AKU) is due to excessive homogentisic acid accumulation in body fluids due to lack of enzyme homogentisate dioxygenase leading in turn to varied clinical manifestations mainly by a process of conversion of HGA to a polymeric melanin-like pigment known as ochronosis. A potential treatment, a drug called nitisinone, to decrease formation of HGA is available. However, successful demonstration of its efficacy in modifying the natural history of AKU requires an effective quantitative assessment tool. We have described two potential tools that could be used to quantitate disease burden in AKU. One tool describes scoring the clinical features that includes clinical assessments, investigations and questionnaires in 15 patients with AKU. The second tool describes a scoring system that only includes items obtained from questionnaires used in 44 people with AKU. Statistical analyses were carried out on the two patient datasets to assess the AKU tools; these included the calculation of Chronbach's alpha, multidimensional scaling and simple linear regression analysis. The conclusion was that there was good evidence that the tools could be adopted as AKU assessment tools, but perhaps with further refinement before being used in the practical setting of a clinical trial.

  11. Utility of DWI with quantitative ADC values in ovarian tumors: a meta-analysis of diagnostic test performance.

    PubMed

    Pi, Shan; Cao, Rong; Qiang, Jin Wei; Guo, Yan Hui

    2018-01-01

    Background Diffusion-weighted imaging (DWI) and quantitative apparent diffusion coefficient (ADC) values are widely used in the differential diagnosis of ovarian tumors. Purpose To assess the diagnostic performance of quantitative ADC values in ovarian tumors. Material and Methods PubMed, Embase, the Cochrane Library, and local databases were searched for studies assessing ovarian tumors using quantitative ADC values. We quantitatively analyzed the diagnostic performances for two clinical problems: benign vs. malignant tumors and borderline vs. malignant tumors. We evaluated diagnostic performances by the pooled sensitivity and specificity values and by summary receiver operating characteristic (SROC) curves. Subgroup analyses were used to analyze study heterogeneity. Results From the 742 studies identified in the search results, 16 studies met our inclusion criteria. A total of ten studies evaluated malignant vs. benign ovarian tumors and six studies assessed malignant vs. borderline ovarian tumors. Regarding the diagnostic accuracy of quantitative ADC values for distinguishing between malignant and benign ovarian tumors, the pooled sensitivity and specificity values were 0.91 and 0.91, respectively. The area under the SROC curve (AUC) was 0.96. For differentiating borderline from malignant tumors, the pooled sensitivity and specificity values were 0.89 and 0.79, and the AUC was 0.91. The methodological quality of the included studies was moderate. Conclusion Quantitative ADC values could serve as useful preoperative markers for predicting the nature of ovarian tumors. Nevertheless, prospective trials focused on standardized imaging parameters are needed to evaluate the clinical value of quantitative ADC values in ovarian tumors.

  12. Reproducibility of CSF quantitative culture methods for estimating rate of clearance in cryptococcal meningitis.

    PubMed

    Dyal, Jonathan; Akampurira, Andrew; Rhein, Joshua; Morawski, Bozena M; Kiggundu, Reuben; Nabeta, Henry W; Musubire, Abdu K; Bahr, Nathan C; Williams, Darlisha A; Bicanic, Tihana; Larsen, Robert A; Meya, David B; Boulware, David R

    2016-05-01

    Quantitative cerebrospinal fluid (CSF) cultures provide a measure of disease severity in cryptococcal meningitis. The fungal clearance rate by quantitative cultures has become a primary endpoint for phase II clinical trials. This study determined the inter-assay accuracy of three different quantitative culture methodologies. Among 91 participants with meningitis symptoms in Kampala, Uganda, during August-November 2013, 305 CSF samples were prospectively collected from patients at multiple time points during treatment. Samples were simultaneously cultured by three methods: (1) St. George's 100 mcl input volume of CSF with five 1:10 serial dilutions, (2) AIDS Clinical Trials Group (ACTG) method using 1000, 100, 10 mcl input volumes, and two 1:100 dilutions with 100 and 10 mcl input volume per dilution on seven agar plates; and (3) 10 mcl calibrated loop of undiluted and 1:100 diluted CSF (loop). Quantitative culture values did not statistically differ between St. George-ACTG methods (P= .09) but did for St. George-10 mcl loop (P< .001). Repeated measures pairwise correlation between any of the methods was high (r≥0.88). For detecting sterility, the ACTG-method had the highest negative predictive value of 97% (91% St. George, 60% loop), but the ACTG-method had occasional (∼10%) difficulties in quantification due to colony clumping. For CSF clearance rate, St. George-ACTG methods did not differ overall (mean -0.05 ± 0.07 log10CFU/ml/day;P= .14) on a group level; however, individual-level clearance varied. The St. George and ACTG quantitative CSF culture methods produced comparable but not identical results. Quantitative cultures can inform treatment management strategies. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Office procedures for quantitative assessment of olfactory function.

    PubMed

    Doty, Richard L

    2007-01-01

    Despite the importance of the sense of smell for establishing the flavor of foods and beverages, as well as protecting against environmental dangers, this primary sensory system is commonly ignored by the rhinologist. In this article basic issues related to practical measurement of olfactory function in the clinic are described and examples of the application of the two most common paradigms for such measurement--odor identification and detection--are presented. A listing is made of the 27 olfactory tests currently used clinically, along with their strengths and weaknesses. A brief review of common nasosinus-related disorders for which quantitative olfactory testing has been performed is provided. Although many psychophysical tests are available for quantifying olfactory loss, it is apparent that a number are limited in terms of practicality, sensitivity, and reliability. In general, sensitivity and reliability are positively correlated with test length. Given the strengths of the more reliable forced-choice pyschophysical tests and the limitations of electrophysiological tests, the common distinction between "subjective" and "objective" tests is misleading and should not be used. Complete recovery of olfactory function, as measured quantitatively, rarely follows surgical or medical interventions in patients with rhinosinusitis. Given the availability of practical clinical olfactory tests, the modern rhinologist can easily quantify cranial nerve (CN) I function. The application of such tests has led to a new understanding of the effects of nasal disease on olfactory function. Except in cases of total or near-total nasal obstruction, olfactory and airway patency measures usually are unrelated, in accord with the concept that rhinosinusitis primarily influences olfactory function by apoptotic pathological changes within the olfactory neuroepithelium.

  14. Radiosurgery with photons or protons for benign and malignant tumours of the skull base: a review.

    PubMed

    Amichetti, Maurizio; Amelio, Dante; Minniti, Giuseppe

    2012-12-14

    Stereotactic radiosurgery (SRS) is an important treatment option for intracranial lesions. Many studies have shown the effectiveness of photon-SRS for the treatment of skull base (SB) tumours; however, limited data are available for proton-SRS.Several photon-SRS techniques, including Gamma Knife, modified linear accelerators (Linac) and CyberKnife, have been developed and several studies have compared treatment plan characteristics between protons and photons.The principles of classical radiobiology are similar for protons and photons even though they differ in terms of physical properties and interaction with matter resulting in different dose distributions.Protons have special characteristics that allow normal tissues to be spared better than with the use of photons, although their potential clinical superiority remains to be demonstrated.A critical analysis of the fundamental radiobiological principles, dosimetric characteristics, clinical results, and toxicity of proton- and photon-SRS for SB tumours is provided and discussed with an attempt of defining the advantages and limits of each radiosurgical technique.

  15. Radiosurgery with photons or protons for benign and malignant tumours of the skull base: a review

    PubMed Central

    2012-01-01

    Stereotactic radiosurgery (SRS) is an important treatment option for intracranial lesions. Many studies have shown the effectiveness of photon-SRS for the treatment of skull base (SB) tumours; however, limited data are available for proton-SRS. Several photon-SRS techniques, including Gamma Knife, modified linear accelerators (Linac) and CyberKnife, have been developed and several studies have compared treatment plan characteristics between protons and photons. The principles of classical radiobiology are similar for protons and photons even though they differ in terms of physical properties and interaction with matter resulting in different dose distributions. Protons have special characteristics that allow normal tissues to be spared better than with the use of photons, although their potential clinical superiority remains to be demonstrated. A critical analysis of the fundamental radiobiological principles, dosimetric characteristics, clinical results, and toxicity of proton- and photon-SRS for SB tumours is provided and discussed with an attempt of defining the advantages and limits of each radiosurgical technique. PMID:23241206

  16. Quantitative evaluation of the voice range profile in patients with voice disorder.

    PubMed

    Ikeda, Y; Masuda, T; Manako, H; Yamashita, H; Yamamoto, T; Komiyama, S

    1999-01-01

    In 1953, Calvet first displayed the fundamental frequency (pitch) and sound pressure level (intensity) of a voice on a two-dimensional plane and created a voice range profile. This profile has been used to evaluate clinically various vocal disorders, although such evaluations to date have been subjective without quantitative assessment. In the present study, a quantitative system was developed to evaluate the voice range profile utilizing a personal computer. The area of the voice range profile was defined as the voice volume. This volume was analyzed in 137 males and 175 females who were treated for various dysphonias at Kyushu University between 1984 and 1990. Ten normal subjects served as controls. The voice volume in cases with voice disorders significantly decreased irrespective of the disease and sex. Furthermore, cases having better improvement after treatment showed a tendency for the voice volume to increase. These findings illustrated the voice volume as a useful clinical test for evaluating voice control in cases with vocal disorders.

  17. Quantitative contrast-enhanced mammography for contrast medium kinetics studies

    NASA Astrophysics Data System (ADS)

    Arvanitis, C. D.; Speller, R.

    2009-10-01

    Quantitative contrast-enhanced mammography, based on a dual-energy approach, aims to extract quantitative and temporal information of the tumour enhancement after administration of iodinated vascular contrast media. Simulations using analytical expressions and optimization of critical parameters essential for the development of quantitative contrast-enhanced mammography are presented. The procedure has been experimentally evaluated using a tissue-equivalent phantom and an amorphous silicon active matrix flat panel imager. The x-ray beams were produced by a tungsten target tube and spectrally shaped using readily available materials. Measurement of iodine projected thickness in mg cm-2 has been performed. The effect of beam hardening does not introduce nonlinearities in the measurement of iodine projected thickness for values of thicknesses found in clinical investigations. However, scattered radiation introduces significant deviations from slope equal to unity when compared with the actual iodine projected thickness. Scatter correction before the analysis of the dual-energy images provides accurate iodine projected thickness measurements. At 10% of the exposure used in clinical mammography, signal-to-noise ratios in excess of 5 were achieved for iodine projected thicknesses less than 3 mg cm-2 within a 4 cm thick phantom. For the extraction of temporal information, a limited number of low-dose images were used with the phantom incorporating a flow of iodinated contrast medium. The results suggest that spatial and temporal information of iodinated contrast media can be used to indirectly measure the tumour microvessel density and determine its uptake and washout from breast tumours. The proposed method can significantly improve tumour detection in dense breasts. Its application to perform in situ x-ray biopsy and assessment of the oncolytic effect of anticancer agents is foreseeable.

  18. Combined visual and semi-quantitative assessment of 123I-FP-CIT SPECT for the diagnosis of dopaminergic neurodegenerative diseases.

    PubMed

    Ueda, Jun; Yoshimura, Hajime; Shimizu, Keiji; Hino, Megumu; Kohara, Nobuo

    2017-07-01

    Visual and semi-quantitative assessments of 123 I-FP-CIT single-photon emission computed tomography (SPECT) are useful for the diagnosis of dopaminergic neurodegenerative diseases (dNDD), including Parkinson's disease, dementia with Lewy bodies, progressive supranuclear palsy, multiple system atrophy, and corticobasal degeneration. However, the diagnostic value of combined visual and semi-quantitative assessment in dNDD remains unclear. Among 239 consecutive patients with a newly diagnosed possible parkinsonian syndrome who underwent 123 I-FP-CIT SPECT in our medical center, 114 patients with a disease duration less than 7 years were diagnosed as dNDD with the established criteria or as non-dNDD according to clinical judgment. We retrospectively examined their clinical characteristics and visual and semi-quantitative assessments of 123 I-FP-CIT SPECT. The striatal binding ratio (SBR) was used as a semi-quantitative measure of 123 I-FP-CIT SPECT. We calculated the sensitivity and specificity of visual assessment alone, semi-quantitative assessment alone, and combined visual and semi-quantitative assessment for the diagnosis of dNDD. SBR was correlated with visual assessment. Some dNDD patients with a normal visual assessment had an abnormal SBR, and vice versa. There was no statistically significant difference between sensitivity of the diagnosis with visual assessment alone and semi-quantitative assessment alone (91.2 vs. 86.8%, respectively, p = 0.29). Combined visual and semi-quantitative assessment demonstrated superior sensitivity (96.7%) to visual assessment (p = 0.03) or semi-quantitative assessment (p = 0.003) alone with equal specificity. Visual and semi-quantitative assessments of 123 I-FP-CIT SPECT are helpful for the diagnosis of dNDD, and combined visual and semi-quantitative assessment shows superior sensitivity with equal specificity.

  19. Quantitative analysis of professionally trained versus untrained voices.

    PubMed

    Siupsinskiene, Nora

    2003-01-01

    The aim of this study was to compare healthy trained and untrained voices as well as healthy and dysphonic trained voices in adults using combined voice range profile and aerodynamic tests, to define the normal range limiting values of quantitative voice parameters and to select the most informative quantitative voice parameters for separation between healthy and dysphonic trained voices. Three groups of persons were evaluated. One hundred eighty six healthy volunteers were divided into two groups according to voice training: non-professional speakers group consisted of 106 untrained voices persons (36 males and 70 females) and professional speakers group--of 80 trained voices persons (21 males and 59 females). Clinical group consisted of 103 dysphonic professional speakers (23 males and 80 females) with various voice disorders. Eighteen quantitative voice parameters from combined voice range profile (VRP) test were analyzed: 8 of voice range profile, 8 of speaking voice, overall vocal dysfunction degree and coefficient of sound, and aerodynamic maximum phonation time. Analysis showed that healthy professional speakers demonstrated expanded vocal abilities in comparison to healthy non-professional speakers. Quantitative voice range profile parameters- pitch range, high frequency limit, area of high frequencies and coefficient of sound differed significantly between healthy professional and non-professional voices, and were more informative than speaking voice or aerodynamic parameters in showing the voice training. Logistic stepwise regression revealed that VRP area in high frequencies was sufficient to discriminate between healthy and dysphonic professional speakers for male subjects (overall discrimination accuracy--81.8%) and combination of three quantitative parameters (VRP high frequency limit, maximum voice intensity and slope of speaking curve) for female subjects (overall model discrimination accuracy--75.4%). We concluded that quantitative voice assessment

  20. SU-G-TeP3-02: Determination of Geometry-Specific Backscatter Factors for Radiobiology Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viscariello, N; Culberson, W; Lawless, M

    2016-06-15

    Purpose: Radiation biology research relies on an accurate radiation dose delivered to the biological target. Large field irradiations in a cabinet irradiator may use the AAPM TG-61 protocol. This relies on an air-kerma measurement and conversion to absorbed dose to water (Dw) on the surface of a water phantom using provided backscatter factors. Cell or small animal studies differ significantly from this reference geometry. This study aims to determine the impact of the lack of full scatter conditions in four representative geometries that may be used in radiobiology studies. Methods: MCNP6 was used to model the Dw on the surfacemore » of a full scatter phantom in a validated orthovoltage x-ray reference beam. Dw in a cylindrical mouse, 100 mm Petri dish, 6-well and 96-well cell culture dishes was simulated and compared to this full scatter geometry. A reference dose rate was measured using the TG-61 protocol in a cabinet irradiator. This nominal dose rate was used to irradiate TLDs in each phantom to a given dose. Doses were obtained based on TLDs calibrated in a NIST-traceable beam. Results: Compared to the full scattering conditions, the simulated dose to water in the representative geometries were found to be underestimated by 12-26%. The discrepancy was smallest with the cylindrical mouse geometry, which most closely approximates adequate lateral- and backscatter. TLDs irradiated in the mouse and petri dish phantoms using the TG-61 determined dose rate showed similarly lower values of Dw. When corrected for this discrepancy, they agreed with the predicted Dw within 5%. Conclusion: Using the TG-61 in-air protocol and given backscatter factors to determine a reference dose rate in a biological irradiator may not be appropriate given the difference in scattering conditions between irradiation and calibration. Without accounting for this, the dose rate is overestimated and is dependent on irradiation geometry.« less