Comprehensive, Quantitative Risk Assessment of CO{sub 2} Geologic Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepinski, James
2013-09-30
A Quantitative Failure Modes and Effects Analysis (QFMEA) was developed to conduct comprehensive, quantitative risk assessments on CO{sub 2} capture, transportation, and sequestration or use in deep saline aquifers, enhanced oil recovery operations, or enhanced coal bed methane operations. The model identifies and characterizes potential risks; identifies the likely failure modes, causes, effects and methods of detection; lists possible risk prevention and risk mitigation steps; estimates potential damage recovery costs, mitigation costs and costs savings resulting from mitigation; and ranks (prioritizes) risks according to the probability of failure, the severity of failure, the difficulty of early failure detection and themore » potential for fatalities. The QFMEA model generates the necessary information needed for effective project risk management. Diverse project information can be integrated into a concise, common format that allows comprehensive, quantitative analysis, by a cross-functional team of experts, to determine: What can possibly go wrong? How much will damage recovery cost? How can it be prevented or mitigated? What is the cost savings or benefit of prevention or mitigation? Which risks should be given highest priority for resolution? The QFMEA model can be tailored to specific projects and is applicable to new projects as well as mature projects. The model can be revised and updated as new information comes available. It accepts input from multiple sources, such as literature searches, site characterization, field data, computer simulations, analogues, process influence diagrams, probability density functions, financial analysis models, cost factors, and heuristic best practices manuals, and converts the information into a standardized format in an Excel spreadsheet. Process influence diagrams, geologic models, financial models, cost factors and an insurance schedule were developed to support the QFMEA model. Comprehensive, quantitative risk assessments were conducted on three (3) sites using the QFMEA model: (1) SACROC Northern Platform CO{sub 2}-EOR Site in the Permian Basin, Scurry County, TX, (2) Pump Canyon CO{sub 2}-ECBM Site in the San Juan Basin, San Juan County, NM, and (3) Farnsworth Unit CO{sub 2}-EOR Site in the Anadarko Basin, Ochiltree County, TX. The sites were sufficiently different from each other to test the robustness of the QFMEA model.« less
1993-02-01
E-1) the gas internal specific energy is RTo Eo ,(E-2) 91 / and the gas sound speed is 2 YPo -yRTo co = = (E-3) Po(1 - lpo) (1 - Tipo ) 2"" We note...Manager U.S. Army Aviation School 155mm Howitzer, M109A6, Paladin ATTN: Aviation Agency ATTN: SFAE-AR-HIP-IP, Mr. R, De Kleine Fort Rucker, AL 36360...etc.) 5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or
NASA Astrophysics Data System (ADS)
Chung, Chih-Yao; Wang, Jhih-Cheng; Chuang, Han-Sheng
2017-04-01
Successful treatments against bacterial infections depend on antimicrobial susceptibility testing (AST). However, conventional AST requires more than 24 h to obtain an outcome, thereby contributing to high patient mortality. An antibiotic therapy based on experiences is therefore necessary for saving lives and escalating the emergence of multidrug-resistant pathogens. Accordingly, a fast and effective drug screen is necessary for the appropriate administration of antibiotics. The mixed pathogenic nature of infectious diseases emphasizes the need to develop an assay system for polymicrobial infections. On this basis, we present a novel technique for simultaneous and quantitative monitoring of co-cultured microorganisms by coupling optical diffusometry with bead-based immunoassays. This simple integration simultaneously achieves a rapid AST analysis for two pathogens. Triple color particles were simultaneously recorded and subsequently analyzed by functionalizing different fluorescent color particles with dissimilar pathogen-specific antibodies. Results suggested that the effect of the antibiotic, gentamicin, on co-cultured Pseudomonas aeruginosa and Staphylococcus aureus was effectively distinguished by the proposed technique. This study revealed a multiplexed and time-saving (within 2 h) platform with a small sample volume (~0.5 μL) and a low initial bacterial count (50 CFU per droplet, ~105 CFU/mL) for continuously monitoring the growth of co-cultured microorganisms. This technique provides insights into timely therapies against polymicrobial diseases in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ding; Hasanbeigi, Ali; Chen, Wenying
As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO 2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiencymore » measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO 2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.« less
Jackson, Phil; Fisher, Keith J; Attalla, Moetaz Ibrahim
2011-08-01
The reaction between CO(2) and aqueous amines to produce a charged carbamate product plays a crucial role in post-combustion capture chemistry when primary and secondary amines are used. In this paper, we report the low energy negative-ion CID results for several anionic carbamates derived from primary and secondary amines commonly used as post-combustion capture solvents. The study was performed using the modern equivalent of a triple quadrupole instrument equipped with a T-wave collision cell. Deuterium labeling of 2-aminoethanol (1,1,2,2,-d(4)-2-aminoethanol) and computations at the M06-2X/6-311++G(d,p) level were used to confirm the identity of the fragmentation products for 2-hydroxyethylcarbamate (derived from 2-aminoethanol), in particular the ions CN(-), NCO(-) and facile neutral losses of CO(2) and water; there is precedent for the latter in condensed phase isocyanate chemistry. The fragmentations of 2-hydroxyethylcarbamate were generalized for carbamate anions derived from other capture amines, including ethylenediamine, diethanolamine, and piperazine. We also report unequivocal evidence for the existence of carbamate anions derived from sterically hindered amines (Tris(2-hydroxymethyl)aminomethane and 2-methyl-2-aminopropanol). For the suite of carbamates investigated, diagnostic losses include the decarboxylation product (-CO(2), 44 mass units), loss of 46 mass units and the fragments NCO(-) (m/z 42) and CN(-) (m/z 26). We also report low energy CID results for the dicarbamate dianion ((-)O(2)CNHC(2)H(4)NHCO(2)(-)) commonly encountered in CO(2) capture solution utilizing ethylenediamine. Finally, we demonstrate a promising ion chromatography-MS based procedure for the separation and quantitation of aqueous anionic carbamates, which is based on the reported CID findings. The availability of accurate quantitation methods for ionic CO(2) capture products could lead to dynamic operational tuning of CO(2) capture-plants and, thus, cost-savings via real-time manipulation of solvent regeneration energies.
Engineered yeast for enhanced CO2 mineralization†
Barbero, Roberto; Carnelli, Lino; Simon, Anna; Kao, Albert; Monforte, Alessandra d’Arminio; Riccò, Moreno; Bianchi, Daniele; Belcher, Angela
2014-01-01
In this work, a biologically catalyzed CO2 mineralization process for the capture of CO2 from point sources was designed, constructed at a laboratory scale, and, using standard chemical process scale-up protocols, was modeled and evaluated at an industrial scale. A yeast display system in Saccharomyces cerevisae was used to screen several carbonic anhydrase isoforms and mineralization peptides for their impact on CO2 hydration, CaCO3 mineralization, and particle settling rate. Enhanced rates for each of these steps in the CaCO3 mineralization process were confirmed using quantitative techniques in lab-scale measurements. The effect of these enhanced rates on the CO2 capture cost in an industrial scale CO2 mineralization process using coal fly ash as the CaO source was evaluated. The model predicts a process using bCA2- yeast and fly ash is ~10% more cost effective per ton of CO2 captured than a process with no biological molecules, a savings not realized by wild-type yeast and high-temperature stable recombinant CA2 alone or in combination. The levelized cost of electricity for a power plant using this process was calculated and scenarios in which this process compares favorably to CO2 capture by MEA absorption process are presented. PMID:25289021
Monforti-Ferrario, Fabio; Kona, Albana; Peduzzi, Emanuela; Pernigotti, Denise; Pisoni, Enrico
2018-06-08
This study is a first attempt to evaluate how the major efforts made by several European cities in the frame of the Covenant of Mayors (CoM) initiative can impact the air pollution levels in the participating cities. CoM is by no mean one of the major cities initiatives aimed at mitigating climate change, supporting local authorities in the implementation of their climate action plans. Energy savings measures reported in the CoM cities' action plans have been analysed from the air quality perspective in order to find quantitative relations in the way local authorities deal with mitigation and how these practices are expected to have consequences on the air quality at urban level and finally positively impacting the citizens' health. In the paper, the air quality 2713 energy saving measures proposed by 146 cities located in 23 countries in the frame of the CoM are selected and their co-benefits for air quality and public health estimated by means of SHERPA, a fast modelling tool that mimics the behaviour of a full physically-based Chemical Transport Model. Besides evaluating the overall benefits of this subset of mitigation measures for the air quality, the study also investigates the relevance of some factors such as the implementation sector, the city size and the pollution levels in achieving the highest possible co-benefits. The results presented refer to the special field covered by the study, i.e. energy saving measures and are not automatically referable to other types of measures. Nevertheless, they clearly show how climate mitigation and air quality policies are deeply interconnected at the urban level. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Feasibility study on an energy-saving desiccant wheel system with CO2 heat pump
NASA Astrophysics Data System (ADS)
Liu, Yefeng; Meng, Deren; Chen, Shen
2018-02-01
In traditional desiccant wheel, air regeneration process occurs inside an open loop, and lots of energy is consumed. In this paper, an energy-saving desiccant wheel system with CO2 heat pump and closed loop air regeneration is proposed. The general theory and features of the desiccant wheel are analysed. The main feature of the proposed system is that the air regeneration process occurs inside a closed loop, and a CO2 heat pump is utilized inside this loop for the air regeneration process as well as supplying cooling for the process air. The simulation results show that the proposed system can save significant energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, III, William R.; Hasanbeigi, Ali; Xu, Tengfang
2012-12-03
India’s cement industry is the second largest in the world behind China with annual cement production of 168 Mt in 2010 which accounted for slightly greater than six percent of the world’s annual cement production in the same year. To produce that amount of cement, the industry consumed roughly 700 PJ of fuel and 14.7 TWh of electricity. We identified and analyzed 22 energy efficiency technologies and measures applicable to the processes in the Indian cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives ofmore » energy conservation. Using a bottom-up electricity CSC model and compared to an electricity price forecast the cumulative cost-effective plant-level electricity savings potential for the Indian cement industry for 2010- 2030 is estimated to be 83 TWh, and the cumulative plant-level technical electricity saving potential is 89 TWh during the same period. The grid-level CO2 emissions reduction associated with cost-effective electricity savings is 82 Mt CO2 and the electric grid-level CO2 emission reduction associated with technical electricity saving potential is 88 Mt CO2. Compared to a fuel price forecast, an estimated cumulative cost-effective fuel savings potential of 1,029 PJ with associated CO2 emission reduction of 97 Mt CO2 during 2010-2030 is possible. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Indian cement industry and policy makers about the energy efficiency potential and its associated cost over the next twenty years.« less
New Manufacturing Method for Paper Filler and Fiber Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doelle, Klaus
2013-08-25
The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections. and it is important to understand the effect that new manufacturing methods of calcium carbonates have on the energy efficiency and paper production. Research conducted under this award showed that the new fiber filler composite material has the potential to increase the paper filler content by up to 5% without losing mechanical properties. Benefits of the technology can be summarized as follows for a 1% filler increase per metric ton of paper produced: (i) production cost savings overmore » $$12, (ii) Energy savings of 100,900 btu, (iii) CO{sub 2} emission savings of 33 lbs, and additional savings for wood preparation, pulping, recovery of 203593 btu with a 46lbs of CO{sub 2} emission savings per 1% filler increase. In addition the technology has the potential to save: (i) additional $$3 per ton of bleached pulp produced, (ii) bleaching energy savings of 170,000 btu, (iii) bleaching CO{sub 2} emission savings of 39 lbs, and (iv) additional savings for replacing conventional bleaching chemicals with a sustainable bleaching chemical is estimated to be 900,000 btu with a 205 lbs of CO{sub 2} emission savings per ton of bleached pulp produced. All the above translates to a estimated annual savings for a 12% filler increase of 296 trillion buts or 51 million barrel of oil equivalent (BOE) or 13.7% of the industries energy demand. This can lead to a increase of renewable energy usage from 56% to close to 70% for the industry sector. CO{sub 2} emission of the industry at a 12% filler increase could be lowered by over 39 million tons annually. If the new technology could be implemented for bleaching process a total annual estimated energy savings potential of 64 trillion buts or 11 million barrel of oil equivalent (BOE) equal to 3% of the paper industries energy demand could be realized. This could lead to a increase of renewable energy usage from 56% to close to 60% for the industry. CO{sub 2} emissions could be lowered by over 7.4 million tons annually. It is estimated that an installed system could also yield a 75 to 100% return of investment (ROI) rate for the capital equipment that need to be installed for the fiber filler composite manufacturing process.« less
Environmental Co-Benefit Opportunities of Solar Energy
NASA Astrophysics Data System (ADS)
Hernandez, R. R.; Armstrong, A.; Burney, J. A.; Easter, S. B.; Hoffacker, M. K.; Moore, K. A.
2015-12-01
Solar energy reduces greenhouse gas emissions by an order of magnitude when substituted for fossil fuels. Nonetheless, the strategic deployment of solar energy—from single, rooftop modules to utility-scale solar energy power plants—can confer additional environmental co-benefits beyond its immediate use as a low carbon energy source. In this study, we identify a diverse portfolio of environmental co-benefit opportunities of solar energy technologies resulting from synergistic innovations in land, food, energy, and water systems. For each opportunity, we provide a demonstrative, quantitative framework for environmental co-benefit valuation—including, equations, models, or case studies for estimating carbon dioxide equivalent (CO2-eq) and cost savings ($US) averted by environmental co-benefit opportunities of solar energy—and imminent research questions to improve certainty of valuations. As land-energy-food-water nexus issues are increasingly exigent in 21st century, we show that environmental co-benefit opportunities of solar energy are feasible in numerous environments and at a wide range of spatial scales thereby able to contribute to local and regional environmental goals and for the mitigation of climate change.
Carbon and Energy Saving Financial Opportunities in the Industrial Compressed Air Sector
NASA Astrophysics Data System (ADS)
Vittorini, Diego; Cipollone, Roberto
2017-08-01
The transition towards a more sustainable energy scenario calls for both medium-to-long and short term interventions, with CO2 reduction and fossil fuel saving as main goals for all the Countries in the World. Among all others, one way to support these efforts is the setting-up of immaterial markets able to regulate, in the form of purchase and sales quotas, CO2 emissions avoided and fossil fuels not consumed. As a consequence, the upgrade of those sectors, characterized by high energy impact, is currently more than an option due to the related achievable financial advantage on the afore mentioned markets. Being responsible for about 10% electricity consumption in Industry, the compressed air sector is currently addressed as extremely appealing, when CO2 emissions and burned fossil fuels saving are in question. In the paper, once a standard is defined for compressors performances, based on data from the Compressed Air and Gas Institute and PNEUROP, the achievable energy saving is evaluated along with the effect in terms of CO2 emissions: with reference to those contexts in which mature intangible markets are established, an estimation of the financial benefit from savings sale on correspondent markets is possible, in terms of both avoided CO2 and fossil fuels not burned. The approach adopted allows to extend the analysis results to every context of interest, by applying the appropriate emission factor to the datum on compressor specific consumption.
Tharanya, Murugesan; Kholova, Jana; Sivasakthi, Kaliamoorthy; Seghal, Deepmala; Hash, Charles Tom; Raj, Basker; Srivastava, Rakesh Kumar; Baddam, Rekha; Thirunalasundari, Thiyagarajan; Yadav, Rattan; Vadez, Vincent
2018-04-21
Four genetic regions associated with water use traits, measured at different levels of plant organization, and with agronomic traits were identified within a previously reported region for terminal water deficit adaptation on linkage group 2. Close linkages between these traits showed the value of phenotyping both for agronomic and secondary traits to better understand plant productive processes. Water saving traits are critical for water stress adaptation of pearl millet, whereas maximizing water use is key to the absence of stress. This research aimed at demonstrating the close relationship between traits measured at different levels of plant organization, some putatively involved in water stress adaptation, and those responsible for agronomic performance. A fine-mapping population of pearl millet, segregating for a previously identified quantitative trait locus (QTL) for adaptation to terminal drought stress on LG02, was phenotyped for traits at different levels of plant organization in different experimental environments (pot culture, high-throughput phenotyping platform, lysimeters, and field). The linkages among traits across the experimental systems were analysed using principal component analysis and QTL co-localization approach. Four regions within the LG02-QTL were found and revealed substantial co-mapping of water use and agronomic traits. These regions, identified across experimental systems, provided genetic evidence of the tight linkages between traits phenotyped at a lower level of plant organization and agronomic traits assessed in the field, therefore deepening our understanding of complex traits and then benefiting both geneticists and breeders. In short: (1) under no/mild stress conditions, increasing biomass and tiller production increased water use and eventually yield; (2) under severe stress conditions, water savings at vegetative stage, from lower plant vigour and fewer tillers in that population, led to more water available during grain filling, expression of stay-green phenotypes, and higher yield.
NASA Astrophysics Data System (ADS)
Liu, Yefeng; Meng, Deren; Chen, Shen
2018-02-01
In food processing, there are significant simultaneous demands of cooling, warm water and hot water. Most of the heated water is used only once rather than recycled. Current heating and cooling systems consume much energy and emit lots of greenhouse gases. In order to reduce energy consumption and greenhouse gases emission, a transcritical CO2 heat pump system is proposed that can supply not only cooling, but also warm water and hot water simultaneously to meet the thermal demands of food processing. Because the inlet water temperature from environment varies through a year, the energy-saving performance for different seasons is simulated. The results showed that the potential primary energy saving rate of the proposed CO2 heat pump is 50% to 60% during a year.
31 CFR 359.66 - Is the Education Savings Bonds Program available for Series I savings bonds?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Is the Education Savings Bonds... Education Savings Bonds Program available for Series I savings bonds? You may be able to exclude from income... bonds during the year. To qualify for the program, you or the co-owner (in the case of definitive...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Nina; Fridley, David; Zhou, Nan
2011-09-30
Achieving China’s goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario – to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by Chinamore » can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.« less
NASA Astrophysics Data System (ADS)
Mustafaoglu, Mustafa Sinan
Some of the main energy issues in developing countries are high dependence on non-renewable energy sources, low energy efficiency levels and as a result of this high amount of CO2 emissions. Besides, a common problem of many countries including developing countries is economic inequality problem. In the study, solar photovoltaic policies of Germany, Japan and the USA is analyzed through a quantitative analysis and a new renewable energy support mechanism called Socio Feed-in Tariff Mechanism (SocioFIT) is formed based on the analysis results to address the mentioned issues of developing countries as well as economic inequality problem by using energy savings as a funding source for renewable energy systems. The applicability of the mechanism is solidified by the calculations in case of an implementation of the mechanism in Turkey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Xudong, E-mail: chen.xudong@nies.go.jp; National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506; Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601
Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developingmore » countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.« less
CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways.
Rehl, T; Müller, J
2013-01-15
Biogas will be of increasing importance in the future as a factor in reducing greenhouse gas emissions cost-efficiently by the optimal use of available resources and technologies. The goal of this study was to identify the most ecological and economical use of a given resource (organic waste from residential, commercial and industry sectors) using one specific treatment technology (anaerobic digestion) but applying different energy conversion technologies. Average and marginal abatement costs were calculated based on Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) methodologies. Eight new biogas systems producing electricity, heat, gas or automotive fuel were analyzed in order to identify the most cost-efficient way of reducing GHG emissions. A system using a combined heat and power station (which is connected to waste treatment and digestion operation facilities and located nearby potential residential, commercial or industrial heat users) was found to be the most cost-efficient biogas technology for reducing GHG emissions. Up to € 198 per tonne of CO(2) equivalents can be saved by replacing the "business as usual" systems based on fossil resources with ones based on biogas. Limited gas injection (desulfurized and dried biogas, without compression and upgrading) into the gas grid can also be a viable option with an abatement cost saving of € 72 per tonne of CO(2) equivalents, while a heating plant with a district heating grid or a system based on biogas results in higher abatement costs (€ 267 and € 270 per tonne CO(2) eq). Results from all systems are significantly influenced by whether average or marginal data are used as a reference. Beside that energy efficiency, the reference system that was replaced and the by-products as well as feedstock and investment costs were identified to be parameters with major impacts on abatement costs. The quantitative analysis was completed by a discussion of the role that abatement cost methodology can play in decision-making. Copyright © 2012 Elsevier Ltd. All rights reserved.
Huang, Yun; Cheng, Jun; Lu, Hongxiang; He, Yong; Zhou, Junhu; Cen, Kefa
2017-01-01
The biomass yield of Chlorella PY-ZU1 drastically increased when cultivated under high CO 2 condition compared with that cultivated under air condition. However, less attention has been given to the microalgae photosynthetic mechanisms response to different CO 2 concentrations. The genetic reasons for the higher growth rate, CO 2 fixation rate, and photosynthetic efficiency of microalgal cells under higher CO 2 concentration have not been clearly defined yet. In this study, the Illumina sequencing and de novo transcriptome assembly of Chlorella PY-ZU1 cells cultivated under 15% CO 2 were performed and compared with those of cells grown under air. It was found that carbonic anhydrase (CAs, enzyme for interconversion of bicarbonate to CO 2 ) dramatically decreased to near 0 in 15% CO 2 -grown cells, which indicated that CO 2 molecules directly permeated into cells under high CO 2 stress without CO 2 -concentrating mechanism. Extrapolating from the growth conditions and quantitative Real-Time PCR of CCM-related genes, the K m (CO 2 ) (the minimum intracellular CO 2 concentration that rubisco required) of Chlorella PY-ZU1 might be in the range of 80-192 μM. More adenosine triphosphates was saved for carbon fixation-related pathways. The transcript abundance of rubisco (the most important enzyme of CO 2 fixation reaction) was 16.3 times higher in 15% CO 2 -grown cells than that under air. Besides, the transcript abundances of most key genes involved in carbon fixation pathways were also enhanced in 15% CO 2 -grown cells. Carbon fixation and nitrogen metabolism are the two most important metabolisms in the photosynthetic cells. These genes related to the two most metabolisms with significantly differential expressions were beneficial for microalgal growth (2.85 g L -1 ) under 15% CO 2 concentration. Considering the micro and macro growth phenomena of Chlorella PY-ZU1 under different concentrations of CO 2 (0.04-60%), CO 2 transport pathways responses to different CO 2 (0.04-60%) concentrations was reconstructed.
Recycling of metals: accounting of greenhouse gases and global warming contributions.
Damgaard, Anders; Larsen, Anna W; Christensen, Thomas H
2009-11-01
Greenhouse gas (GHG) emissions related to recycling of metals in post-consumer waste are assessed from a waste management perspective; here the material recovery facility (MRF), for the sorting of the recovered metal. The GHG accounting includes indirect upstream emissions, direct activities at the MRF as well as indirect downstream activities in terms of reprocessing of the metal scrap and savings in terms of avoided production of virgin metal. The global warming factor (GWF) shows that upstream activities and the MRF causes negligible GHG emissions (12.8 to 52.6 kg CO(2)-equivalents tonne(-1) recovered metal) compared to the reprocessing of the metal itself (360-1260 kg CO(2)-equivalents tonne(-1) of recovered aluminium and 400- 1020 kg CO(2)-equivalents tonne(- 1) of recovered steel).The reprocessing is however counterbalanced by large savings of avoided virgin production of steel and aluminium. The net downstream savings were found to be 5040-19 340 kg CO(2)-equivalents tonne(-1) of treated aluminium and 560-2360 kg CO(2)-equivalents tonne(-1) of treated steel. Due to the huge differences in reported data it is hard to compare general data on the recovery of metal scrap as they are very dependent on the technology and data choices. Furthermore, the energy used in both the recovery process as well as the avoided primary production is crucial. The range of avoided impact shows that recovery of metals will always be beneficial over primary production, due to the high energy savings, and that the GHG emissions associated with the sorting of metals are negligible.
Are cooler surfaces a cost-effect mitigation of urban heat islands?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomerantz, Melvin
Much research has gone into technologies to mitigate urban heat islands by making urban surfaces cooler by increasing their albedos. To be practical, the benefit of the technology must be greater than its cost. Here, this report provides simple methods for quantifying the maxima of some benefits that albedo increases may provide. The method used is an extension of an earlier paper that estimated the maximum possible electrical energy saving achievable in an entire city in a year by a change of albedo of its surfaces. The present report estimates the maximum amounts and monetary savings of avoided CO 2more » emissions and the decreases in peak power demands. As examples, for several warm cities in California, a 0.2 increase in albedo of pavements is found to reduce CO 2 emissions by < 1 kg per m 2 per year. At the current price of CO 2 reduction in California, the monetary saving is < US$ 0.01 per year per m 2 modified. The resulting maximum peak-power reductions are estimated to be < 7% of the base power of the city. In conclusion, the magnitudes of the savings are such that decision-makers should choose carefully which urban heat island mitigation techniques are cost effective.« less
Are cooler surfaces a cost-effect mitigation of urban heat islands?
Pomerantz, Melvin
2017-04-20
Much research has gone into technologies to mitigate urban heat islands by making urban surfaces cooler by increasing their albedos. To be practical, the benefit of the technology must be greater than its cost. Here, this report provides simple methods for quantifying the maxima of some benefits that albedo increases may provide. The method used is an extension of an earlier paper that estimated the maximum possible electrical energy saving achievable in an entire city in a year by a change of albedo of its surfaces. The present report estimates the maximum amounts and monetary savings of avoided CO 2more » emissions and the decreases in peak power demands. As examples, for several warm cities in California, a 0.2 increase in albedo of pavements is found to reduce CO 2 emissions by < 1 kg per m 2 per year. At the current price of CO 2 reduction in California, the monetary saving is < US$ 0.01 per year per m 2 modified. The resulting maximum peak-power reductions are estimated to be < 7% of the base power of the city. In conclusion, the magnitudes of the savings are such that decision-makers should choose carefully which urban heat island mitigation techniques are cost effective.« less
The effects of clouds on CO2 forcing
NASA Technical Reports Server (NTRS)
Randall, David A.
1990-01-01
The cloud radiative forcing (CRF) is the difference between the radiative flux (at the top of the atmosphere) which actually occurs in the presence of clouds, and that which would occur if the clouds were removed but the atmospheric state were otherwise unchanged. The CO2 forcing is defined, in analogy with the cloud forcing, as the difference in fluxes and/or infrared heating rates obtained by instantaneously changing CO2 concentration (doubling it) without changing anything else, i.e., without allowing any feedback. An increased CO2 concentration leads to a reduced net upward longwave flux at the Earth's surface. This induced net upward flux is due to an increased downward emission by the CO2 in the atmosphere above. The negative increment to the net upward flux becomes more intense at higher levels in the troposphere, reaching a peak intensity roughly at the tropopause. It then weakens with height in the stratosphere. This profile implies a warming of the troposphere and cooling of the stratosphere. The CSU GCM was recently used to make some preliminary CO2 forcing calculations, for a single simulated, for July conditions. The longwave radiation routine was called twice, to determine the radiative fluxes and heating rates for both 2 x CO2 and 1 x CO2. As diagnostics, the 2-D distributions of the longwave fluxes at the surface and the top of atmosphere, as well as the 3-D distribution of the longwave cooling in the interior was saved. In addition, the pressure was saved (near the tropopause) where the difference in the longwave flux due to CO2 doubling has its largest magnitude. For convenience, this level is referred to as the CO2 tropopause. The actual difference in the flux at that level was also saved. Finally, all of these fields were duplicated for the hypothetical case of no cloudiness (clear sky), so that the effects of the clouds can be isolated.
Carbon and energy saving markets in compressed air
NASA Astrophysics Data System (ADS)
Cipollone, R.
2015-08-01
CO2 reduction and fossil fuel saving represent two of the cornerstones of the environmental commitments of all the countries of the world. The first engagement is of a medium to long term type, and unequivocally calls for a new energetic era. The second delays in time the fossil fuel technologies to favour an energetic transition. In order to sustain the two efforts, new immaterial markets have been established in almost all the countries of the world, whose exchanges (purchases and sales) concern CO2 emissions and equivalent fossil fuels that have not been emitted or burned. This paper goes deep inside two aspects not yet exploited: specific CO2 emissions and equivalent fossil fuel burned, as a function of compressed air produced. Reference is made to the current compressor technology, carefully analysing CAGI's (Compressed Air Gas Institute) data and integrating it with the PNUEROP (European Association of manufacturers of compressors, vacuum pumps, pneumatic tools and allied equipment) contribution on the compressor European market. On the base of energy saving estimates that could be put in place, this article also estimates the financial value of the CO2 emissions and fossil fuels avoided.
Landfilling of waste: accounting of greenhouse gases and global warming contributions.
Manfredi, Simone; Tonini, Davide; Christensen, Thomas H; Scharff, Heijo
2009-11-01
Accounting of greenhouse gas (GHG) emissions from waste landfilling is summarized with the focus on processes and technical data for a number of different landfilling technologies: open dump (which was included as the worst-case-scenario), conventional landfills with flares and with energy recovery, and landfills receiving low-organic-carbon waste. The results showed that direct emissions of GHG from the landfill systems (primarily dispersive release of methane) are the major contributions to the GHG accounting, up to about 1000 kg CO(2)-eq. tonne( -1) for the open dump, 300 kg CO(2)-eq. tonne( -1) for conventional landfilling of mixed waste and 70 kg CO(2)-eq. tonne(-1) for low-organic-carbon waste landfills. The load caused by indirect, upstream emissions from provision of energy and materials to the landfill was low, here estimated to be up to 16 kg CO(2)-eq. tonne(-1). On the other hand, utilization of landfill gas for electricity generation contributed to major savings, in most cases, corresponding to about half of the load caused by direct GHG emission from the landfill. However, this saving can vary significantly depending on what the generated electricity substitutes for. Significant amounts of biogenic carbon may still be stored within the landfill body after 100 years, which here is counted as a saved GHG emission. With respect to landfilling of mixed waste with energy recovery, the net, average GHG accounting ranged from about -70 to 30 kg CO(2)-eq. tonne(- 1), obtained by summing the direct and indirect (upstream and downstream) emissions and accounting for stored biogenic carbon as a saving. However, if binding of biogenic carbon was not accounted for, the overall GHG load would be in the range of 60 to 300 kg CO(2)-eq. tonne( -1). This paper clearly shows that electricity generation as well as accounting of stored biogenic carbon are crucial to the accounting of GHG of waste landfilling.
Up Close and Personal: The Value of Feedback in Implementing an Individual Energy-Saving Adaptation
ERIC Educational Resources Information Center
Pollard, Carol Elaine
2016-01-01
Purpose: The purpose of this research is to explore the drivers of computer-related sustainability behavior at a medium-sized US university and the extent to which an inexpensive energy-saving device installed on 146 administrator, faculty and general staff workstations achieved significant savings in kWh, CO[subscript 2] kg and dollars.…
NASA Astrophysics Data System (ADS)
Lesmana, E.; Chaerani, D.; Khansa, H. N.
2018-03-01
Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method
Yang, Shihong; Xiao, Ya Nan; Xu, Junzeng
2018-04-01
Quantifying carbon sequestration in paddy soil is necessary to understand the effect of agricultural practices on carbon cycles. The objective of this study was to assess the effect of organic fertilizer addition (MF) on the soil respiration and net ecosystem carbon dioxide (CO 2 ) absorption of paddy fields under water-saving irrigation (CI) in the Taihu Lake Region of China during the 2014 and 2015 rice-growing seasons. Compared with the traditional fertilizer and water management (FC), the joint regulation of CI and MF (CM) significantly increased the rice yields and irrigation water use efficiencies of paddy fields by 4.02~5.08 and 83.54~109.97% (p < 0.05). The effects of organic fertilizer addition on soil respiration and net ecosystem CO 2 absorption rates showed inter-annual differences. CM paddy fields showed a higher soil respiration and net CO 2 absorption rates during some periods of the rice growth stage in the first year and during most periods of the rice growth stage in the second year. These fields also had significantly higher total CO 2 emission through soil respiration (total R soil ) and total net CO 2 absorption compared with FC paddy fields (p < 0.05). The total R soil and net ecosystem CO 2 absorption of CM paddy fields were 67.39~91.55 and 129.41~113.75 mol m -2 , which were 27.66~135.52 and 12.96~31.66% higher than those of FC paddy fields. The interaction between water and fertilizer management had significant effects on total net ecosystem CO 2 absorption. The frequent alternate wet-dry cycles of CI paddy fields increased the soil respiration and reduced the net CO 2 absorption. Organic fertilizer promoted the soil respiration of paddy soil but also increased its net CO 2 absorption and organic carbon content. Therefore, the joint regulation of water-saving irrigation and organic fertilizer is an effective measure for maintaining yield, increasing irrigation water use efficiency, mitigating CO 2 emission, and promoting paddy soil fertility.
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations
Buscheck, Thomas A.
2012-01-01
Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk : FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations
Buscheck, Thomas A.
2000-01-01
Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk: FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.
Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.
Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin
2005-09-01
Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization.
Merrild, Hanna; Christensen, Thomas H
2009-11-01
The greenhouse gas (GHG) emissions related to the recycling of wood waste have been assessed with the purpose to provide useful data that can be used in accounting of greenhouse gas emissions. Here we present data related to the activities in a material recovery facility (MRF) where wood waste is shredded and foreign objects are removed in order to produce wood chips for use in the production of particleboard. The data are presented in accordance with the UOD (upstream, operational, downstream) framework presented in Gentil et al. (Waste Management & Research, 27, 2009). The GHG accounting shows that the emissions related to upstream activities (5 to 41 kg CO(2)-equivalents tonne( -1) wood waste) and to activities at the MRF (approximately 5 kg CO(2)-equivalents tonne(-1) wood waste) are negligible compared to the downstream processing (-560 to -120 kg CO(2)equivalents tonne(-1) wood waste). The magnitude of the savings in GHG emissions downstream are mainly related to savings in energy consumption for drying of fresh wood for particleboard production. However, the GHG account highly depends on the choices made in the modelling of the downstream system. The inclusion of saved electricity from avoided chipping of virgin wood does not change the results radically (-665 to -125 kg CO(2)-equivalents tonne(- 1) wood waste). However, if in addition it is assumed that the GHG emissions from combustion of wood has no global warming potential (GWP) and that the energy produced from excess wood due to recycling substitutes energy from fossil fuels, here assumed to be coal, potentially large downstream GHG emissions savings can be achieved by recycling of waste wood (-1.9 to -1.3 tonnes CO(2)-equivalents tonne(- 1) wood waste). As the data ranges are broad, it is necessary to carefully evaluate the feasibility of the data in the specific system which the GHG accounting is to be applied to.
Blumenthal, Dana M; Resco, Víctor; Morgan, Jack A; Williams, David G; Lecain, Daniel R; Hardy, Erik M; Pendall, Elise; Bladyka, Emma
2013-12-01
As global changes reorganize plant communities, invasive plants may benefit. We hypothesized that elevated CO2 and warming would strongly influence invasive species success in a semi-arid grassland, as a result of both direct and water-mediated indirect effects. To test this hypothesis, we transplanted the invasive forb Linaria dalmatica into mixed-grass prairie treated with free-air CO2 enrichment and infrared warming, and followed survival, growth, and reproduction over 4 yr. We also measured leaf gas exchange and carbon isotopic composition in L. dalmatica and the dominant native C3 grass Pascopyrum smithii. CO2 enrichment increased L. dalmatica biomass 13-fold, seed production 32-fold, and clonal expansion seven-fold, while warming had little effect on L. dalmatica biomass or reproduction. Elevated CO2 decreased stomatal conductance in P. smithii, contributing to higher soil water, but not in L. dalmatica. Elevated CO2 also strongly increased L. dalmatica photosynthesis (87% versus 23% in P. smithii), as a result of both enhanced carbon supply and increased soil water. More broadly, rapid growth and less conservative water use may allow invasive species to take advantage of both carbon fertilization and water savings under elevated CO2 . Water-limited ecosystems may therefore be particularly vulnerable to invasion as CO2 increases. No claim to original US goverment works. New Phytologist © 2013 New Phytologist Trust.
Dullet, Navjit W; Geraghty, Estella M; Kaufman, Taylor; Kissee, Jamie L; King, Jesse; Dharmar, Madan; Smith, Anthony C; Marcin, James P
2017-04-01
The objective of this study was to estimate travel-related and environmental savings resulting from the use of telemedicine for outpatient specialty consultations with a university telemedicine program. The study was designed to retrospectively analyze the telemedicine consultation database at the University of California Davis Health System (UCDHS) between July 1996 and December 2013. Travel distances and travel times were calculated between the patient home, the telemedicine clinic, and the UCDHS in-person clinic. Travel cost savings and environmental impact were calculated by determining differences in mileage reimbursement rate and emissions between those incurred in attending telemedicine appointments and those that would have been incurred if a visit to the hub site had been necessary. There were 19,246 consultations identified among 11,281 unique patients. Telemedicine visits resulted in a total travel distance savings of 5,345,602 miles, a total travel time savings of 4,708,891 minutes or 8.96 years, and a total direct travel cost savings of $2,882,056. The mean per-consultation round-trip distance savings were 278 miles, average travel time savings were 245 minutes, and average cost savings were $156. Telemedicine consultations resulted in a total emissions savings of 1969 metric tons of CO 2 , 50 metric tons of CO, 3.7 metric tons of NO x , and 5.5 metric tons of volatile organic compounds. This study demonstrates the positive impact of a health system's outpatient telemedicine program on patient travel time, patient travel costs, and environmental pollutants. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Energy savings, emission reductions, and health co-benefits of the green building movement.
P, MacNaughton; X, Cao; J, Buonocore; J, Cedeno-Laurent; J, Spengler; A, Bernstein; J, Allen
2018-06-01
Buildings consume nearly 40% of primary energy production globally. Certified green buildings substantially reduce energy consumption on a per square foot basis and they also focus on indoor environmental quality. However, the co-benefits to health through reductions in energy and concomitant reductions in air pollution have not been examined.We calculated year by year LEED (Leadership in Energy and Environmental Design) certification rates in six countries (the United States, China, India, Brazil, Germany, and Turkey) and then used data from the Green Building Information Gateway (GBIG) to estimate energy savings in each country each year. Of the green building rating schemes, LEED accounts for 32% of green-certified floor space and publically reports energy efficiency data. We employed Harvard's Co-BE Calculator to determine pollutant emissions reductions by country accounting for transient energy mixes and baseline energy use intensities. Co-BE applies the social cost of carbon and the social cost of atmospheric release to translate these reductions into health benefits. Based on modeled energy use, LEED-certified buildings saved $7.5B in energy costs and averted 33MT of CO 2 , 51 kt of SO 2 , 38 kt of NO x , and 10 kt of PM 2.5 from entering the atmosphere, which amounts to $5.8B (lower limit = $2.3B, upper limit = $9.1B) in climate and health co-benefits from 2000 to 2016 in the six countries investigated. The U.S. health benefits derive from avoiding an estimated 172-405 premature deaths, 171 hospital admissions, 11,000 asthma exacerbations, 54,000 respiratory symptoms, 21,000 lost days of work, and 16,000 lost days of school. Because the climate and health benefits are nearly equivalent to the energy savings for green buildings in the United States, and up to 10 times higher in developing countries, they provide an important and previously unquantified societal value. Future analyses should consider these co-benefits when weighing policy decisions around energy-efficient buildings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rempe, Susan; Brinker, Jeff; Jiang, Ying-Bing
2015-11-19
By combining a water droplet loaded with CO2 enzymes in an ultrathin nanopore on a flexible substrate, researchers at Sandia National Laboratories realized the first technology that meets and exceeds DOE targets for cost-effective CO2 capture. When compared with the nearest membrane competitor, this technology delivers a three times permeation rate, twenty times higher selectivity, and ten time lower fabrication cost. The CO2 Memzyme has the potential to remove 90% of CO2 emissions and is forecasted to save the U.S. coal industry $90 billion a year compared to conventional technology.
Rempe, Susan; Brinker, Jeff; Jiang, Ying-Bing; Vanegas, Juan
2018-06-25
By combining a water droplet loaded with CO2 enzymes in an ultrathin nanopore on a flexible substrate, researchers at Sandia National Laboratories realized the first technology that meets and exceeds DOE targets for cost-effective CO2 capture. When compared with the nearest membrane competitor, this technology delivers a three times permeation rate, twenty times higher selectivity, and ten time lower fabrication cost. The CO2 Memzyme has the potential to remove 90% of CO2 emissions and is forecasted to save the U.S. coal industry $90 billion a year compared to conventional technology.
Regulated deficit irrigation can decrease soil CO2 emissions in fruit orchards
NASA Astrophysics Data System (ADS)
Zornoza, Raul; Acosta, José Alberto; Martínez-Martínez, Silvia; De la Rosa, Jose M.°; Faz, Angel; Pérez-Pastor, Alejandro
2016-04-01
Irrigation water restrictions in the Mediterranean area have created a growing interest in water conservation. Apart from environmental and economic benefits by water savings, regulated deficit irrigation (RDI) may contribute to reduce soil CO2 emissions and enhance C sequestration in soils, by decreasing microbial and root activity in response to decreased soil moisture levels. An experiment was established in four orchards (peach, apricot, Saturn peach and grape) to investigate the effects of regulated deficit irrigation (RDI) on soil CO2 emissions. Two irrigation treatments were assayed: full irrigation (FI), and RDI, irrigated as FI except for postharvest period (peach, apricot, Saturn peach) or post-veraison period (grape) were 50% of FI was applied. The application of deficit caused a significant decrease in CO2 emission rates, with rates in average of 90 mg CO2-C m-2 h-1, 120 mg CO2-C m-2 h-1, 60 mg CO2-C m-2 h-1 and 60 mg CO2-C m-2 h-1 lower than FI during the period when deficit was applied for peach, apricot, Saturn peach and grape. This confirms the high effectiveness of the RDI strategies not only to save water consumption but also to decrease soil CO2 emissions. However, monitoring during longer periods is needed to verify that this trend is long-term maintained, and assess if soil carbon stocks are increase or most CO2 emissions derive from root respiration. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).
Integrated Geothermal-CO2 Storage Reservoirs: FY1 Final Report
Buscheck, Thomas A.
2012-01-01
The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, Stephen; Williams, Alison; Chan, Peter
This paper presents estimates of the key impacts of Federal energy and water conservation standards adopted from 1987 through 2015. The standards for consumer products and commercial and industrial equipment include those set by legislation as well as standards adopted by DOE through rulemaking. In 2015, the standards saved an estimated 4.49 quads of primary energy, which is equivalent to 5% of total U.S. energy consumption. The savings in operating costs for households and businesses totaled $63.4 billion. The average household saved $320 in operating costs as a result of residential appliance standards. The estimated reduction in CO2 emissions associatedmore » with the standards in 2015 was 238 million metric tons, which is equivalent to 4.3% of total U.S. CO2 emissions. The estimated cumulative energy savings over the period 1990-2090 amount to 216.9 quads. Accounting for the increased upfront costs of more-efficient products and the operating cost (energy and water) savings over the products’ lifetime, the standards have a cumulative net present value (NPV) of consumer benefit of between $1,627 billion and $1,887 billion, using 7 percent and 3 percent discount rates, respectively. The water conservation standards, together with energy conservation standards that also save water, reduced water use by 1.9 trillion gallons in 2015 and estimated cumulative water savings by 2090 amount to 55 trillion gallons. The estimated consumer savings in 2015 from reduced water use amounted to $12 billon.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, Stephen; Williams, Alison; Chan, Peter
This paper presents estimates of the key impacts of Federal energy and water conservation standards adopted from 1987 through 2013. The standards for consumer products and commercial and industrial equipment include those set by legislation as well as standards adopted by DOE through rulemaking. In 2013, the standards saved an estimated 4.05 quads of primary energy, which is equivalent to 4% of total U.S. energy consumption. The savings in operating costs for households and businesses totaledmore » $56 billion. The average household saved $$361 in operating costs as a result of residential and plumbing product standards. The estimated reduction in CO{sub 2} emissions associated with the standards in 2013 was 218 million metric tons, which is equivalent to 4% of total U.S. CO{sub 2} emissions. The estimated cumulative energy savings over the period 1990-2090 amount to 181 quads. Accounting for the increased upfront costs of more-efficient products and the operating cost (energy and water) savings over the products’ lifetime, the standards have a past and projected cumulative net present value (NPV) of consumer benefit of between $$1,271 billion and $1,487 billion, using 7 percent and 3 percent discount rates, respectively. The water conservation standards, together with energy conservation standards that also save water, reduced water use by 1.9 trillion gallons in 2013, and will achieve cumulative water savings by 2090 of 55 trillion gallons. The estimated consumer savings in 2013 from reduced water use amounted to $16 billon.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, Stephen; Williams, Alison; Chan, Peter
This paper presents estimates of the key impacts of Federal energy and water conservation standards adopted from 1987 through 2012. The standards for consumer products and commercial and industrial equipment include those set by legislation as well as standards adopted by DOE through rulemaking. In 2012, the standards saved an estimated 3.6 quads of primary energy, which is equivalent to 3% of total U.S. energy consumption. The savings in operating costs for households and businesses totaled $51.4 billion. The average household saved $347 in operating costs as a result of residential and plumbing product standards. The estimated reduction in CO2more » emissions associated with the standards in 2012 was 198 million metric tons, which is equivalent to 3% of total U.S. CO2 emissions. The estimated cumulative energy savings over the period 1990-2070 amount to 179 quads. Accounting for the increased upfront costs of more-efficient products and the operating cost (energy and water) savings over the products’ lifetime, the standards have a past and projected cumulative net present value (NPV) of consumer benefit of between $1,104 billion and $1,390 billion, using 7 percent and 3 percent discount rates, respectively. The water conservation standards, together with energy conservation standards that also save water, reduced water use by 1.8 trillion gallons in 2012, and will achieve cumulative water savings by 2040 of 54 trillion gallons. The estimated consumer savings in 2012 from reduced water use amounted to $13 billon.« less
Microlith Based Sorber for Removal of Environmental Contaminants
NASA Technical Reports Server (NTRS)
Roychoudhury, S.; Perry, J.
2004-01-01
The development of energy efficient, lightweight sorption systems for removal of environmental contaminants in space flight applications is an area of continuing interest to NASA. The current CO2 removal system on the International Space Station employs two pellet bed canisters of 5A molecular sieve that alternate between regeneration and sorption. A separate disposable charcoal bed removes trace contaminants. An alternative technology has been demonstrated using a sorption bed consisting of metal meshes coated with a sorbent, trademarked and patented as Microlith by Precision Combustion, Inc. (PCI); thesemeshes have the potential for direct electrical heating for this application. This allows the bed to be regenerable via resistive heating and offers the potential for shorter regeneration times, reduced power requirement, and net energy savings vs. conventional systems. The capability of removing both CO2 and trace contaminants within the same bed has also been demonstrated. Thus, the need for a separate trace contaminant unit is eliminated resulting in an opportunity for significant weight savings. Unlike the charcoal bed, zeolites for trace contaminant removal are amenable to periodic regeneration. This paper describes the design and performance of a prototype sorber device for simultaneous CO2 and trace contarninant removal and its attendant weight and energy savings.
Impact of Active Climate Control Seats on Energy Use, Fuel Use, and CO2 Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreutzer, Cory J; Rugh, John P; Titov, Eugene V
A project was developed through collaboration between Gentherm and NREL to determine the impact of climate control seats for light-duty vehicles in the United States. The project used a combination of experimentation and analysis, with experimental results providing critical input to the analysis process. First, outdoor stationary vehicle testing was performed at NREL's facility in Golden, CO using multiple occupants. Two pre-production Ford Focus electric vehicles were used for testing; one containing a standard inactive seat and the second vehicle containing a Gentherm climate control seat. Multiple maximum cool-down and steady-state cooling tests were performed in late summer conditions. Themore » two vehicles were used to determine the increase in cabin temperature when using the climate control seat in comparison to the baseline vehicle cabin temperature with a standard seat at the equivalent occupant whole-body sensation. The experiments estimated that on average, the climate control seats allowed for a 2.61 degrees Celsius increase in vehicle cabin temperature at equivalent occupant body sensation compared to the baseline vehicle. The increased cabin air temperature along with their measured energy usage were then used as inputs to the national analysis process. The national analysis process was constructed from full vehicle cabin, HVAC, and propulsion models previously developed by NREL. In addition, three representative vehicle platforms, vehicle usage patterns, and vehicle registration weighted environmental data were integrated into the analysis process. Both the baseline vehicle and the vehicle with climate control seats were simulated, using the experimentally determined cabin temperature offset of 2.61degrees Celsius and added seat energy as inputs to the climate control seat vehicle model. The U.S. composite annual fuel use savings for the climate control seats over the baseline A/C system was determined to be 5.1 gallons of gasoline per year per vehicle, corresponding to 4.0 grams of CO2/mile savings. Finally, the potential impact of 100 percent adoption of climate control seats on U.S. light-duty fleet A/C fuel use was calculated to be 1.3 billion gallons of gasoline annually with a corresponding CO2 emissions reduction of 12.7 million tons. Direct comparison of the impact of the CCS to the ventilated seat off-cycle credit was not possible because the NREL analysis calculated a combined car/truck savings and the baseline A/C CO2 emissions were higher than EPA. To enable comparison, the CCS national A/C CO2 emissions were split into car/truck components and the ventilated seat credit was scaled up. The split CO2 emissions savings due to the CCS were 3.5 g/mi for a car and 4.4 g/mi for a truck. The CCS saved an additional 2.0 g/mi and 2.5 g/mi over the adjusted ventilated seat credit for a car and truck, respectively.« less
Garg, A; Smith, R; Hill, D; Longhurst, P J; Pollard, S J T; Simms, N J
2009-08-01
This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ( approximately 2500 g CO(2) eqvt./kg DS SRF in co-fired cement kilns and approximately 1500 g CO(2) eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( 95 pounds/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.
Characteristics of MSW and heat energy recovery between residential and commercial areas in Seoul.
Yi, Sora; Yoo, Kee-Young; Hanaki, Keisuke
2011-03-01
This paper analyzes the amount and characteristics of municipal solid waste (MSW) according to the inhabitant density of population and the business concentration in 25 districts in Seoul. Further, the heat energy recovery and avoided CO(2) emissions of four incineration plants located in residential and commercial areas in Seoul are examined. The amount of residential waste per capita tended to increase as the density of inhabitants decreased. The amount of commercial waste per capita tended to increase as the business concentration increased. The examination of the heat energy recovery characteristics indicated that the four incineration plants produced heat energy that depended on residential or commercial areas based on population and business. The most important result regarding avoided CO(2) emissions was that commercial areas with many office-type businesses had the most effective CO(2) emission savings by combusting 1 kg of waste. Assuming the full-scale operation of the four incineration plants, the amount of saved CO(2) emissions per year was 444 Gg CO(2) and 57,006 households in Seoul can be provided with heat energy equivalent to 542,711 Nm(3) of LNG. Copyright © 2010 Elsevier Ltd. All rights reserved.
DEVELOPING AN INTEGRATED MANAGEMENT SYSTEM FOR URBAN AND ENERGY PLANNING TOWARDS A LOW-CARBON CITY
NASA Astrophysics Data System (ADS)
Maeda, Hideto; Nakakubo, Toyohiko; Tokai, Akihiro
In this study, we developed an integrated management model that supports local government to make a promising energy saving measure on a block-scale combined with urban planning. We applied the model to Osaka city and estimated CO2 emissions from the residential and commercial buildings to 2050. The urban renewal cases selected in this study included advanced multipole accumulation case, normal multipole accumulation case, and actual trend continuation case. The energy saving options introduced in each case included all-electric HP system, micro grid system, and we also set the option where the greater CO2 reduction one is selected in each block. The results showed that CO2 emission in 2050 would be reduced by 54.8-57.6% relative to the actual condition by introducing the new energy system in all cases. In addition, the amount of CO2 reduction in actual trend continuation case was highest. The major factor was that the effect of CO2 emission reductions by installing the solar power generation panel was higher than the effect by utilizing heated water mutually on the high-density blocks in terms of total urban buildings' energy consumption.
NASA Astrophysics Data System (ADS)
Wynes, Seth; Nicholas, Kimberly A.
2017-07-01
Current anthropogenic climate change is the result of greenhouse gas accumulation in the atmosphere, which records the aggregation of billions of individual decisions. Here we consider a broad range of individual lifestyle choices and calculate their potential to reduce greenhouse gas emissions in developed countries, based on 148 scenarios from 39 sources. We recommend four widely applicable high-impact (i.e. low emissions) actions with the potential to contribute to systemic change and substantially reduce annual personal emissions: having one fewer child (an average for developed countries of 58.6 tonnes CO2-equivalent (tCO2e) emission reductions per year), living car-free (2.4 tCO2e saved per year), avoiding airplane travel (1.6 tCO2e saved per roundtrip transatlantic flight) and eating a plant-based diet (0.8 tCO2e saved per year). These actions have much greater potential to reduce emissions than commonly promoted strategies like comprehensive recycling (four times less effective than a plant-based diet) or changing household lightbulbs (eight times less). Though adolescents poised to establish lifelong patterns are an important target group for promoting high-impact actions, we find that ten high school science textbooks from Canada largely fail to mention these actions (they account for 4% of their recommended actions), instead focusing on incremental changes with much smaller potential emissions reductions. Government resources on climate change from the EU, USA, Canada, and Australia also focus recommendations on lower-impact actions. We conclude that there are opportunities to improve existing educational and communication structures to promote the most effective emission-reduction strategies and close this mitigation gap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nihar; Wei, Max; Letschert, Virginie
2015-10-01
Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere, mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energymore » efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel. We find that implementing HFC refrigerant transition and energy efficiency improvement policies in parallel for room air conditioning, roughly doubles the benefit of either policy implemented separately. We estimate that shifting the 2030 world stock of room air conditioners from the low efficiency technology using high-GWP refrigerants to higher efficiency technology and low-GWP refrigerants in parallel would save between 340-790 gigawatts (GW) of peak load globally, which is roughly equivalent to avoiding 680-1550 peak power plants of 500MW each. This would save 0.85 GT/year annually in China equivalent to over 8 Three Gorges dams and over 0.32 GT/year annually in India equivalent to roughly twice India’s 100GW solar mission target. While there is some uncertainty associated with emissions and growth projections, moving to efficient room air conditioning (~30% more efficient than current technology) in parallel with low-GWP refrigerants in room air conditioning could avoid up to ~25 billion tonnes of CO2 in 2030, ~33 billion in 2040, and ~40 billion in 2050, i.e. cumulative savings up to 98 billion tonnes of CO2 by 2050. Therefore, superefficient room ACs using low-GWP refrigerants merit serious consideration to maximize peak load reduction and GHG savings.« less
NASA Astrophysics Data System (ADS)
Orlić, Ivica; Mekterović, Darko; Mekterović, Igor; Ivošević, Tatjana
2015-11-01
VIBA-Lab is a computer program originally developed by the author and co-workers at the National University of Singapore (NUS) as an interactive software package for simulation of Particle Induced X-ray Emission and Rutherford Backscattering Spectra. The original program is redeveloped to a VIBA-Lab 3.0 in which the user can perform semi-quantitative analysis by comparing simulated and measured spectra as well as simulate 2D elemental maps for a given 3D sample composition. The latest version has a new and more versatile user interface. It also has the latest data set of fundamental parameters such as Coster-Kronig transition rates, fluorescence yields, mass absorption coefficients and ionization cross sections for K and L lines in a wider energy range than the original program. Our short-term plan is to introduce routine for quantitative analysis for multiple PIXE and XRF excitations. VIBA-Lab is an excellent teaching tool for students and researchers in using PIXE and RBS techniques. At the same time the program helps when planning an experiment and when optimizing experimental parameters such as incident ions, their energy, detector specifications, filters, geometry, etc. By "running" a virtual experiment the user can test various scenarios until the optimal PIXE and BS spectra are obtained and in this way save a lot of expensive machine time.
Natural attenuation of mining pollutants in the transboundary Save River
NASA Astrophysics Data System (ADS)
Meck, M. L.; Masamba, W. R. L.; Atlhopheng, J.; Ringrose, S.
The objective of the study was to investigate the role played by the natural environment in protecting the transboundary Save River from the impacts of metals derived from phosphate mining at Dorowa. The study is a follow up study from a previous one that noted that there is natural attenuation at Dorowa. Water and sediment samples were collected in the Save River and the streams that drain the Dorowa dumps. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the cations (Na +, K +, Ca 2+, Mg 2+, Cu 2+, Co 2+, Fe 2+, Ni 2+, Zn 2+, Pb 2+, Sn 2+, Mn 2+, Cd 2+) in the samples. Major anions Cl -, SO42- and NO3- were analyzed by standard chromatography whilst CO32- and HCO3- were determined by titration. pH was measured on site. Geochemical modeling of the water composition was conducted with Visual Minteq. The results show that natural attenuation is being achieved through precipitation of solids from the water and subsequent deposition onto the sediments. Six of the metals are almost completely precipitated (Cu 99.99%, Fe 99.39%, Ni 91.24%, Pb 99.87%, Sn 99.99% and Zn 88.66%). However Mn, Co and Cd remain in solution. Thus the natural environment is protecting the Save River which is a transboundary river from the impacts of mining through precipitation of the metals. Users downstream of Dorowa mine are therefore not being affected by mining pollution. This study demonstrates that besides being a legitimate and important user of water, the natural environment can also play a significant role in protecting water quality by attenuating metals naturally. By analyzing costs incurred in several places where alternative methods are employed to remediate metal related pollution the study concludes that natural remediation at Dorowa is saving the nation in environmental costs. Therefore the paper advocates for appreciation of the role that the natural environment plays in protecting ecosystems from the impact of human developments and environmental costs. Subsequently, this calls for recognition of natural environment’s role in water resources management for the sustenance of ecosystems and peoples livelihoods.
Resistively-Heated Microlith-based Adsorber for Carbon Dioxide and Trace Contaminant Removal
NASA Technical Reports Server (NTRS)
Roychoudhury, S.; Walsh, D.; Perry, J.
2005-01-01
An integrated sorber-based Trace Contaminant Control System (TCCS) and Carbon Dioxide Removal Assembly (CDRA) prototype was designed, fabricated and tested. It corresponds to a 7-person load. Performance over several adsorption/regeneration cycles was examined. Vacuum regenerations at effective time/temperature conditions, and estimated power requirements were experimentally verified for the combined CO2/trace contaminant removal prototype. The current paper details the design and performance of this prototype during initial testing at CO2 and trace contaminant concentrations in the existing CDRA, downstream of the drier. Additional long-term performance characterization is planned at NASA. Potential system design options permitting associated weight, volume savings and logistic benefits, especially as relevant for long-duration space flight, are reviewed. The technology consisted of a sorption bed with sorbent- coated metal meshes, trademarked and patented as Microlith by Precision Combustion, Inc. (PCI). By contrast the current CO2 removal system on the International Space Station employs pellet beds. Preliminary bench scale performance data (without direct resistive heating) for simultaneous CO2 and trace contaminant removal was reviewed in SAE 2004-01-2442. In the prototype, the meshes were directly electrically heated for rapid response and accurate temperature control. This allowed regeneration via resistive heating with the potential for shorter regeneration times, reduced power requirement, and net energy savings vs. conventional systems. A novel flow arrangement, for removing both CO2 and trace contaminants within the same bed, was demonstrated. Thus, the need for a separate trace contaminant unit was eliminated resulting in an opportunity for significant weight savings. Unlike the current disposable charcoal bed, zeolites for trace contaminant removal are amenable to periodic regeneration.
The Conservation Nexus: Valuing Interdependent Water and Energy Savings in Phoenix, Arizona
NASA Astrophysics Data System (ADS)
Chester, M.; Bartos, M.
2013-12-01
Energy and water resources are intrinsically linked, yet they are managed separately--even in the water-scarce American southwest. This study develops a spatially-explicit model of water-energy interdependencies in Arizona, and assesses the potential for co-beneficial conservation programs. Arizona consumes 2.8% of its water demand for thermoelectric power and 8% of its electricity demand for water infrastructure--roughly twice the national average. The interdependent benefits of investments in 7 conservation strategies are assessed. Deployment of irrigation retrofits and new reclaimed water facilities dominate potential water savings, while residential and commercial HVAC improvements dominate energy savings. Water conservation policies have the potential to reduce statewide electricity demand by 1.0-2.9%, satisfying 5-14% of mandated energy-efficiency goals. Likewise, adoption of energy-efficiency measures and renewable generation portfolios can reduce non-agricultural water demand by 2.0-2.6%. These co-benefits of conservation investments are typically not included in conservation plans or benefit-cost analyses. Residential water conservation measures produce significant water and energy savings, but are generally not cost-effective at current water prices. An evaluation of the true cost of water in Arizona would allow future water and energy savings to be compared objectively, and would help policymakers allocate scarce resources to the highest-value conservation measures. Water Transfers between Water Cycle Components in Arizona in 2008 Cumulative embedded energy in water cycle components in Arizona in 2008
Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, William R.; Marano, John; Sathaye, Jayant
2013-02-01
Adoption of efficient process technologies is an important approach to reducing CO 2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves andmore » CO 2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO 2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost-effective given U.S. DOE fuel price forecasts. This represents roughly 70 million metric tonnes of CO 2 emission reductions assuming 2010 emissions factor for grid electricity. Energy efficiency measures resulting in an additional 400 PJ per year of primary fuels savings and close to 1,700 GWh per year of electricity savings, and an associated 24 million metric tonnes of CO 2 emission reductions are not cost-effective given the same assumption with respect to fuel prices and electricity emissions factors. Compared to the modeled energy requirements for the U.S. petroleum refining sector, the cost effective potential represents a 40% reduction in fuel consumption and a 2% reduction in electricity consumption. The non-cost-effective potential represents an additional 13% reduction in fuel consumption and an additional 7% reduction in electricity consumption. The relative energy reduction potentials are mu ch higher for fuel consumption than electricity consumption largely in part because fuel is the primary energy consumption type in the refineries. Moreover, many cost effective fuel savings measures would increase electricity consumption. The model also has the potential to be used to examine the costs and benefits of the other CO 2 mitigation options, such as combined heat and power (CHP), carbon capture, and the potential introduction of biomass feedstocks. However, these options are not addressed in this report as this report is focused on developing the modeling methodology and assessing fuels savings measures. These opportunities to further reduce refinery sector CO 2 emissions and are recommended for further research and analysis.« less
USDA's Vick tells radio audience wind farms mean huge water savings
USDA-ARS?s Scientific Manuscript database
Since most of the electricity in the U.S. is generated using coal and natural gas as fuel, almost every wind farm announcement includes the estimated amount of carbon dioxide which was not released to the atmosphere. According to Wikipedia, 2.25 tons of CO2 and 1.14 tons of CO2 were released for eve...
Amine Swingbed Payload Testing on ISS
NASA Technical Reports Server (NTRS)
Button, Amy B.; Sweterlitsch, Jeffrey J.
2014-01-01
One of NASA Johnson Space Center's test articles of the amine-based carbon dioxide (CO2) and water vapor sorbent system known as the CO2 And Moisture Removal Amine Swing-bed, or CAMRAS, was incorporated into a payload on the International Space Station (ISS). The intent of the payload is to demonstrate the spacecraft-environment viability of the core atmosphere revitalization technology baselined for the new Orion vehicle. In addition to the air blower, vacuum connection, and controls needed to run the CAMRAS, the payload incorporates a suite of sensors for scientific data gathering, a water save function, and an air save function. The water save function minimizes the atmospheric water vapor reaching the CAMRAS unit, thereby reducing ISS water losses that are otherwise acceptable, and even desirable, in the Orion environment. The air save function captures about half of the ullage air that would normally be vented overboard every time the cabin air-adsorbing and space vacuum-desorbing CAMRAS beds swap functions. The JSC team conducted 1000 hours of on-orbit Amine Swingbed Payload testing in 2013 and early 2014. This paper presents the basics of the payload's design and history, as well as a summary of the test results, including comparisons with prelaunch testing.
[Quantitative estimation source of urban atmospheric CO2 by carbon isotope composition].
Liu, Wei; Wei, Nan-Nan; Wang, Guang-Hua; Yao, Jian; Zeng, You-Shi; Fan, Xue-Bo; Geng, Yan-Hong; Li, Yan
2012-04-01
To effectively reduce urban carbon emissions and verify the effectiveness of currently project for urban carbon emission reduction, quantitative estimation sources of urban atmospheric CO2 correctly is necessary. Since little fractionation of carbon isotope exists in the transportation from pollution sources to the receptor, the carbon isotope composition can be used for source apportionment. In the present study, a method was established to quantitatively estimate the source of urban atmospheric CO2 by the carbon isotope composition. Both diurnal and height variations of concentrations of CO2 derived from biomass, vehicle exhaust and coal burning were further determined for atmospheric CO2 in Jiading district of Shanghai. Biomass-derived CO2 accounts for the largest portion of atmospheric CO2. The concentrations of CO2 derived from the coal burning are larger in the night-time (00:00, 04:00 and 20:00) than in the daytime (08:00, 12:00 and 16:00), and increase with the increase of height. Those derived from the vehicle exhaust decrease with the height increase. The diurnal and height variations of sources reflect the emission and transport characteristics of atmospheric CO2 in Jiading district of Shanghai.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, Hashem; Xu, Tengfang; Taha, Haider
Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated thatmore » typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.« less
Development of air conditioning technologies to reduce CO2 emissions in the commercial sector
Yoshida, Yukiko
2006-01-01
Background Architectural methods that take into account global environmental conservation generally concentrate on mitigating the heat load of buildings. Here, we evaluate the reduction of carbon dioxide (CO2) emissions that can be achieved by improving heating, ventilating, and air conditioning (HVAC) technologies. Results The Climate Change Research Hall (CCRH) of the National Institute for Environmental Studies (NIES) is used as a case study. CCRH was built in line with the "Green Government Buildings" program of the Government Buildings Department at the Ministry of Land, Infrastructure and Transport in Japan. We have assessed the technology used in this building, and found that there is a possibility to reduce energy consumption in the HVAC system by 30%. Conclusion Saving energy reduces CO2 emissions in the commercial sector, although emission factors depend on the country or region. Consequently, energy savings potential may serve as a criterion in selecting HVAC technologies with respect to emission reduction targets. PMID:17062161
Will Renewable Energy Save Our Planet?
NASA Astrophysics Data System (ADS)
Bojić, Milorad
2010-06-01
This paper discusses some important fundamental issues behind application of renewable energy (RE) to evaluate its impact as a climate change mitigation technology. The discussed issues are the following: definition of renewable energy, concentration of RE by weight and volume, generation of electrical energy and its power at unit area, electrical energy demand per unit area, life time approach vs. layman approach, energy return time, energy return ratio, CO2 return time, energy mix for RES production and use, geographical distribution of RES use, huge scale of energy shift from RES to non-RES, increase in energy consumption, Thermodynamic equilibrium of earth, and probable solutions for energy future of our energy and environmental crisis of today. The future solution (that would enable to human civilization further welfare, and good living, but with lower release of CO2 in atmosphere) may not be only RES. This will rather be an energy mix that may contain nuclear energy, non-nuclear renewable energy, or fossil energy with CO2 sequestration, efficient energy technologies, energy saving, and energy consumption decrease.
NASA Astrophysics Data System (ADS)
Zhang, Guangshan; Hu, Limin; Wang, Peng; Yuan, Yixing
2017-11-01
In this work, a time-saving microwave-assisted method for synthesis of Co3O4-Bi2O3 was reported. The synthesized Co3O4-Bi2O3 samples were characterized with different techniques to probe their crystalline structures and morphologies. The catalytic performances of synthesized Co3O4-Bi2O3 as peroxymonosulfate activator were evaluated by the degradation of bisphenol A. The effect of calcination temperature on Co3O4-Bi2O3 products was explored and the result showed that the sample calcined at 400 °C possessing superior catalytic activity.
Han, Jeongyun; Lee, Eunjung; Cho, Hyunghun; Yoon, Yoonjin; Lee, Hyoseop; Rhee, Wonjong
2018-05-17
In this paper, we provide findings from an energy saving experiment in a university building, where an IoT platform with 1 Hz sampling sensors was deployed to collect electric power consumption data. The experiment was a reward setup with daily feedback delivered by an energy delegate for one week, and energy saving of 25.4% was achieved during the experiment. Post-experiment sustainability, defined as 10% or more of energy saving, was also accomplished for 44 days without any further intervention efforts. The saving was possible mainly because of the data-driven intervention designs with high-resolution data in terms of sampling frequency and number of sensors, and the high-resolution data turned out to be pivotal for an effective waste behavior investigation. While the quantitative result was encouraging, we also noticed many uncontrollable factors, such as exams, papers due, office allocation shuffling, graduation, and new-comers, that affected the result in the campus environment. To confirm that the quantitative result was due to behavior changes, rather than uncontrollable factors, we developed several data-driven behavior detection measures. With these measures, it was possible to analyze behavioral changes, as opposed to simply analyzing quantitative fluctuations. Overall, we conclude that the space-time resolution of data can be crucial for energy saving, and potentially for many other data-driven energy applications.
Ecological analysis of a typical farm-scale biogas plant in China
NASA Astrophysics Data System (ADS)
Duan, Na; Lin, Cong; Wang, Pingzhi; Meng, Jing; Chen, Hui; Li, Xue
2014-09-01
The aim of this work was to present the common anaerobic digestion technologies in a typical farm-scale biogas plant in China. The comprehensive benefits of most biogas plants in China have not been fully assessed in past decades due to the limited information of the anaerobic digestion processes in biogas plants. This paper analyzed four key aspects (i.e., operational performance, nonrenewable energy (NE) savings, CO2 emission reduction (CER) and economic benefits (EBs)) of a typical farm-scale biogas plant, where beef cattle manure was used as feedstock. Owing to the monitoring system, stable operation was achieved with a hydraulic retention time of 18-22 days and a production of 876,000 m3 of biogas and 37,960 t of digestate fertilizer annually. This could substantially substitute for the nonrenewable energy and chemical fertilizer. The total amount of NE savings and CER derived from biogas and digestate fertilizer was 2.10×107 MJ (equivalent to 749.7 tce) and 9.71×105 kg, respectively. The EBs of the biogas plant was 6.84×105 CNY·yr-1 with an outputs-to-inputs ratio of 2.37. As a result, the monitoring system was proved to contribute significantly to the sound management and quantitative assessment of the biogas plant. Biogas plants could produce biogas which could be used to substitute fossil fuels and reduce the emissions of greenhouse gases, and digestate fertilizer is also an important bio-product.
Hu, Shunxin; Zhou, Bin; Wang, You; Wang, Ying; Zhang, Xinxin; Zhao, Yan; Zhao, Xinyu; Tang, Xuexi
2017-01-01
Karenia mikimotoi is a widespread, toxic and non-calcifying dinoflagellate, which can release and produce ichthyotoxins and hemolytic toxins affecting the food web within the area of its bloom. Shifts in the physiological characteristics of K. mikimotoi due to CO2-induced seawater acidification could alter the occurrence, severity and impacts of harmful algal blooms (HABs). Here, we investigated the effects of elevated pCO2 on the physiology of K. mikimotoi. Using semi-continuous cultures under controlled laboratory conditions, growth, photosynthesis and inorganic carbon acquisition were determined over 4-6 week incubations at ambient (390ppmv) and elevated pCO2 levels (1000 ppmv and 2000 ppmv). pH-drift and inhibitor-experiments suggested that K. mikimotoi was capable of acquiring HCO3-, and that the utilization of HCO3- was predominantly mediated by anion-exchange proteins, but that HCO3- dehydration catalyzed by external carbonic anhydrase (CAext) only played a minor role in K. mikimotoi. Even though down-regulated CO2 concentrating mechanisms (CCMs) and enhanced gross photosynthetic O2 evolution were observed under 1000 ppmv CO2 conditions, the saved energy did not stimulate growth of K. mikimotoi under 1000 ppmv CO2, probably due to the increased dark respiration. However, significantly higher growth and photosynthesis [in terms of photosynthetic oxygen evolution, effective quantum Yield (Yield), photosynthetic efficiency (α), light saturation point (Ek) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity] were observed under 2000 ppmv CO2 conditions. Furthermore, elevated pCO2 increased the photo-inhibition rate of photosystem II (β) and non-photochemical quenching (NPQ) at high light. We suggest that the energy saved through the down-regulation of CCMs might lead to the additional light stress and photo-damage. Therefore, the response of this species to elevated CO2 conditions will be determined by more than regulation and efficiency of CCMs.
Yin, Hongyao; Feng, Yujun; Liu, Hanbin; Mu, Meng; Fei, Chenhong
2014-08-26
Owing to its wide availability, nontoxicity, and low cost, CO2 working as a trigger to reversibly switch material properties, including polarity, ionic strength, hydrophilicity, viscosity, surface charge, and degree of polymerization or cross-linking, has attracted an increasing attention in recent years. However, a quantitative correlation between basicity of these materials and their CO2 switchability has been less documented though it is of great importance for fabricating switchable system. In this work, the "switch-on" and "switch-off" abilities of melamine and its amino-substituted derivatives by introducing and removing CO2 are studied, and then their quantitative relationship with basicity is established, so that performances of other organobases can be quantitatively predicted. These findings are beneficial for forecasting the CO2 stimuli-responsive behavior of other organobases and the design of CO2-switchable materials.
NASA Astrophysics Data System (ADS)
Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli
2018-04-01
The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12CO2 and 13CO2 were mixed with N2 at various molar fraction ratios to obtain Raman quantification factors (F12CO2 and F13CO2), which provide a theoretical basis for calculating the δ13C value. And the corresponding values were 0.523 (0 < C12CO2/CN2 < 2) and 1.11998 (0 < C13CO2/CN2 < 1.5) respectively. It has shown that the representative Raman peak area can be used for the determination of δ13C values within the relative errors range of 0.076% to 1.154% in 13CO2/12CO2 binary mixtures when F12CO2/F13CO2 is 0.466972625. In addition, measurement of δ13C values by Micro-Laser Raman analysis were carried out on natural CO2 gas from Shengli Oil-field at room temperature under different pressures. The δ13C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ13C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ13C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ13C values in natural CO2 gas reservoirs.
2003-05-19
www.bbc.co.uk/cgi-bin/history/renderplain.pl?file=history/war/wwtwo/spying/sis_0/> [27 March 2003]. 37 Ibid. 38 “Operation Overlord,” Saving Private Ryan Online...Security, (Washington, DC: 2002), 17; National Strategy for Combating Terrorism. Washington, DC: 2003. “Operation Overlord,” Saving Private Ryan Online
NASA Astrophysics Data System (ADS)
Liu, Jian; Bearden, Mark D.; Fernandez, Carlos A.; Fifield, Leonard S.; Nune, Satish K.; Motkuri, Radha K.; Koech, Philip K.; McGrail, B. Pete
2018-03-01
Magnesium (Mg) has many useful applications especially in the form of various Mg alloys that can decrease weight while increasing strength compared with common steels. To increase the affordability and minimize environment consequence, a novel catalyzed organo-metathetical (COMET) process was proposed to extract Mg from seawater aiming to achieve a significant reduction in total energy and production cost compared with the melting salt electrolysis method currently adapted by US Mg LLC. A process flow sheet for a reference COMET process was set up using Aspen Plus. The energy consumption, production cost, and CO2 emissions were estimated using the Aspen economic analyzer. Our results showed that it is possible to produce Mg from seawater with a production cost of 2.0/kg-Mg while consuming about 35.6 kWh/kg-Mg and releasing 7.7 kg CO2/kg-Mg. Under the simulated conditions, the reference COMET process maintains a comparable CO2 emission rate, saves about 40% in production cost, and saves about 15% in energy consumption compared with a simplified US Mg process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garg, A.; Smith, R.; Hill, D.
2009-08-15
This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found tomore » be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ({approx}2500 g CO{sub 2} eqvt./kg DS SRF in co-fired cement kilns and {approx}1500 g CO{sub 2} eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.« less
Reducing CO2-Emission by using Eco-Cements
NASA Astrophysics Data System (ADS)
Voit, K.; Bergmeister, K.; Janotka, I.
2012-04-01
CO2 concentration in the air is rising constantly. Globally, cement companies are emitting nearly two billion tonnes/year of CO2 (or around 6 to 7 % of the planet's total CO2 emissions) by producing portland cement clinker. At this pace, by 2025 the cement industry will be emitting CO2 at a rate of 3.5 billion tones/year causing enormous environmental damage (Shi et al., 2011; Janotka et al., 2012). At the dawn of the industrial revolution in the mid-eighteenth century the concentration of CO2 was at a level of ca. 280 ppm. 200 years later at the time of World War II the CO2 level had risen to 310 ppm what results in a rate of increase of 0,15 ppm per year for that period (Shi et al., 2011). In November 2011 the CO2 concentration reached a value of 391 ppm (NOAA Earth System Research Laboratory, 2011), a rise of ca. 81 ppm in 66 years and an increased rate of around 1,2 ppm/year respectively. In the same period cement production in tons of cement has multiplied by a factor of ca. 62 (Kelly & Oss, US Geological Survey, 2010). Thus new CO2-saving eco-cement types are gaining in importance. In these cement types the energy-consuming portland cement clinker is partially replaced by latent hydraulic additives such as blast furnace slag, fly ash or zeolite. These hydraulic additives do not need to be fired in the rotary furnace. They ony need to be pulverized to the required grain size and added to the ground portland cement clinker. Hence energy is saved by skipping the engery-consuming firing process, in addition there is no CO2-degassing as there is in the case of lime burning. Therefore a research project between Austria and Slovakia, funded by the EU (Project ENVIZEO), was initiated in 2010. The main goal of this project is to develop new CEM V eco-types of cements and certificate them for common usage. CEM V is a portland clinker saving cement kind that allows the reduction of clinker to a proportion of 40-64% for CEM V/A and 20-39% for CEM V/B respectively by the input of slag sands, puzzolanes and fly ash (according to standard EN 197-1). In this context four new CEM V kinds have been created, two Austrian types based on slag and fly ash, and two Slovak types, one based on slag and fly ash, the other on slag and natural pozzolana. The pozzolana consist of zeolite of clinoptilolite type that is gained from a Slovak deposit.
Tausch, Arno
2013-08-01
This article looks at the long-term, structural determinants of environmental and public health performance in the world system. In multiple standard ordinary least squares (OLS) regression models, we tested the effects of 26 standard predictor variables, including the 'four freedoms' of goods, capital, labour and services, on the following indicators of sustainable development and public health: avoiding net trade of ecological footprint global hectare (gha) per person; avoiding high carbon emissions per million US dollars GDP; avoiding high CO2 per capita (gha/cap); avoiding high ecological footprint per capita; avoiding becoming victim of natural disasters; a good performance on the Environmental Performance Index (EPI); a good performance on the Happy Life Years (HLYs) scale; and a good performance on the Happy Planet Index (HPI). Our research showed that the apprehensions of quantitative research, critical of neo-liberal globalization, are fully vindicated by the significant negative environmental and public health effects of the foreign savings rate. High foreign savings are indeed a driver of global footprint, and are a blockade against a satisfactory HPI performance. The new international division of labour is one of the prime drivers of high CO2 per capita emissions. Multinational Corporation (MNC) penetration, the master variable of most quantitative dependency theories, blocks EPI and several other socially important processes. Worker remittances have a significant positive effect on the HPI, and HLYs. We re-analysed the solid macro-political and macro-sociological evidence on a global scale, published in the world's leading peer-reviewed social science, ecological and public health journals, which seem to indicate that there are contradictions between unfettered globalization and unconstrained world economic openness and sustainable development and public health development. We suggest that there seems to be a strong interaction between 'transnational capitalist penetration' and 'environmental and public health degradation'. Global policy-making finally should dare to take the globalization-critical organizations of 'civil society' seriously. This conclusion not only holds for the countries of the developed "West", but also, increasingly, for the growing democracy and civil society movements around the globe, in countries as diverse as Brazil, Russia, China, or ever larger parts of the Muslim world.
Tausch, Arno
2013-01-01
Background: This article looks at the long-term, structural determinants of environmental and public health performance in the world system. Methods: In multiple standard ordinary least squares (OLS) regression models, we tested the effects of 26 standard predictor variables, including the ‘four freedoms’ of goods, capital, labour and services, on the following indicators of sustainable development and public health: avoiding net trade of ecological footprint global hectare (gha) per person; avoiding high carbon emissions per million US dollars GDP; avoiding high CO2 per capita (gha/cap); avoiding high ecological footprint per capita; avoiding becoming victim of natural disasters; a good performance on the Environmental Performance Index (EPI); a good performance on the Happy Life Years (HLYs) scale; and a good performance on the Happy Planet Index (HPI). Results: Our research showed that the apprehensions of quantitative research, critical of neo-liberal globalization, are fully vindicated by the significant negative environmental and public health effects of the foreign savings rate. High foreign savings are indeed a driver of global footprint, and are a blockade against a satisfactory HPI performance. The new international division of labour is one of the prime drivers of high CO2 per capita emissions. Multinational Corporation (MNC) penetration, the master variable of most quantitative dependency theories, blocks EPI and several other socially important processes. Worker remittances have a significant positive effect on the HPI, and HLYs. Conclusion: We re-analysed the solid macro-political and macro-sociological evidence on a global scale, published in the world’s leading peer-reviewed social science, ecological and public health journals, which seem to indicate that there are contradictions between unfettered globalization and unconstrained world economic openness and sustainable development and public health development. We suggest that there seems to be a strong interaction between ‘transnational capitalist penetration’ and ‘environmental and public health degradation’. Global policy-making finally should dare to take the globalization-critical organizations of ‘civil society’ seriously. This conclusion not only holds for the countries of the developed “West”, but also, increasingly, for the growing democracy and civil society movements around the globe, in countries as diverse as Brazil, Russia, China, or ever larger parts of the Muslim world. PMID:24596855
Environmental burdens in the management of end-of-life cathode ray tubes.
Rocchetti, Laura; Beolchini, Francesca
2014-02-01
We compared the environmental burdens in the management of end-of life cathode ray tubes (CRTs) within two frameworks according to the different technologies of the production of televisions/monitors. In the first case, CRT recycling is addressed to the recovery of the panel and funnel glass for the manufacturing of new CRT screens. In the second case, where flat screen technology has replaced that of CRT, the recycling is addressed to the recovery of the glass cullet and lead for other applications. The impacts were evaluated according to the problem-oriented methodology of the Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands. Our data confirm that in both cases, the recycling treatment allows benefits to be gained for the environment through the recovery of the secondary raw materials. These benefits are higher for the "CRT technology" framework (1 kg CO2 saved per CRT) than for the "flat screen technology" (0.9 kg CO2 saved, per CRT, as the highest possible), mainly due to the high energy consumption for lead separation from the funnel glass. Furthermore, the recovery of yttrium from the fluorescent powders that are a residue of the recycling treatment would further improve the CO2 credit for both the frameworks considered, which would provide a further saving of about 0.75 kg CO2 per CRT, net of the energy and raw materials needed for the recovery. Overall, this study confirms that, even with a change in the destination of the recovered materials, the recycling processes provide a benefit for the environment: indeed the higher loads for the environment are balanced by avoiding the primary production of the recovered materials. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boesch, Michael E.; Vadenbo, Carl, E-mail: vadenbo@ifu.baug.ethz.ch; Saner, Dominik
2014-02-15
Highlights: • An enhanced process-based LCA model for MSWI is featured and applied in case study. • LCA modeling of recent technological developments for metal recovery from fly ash. • Net release from Swiss MSWI 133 kg CO{sub 2}-eq/tonne waste from attributional LCA perspective. • Net savings from a consequential LCA perspective reach up to 303 kg CO{sub 2}-eq/tonne waste. • Impacts according to ReCiPe and CExD show similar pattern to climate change. - Abstract: A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeledmore » as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO{sub 2}-eq. generated in the incineration process, and 54 kg CO{sub 2}-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO{sub 2}-eq. Savings from energy recovery are in the range of 67 to 752 kg CO{sub 2}-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO{sub 2}-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles.« less
Petersdorff, Carsten; Boermans, Thomas; Harnisch, Jochen
2006-09-01
GOAL SCOPE AND BACKGROUND: The European Directive on Energy Performance of Buildings which came into force 16 December 2002 will be implemented in the legislation of Member States by 4 January 2006. In addition to the aim of improving the overall energy efficiency of new buildings, large existing buildings will become a target for improvement, as soon as they undergo significant renovation. The building sector is responsible for about 40% of Europe's total end energy consumption and hence this Directive is an important step for the European Union in order that it should reach the level of saving required by the Kyoto Agreement. In this the EU is committed to reduce CO2 emissions relative to the base year of 1990 by 8 per cent, by 2010. But what will be the impact of the new Directive, how large could be the impacts of extending the obligation for energy efficiency retrofitting towards smaller buildings? Can improvement of the insulation offset or reduce the growing energy consumption from the increasing installation of cooling installations? EURIMA, the European Insulation Manufacturers Association and EuroACE, the European Alliance of Companies for Energy Efficiency in Buildings, asked Ecofys to address these questions. The effect of the EPB Directive on the emissions associated with the heating energy consumption of the total EU 15 building stock has been examined in a model calculation, using the Built Environment Analysis Model (BEAM), which was developed by Ecofys to investigate energy saving measures in the building stock. The great complexity of the EU-15 building stock had to be simplified by examining five standard buildings with eight insulation standards, which are assigned to building age and renovation status. Furthermore, three climatic regions (cold, moderate, warm) were distinguished for the calculation of the heating energy demand. This gave a basic 210 building types for which the heating energy demand and CO2 emissions from heating were calculated according to the principles of the European Norm EN 832. The model calculations demonstrates that the main contributor to the total heating related CO2 emissions of 725 Mt/a from the EU building stock in 2002 is the residential sector (77%) while the remaining 23% originates from non-residential buildings. In the residential sector, single-family houses represent the largest group responsible for 60% of the total CO2 emissions equivalent to 435 Mt/a. THE TECHNICAL POTENTIAL: If all retrofit measures in the scope of the Directive were realised immediately for the complete residential and non-residential building stock the overall CO2 emission savings would add up to 82 Mt/a. An additional saving potential compared to the Directive of 69 Mt/a would be created if the scope of the Directive was extended to cover retrofit measures in multi-family dwellings (200-1000 m2) and non-residential buildings smaller than 1000 m2 used floor space. In addition including the large group of single-family dwellings would lead to a potential for additional CO2 emission reductions compared to the Directive of 316 Mt/a. TEMPORAL MOBILIZATION OF THE POTENTIAL: Calculations based on the building stock as it develops over time with average retrofit rates demonstrated that regulations introduced following the EPB Directive result in a CO2 emissions decrease of 34 Mt/a by the year 2010 compared to the business as usual scenario. Extending the scope of the EPB Directive to all residential buildings (including single and multi-family dwellings), the CO2 emission savings potential over the 'business as usual' scenario could be doubled to 69 Mt/a in the year 2010. This creates an additional saving potential compared to the Directive of 36 Mt/a. COOLING DEMAND: The analysis demonstrated that in warm climatic zones the cooling demand can be reduced drastically by a combination of lowering the internal heat loads and by improved insulation. With the reduction of the heat loads to a moderate level the cooling demand, e.g. of a terraced house located in Madrid, can be reduced by an additional 85% if the insulation level is improved appropriately. This study demonstrates that the European Directive on Energy Performance of Buildings will have a significant impact on the CO2 emissions of the European building stock. The main saving potential lies in insulation of the existing building stock. Beyond this, CO2 emissions could, however, be greatly reduced if the scope of the Directive were to be extended to include retrofit of smaller buildings. The reductions should be seen in relation to the remaining gap of 190 Mt CO2 eq. per annum between the current emission levels of EU-15 and the target under the Kyoto-Protocol for the year 2010. The energy and industrial sector will probably contribute only a fraction of this reduction via the newly established EU emissions trading scheme and connected projects under the flexible mechanism. In addition, the traffic sector is likely to continue its growth path leading to a widening of the gap. Thus, there is likely to be considerable pressure on the EU building sector to contribute to the EU climate targets beyond what will be achieved by means of the current EPB Directive. Legislators on the EU and national level are therefore advised to take accelerated actions to tap the very significant emission reduction potentials available in the EU building stock.
Mutebi, Aloysius; Muhumuza Kananura, Rornald; Ekirapa-Kiracho, Elizabeth; Bua, John; Namusoke Kiwanuka, Suzanne; Nammazi, Getrude; Paina, Ligia; Tetui, Moses
2017-08-01
Rural populations in Uganda have limited access to formal financial Institutions, but a growing majority belong to saving groups. These saving groups could have the potential to improve household income and access to health services. To understand organizational characteristics, benefits and challenges, of savings groups in rural Uganda. This was a cross-sectional descriptive study that employed both quantitative and qualitative data collection techniques. Data on the characteristics of community-based savings groups (CBSGs) were collected from 247 CBSG leaders in the districts of Kamuli, Kibukuand Pallisa using self-administered open-ended questionnaires. To triangulate the findings, we conducted in-depth interviews with seven CBSG leaders. Descriptive quantitative and content analysis for qualitative data was undertaken respectively. Almost a quarter of the savings groups had 5-14 members and slightly more than half of the saving groups had 15-30 members. Ninety-three percent of the CBSGs indicated electing their management committees democratically to select the group leaders and held meetings at least once a week. Eighty-nine percent of the CBSGs had used metallic boxes to keep their money, while 10% of the CBSGs kept their money using mobile money and banks,respectively. The main reasons for the formation of CBSGs were to increase household income, developing the community and saving for emergencies. The most common challenges associated with CBSG management included high illiteracy (35%) among the leaders,irregular attendance of meetings (22%), and lack of training on management and leadership(19%). The qualitative findings agreed with the quantitative findings and served to triangulate the main results. Saving groups in Uganda have the basic required structures; however, challenges exist in relation to training and management of the groups and their assets. The government and development partners should work together to provide technical support to the groups.
Mutebi, Aloysius; Muhumuza Kananura, Rornald; Ekirapa-Kiracho, Elizabeth; Bua, John; Namusoke Kiwanuka, Suzanne; Nammazi, Gertrude; Paina, Ligia; Tetui, Moses
2017-01-01
ABSTRACT Background: Rural populations in Uganda have limited access to formal financial Institutions, but a growing majority belong to saving groups. These saving groups could have the potential to improve household income and access to health services. Objective: To understand organizational characteristics, benefits and challenges, of savings groups in rural Uganda. Methods: This was a cross-sectional descriptive study that employed both quantitative and qualitative data collection techniques. Data on the characteristics of community-based savings groups (CBSGs) were collected from 247 CBSG leaders in the districts of Kamuli, Kibukuand Pallisa using self-administered open-ended questionnaires. To triangulate the findings, we conducted in-depth interviews with seven CBSG leaders. Descriptive quantitative and content analysis for qualitative data was undertaken respectively. Results: Almost a quarter of the savings groups had 5–14 members and slightly more than half of the saving groups had 15–30 members. Ninety-three percent of the CBSGs indicated electing their management committees democratically to select the group leaders and held meetings at least once a week. Eighty-nine percent of the CBSGs had used metallic boxes to keep their money, while 10% of the CBSGs kept their money using mobile money and banks,respectively. The main reasons for the formation of CBSGs were to increase household income, developing the community and saving for emergencies. The most common challenges associated with CBSG management included high illiteracy (35%) among the leaders,irregular attendance of meetings (22%), and lack of training on management and leadership(19%). The qualitative findings agreed with the quantitative findings and served to triangulate the main results. Conclusions: Saving groups in Uganda have the basic required structures; however, challenges exist in relation to training and management of the groups and their assets. The government and development partners should work together to provide technical support to the groups. PMID:28856988
Code of Federal Regulations, 2011 CFR
2011-07-01
... (“Localized CO, PM10, and PM2.5 violations”) must be based on quantitative analysis using the applicable air... § 93.116 may be based on either: (i) Quantitative methods that represent reasonable and common... hot-spot analyses. (1) The hot-spot demonstration required by § 93.116 must be based on quantitative...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (“Localized CO, PM10, and PM2.5 violations”) must be based on quantitative analysis using the applicable air... § 93.116 may be based on either: (i) Quantitative methods that represent reasonable and common... hot-spot analyses. (1) The hot-spot demonstration required by § 93.116 must be based on quantitative...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (“Localized CO, PM10, and PM2.5 violations”) must be based on quantitative analysis using the applicable air... § 93.116 may be based on either: (i) Quantitative methods that represent reasonable and common... hot-spot analyses. (1) The hot-spot demonstration required by § 93.116 must be based on quantitative...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (“Localized CO, PM10, and PM2.5 violations”) must be based on quantitative analysis using the applicable air... § 93.116 may be based on either: (i) Quantitative methods that represent reasonable and common... hot-spot analyses. (1) The hot-spot demonstration required by § 93.116 must be based on quantitative...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langenfeld, Julie K.; Bielicki, Jeffrey M.; Tao, Zhiyuan
Fractured shale formations are new potential target reservoirs for CO 2 capture and storage (CCS) and provide several potential advantages over storage in saline aquifers in terms of storage capacity, leakage risk, and cost savings from brownfield development. Here, we used a geospatial-optimization, engineering-economic model to investigate the sensitivity of integrated CCS networks in Ohio, Pennsylvania, and West Virginia to reductions in CO 2 capture costs. The resulting reductions in CO 2 capture costs were based on hypothetical cases where technological innovation reduced CO 2 capture costs. There were also small differences in the spatial organization of the CCS deploymentmore » when the capture costs were reduced. We also found that the percent reduction in average cost of CCS systems became smaller as the CO 2 capture costs were decreased.« less
Langenfeld, Julie K.; Bielicki, Jeffrey M.; Tao, Zhiyuan; ...
2017-08-18
Fractured shale formations are new potential target reservoirs for CO 2 capture and storage (CCS) and provide several potential advantages over storage in saline aquifers in terms of storage capacity, leakage risk, and cost savings from brownfield development. Here, we used a geospatial-optimization, engineering-economic model to investigate the sensitivity of integrated CCS networks in Ohio, Pennsylvania, and West Virginia to reductions in CO 2 capture costs. The resulting reductions in CO 2 capture costs were based on hypothetical cases where technological innovation reduced CO 2 capture costs. There were also small differences in the spatial organization of the CCS deploymentmore » when the capture costs were reduced. We also found that the percent reduction in average cost of CCS systems became smaller as the CO 2 capture costs were decreased.« less
Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli
2018-04-15
The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12 CO 2 and 13 CO 2 were mixed with N 2 at various molar fraction ratios to obtain Raman quantification factors (F 12CO2 and F 13CO2 ), which provide a theoretical basis for calculating the δ 13 C value. And the corresponding values were 0.523 (0
The environmental impacts of foamed concrete production and exploitation
NASA Astrophysics Data System (ADS)
Namsone, E.; Korjakins, A.; Sahmenko, G.; Sinka, M.
2017-10-01
This paper presents a study focusing on the environmental impacts of foamed concrete production and exploitation. CO2 emissions are very important factor for describing durability and sustainability of any building material and its life cycle. The building sector is one of the largest energy-consuming sectors in the world. In this study CO2 emissions are evaluated with regard to three types of energy resources (gas, coal and eco-friendly fuel). The related savings on raw materials are up to 120 t of water per 1000 t of traditionally mixed foamed concrete and up to 350 t of sand per 1000 t of foamed concrete produced with intensive mixing technology. In addition, total reduction of CO2 emissions (up to 60 t per 1000 m3 of material) and total energy saving from introduction of foamed concrete production (depending on the type of fuel) were calculated. In order to analyze the conditions of exploitation, both thermal conductivity and thickness of wall was determined. All obtained and calculated results were compared to those of the commercially produced autoclaved aerated concrete.
Kim, Jin Cheon; Lee, Jong Lyul; Park, Seong Ho
2017-04-01
Since the introduction of indocyanine green angiography more than 25 years ago, few studies have presented interpretative guidelines for indocyanine green fluorescent imaging. We aimed to provide interpretative guidelines for indocyanine green fluorescent imaging through quantitative analysis and to suggest possible indications for indocyanine green fluorescent imaging during robot-assisted sphincter-saving operations. This is a retrospective observational study. This study was conducted at a single center. A cohort of 657 patients with rectal cancer who consecutively underwent curative robot-assisted sphincter-saving operations was enrolled between 2010 and 2016, including 310 patients with indocyanine green imaging (indocyanine green fluorescent imaging+ group) and 347 patients without indocyanine green imaging (indocyanine green fluorescent imaging- group). We tried to quantitatively define the indocyanine green fluorescent imaging findings based on perfusion (mesocolic and colic) time and perfusion intensity (5 grades) to provide probable indications. The anastomotic leakage rate was significantly lower in the indocyanine green fluorescent imaging+ group than in the indocyanine green fluorescent imaging- group (0.6% vs 5.2%) (OR, 0.123; 95% CI, 0.028-0.544; p = 0.006). Anastomotic stricture was closely correlated with anastomotic leakage (p = 0.002) and a short descending mesocolon (p = 0.003). Delayed perfusion (>60 s) and low perfusion intensity (1-2) were more frequently detected in patients with anastomotic stricture and marginal artery defects than in those without these factors (p ≤ 0.001). In addition, perfusion times greater than the mean were more frequently observed in patients aged >58 years, whereas low perfusion intensity was seen more in patients with short descending mesocolon and high ASA classes (≥3). The 300 patients in the indocyanine green fluorescent imaging- group underwent operations 3 years before indocyanine green fluorescent imaging. Quantitative analysis of indocyanine green fluorescent imaging may help prevent anastomotic complications during robot-assisted sphincter-saving operations, and may be of particular value in high-class ASA patients, older patients, and patients with a short descending mesocolon.
NASA Astrophysics Data System (ADS)
Kim, K. K.; Hamm, S. Y.; Kim, S. O.; Yun, S. T.
2016-12-01
For confronting global climate change, carbon capture and storage (CCS) is one of several very useful strategies as using capture of greenhouse gases like CO2 spewed from stacks and then isolation of the gases in underground geologic storage. CO2-rich groundwater could be produced by CO2 dissolution into fresh groundwater around a CO2 storage site. As consequence, natural analogue studies related to geologic storage provide insights into future geologic CO2 storage sites as well as can provide crucial information on the safety and security of geologic sequestration, the long-term impact of CO2 storage on the environment, and field operation and monitoring that could be implemented for geologic sequestration. In this study, we developed CO2 leakage monitoring method using probability density function (PDF) by characterizing naturally occurring CO2-rich groundwater. For the study, we used existing data of CO2-rich groundwaters in different geological regions (Gangwondo, Gyeongsangdo, and Choongchungdo provinces) in South Korea. Using PDF method and QI (quantitative index), we executed qualitative and quantitative comparisons among local areas and chemical constituents. Geochemical properties of groundwater with/without CO2 as the PDF forms proved that pH, EC, TDS, HCO3-, Ca2+, Mg2+, and SiO2 were effective monitoring parameters for carbonated groundwater in the case of CO2leakage from an underground storage site. KEY WORDS: CO2-rich groundwater, CO2 storage site, monitoring parameter, natural analogue, probability density function (PDF), QI_quantitative index Acknowledgement This study was supported by the "Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2013R1A1A2058186)" and the "R&D Project on Environmental Management of Geologic CO2 Storage" from KEITI (Project number: 2014001810003).
Amount of water needed to save 1 m3 of water: life cycle assessment of a flow regulator
NASA Astrophysics Data System (ADS)
Berger, Markus; Söchtig, Michael; Weis, Christoph; Finkbeiner, Matthias
2017-06-01
Water saving devices in the sanitary equipment, such as flow regulators, are assumed to be environmentally advantageous even though their environmental benefit has never been compared to the environmental burden caused during their production und disposal. Therefore, a life cycle assessment according to ISO 14044 has been conducted to identify and quantify the environmental effects throughout the lifespan of a flow regulator. The analysis comprises the production of materials, manufacturing of components at suppliers, the assembly at NEOPERL®, all transports, savings of water and thermal energy during use as well as waste incineration including energy recovery in the end-of-life stage. Results show that the production of one flow regulator causes 0.12 MJ primary energy demand, a global warming potential of 5.9 g CO2-equivalent, and a water consumption of 30.3 ml. On the other hand, during a use of 10 years, it saves 19,231 MJ primary energy, 1223 kg CO2-equivalent, and avoids a water consumption of 790 l (166,200 l water use). Since local impacts of water consumption are more relevant than volumes, consequences of water consumption have been analyzed using recently developed impact assessment models. Accordingly, the production of a flow regulator causes 8.5 ml freshwater depletion, 1.4 × 10-13 disability adjusted life years, and 4.8 × 10-6 potentially disappeared fractions of species m2 a. Even though avoided environmental impacts resulting from water savings highly depend on the region where the flow regulator is used, the analysis has shown that environmental benefits are at least 15,000 times higher than impacts caused during the production.
Franco, Marcela; Contreras, Carolina; Cortés, Pablo; Chappell, Mark A.; Soto-Gamboa, Mauricio; Nespolo, Roberto F.
2012-01-01
Summary During periods of cold, small endotherms depend on a continuous supply of food and energy to maintain euthermic body temperature (Tb), which can be challenging if food is limited. In these conditions, energy-saving strategies are critical to reduce the energetic requirements for survival. Mammals from temperate regions show a wide arrange of such strategies, including torpor and huddling. Here we provide a quantitative description of thermoregulatory capacities and energy-saving strategies in Dromiciops gliroides, a Microbiotherid marsupial inhabiting temperate rain forests. Unlike many mammals from temperate regions, preliminary studies have suggested that this species has low capacity for control and regulation of body temperature, but there is still an incomplete picture of its bioenergetics. In order to more fully understand the physiological capacities of this “living fossil”, we measured its scope of aerobic power and the interaction between huddling and torpor. Specifically, we evaluated: (1) the relation between basal (BMR) and maximum metabolic rate (MMR), and (2) the role of huddling on the characteristics of torpor at different temperatures. We found that BMR and MMR were above the expected values for marsupials and the factorial aerobic scope (from CO2) was 6.0±0.45 (using CO2) and 6.2±0.23 (using O2), an unusually low value for mammals. Also, repeatability of physiological variables was non-significant, as in previous studies, suggesting poor time-consistency of energy metabolism. Comparisons of energy expenditure and body temperature (using attached data-loggers) between grouped and isolated individuals showed that at 20°C both average resting metabolic rate and body temperature were higher in groups, essentially because animals remained non-torpid. At 10°C, however, all individuals became torpid and no differences were observed between grouped and isolated individuals. In summary, our study suggests that the main response of Dromiciops gliroides to low ambient temperature is reduced body temperature and torpor, irrespective of huddling. Low aerobic power and low time-consistency of most thermoregulatory traits of Dromiciops gliroides support the idea of poor thermoregulatory abilities in this species. PMID:23259051
Reducing Energy Consumption and CO2 One Street Lamp at a Time
NASA Astrophysics Data System (ADS)
Somssich, Peter
2011-11-01
Why wait for federal action on incentives to reduce energy use and address Greenhouse Gas (GHG) reductions (e.g. CO2), when we can take personal actions right now in our private lives and in our communities? One such initiative by private citizens working with Portsmouth NH officials resulted in the installation of energy reducing lighting products on Court St. and the benefits to taxpayers are still coming after over 4 years of operation. This citizen initiative to save money and reduce CO2 emissions, while only one small effort, could easily be duplicated in many towns and cities. Replacing old lamps in just one street fixture with a more energy efficient (Non-LED) lamp has resulted after 4 years of operation (˜15,000 hr. life of product) in real electrical energy savings of > 43. and CO2 emission reduction of > 465 lbs. The return on investment (ROI) was less than 2 years. This is much better than any financial investment available today and far safer. Our street only had 30 such lamps installed; however, the rest of Portsmouth (population 22,000) has at least another 150 street lamp fixtures that are candidates for such an upgrade. The talk will also address other energy reduction measures that green the planet and also put more green in the pockets of citizens and municipalities.
CO2 Mitigation Measures of Power Sector and Its Integrated Optimization in China
Dai, Pan; Chen, Guang; Zhou, Hao; Su, Meirong; Bao, Haixia
2012-01-01
Power sector is responsible for about 40% of the total CO2 emissions in the world and plays a leading role in climate change mitigation. In this study, measures that lower CO2 emissions from the supply side, demand side, and power grid are discussed, based on which, an integrated optimization model of CO2 mitigation (IOCM) is proposed. Virtual energy, referring to energy saving capacity in both demand side and the power grid, together with conventional energy in supply side, is unified planning for IOCM. Consequently, the optimal plan of energy distribution, considering both economic benefits and mitigation benefits, is figured out through the application of IOCM. The results indicate that development of demand side management (DSM) and smart grid can make great contributions to CO2 mitigation of power sector in China by reducing the CO2 emissions by 10.02% and 12.59%, respectively, in 2015, and in 2020. PMID:23213305
Biochemical Capture and Removal of Carbon Dioxide
NASA Technical Reports Server (NTRS)
Trachtenberg, Michael C.
1998-01-01
We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.
Compression of Martian atmosphere for production of oxygen
NASA Technical Reports Server (NTRS)
Lynch, D. C.; Cutler, A. H.; Nolan, P. E.
1991-01-01
The compression of CO2 from the Martian atmosphere for production of O2 via an electrochemical cell is addressed. Design specifications call for an oxygen production rate of 10 kg per day and for compression of 50 times that mass of CO2. Those specifications require a compression rate of over 770 cfm at standard Martian temperature and pressure (SMTP). Much of the CO2 being compressed represents waste, unless it can be recycled. Recycling can reduce the volume of gas that must be compressed to 40 cfm at SMTP. That volume reduction represents significant mass savings in the compressor, heating equipment, filters, and energy source. Successful recycle of the gas requires separation of CO (produced in the electrochemical cell) from CO2, N2, and Ar found in the Martian atmosphere. That aspect was the focus of this work.
NASA Astrophysics Data System (ADS)
Thomas, Brinda A.; Hausfather, Zeke; Azevedo, Inês L.
2014-07-01
Many US states rely on energy efficiency goals as a strategy to reduce CO2e emissions and air pollution, to minimize investments in new power plants, and to create jobs. For those energy efficiency interventions that are cost-effective, i.e., saving money and reducing energy, consumers may increase their use of energy services, or re-spend cost savings on other carbon- and energy-intensive goods and services. In this paper, we simulate the magnitude of these ‘rebound effects’ in each of the 50 states in terms of CO2e emissions, focusing on residential electric end-uses under plausible assumptions. We find that a 10% reduction in annual electricity use by a household results in an emissions’ reduction penalty ranging from 0.1 ton CO2e in California to 0.3 ton CO2e in Alabama (from potential emissions reductions of 0.3 ton CO2e and 1.6 ton CO2e, respectively, in the no rebound case). Rebound effects, percentage-wise, range from 6% in West Virginia (which has a high-carbon electricity and low electricity prices), to as high as 40% in California (which has low-carbon electricity and high electricity prices). The magnitude of rebound effects percentage-wise depends on the carbon intensity of the grid: in states with low emissions factors and higher electricity prices, such as California, the rebound effects are much larger percentage-wise than in states like Pennsylvania. Conversely, the states with larger per cent rebound effects are the ones where the implications in terms of absolute emissions changes are the smallest.
Turboexpander plant designs can provide high ethane recovery without inlet CO/sub 2/ removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkinson, J.D.; Hudson, H.M.
1982-05-01
Several new turboexpander gas-plant schemes offer two advantages over conventional processes: they can recover over 85% of the natural gas stream's ethane while handling higher inlet CO/sub 2/ concentrations without freezing - this saves considerable costs by allowing smaller CO/sub 2/ removal units or eliminating the need for them entirely, and the liquids recovery system requires no more external horsepower and in many cases, even less; this maximized the quantity of liquids recovered per unit of energy input, thus further lowering costs. The economic benefits associated with the proved plant designs make the processes attractive even for inlet gas streamsmore » containing little or no CO/sub 2/.« less
Modification of land-atmosphere interactions by CO2 effects
NASA Astrophysics Data System (ADS)
Lemordant, Leo; Gentine, Pierre
2017-04-01
Plant stomata couple the energy, water and carbon cycles. Increased CO2 modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the impact of potential heat waves. Land-atmosphere interactions and CO2 fertilization together synergistically contribute to increased summer transpiration. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise. Accurate representation of the response to higher CO2 levels, and of the coupling between the carbon and water cycles are therefore critical to forecasting seasonal climate, water cycle dynamics and to enhance the accuracy of extreme event prediction under future climate.
[Energy policy rather than climate policy].
Kroonenberg, Salomon B
2009-01-01
Energy policy and climate policy are two different issues and should not be treated as if they were the same. Whether the climate gets warmer or colder, saving energy and developing sustainable forms of energy production remain of paramount importance because fossil hydrocarbons are likely to be exhausted soon. But climate policy is a fallacy: it is human arrogance to think we can control the climate by reducing emissions and by storing CO2 underground. In spite of rising CO2 levels, the climate has cooled down slightly over the past decade. Since the International Panel on Climate Change (IPCC) did not predict this, it is questionable whether they can reliably predict warming. Other factors such as solar activity are probably more important for climate than greenhouse gases. The danger of coupling energy policy to climate policy is evident: if the climate cools down, people will lose belief in the greenhouse effect and therefore also lose interest in saving energy.
Amplification of heat extremes by plant CO2 physiological forcing.
Skinner, Christopher B; Poulsen, Christopher J; Mankin, Justin S
2018-03-15
Plants influence extreme heat events by regulating land-atmosphere water and energy exchanges. The contribution of plants to changes in future heat extremes will depend on the responses of vegetation growth and physiology to the direct and indirect effects of elevated CO 2 . Here we use a suite of earth system models to disentangle the radiative versus vegetation effects of elevated CO 2 on heat wave characteristics. Vegetation responses to a quadrupling of CO 2 increase summer heat wave occurrence by 20 days or more-30-50% of the radiative response alone-across tropical and mid-to-high latitude forests. These increases are caused by CO 2 physiological forcing, which diminishes transpiration and its associated cooling effect, and reduces clouds and precipitation. In contrast to recent suggestions, our results indicate CO 2 -driven vegetation changes enhance future heat wave frequency and intensity in most vegetated regions despite transpiration-driven soil moisture savings and increases in aboveground biomass from CO 2 fertilization.
Quantitative comparison of in situ soil CO2 flux measurement methods
Jennifer D. Knoepp; James M. Vose
2002-01-01
Development of reliable regional or global carbon budgets requires accurate measurement of soil CO2 flux. We conducted laboratory and field studies to determine the accuracy and comparability of methods commonly used to measure in situ soil CO2 fluxes. Methods compared included CO2...
Quantitative Analysis of Critical Factors for the Climate Impact of Landfill Mining.
Laner, David; Cencic, Oliver; Svensson, Niclas; Krook, Joakim
2016-07-05
Landfill mining has been proposed as an innovative strategy to mitigate environmental risks associated with landfills, to recover secondary raw materials and energy from the deposited waste, and to enable high-valued land uses at the site. The present study quantitatively assesses the importance of specific factors and conditions for the net contribution of landfill mining to global warming using a novel, set-based modeling approach and provides policy recommendations for facilitating the development of projects contributing to global warming mitigation. Building on life-cycle assessment, scenario modeling and sensitivity analysis methods are used to identify critical factors for the climate impact of landfill mining. The net contributions to global warming of the scenarios range from -1550 (saving) to 640 (burden) kg CO2e per Mg of excavated waste. Nearly 90% of the results' total variation can be explained by changes in four factors, namely the landfill gas management in the reference case (i.e., alternative to mining the landfill), the background energy system, the composition of the excavated waste, and the applied waste-to-energy technology. Based on the analyses, circumstances under which landfill mining should be prioritized or not are identified and sensitive parameters for the climate impact assessment of landfill mining are highlighted.
Carbon footprint assessment of Western Australian Groundwater Recycling Scheme
NASA Astrophysics Data System (ADS)
Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K.
2017-04-01
This research has determined the carbon footprint or the carbon dioxide equivalent (CO2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO2 eq saving per GL of water produced by the plant.
Carbon footprint assessment of Western Australian Groundwater Recycling Scheme.
Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K
2017-04-01
This research has determined the carbon footprint or the carbon dioxide equivalent (CO 2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO 2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO 2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO 2 eq saving per GL of water produced by the plant.
NASA Astrophysics Data System (ADS)
Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.
2014-11-01
To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emissions) over a complete year, and the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), and solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40 and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.09 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effects from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4 and N2O and increased soil carbon sequestration, resulting in the lowest NEGE (3.05-5.00 Mg CO2-eq ha-1 yr-1). Accordingly, water-saving GCRPS with organic fertilizer amendments was considered the most promising management regime for simultaneously achieving relatively high grain yield and reduced net greenhouse gas emission.
NASA Astrophysics Data System (ADS)
Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.
2014-06-01
To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for the rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emission) over a complete year, as well as the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40% and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.087 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effect from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4 and N2O and increased soil carbon sequestration, resulting in the lowest NEGE (3.05-5.00 Mg CO2-eq ha-1 yr-1). Accordingly, water-saving GCRPS with organic fertilizer amendments was considered the most promising management regime for simultaneously achieving relatively high grain yield and reduced net greenhouse gas emission.
75 FR 79370 - Official Release of the MOVES2010a and EMFAC2007 Motor Vehicle Emissions Models for...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-20
...: This Notice announces the availability of two new EPA guidance documents for: completing quantitative... of the MOVES model (MOVES2010a) for official use for quantitative CO, PM 2.5, and PM 10 hot-spot... emissions model is required to be used in quantitative CO and PM hot-spot analyses for project-level...
NASA Astrophysics Data System (ADS)
Loring, J. S.; Thompson, C. J.; Wang, Z.; Schaef, H. T.; Martin, P.; Qafoku, O.; Felmy, A. R.; Rosso, K. M.
2011-12-01
Geologic sequestration of carbon dioxide holds promise for helping mitigate CO2 emissions generated from the burning of fossil fuels. Supercritical CO2 (scCO2) plumes containing variable water concentrations (wet scCO2) will displace aqueous solution and dominate the pore space adjacent to caprocks. It is important to understand possible mineral reactions with wet scCO2 to better predict long-term caprock integrity. We introduce novel in situ instrumentation that enables quantitative titrations of reactant minerals with water in scCO2 at temperatures and pressures relevant to target geologic reservoirs. The system includes both transmission and attenuated total reflection mid-infrared optics. Transmission infrared spectroscopy is used to measure concentrations of water dissolved in the scCO2, adsorbed on mineral surfaces, and incorporated into precipitated carbonates. Single-reflection attenuated total reflection infrared spectroscopy is used to monitor water adsorption, mineral dissolution, and carbonate precipitation reactions. Results are presented for the infrared spectroscopic titration of forsterite (Mg2SiO4), a model divalent metal silicate, with water in scCO2 at 100 bar and at both 50 and 75°C. The spectral data demonstrate that the quantitative speciation of water as either dissolved or adsorbed is important for understanding the types, growth rates, and amounts of carbonate precipitates formed. Relationships between dissolved/adsorbed water, water concentrations, and the role of liquid-like adsorbed water are discussed. Our results unify previous in situ studies from our laboratory based on infrared spectroscopy, nuclear magnetic resonance spectroscopy and X-ray diffraction.
Concerted drive to cut carbon footprint.
2015-04-01
In 2013 Peter Sellars, head of Profession for Estates & Facilities Policy at the Department of Health, successfully bid for £50 million from the Treasury to help finance a range of 'spend-to-save' energy efficiency initiatives across the NHS in England. In all 117 energy efficiency projects were initiated across 48 English NHS organisations--funded through a dedicated NHS Energy Efficiency Fund. An independent analysis for the DH, NHS Energy Efficiency Fund Final Report, Summary 2014, by Professor Alan Short of Cambridge University's Department of Architecture, says the projects are already on track to save 100.6 million kg of CO2 annually, and some 2.4% of the entire 2012 NHS building energy-related carbon footprint, delivering annual energy savings of 160.5 million kWh (equivalent to boiling 3.34 billion cups of tea a year.) The Report--reproduced in large part here--summarises the schemes' preliminary outcomes, and makes recommendations for policy-makers implementing similar energy-saving funding schemes in the future.
Prescription Program Provides Significant Savings
ERIC Educational Resources Information Center
Rowan, James M.
2010-01-01
Most school districts today are looking for ways to save money without decreasing services to its staff. Retired pharmacist Tim Sylvester, a lifelong resident of Alpena Public Schools in Alpena, Michigan, presented the district with a pharmaceuticals plan that would save the district money without raising employee co-pays for prescriptions. The…
NASA Astrophysics Data System (ADS)
Warner, E. S.; Zhang, Y.; Newmark, R. L.
2012-12-01
Biofuels represent an opportunity for domestic fuel production from renewable energy sources with potential environmental and social benefits such as reducing greenhouse gas (GHG) and promoting rural development. However, as demand for biofuel continues to increase worldwide, concerns about land competition between food and fuel, excessive water usage and other unintended environmental consequences have grown. Through a comparative study between US corn ethanol and Brazilian sugarcane ethanol, we examine the energy, land, water and GHG performance of the two largest industrial fuel ethanol production systems in the world. Our comparisons include current and potential future systems with improved agronomic practices, crop yields, ethanol conversion processes, and utilization of agricultural residues. Our results suggest that the average water footprints of US corn ethanol and Brazilian sugarcane ethanol are fairly close (108 and 110 m3/GJ of ethanol, respectively) while the variations can range from 50 to 250 m3/GJ for sugarcane ethanol and 50 to380 m3/GJ for corn ethanol. Results emphasize the need to examine the water footprint within the context of local and regional climatic variability, water availability, competing uses (e.g. agricultural, industrial, and municipal water needs) and other ecosystem constraints. Research is under way (at the National Renewable Energy Laboratory and other institutions) to develop models to analyze water supply and demand at the watershed-scale for current and future biomass production, and to understand the tradeoffs among water supply, demand and quality due to more intensive agricultural practices and expansion of biofuels. Land use efficiency metrics, with regards to life cycle GHG emissions (without land use change) savings through gasoline displacement with ethanol, illustrate the progression of the biofuel industry and the importance of maximizing bioenergy production by utilizing both the crops and the residues. A recent average sugarcane ethanol system producing ethanol and electricity can save about 13 Mg CO2eq/ha of land compared to 12 in the early 2000s, while a recent average corn ethanol system saves about 6.2 Mg CO2eq/ha compared to near zero GHG savings in the early 2000s. The net energy balance (i.e., energy produced minus energy consumed) per ha for a recent average sugarcane ethanol system producing both ethanol and electricity is about 160 GJ/ha compared to 140 GJ/ha in early 2000s, while the recent average corn ethanol system achieves a net energy production of about 90 GJ/ha compares to only 30 GJ/ha in the early 2000s. The land use efficiency of corn and sugarcane ethanol systems, especially future systems, can vary depending on factors such as the assumed technologies, the suite of co-products produced, field practices, and technological learning. For example, projected future (2020) advanced sugarcane ethanol systems could save 22 Mg CO2eq/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could save 9.3Mg CO2eq/ha. Future advanced sugarcane ethanol systems could produce 210 GJ of net energy/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could achieve 110 GJ/ha.
Reducing CO2 Emissions through Lightweight Design and Manufacturing
NASA Astrophysics Data System (ADS)
Carruth, Mark A.; Allwood, Julian M.; Milford, Rachel L.
2011-05-01
To meet targeted 50% reductions in industrial CO2 emissions by 2050, demand for steel and aluminium must be cut. Many steel and aluminium products include redundant material, and the manufacturing routes to produce them use more material than is necessary. Lightweight design and optimized manufacturing processes offer a means of demand reduction, whilst creating products to perform the same service as existing ones. This paper examines two strategies for demand reduction: lightweight product design; and minimizing yield losses through the product supply chain. Possible mass savings are estimated for specific case-studies on metal-intensive products, such as I-beams and food cans. These estimates are then extrapolated to other sectors to produce a global estimate for possible demand reductions. Results show that lightweight product design may offer potential mass savings of up to 30% for some products, whilst yield in the production of others could be improved by over 20%. If these two strategies could be combined for all products, global demand for steel and aluminium would be reduced by nearly 50%. The impact of demand reduction on CO2 emissions is presented, and barriers to the adoption of new, lightweight technologies are discussed.
Krepel, J; Patel, J; Sproston, A; Hopkins, F; Jang, D; Mahony, J; Chernesky, M
1999-10-01
Nucleic acid amplification testing is the most accurate approach to diagnosing Chlamydia trachomatis infections. Our objective was to compare the accuracy and cost savings of pooling urines as opposed to individual testing. Strategies of pooling urine specimens into groups of four (4x pool) or eight (8x pool) followed by testing the positive pools individually were compared to individual specimen testing to determine if significant cost savingS could be realized without compromising the sensitivity and specificity of the LCx C. trachomatis Assay (Abbott Laboratories, Abbott Park, Chicago, IL) performed in a busy private medical laboratory. A total of 1,220 patient urine samples, 1,187 male (97%) and 33 female (3%), were tested using the normal LCx specimen to cutoff ratio (S/CO) of 1.0 and a decreased S/CO value of 0.2. Individual testing identified 98.2% (109/111) of positive urines. The 4x pooling maneuver identified 92.8% (103/111) of positive patients with the regular cutoff and 96.4% (107/111) when the cutoff was decreased. These values were 95.9% (47/49) and 97.9% (48/49), respectively, when eight urines were pooled. Both pooling and individual testing strategies identified all the negative samples accurately. Cost savings of pooling were calculated to be 44.5% for pools of four and 37.5% for pools of eight, applying the lowered cutoff. Pooling urine specimens for testing with the C. trachomatis LCx system is a simple, accurate, and cost-saving approach that can significantly reduce the cost of amplified nucleic acid testing with minimal sacrifice of testing accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munis, R.H.; Marshall, S.J.; Bush, M.A.
1976-09-01
During the winter of 1973-74 a mobile infrared thermography system was used to survey campus buildings at Dartmouth College, Hanover, New Hampshire. Both qualitative and quantitative data are presented regarding heat flow through a small area of a wall of one brick dormitory building before and after installation of aluminum reflectors between radiators and the wall. These data were used to estimate annual cost savings for 22 buildings of similar construction having aluminum reflectors installed behind 1100 radiators. The data were then compared with the actual savings which were calculated from condensate meter data. The discrepancy between estimated and actualmore » annual cost savings is explained in detail along with all assumptions required for these calculations.« less
Donohue, Julie M; Fischer, Michael A; Huskamp, Haiden A; Weissman, Joel S
2008-10-01
To estimate potential savings associated with the Consumer Reports Best Buy Drugs program, a national educational program that provides consumers with price and effectiveness information on prescription drugs. National data on 2006 prescription sales and retail prices paid for angiotensin-converting enzyme inhibitors (ACEIs), β-blockers, calcium channel blockers, and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-coA) reductase inhibitors (statins). We converted national data on aggregate unit sales of drugs in the four classes to defined daily doses (DDD) and estimated a range of potential savings from generic and therapeutic substitution. We estimated that $2.76 billion, or 7.83 percent of sales, could be saved if use of the drugs recommended by the educational program was increased. The recommended drugs' prices were 15-65 percent lower per DDD than their therapeutic alternatives. The majority (57.4 percent) of potential savings would be achieved through therapeutic substitution. Substantial savings can be achieved through greater use of comparatively effective and lower cost drugs recommended by a national consumer education program. However, barriers to dissemination of consumer-oriented drug information must be addressed before savings can be realized. © Health Research and Educational Trust.
Donohue, Julie M; Fischer, Michael A; Huskamp, Haiden A; Weissman, Joel S
2008-01-01
Objective To estimate potential savings associated with the Consumer Reports Best Buy Drugs program, a national educational program that provides consumers with price and effectiveness information on prescription drugs. Data Sources National data on 2006 prescription sales and retail prices paid for angiotensin-converting enzyme inhibitors (ACEIs), β-blockers, calcium channel blockers, and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-coA) reductase inhibitors (statins). Study Design We converted national data on aggregate unit sales of drugs in the four classes to defined daily doses (DDD) and estimated a range of potential savings from generic and therapeutic substitution. Principal Findings We estimated that $2.76 billion, or 7.83 percent of sales, could be saved if use of the drugs recommended by the educational program was increased. The recommended drugs’ prices were 15–65 percent lower per DDD than their therapeutic alternatives. The majority (57.4 percent) of potential savings would be achieved through therapeutic substitution. Conclusions Substantial savings can be achieved through greater use of comparatively effective and lower cost drugs recommended by a national consumer education program. However, barriers to dissemination of consumer-oriented drug information must be addressed before savings can be realized. PMID:18479406
NASA Astrophysics Data System (ADS)
Kosaka, Michitaka; Yabutani, Takashi
This paper considers the effectiveness of service business approach for reducing CO2 emission. “HDRIVE” is a service business using inverters to reduce energy consumption of motor drive. The business model of this service is changed for finding new opportunities of CO2 emission reduction by combining various factors such as financial service or long-term service contract. Risk analysis of this business model is very important for giving stable services to users for long term. HDRIVE business model is found to be suitable for this objective. This service can be applied to the industries such as chemical or steel industry effectively, where CO2 emission is very large, and has the possibility of creating new business considering CDM or trading CO2 emission right. The effectiveness of this approach is demonstrated through several examples in real business.
Code of Federal Regulations, 2014 CFR
2014-01-01
... funds or total capital within the group. Quantitative disclosures (d) The aggregate amount of surplus... and conditions of the main features of all regulatory capital instruments. Quantitative disclosures (b... capital to support current and future activities. Quantitative disclosures (b) Risk-weighted assets for...
Choosing a Type 2 Diabetes Drug: Why Generic Metformin is Often the Best Choice
... Mattresses Pressure Washers Smoke & CO Detectors String Trimmers Toilets Water Filters Windows All Home & Garden More on ... the-Range Microwaves From Consumer Reports' Tests Save space on the counter with a mounted microwave that ...
Vollmer, Christian; Redel, Engelbert; Abu-Shandi, Khalid; Thomann, Ralf; Manyar, Haresh; Hardacre, Christopher; Janiak, Christoph
2010-03-22
Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (M-NPs) have been reproducibly obtained by facile, rapid (3 min), and energy-saving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal-carbonyl precursors [M(x)(CO)(y)] in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF(4)]). This MWI synthesis is compared to UV-photolytic (1000 W, 15 min) or conventional thermal decomposition (180-250 degrees C, 6-12 h) of [M(x)(CO)(y)] in ILs. The MWI-obtained nanoparticles have a very small (<5 nm) and uniform size and are prepared without any additional stabilizers or capping molecules as long-term stable M-NP/IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active and easily recyclable catalysts for the biphasic liquid-liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product) (mol Ru)(-1) h(-1) and 884 (mol product) (mol Rh)(-1) h(-1) and give almost quantitative conversion within 2 h at 10 bar H(2) and 90 degrees C. Catalyst poisoning experiments with CS(2) (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of Ru-NPs.
Byrne, Marcus J; Duncan, Frances D
2003-04-01
The role of the subelytral cavity in flightless beetle species as an adaptation to water saving in arid habitats is still in dispute. We found that relatively little CO(2) was released from the subelytral cavity of a large apterous beetle Circellium bacchus during simultaneous measurements of CO(2) emission from the anterior mesothoracic spiracles and posterior body, which included the subelytral spiracles. However, when we sampled air directly from inside the subelytral cavity, we discovered that this pattern was reversed. A discontinuous gas exchange cycle (DGC) was recorded from the posterior body half, revealing a flutter phase that had been absent from the anterior mesothoracic DGC. The anterior mesothoracic and posterior subelytral spiracles act in synchrony to maintain high CO(2) and water vapour levels inside the subelytral cavity. In addition, the O(2) concentration of the air within the subelytral cavity is lower than the air around the elytral case, irrespective of the time of sampling. These findings lead us to conclude that the subelytral spiracles work in a coordinated fashion with the anterior spiracles to create a DGC, which allows us to extend the hypothesis of the function of the subelytral cavity as a respiratory water-saving device.
Aerosol corrosion prevention and energy-saving strategies in the design of green data centers.
Ferrero, Luca; Sangiorgi, Giorgia; Ferrini, Barbara S; Perrone, Maria G; Moscatelli, Marco; D'Angelo, Luca; Rovelli, Grazia; Ariatta, Alberto; Truccolo, Redy; Bolzacchini, Ezio
2013-04-16
The energy demands of data centers (DCs) worldwide are rapidly increasing, as are their environmental and economic costs. This paper presents a study conducted at Sannazzaro de' Burgondi (Po Valley), Italy, specifically aimed at optimizing the operating conditions of a DC designed for the Italian Oil and Gas Company (Eni) (5200 m(2) of Information Technology installed, 30 MW) and based on a direct free cooling (DFC) system. The aim of the study was to save the largest possible quantity of energy, while at the same time preventing aerosol corrosion. The aerosol properties (number size distribution, chemical composition, deliquescence relative humidity (DRH), acidity) and meteorological parameters were monitored and utilized to determine the potential levels of aerosol entering the DC (equivalent ISO class), together with its DRH. These data enabled us both to select the DC's filtering system (MERV13 filters) and to optimize the cooling cycle through calculation of the most reliable humidity cycle (60% of maximum allowed RH) applicable to the DFC. A potential energy saving of 81%, compared to a traditional air conditioning cooling system, was estimated: in one year, for 1 kW of installed information technology, the estimated energy saving is 7.4 MWh, resulting in 2.7 fewer tons of CO2 being emitted, and a financial saving of € 1100.
Tree and forest water use under elevated CO2 and temperature in Scandinavian boreal forest
NASA Astrophysics Data System (ADS)
Berg Hasper, Thomas; Wallin, Göran; Lamba, Shubhangi; Sigurdsson, Bjarni D.; Laudon, Hjalmar; Medhurst, Jane L.; Räntfors, Mats; Linder, Sune; Uddling, Johan
2014-05-01
According to experimental studies and models, rising atmospheric carbon dioxide concentration ([CO2]) and temperature have the potential to affect stomatal conductance and, consequently, tree and forest transpiration. This effect has in turn the capacity to influence the terrestrial energy and water balance, including affecting of the magnitude of river runoff. Furthermore, forest productivity is currently water-limited in southern Scandinavia and in a near future, under the projected climatic change, this limitation may become a reality in the central and northern parts of Scandinavia. In this study we examine the water-use responses in 12 40-year old native boreal Norway spruce (Picea abies (L.) Karst.) trees exposed to a factorial combination of two levels of [CO2] (ambient and doubled) and temperature (ambient and +2.8 °C in summer / +5.6 °C in winter), as well as of entire boreal forests to temporal variation in [CO2], temperature and precipitation over the past 50 years in central and northern Sweden. The controlled factorial CO2 and temperature whole-tree chamber experiment at Flakaliden study site demonstrated that Norway spruce trees lacked elevated [CO2]-induced water savings at guard cell, shoot, and tree levels in the years of measurements. Experimentally, elevated temperature did not result in increased shoot or tree water use as stomatal closure fully cancelled the effect of higher vapour pressure deficit in warmed air environment. Consistent with these results, large scale river runoff data and evapotranspiration estimates from large forested watersheds in central Sweden supported lack of elevated CO2-mediated water savings, and rather suggested that the increasing evapotranspiration trend found in this study was primarily linked to increasing precipitation, rising temperature and more efficient forest management. The results from the whole-tree chamber experiment and boreal forested watersheds have important implications for more accurate predictions of boreal atmosphere-biosphere interactions, indicating that tree responses to precipitation and temperature are more important than responses to elevated [CO2] in determining the future forest water-use and hydrology of Scandinavian boreal ecosystems.
Impact of voice- and knowledge-enabled clinical reporting--US example.
Bushko, Renata G; Havlicek, Penny L; Deppert, Edward; Epner, Stephen
2002-01-01
This study shows qualitative and quantitative estimates of the national and the clinic level impact of utilizing voice and knowledge enabled clinical reporting systems. Using common sense estimation methodology, we show that the delivery of health care can experience a dramatic improvement in four areas as a result of the broad use of voice and knowledge enabled clinical reporting: (1) Process Quality as measured by cost savings, (2) Organizational Quality as measured by compliance, (3) Clinical Quality as measured by clinical outcomes and (4) Service Quality as measured by patient satisfaction. If only 15 percent of US physicians replaced transcription with modem clinical reporting voice-based methodology, about one half billion dollars could be saved. $6.7 Billion could be saved annually if all medical reporting currently transcribed was handled with voice-and knowledge-enabled dictation and reporting systems.
NASA Astrophysics Data System (ADS)
Park, Gyuryeong; Wang, Sookyun; Lee, Minhee; Um, Jeong-Gi; Kim, Seon-Ok
2017-04-01
The storage of CO2 in underground geological formation such as deep saline aquifers or depleted oil and gas reservoirs is one of the most promising technologies for reducing the atmospheric CO2 release. The processes in geological CO2 storage involves injection of supercritical CO2 (scCO2) into porous formations saturated with brine and initiates CO2 flooding with immiscible displacement. The CO2 migration and porewater displacement within geological formations, and , consequentially, the storage efficiency are governed by the interaction of fluid and rock properties and are affected by the interfacial tension, capillarity, and wettability in supercritical CO2-brine-mineral systems. This study aims to observe the displacement pattern and estimate storage efficiency by using micromodels. This study aims to conduct scCO2 injection experiments for visualization of distribution of injected scCO2 and residual porewater in transparent pore networks on microfluidic chips under high pressure and high temperature conditions. In order to quantitatively analyze the porewater displacement by scCO2 injection under geological CO2 storage conditions, the images of invasion patterns and distribution of CO2 in the pore network are acquired through a imaging system with a microscope. The results from image analysis were applied in quantitatively investigating the effects of major environmental factors and scCO2 injection methods on porewater displacement process by scCO2 and storage efficiency. The experimental observation results could provide important fundamental information on capillary characteristics of reservoirs and improve our understanding of CO2 sequestration progress.
Energy benchmarking of commercial buildings: a low-cost pathway toward urban sustainability
NASA Astrophysics Data System (ADS)
Cox, Matt; Brown, Marilyn A.; Sun, Xiaojing
2013-09-01
US cities are beginning to experiment with a regulatory approach to address information failures in the real estate market by mandating the energy benchmarking of commercial buildings. Understanding how a commercial building uses energy has many benefits; for example, it helps building owners and tenants identify poor-performing buildings and subsystems and it enables high-performing buildings to achieve greater occupancy rates, rents, and property values. This paper estimates the possible impacts of a national energy benchmarking mandate through analysis chiefly utilizing the Georgia Tech version of the National Energy Modeling System (GT-NEMS). Correcting input discount rates results in a 4.0% reduction in projected energy consumption for seven major classes of equipment relative to the reference case forecast in 2020, rising to 8.7% in 2035. Thus, the official US energy forecasts appear to overestimate future energy consumption by underestimating investments in energy-efficient equipment. Further discount rate reductions spurred by benchmarking policies yield another 1.3-1.4% in energy savings in 2020, increasing to 2.2-2.4% in 2035. Benchmarking would increase the purchase of energy-efficient equipment, reducing energy bills, CO2 emissions, and conventional air pollution. Achieving comparable CO2 savings would require more than tripling existing US solar capacity. Our analysis suggests that nearly 90% of the energy saved by a national benchmarking policy would benefit metropolitan areas, and the policy’s benefits would outweigh its costs, both to the private sector and society broadly.
Energy recovery from waste incineration: assessing the importance of district heating networks.
Fruergaard, T; Christensen, T H; Astrup, T
2010-07-01
Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1GJ of waste heat delivered substitutes for 1GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO(2) accounts showed significantly different results: waste incineration in one network caused a CO(2) saving of 48 kg CO(2)/GJ energy input while in the other network a load of 43 kg CO(2)/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Roiz, David; Roussel, Marion; Muñoz, Joaquin; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi
2012-01-01
Surveillance, research, and control of mosquito-borne diseases such as West Nile virus require efficient methods for sampling mosquitoes. We compared the efficacy of BG-Sentinel and Centers for Disease Control and Prevention (CDC)-CO2 traps in terms of the abundances of host-seeking and blood-fed female mosquitoes and the origin of mosquito bloodmeals. Our results indicate that BG-Sentinel traps that use CO2 and attractants are as effective as CDC-CO2 traps for Culex mosquito species, Ochlerotatus caspius, and they are also highly efficient at capturing Anopheles atroparvus host-seeking and blood-fed females with or without CO2. The CDC-CO2 trap is the least efficient method for capturing blood-fed females. BG-Sentinel traps with attractants and CO2 were significantly better at capturing mosquitoes that had fed on mammals than the unbaited BG-Sentinel and CDC-CO2 traps in the cases of An. atroparvus and Cx. theileri. These results may help researchers to optimize trapping methods by obtaining greater sample sizes and saving time and money. PMID:22492149
Onandia, Gabriela; Olsson, Anna-Karin; Barth, Sabine; King, John S; Uddling, Johan
2011-10-01
With rising concentrations of both atmospheric carbon dioxide (CO(2)) and tropospheric ozone (O(3)), it is important to better understand the interacting effects of these two trace gases on plant physiology affecting land-atmosphere gas exchange. We investigated the effect of growth under elevated CO(2) and O(3), singly and in combination, on the primary short-term stomatal response to CO(2) concentration in paper birch at the Aspen FACE experiment. Leaves from trees grown in elevated CO(2) and/or O(3) exhibited weaker short-term responses of stomatal conductance to both an increase and a decrease in CO(2) concentration from current ambient level. The impairement of the stomatal CO(2) response by O(3) most likely developed progressively over the growing season as assessed by sap flux measurements. Our results suggest that expectations of plant water-savings and reduced stomatal air pollution uptake under rising atmospheric CO(2) may not hold for northern hardwood forests under concurrently rising tropospheric O(3). Copyright © 2011 Elsevier Ltd. All rights reserved.
Chen, Xudong; Xi, Fengming; Geng, Yong; Fujita, Tsuyoshi
2011-01-01
With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO(2)e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kg ce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption. Copyright © 2010 Elsevier Ltd. All rights reserved.
CO2 Permeability of Biological Membranes and Role of CO2 Channels
Endeward, Volker; Arias-Hidalgo, Mariela; Al-Samir, Samer; Gros, Gerolf
2017-01-01
We summarize here, mainly for mammalian systems, the present knowledge of (a) the membrane CO2 permeabilities in various tissues; (b) the physiological significance of the value of the CO2 permeability; (c) the mechanisms by which membrane CO2 permeability is modulated; (d) the role of the intracellular diffusivity of CO2 for the quantitative significance of cell membrane CO2 permeability; (e) the available evidence for the existence of CO2 channels in mammalian and artificial systems, with a brief view on CO2 channels in fishes and plants; and, (f) the possible significance of CO2 channels in mammalian systems. PMID:29064458
NASA Technical Reports Server (NTRS)
1972-01-01
The study has concluded that there are very large space program cost savings to be obtained by use of low cost, refurbishable, and standard spacecraft in conjunction with the shuttle transportation system. The range of space program cost savings for three different groups of programs are shown in quantitative terms. The total savings for the 91 programs will range from $13.4 billion to $18.0 billion depending on the degree of hardware standardization. These savings, principally resulting from payload cost reductions, tangibly support the development costs of the shuttle system.
Boesch, Michael E; Vadenbo, Carl; Saner, Dominik; Huter, Christoph; Hellweg, Stefanie
2014-02-01
A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO2-eq. generated in the incineration process, and 54 kg CO2-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO2-eq. Savings from energy recovery are in the range of 67 to 752 kg CO2-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO2-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantu, David C.; Malhotra, Deepika; Koech, Phillip K.
2016-01-01
CO2 capture from power generation with aqueous solvents remains energy intensive due to the high water content of the current technology, or the high viscosity of non-aqueous alternatives. Quantitative reduced models, connecting molecular structure to bulk properties, are key for developing structure-property relationships that enable molecular design. In this work, we describe such a model that quantitatively predicts viscosities of CO2 binding organic liquids (CO2BOLs) based solely on molecular structure and the amount of bound CO2. The functional form of the model correlates the viscosity with the CO2 loading and an electrostatic term describing the charge distribution between the CO2-bearingmore » functional group and the proton-receiving amine. Molecular simulations identify the proton shuttle between these groups within the same molecule to be the critical indicator of low viscosity. The model, developed to allow for quick screening of solvent libraries, paves the way towards the rational design of low viscosity non-aqueous solvent systems for post-combustion CO2 capture. Following these theoretical recommendations, synthetic efforts of promising candidates and viscosity measurement provide experimental validation and verification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2008-10-01
The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2008-10-01
The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Wisconsin. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Wisconsin to be $1.1 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,476 million gallons.
NASA Astrophysics Data System (ADS)
Morgan, J. A.; Pendall, E.; Williams, D. G.; Bachman, S.; Dijkstra, F. A.; Lecain, D. R.; Follett, R.
2007-12-01
The Prairie Heating and CO2 Enrichment (PHACE) experiment was initiated in Spring, 2007 to evaluate the combined effects of warming and elevated CO2 on a northern mixed-grass prairie. Thirty 3-m diameter circular experimental plots were installed in Spring, 2006 at the USDA-ARS High Plains Grasslands Research Station, just west of Cheyenne, WY, USA. Twenty plots were assigned to a two-level factorial combination of two CO2 concentrations (present ambient, 380 ppmV; and elevated, 600 ppmV), and two levels of temperature (present ambient; and elevated temperature, 1.5/3.0 C warmer day/night), with five replications for each treatment. Five of the ten remaining plots were subjected to either frequent, small water additions throughout the growing season, and the other five to a deep watering once or twice during the growing season. The watering treatments were imposed to simulate hypothesized water savings in the CO2-enriched plots, and to contrast the influence of variable water dynamics on ecosystem processes. Carbon dioxide enrichment of the ten CO2- enriched plots is accomplished with Free Air CO2 Enrichment (FACE) technology and occurs during daylight hours of the mid-April - October growing season. Warming is done year-round with circularly-arranged ceramic heater arrays positioned above the ring perimeters, and with temperature feed-backs to control day/night canopy surface temperatures. Carbon dioxide enrichment began in Spring, 2006, and warming was added in Spring, 2007. Results from the first year of CO2 enrichment (2006) confirmed earlier reports that CO2 increases productivity in semi-arid grasslands (21% increase in peak seasonal above ground biomass for plants grown under elevated CO2 compared to non-enriched controls), and that the response was related to CO2- induced water savings. Growth at elevated CO2 reduced leaf carbon isotope discrimination and N concentrations in plants compared to results obtained in control plots, but the magnitude of changes were highly species specific. Ecosystem-level gas exchange measurements indicated that interactions between watering and CO2 enrichment increased C cycling over a range of soil moisture conditions, although watering had a greater relative impact on C fluxes than CO2 enrichment. Results from the combined warming and CO2 enrichment experiment in 2007 indicate soil fluxes of CO2 increased with elevated CO2 and warming, but decreased with warming later in the year compared to un-heated controls. Soil CH4 uptake was enhanced by elevated CO2 but reduced by warming, particularly later in the year. Soil fluxes of N2O were unaffected by treatment. These preliminary results indicate potentially strong feedbacks between carbon cycling and warming are mediated by ecosystem processes in this semiarid rangeland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jian; Bearden, Mark D.; Fernandez, Carlos A.
Magnesium (Mg) has many useful applications especially in various Mg alloys which can decrease weight while increasing strength. To increase the affordability and minimize environment consequence, a novel catalyzed organo-metathetical (COMET) process was proposed to extract Mg from seawater aiming to achieve significant reduction in total energy and production cost comparing with the melting salt electrolysis method currently adopted by US Mg LLC. A process flowsheet for a reference COMET process was set-up using Aspen Plus which included five key steps, anhydrous MgCl2 production, transmetallation, dibutyl Mg decomposition, n-BuLi regeneration, and LiCL electrolysis. The energy and production cost and CO2more » emission were estimated based on the Aspen modeling using Aspen economic analyzer. Our results showed that it is possible to produce Mg from seawater with a production cost of $2.0/kg-Mg while consuming about 35.3 kWh/kg-Mg and releasing 7.0 kg CO2/kg-Mg. A simplified US Mg manufacturing process was also generated using Aspen and the cost and emission results were estimated for comparison purpose. Under our simulation conditions, the reference COMET process maintain a comparable CO2 emission rate and can save about 40% in production cost and save about 15% energy compared to the simplified US Mg process.« less
Towards an energy-friendly and cleaner solvent-extraction of vegetable oil.
Kong, Weibin; Baeyens, Jan; Qin, Peiyong; Zhang, Huili; Tan, Tianwei
2018-07-01
The extraction of vegetable oils is an energy-intensive process. It has moreover a significant environmental impact through hexane emissions and through the production of organic-loaded wastewater. A rice bran oil process was selected as the basis, since full data were available. By using Aspen Plus v8.2 simulation, with additional scripts, several improvements were examined, such as using heat exchanger networks, integrating a Vapor Recompression Heat Pump after the evaporation and stripping, and examining a nitrogen stripping of hexane in the rice bran meal desolventizing unit followed by a gas membrane to recover hexane. Energy savings by the different individual and combined improvements are calculated, and result in a 94.2% gain in steam consumption and a 73.8% overall energy saving. The power consumption of the membrane unit reduces the overall energy savings by about 5%. Hexane separation and enrichment by gas membranes facilitates its condensation and re-use, while achieving a reduction of hexane emissions by over 50%. Through the considerable reduction of required steam flow rates, 61% of waste water is eliminated, mostly as organic-loaded steam condensate. Through overall energy savings, 52% of related CO 2 emissions are eliminated. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, T.; Bessler, W. G.; Yoo, J.; Schulz, C.; Jeffries, J. B.; Hanson, R. K.
2008-11-01
The fluorescence quantum yield for ultraviolet laser-induced fluorescence of CO2 is determined for selected excitation wavelengths in the range 215-250 nm. Wavelength-resolved laser-induced fluorescence (LIF) spectra of CO2, NO, and O2 are measured in the burned gases of a laminar CH4/air flame ( φ=0.9 and 1.1) at 20 bar with additional NO seeded into the flow. The fluorescence spectra are fit to determine the relative contribution of the three species to infer an estimate of fluorescence quantum yield for CO2 that ranges from 2-8×10-6 depending on temperature and excitation wavelength with an estimated uncertainty of ±0.5×10-6. The CO2 fluorescence signal increases linearly with gas pressure for flames with constant CO2 mole fraction for the 10 to 60 bar range, indicating that collisional quenching is not an important contributor to the CO2 fluorescence quantum yield. Spectral simulation calculations are used to choose two wavelengths for excitation of CO2, 239.34 and 242.14 nm, which minimize interference from LIF of NO and O2. Quantitative LIF images of CO2 are demonstrated using these two excitation wavelengths and the measured fluorescence quantum yield.
Molecular modeling studies of interfacial reactions in wet supercritical CO2.
NASA Astrophysics Data System (ADS)
Glezakou, V.; McGrail, B. P.; Windisch, C. F.; Schaef, H. T.; Martin, P.
2011-12-01
In the recent years, Carbon Capture and Sequestration (CCS) technologies have gained considerable momentum in a globally organized effort to mitigate greenhouse emissions and adverse climate change. Co-sequestration refers to the capture and geologic sequestration of carbon dioxide and minor contaminants (sulfur compounds, NOx, Hg, etc.) in subsurface formations. Cosequestration offers the potential to make carbon management more economically acceptable to industry relative to sequestration of pure CO2. This may be achieved through significant savings in plant (and retrofit) capital cost, operating cost, and energy savings as well by eliminating the need for one or more individual pollutant capture systems (such as SO2 scrubbers). The latter point is important because co-sequestration may result in a net positive impact to the environment through avoided loss of power generation capacity from parasitic loads and reduced fuel needs. This paper will discuss our research on modeling, imaging and characterization of cosequestration processes and reactivity at a fundamental level. Our work examines the interactions of CO2-rich fluids with metal and mineral surfaces, and how these are affected by the presence of other gas components (e.g. SO2, H2O or NOx) commonly present in the CO2 streams. We have found that reactivity is also affected by the composition of the surface or, less obviously, by the surface exposed, for example, (104) vs (100 )of carbonate minerals. We combine experimental techniques such as XRD and Raman spectroscopy, which can detect and follow reactive processes, with ab initio modeling methods based on density functional theory, to establish a reliable correspondence between theory and experiment with predictive capability. Analysis of our molecular dynamics simulations, reveals structural information and vibrational density of states that can directly compare with XRD measurements and vibrational spectroscopy. While reactivity in CO2-containing aqueous environments has been widely studied, the reverse, i.e. reactivity in water-bearing condensed media, is not true. Our simulations show that mechanistic details in these environments can be drastically different, and they are very important in elucidating molecular transformations relevant to CCS or carbon conversion.
How to Survive in Industry. Cost Justifying Library Services
ERIC Educational Resources Information Center
Kramer, Joseph
1971-01-01
Two services provided by the Boeing Co. Aerospace Group Library-Literature searches and reference/publication identification activities-were evaluated by written and oral surveys of the library's users. The survey technique and cost savings reported by the two studies are discussed. (2 references) (Author/NH)
A vital link: water and vegetation in the Anthropocene
NASA Astrophysics Data System (ADS)
Gerten, D.
2013-04-01
This paper argues that the interplay of water, carbon and vegetation dynamics is fundamental to some global trends in the current and conceivable future Anthropocene. Supported by simulations with a process-based biosphere model and a literature review, it demonstrates that the connectivity of freshwater and vegetation dynamics is vital for water security, food security and (terrestrial) ecosystem integrity alike. The water limitation of net primary production of both natural and agricultural plants - already pronounced in many regions - is shown to increase in many places under projected climate change, though this development is partially offset by water-saving direct CO2 effects. Natural vegetation can to some degree adapt dynamically to higher water limitation, but agricultural crops require some form of active management to overcome it - among them irrigation, soil conservation and expansion into still uncultivated areas. While crucial to secure food production for a growing world population, such human interventions in water-vegetation systems have, as also shown, repercussions to the water cycle. Indeed, land use changes have been shown to be the second-most important influence on the terrestrial water balance in recent times. Furthermore, climate change regionally increases irrigation demand and decreases freshwater availability, impeding on rainfed and irrigated food production (if not CO2 effects counterbalance this impact - which is unlikely at least in poorly managed systems). Drawing from these exemplary investigations, some research perspectives on how to further improve our quantitative knowledge of human-water-vegetation interactions in the Anthropocene are outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Littleton, Harry; Griffin, John
2011-07-31
This project was a subtask of Energy Saving Melting and Revert Reduction Technology (Energy SMARRT) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy savingmore » estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU's/year and 6.46 trillion BTU's/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).« less
NASA Astrophysics Data System (ADS)
Lemordant, Léo.; Gentine, Pierre; Stéfanon, Marc; Drobinski, Philippe; Fatichi, Simone
2016-10-01
Plant stomata couple the energy, water, and carbon cycles. We use the framework of Regional Climate Modeling to simulate the 2003 European heat wave and assess how higher levels of surface CO2 may affect such an extreme event through land-atmosphere interactions. Increased CO2 modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the heat wave impact. Land-atmosphere interactions and CO2 fertilization together synergistically contribute to increased summer transpiration. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise. Accurate representation of the response to higher CO2 levels and of the coupling between the carbon and water cycles is therefore critical to forecasting seasonal climate, water cycle dynamics, and to enhance the accuracy of extreme event prediction under future climate.
NASA Astrophysics Data System (ADS)
Felten, D.; Emmerling, C.
2012-04-01
Increasing cultivation of energy crops in agriculture reveals the progressive substitution of fossil fuels, such as crude oil or brown coal. For the future development of renewable resources, the efficiency of different cropping systems will be crucial, as energy crops differ in terms of the energy needed for crop cultivation and refinement and the respective energy yield, e.g. per area. Here, balancing is certainly the most suitable method for the assessment of cropping system efficiency, contrasting energy inputs with energy outputs and the related CO2 emissions with potential CO2 credits due to substitution of fossil fuels, respectively. The aim of the present study was to calculate both energy and CO2 balances for rapeseed and maize, representing the recently most often cultivated energy crops in Germany, on a regional farm scale. Furthermore, special emphasis was made on perennial Miscanthus x giganteus, which is commonly used as a solid fuel for combustion. This C4-grass is of increasing interest due to its high yield potential accompanied by low requirements for soil tillage, weed control, and fertilization as well as long cultivation periods up to 25 years. In contrast to more general approaches, balances were calculated with local data from commercial farms. The site-specific consumption of diesel fuel was calculated using an online-based calculator, developed by the German Association for Technology and Structures in Agriculture (KTBL). By balancing each of the aforementioned cropping systems, our research focused on (i) the quantification of energy gains and CO2 savings due to fossil fuel substitution and (ii) the assessment of energy efficiency, expressed as the ratio of energy output to input. The energy input was highest for maize sites (33.8 GJ ha-1 yr-1), followed by rapeseed (18.2 GJ ha-1 yr-1), and Miscanthus (1.1 GJ ha-1 yr-1); corresponding energy yields were 129.5 GJ ha-1 yr-1 (maize), 83.6 GJ ha-1 yr-1 (rapeseed), and 259.7 GJ ha-1 yr-1 (Miscanthus), respectively. The energy output:input ratios were 3.83 (maize), 4.59 (rapeseed), and 236 (Miscanthus). The cultivation of rapeseed for biodiesel led to reduced CO2 emissions of 3.552 Mg ha-1 yr-1 due to substitution of diesel fuel. An amount of 9.312 Mg CO2 ha-1 yr-1 was saved by maize as co-ferment for biogas. Thereby, biogas was a substitute for electrical power from German energy mix (esp. nuclear power, utilization of coal), whereas the simultaneously used thermal energy was assumed to replace heating oil. Miscanthus cropping saved up to 18.540 Mg CO2 ha-1 yr-1 as a substitute for heating oil, including approx. 4 Mg CO2 ha-1 from organic carbon, which got sequestered within the soil organic matter due to site-remaining crop residues. In sum, each cropping system gained energy and reduced greenhouse gas emissions, although energy inputs and outputs differed significantly. High energy inputs for maize and rapeseed were mainly related to mineral N-fertilization. Also the need of methanol for biodiesel refining and the energy consumed by the biogas plant increased the total energy consumption markedly. Due to its low-input character, Miscanthus seems promising to fulfill several demands in the context of sustainability.
Abrahams, Leslie S; Samaras, Constantine; Griffin, W Michael; Matthews, H Scott
2015-03-03
This study analyzes how incremental U.S. liquefied natural gas (LNG) exports affect global greenhouse gas (GHG) emissions. We find that exported U.S. LNG has mean precombustion emissions of 37 g CO2-equiv/MJ when regasified in Europe and Asia. Shipping emissions of LNG exported from U.S. ports to Asian and European markets account for only 3.5-5.5% of precombustion life cycle emissions, hence shipping distance is not a major driver of GHGs. A scenario-based analysis addressing how potential end uses (electricity and industrial heating) and displacement of existing fuels (coal and Russian natural gas) affect GHG emissions shows the mean emissions for electricity generation using U.S. exported LNG were 655 g CO2-equiv/kWh (with a 90% confidence interval of 562-770), an 11% increase over U.S. natural gas electricity generation. Mean emissions from industrial heating were 104 g CO2-equiv/MJ (90% CI: 87-123). By displacing coal, LNG saves 550 g CO2-equiv per kWh of electricity and 20 g per MJ of heat. LNG saves GHGs under upstream fugitive emissions rates up to 9% and 5% for electricity and heating, respectively. GHG reductions were found if Russian pipeline natural gas was displaced for electricity and heating use regardless of GWP, as long as U.S. fugitive emission rates remain below the estimated 5-7% rate of Russian gas. However, from a country specific carbon accounting perspective, there is an imbalance in accrued social costs and benefits. Assuming a mean social cost of carbon of $49/metric ton, mean global savings from U.S. LNG displacement of coal for electricity generation are $1.50 per thousand cubic feet (Mcf) of gaseous natural gas exported as LNG ($.028/kWh). Conversely, the U.S. carbon cost of exporting the LNG is $1.80/Mcf ($.013/kWh), or $0.50-$5.50/Mcf across the range of potential discount rates. This spatial shift in embodied carbon emissions is important to consider in national interest estimates for LNG exports.
Mitigation of air pollution and carbon footprint by energy conservation through CFLs: a case study.
Wath, Sushant B; Majumdar, Deepanjan
2011-01-01
Electricity consumption of compact fluorescent lamps (CFLs) is low, making them a useful tool for minimizing the rapidly increasing demand of electrical energy in India. The present study aims to project the likely electricity conservation in a scenario of complete replacement of existing Fluorescent Tubes (FTs) by CFLs at CSIR-NEERI (National Environmental Engineering Research Institute) visa vis the financial repercussions and indirect reduction in emissions of greenhouse gases, e.g. CO2, N2O, CH4 and other air pollutants, e.g. SO2, NO, suspended particulate matter (SPM), black carbon (BC) and mercury (Hg) from coal fired thermal power plants. The calculations show that the Institute could save around 122850 kWh of electricity per annum, thereby saving approximately INR 859950/(USD 18453.86) towards electricity cost per annum and would be able to minimize 44579.08 kg of CO2-C equivalent (over 100 year time horizon), 909 kg SO2, 982.8 kg NO, 9.8 kg of BC, 368.5 kg SPM, 18.4 kg PM10 and 0.0024 kg Hg emissions per annum from a coal fired thermal power plant by conserving electricity at the institute level.
Development of demand forecasting tool for natural resources recouping from municipal solid waste.
Zaman, Atiq Uz; Lehmann, Steffen
2013-10-01
Sustainable waste management requires an integrated planning and design strategy for reliable forecasting of waste generation, collection, recycling, treatment and disposal for the successful development of future residential precincts. The success of the future development and management of waste relies to a high extent on the accuracy of the prediction and on a comprehensive understanding of the overall waste management systems. This study defies the traditional concepts of waste, in which waste was considered as the last phase of production and services, by putting forward the new concept of waste as an intermediate phase of production and services. The study aims to develop a demand forecasting tool called 'zero waste index' (ZWI) for measuring the natural resources recouped from municipal solid waste. The ZWI (ZWI demand forecasting tool) quantifies the amount of virgin materials recovered from solid waste and subsequently reduces extraction of natural resources. In addition, the tool estimates the potential amount of energy, water and emissions avoided or saved by the improved waste management system. The ZWI is tested in a case study of waste management systems in two developed cities: Adelaide (Australia) and Stockholm (Sweden). The ZWI of waste management systems in Adelaide and Stockholm is 0.33 and 0.17 respectively. The study also enumerates per capita energy savings of 2.9 GJ and 2.83 GJ, greenhouse gas emissions reductions of 0.39 tonnes (CO2e) and 0.33 tonnes (CO2e), as well as water savings of 2.8 kL and 0.92 kL in Adelaide and Stockholm respectively.
Co-Planning for Co-Teaching: Time-Saving Routines That Work in Inclusive Classrooms (ASCD Arias)
ERIC Educational Resources Information Center
Wilson, Gloria Lodato
2016-01-01
How do you ensure that your co-teaching strategies make the most of the time that you and your co-teaching partner have in the classroom? The answer is co-planning, which will dramatically and efficiently increase the effectiveness of your instruction. In "Co-Planning for Co-Teaching," author Gloria Lodato Wilson presents time-saving…
NASA Astrophysics Data System (ADS)
Spang, Edward S.; Holguin, Andrew J.; Loge, Frank J.
2018-01-01
In April 2015, the Governor of California mandated a 25% statewide reduction in water consumption (relative to 2013 levels) by urban water suppliers. The more than 400 public water agencies affected by the regulation were also required to report monthly progress towards the conservation goal to the State Water Resources Control Board. This paper uses the reported data to assess how the water utilities have responded to this mandate and to estimate the electricity savings and greenhouse gas (GHG) emissions reductions associated with reduced operation of urban water infrastructure systems. The results show that California succeeded in saving 524 000 million gallons (MG) of water (a 24.5% decrease relative to the 2013 baseline) over the mandate period, which translates into 1830 GWh total electricity savings, and a GHG emissions reduction of 521 000 metric tonnes of carbon dioxide equivalents (MT CO2e). For comparison, the total electricity savings linked to water conservation are approximately 11% greater than the savings achieved by the investor-owned electricity utilities’ efficiency programs for roughly the same time period, and the GHG savings represent the equivalent of taking about 111 000 cars off the road for a year. These indirect, large-scale electricity and GHG savings were achieved at costs that were competitive with existing programs that target electricity and GHG savings directly and independently. Finally, given the breadth of the results produced, we built a companion website, called ‘H2Open’ (https://cwee.shinyapps.io/greengov/), to this research effort that allows users to view and explore the data and results across scales, from individual water utilities to the statewide summary.
NASA Astrophysics Data System (ADS)
Pawar, R.
2016-12-01
Risk assessment and risk management of engineered geologic CO2 storage systems is an area of active investigation. The potential geologic CO2 storage systems currently under consideration are inherently heterogeneous and have limited to no characterization data. Effective risk management decisions to ensure safe, long-term CO2 storage requires assessing and quantifying risks while taking into account the uncertainties in a storage site's characteristics. The key decisions are typically related to definition of area of review, effective monitoring strategy and monitoring duration, potential of leakage and associated impacts, etc. A quantitative methodology for predicting a sequestration site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale geologic storage projects where projects will require quantitative assessments of potential long-term liabilities. An integrated assessment modeling (IAM) paradigm which treats a geologic CO2 storage site as a system made up of various linked subsystems can be used to predict long-term performance. The subsystems include storage reservoir, seals, potential leakage pathways (such as wellbores, natural fractures/faults) and receptors (such as shallow groundwater aquifers). CO2 movement within each of the subsystems and resulting interactions are captured through reduced order models (ROMs). The ROMs capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. The computational efficiency allows for performing Monte Carlo simulations necessary for quantitative probabilistic risk assessment. We have used the IAM to predict long-term performance of geologic CO2 sequestration systems and to answer questions related to probability of leakage of CO2 through wellbores, impact of CO2/brine leakage into shallow aquifer, etc. Answers to such questions are critical in making key risk management decisions. A systematic uncertainty quantification approach can been used to understand how uncertain parameters associated with different subsystems (e.g., reservoir permeability, wellbore cement permeability, wellbore density, etc.) impact the overall site performance predictions.
Beer, Wood, and Welfare ‒ The Impact of Improved Stove Use Among Dolo-Beer Breweries
2015-01-01
Local beer breweries in Burkina Faso absorb a considerable amount of urban woodfuel demand. We assess the woodfuel savings caused by the adoption of improved brewing stoves by these micro-breweries and estimate the implied welfare effects through the woodfuel market on private households as well as the environmental effect. We find substantial wood savings among the breweries, 36% to 38% if they fully switch to an improved stove. In absolute amounts, they save about 0.176 kg of fuelwood per litre of dolo brewed. These savings imply huge reductions in CO2-emissions and reduce the overall demand for woodfuel, which is predominantly used by the poorer strata for cooking purposes. We provide estimates for the price decrease that might result from this and show that the urban poor are likely to benefit. Thus, the intervention under study is an example for a green growth intervention with pro-poor welfare gains – something green growth strategies should look for. PMID:26244341
Tu, Wenguang; Zhou, Yong; Zou, Zhigang
2014-07-16
Photocatalytic reduction of CO2 into hydrocarbon fuels, an artificial photosynthesis, is based on the simulation of natural photosynthesis in green plants, whereby O2 and carbohydrates are produced from H2 O and CO2 using sunlight as an energy source. It couples the reductive half-reaction of CO2 fixation with a matched oxidative half-reaction such as water oxidation, to achieve a carbon neutral cycle, which is like killing two birds with one stone in terms of saving the environment and supplying future energy. The present review provides an overview and highlights recent state-of-the-art accomplishments of overcoming the drawback of low photoconversion efficiency and selectivity through the design of highly active photocatalysts from the point of adsorption of reactants, charge separation and transport, light harvesting, and CO2 activation. It specifically includes: i) band-structure engineering, ii) nanostructuralization, iii) surface oxygen vacancy engineering, iv) macro-/meso-/microporous structuralization, v) exposed facet engineering, vi) co-catalysts, vii) the development of a Z-scheme system. The challenges and prospects for future development of this field are also present. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Composting and compost utilization: accounting of greenhouse gases and global warming contributions.
Boldrin, Alessio; Andersen, Jacob K; Møller, Jacob; Christensen, Thomas H; Favoino, Enzo
2009-11-01
Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (-900 kg CO(2)-equivalents tonne(-1) wet waste (ww)) and a net load (300 kg CO(2)-equivalents tonne( -1) ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.
Voluntary GHG reduction of industrial sectors in Taiwan.
Chen, Liang-Tung; Hu, Allen H
2012-08-01
The present paper describes the voluntary greenhouse gas (GHG) reduction agreements of six different industrial sectors in Taiwan, as well as the fluorinated gases (F-gas) reduction agreement of the semiconductor and Liquid Crystal Display (LCD) industries. The operating mechanisms, GHG reduction methods, capital investment, and investment effectiveness are also discussed. A total of 182 plants participated in the voluntary energy saving and GHG reduction in six industrial sectors (iron and steel, petrochemical, cement, paper, synthetic fiber, and textile printing and dyeing), with 5.35 Mt reduction from 2004 to 2008, or 33% higher than the target goal (4.02 Mt). The reduction accounts for 1.6% annual emission or 7.8% during the 5-yr span. The petrochemical industry accounts for 49% of the reduction, followed by the cement sector (21%) and the iron and steel industry (13%). The total investment amounted to approximately USD 716 million, in which, the majority of the investment went to the modification of the manufacturing process (89%). The benefit was valued at around USD 472 million with an average payback period of 1.5 yr. Moreover, related energy saving was achieved through different approaches, e.g., via electricity (iron and steel), steam and oil consumption (petrochemical) and coal usage (cement). The cost for unit CO(2) reduction varies per industry, with the steel and iron industrial sector having the highest cost (USD 346 t(-1) CO(2)) compared with the average cost of the six industrial sectors (USD 134 t(-1) CO(2)). For the semiconductor and Thin-Film Transistor LCD industries, F-gas emissions were reduced from approximately 4.1 to about 1.7 Mt CO(2)-eq, and from 2.2 to about 1.1 Mt CO(2)-eq, respectively. Incentive mechanisms for participation in GHG reduction are also further discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Managing the Budget: Stock-Flow Reasoning and the CO2 Accumulation Problem.
Newell, Ben R; Kary, Arthur; Moore, Chris; Gonzalez, Cleotilde
2016-01-01
The majority of people show persistent poor performance in reasoning about "stock-flow problems" in the laboratory. An important example is the failure to understand the relationship between the "stock" of CO2 in the atmosphere, the "inflow" via anthropogenic CO2 emissions, and the "outflow" via natural CO2 absorption. This study addresses potential causes of reasoning failures in the CO2 accumulation problem and reports two experiments involving a simple re-framing of the task as managing an analogous financial (rather than CO2 ) budget. In Experiment 1 a financial version of the task that required participants to think in terms of controlling debt demonstrated significant improvements compared to a standard CO2 accumulation problem. Experiment 2, in which participants were invited to think about managing savings, suggested that this improvement was fortuitous and coincidental rather than due to a fundamental change in understanding the stock-flow relationships. The role of graphical information in aiding or abetting stock-flow reasoning was also explored in both experiments, with the results suggesting that graphs do not always assist understanding. The potential for leveraging the kind of reasoning exhibited in such tasks in an effort to change people's willingness to reduce CO2 emissions is briefly discussed. Copyright © 2015 Cognitive Science Society, Inc.
Boatman, Tobias G; Oxborough, Kevin; Gledhill, Martha; Lawson, Tracy; Geider, Richard J
2018-01-01
We have assessed how varying CO 2 (180, 380, and 720 μatm) and growth light intensity (40 and 400 μmol photons m -2 s -1 ) affected Trichodesmium erythraeum IMS101 growth and photophysiology over free iron (Fe') concentrations between 20 and 9,600 pM. We found significant iron dependencies of growth rate and the initial slope and maximal relative PSII electron transport rates (rP m ). Under iron-limiting concentrations, high-light increased growth rates and rP m ; possibly indicating a lower allocation of resources to iron-containing photosynthetic proteins. Higher CO 2 increased growth rates across all iron concentrations, enabled growth to occur at lower Fe' concentrations, increased rP m and lowered the iron half saturation constants for growth (K m ). We attribute these CO 2 responses to the operation of the CCM and the ATP spent/saved for CO 2 uptake and transport at low and high CO 2 , respectively. It seems reasonable to conclude that T. erythraeum IMS101 can exhibit a high degree of phenotypic plasticity in response to CO 2 , light intensity and iron-limitation. These results are important given predictions of increased dissolved CO 2 and water column stratification (i.e., higher light exposures) over the coming decades.
A New Energy-Saving Catalytic System: Carbon Dioxide Activation by a Metal/Carbon Catalyst.
Yun, Danim; Park, Dae Sung; Lee, Kyung Rok; Yun, Yang Sik; Kim, Tae Yong; Park, Hongseok; Lee, Hyunjoo; Yi, Jongheop
2017-09-22
The conversion of CO 2 into useful chemicals is an attractive method to reduce greenhouse gas emissions and to produce sustainable chemicals. However, the thermodynamic stability of CO 2 means that a lot of energy is required for its conversion into chemicals. Here, we suggest a new catalytic system with an alternative heating system that allows minimal energy consumption during CO 2 conversion. In this system, electrical energy is transferred as heat energy to the carbon-supported metal catalyst. Fast ramping rates allow high operating temperatures (T app =250 °C) to be reached within 5 min, which leads to an 80-fold decrease of energy consumption in methane reforming using CO 2 (DRM). In addition, the consumed energy normalized by time during the DRM reaction in this current-assisted catalysis is sixfold lower (11.0 kJ min -1 ) than that in conventional heating systems (68.4 kJ min -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jean-Baptiste, Philippe; Ducroux, René
2003-06-01
Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2. Technical solutions exist to reduce CO 2 emission and stabilise atmospheric CO 2 concentration, including energy saving and energy efficiency, switch to lower carbon content fuels like natural gas and to energy sources that operate with zero CO 2 emissions such as renewable or nuclear energy, enhance the natural sinks for CO 2 (forests, soils, etc.), and last but not least, sequester CO 2 from fossil fuels combustion. The purpose of this paper is to provide an overview of the technology and cost for capture and storage of CO 2. Some of the factors that will influence application, including environmental impact, cost and efficiency, are also discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology; however, substantial R&D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to more than 30% of the global anthropogenic CO 2 emission, it represents a valuable tool in the battle against global warming. To cite this article: P. Jean-Baptiste, R. Ducroux, C. R. Geoscience 335 (2003).
Building energy governance in Shanghai
NASA Astrophysics Data System (ADS)
Kung, YiHsiu Michelle
With Asia's surging economies and urbanization, the region is adding to its built environment at an unprecedented rate, especially those population centers in China and India. With numerous existing buildings, plus a new building boom, construction in these major Asian cities has caused momentous sustainability challenges. This dissertation focuses on China's leading city, Shanghai, to explore and assess its existing commercial building energy policies and practices. Research estimates that Shanghai's commercial buildings might become a key challenge with regard to energy use and CO2 emissions as compared to other major Asian cities. Relevant building energy policy instruments at national and local levels for commercial buildings are reviewed. In addition, two benchmarks are established to further assess building energy policies in Shanghai. The first benchmark is based on the synthesis of relevant criteria and policy instruments as recommended by professional organizations, while the second practical benchmark is drawn from an analysis of three global cities: New York, London and Tokyo. Moreover, two large-scale commercial building sites - Shanghai IKEA and Plaza 66 - are selected for investigation and assessment of their efforts on building energy saving measures. Detailed building energy savings, CO2 reductions, and management cost reductions based on data availability and calculations are presented with the co-benefits approach. The research additionally analyzes different interventions and factors that facilitate or constrain the implementation process of building energy saving measures in each case. Furthermore, a multi-scale analytical framework is employed to investigate relevant stakeholders that shape Shanghai's commercial building energy governance. Research findings and policy recommendations are offered at the close of this dissertation. Findings and policy recommendations are intended to facilitate commercial building energy governance in Shanghai and other rapidly growing second-tier or third-tier cities in China, and to further contribute to the general body of knowledge on Asia's urban building sustainability.
USDA-ARS?s Scientific Manuscript database
In recent years, increased awareness of the potential interactions between rising atmospheric CO2 concentrations ([CO2]) and temperature has illustrated the importance of multi-factorial ecosystem manipulation experiments for validating Earth System models. To address the urgent need for increased u...
Bronchart, Filip; De Paepe, Michel; Dewulf, Jo; Schrevens, Eddie; Demeyer, Peter
2013-04-15
In Flanders and the Netherlands greenhouse production systems produce economically important quantities of vegetables, fruit and ornamentals. Indoor environmental control has resulted in high primary energy use. Until now, the research on saving primary energy in greenhouse systems has been mainly based on analysis of energy balances. However, according to the thermodynamic theory, an analysis based on the concept of exergy (free energy) and energy can result in new insights and primary energy savings. Therefore in this paper, we analyse the exergy and energy of various processes, inputs and outputs of a general greenhouse system. Also a total system analysis is then performed by linking the exergy analysis with a dynamic greenhouse climate growth simulation model. The exergy analysis indicates that some processes ("Sources") lie at the origin of several other processes, both destroying the exergy of primary energy inputs. The exergy destruction of these Sources is caused primarily by heat and vapour loss. Their impact can be compensated by exergy input from heating, solar radiation, or both. If the exergy destruction of these Sources is reduced, the necessary compensation can also be reduced. This can be accomplished through insulating the greenhouse and making the building more airtight. Other necessary Sources, namely transpiration and loss of CO2, have a low exergy destruction compared to the other Sources. They are therefore the best candidate for "pump" technologies ("vapour heat pump" and "CO2 pump") designed to have a low primary energy use. The combination of these proposed technologies results in an exergy efficient greenhouse with the highest primary energy savings. It can be concluded that exergy analyses add additional information compared to only energy analyses and it supports the development of primary energy efficient greenhouse systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.
2015-08-01
Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35 % more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. Nevertheless, water scarcity might pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios. The results presented in this study point to the necessity of performing further research on climate-friendly agro-ecosystems in order to assess, on the one side, their degree of resilience to climate shocks, and on the other side, their adaptation potential when confronted with higher temperatures and changes in water availability.
Kai, Tianhan; Zhou, Min; Duan, Zhiyao; Henkelman, Graeme A; Bard, Allen J
2017-12-27
The electrocatalytic reduction of CO 2 has been studied extensively and produces a number of products. The initial reaction in the CO 2 reduction is often taken to be the 1e formation of the radical anion, CO 2 •- . However, the electrochemical detection and characterization of CO 2 •- is challenging because of the short lifetime of CO 2 •- , which can dimerize and react with proton donors and even mild oxidants. Here, we report the generation and quantitative determination of CO 2 •- in N,N-dimethylformamide (DMF) with the tip generation/substrate collection (TG/SC) mode of scanning electrochemical microscopy (SECM). CO 2 was reduced at a hemisphere-shaped Hg/Pt ultramicroelectrode (UME) or a Hg/Au film UME, which were utilized as the SECM tips. The CO 2 •- produced can either dimerize to form oxalate within the nanogap between SECM tip and substrate or collected at SECM substrate (e.g., an Au UME). The collection efficiency (CE) for CO 2 •- depends on the distance (d) between the tip and substrate. The dimerization rate (6.0 × 10 8 M -1 s -1 ) and half-life (10 ns) of CO 2 •- can be evaluated by fitting the collection efficiency vs distance curve. The dimerized species of CO 2 •- , oxalate, can also be determined quantitatively. Furthermore, the formal potential (E 0 ') and heterogeneous rate constant (k 0 ) for CO 2 reduction were determined with different quaternary ammonium electrolytes. The significant difference in k 0 is due to a tunneling effect caused by the adsorption of the electrolytes on the electrode surface at negative potentials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PM2.5 violations”) must be based on quantitative analysis using the applicable air quality models... either: (i) Quantitative methods that represent reasonable and common professional practice; or (ii) A...) The hot-spot demonstration required by § 93.116 must be based on quantitative analysis methods for the...
Hinze, Jacob F.; Nellis, Gregory F.; Anderson, Mark H.
2017-09-21
Supercritical Carbon Dioxide (sCO 2) power cycles have the potential to deliver high efficiency at low cost. However, in order for an sCO 2 cycle to reach high efficiency, highly effective recuperators are needed. These recuperative heat exchangers must transfer heat at a rate that is substantially larger than the heat transfer to the cycle itself and can therefore represent a significant portion of the power block costs. Regenerators are proposed as a cost saving alternative to high cost printed circuit recuperators for this application. A regenerator is an indirect heat exchanger which periodically stores and releases heat to themore » working fluid. The simple design of a regenerator can be made more inexpensively compared to current options. The objective of this paper is a detailed evaluation of regenerators as a competing technology for recuperators within an sCO 2 Brayton cycle. The level of the analysis presented here is sufficient to identify issues with the regenerator system in order to direct future work and also to clarify the potential advantage of pursuing this technology. A reduced order model of a regenerator is implemented into a cycle model of an sCO 2 Brayton cycle. An economic analysis investigates the cost savings that is possible by switching from recuperative heat exchangers to switched-bed regenerators. The cost of the regenerators was estimated using the amount of material required if the pressure vessel is sized using ASME Boiler Pressure Vessel Code (BPVC) requirements. The cost of the associated valves is found to be substantial for the regenerator system and is estimated in collaboration with an industrial valve supplier. The result of this analysis suggests that a 21.2% reduction in the contribution to the Levelized Cost of Electricity (LCoE) from the power block can be realized by switching to a regenerator-based system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinze, Jacob F.; Nellis, Gregory F.; Anderson, Mark H.
Supercritical Carbon Dioxide (sCO 2) power cycles have the potential to deliver high efficiency at low cost. However, in order for an sCO 2 cycle to reach high efficiency, highly effective recuperators are needed. These recuperative heat exchangers must transfer heat at a rate that is substantially larger than the heat transfer to the cycle itself and can therefore represent a significant portion of the power block costs. Regenerators are proposed as a cost saving alternative to high cost printed circuit recuperators for this application. A regenerator is an indirect heat exchanger which periodically stores and releases heat to themore » working fluid. The simple design of a regenerator can be made more inexpensively compared to current options. The objective of this paper is a detailed evaluation of regenerators as a competing technology for recuperators within an sCO 2 Brayton cycle. The level of the analysis presented here is sufficient to identify issues with the regenerator system in order to direct future work and also to clarify the potential advantage of pursuing this technology. A reduced order model of a regenerator is implemented into a cycle model of an sCO 2 Brayton cycle. An economic analysis investigates the cost savings that is possible by switching from recuperative heat exchangers to switched-bed regenerators. The cost of the regenerators was estimated using the amount of material required if the pressure vessel is sized using ASME Boiler Pressure Vessel Code (BPVC) requirements. The cost of the associated valves is found to be substantial for the regenerator system and is estimated in collaboration with an industrial valve supplier. The result of this analysis suggests that a 21.2% reduction in the contribution to the Levelized Cost of Electricity (LCoE) from the power block can be realized by switching to a regenerator-based system.« less
Scout: An Impact Analysis Tool for Building Energy-Efficiency Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Chioke; Langevin, Jared; Roth, Amir
Evaluating the national impacts of candidate U.S. building energy-efficiency technologies has historically been difficult for organizations with large energy efficiency portfolios. In particular, normalizing results from technology-specific impact studies is time-consuming when those studies do not use comparable assumptions about the underlying building stock. To equitably evaluate its technology research, development, and deployment portfolio, the U.S. Department of Energy's Building Technologies Office has developed Scout, a software tool that quantitatively assesses the energy and CO2 impacts of building energy-efficiency measures on the national building stock. Scout efficiency measures improve upon the unit performance and/or lifetime operational costs of an equipmentmore » stock baseline that is determined from the U.S. Energy Information Administration Annual Energy Outlook (AEO). Scout measures are characterized by a market entry and exit year, unit performance level, cost, and lifetime. To evaluate measures on a consistent basis, Scout uses EnergyPlus simulation on prototype building models to translate measure performance specifications to whole-building energy savings; these savings impacts are then extended to a national scale using floor area weighting factors. Scout represents evolution in the building stock over time using AEO projections for new construction, retrofit, and equipment replacements, and competes technologies within market segments under multiple adoption scenarios. Scout and its efficiency measures are open-source, as is the EnergyPlus whole building simulation framework that is used to evaluate measure performance. The program is currently under active development and will be formally released once an initial set of measures has been analyzed and reviewed.« less
2017-10-13
7b08574 14. ABSTRACT (Maximum 200 words) We report a Co2-based magnetic resonance (MR) probe that enables the ratiometric quantitation and imaging of...ratios of CEST peak intensities at 104 and 64 ppm are correlated with solution pH in the physiological range 6.5−7.6 to construct a linear calibration...magnetic resonance (MR); ratiometric quantitation ; chemical exchange saturation transfer (CEST); carboxamide; hydroxyl-substituted bisphosphonate
The reduction of atmospheric emissions after the implementation of first Polish nuclear power plant
NASA Astrophysics Data System (ADS)
Cholewiński, Maciej
2018-04-01
In this work the environmental benefits in the atmospheric emissions after the implementation of 3,000 MW nuclear power plants were assessed and presented. To determine the quantity of avoided emissions of CO2, NOx, SO2 and Hg compounds, harmonised stoichiometric combustion model dedicated to solid fuel fired power plant was created. To increase the credibility of the studies, future strict emission standards (Directive 2010/75/EU, BAT documents for LCP) were included as well. In conducted studies, representative samples of 3 different Polish solid fuels were examined (by comprehensive proximate and ultimate analysis) and used in assessment. It was proven that by the replacement of thermal solid fuel power plant by nuclear unit (with annual production rate of 22.4 TWh net) up to 16.4 million tonnes of lignite, 8.9 million tonnes of hard coal or 13.1 million tonnes of solid biomass can be saved. Further, for the case of lignite, the emission, at least, of 21.29 million tonnes of CO2 (6.9% of all Polish emission in 2015), 1,610 tonnes of dust (0.4%), 16,102 tonnes of NOx (2.2%), 16,102 tonnes of SO2 (2.0%) and 564 kg of mercury (5.9%) can be avoided. For selected hard coal, calculated emission savings were equal to 17.60 million tonnes of CO2 (5.7%), 1,357 tonnes of dust (0.4%), 13,566 tonnes of NOx (1.9%), 13,566 tonnes of SO2 (1.7%), 271 kg of mercury (2.9%), and for biomass - equal to 20.04 million tonnes of CO2 (6.5%), 1,471 tonnes of dust (0.4%), 14,712 tonnes of NOx (2.0%), 14,712 tonnes of SO2 (1.8%) and 294 kg of mercury (3.1%).
Nuclear and Solar Energy: Implications for Homeland Security
2008-12-01
of New Nuclear Plants?" Nuclear Engineering International, March 31, 2004, 14. 10 Gwyneth Cravens, Power to Save the World: The Truth about...Pueblo West, CO: Vales Lake Pub, 2004), 98. 12 Cravens, Power to Save the World: The Truth about Nuclear Energy, 249. 13 Jerry Taylor, "Powering...Cravens, Power to Save the World: The Truth about Nuclear Energy, 152. 30 William Langewiesche, The Atomic Bazaar: Dispatches from the Underground World
ePrescribing: Reducing Costs through In-Class Therapeutic Interchange.
Stenner, Shane P; Chakravarthy, Rohini; Johnson, Kevin B; Miller, William L; Olson, Julie; Wickizer, Marleen; Johnson, Nate N; Ohmer, Rick; Uskavitch, David R; Bernard, Gordon R; Neal, Erin B; Lehmann, Christoph U
2016-12-14
Spending on pharmaceuticals in the US reached $373.9 billion in 2014. Therapeutic interchange offers potential medication cost savings by replacing a prescribed drug for an equally efficacious therapeutic alternative. Hard-stop therapeutic interchange recommendation alerts were developed for four medication classes (HMG-CoA reductase inhibitors, serotonin receptor agonists, intranasal steroid sprays, and proton-pump inhibitors) in an electronic prescription-writing tool for outpatient prescriptions. Using prescription data from January 2012 to June 2015, the Compliance Ratio (CR) was calculated by dividing the number of prescriptions with recommended therapeutic interchange medications by the number of prescriptions with non-recommended medications to measure effectiveness. To explore potential cost savings, prescription data and medication costs were analyzed for the 45,000 Vanderbilt Employee Health Plan members. For all medication classes, significant improvements were demonstrated - the CR improved (proton-pump inhibitors 2.8 to 5.32, nasal steroids 2.44 to 8.16, statins 2.06 to 5.51, and serotonin receptor agonists 0.8 to 1.52). Quarterly savings through the four therapeutic interchange interventions combined exceeded $200,000 with an estimated annual savings for the health plan of $800,000, or more than $17 per member. A therapeutic interchange clinical decision support tool at the point of prescribing resulted in increased compliance with recommendations for outpatient prescriptions while producing substantial cost savings to the Vanderbilt Employee Health Plan - $17.77 per member per year. Therapeutic interchange rules require rational targeting, appropriate governance, and vigilant content updates.
NASA Astrophysics Data System (ADS)
Suryati, I.; Indrawan, I.; Alihta, K. N.
2018-02-01
Transportation includes sources of greenhouse gas emission contributor in the form of carbon dioxide (CO2). CO2 is one of the air pollutant gases that cause climate change. The source of CO2 emissions at airports comes from road and air transportation. Kualanamu International Airport is one of the public service airports in North Sumatera Province. The purpose of this study is to inventory the emission loads generated by motor vehicles and aircraft and to forecast contributions of CO2 emissions from motor vehicles and aircraft. The research method used is quantitative and qualitative methods. The quantitative method used is to estimate emission loads of motor vehicles based on vehicle volume and emission factors derived from the literature and using the Tier-2 method to calculate the aircraft emission loads. The results for the maximum CO2 concentration were 6,206,789.37 μg/m3 and the minimal CO2 concentration was 4,070,674.84 μg/Nm3. The highest aircraft CO2 emission load is 200,164,424.5 kg/hr (1.75 x 109 ton/year) and the lowest is 38,884,064.5 kg/hr (3.40 x 108 ton/year). Meanwhile, the highest CO2 emission load from motor vehicles was 51,299.25 gr/hr (449,38 ton/year) and the lowest was 38,990.42 gr/hr (341,55 ton/year). CO2 contribution from a motor vehicle is 65% and 5% from aircraft in Kualanamu International Airport.
Study on the Effect of a Cogeneration System Capacity on its CO2 Emissions
NASA Astrophysics Data System (ADS)
Fonseca, J. G. S., Jr.; Asano, Hitoshi; Fujii, Terushige; Hirasawa, Shigeki
With the global warming problem aggravating and subsequent implementation of the Kyoto Protocol, CO2 emissions are becoming an important factor when verifying the usability of cogeneration systems. Considering this, the purpose of this work is to study the effect of the capacity of a cogeneration system on its CO2 emissions under two kinds of operation strategies: one focused on exergetic efficiency and another on running cost. The system meets the demand pattern typical of a hospital in Japan, operating during one year with an average heat-to-power ratio of 1.3. The main equipments of the cogeneration system are: a gas turbine with waste heat boiler, a main boiler and an auxiliary steam turbine. Each of these equipments was characterized with partial load models, and the turbine efficiencies at full load changed according to the system capacity. Still, it was assumed that eventual surplus of electricity generated could be sold. The main results showed that for any of the capacities simulated, an exergetic efficiency-focused operational strategy always resulted in higher CO2 emissions reduction when compared to the running cost-focused strategy. Furthermore, the amount of reduction in emissions decreased when the system capacity decreased, reaching a value of 1.6% when the system capacity was 33% of the maximum electricity demand with a heat-to-power ratio of 4.1. When the system operated focused on running cost, the economic savings increased with the capacity and reached 42% for a system capacity of 80% of maximum electricity demand and with a heat-to-power ratio of 2.3. In such conditions however, there was an increase in emissions of 8.5%. Still for the same capacity, an exergetic efficiency operation strategy presented the best balance between cost and emissions, generating economic savings of 29% with a decrease in CO2 emissions of 7.1%. The results found showed the importance of an exergy-focused operational strategy and also indicated that lower capacities resulted in lesser gains of both CO2 emissions and running cost reduction.
Bryce, David A; Shao, Hongbo; Cantrell, Kirk J; Thompson, Christopher J
2016-06-07
CO2 injected into depleted oil or gas reservoirs for long-term storage has the potential to mobilize organic compounds and distribute them between sediments and reservoir brines. Understanding this process is important when considering health and environmental risks, but little quantitative data currently exists on the partitioning of organics between supercritical CO2 and water. In this work, a high-pressure, in situ measurement capability was developed to assess the distribution of organics between CO2 and water at conditions relevant to deep underground storage of CO2. The apparatus consists of a titanium reactor with quartz windows, near-infrared and UV spectroscopic detectors, and switching valves that facilitate quantitative injection of organic reagents into the pressurized reactor. To demonstrate the utility of the system, partitioning coefficients were determined for benzene in water/supercritical CO2 over the range 35-65 °C and approximately 25-150 bar. Density changes in the CO2 phase with increasing pressure were shown to have dramatic impacts on benzene's partitioning behavior. Our partitioning coefficients were approximately 5-15 times lower than values previously determined by ex situ techniques that are prone to sampling losses. The in situ methodology reported here could be applied to quantify the distribution behavior of a wide range of organic compounds that may be present in geologic CO2 storage scenarios.
Ultrasonic laboratory measurements of the seismic velocity changes due to CO2 injection
NASA Astrophysics Data System (ADS)
Park, K. G.; Choi, H.; Park, Y. C.; Hwang, S.
2009-04-01
Monitoring the behavior and movement of carbon dioxide (CO2) in the subsurface is a quite important in sequestration of CO2 in geological formation because such information provides a basis for demonstrating the safety of CO2 sequestration. Recent several applications in many commercial and pilot scale projects and researches show that 4D surface or borehole seismic methods are among the most promising techniques for this purpose. However, such information interpreted from the seismic velocity changes can be quite subjective and qualitative without petrophysical characterization for the effect of CO2 saturation on the seismic changes since seismic wave velocity depends on various factors and parameters like mineralogical composition, hydrogeological factors, in-situ conditions. In this respect, we have developed an ultrasonic laboratory measurement system and have carried out measurements for a porous sandstone sample to characterize the effects of CO2 injection to seismic velocity and amplitude. Measurements are done by ultrasonic piezoelectric transducer mounted on both ends of cylindrical core sample under various pressure, temperature, and saturation conditions. According to our fundamental experiments, injected CO2 introduces the decrease of seismic velocity and amplitude. We identified that the velocity decreases about 6% or more until fully saturated by CO2, but the attenuation of seismic amplitude is more drastically than the velocity decrease. We also identified that Vs/Vp or elastic modulus is more sensitive to CO2 saturation. We note that this means seismic amplitude and elastic modulus change can be an alternative target anomaly of seismic techniques in CO2 sequestration monitoring. Thus, we expect that we can estimate more quantitative petrophysical relationships between the changes of seismic attributes and CO2 concentration, which can provide basic relation for the quantitative assessment of CO2 sequestration by further researches.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-16
... the ``three heating products'') must be designed to ``achieve the maximum improvement in energy... and CO 2 savings are performed with different computer models, leading to different time frames for... of EPCA sets forth a variety of provisions designed to improve energy efficiency. Part A\\1\\ of Title...
Environmental aspects of health care in the Grampian NHS region and the place of telehealth
Wootton, Richard; Tait, Alex; Croft, Amanda
2010-01-01
Detailed information about the composition of the carbon footprint of the NHS in the Grampian health region, and in Scotland generally, is not available at present. Based on the limited information available, our best guess is that travel emissions in Grampian are substantial, perhaps 49,000 tonnes CO2 per year. This is equivalent to 233 million km of car travel per year. A well-established telemedicine network in the Grampian region, which saves over 2000 patient journeys a year from community hospitals, avoids about 260,000 km travel per year, or about 59 tonnes CO2 per year. Therefore using telehealth as it has been used historically (primarily to facilitate hospital-to-hospital interactions) seems unlikely to have a major environmental impact – although of course there may be other good reasons for persevering with conventional telehealth. On the other hand, telehealth might be useful in reducing staff travel and to a lesser extent, visitor travel. It looks particularly promising for reducing outpatient travel, where substantial carbon savings might be made by reconfiguring the way that certain services are provided. PMID:20511579
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nihar K.; Wei, Max; Letschert, Virginie
Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energymore » efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.« less
HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections.
Cornilescu, Gabriel; Bahrami, Arash; Tonelli, Marco; Markley, John L; Eghbalnia, Hamid R
2007-08-01
We describe a novel method for the robust, rapid, and reliable determination of J couplings in multi-dimensional NMR coupling data, including small couplings from larger proteins. The method, "High-resolution Iterative Frequency Identification of Couplings" (HIFI-C) is an extension of the adaptive and intelligent data collection approach introduced earlier in HIFI-NMR. HIFI-C collects one or more optimally tilted two-dimensional (2D) planes of a 3D experiment, identifies peaks, and determines couplings with high resolution and precision. The HIFI-C approach, demonstrated here for the 3D quantitative J method, offers vital features that advance the goal of rapid and robust collection of NMR coupling data. (1) Tilted plane residual dipolar couplings (RDC) data are collected adaptively in order to offer an intelligent trade off between data collection time and accuracy. (2) Data from independent planes can provide a statistical measure of reliability for each measured coupling. (3) Fast data collection enables measurements in cases where sample stability is a limiting factor (for example in the presence of an orienting medium required for residual dipolar coupling measurements). (4) For samples that are stable, or in experiments involving relatively stronger couplings, robust data collection enables more reliable determinations of couplings in shorter time, particularly for larger biomolecules. As a proof of principle, we have applied the HIFI-C approach to the 3D quantitative J experiment to determine N-C' RDC values for three proteins ranging from 56 to 159 residues (including a homodimer with 111 residues in each subunit). A number of factors influence the robustness and speed of data collection. These factors include the size of the protein, the experimental set up, and the coupling being measured, among others. To exhibit a lower bound on robustness and the potential for time saving, the measurement of dipolar couplings for the N-C' vector represents a realistic "worst case analysis". These couplings are among the smallest currently measured, and their determination in both isotropic and anisotropic media demands the highest measurement precision. The new approach yielded excellent quantitative agreement with values determined independently by the conventional 3D quantitative J NMR method (in cases where sample stability in oriented media permitted these measurements) but with a factor of 2-5 in time savings. The statistical measure of reliability, measuring the quality of each RDC value, offers valuable adjunct information even in cases where modest time savings may be realized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konopacki, S.; Akbari, H.; Gartland, L.
The U.S. Environmental Protection Agency (EPA) sponsored this project to estimate potential energy and monetary savings resulting from the implementation of light-colored roofs on residential and commercial buildings in major U.S. metropolitan areas. Light-colored roofs reflect more sunlight than dark roofs, so they keep buildings cooler and reduce air-conditioning demand. Typically, rooftops in the United States are dark, and thus there is a potential for saving energy and money by changing to reflective roofs. Naturally, the expected savings are higher in southern, sunny, and cloudless climates. In this study, we make quantitative estimates of reduction in peak power demand andmore » annual cooling electricity use that would result from increasing the reflectivity of the roofs. Since light-colored roofs also reflect heat in the winter, the estimates of annual electricity savings are a net value corrected for the increased wintertime energy use. Savings estimates only include direct reduction in building energy use and do not account for the indirect benefit that would also occur from the reduction in ambient temperature, i.e. a reduction in the heat island effect. This analysis is based on simulations of building energy use, using the DOE-2 building energy simulation program. Our methodology starts with specifying 11 prototypical buildings: single-family residential (old and new), office (old and new), retail store (old and new), school (primary and secondary), health (hospital and nursing home), and grocery store. Most prototypes are simulated with two heating systems: gas furnace and heat pumps. We then perform DOE-2 simulations of the prototypical buildings, with light and dark roofs, in a variety of climates and obtain estimates of the energy use for air conditioning and heating.« less
NASA Astrophysics Data System (ADS)
Wei, Chuyu; Pineda, Daniel I.; Paxton, Laurel; Egolfopoulos, Fokion N.; Spearrin, R. Mitchell
2018-06-01
A tomographic laser absorption spectroscopy technique, utilizing mid-infrared light sources, is presented as a quantitative method to spatially resolve species and temperature profiles in small-diameter reacting flows relevant to combustion systems. Here, tunable quantum and interband cascade lasers are used to spectrally resolve select rovibrational transitions near 4.98 and 4.19 μm to measure CO and {CO2}, respectively, as well as their vibrational temperatures, in piloted premixed jet flames. Signal processing methods are detailed for the reconstruction of axial and radial profiles of thermochemical structure in a canonical ethylene-air jet flame. The method is further demonstrated to quantitatively distinguish between different turbulent flow conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-31
... quantitative information regarding expected reductions in emissions of CO 2 or fuel consumption as a result of... encouraged to provide quantitative information that validates the existence of substantial transportation... quantitative and qualitative measures. Therefore, applicants for TIGER Discretionary Grants are generally...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-01
... provide quantitative information regarding expected reductions in emissions of CO 2 or fuel consumption as... provide quantitative information that validates the existence of substantial transportation-related costs... infrastructure investments on systematic analysis of expected benefits and costs, including both quantitative and...
Wang, Li; Zou, Zhi-Qiang; Wang, Kai; Yu, Ji-Guang; Liu, Xiang-Zhong
2016-01-01
The purpose of this study was to characterize roles of serum hepatitis B virus marker quantitation in differentiation of natural phases of HBV infection. A total of 184 chronic hepatitis B (CHB) patients were analyzed retrospectively. Patients were classified into four categories: immune tolerant phase (IT, n = 36), immune clearance phase (IC, n = 81), low-replicative phase (LR, n = 31), and HBeAg-negative hepatitis phase (ENH, n = 36), based on clinical, biochemical, serological, HBV DNA level and histological data. Hepatitis B surface antigen (HBsAg) quantitation in four phases were 4.7 ± 0.2, 3.8 ± 0.5, 2.5 ± 1.2 and 3.4 ± 0.4 log10 IU/mL, respectively. There were significant differences between IT and IC (p < 0.001) and between LR and ENH phases (p < 0.001). Quantitation of hepatitis B e antigen (HBeAg) in IT and IC phases are 1317.9 ± 332.9 and 673.4 ± 562.1 S/CO, respectively (p < 0.001). Hepatitis B core antibody (HBcAb) quantitation in the four groups were 9.48 ± 3.3, 11.7 ± 2.8, 11.2 ± 2.6 and 13.2 ± 2.9 S/CO, respectively. Area under receiver operating characteristic curve (AUCs) of HBsAg and HBeAg at cutoff values of 4.41 log10 IU/mL and 1118.96 S/CO for differentiation of IT and IC phases are 0.984 and 0.828, with sensitivity 94.4 and 85.2 %, specificity 98.7 and 75 %, respectively. AUCs of HBsAg and HBcAb at cutoff values of 3.4 log10 IU/mL and 10.5 S/CO for differentiation of LR and ENT phases are 0.796 and 0.705, with sensitivity 58.1 and 85.7 %, and specificity 94.4 and 46.2 %, respectively. HBsAg quantitation has high predictive value and HBeAg quantitation has moderate predictive value for discriminating IT and IC phase. HBsAg and HBcAb quantitations have moderate predictive values for differentiation of LR and ENH phase.
LCA as a Tool to Evaluate Green Infrastructure's Environmental Performance
NASA Astrophysics Data System (ADS)
Catalano De Sousa, M.; Erispaha, A.; Spatari, S.; Montalto, F.
2011-12-01
Decentralized approaches to managing urban stormwater through use of green infrastructure (GI) often lead to system-wide efficiency gains within the urban watershed's energy supply system. These efficiencies lead to direct greenhouse gas (GHG) emissions savings, and also restore some ecosystem functions within the urban landscape. We developed a consequential life cycle assessment (LCA) model to estimate the life cycle energy, global warming potential (GWP), and payback times for each if GI were applied within a select neighborhood in New York City. We applied the SIMAPRO LCA software and the economic input-output LCA (EIO-LCA) tool developed by Carnegie Mellon University. The results showed that for a new intersection installation highlighted in this study a conventional infrastructure construction would emit and use approximately 3 times more for both CO2 and energy than a design using GI. Two GI benefits were analyzed with regards to retrofitting the existing intersection. The first was related to the savings in energy and CO2 at the Waste Water Treatment Plant via runoff reduction accrued from GI use. The second benefit was related to the avoided environmental costs associated with an additional new grey infrastructure installation needed to prevent CSO in case of no GI implementation. The first benefit indicated a high payback time for a GI installation in terms of CO2 and energy demand (80 and 90 years respectively) and suggest a slow energy and carbon recovery time. However, concerning to the second benefit, GI proved to be a sustainable alternative considering the high CO2 releases (429 MTE) and energy demand (5.5 TJ) associated with a grey infrastructure construction.
Recycling of plastic: accounting of greenhouse gases and global warming contributions.
Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas H
2009-11-01
Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic in new products, wood in low-strength products (outdoor furniture, fences, etc.), and coal or fuel oil in the case of energy utilization. GHG accounting was organized in terms of indirect upstream emissions (e.g. provision of energy, fuels, and materials), direct emissions at the MRF (e.g. fuel combustion), and indirect downstream emissions (e.g. avoided emissions from production of virgin plastic, wood, or coal/oil). Combined, upstream and direct emissions were estimated to be roughly between 5 and 600 kg CO(2)-eq. tonne( -1) of plastic waste depending on treatment at the MRF and CO(2) emissions from electricity production. Potential downstream savings arising from substitution of virgin plastic, wood, and energy fuels were estimated to be around 60- 1600 kg CO(2)-eq. tonne( -1) of plastic waste depending on substitution ratios and CO(2) emissions from electricity production. Based on the reviewed data, it was concluded that substitution of virgin plastic should be preferred. If this is not viable due to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming.
Methods for assessing the energy-saving efficiency of industrial symbiosis in industrial parks.
Li, Wenfeng; Cui, Zhaojie; Han, Feng
2015-01-01
The available energy resources are being depleted worldwide. Industrial symbiosis (IS) provides a promising approach for increasing the efficiency of energy utilization, with numerous studies reporting the superiority of this technology. However, studies quantifying the energy-saving efficiency of IS remain insufficient. This paper proposes an index system for the quantitative evaluation of the energy-saving efficiency of IS. Both energy-saving and financial indexes were selected, the former include the IS energy-saving index, the contribution rate of energy saved through IS, fractional energy savings, and cut rate of energy consumption per total output value; and the latter include the IS investment payback period, IS input-output ratio, net present value (NPV), and internal rate of return (IRR) of IS. The proposed methods were applied to a case study on the XF Industrial Park (XF IP), in the city of Liaocheng in Shandong Province of China. Three energy-saving channels using IS were found in the XF IP: (a) utilizing the energy of high-temperature materials among industrial processes, (b) recovering waste heat and steam between different processes, and (c) saving energy by sharing infrastructures. The results showed that the energy efficiency index of IS was 0.326, accounting for 34.6% of the comprehensive energy-saving index in 2011, and the fractional energy-savings were 12.42%. The index of energy consumption per total industrial output value varied from 90.9 tce/MRMB to 51.6 tce/MRMB. Thus, the cut rate of energy consumption per total industrial output value was 43.42%. The average values of the IS input-output ratio was 406.2 RMB/tce, 57.2% lower than the price of standard coal. Static investment payback period in the XF IP was 8.5 months, indicating that the XF IP began to earn profit 8.5 months after the construction of all IS modes. The NVP and IRR of each IS mode in the XF IP were greater than zero, with average values equal to 1,789.96 MRMB and 140.96%, respectively. The computation result for each indicator revealed that IS could lead to the use of energy with high efficiency and lighten the financial burden of enterprises in the XF IP. And the proposed index system may help IPs and EIPs to make strategic decisions when designing IS modes.
NASA Astrophysics Data System (ADS)
Yokoyama, Ryohei; Kohno, Yasuhiro; Wakui, Tetsuya; Takemura, Kazuhisa
Air-to-water heat pumps using CO2 as a refrigerant have been developed. In addition, water heating systems each of which combines a CO2 heat pump with a hot water storage tank have been commercialized and widespread. They are expected to contribute to energy saving in residential hot water supply. It has become more and more important to enhance the system performance. In this paper, the performance of a CO2 heat pump water heating system is analyzed under a daily change in a simulated hot water demand by numerical simulation. A static model of a CO2 heat pump and a dynamic model of a storage tank result in a set of differential algebraic equations, and it is solved numerically by a hierarchical combination of Runge-Kutta and Newton-Raphson methods. Daily changes in the temperature distributions in the storage tank and the system performance criteria such as volumes of stored and unused hot water, coefficient of performance, and storage and system efficiencies are clarified under a series of daily hot water demands during a month.
Particle-scale CO2 adsorption kinetics modeling considering three reaction mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Dong-Myung; Sun, Xin
2013-09-01
In the presence of water (H2O), dry and wet adsorptions of carbon dioxide (CO2) and physical adsorption of H2O happen concurrently in a sorbent particle. The three reactions depend on each other and have a complicated, but important, effect on CO2 capturing via a solid sorbent. In this study, transport phenomena in the sorbent were modeled, including the tree reactions, and a numerical solving procedure for the model also was explained. The reaction variable distribution in the sorbent and their average values were calculated, and simulation results were compared with experimental data to validate the proposed model. Some differences, causedmore » by thermodynamic parameters, were observed between them. However, the developed model reasonably simulated the adsorption behaviors of a sorbent. The weight gained by each adsorbed species, CO2 and H2O, is difficult to determine experimentally. It is known that more CO2 can be captured in the presence of water. Still, it is not yet known quantitatively how much more CO2 the sorbent can capture, nor is it known how much dry and wet adsorptions separately account for CO2 capture. This study addresses those questions by modeling CO2 adsorption in a particle and simulating the adsorption process using the model. As adsorption temperature changed into several values, the adsorbed amount of each species was calculated. The captured CO2 in the sorbent particle was compared quantitatively between dry and wet conditions. As the adsorption temperature decreased, wet adsorption increased. However, dry adsorption was reduced.« less
Sulaiman, Chindo; Abdul-Rahim, A S
2017-11-01
This study examines the three-way linkage relationships between CO 2 emission, energy consumption and economic growth in Malaysia, covering the 1975-2015 period. An autoregressive distributed lag approach was employed to achieve the objective of the study and gauged by dynamic ordinary least squares. Additionally, vector error correction model, variance decompositions and impulse response functions were employed to further examine the relationship between the interest variables. The findings show that economic growth is neither influenced by energy consumption nor by CO 2 emission. Energy consumption is revealed to be an increasing function of CO 2 emission. Whereas, CO 2 emission positively and significantly depends on energy consumption and economic growth. This implies that CO 2 emission increases with an increase in both energy consumption and economic growth. Conclusively, the main drivers of CO 2 emission in Malaysia are proven to be energy consumption and economic growth. Therefore, renewable energy sources ought to be considered by policy makers to curb emission from the current non-renewable sources. Wind and biomass can be explored as they are viable sources. Energy efficiency and savings should equally be emphasised and encouraged by policy makers. Lastly, growth-related policies that target emission reduction are also recommended.
Niu, Zhenchuan; Zhou, Weijian; Zhang, Xiaoshan; Wang, Sen; Zhang, Dongxia; Lu, Xuefeng; Cheng, Peng; Wu, Shugang; Xiong, Xiaohu; Du, Hua; Fu, Yunchong
2016-01-01
Atmospheric fossil fuel CO2 (CO2ff ) information is an important reference for local government to formulate energy-saving and emission reduction in China. The CO2ff spatial distribution in Beijing City was traced by Δ(14)C in the leaves of gingko (Ginkgo biloba L.) from late March to September in 2009. The Δ(14)C values were in the range of -35.2 ± 2.8∼15.5 ± 3.2 ‰ (average 3.4 ± 11.8 ‰), with high values found at suburban sites (average 12.8 ± 3.1 ‰) and low values at road sites (average -8.4 ± 18.1 ‰). The CO2ff concentrations varied from 11.6 ± 3.7 to 32.5 ± 9.0 ppm, with an average of 16.4 ± 4.9 ppm. The CO2ff distribution in Beijing City showed spatial heterogeneity. CO2ff hotspots were found at road sites resulted from the emission from vehicles, while low CO2ff concentrations were found at suburban sites because of the less usage of fossil fuels. Additionally, CO2ff concentrations in the northwest area were generally higher than those in the southeast area due to the disadvantageous topography.
Reactive Tracer Techniques to Quantitatively Monitor Carbon Dioxide Storage in Geologic Formations
NASA Astrophysics Data System (ADS)
Matter, J. M.; Carson, C.; Stute, M.; Broecker, W. S.
2012-12-01
Injection of CO2 into geologic storage reservoirs induces fluid-rock reactions that may lead to the mineralization of the injected CO2. The long-term safety of geologic CO2 storage is, therefore, determined by in situ CO2-fluid-rock reactions. Currently existing monitoring and verification techniques for CO2 storage are insufficient to characterize the solubility and reactivity of the injected CO2, and to establish a mass balance of the stored CO2. Dissolved and chemically transformed CO2 thus avoid detection. We developed and are testing a new reactive tracer technique for quantitative monitoring and detection of dissolved and chemically transformed CO2 in geologic storage reservoirs. The technique involves tagging the injected carbon with radiocarbon (14C). Carbon-14 is a naturally occurring radioisotope produced by cosmic radiation and made artificially by 14N neutron capture. The ambient concentration is very low with a 14C/12C ratio of 10-12. The concentration of 14C in deep geologic formations and fossil fuels is at least two orders of magnitude lower. This makes 14C an ideal quantitative tracer for tagging underground injections of anthropogenic CO2. We are testing the feasibility of this tracer technique at the CarbFix pilot injection site in Iceland, where approximately 2,000 tons of CO2 dissolved in water are currently injected into a deep basalt aquifer. The injected CO2 is tagged with 14C by dynamically adding calibrated amounts of H14CO3 solution to the injection stream. The target concentration is 12 Bq/kg of injected water, which results in a 14C activity that is 5 times enriched compared to the 1850 background. In addition to 14C as a reactive tracer, trifluormethylsulphur pentafluoride (SF5CF3) and sulfurhexafluoride (SF6) are used as conservative tracers to monitor the transport of the injected CO2 in the subsurface. Fluid samples are collected for tracer analysis from the injection and monitoring wells on a regular basis. Results show a fast reaction of the injected CO2 with the ambient reservoir fluid and rocks. Mixing and in situ CO2-water-rock reactions are detected by changes in the different tracer ratios. The feasibility of 14C as a reactive tracer for geologic CO2 storage also depends on the analytical technique used to measure 14C activities. Currently, 14C is analyzed using Accelerator Mass Spectrometery (AMS), which is expensive and requires centralized facilities. To enable real time online monitoring and verification, we are developing an alternative detection method for radiocarbon. The IntraCavity OptoGalvanic Spectroscopy (ICOGS) system is using a CO2 laser to detect carbon isotope ratios at environmental levels. Results from our prototype of this bench-top technology demonstrate that an ICOGS system can be used in a continuous mode with analysis times of the order of minutes, and can deliver data of similar quality as AMS.
Save Energy Now Assessments Results 2008 Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Anthony L; Martin, Michaela A; Nimbalkar, Sachin U
In October 2005, U.S. Department of Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy savings assessment. The approach for these assessments drew heavily on the existing resources of ITP's technology delivery component. Over the years, ITP Technology Delivery has worked with industry partners to assemble a suite of respected software tools, proven assessment protocols, training curricula, certified energy experts, and strong partnerships for deployment. The Save Energy Now assessments conducted in calendar year 2006 focused on natural gas savings and targeted many of the nation's largest manufacturing plants - those that consume at least 1 TBtu of energy annually. The 2006 Save Energy Now assessments focused primarily on assessments of steam and process heating systems, which account for an estimated 74% of all natural gas use by U.S. manufacturing plants. Because of the success of the Save Energy Now assessments conducted in 2006 and 2007, the program was expanded and enhanced in two major ways in 2008: (1) a new goal was set to perform at least 260 assessments; and (2) the assessment focus was expanded to include pumping, compressed air, and fan systems in addition to steam and process heating. DOE ITP also has developed software tools to assess energy efficiency improvement opportunities in pumping, compressed air, and fan systems. The Save Energy Now assessments integrate a strong training component designed to teach industrial plant personnel how to use DOE's opportunity assessment software tools. This approach has the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. Another important element of the Save Energy Now assessment process is the follow-up process used to identify how many of the recommended savings opportunities from individual assessments have been implemented in the industrial plants. Plant personnel involved with the Save Energy Now assessments are contacted 6 months, 12 months, and 24 months after individual assessments are completed to determine implementation results. A total of 260 Save Energy Now assessments were successfully completed in calendar year 2008. This means that a total of 718 assessments were completed in 2006, 2007, and 2008. As of July 2009, we have received a total of 239 summary reports from the ESAs that were conducted in year 2008. Hence, at the time that this report was prepared, 680 final assessment reports were completed (200 from year 2006, 241 from year 2007, and 239 from year 2008). The total identified potential cost savings from these 680 assessments ismore » $$1.1 billion per year, including natural gas savings of about 98 TBtu per year. These results, if fully implemented, could reduce CO{sub 2} emissions by about 8.9 million metric tons annually. When this report was prepared, data on implementation of recommended energy and cost savings measures from 488 Save Energy Now assessments were available. For these 488 plants, measures saving a total of $$147 million per year have been implemented, measures that will save $169 million per year are in the process of being implemented, and plants are planning implementation of measures that will save another $239 million per year. The implemented recommendations are already achieving total CO{sub 2} reductions of about 1.8 million metric tons per year. This report provides a summary of the key results for the Save Energy Now assessments completed in 2008; details of the 6-month, 12-month, and 24-month implementation results obtained to date; and an evaluation of these implementation results. This report also summarizes key accomplishments, findings, and lessons learned from all the Save Energy Now assessments completed to date. A separate report (Wright et al. 2010) provides more detailed information on key results for all of the 2008 assessments of steam, process heating, pumping, compressed air, and fan systems. Two prior reports (Wright et al. 2007 and Wright et al. 2009) detail the results from the 2006 and 2007 assessments and discuss the major components of the assessment process and improvements in the process made in 2007.« less
Save Energy Now Assessments Results 2008 Detailed Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Anthony L; Martin, Michaela A; Nimbalkar, Sachin U
In October 2005, U.S. Department of Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy savings assessment. The approach for these assessments drew heavily on the existing resources of ITP's technology delivery component. Over the years, ITP Technology Delivery has worked with industry partners to assemble a suite of respected software tools, proven assessment protocols, training curricula, certified energy experts, and strong partnerships for deployment. The Save Energy Now assessments conducted in calendar year 2006 focused on natural gas savings and targeted many of the nation's largest manufacturing plants - those that consume at least 1 TBtu of energy annually. The 2006 Save Energy Now assessments focused primarily on assessments of steam and process heating systems, which account for an estimated 74% of all natural gas use by U.S. manufacturing plants. Because of the success of the Save Energy Now assessments conducted in 2006 and 2007, the program was expanded and enhanced in two major ways in 2008: (1) a new goal was set to perform at least 260 assessments; and (2) the assessment focus was expanded to include pumping, compressed air, and fan systems in addition to steam and process heating. DOE ITP also has developed software tools to assess energy efficiency improvement opportunities in pumping, compressed air, and fan systems. The Save Energy Now assessments integrate a strong training component designed to teach industrial plant personnel how to use DOE's opportunity assessment software tools. This approach has the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. Another important element of the Save Energy Now assessment process is the follow-up process used to identify how many of the recommended savings opportunities from individual assessments have been implemented in the industrial plants. Plant personnel involved with the Save Energy Now assessments are contacted 6 months, 12 months, and 24 months after individual assessments are completed to determine implementation results. A total of 260 Save Energy Now assessments were successfully completed in calendar year 2008. This means that a total of 718 assessments were completed in 2006, 2007, and 2008. As of July 2009, we have received a total of 239 summary reports from the ESAs that were conducted in year 2008. Hence, at the time that this report was prepared, 680 final assessment reports were completed (200 from year 2006, 241 from year 2007, and 239 from year 2008). The total identified potential cost savings from these 680 assessments ismore » $$1.1 billion per year, including natural gas savings of about 98 TBtu per year. These results, if fully implemented, could reduce CO{sub 2} emissions by about 8.9 million metric tons annually. When this report was prepared, data on implementation of recommended energy and cost savings measures from 488 Save Energy Now assessments were available. For these 488 plants, measures saving a total of $$147 million per year have been implemented, measures that will save $169 million per year are in the process of being implemented, and plants are planning implementation of measures that will save another $239 million per year. The implemented recommendations are already achieving total CO{sub 2} reductions of about 1.8 million metric tons per year. This report provides a summary of the key results for the Save Energy Now assessments completed in 2008; details of the 6-month, 12-month, and 24-month implementation results obtained to date; and an evaluation of these implementation results. This report also summarizes key accomplishments, findings, and lessons learned from all the Save Energy Now assessments completed to date. A separate report (Wright et al. 2010) provides more detailed information on key results for all of the 2008 assessments of steam, process heating, pumping, compressed air, and fan systems. Two prior reports (Wright et al. 2007 and Wright et al. 2009) detail the results from the 2006 and 2007 assessments and discuss the major components of the assessment process and improvements in the process made in 2007.« less
Koornneef, Joris; Spruijt, Mark; Molag, Menso; Ramírez, Andrea; Turkenburg, Wim; Faaij, André
2010-05-15
A systematic assessment, based on an extensive literature review, of the impact of gaps and uncertainties on the results of quantitative risk assessments (QRAs) for CO(2) pipelines is presented. Sources of uncertainties that have been assessed are: failure rates, pipeline pressure, temperature, section length, diameter, orifice size, type and direction of release, meteorological conditions, jet diameter, vapour mass fraction in the release and the dose-effect relationship for CO(2). A sensitivity analysis with these parameters is performed using release, dispersion and impact models. The results show that the knowledge gaps and uncertainties have a large effect on the accuracy of the assessed risks of CO(2) pipelines. In this study it is found that the individual risk contour can vary between 0 and 204 m from the pipeline depending on assumptions made. In existing studies this range is found to be between <1m and 7.2 km. Mitigating the relevant risks is part of current practice, making them controllable. It is concluded that QRA for CO(2) pipelines can be improved by validation of release and dispersion models for high-pressure CO(2) releases, definition and adoption of a universal dose-effect relationship and development of a good practice guide for QRAs for CO(2) pipelines. Copyright (c) 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kranz, S. A.; Young, J. N.; Goldman, J.; Tortell, P. D.; Morel, F. M.
2016-02-01
High-latitude oceans, in particular the coastal Western Antarctic Peninsula (WAP) region of the Southern Ocean, are experiencing a rapidly changing environment due to rising surface ocean temperatures and CO2 concentrations. However, the direct effect of increasing CO2 on polar ocean primary production is unclear, with a number of experiments showing conflicting results. It has been hypothesized that increased CO2 may cause a reduction of the energy-intensive carbon concentrating mechanism (CCM) in phytoplankton, and these energy savings may lead to increased productivity. To test this hypothesis, we incubated natural phytoplankton communities in the WAP under high (800 ppm), current (400 ppm) and low (100 ppm) CO2 for 2 to 3 wk during the austral spring-summer of 2012/2013. In 2 incubations with diatom-dominated phytoplankton assemblages, high CO2 led to a clear down-regulation of CCM activity, as evidenced by an increase in half-saturation constants for CO2, a decrease in external carbonic anhydrase activity and a higher biological fractionation of stable carbon isotopes. In a third incubation, there was no observable regulation of the CCM. We did not observe a significant effect of CO2 on growth rates or community composition in the diatom-dominated communities. The lack of a measureable effect on growth despite CCM down-regulation is likely explained by a very small energetic requirement to concentrate CO2 and saturate Rubisco at low temperatures.
Breadboard CO2 and humidity control system
NASA Technical Reports Server (NTRS)
Boehm, A. M.
1976-01-01
A regenerable CO2 and humidity control system is being developed for potential use on shuttle as an alternate to the baseline lithium hydroxide (LiOH)/condensing heat exchanger system. The system utilizes a sorbent material, designated HS-C, to adsorb CO2 and water vapor from the cabin atmosphere. The material is regenerated by exposing it to space vacuum. A half-size breadboard system, utilizing a flight representative HS-C canister, was designed, built, and performance tested to shuttle requirements for total CO2 and total humidity removal. The use of a new chemical matrix material allowed significant optimization of the system design by packing the HS-C chemical into the core of a heat exchanger which is manifolded to form two separate and distinct beds. Breadboard system performance was proven by parametric testing and simulated mission testing over the full range of shuttle crew sizes and metabolic loadings. Vacuum desorption testing demonstrated considerable savings in previously projected shuttle vacuum duct sizing.
Seitz, J.C.; Pasteris, J.D.; Chou, I.-Ming
1996-01-01
Raman spectral parameters were determined for the v1 band of CH4 and the v1 and 2v2 bands (Fermi diad) of CO2 in pure CO2 and CO2-CH4 mixtures at pressures up to 700 bars and room temperature. Peak position, area, height, and width were investigated as functions of pressure and composition. The peak positions of the CH4 and CO2 bands shift to lower relative wavenumbers as fluid pressure is increased. The peak position of the lower-wavenumber member of the Fermi diad for CO2 is sensitive to fluid composition, whereas the peak positions of the CH4 band and the upper Fermi diad member for CO2 are relatively insensitive in the CO2-CH4 system. The magnitude of the shifts in each of the three peak positions (as a function of pressure) is sufficient to be useful as a monitor of fluid pressure. The relative molar proportions in a CO2-CH4 mixture may be determined from the peak areas: the ratio of the peak areas of the CH4 band and the CO2 upper Fermi diad member is very sensitive to composition, whereas above about 100 bars, it is insensitive to pressure. Likewise, the peak height ratio is very sensitive to composition but also to fluid pressure. The individual peak widths of CO2 and CH4, as well as the ratios of the widths of the CH4 peak to the CO2 peaks are a sensitive function of pressure and, to a lesser extent, composition. Thus, upon determination of fluid composition, the peak width ratios may be used as a monitor of fluid pressure. The application of these spectral parameters to a suite of natural CO2-CH4 inclusions has yielded internally-consistent, quantitative determinations of the fluid composition and density.
Heinze, Georg; Hronsky, Milan; Reichardt, Berthold; Baumgärtel, Christoph; Müllner, Marcus; Bucsics, Anna; Winkelmayer, Wolfgang C
2015-04-01
Healthcare systems spend considerable proportions of their budgets on pharmaceutical treatment of hypertension, hyperlipidemia, and diabetes mellitus. From data on almost all residents of Austria, a country with mandatory health insurance and universal health coverage, we estimated potential cost savings by substituting prescribed medicines with the cheapest medicines that were of the same chemical substance and strength, and available during the same time. Data from 8.3 million persons (98.5 % of the total Austrian insured population) from 2009-2012 were analyzed. Real prescription costs for antihypertensive, lipid-lowering, and hypoglycemic medicines achievable by same-substance, same-strength drug substitution were computed for each active ingredient, and per gender and 1-year age category of patients. In 2012, health insurance providers spent
Photodecarboxylation (often stoichiometrically expressed as RCOOH + (1/2)O2 (ROH + CO2) has long been postulated to be principally responsible for generating CO2 from photooxidation of dissolved organic matter (DOM). In this study the quantitative relationships were investigated ...
Rising CO2 Levels Will Intensify Phytoplankton Blooms in Eutrophic and Hypertrophic Lakes
Verspagen, Jolanda M. H.; Van de Waal, Dedmer B.; Finke, Jan F.; Visser, Petra M.; Van Donk, Ellen; Huisman, Jef
2014-01-01
Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked intensification of phytoplankton blooms in eutrophic and hypertrophic waters. PMID:25119996
Potential for reducing air pollution from oil refineries.
Karbassi, A R; Abbasspour, M; Sekhavatjou, M S; Ziviyar, F; Saeedi, M
2008-10-01
Islamic Republic of Iran has to invest 95 billion US$ for her new oil refineries to the year 2045. At present, the emission factors for CO(2), NO( x ) and SO(2) are 3.5, 4.2 and 119 times higher than British refineries, respectively. In order to have a sustainable development in Iranian oil refineries, the government has to set emission factors of European Community as her goal. At present CO(2) per Gross Domestic Production (GDP) in the country is about 2.7 kg CO(2) as 1995's USD value that should be reduced to 1.25 kg CO(2)/GDP in the year 2015. Total capital investment for such reduction is estimated at 346 million USD which is equal to 23 USD/ton of CO(2). It is evident that mitigation of funds set by Clean Development Mechanism (3 to 7 USD/tons of CO(2)) is well below the actual capital investment needs. Present survey shows that energy efficiency promotion potential in all nine Iranian oil refineries is about 165,677 MWh/year through utilization of more efficient pumps and compressors. Better management of boilers in all nine refineries will lead to a saving of 273 million m(3) of natural gas per year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryce, David A.; Shao, Hongbo; Cantrell, Kirk J.
2016-06-07
CO2 injected into depleted oil or gas reservoirs for long-term storage has the potential to mobilize organic compounds and distribute them between sediments and reservoir brines. Understanding this process is important when considering health and environmental risks, but little quantitative data currently exists on the partitioning of organics between supercritical CO2 and water. In this work, a high-pressure, in situ measurement capability was developed to assess the distribution of organics between CO2 and water at conditions relevant to deep underground storage of CO2. The apparatus consists of a titanium reactor with quartz windows, near-infrared and UV spectroscopic detectors, and switchingmore » valves that facilitate quantitative injection of organic reagents into the pressurized reactor. To demonstrate the utility of the system, partitioning coefficients were determined for benzene in water/supercritical CO2 over the range 35-65 °C and approximately 25-150 bar. Density changes in the CO2 phase with increasing pressure were shown to have dramatic impacts on benzene's partitioning behavior. Our partitioning coefficients were approximately 5-15 times lower than values previously determined by ex situ techniques that are prone to sampling losses. The in situ methodology reported here could be applied to quantify the distribution behavior of a wide range of organic compounds that may be present in geologic CO2 storage scenarios.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
BEST-Cities is designed to provide city authorities with strategies they can follow to reduce city-wide carbon dioxide (CO2) and methane (CH4) emissions. The tool quickly assesses local energy use and energy-related CO2 emissions across nine sectors (i.e., industry, public and commercial buildings, residential buildings, transportation, power and heat, street lighting, water & wastewater, solid waste, and urban green space), giving officials a comprehensive perspective on their local carbon performance. Cities can also use the tool to benchmark their energy and emissions performance to other cities inside and outside China, and identify those sectors with the greatest energy saving and emissionsmore » reduction potential.« less
Predicting possible effects of H2S impurity on CO2 transportation and geological storage.
Ji, Xiaoyan; Zhu, Chen
2013-01-02
For CO(2) geological storage, permitting impurities, such as H(2)S, in CO(2) streams can lead to a great potential for capital and energy savings for CO(2) capture and separation, but it also increases costs and risk management for transportation and storage. To evaluate the cost-benefits, using a recently developed model (Ji, X.; Zhu, C. Geochim. Cosmochim. Acta 2012, 91, 40-59), this study predicts phase equilibria and thermodynamic properties of the system H(2)S-CO(2)-H(2)O-NaCl under transportation and storage conditions and discusses potential effects of H(2)S on transportation and storage. The prediction shows that inclusion of H(2)S in CO(2) streams may lead to two-phase flow. For H(2)S-CO(2) mixtures, at a given temperature, the bubble and dew pressures decrease with increasing H(2)S content, while the mass density increases at low pressures and decreases at high pressures. For the CO(2)-H(2)S-H(2)O system, the total gas solubility increases while the mass density of the aqueous solution with dissolved gas decreases. For the CO(2)-H(2)S-H(2)O-NaCl system, at a given temperature, pressure and NaCl concentration, the solubility of the gas mixture in aqueous phase increases with increasing H(2)S content and then decreases, while the mass density of aqueous solution decreases and may be lower than the mass density of the solution without gas dissolution.
McGuirt, Jared T; Jilcott Pitts, Stephanie B; Ward, Rachel; Crawford, Thomas W; Keyserling, Thomas C; Ammerman, Alice S
2014-01-01
To examine the influence of farmers' market pricing and accessibility on willingness to shop at farmers' markets, among low-income women. Qualitative interviews using scenarios with quantitative assessment of willingness to shop at farmers' markets given certain pricing and accessibility scenarios. Eastern North Carolina. A total of 37 low-income women of childbearing age (18-44 years) receiving family planning services at the health department. Willingness to shop at a farmers' market. Fisher's exact test was used to examine associations between willingness to shop at farmers' markets by urban/rural residence, race, and employment status. Direct quotations relevant to participants' use of farmers' markets were extracted based on a positive deviance framework. Participants were increasingly willing to shop at the farmers' market when price savings increased and when the market was incrementally closer to their residence. Willingness was highest when there was at least a 20% price savings. Participants seemed to be influenced more by a visual representation of a greater quantity of produce received with the price savings rather than a quantitative representation of the money saved by the reduced price. Future farmers' market interventions should take into account these consumer level preferences. Copyright © 2014 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
McGuirt, Jared T.; Jilcott Pitts, Stephanie B.; Ward, Rachel; Crawford, Thomas W.; Keyserling, Thomas C.; Ammerman, Alice S.
2013-01-01
Objective: To examine the influence of farmers’ market pricing and accessibility on willingness to shop at farmers’ markets, among low-income women. Design: Qualitative interviews using scenarios with quantitative assessment of willingness to shop at farmers’ market given certain pricing and accessibility scenarios. Setting: Eastern North Carolina. Participants: Thirty seven low-income women of child-bearing age (18-44 years) receiving family planning services at the health department. Phenomenon of Interest: Willingness to shop at a farmers’ market. Analysis: Fisher’s exact test was used to examine associations between willingness to shop at farmers’ markets by urban/rural residence, race, and employment status. Direct quotations relevant to participants' use of farmers' markets were extracted based upon a positive deviance framework. Results: Participants were increasingly willing to shop at the farmers’ market when price savings increased and when the market was incrementally closer to their residence. Willingness was highest when there was at least a 20% price savings. Participants seemed to be influenced more by a visual representation of a greater quantity of produce received with the price savings rather than the quantitative representation of the money saved by the reduced price. Conclusions and Implications: Future farmers’ market interventions should take into account these consumer level preferences. PMID:24201077
GOSAT/TANSO-FTS Measurement of Volcanic and Geothermal CO2 Emissions
NASA Astrophysics Data System (ADS)
Schwandner, Florian M.; Carn, Simon A.; Newhall, Christopher G.
2010-05-01
Approximately one tenth of the Earth's human population lives in direct reach of volcanic hazards. Being able to provide sufficiently early and scientifically sound warning is a key to volcanic hazard mitigation. Quantitative time-series monitoring of volcanic CO2 emissions will likely play a key role in such early warning activities in the future. Impending volcanic eruptions or any potentially disastrous activity that involves movement of magma in the subsurface, is often preceded by an early increase of CO2 emissions. Conventionally, volcanic CO2 monitoring is done either in campaigns of soil emission measurements (grid of one-time measuring points) that are labor intensive and slow, or by ground-based remote FTIR measurements in emission plumes. These methods are not easily available at all sites of potential activity and prohibitively costly to employ on a large number of volcanoes. In addition, both of these ground-based approaches pose a significant risk to the workers conducting these measurements. Some aircraft-based measurements have been conducted as well in the past, however these are limited by the usually meager funding situation of individual observatories, the hazard such flights pose to equipment and crew, and by the inaccessibility of parts of the plume due to ash hazards. The core motivation for this study is therefore to develop a method for volcanic CO2 monitoring from space that will provide sufficient coverage, resolution, and data quality for an application to quantitative time series monitoring and correlation with other available datasets, from a safe distance and with potentially global reach. In summary, the purpose of the proposed research is to quantify volcanic CO2 emissions using satellite-borne observations. Quantitative estimates will be useful for warning of impending volcanic eruptions, and assessing the contribution of volcanic CO2 to global GHG. Our approach encompasses method development and testing for the detection of volcanic CO2 anomalies using GOSAT and correlation with Aura/OMI, AIRS, and ASTER determined SO2 fluxes and ground based monitoring of CO2 and other geophysical and geochemical parameters. This will provide the ground work for future higher spatial resolution satellite missions. This is a joint effort from two GOSAT-IBUKI data application projects: "Satellite-Borne Quantification of Carbon Dioxide Emissions from Volcanoes and Geothermal Areas" (PI Schwandner), and "Application of GOSAT/TANSO-FTS to the Measurement of Volcanic CO2 Emissions" (PI Carn).
Energy Saving Devices on Gas Furnaces.
1980-03-01
AO-A082 0715 JOHNS - MANVILLE SALES CORP DENVER CO RESEARCH AND DEV--ETC FIG 1311 ENERGY SAVING DEVICES ON GAS FURNACES.(U) MAR B0 T E BRISBANE, P B...DEVICES FOR GAS FURNACES THOMAS E. BRISBANE ,o"’ P. B. SHEPHERD JOHNS - MANVILLE SALES CORPORATION RESEARCH & DEVELOPMENT CENTER KEN-CARYL RANCH, DENVER
a Study of Using Hydrogen Gas for Steam Boiler in CHOLOR- Alkali Manufacturing
NASA Astrophysics Data System (ADS)
Peantong, Sasitorn; Tangjitsitcharoen, Somkiat
2017-06-01
Main products of manufacturing of Cholor - Alkali, which commonly known as industrial chemical, are chlorine gas (Cl2), Sodium Hydroxide (NaOH) and hydrogen gas (H2). Chorine gas and sodium hydroxide are two main products for commercial profit; where hydrogen gas is by product. Most industries release hydrogen gas to atmosphere as it is non-profitable and less commercial scale. This study aims to make the most use of hydrogen as a substitute energy of natural gas for steam boiler to save energy cost. The second target of this study is to reduce level of CO2 release to air as a consequence of boiler combustion. This study suggests to install boiler that bases on hydrogen as main power with a high turndown ratio of at least 1:6. However, this case study uses boiler with two mode such as natural gas (NG) mode and mixed mode as they need to be flexible for production. Never the less, the best boiler selection is to use single mode energy of hydrogen. The most concerned issue about hydrogen gas is explosion during combustion stage. Stabilization measures at emergency stop is introduced to control H2 pressure to protect the explosion. This study varies ratio of natural gas to hydrogen gas to find the optimal level of two energy sources for boiler and measure total consumption through costing model; where CO2 level is measured at the boiler stack. The result of this study shows that hydrogen gas can be a substitute energy with natural gas and can reduce cost. Natural gas cost saving is 248,846 baht per month and reduce level of NOx is 80 ppm 7% O2 and 2 % of CO2 release to air as a consequence of boiler combustion.
Abdullah, Mohammad M. H.; Gyles, Collin L.; Marinangeli, Christopher P. F.; Carlberg, Jared G.; Jones, Peter J. H.
2015-01-01
Background: Type 2 diabetes (T2D) and cardiovascular disease (CVD) are leading causes of mortality and two of the most costly diet-related ailments worldwide. Consumption of fiber-rich diets has been repeatedly associated with favorable impacts on these co-epidemics, however, the healthcare cost-related economic value of altered dietary fiber intakes remains poorly understood. In this study, we estimated the annual cost savings accruing to the Canadian healthcare system in association with reductions in T2D and CVD rates, separately, following increased intakes of dietary fiber by adults. Methods: A three-step cost-of-illness analysis was conducted to identify the percentage of individuals expected to consume fiber-rich diets in Canada, estimate increased fiber intakes in relation to T2D and CVD reduction rates, and independently assess the potential annual savings in healthcare costs associated with the reductions in rates of these two epidemics. The economic model employed a sensitivity analysis of four scenarios (universal, optimistic, pessimistic, and very pessimistic) to cover a range of assumptions within each step. Results: Non-trivial healthcare and related savings of CAD$35.9-$718.8 million in T2D costs and CAD$64.8 million–$1.3 billion in CVD costs were calculated under a scenario where cereal fiber was used to increase current intakes of dietary fiber to the recommended levels of 38 g per day for men and 25 g per day for women. Each 1 g per day increase in fiber consumption resulted in annual CAD$2.6 to $51.1 million savings for T2D and $4.6 to $92.1 million savings for CVD. Conclusion: Findings of this analysis shed light on the economic value of optimal dietary fiber intakes. Strategies to increase consumers’ general knowledge of the recommended intakes of dietary fiber, as part of healthy diet, and to facilitate stakeholder synergy are warranted to enable better management of healthcare and related costs associated with T2D and CVD in Canada. PMID:26321953
Abdullah, Mohammad M H; Gyles, Collin L; Marinangeli, Christopher P F; Carlberg, Jared G; Jones, Peter J H
2015-01-01
Type 2 diabetes (T2D) and cardiovascular disease (CVD) are leading causes of mortality and two of the most costly diet-related ailments worldwide. Consumption of fiber-rich diets has been repeatedly associated with favorable impacts on these co-epidemics, however, the healthcare cost-related economic value of altered dietary fiber intakes remains poorly understood. In this study, we estimated the annual cost savings accruing to the Canadian healthcare system in association with reductions in T2D and CVD rates, separately, following increased intakes of dietary fiber by adults. A three-step cost-of-illness analysis was conducted to identify the percentage of individuals expected to consume fiber-rich diets in Canada, estimate increased fiber intakes in relation to T2D and CVD reduction rates, and independently assess the potential annual savings in healthcare costs associated with the reductions in rates of these two epidemics. The economic model employed a sensitivity analysis of four scenarios (universal, optimistic, pessimistic, and very pessimistic) to cover a range of assumptions within each step. Non-trivial healthcare and related savings of CAD$35.9-$718.8 million in T2D costs and CAD$64.8 million-$1.3 billion in CVD costs were calculated under a scenario where cereal fiber was used to increase current intakes of dietary fiber to the recommended levels of 38 g per day for men and 25 g per day for women. Each 1 g per day increase in fiber consumption resulted in annual CAD$2.6 to $51.1 million savings for T2D and $4.6 to $92.1 million savings for CVD. Findings of this analysis shed light on the economic value of optimal dietary fiber intakes. Strategies to increase consumers' general knowledge of the recommended intakes of dietary fiber, as part of healthy diet, and to facilitate stakeholder synergy are warranted to enable better management of healthcare and related costs associated with T2D and CVD in Canada.
Retrospective Analysis Of CO2 Laser Myringotomy
NASA Astrophysics Data System (ADS)
Lipman, Sidney P.; Guelcher, Robert T.
1988-06-01
A retrospective review of the author's series of 91 carbon dioxide (CO2) laser myringotomy cases performed between 1983 and 1986 is presented. Patients with chronic otitis media with effusion (COME) were selected on the basis of possible benefit from shorter ventilation time than tympanostomy tube insertion. The proceedings were performed on an outpatient basis with topical iontophoretic anesthesia, which offers significant cost savings and a lack of possible complications. The CO2 laser gives clean precise 0.8mm perforations which remain open for 2-4 weeks, this shorter ventilation time minimizing the period of water precautions and other side effects. The laser perforations heal well. With a success rate of 52 % reported, which could be increased with careful patient selection, we feel that the advantages of carbon dioxide laser myringotomy over myringotomy plus intubation outweight the risk of recurrent otitis media with effusion formation in those patients to whom this procedure is applicable.
The value of value-based insurance design: savings from eliminating drug co-payments.
Maeng, Daniel D; Pitcavage, James M; Snyder, Susan R; Davis, Duane E
2016-02-01
To estimate the cost impact of a $0 co-pay prescription drug program implemented by a large healthcare employer as a part of its employee wellness program. A $0 co-pay program that included approximately 200 antihypertensive, antidiabetic, and antilipid medications was offered to Geisinger Health System (GHS) employees covered by Geisinger Health Plan (GHP) in 2007. Claims data from GHP for the years 2005 to 2011 were obtained. The sample was restricted to continuously enrolled members with Geisinger primary care providers throughout the study period. The intervention group, defined as 2251 GHS employees receiving any of the drugs eligible for $0 co-pay, was propensity score matched based on 2 years of pre-intervention claims data to a comparison group, which was defined as 3857 non-GHS employees receiving the same eligible drugs at the same time. Generalized linear models were used to estimate differences in terms of per-member-per-month (PMPM) claims amounts related to prescription drugs and medical care. Total healthcare spending (medical plus prescription drug spending) among the GHS employees was lower by $144 PMPM (13%; 95% CI, $38-$250) during the months when they were taking any of the eligible drugs. Considering the drug acquisition cost and the forgone co-pay, the estimated return on investment over a 5-year period was 1.8. This finding suggests that VBID implementation within the context of a wider employee wellness program targeting the appropriate population can potentially lead to positive cost savings.
ePrescribing: Reducing Costs Through In-Class Therapeutic Interchange
Stenner, Shane P.; Chakravarthy, Rohini; Johnson, Kevin B.; Miller, William L.; Olson, Julie; Wickizer, Marleen; Johnson, Nate N.; Ohmer, Rick; Uskavitch, David R.; Bernard, Gordon R.; Neal, Erin B.
2016-01-01
Summary Introduction Spending on pharmaceuticals in the US reached $373.9 billion in 2014. Therapeutic interchange offers potential medication cost savings by replacing a prescribed drug for an equally efficacious therapeutic alternative. Methods Hard-stop therapeutic interchange recommendation alerts were developed for four medication classes (HMG-CoA reductase inhibitors, serotonin receptor agonists, intranasal steroid sprays, and proton-pump inhibitors) in an electronic prescription-writing tool for outpatient prescriptions. Using prescription data from January 2012 to June 2015, the Compliance Ratio (CR) was calculated by dividing the number of prescriptions with recommended therapeutic interchange medications by the number of prescriptions with non-recommended medications to measure effectiveness. To explore potential cost savings, prescription data and medication costs were analyzed for the 45,000 Vanderbilt Employee Health Plan members. Results For all medication classes, significant improvements were demonstrated – the CR improved (proton-pump inhibitors 2.8 to 5.32, nasal steroids 2.44 to 8.16, statins 2.06 to 5.51, and serotonin receptor agonists 0.8 to 1.52). Quarterly savings through the four therapeutic interchange interventions combined exceeded $200,000 with an estimated annual savings for the health plan of $800,000, or more than $17 per member. Conclusion A therapeutic interchange clinical decision support tool at the point of prescribing resulted in increased compliance with recommendations for outpatient prescriptions while producing substantial cost savings to the Vanderbilt Employee Health Plan – $17.77 per member per year. Therapeutic interchange rules require rational targeting, appropriate governance, and vigilant content updates. PMID:27966005
Huang, Runze; Riddle, Matthew; Graziano, Diane; ...
2015-05-08
Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Runze; Riddle, Matthew; Graziano, Diane
Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less
Cho, Hui Hun; Kim, Si Hyun; Heo, Jun Hyuk; Moon, Young Eel; Choi, Young Hun; Lim, Dong Cheol; Han, Kwon-Hoon; Lee, Jung Heon
2016-06-21
We report the development of a colorimetric sensor that allows for the quantitative measurement of the acid content via acid-base titration in a single-step. In order to create the sensor, we used a cobalt coordination system (Co-complex sensor) that changes from greenish blue colored Co(H2O)4(OH)2 to pink colored Co(H2O)6(2+) after neutralization. Greenish blue and pink are two complementary colors with a strong contrast. As a certain amount of acid is introduced to the Co-complex sensor, a portion of greenish blue colored Co(H2O)4(OH)2 changes to pink colored Co(H2O)6(2+), producing a different color. As the ratio of greenish blue and pink in the Co-complex sensor is determined by the amount of neutralization reaction occurring between Co(H2O)4(OH)2 and an acid, the sensor produced a spectrum of green, yellow green, brown, orange, and pink colors depending on the acid content. In contrast, the color change appeared only beyond the end point for normal acid-base titration. When we mixed this Co-complex sensor with different concentrations of citric acid, tartaric acid, and malic acid, three representative organic acids in fruits, we observed distinct color changes for each sample. This color change could also be observed in real fruit juice. When we treated the Co-complex sensor with real tangerine juice, it generated diverse colors depending on the concentration of citric acid in each sample. These results provide a new angle on simple but quantitative measurements of analytes for on-site usage in various applications, such as in food, farms, and the drug industry.
NASA Astrophysics Data System (ADS)
Cohen, Stuart M.; Chalmers, Hannah L.; Webber, Michael E.; King, Carey W.
2011-04-01
This work analyses the carbon dioxide (CO2) capture system operation within the Electric Reliability Council of Texas (ERCOT) and Great Britain (GB) electric grids using a previously developed first-order hourly electricity dispatch and pricing model. The grids are compared in their 2006 configuration with the addition of coal-based CO2 capture retrofits and emissions penalties from 0 to 100 US dollars per metric ton of CO2 (USD/tCO2). CO2 capture flexibility is investigated by comparing inflexible CO2 capture systems to flexible ones that can choose between full- and zero-load CO2 capture depending on which operating mode has lower costs or higher profits. Comparing these two grids is interesting because they have similar installed capacity and peak demand, and both are isolated electricity systems with competitive wholesale electricity markets. However, differences in capacity mix, demand patterns, and fuel markets produce diverging behaviours of CO2 capture at coal-fired power plants. Coal-fired facilities are primarily base load in ERCOT for a large range of CO2 prices but are comparably later in the dispatch order in GB and consequently often supply intermediate load. As a result, the ability to capture CO2 is more important for ensuring dispatch of coal-fired facilities in GB than in ERCOT when CO2 prices are high. In GB, higher overall coal prices mean that CO2 prices must be slightly higher than in ERCOT before the emissions savings of CO2 capture offset capture energy costs. However, once CO2 capture is economical, operating CO2 capture on half the coal fleet in each grid achieves greater emissions reductions in GB because the total coal-based capacity is 6 GW greater than in ERCOT. The market characteristics studied suggest greater opportunity for flexible CO2 capture to improve operating profits in ERCOT, but profit improvements can be offset by a flexibility cost penalty.
NASA Astrophysics Data System (ADS)
Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.
2016-03-01
Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are taken into account, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL (Lund-Potsdam-Jena managed Land) after an extensive development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries such as Syria, Egypt and Turkey have a higher savings potential than others. Currently some crops, especially sugar cane and agricultural trees, consume on average more irrigation water per hectare than annual crops. Different crops show different magnitudes of changes in net irrigation requirements due to climate change, the increases being most pronounced in agricultural trees. The Mediterranean area as a whole may face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (4 and 18 % with 2 °C global warming combined with the full CO2-fertilization effect and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the southern and eastern Mediterranean. However, improved irrigation technologies and conveyance systems have a large water saving potential, especially in the eastern Mediterranean, and may be able to compensate to some degree for the increases due to climate change and population growth. Both subregions would need around 35 % more water than today if they implement some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. Nevertheless, water scarcity may pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios. The results presented in this study point to the necessity of performing further research on climate-friendly agro-ecosystems in order to assess, on the one hand, their degree of resilience to climate shocks and, on the other hand, their adaptation potential when confronted with higher temperatures and changes in water availability.
CO2 fluxes from diffuse degassing in Italy
NASA Astrophysics Data System (ADS)
Cardellini, C.; Chiodini, G.; Frondini, F.; Caliro, S.
2016-12-01
Central and southern Italy are affected by an intense process of CO2 Earth degassing from both active volcanoes, and tectonically active areas. Regional scale studies, based on C mass balance of groundwater of regional aquifers in not volcanically active areas, highlighted the presence of two large CO2 degassing structures that, for magnitude and the geochemical-isotopic features, were related to a regional process of mantle degassing. Quantitative estimates provided a CO2 flux of 9 Mt/y for the region (62000 km2). Besides the magnitude of the process, a strong link between the deep CO2 degassing and the seismicity of the region and a strict correlation between migration of deep CO2-rich fluids and the heat flux have been highlighted. In addition, the region is also characterised by the presence of many cold gas emissions where deeply derived CO2 is released by vents and soil diffuse degassing areas. Both direct CO2 expulsion at the surface and C-rich groundwater are different manifestations of the same process, in fact, the deeply produced gas can be dissolved by groundwater or emitted directly to the atmosphere depending on the gas flux rate, and the geological-structural and hydrogeological settings. Quantitative estimations of the CO2 fluxes are available only for a limited number ( 30) of the about 270 catalogued gas manifestations allowing an estimations of a CO2 flux of 1.4 Mt/y. Summing the two estimates the non-volcanic CO2 flux from the region results globally relevant, being from 2 to 10% of the estimated present-day global CO2 discharge from subaerial volcanoes. Large amounts of CO2 is also discharged by soil diffuse degassing in volcanic-hydrothermal systems. Specific surveys at Solfatara of Pozzuoli (Campi Flegrei Caldera) pointed out the relevance of this process. CO2 diffuse degassing at Solfatara, measured since 1998 shows a persistent CO2 flux of 1300 t/d (± 390 t/d), a flux comparable to an erupting volcano. The quantification of diffuse CO2 degassing in Italy points out the relevance of non-volcanic CO2 degassing and of soil degassing from volcanoes, suggesting that the actual underestimation of the global CO2 degassing, may arise also from the lack of specific and systematic studies of the numerous "degassing areas" of the world, that would contribute to better constrain the global CO2 budget.
Burnell, Owen W.; Connell, Sean D.; Irving, Andrew D.; Watling, Jennifer R.; Russell, Bayden D.
2014-01-01
Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3−. Currently, many marine primary producers use HCO3− for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to HCO3− pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also maintained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica was significantly reduced by AZ and TRIS, indicating utilization of HCO3−-uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth conditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration. The greater increase in photosynthesis (measured as O2 production) compared with the electron transport rate at forecasted CO2 concentration suggests that photosynthetic efficiency increased, possibly due to a decrease in photorespiration. Thus, it appears that the photosynthesis and growth of seagrasses reliant on energetically costly HCO3− acquisition, such as A. antarctica, might increase at forecasted CO2 concentrations. Greater growth might enhance the future prosperity and rehabilitation of these important habitat-forming plants, which have experienced declines of global significance. PMID:27293673
Burnell, Owen W; Connell, Sean D; Irving, Andrew D; Watling, Jennifer R; Russell, Bayden D
2014-01-01
Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3 (-). Currently, many marine primary producers use HCO3 (-) for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to HCO3 (-) pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also maintained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica was significantly reduced by AZ and TRIS, indicating utilization of HCO3 (-)-uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth conditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration. The greater increase in photosynthesis (measured as O2 production) compared with the electron transport rate at forecasted CO2 concentration suggests that photosynthetic efficiency increased, possibly due to a decrease in photorespiration. Thus, it appears that the photosynthesis and growth of seagrasses reliant on energetically costly HCO3 (-) acquisition, such as A. antarctica, might increase at forecasted CO2 concentrations. Greater growth might enhance the future prosperity and rehabilitation of these important habitat-forming plants, which have experienced declines of global significance.
Exploring the impact of determining factors behind CO2 emissions in China: A CGE appraisal.
Xiao, Bowen; Niu, Dongxiao; Wu, Han
2017-03-01
Along with the arrival of the post-Kyoto Protocol era, the Chinese government faces ever greater pressure to reduce greenhouse gases (GHGs). Hence, this paper aims to discuss the drivers of carbon dioxide (CO 2 ) emissions and their impact on society as a whole. First, we analyzed the background and overall situations of CO 2 emissions in China. Then, we reviewed previous studies to explore the determinants behind China's CO 2 emissions. It is widely acknowledged that energy efficiency, energy mix, and economy structure are three key factors contributing to CO 2 emissions. To explore the impacts of those three factors on the economy and CO 2 emissions, we established a computable general equilibrium (CGE) model. The following results were found: (1) The decline of a secondary industry can cause an emission reduction effect, but this is at the expense of the gross domestic product (GDP), whereas the development of a tertiary industry can boost the economy and help to reduce CO 2 emissions. (2) Cutting coal consumption can contribute significantly to emission reduction, which is accompanied by a great loss in the whole economy. (3) Although the energy efficiency improvement plays a positive role in promoting economic development, a backfire effect can weaken the effects of emission reduction and energy savings. Copyright © 2016 Elsevier B.V. All rights reserved.
Tripathy, P P
2015-03-01
Drying experiments have been performed with potato cylinders and slices using a laboratory scale designed natural convection mixed-mode solar dryer. The drying data were fitted to eight different mathematical models to predict the drying kinetics, and the validity of these models were evaluated statistically through coefficient of determination (R(2)), root mean square error (RMSE) and reduced chi-square (χ (2)). The present investigation showed that amongst all the mathematical models studied, the Modified Page model was in good agreement with the experimental drying data for both potato cylinders and slices. A mathematical framework has been proposed to estimate the performance of the food dryer in terms of net CO2 emissions mitigation potential along with unit cost of CO2 mitigation arising because of replacement of different fossil fuels by renewable solar energy. For each fossil fuel replaced, the gross annual amount of CO2 as well as net amount of annual CO2 emissions mitigation potential considering CO2 emissions embodied in the manufacture of mixed-mode solar dryer has been estimated. The CO2 mitigation potential and amount of fossil fuels saved while drying potato samples were found to be the maximum for coal followed by light diesel oil and natural gas. It was inferred from the present study that by the year 2020, 23 % of CO2 emissions can be mitigated by the use of mixed-mode solar dryer for drying of agricultural products.
Marchand, Jérémy; Martineau, Estelle; Guitton, Yann; Dervilly-Pinel, Gaud; Giraudeau, Patrick
2017-02-01
Multi-dimensional NMR is an appealing approach for dealing with the challenging complexity of biological samples in metabolomics. This article describes how spectroscopists have recently challenged their imagination in order to make 2D NMR a powerful tool for quantitative metabolomics, based on innovative pulse sequences combined with meticulous analytical chemistry approaches. Clever time-saving strategies have also been explored to make 2D NMR a high-throughput tool for metabolomics, relying on alternative data acquisition schemes such as ultrafast NMR. Currently, much work is aimed at drastically boosting the NMR sensitivity thanks to hyperpolarisation techniques, which have been used in combination with fast acquisition methods and could greatly expand the application potential of NMR metabolomics. Copyright © 2016 Elsevier Ltd. All rights reserved.
On the economic growth theory with Kadiyala production function
NASA Astrophysics Data System (ADS)
Grassetti, Francesca; Hunanyan, Gevorg
2018-05-01
We study the discrete time neoclassical one-sector growth model with differential savings while assuming Kadiyala production function which shows a variable elasticity of substitution symmetric with respect to capital and labor. We show that, if workers save more than shareholders, then the growth path is bounded from above and the boundary is independent from the savings rate of shareholders. Moreover, the growth path for non-developed countries is influenced only by the savings rate of shareholders while level of capital per capita of developed economies is influenced by the savings rate of workers. We also show that multistability phenomena may occur so that the model is able to explain co-existence of under-developed, developing and developed economies. We prove that fluctuations and complex dynamics may arise when the elasticity of substitution between production factors is lower than one and shareholders save more than workers.
Quantitative analysis of H2O and CO2 in cordierite using polarized FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Della Ventura, Giancarlo; Radica, Francesco; Bellatreccia, Fabio; Cavallo, Andrea; Capitelli, Francesco; Harley, Simon
2012-11-01
We report a FTIR (Fourier transform infrared) study of a set of cordierite samples from different occurrence and with different H2O/CO2 content. The specimens were fully characterized by a combination of techniques including optical microscopy, single-crystal X-ray diffraction, EMPA (electron microprobe analysis), SIMS (secondary ion mass spectrometry), and FTIR spectroscopy. All cordierites are orthorhombic Ccmm. According to the EMPA data, the Si/Al ratio is always close to 5:4; X Mg ranges from 76.31 to 96.63, and additional octahedral constituents occur in very small amounts. Extraframework K and Ca are negligible, while Na reaches the values up to 0.84 apfu. SIMS shows H2O up to 1.52 and CO2 up to 1.11 wt%. Optically transparent single crystals were oriented using the spindle stage and examined by FTIR micro-spectroscopy under polarized light. On the basis of the polarizing behaviour, the observed bands were assigned to water molecules in two different orientations and to CO2 molecules in the structural channels. The IR spectra also show the presence of small amounts of CO in the samples. Refined integrated molar absorption coefficients were calibrated for the quantitative microanalysis of both H2O and CO2 in cordierite based on single-crystal polarized-light FTIR spectroscopy. For H2O the integrated molar coefficients for type I and type II water molecules (ν3 modes) were calculated separately and are [I]ɛ = 5,200 ± 700 l mol-1 cm-2 and [II]ɛ = 13,000 ± 3,000 l mol-1 cm-2, respectively. For CO2 the integrated coefficient is \\varepsilon_{{{{CO}}_{ 2} }} = 19,000 ± 2,000 l mol-1 cm-2.
Bae, Jeong Mo; Kim, Jung Ho; Oh, Hyeon Jeong; Park, Hye Eun; Lee, Tae Hun; Cho, Nam-Yun; Kang, Gyeong Hoon
2017-02-01
Acetyl-CoA synthetase-2 is an emerging key enzyme for cancer metabolism, which supplies acetyl-CoA for tumor cells by capturing acetate as a carbon source under stressed conditions. However, implications of acetyl-CoA synthetase-2 in colorectal carcinoma may differ from other malignancies, because normal colonocytes use short-chain fatty acids as an energy source, which are supplied by fermentation of the intestinal flora. Here we analyzed acetyl-CoA synthetase-2 mRNA expression by reverse-transcription quantitative PCR in paired normal mucosa and tumor tissues of 12 colorectal carcinomas, and subsequently evaluated acetyl-CoA synthetase-2 protein expression by immunohistochemistry in 157 premalignant colorectal lesions, including 60 conventional adenomas and 97 serrated polyps, 1,106 surgically resected primary colorectal carcinomas, and 23 metastatic colorectal carcinomas in the liver. In reverse-transcription quantitative PCR analysis, acetyl-CoA synthetase-2 mRNA expression was significantly decreased in tumor tissues compared with corresponding normal mucosa tissues. In acetyl-CoA synthetase-2 immunohistochemistry analysis, all 157 colorectal polyps showed moderate-to-strong expression of acetyl-CoA synthetase-2. However, cytoplasmic acetyl-CoA synthetase-2 expression was downregulated (acetyl-CoA synthetase-2 low expression) in 771 (69.7%) of 1,106 colorectal carcinomas and 21 (91.3%) of 23 metastatic lesions. The colorectal carcinomas with acetyl-CoA synthetase-2-low expression were significantly associated with advanced TNM stage, poor differentiation, and frequent tumor budding. Regarding the molecular aspect, acetyl-CoA synthetase-2-low expression exhibited a tendency of frequent KRT7 expression and decreased KRT20 and CDX2 expression. In survival analysis, acetyl-CoA synthetase-2-low expression was an independent prognostic factor for poor 5-year progression-free survival (hazard ratio, 1.39; 95% confidence interval, 1.08-1.79; P=0.01). In conclusion, these findings suggest that downregulation of acetyl-CoA synthetase-2 expression is a metabolic hallmark of tumor progression and aggressive behavior in colorectal carcinoma.
Lobaccaro, Peter; Singh, Meenesh R; Clark, Ezra Lee; Kwon, Youngkook; Bell, Alexis T; Ager, Joel W
2016-09-29
In the last few years, there has been increased interest in electrochemical CO 2 reduction (CO2R). Many experimental studies employ a membrane separated, electrochemical cell with a mini H-cell geometry to characterize CO2R catalysts in aqueous solution. This type of electrochemical cell is a mini-chemical reactor and it is important to monitor the reaction conditions within the reactor to ensure that they are constant throughout the study. We show that operating cells with high catalyst surface area to electrolyte volume ratios (S/V) at high current densities can have subtle consequences due to the complexity of the physical phenomena taking place on electrode surfaces during CO2R, particularly as they relate to the cell temperature and bulk electrolyte CO 2 concentration. Both effects were evaluated quantitatively in high S/V cells using Cu electrodes and a bicarbonate buffer electrolyte. Electrolyte temperature is a function of the current/total voltage passed through the cell and the cell geometry. Even at a very high current density, 20 mA cm -2 , the temperature increase was less than 4 °C and a decrease of <10% in the dissolved CO 2 concentration is predicted. In contrast, limits on the CO 2 gas-liquid mass transfer into the cells produce much larger effects. By using the pH in the cell to measure the CO 2 concentration, significant undersaturation of CO 2 is observed in the bulk electrolyte, even at more modest current densities of 10 mA cm -2 . Undersaturation of CO 2 produces large changes in the faradaic efficiency observed on Cu electrodes, with H 2 production becoming increasingly favored. We show that the size of the CO 2 bubbles being introduced into the cell is critical for maintaining the equilibrium CO 2 concentration in the electrolyte, and we have designed a high S/V cell that is able to maintain the near-equilibrium CO 2 concentration at current densities up to 15 mA cm -2 .
Lobaccaro, Peter; Singh, Meenesh R.; Clark, Ezra Lee; ...
2016-09-06
In the last few years, there has been increased interest in electrochemical CO 2 reduction (CO2R). Many experimental studies employ a membrane separated, electrochemical cell with a mini H-cell geometry to characterize CO2R catalysts in aqueous solution. This type of electrochemical cell is a mini-chemical reactor and it is important to monitor the reaction conditions within the reactor to ensure that they are constant throughout the study. Here we show that operating cells with high catalyst surface area to electrolyte volume ratios (S/V) at high current densities can have subtle consequences due to the complexity of the physical phenomena takingmore » place on electrode surfaces during CO2R, particularly as they relate to the cell temperature and bulk electrolyte CO 2 concentration. Both effects were evaluated quantitatively in high S/V cells using Cu electrodes and a bicarbonate buffer electrolyte. Electrolyte temperature is a function of the current/total voltage passed through the cell and the cell geometry. Even at a very high current density, 20 mA cm -2 , the temperature increase was less than 4 °C and a decrease of < 10% in the dissolved CO 2 concentration is predicted. In contrast, limits on the CO 2 gas-liquid mass transfer into the cells produce much larger effects. By using the pH in the cell to measure the CO 2 concentration, significant undersaturation of CO 2 is observed in the bulk electrolyte, even at more modest current densities of 10 mA cm -2 . Undersaturation of CO 2 produces large changes in the faradaic efficiency observed on Cu electrodes, with H 2 production becoming increasingly favored. Finally, we show that the size of the CO 2 bubbles being introduced into the cell is critical for maintaining the equilibrium CO 2 concentration in the electrolyte, and we have designed a high S/V cell that is able to maintain the near-equilibrium CO 2 concentration at current densities up to 15 mA cm -2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobaccaro, Peter; Singh, Meenesh R.; Clark, Ezra Lee
In the last few years, there has been increased interest in electrochemical CO 2 reduction (CO2R). Many experimental studies employ a membrane separated, electrochemical cell with a mini H-cell geometry to characterize CO2R catalysts in aqueous solution. This type of electrochemical cell is a mini-chemical reactor and it is important to monitor the reaction conditions within the reactor to ensure that they are constant throughout the study. Here we show that operating cells with high catalyst surface area to electrolyte volume ratios (S/V) at high current densities can have subtle consequences due to the complexity of the physical phenomena takingmore » place on electrode surfaces during CO2R, particularly as they relate to the cell temperature and bulk electrolyte CO 2 concentration. Both effects were evaluated quantitatively in high S/V cells using Cu electrodes and a bicarbonate buffer electrolyte. Electrolyte temperature is a function of the current/total voltage passed through the cell and the cell geometry. Even at a very high current density, 20 mA cm -2 , the temperature increase was less than 4 °C and a decrease of < 10% in the dissolved CO 2 concentration is predicted. In contrast, limits on the CO 2 gas-liquid mass transfer into the cells produce much larger effects. By using the pH in the cell to measure the CO 2 concentration, significant undersaturation of CO 2 is observed in the bulk electrolyte, even at more modest current densities of 10 mA cm -2 . Undersaturation of CO 2 produces large changes in the faradaic efficiency observed on Cu electrodes, with H 2 production becoming increasingly favored. Finally, we show that the size of the CO 2 bubbles being introduced into the cell is critical for maintaining the equilibrium CO 2 concentration in the electrolyte, and we have designed a high S/V cell that is able to maintain the near-equilibrium CO 2 concentration at current densities up to 15 mA cm -2.« less
Carbonate-based zeolitic imidazolate framework for highly selective CO2 capture.
Basnayake, Sajani A; Su, Jie; Zou, Xiadong; Balkus, Kenneth J
2015-02-16
In this study, we report the formation of a new crystal structure, ZIF-CO3-1, which results from the reaction of Zn(2+), 2-methylimidazole, and carbonate. ZIF-CO3-1 can be synthesized solvothermally in N,N-dimethylformamide (DMF)/water (H2O) or by utilizing of CO2 gas at various temperatures in DMF/H2O or H2O. This reaction selectively consumes CO2 because CO2 is incorporated in the ZIF as carbonate. CO2 can be quantitatively released by acidifying the ZIF. Powder X-ray diffraction, single-crystal X-ray diffraction, FTIR spectroscopy, scanning electron microscopy, elemental analysis, and thermogravimetric analysis were used to characterize the ZIF structure. ZIF-CO3-1 (chemical formula C9H10N4O3Zn2), crystallizes in the orthorhombic crystal system with noncentrosymmetric space group Pba2.
Absorber modeling for NGCC carbon capture with aqueous piperazine.
Zhang, Yue; Freeman, Brice; Hao, Pingjiao; Rochelle, Gary T
2016-10-20
A hybrid system combining amine scrubbing with membrane technology for carbon capture from natural gas combined cycle (NGCC) power plants is proposed in this paper. In this process, the CO 2 in the flue gas can be enriched from 4% to 18% by the membrane, and the amine scrubbing system will have lower capture costs. Aqueous piperazine (PZ) is chosen as the solvent. Different direct contact cooler (DCC) options, multiple absorber operating conditions, optimal intercooling designs, and different cooling options have been evaluated across a wide range of inlet CO 2 . Amine scrubbing without DCC is a superior design for NGCC carbon capture. Pump-around cooling at the bottom of the absorber can effectively manage the temperature of the hot flue gas, and still be effective for CO 2 absorption. The absorber gas inlet must be designed to avoid excessive localized temperature and solvent evaporation. When the inlet CO 2 increases from 4% to 18%, total absorber CAPEX decreases by 60%; another 10% of the total absorber CAPEX can be saved by eliminating the DCC. In-and-out intercooling works well for high CO 2 , while pump-around intercooling is more effective for low CO 2 . Dry cooling requires more packing and energy but appears to be technically and economically feasible if cooling water availability is limited.
Styles, David; Börjesson, Pål; D'Hertefeldt, Tina; Birkhofer, Klaus; Dauber, Jens; Adams, Paul; Patil, Sopan; Pagella, Tim; Pettersson, Lars B; Peck, Philip; Vaneeckhaute, Céline; Rosenqvist, Håkan
2016-12-01
Whilst life cycle assessment (LCA) boundaries are expanded to account for negative indirect consequences of bioenergy such as indirect land use change (ILUC), ecosystem services such as water purification sometimes delivered by perennial bioenergy crops are typically neglected in LCA studies. Consequential LCA was applied to evaluate the significance of nutrient interception and retention on the environmental balance of unfertilised energy willow planted on 50-m riparian buffer strips and drainage filtration zones in the Skåne region of Sweden. Excluding possible ILUC effects and considering oil heat substitution, strategically planted filter willow can achieve net global warming potential (GWP) and eutrophication potential (EP) savings of up to 11.9 Mg CO 2 e and 47 kg PO 4 e ha -1 year -1 , respectively, compared with a GWP saving of 14.8 Mg CO 2 e ha -1 year -1 and an EP increase of 7 kg PO 4 e ha -1 year -1 for fertilised willow. Planting willow on appropriate buffer and filter zones throughout Skåne could avoid 626 Mg year -1 PO 4 e nutrient loading to waters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konopacki, S.; Akbari, H.
2002-02-28
In 1997, the U.S. Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'' to quantify the potential benefits of Heat-Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling-energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective of investigating the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, LA; Sacramento, CA; and Salt Lake City,more » UT. Later two other cities, Chicago, IL and Houston, TX were added to the UHIPP. In an earlier report we summarized our efforts to calculate the annual energy savings, peak power avoidance, and annual CO2 reduction obtainable from the introduction of HIR strategies in the initial three cities. This report summarizes the results of our study for Chicago and Houston. In this analysis, we focused on three building types that offer the highest potential savings: single-family residence, office and retail store. Each building type was characterized in detail by vintage and system type (i.e., old and new building constructions, and gas and electric heat). We used the prototypical building characteristics developed earlier for each building type and simulated the impact of HIR strategies on building cooling- and heating-energy use and peak power demand using the DOE-2.1E model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on the building [direct effect], (3) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (4) combined strategies 1, 2, and 3 [direct and indirect effects]. We then estimated the total roof area of air-conditioned buildings in each city using readily obtainable data to calculate the metropolitan-wide impact of HIR strategies. The results show that in Chicago, potential annual energy savings of $30M could be realized by ratepayers from the combined direct and indirect effects of HIR strategies. Additionally, peak power avoidance is estimated at 400 MW and the reduction in annual carbon emissions at 58 ktC. In Houston, the potential annual energy savings are estimated at $82M, with an avoidance of 730 MW in peak power and a reduction in annual carbon emissions of 170 ktC.« less
Wu, Xiaoling; Yang, Miyi; Zeng, Haozhe; Xi, Xuefei; Zhang, Sanbing; Lu, Runhua; Gao, Haixiang; Zhou, Wenfeng
2016-11-01
In this study, a simple effervescence-assisted dispersive solid-phase extraction method was developed to detect fungicides in honey and juice. Most significantly, an innovative ionic-liquid-modified magnetic β-cyclodextrin/attapulgite sorbent was used because its large specific surface area enhanced the extraction capacity and also led to facile separation. A one-factor-at-a-time approach and orthogonal design were employed to optimize the experimental parameters. Under the optimized conditions, the entire extraction procedure was completed within 3 min. In addition, the calibration curves exhibited good linearity, and high enrichment factors were achieved for pure water and honey samples. For the honey samples, the extraction efficiencies for the target fungicides ranged from 77.0 to 94.3% with relative standard deviations of 2.3-5.44%. The detection and quantitation limits were in the ranges of 0.07-0.38 and 0.23-1.27 μg/L, respectively. Finally, the developed technique was successfully applied to real samples, and satisfactory results were achieved. This analytical technique is cost-effective, environmentally friendly, and time-saving. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy consumption and CO{sub 2} emissions in Iran, 2025
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirzaei, Maryam
Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO{sub 2} emissions. A system dynamic model was developed in this study to model the energy consumption and CO{sub 2} emission trends for Iran over 2000–2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO{sub 2} emissions in 2025 will reach 985more » million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO{sub 2} emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO{sub 2} emission outlines. - Highlights: • Creation of an energy consumption model using system dynamics. • The effect of different policies on energy consumption and emission reductions. • An ascending trend for the environmental costs caused by CO{sub 2} emissions is observed. • An urgent need for energy saving and emission reductions in Iran.« less
Grinstein, Amir; Kodra, Evan; Chen, Stone; Sheldon, Seth; Zik, Ory
2018-01-01
Individuals must have a quantitative understanding of the carbon footprint tied to their everyday decisions to make efficient sustainable decisions. We report research of the innumeracy of individuals as it relates to their carbon footprint. In three studies that varied in terms of scale and sample, respondents estimate the quantity of CO2 released when combusting a gallon of gasoline in comparison to several well-known metrics including food calories and travel distance. Consistently, respondents estimated the quantity of CO2 from gasoline compared to other metrics with significantly less accuracy while exhibiting a tendency to underestimate CO2. Such relative absence of carbon numeracy of even a basic consumption habit may limit the effectiveness of environmental policies and campaigns aimed at changing individual behavior. We discuss several caveats as well as opportunities for policy design that could aid the improvement of people's quantitative understanding of their carbon footprint.
NASA Astrophysics Data System (ADS)
Woolfrey, John R.; Avery, Mitchell A.; Doweyko, Arthur M.
1998-03-01
Two three-dimensional quantitative structure-activity relationship (3D-QSAR) methods, comparative molecular field analysis (CoMFA) and hypothetical active site lattice (HASL), were compared with respect to the analysis of a training set of 154 artemisinin analogues. Five models were created, including a complete HASL and two trimmed versions, as well as two CoMFA models (leave-one-out standard CoMFA and the guided-region selection protocol). Similar r2 and q2 values were obtained by each method, although some striking differences existed between CoMFA contour maps and the HASL output. Each of the four predictive models exhibited a similar ability to predict the activity of a test set of 23 artemisinin analogues, although some differences were noted as to which compounds were described well by either model.
The researches on energy sustainability in Northern China
NASA Astrophysics Data System (ADS)
Wang, Ping; Zhu, Zhiqiang; Zhang, Shuang
2018-06-01
Energy, which accounts for two-thirds of today's greenhouse gas emissions, is the key to reducing greenhouse gas emissions and slowing global warming. In this paper, the IPCC-recommended reference approach and scenario analysis were applied to evaluate dynamic change of the energy supply and energy-related carbon dioxide emissions within the period of 2000-2025 in Northern China (NC). The results show that energy importing reliance reached 85% in 2015 and the energy structure has become more diversified in NC. In addition, the per-capita CO2 emission is significantly higher while carbon intensity is lower than those of the national average. Under the LC scenario, CO2 emissions begin to fall for the first time in 2022. Hence, if Energy-Saving and Emission-Reduction strategy and regional planning for NC are implemented fully, NC will achieve the national emission reduction targets in 2025 and will have a large CO2 mitigation potential in the future.
Hypercapnia shortens emergence time from inhaled anesthesia in pigs.
Gopalakrishnan, Nishant A; Sakata, Derek J; Orr, Joseph A; McJames, Scott; Westenskow, Dwayne R
2007-04-01
Anesthetic clearance from the lungs and the circle rebreathing system can be maximized using hyperventilation and high fresh gas flows. However, the concomitant clearance of CO2 decreases PAco2, thereby decreasing cerebral blood flow and slowing the clearance of anesthetic from the brain. This study shows that in addition to hyperventilation, hypercapnia (CO2 infusion or rebreathing) is a significant factor in decreasing emergence time from inhaled anesthesia. We anesthetized seven pigs with 2 MACPIG of isoflurane and four with 2 MACPIG of sevoflurane. After 2 h, anesthesia was discontinued, and the animals were hyperventilated. The time to movement of multiple limbs was measured under hypocapnic (end-tidal CO2 = 22 mm Hg) and hypercapnic (end-tidal CO2 = 55 mm Hg) conditions. The time between turning off the vaporizer and to movement of multiple limbs was faster with hypercapnia during hyperventilation. Emergence time from isoflurane and sevoflurane anesthesia was shortened by an average of 65% with rebreathing or with the use of a CO2 controller (P < 0.05). Hypercapnia, along with hyperventilation, may be used clinically to decrease emergence time from inhaled anesthesia. These time savings might reduce drug costs. In addition, higher PAco2 during emergence may enhance respiratory drive and airway protection after tracheal extubation.
NASA Astrophysics Data System (ADS)
Seddiek, Ibrahim S.; Mosleh, Mosaad A.; Banawan, Adel A.
2013-12-01
The progress of economic globalization, the rapid growth of international trade, and the maritime transportation has played an increasingly significant role in the international supply chain. As a result, worldwide seaports have suffered from a central problem, which appears in the form of massive amounts of fuel consumed and exhaust gas fumes emitted from the ships while berthed. Many ports have taken the necessary precautions to overcome this problem, while others still suffer due to the presence of technical and financial constraints. In this paper, the barriers, interconnection standards, rules, regulations, power sources, and economic and environmental analysis related to ships, shore-side power were studied in efforts to find a solution to overcome his problem. As a case study, this paper investigates the practicability, costs and benefits of switching from onboard ship auxiliary engines to shore-side power connection for high-speed crafts called Alkahera while berthed at the port of Safaga, Egypt. The results provide the national electricity grid concept as the best economical selection with 49.03 percent of annual cost saving. Moreover, environmentally, it could achieve an annual reduction in exhaust gas emissions of CO2, CO, NO x , P.M, and SO2 by 276, 2.32, 18.87, 0.825 and 3.84 tons, respectively.
NASA Astrophysics Data System (ADS)
Plampin, Michael R.; Lassen, Rune N.; Sakaki, Toshihiro; Porter, Mark L.; Pawar, Rajesh J.; Jensen, Karsten H.; Illangasekare, Tissa H.
2014-12-01
A primary concern for geologic carbon storage is the potential for leakage of stored carbon dioxide (CO2) into the shallow subsurface where it could degrade the quality of groundwater and surface water. In order to predict and mitigate the potentially negative impacts of CO2 leakage, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2 concentration in the flowing water, the distance between the heterogeneity and the leakage location, and some fundamental properties of the porous media. Results also show that interfaces where a less permeable material overlies a more permeable material affect gas phase evolution more significantly than interfaces with the opposite layering.
NASA Astrophysics Data System (ADS)
Cory, Bradley S.
The reEnergize Program conducted 957 energy upgrades in Omaha Nebraska from July 2010 to September 30th 2013, through a government grant within the Better Buildings Neighborhood Program. Projected program savings were provided upon program completion but it was unknown how effective the program was at actually reducing energy consumption in the homes that were upgraded. The following research report uses a PRISM analysis to remove the effect of weather and compare the actual pre and post utility usage rates to determine the actual effectiveness of the program. The housing characteristics, and individual energy upgrades were analyzed to see if any patterns or trends could be identified between consumption savings and housing type and specific upgrade measure. The results of the study showed that the program did induce savings but by much less than the engineering estimates predicted. It is likely that housing characteristics and upgrade measures play a role in inducing consumption savings but homeowner behavior is a stronger factor that influences savings.
DOE-GO-14154-1 OHIO FINAL report Velocys 30Sept08
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terry J. Mazanec
2008-09-30
The overall goal of the OHIO project was to develop a commercially viable high intensity process to produce ethylene by controlled catalytic reaction of ethane with oxygen in a microchannel reactor. Microchannel technology provides a breakthrough solution to the challenges identified in earlier development work on catalytic ethane oxidation. Heat and mass transfer limitations at the catalyst surface create destructively high temperatures that are responsible for increased production of waste products (CO, CO2, and CH4). The OHIO project focused on microscale energy and mass transfer management, designed to alleviate these transport limitations, thereby improving catalyst selectivity and saving energy-rich feedstock.more » The OHIO project evaluated ethane oxidation in small scale microchannel laboratory reactors including catalyst test units, and full commercial length single- and multi-channel reactors. Small scale catalyst and single channel results met target values for ethylene yields, demonstrating that the microchannel concept improves mass and heat transport compared to conventional reactors and results in improved ethylene yield. Earlier economic sensitivity studies of ethane oxidation processes suggested that only modest improvements were necessary to provide a system that provides significant feedstock, energy, and capital benefits compared to conventional steam ethane cracking. The key benefit derived from the OHIO process is energy savings. Ethylene production consumes more energy than any other U.S. chemical process.1 The OHIO process offers improved feedstock utilization and substantial energy savings due to a novel reaction pathway and the unique abilities of microchannel process technology to control the reaction temperature and other critical process parameters. Based on projected economic benefits of the process, the potential energy savings could reach 150 trillion Btu/yr by the year 2020, which is the equivalent of over 25 million barrels of oil.« less
Estimating geological CO2 storage security to deliver on climate mitigation.
Alcalde, Juan; Flude, Stephanie; Wilkinson, Mark; Johnson, Gareth; Edlmann, Katriona; Bond, Clare E; Scott, Vivian; Gilfillan, Stuart M V; Ogaya, Xènia; Haszeldine, R Stuart
2018-06-12
Carbon capture and storage (CCS) can help nations meet their Paris CO 2 reduction commitments cost-effectively. However, lack of confidence in geologic CO 2 storage security remains a barrier to CCS implementation. Here we present a numerical program that calculates CO 2 storage security and leakage to the atmosphere over 10,000 years. This combines quantitative estimates of geological subsurface CO 2 retention, and of surface CO 2 leakage. We calculate that realistically well-regulated storage in regions with moderate well densities has a 50% probability that leakage remains below 0.0008% per year, with over 98% of the injected CO 2 retained in the subsurface over 10,000 years. An unrealistic scenario, where CO 2 storage is inadequately regulated, estimates that more than 78% will be retained over 10,000 years. Our modelling results suggest that geological storage of CO 2 can be a secure climate change mitigation option, but we note that long-term behaviour of CO 2 in the subsurface remains a key uncertainty.
Benner, W.H.
1984-05-08
An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.
Benner, William H.
1986-01-01
An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.
How does carbon dioxide permeate cell membranes? A discussion of concepts, results and methods
Endeward, Volker; Al-Samir, Samer; Itel, Fabian; Gros, Gerolf
2013-01-01
We review briefly how the thinking about the permeation of gases, especially CO2, across cell and artificial lipid membranes has evolved during the last 100 years. We then describe how the recent finding of a drastic effect of cholesterol on CO2 permeability of both biological and artificial membranes fundamentally alters the long-standing idea that CO2—as well as other gases—permeates all membranes with great ease. This requires revision of the widely accepted paradigm that membranes never offer a serious diffusion resistance to CO2 or other gases. Earlier observations of “CO2-impermeable membranes” can now be explained by the high cholesterol content of some membranes. Thus, cholesterol is a membrane component that nature can use to adapt membrane CO2 permeability to the functional needs of the cell. Since cholesterol serves many other cellular functions, it cannot be reduced indefinitely. We show, however, that cells that possess a high metabolic rate and/or a high rate of O2 and CO2 exchange, do require very high CO2 permeabilities that may not be achievable merely by reduction of membrane cholesterol. The article then discusses the alternative possibility of raising the CO2 permeability of a membrane by incorporating protein CO2 channels. The highly controversial issue of gas and CO2 channels is systematically and critically reviewed. It is concluded that a majority of the results considered to be reliable, is in favor of the concept of existence and functional relevance of protein gas channels. The effect of intracellular carbonic anhydrase, which has recently been proposed as an alternative mechanism to a membrane CO2 channel, is analysed quantitatively and the idea considered untenable. After a brief review of the knowledge on permeation of O2 and NO through membranes, we present a summary of the 18O method used to measure the CO2 permeability of membranes and discuss quantitatively critical questions that may be addressed to this method. PMID:24409149
Quantification of ikaite in Antarctic sea ice
NASA Astrophysics Data System (ADS)
Fischer, M.; Thomas, D. N.; Krell, A.; Nehrke, G.; Göttlicher, J.; Norman, L.; Riaux-Gobin, C.; Dieckmann, G. S.
2012-02-01
Calcium carbonate precipitation in sea ice can increase pCO2 during precipitation in winter and decrease pCO2 during dissolution in spring. CaCO3 precipitation in sea ice is thought to potentially drive significant CO2 uptake by the ocean. However, little is known about the quantitative spatial and temporal distribution of CaCO3 within sea ice. This is the first quantitative study of hydrous calcium carbonate, as ikaite, in sea ice and discusses its potential significance for the carbon cycle in polar oceans. Ice cores and brine samples were collected from pack and land fast sea ice between September and December 2007 during an expedition in the East Antarctic and another off Terre Adélie, Antarctica. Samples were analysed for CaCO3, Salinity, DOC, DON, Phosphate, and total alkalinity. A relationship between the measured parameters and CaCO3 precipitation could not be observed. We found calcium carbonate, as ikaite, mostly in the top layer of sea ice with values up to 126 mg ikaite per liter melted sea ice. This potentially represents a contribution between 0.12 and 9 Tg C to the annual carbon flux in polar oceans. The horizontal distribution of ikaite in sea ice was heterogenous. We also found the precipitate in the snow on top of the sea ice.
Bush, Joseph; Langley, Christopher A; Jenkins, Duncan; Johal, Jaspal; Huckerby, Clair
2017-12-27
This aim of this research was to characterise the breadth and volume of activity conducted by clinical pharmacists in general practice in Dudley Clinical Commissioning Group (CCG), and to provide quantitative estimates of both the savings in general practitioner (GP) time and the financial savings attributable to such activity. This descriptive observational study retrospectively analysed quantitative data collected by Dudley CCG concerning the activity of clinical pharmacists in GP practices during 2015. Over the 9-month period for which data were available, the 5.4 whole time equivalent clinical pharmacists operating in GP practices within Dudley CCG identified 23 172 interventions. Ninety-five per cent of the interventions identified were completed within the study period saving the CCG in excess of £1 000 000. During the 4 months for which resource allocation data were available, the clinical pharmacists saved 628 GP appointments plus an additional 647 h that GPs currently devote to medication review and the management of repeat prescribing. This research suggests that clinical pharmacists in general practice in Dudley CCG are able to deliver clinical interventions efficiently and in high volume. In doing so, clinical pharmacists were able to generate considerable financial returns on investment. Further work is recommended to examine the effectiveness and cost-effectiveness of clinical pharmacists in general practice in improving outcomes for patients. © 2017 Royal Pharmaceutical Society.
Nordeman, Patrik; Friis, Stig D; Andersen, Thomas L; Audrain, Hélène; Larhed, Mats; Skrydstrup, Troels; Antoni, Gunnar
2015-12-01
Herein, we present a new rapid, efficient, and low-cost radiosynthetic protocol for the conversion of (11) CO2 to (11) CO and its subsequent application in Pd-mediated reactions of importance for PET applications. This room-temperature methodology, using readily available chemical reagents, is carried out in simple glass vials, thus eliminating the need for expensive and specialized high-temperature equipment to access (11) CO. With this fast and near-quantitative conversion of (11) CO2 into (11) CO, aryl and heteroaryl iodides were easily converted into a broad selection of biologically active amides in radiochemical yields ranging from 29-84 %. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lövenklev, Maria; Artin, Ingrid; Hagberg, Oskar; Borch, Elisabeth; Holst, Elisabet; Rådström, Peter
2004-01-01
The effects of carbon dioxide, sodium chloride, and sodium nitrite on type B botulinum neurotoxin (BoNT/B) gene (cntB) expression in nonproteolytic Clostridium botulinum were investigated in a tryptone-peptone-yeast extract (TPY) medium. Various concentrations of these selected food preservatives were studied by using a complete factorial design in order to quantitatively study interaction effects, as well as main effects, on the following responses: lag phase duration (LPD), growth rate, relative cntB expression, and extracellular BoNT/B production. Multiple linear regression was used to set up six statistical models to quantify and predict these responses. All combinations of NaCl and NaNO2 in the growth medium resulted in a prolonged lag phase duration and in a reduction in the specific growth rate. In contrast, the relative BoNT/B gene expression was unchanged, as determined by the cntB-specific quantitative reverse transcription-PCR method. This was confirmed when we measured the extracellular BoNT/B concentration by an enzyme-linked immunosorbent assay. CO2 was found to have a major effect on gene expression when the cntB mRNA levels were monitored in the mid-exponential, late exponential, and late stationary growth phases. The expression of cntB relative to the expression of the 16S rRNA gene was stimulated by an elevated CO2 concentration; the cntB mRNA level was fivefold greater in a 70% CO2 atmosphere than in a 10% CO2 atmosphere. These findings were also confirmed when we analyzed the extracellular BoNT/B concentration; we found that the concentrations were 27 ng · ml−1 · unit of optical density−1 in the 10% CO2 atmosphere and 126 ng · ml−1 · unit of optical density−1 in the 70% CO2 atmosphere. PMID:15128553
In Situ Quantification of [Re(CO) 3] + by Fluorescence Spectroscopy in Simulated Hanford Tank Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branch, Shirmir D.; French, Amanda D.; Lines, Amanda M.
A pretreatment protocol is presented that allows for the quantitative conversion and subsequent in situ spectroscopic analysis of [Re(CO)3]+ species in simulated Hanford tank waste. The protocol encompasses adding a simulated waste sample containing the non-emissive [Re(CO)3]+ species to a developer solution that enables the rapid, quantitative conversion of the non-emissive species to a luminescent species which can then be detected spectroscopically. The [Re(CO)3]+ species concentration in an alkaline, simulated Hanford tank waste supernatant can be quantified by the standard addition method. In a test case, the [Re(CO)3]+ species was measured to be at a concentration of 38.9 µM, whichmore » was a difference of 2.01% from the actual concentration of 39.7 µM.« less
NASA Astrophysics Data System (ADS)
Berrezueta, E.; Ordóñez-Casado, B.; Quintana, L.
2015-08-01
The aim of this article is to describe and interpret qualitative and quantitative changes at rock matrix scale of Lower-Upper Cretaceous sandstones exposed to supercritical (SC) CO2 and brine. The effects of experimental injection of SC CO2 during the first injection phases were studied at rock matrix scale, in a potential deep sedimentary reservoir in Northern Spain (Utrillas unit, at the base of the Cenozoic Duero Basin). Experimental wet CO2 injection was performed in a reactor chamber under realistic conditions of deep saline formations (P ≈ 78 bar, T ≈ 38 °C and 24 h exposure time). After the experiment, exposed and non-exposed equivalent sample sets were compared with the aim of assessing possible changes due to the effect of the CO2-brine exposure. Optical microscopy (OpM) and scanning electron microscopy (SEM) aided by optical image analysis (OIA) were used to compare the rock samples and get qualitative and quantitative information about mineralogy, texture and porous network distribution. Chemical analyses were performed to refine the mineralogical information and to obtain whole rock geochemical data. Brine composition was also analysed before and after the experiment. The results indicate an evolution of the pore network (porosity increase ≈ 2 %). Intergranular quartz matrix detachment and partial removal from the rock sample (due to CO2 input/release dragging) are the main processes that may explain the porosity increase. Primary mineralogy (≈ 95 % quartz) and rock texture (heterogeneous sand with interconnected framework of micro-channels) are important factors that seem to enhance textural/mineralogical changes in this heterogeneous system. The whole rock and brine chemical analyses after interaction with SC CO2-brine do not present important changes in the mineralogical, porosity and chemical configuration of the rock with respect to initial conditions, ruling out relevant precipitation or dissolution at these early stages. These results, simulating the CO2 injection near the injection well during the first phases (24 h) indicate that, in this environment where CO2 displaces the brine, the mixture principally generates local mineralogical/textural re-adjustments due to physical detachment of quartz grains. Consequences deriving from these changes are variable. Possible porosity and permeability increases could facilitate further CO2 injection but textural re-adjustment could also affect the rock physically. However, it is not clear yet what effect the quartz (solid suspension) could provoke in more distant areas of the rock. Quartz could be transported in the fluid flow path and probably accumulated at pore throats.
NASA Astrophysics Data System (ADS)
Sakuraba, Y.; Kokado, S.; Hirayama, Y.; Furubayashi, T.; Sukegawa, H.; Li, S.; Takahashi, Y. K.; Hono, K.
2014-04-01
Anisotropic magnetoresistance (AMR) effect has been systematically investigated in various Heusler compounds Co2MnZ and Co2FeZ (Z = Al, Si, Ge, and Ga) epitaxial films and quantitatively summarized against the total valence electron number NV. It was found that the sign of AMR ratio is negative when NV is between 28.2 and 30.3, and turns positive when NV becomes below 28.2 and above 30.3, indicating that the Fermi level (EF) overlaps with the valence or conduction band edges of half-metallic gap at NV ˜ 28.2 or 30.3, respectively. We also find out that the magnitude of negative AMR ratio gradually increases with shifting of EF away from the gap edges, and there is a clear positive correlation between the magnitude of negative AMR ratio and magnetoresistive output of the giant magnetoresistive devices using the Heusler compounds. This indicates that AMR can be used as a facile way to optimize a composition of half-metallic Heusler compounds having a high spin-polarization at room temperature.
3D-QSAR analysis of MCD inhibitors by CoMFA and CoMSIA.
Pourbasheer, Eslam; Aalizadeh, Reza; Ebadi, Amin; Ganjali, Mohammad Reza
2015-01-01
Three-dimensional quantitative structure-activity relationship was developed for the series of compounds as malonyl-CoA decarboxylase antagonists (MCD) using the CoMFA and CoMSIA methods. The statistical parameters for CoMFA (q(2)=0.558, r(2)=0.841) and CoMSIA (q(2)= 0.615, r(2) = 0.870) models were derived based on 38 compounds as training set in the basis of the selected alignment. The external predictive abilities of the built models were evaluated by using the test set of nine compounds. From obtained results, the CoMSIA method was found to have highly predictive capability in comparison with CoMFA method. Based on the given results by CoMSIA and CoMFA contour maps, some features that can enhance the activity of compounds as MCD antagonists were introduced and used to design new compounds with better inhibition activity.
CO2 Mitigation Potential of Plug-in Hybrid Electric Vehicles larger than expected.
Plötz, P; Funke, S A; Jochem, P; Wietschel, M
2017-11-28
The actual contribution of plug-in hybrid and battery electric vehicles (PHEV and BEV) to greenhouse gas mitigation depends on their real-world usage. Often BEV are seen as superior as they drive only electrically and do not have any direct emissions during driving. However, empirical evidence on which vehicle electrifies more mileage with a given battery capacity is lacking. Here, we present the first systematic overview of empirical findings on actual PHEV and BEV usage for the US and Germany. Contrary to common belief, PHEV with about 60 km of real-world range currently electrify as many annual vehicles kilometres as BEV with a much smaller battery. Accordingly, PHEV recharged from renewable electricity can highly contribute to green house gas mitigation in car transport. Including the higher CO 2eq emissions during the production phase of BEV compared to PHEV, PHEV show today higher CO 2eq savings then BEVs compared to conventional vehicles. However, for significant CO 2eq improvements of PHEV and particularly of BEVs the decarbonisation of the electricity system should go on.
Al-Mulali, Usama; Tang, Chor Foon; Ozturk, Ilhan
2015-10-01
The purpose of this study is to explore the effect of financial development on CO2 emission in 129 countries classified by the income level. A panel CO2 emission model using urbanisation, GDP growth, trade openness, petroleum consumption and financial development variables that are major determinants of CO2 emission was constructed for the 1980-2011 period. The results revealed that the variables are cointegrated based on the Pedroni cointegration test. The dynamic ordinary least squares (OLS) and the Granger causality test results also show that financial development can improve environmental quality in the short run and long run due to its negative effect on CO2 emission. The rest of the determinants, especially petroleum consumption, are determined to be the major source of environmental damage in most of the income group countries. Based on the results obtained, the investigated countries should provide banking loans to projects and investments that can promote energy savings, energy efficiency and renewable energy to help these countries reduce environmental damage in both the short and long run.
NASA Astrophysics Data System (ADS)
Ambarita, H.
2018-03-01
The Government of Indonesia (GoI) has a strong commitment to the target of decreasing energy intensity and reducing Greenhouse gas emissions. One of the significant solutions to reach the target is increasing energy efficiency in the lighting system in the residential sector. The objective of this paper is twofold, to estimate the potency of energy saving and emission reduction from lighting in the residential sector. Literature related to the lighting system in Indonesia has been reviewed to provide sufficient data for the estimation of the energy saving and emission reduction. The results show that the in the year 2016, a total of 95.33 TWh of nationally produced electricity is used in the residential sector. This is equal to 44% of total produced electricity. The number of costumers is 64.78 million houses. The average number of lamps and average wattage of lamps used in Indonesia are 8.35 points and 13.8 W, respectively. The number of lighting and percentage of electricity used for lighting in the residential sector in Indonesia are 20.03 TWh (21.02 %) and 497 million lamps, respectively. The projection shows that in the year 2026 the total energy for lighting and number of lamps in the residential sector are 25.05 TWh and 619 million, respectively. By promoting the present technology of high efficient lamps (LED), the potency of energy saving and emission reduction in 2026 are 2.6 TWh and 2.1 million tons CO2eq, respectively.
Shilton, A N; Mara, D D; Craggs, R; Powell, N
2008-01-01
Waste stabilisation pond (WSP) technology offers some important advantages and interesting possibilities when viewed in the light of sustainable energy and carbon management. Pond systems stand out as having significant advantages due to simple construction; low (or zero) operating energy requirements; and the potential for bio-energy generation. Conventional WSP requires little or no electrical energy for aerobic treatment as a result of algal photosynthesis. Sunlight enables WSP to disinfect wastewaters very effectively without the need for any chemicals or electricity consumption and their associated CO(2) emissions. The energy and carbon emission savings gained over electromechanical treatment systems are immense. Furthermore, because algal photosynthesis consumes CO(2), WSP can be utilised as CO(2) scrubbers. The environmental and financial benefits of pond technology broaden further when considering the low-cost, energy production opportunities of anaerobic ponds and the potential of algae as a biofuel. As we assess future best practice in wastewater treatment technology, perhaps one of the greatest needs is an improved consideration of the carbon footprint and the implications of future increases in the cost of electricity and the value of biogas. (c) IWA Publishing 2008.
Carbon-Carbon Recuperators in Closed-Brayton-Cycle Space Power Systems
NASA Technical Reports Server (NTRS)
Barrett, Michael J.; Johnson, Paul K.
2006-01-01
The use of carbon-carbon (C-C) recuperators in closed-Brayton-cycle space power conversion systems was assessed. Recuperator performance was forecast based on notional thermodynamic cycle state values for planetary missions. Resulting thermal performance, mass and volume for plate-fin C-C recuperators were estimated and quantitatively compared with values for conventional offset-strip-fin metallic designs. Mass savings of 40-55% were projected for C-C recuperators with effectiveness greater than 0.9 and thermal loads from 25-1400 kWt. The smaller thermal loads corresponded with lower mass savings; however, at least 50% savings were forecast for all loads above 300 kWt. System-related material challenges and compatibility issues were also discussed.
Recycling of glass: accounting of greenhouse gases and global warming contributions.
Larsen, Anna W; Merrild, Hanna; Christensen, Thomas H
2009-11-01
Greenhouse gas (GHG) emissions related to recycling of glass waste were assessed from a waste management perspective. Focus was on the material recovery facility (MRF) where the initial sorting of glass waste takes place. The MRF delivers products like cullet and whole bottles to other industries. Two possible uses of reprocessed glass waste were considered: (i) remelting of cullet added to glass production; and (ii) re-use of whole bottles. The GHG emission accounting included indirect upstream emissions (provision of energy, fuels and auxiliaries), direct activities at the MRF and bottle-wash facility (combustion of fuels) as well as indirect downstream activities in terms of using the recovered glass waste in other industries and, thereby, avoiding emissions from conventional production. The GHG accounting was presented as aggregated global warming factors (GWFs) for the direct and indirect upstream and downstream processes, respectively. The range of GWFs was estimated to 0-70 kg CO(2)eq. tonne( -1) of glass waste for the upstream activities and the direct emissions from the waste management system. The GWF for the downstream effect showed some significant variation between the two cases. It was estimated to approximately -500 kg CO(2)-eq. tonne(- 1) of glass waste for the remelting technology and -1500 to -600 kg CO(2)-eq. tonne(-1) of glass waste for bottle re-use. Including the downstream process, large savings of GHG emissions can be attributed to the waste management system. The results showed that, in GHG emission accounting, attention should be drawn to thorough analysis of energy sources, especially electricity, and the downstream savings caused by material substitution.
NASA Astrophysics Data System (ADS)
Hashimoto, S.; Hamano, H.; Fujita, T.; Hori, H.
2008-12-01
Annex I parties of the Kyoto Protocol are facing even greater pressures to fulfill their commitment for GHG reduction as they enter the first commitment period of the Kyoto Protocol 2008-2012. In Japanese context, one such challenge is to reduce CO2 emissions from the household and business sectors because CO2 emissions from the both sectors has increased by 12% and 20% respectively since 1990 while the industry has achieved 21% of CO2 emissions reduction. Land use planning, which, either directly or indirectly, controls appropriate uses for land within jurisdictions, might play very important roles to deal with CO2 reductions from the household and business sectors. In this research, aiming at effective reductions of air- conditioning energy consumption and resultant CO2 emissions from the household and business sectors, the framework to design and evaluate land use planning was developed. The design and evaluation processes embraced in this framework consist of GIS database, technology and policy inventory for planning, one- dimensional urban canopy model which evaluate urban climate at neighborhood level and air-conditioning load calculation procedure. The GIS database provides spatial information of target areas such as land use, building use and road networks, which, then, helps design alternative land use plans. The technology and policy inventory includes various planning options ranging from those for land over control to those for building energy control, which, combined with the GIS database, serves for planning process. The urban canopy model derives vertical profiles of local climate, such as temperature and humidity, using the information of land use, building height and so on, aided by the GIS database. Vertical profiles of the urban climate are then utilized to derive air-conditioning load and associated CO2 emissions for each building located in target areas. The framework developed was applied to the coastal district of Kawasaki, Japan, with an area of 40 square kilometers, for August 2006, to explore effective combinations of technologies and policies for land use planning. Six alternative land use policies were designed, including BaU in which current land use continues, and were, then, evaluated to seek more effective alternatives. Our findings suggested that about 541 MWh power and 204 tons of CO2 emission be saved at maximum by greening building sites, introducing water retentive pavement and installing energy-saving technologies for buildings in an appropriate manner.
Kodra, Evan; Chen, Stone; Sheldon, Seth; Zik, Ory
2018-01-01
Individuals must have a quantitative understanding of the carbon footprint tied to their everyday decisions to make efficient sustainable decisions. We report research of the innumeracy of individuals as it relates to their carbon footprint. In three studies that varied in terms of scale and sample, respondents estimate the quantity of CO2 released when combusting a gallon of gasoline in comparison to several well-known metrics including food calories and travel distance. Consistently, respondents estimated the quantity of CO2 from gasoline compared to other metrics with significantly less accuracy while exhibiting a tendency to underestimate CO2. Such relative absence of carbon numeracy of even a basic consumption habit may limit the effectiveness of environmental policies and campaigns aimed at changing individual behavior. We discuss several caveats as well as opportunities for policy design that could aid the improvement of people’s quantitative understanding of their carbon footprint. PMID:29723206
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, D.E.
Preliminary analysis of two populations of Artemisia tridentata compared leaf chemical and physiological characteristics which influence herbivores. The proportion of sixteen of the volatile compounds differed significantly between the two populations; however, total yield of volatiles did not. This initial survey established the reliability of the procedure to quantitatively monitor plant responses to CO/sub 2/ enrichment and suggests that test samples be restricted to a single population. Four sesquiterpene lactones have been selected for the experimental quantitative HPLC analysis; all peaks have been assigned identities and have demonstrated high degree of reproducibility. Growth of Artemisia under high and low lightmore » at three CO/sub 2/ levels demonstrated that this species also undergoes a ''dilution'' of the leaf carbon content and is useful as test species for herbivory response to CO/sub 2/ induced effects. The initial experiment also showed that high irradiance is a necessary growth condition. 10 refs.« less
Harnessing natural ventilation benefits.
O'Leary, John
2013-04-01
Making sure that a healthcare establishment has a good supply of clean fresh air is an important factor in keeping patients, staff, and visitors, free from the negative effects of CO2 and other contaminants. John O'Leary of Trend Controls, a major international supplier of building energy management solutions (BEMS), examines the growing use of natural ventilation, and the health, energy-saving, and financial benefits, that it offers.
The green operating room: simple changes to reduce cost and our carbon footprint.
Wormer, Blair A; Augenstein, Vedra A; Carpenter, Christin L; Burton, Patrick V; Yokeley, William T; Prabhu, Ajita S; Harris, Beth; Norton, Sujatha; Klima, David A; Lincourt, Amy E; Heniford, B Todd
2013-07-01
Generating over four billion pounds of waste each year, the healthcare system in the United States is the second largest contributor of trash with one-third produced by operating rooms. Our objective is to assess improvement in waste reduction and recycling after implementation of a Green Operating Room Committee (GORC) at our institution. A surgeon and nurse-initiated GORC was formed with members from corporate leadership, nursing, anesthesia, and OR staff. Initiatives for recycling opportunities, reduction of energy and water use as well as solid waste were implemented and the results were recorded. Since formation of GORC in 2008, our OR has diverted 6.5 tons of medical waste. An effort to recycle all single-use devices was implemented with annual solid waste reduction of approximately 12,860 lbs. Disposable OR foam padding was replaced with reusable gel pads at greater than $50,000 per year savings. Over 500 lbs of previously discarded batteries were salvaged from the OR and donated to charity or redistributed in the hospital ($9,000 annual savings). A "Power Down" initiative to turn off all anesthesia and OR lights and equipment not in use resulted in saving $33,000 and 234.3 metric tons of CO2 emissions reduced per year. Converting from soap to alcohol-based waterless scrub demonstrated a potential saving of 2.7 million liters of water annually. Formation of an OR committee dedicated to ecological initiatives can provide a significant opportunity to improve health care's impact on the environment and save money.
NASA Astrophysics Data System (ADS)
Li, Yaofa; Kazemifar, Farzan; Blois, Gianluca; Christensen, Kenneth T.
2017-07-01
We present an experimental study of pore-scale flow dynamics of liquid CO2 and water in a two-dimensional heterogeneous porous micromodel, inspired by the structure of a reservoir rock, at reservoir-relevant conditions (80 bar, 21°C). The entire process of CO2 infiltration into a water-saturated micromodel was captured using fluorescence microscopy and the micro-PIV method, which together reveal complex fluid displacement patterns and abrupt changes in velocity. The CO2 front migrated through the resident water in an intermittent manner, forming dendritic structures, termed fingers, in directions along, normal to, and even opposing the bulk pressure gradient. Such characteristics indicate the dominance of capillary fingering through the micromodel. Velocity burst events, termed Haines jumps, were also captured in the heterogeneous micromodel, during which the local Reynolds number was estimated to be ˜21 in the CO2 phase, exceeding the range of validity of Darcy's law. Furthermore, these drainage events were observed to be cooperative (i.e., across multiple pores simultaneously), with the zone of influence of such events extending beyond tens of pores, confirming, in a quantitative manner, that Haines jumps are nonlocal phenomena. After CO2 completely breaks through the porous section, shear-induced circulations caused by flowing CO2 were also observed, in agreement with previous studies using a homogeneous porous micromodel. To our knowledge, this study is the first quantitative measurement that incorporates both reservoir-relevant conditions and rock-inspired heterogeneity, and thus will be useful for pore-scale model development and validation.
NASA Astrophysics Data System (ADS)
Zhu, Tieyuan; Ajo-Franklin, Jonathan B.; Daley, Thomas M.
2017-09-01
A continuous active source seismic monitoring data set was collected with crosswell geometry during CO2 injection at the Frio-II brine pilot, near Liberty, TX. Previous studies have shown that spatiotemporal changes in the P wave first arrival time reveal the movement of the injected CO2 plume in the storage zone. To further constrain the CO2 saturation, particularly at higher saturation levels, we investigate spatial-temporal changes in the seismic attenuation of the first arrivals. The attenuation changes over the injection period are estimated by the amount of the centroid frequency shift computed by local time-frequency analysis. We observe that (1) at receivers above the injection zone seismic attenuation does not change in a physical trend; (2) at receivers in the injection zone attenuation sharply increases following injection and peaks at specific points varying with distributed receivers, which is consistent with observations from time delays of first arrivals; then, (3) attenuation decreases over the injection time. The attenuation change exhibits a bell-shaped pattern during CO2 injection. Under Frio-II field reservoir conditions, White's patchy saturation model can quantitatively explain both the P wave velocity and attenuation response observed. We have combined the velocity and attenuation change data in a crossplot format that is useful for model-data comparison and determining patch size. Our analysis suggests that spatial-temporal attenuation change is not only an indicator of the movement and saturation of CO2 plumes, even at large saturations, but also can quantitatively constrain CO2 plume saturation when used jointly with seismic velocity.
Waste-to-Chemicals for a Circular Economy: The Case of Urea Production (Waste-to-Urea).
Antonetti, Elena; Iaquaniello, Gaetano; Salladini, Annarita; Spadaccini, Luca; Perathoner, Siglinda; Centi, Gabriele
2017-03-09
The economics and environmental impact of a new technology for the production of urea from municipal solid waste, particularly the residue-derived fuel (RdF) fraction, is analyzed. Estimates indicate a cost of production of approximately €135 per ton of urea (internal rate of return more than 10 %) and savings of approximately 0.113 tons of CH 4 and approximately 0.78 tons of CO 2 per ton of urea produced. Thus, the results show that this waste-to-urea (WtU) technology is both economically valuable and environmentally advantageous (in terms of saving resources and limiting carbon footprint) for the production of chemicals from municipal solid waste in comparison with both the production of urea with conventional technology (starting from natural gas) and the use of RdF to produce electrical energy (waste-to-energy). A further benefit is the lower environmental impact of the solid residue produced from RdF conversion. The further benefit of this technology is the possibility to realize distributed fertilizer production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A U.K. cost-benefit analysis of circles of support and accountability interventions.
Elliott, Ian A; Beech, Anthony R
2013-06-01
Circles of Support and Accountability (CoSA) aim to augment sex offender risk management at the point of community reentry by facilitating "Circles" of volunteers who provide support, guidance, and advice, while ensuring that the offender remains accountable for their actions. In this study, the authors provide (a) a rapid evidence assessment of the effectiveness of CoSA in reducing reoffending, and (b) a U.K. cost-benefit analysis for CoSA when compared to the criminal justice costs of reoffending. From the study analysis, the average cost of a "Circle" was estimated to be £11,303 per annum and appears to produce a 50% reduction in reoffending (sexual and nonsexual), as the estimated cost of reoffending was estimated to be £147,161 per offender, per annum. Based on a hypothetical cohort of 100 offenders--50 of whom receive CoSA and 50 of whom do not--investment in CoSA appears to provide a cost saving of £23,494 and a benefit-cost ratio of 1.04. Accounting for estimates that the full extent of the cost to society may be 5 to 10 times the tangible costs substantially increases estimated cost savings related to CoSA.
Co-control of urban air pollutants and greenhouse gases in Mexico City.
West, J Jason; Osnaya, Patricia; Laguna, Israel; Martínez, Julia; Fernández, Adrián
2004-07-01
This study addresses the synergies of mitigation measures to control urban air pollutant and greenhouse gas (GHG) emissions, in developing integrated "co-control" strategies for Mexico City. First, existing studies of emissions reduction measures--PROAIRE (the air quality plan for Mexico City) and separate GHG studies--are used to construct a harmonized database of options. Second, linear programming (LP) is developed and applied as a decision-support tool to analyze least-cost strategies for meeting co-control targets for multiple pollutants. We estimate that implementing PROAIRE measures as planned will reduce 3.1% of the 2010 metropolitan CO2 emissions, in addition to substantial local air pollutant reductions. Applying the LP, PROAIRE emissions reductions can be met at a 20% lower cost, using only the PROAIRE measures, by adjusting investments toward the more cost-effective measures; lower net costs are possible by including cost-saving GHG mitigation measures, but with increased investment. When CO2 emission reduction targets are added to PROAIRE targets, the most cost-effective solutions use PROAIRE measures for the majority of local pollutant reductions, and GHG measures for additional CO2 control. Because of synergies, the integrated planning of urban-global co-control can be beneficial, but we estimate that for Mexico City these benefits are often small.
Impact of Sustainable Cool Roof Technology on Building Energy Consumption
NASA Astrophysics Data System (ADS)
Vuppuluri, Prem Kiran
Highly reflective roofing systems have been analyzed over several decades to evaluate their ability to meet sustainability goals, including reducing building energy consumption and mitigating the urban heat island. Studies have isolated and evaluated the effects of climate, surface reflectivity, and roof insulation on energy savings, thermal load mitigation and also ameliorating the urban heat island. Other sustainable roofing systems, like green-roofs and solar panels have been similarly evaluated. The motivation for the present study is twofold: the first goal is to present a method for simultaneous evaluation and inter-comparison of multiple roofing systems, and the second goal is to quantitatively evaluate the realized heating and cooling energy savings associated with a white roof system compared to the reduction in roof-top heat flux. To address the first research goal a field experiment was conducted at the International Harvester Building located in Portland, OR. Thermal data was collected for a white roof, vegetated roof, and a solar panel shaded vegetated roof, and the heat flux through these roofing systems was compared against a control patch of conventional dark roof membrane. The second research goal was accomplished using a building energy simulation program to determine the impact of roof area and roof insulation on the savings from a white roof, in both Portland and Phoenix. The ratio of cooling energy savings to roof heat flux reduction from replacing a dark roof with a white roof was 1:4 for the month of July, and 1:5 annually in Portland. The COP of the associated chillers ranges from 2.8-4.2, indicating that the ratio of cooling energy savings to heat flux reduction is not accounted for solely by the COP of the chillers. The results of the building simulation indicate that based on energy savings alone, white roofs are not an optimal choice for Portland. The benefits associated with cooling energy savings relative to a black roof are offset by the winter-time penalty, and the net benefit from adopting white roof technology in Portland is small. That said, there are other potential benefits of white roofing such as impact on urban heat islands and roof life that must also be considered.
NASA Astrophysics Data System (ADS)
Berrezueta, E.; Ordóñez-Casado, B.; Quintana, L.
2016-01-01
The aim of this article is to describe and interpret qualitative and quantitative changes at rock matrix scale of lower-upper Cretaceous sandstones exposed to supercritical (SC) CO2 and brine. The effects of experimental injection of CO2-rich brine during the first injection phases were studied at rock matrix scale, in a potential deep sedimentary reservoir in northern Spain (Utrillas unit, at the base of the Cenozoic Duero Basin).
Experimental CO2-rich brine was exposed to sandstone in a reactor chamber under realistic conditions of deep saline formations (P ≈ 7.8 MPa, T ≈ 38 °C and 24 h exposure time). After the experiment, exposed and non-exposed equivalent sample sets were compared with the aim of assessing possible changes due to the effect of the CO
The petrographic study of contiguous sandstone samples (more external area of sample blocks) before and after CO2-rich brine injection indicates an evolution of the pore network (porosity increase ≈ 2 %). It is probable that these measured pore changes could be due to intergranular quartz matrix detachment and partial removal from the rock sample, considering them as the early features produced by the CO2-rich brine. Nevertheless, the whole rock and brine chemical analyses after interaction with CO2-rich brine do not present important changes in the mineralogical and chemical configuration of the rock with respect to initial conditions, ruling out relevant precipitation or dissolution at these early stages to rock-block scale. These results, simulating the CO2 injection near the injection well during the first phases (24 h) indicate that, in this environment where CO2 enriches the brine, the mixture principally generates local mineralogical/textural re-adjustments on the external area of the samples studied.
The application of OpM, SEM and optical image analysis have allowed an exhaustive characterization of the sandstones studied. The procedure followed, the porosity characterization and the chemical analysis allowed a preliminary approximation of the CO2-brine-rock interactions and could be applied to similar experimental injection tests.
Achieving Carbon Neutrality in the Global Aluminum Industry
NASA Astrophysics Data System (ADS)
Das, Subodh
2012-02-01
In the 21st century, sustainability is widely regarded as the new corporate culture, and leading manufacturing companies (Toyota, GE, and Alcoa) and service companies (Google and Federal Express) are striving towards carbon neutrality. The current carbon footprint of the global aluminum industry is estimated at 500 million metric tonnes carbon dioxide equivalent (CO2eq), representing about 1.7% of global emissions from all sources. For the global aluminum industry, carbon neutrality is defined as a state where the total "in-use" CO2eq saved from all products in current use, including incremental process efficiency improvements, recycling, and urban mining activities, equals the CO2eq expended to produce the global output of aluminum. This paper outlines an integrated and quantifiable plan for achieving "carbon neutrality" in the global aluminum industry by advocating five actionable steps: (1) increase use of "green" electrical energy grid by 8%, (2) reduce process energy needs by 16%, (3) deploy 35% of products in "in-use" energy saving applications, (4) divert 6.1 million metric tonnes/year from landfills, and (5) mine 4.5 million metric tonnes/year from aluminum-rich "urban mines." Since it takes 20 times more energy to make aluminum from bauxite ore than to recycle it from scrap, the global aluminum industry could set a reasonable, self-imposed energy/carbon neutrality goal to incrementally increase the supply of recycled aluminum by at least 1.05 metric tonnes for every tonne of incremental production via primary aluminum smelter capacity. Furthermore, the aluminum industry can and should take a global leadership position by actively developing internationally accepted and approved carbon footprint credit protocols.
Cimpan, Ciprian; Wenzel, Henrik
2013-07-01
Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical-biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinput waste, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3-9.5%, 1-18% and 1-8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full stream combustion. Sensitivity to assumptions regarding virgin plastic substitution was tested and was found to mostly favour plastic recovery. Copyright © 2013 Elsevier Ltd. All rights reserved.
Achieving waste to energy through sewage sludge gasification using hot slags: syngas production.
Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai
2015-06-15
To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400-800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*10(5) tons of standard coal and 1.74*10(6) tons of CO2, respectively.
Zhang, Shuqun; Hou, Bo; Yang, Huaiyu; Zuo, Zhili
2016-05-01
Acetylcholinesterase (AChE) is an important enzyme in the pathogenesis of Alzheimer's disease (AD). Comparative quantitative structure-activity relationship (QSAR) analyses on some huprines inhibitors against AChE were carried out using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR) methods. Three highly predictive QSAR models were constructed successfully based on the training set. The CoMFA, CoMSIA, and HQSAR models have values of r (2) = 0.988, q (2) = 0.757, ONC = 6; r (2) = 0.966, q (2) = 0.645, ONC = 5; and r (2) = 0.957, q (2) = 0.736, ONC = 6. The predictabilities were validated using an external test sets, and the predictive r (2) values obtained by the three models were 0.984, 0.973, and 0.783, respectively. The analysis was performed by combining the CoMFA and CoMSIA field distributions with the active sites of the AChE to further understand the vital interactions between huprines and the protease. On the basis of the QSAR study, 14 new potent molecules have been designed and six of them are predicted to be more active than the best active compound 24 described in the literature. The final QSAR models could be helpful in design and development of novel active AChE inhibitors.
The social inefficiency of regulating indirect land use change due to biofuels
NASA Astrophysics Data System (ADS)
Khanna, Madhu; Wang, Weiwei; Hudiburg, Tara W.; Delucia, Evan H.
2017-06-01
Efforts to reduce the indirect land use change (ILUC) -related carbon emissions caused by biofuels has led to inclusion of an ILUC factor as a part of the carbon intensity of biofuels in a Low Carbon Fuel Standard. While previous research has provided varying estimates of this ILUC factor, there has been no research examining the economic effects and additional carbon savings from including this factor in implementing a Low Carbon Fuel Standard. Here we show that inclusion of an ILUC factor in a national Low Carbon Fuel Standard led to additional abatement of cumulative emissions over 2007-2027 by 1.3 to 2.6% (0.6-1.1 billion mega-grams carbon-dioxide-equivalent (Mg CO2e-1) compared to those without an ILUC factor, depending on the ILUC factors utilized. The welfare cost to the US of this additional abatement ranged from $61 to $187 Mg CO2e-1 and was substantially greater than the social cost of carbon of $50 Mg CO2e-1.
Utilization of Integrated Assessment Modeling for determining geologic CO2 storage security
NASA Astrophysics Data System (ADS)
Pawar, R.
2017-12-01
Geologic storage of carbon dioxide (CO2) has been extensively studied as a potential technology to mitigate atmospheric concentration of CO2. Multiple international research & development efforts, large-scale demonstration and commercial projects are helping advance the technology. One of the critical areas of active investigation is prediction of long-term CO2 storage security and risks. A quantitative methodology for predicting a storage site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale projects where projects will require quantitative assessments of potential long-term liabilities. These predictions are challenging given that they require simulating CO2 and in-situ fluid movements as well as interactions through the primary storage reservoir, potential leakage pathways (such as wellbores, faults, etc.) and shallow resources such as groundwater aquifers. They need to take into account the inherent variability and uncertainties at geologic sites. This talk will provide an overview of an approach based on integrated assessment modeling (IAM) to predict long-term performance of a geologic storage site including, storage reservoir, potential leakage pathways and shallow groundwater aquifers. The approach utilizes reduced order models (ROMs) to capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. Applicability of the approach will be demonstrated through examples that are focused on key storage security questions such as what is the probability of leakage of CO2 from a storage reservoir? how does storage security vary for different geologic environments and operational conditions? how site parameter variability and uncertainties affect storage security, etc.
Fatichi, Simone; Leuzinger, Sebastian; Paschalis, Athanasios; Langley, J Adam; Donnellan Barraclough, Alicia; Hovenden, Mark J
2016-10-24
Increasing concentrations of atmospheric carbon dioxide are expected to affect carbon assimilation and evapotranspiration (ET), ultimately driving changes in plant growth, hydrology, and the global carbon balance. Direct leaf biochemical effects have been widely investigated, whereas indirect effects, although documented, elude explicit quantification in experiments. Here, we used a mechanistic model to investigate the relative contributions of direct (through carbon assimilation) and indirect (via soil moisture savings due to stomatal closure, and changes in leaf area index) effects of elevated CO 2 across a variety of ecosystems. We specifically determined which ecosystems and climatic conditions maximize the indirect effects of elevated CO 2 The simulations suggest that the indirect effects of elevated CO 2 on net primary productivity are large and variable, ranging from less than 10% to more than 100% of the size of direct effects. For ET, indirect effects were, on average, 65% of the size of direct effects. Indirect effects tended to be considerably larger in water-limited ecosystems. As a consequence, the total CO 2 effect had a significant, inverse relationship with the wetness index and was directly related to vapor pressure deficit. These results have major implications for our understanding of the CO 2 response of ecosystems and for global projections of CO 2 fertilization, because, although direct effects are typically understood and easily reproducible in models, simulations of indirect effects are far more challenging and difficult to constrain. Our findings also provide an explanation for the discrepancies between experiments in the total CO 2 effect on net primary productivity.
2017-01-01
Several reactions, known from other amine systems for CO2 capture, have been proposed for Lewatit R VP OC 1065. The aim of this molecular modeling study is to elucidate the CO2 capture process: the physisorption process prior to the CO2-capture and the reactions. Molecular modeling yields that the resin has a structure with benzyl amine groups on alternating positions in close vicinity of each other. Based on this structure, the preferred adsorption mode of CO2 and H2O was established. Next, using standard Density Functional Theory two catalytic reactions responsible for the actual CO2 capture were identified: direct amine and amine-H2O catalyzed formation of carbamic acid. The latter is a new type of catalysis. Other reactions are unlikely. Quantitative verification of the molecular modeling results with known experimental CO2 adsorption isotherms, applying a dual site Langmuir adsorption isotherm model, further supports all results of this molecular modeling study. PMID:29142339
Elliott, W J; Weir, D R
1999-09-01
The cost-effectiveness of each of the six hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors currently available was studied. For a cohort of patients between the ages of 60 and 85 years with coronary heart disease (CHD) who were taking atorvastatin, cerivastatin, fluvastatin, lovastatin, pravastatin, or simvastatin, the number of survivors, the annual direct cost per survivor, and the annual indirect cost saving per survivor associated with the predicted reduction in the rate of nonfatal myocardial infarction recurrences were projected. Percent reductions in excess mortality due to CHD were derived from the relative risks of cardiac mortality in treatment versus control groups in the Scandinavian Simvastatin Survival Study (4S). Doses necessary to provide a long-term 35.57% reduction in low-density- lipoprotein (LDL) cholesterol, as seen in 4S, were estimated. One-way sensitivity analyses were performed to assess the importance of the baseline assumptions. The cost per year of life saved ranged from $5,421 with atorvastatin to $15,073 with lovastatin. The patient's age at time of diagnosis of CHD had a major impact on the cost-effectiveness of the drugs; cost-effectiveness per year of life saved was higher for older patients than younger patients. The six currently marketed HMG-CoA reductase inhibitors varied widely in cost and effectiveness in producing reductions in the LDL-cholesterol concentrations that have been shown to prevent recurrent MI; there was an approximately threefold difference in the cost per year of life saved between the most cost-effective and least cost-effective agents.
Eco-efficiency evaluation of a smart window prototype.
Syrrakou, E; Papaefthimiou, S; Yianoulis, P
2006-04-15
An eco-efficiency analysis was conducted using indicators suitably defined to evaluate the performance of an electrochromic window acting as an energy saving component in buildings. Combining the indicators for various parameters (control scenario, expected lifetime, climatic type, purchase cost) significant conclusions are drawn for the development and the potential applications of the device compared to other commercial fenestration products. The reduction of the purchase cost (to 200 euros/m2) and the increase of the lifetime (above 15 years) are the two main targets for achieving both cost and environmental efficiency. An electrochromic device, implemented in cooling dominated areas and operated with an optimum control strategy for the maximum expected lifetime (25 years), can reduce the building energy requirements by 52%. Furthermore, the total energy savings provided will be 33 times more than the energy required for its production while the emission of 615 kg CO2 equivalent per electrochromic glazing unit can be avoided.
Experimental research on the application of HTAC in small-size heating furnace
NASA Astrophysics Data System (ADS)
Zhou, Yu; Qin, Chaokui; Yang, Jun; Chen, Zhiguang
2018-03-01
High temperature air combustion (HTAC) technology, which is also known as regenerative combustion technology, has realized energy saving, CO2 and NOx emissions reduction and low-noise combustion. It has been widely applied in various types of heating furnace and has achieved good energy-saving effect. However, there is little application of this technology in small-size furnace. In this paper, a small-size regenerative heating furnace was built in the laboratory and experiments were carried out on it. The result shows that, if the transport frequency was set to a group per min, the center temperature of processed workpiece at the rated conditions (i.e. burner power is 300 kW and switching time is 60s) reached 1133°C. And the efficiency of the heating furnace was 36.8%. Then the derived comprehensive heat transfer coefficient was 168 W/(m2˙°C).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik
2013-07-15
Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogasmore » and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full stream combustion. Sensitivity to assumptions regarding virgin plastic substitution was tested and was found to mostly favour plastic recovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, Jaideep; Lee, Jina; Lefantzi, Sophia
The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization.more » The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.« less
Li, Lianfu; Du, Zengfeng; Zhang, Xin; Xi, Shichuan; Wang, Bing; Luan, Zhendong; Lian, Chao; Yan, Jun
2018-01-01
Deep-sea carbon dioxide (CO 2 ) plays a significant role in the global carbon cycle and directly affects the living environment of marine organisms. In situ Raman detection technology is an effective approach to study the behavior of deep-sea CO 2 . However, the Raman spectral characteristics of CO 2 can be affected by the environment, thus restricting the phase identification and quantitative analysis of CO 2 . In order to study the Raman spectral characteristics of CO 2 in extreme environments (up to 300 ℃ and 30 MPa), which cover most regions of hydrothermal vents and cold seeps around the world, a deep-sea extreme environment simulator was developed. The Raman spectra of CO 2 in different phases were obtained with Raman insertion probe (RiP) system, which was also used in in situ Raman detection in the deep sea carried by remotely operated vehicle (ROV) "Faxian". The Raman frequency shifts and bandwidths of gaseous, liquid, solid, and supercritical CO 2 and the CO 2 -H 2 O system were determined with the simulator. In our experiments (0-300 ℃ and 0-30 MPa), the peak positions of the symmetric stretching modes of gaseous CO 2, liquid CO 2 , and supercritical CO 2 shift approximately 0.6 cm -1 (1387.8-1388.4 cm -1 ), 0.7 cm -1 (1385.5-1386.2 cm -1 ), and 2.5 cm -1 (1385.7-1388.2 cm -1 ), and those of the bending modes shift about 1.0 cm -1 (1284.7-1285.7 cm -1 ), 1.9 cm -1 (1280.1-1282.0 cm -1 ), and 4.4 cm -1 (1281.0-1285.4 cm -1 ), respectively. The Raman spectral characteristics of the CO 2 -H 2 O system were also studied under the same conditions. The peak positions of dissolved CO 2 varied approximately 4.5 cm -1 (1282.5-1287.0 cm -1 ) and 2.4 cm -1 (1274.4-1276.8 cm -1 ) for each peak. In comparison with our experiment results, the phases of CO 2 in extreme conditions (0-3000 m and 0-300 ℃) can be identified with the Raman spectra collected in situ. This qualitative research on CO 2 can also support the further quantitative analysis of dissolved CO 2 in extreme conditions.
USDA-ARS?s Scientific Manuscript database
Utilizing the abundant byproducts generated from processing of agricultural materials has sustainable and cost–saving potential benefits. In this work, Sunflower Head Residues (SHR) in 3 different compositions were introduced into biodegradable Poly(butylene adipate-co-terephthalate) (PBAT) matrices...
Cost-Effective Experiments on the Diffraction and Interference of Light.
ERIC Educational Resources Information Center
Sprigham, S. V.
2000-01-01
Presents an alternative experimental arrangement that results in a considerable cost savings by reducing the number of sensors and other apparati required while giving excellent quantitative results for comparison with theory. (Author/CCM)
Young Voices on Climate Change: The Paul F-Brandwein 2010 NSTA Lecture
NASA Astrophysics Data System (ADS)
Cherry, Lynne
2011-04-01
Lynne Cherry Brandwein Lecture March 2010 National Science Teachers Association (NSTA) Conference, Philadelphia, PA. Young Voices on Climate Change: Inspired and Empowered Youth Tackle Climate Science and Find Climate Solutions. As a child, Lynne Cherry was profoundly connected to the natural world and a special place. She watched the destruction of her world. Now, through her Young Voices on Climate Change project, she is trying to give teachers and young people the tools to prevent planetary meltdown on a greater scale. Global climate change is upon us and the need for education and action is immediate. Outreach, visual storytelling, and scientific understanding are especially necessary in light of the recent polls that show that the public is becoming more confused and less concerned about climate change. Cherry's climate book, co-authored with photojournalist Gary Braasch, and her Young Voices on Climate Change films feature climate solutions. They're about win-win—save the environment, protect human health, reduce global warming gases, demonstrate youth making a difference with practical tools, motivate engagement in climate science, take pride in increased science literacy, reach young people through their hearts as well as their minds, and save money. Although young people can help their parents, peers and communities understand climate science, they can also show them that reducing CO2 is in their economic interest, and spur them to take action. School carbon reduction initiatives are spilling over into communities yielding measurable results in both global warming gas reductions and significant monetary savings.
Impact of trained oncology financial navigators on patient out-of-pocket spending.
Yezefski, Todd; Steelquist, Jordan; Watabayashi, Kate; Sherman, Dan; Shankaran, Veena
2018-03-01
Patients with cancer often face financial hardships, including loss of productivity, high out-of-pocket (OOP) costs, depletion of savings, and bankruptcy. By providing financial guidance and assistance through specially trained navigators, hospitals and cancer care clinics may be able mitigate the financial burdens to patients and also minimize financial losses for the treating institutions. Financial navigators at 4 hospitals were trained through The NaVectis Group, an organization that provides training to healthcare staff to increase patient access to care and assist with OOP expenses. Data regarding financial assistance and hospital revenue were collected after instituting these programs. Amount and type of assistance (free medication, new insurance enrollment, premium/co-pay assistance) were determined annually for all qualifying patients at the participating hospitals. Of 11,186 new patients with cancer seen across the 4 participating hospitals between 2012 and 2016, 3572 (32%) qualified for financial assistance. They obtained $39 million in total financial assistance, averaging $3.5 million per year in the 11 years under observation. Patients saved an average of $33,265 annually on medication, $12,256 through enrollment in insurance plans, $35,294 with premium assistance, and $3076 with co-pay assistance. The 4 hospitals were able to avoid write-offs and save on charity care by an average of $2.1 million per year. Providing financial navigation training to staff at hospitals and cancer centers can significantly benefit patients through decreased OOP expenditures and also mitigate financial losses for healthcare institutions.
Land clearing and the biofuel carbon debt.
Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter
2008-02-29
Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop-based biofuels in Brazil, Southeast Asia, and the United States creates a "biofuel carbon debt" by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.
Land Clearing and the Biofuel Carbon Debt
NASA Astrophysics Data System (ADS)
Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter
2008-02-01
Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasanbeigi, Ali; Price, Lynn; Lin, Elina
2012-04-06
Globally, the cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO{sub 2}) emissions. World cement demand and production are increasing significantly, leading to an increase in this industry's absolute energy use and CO{sub 2} emissions. Development of new energy-efficiency and CO{sub 2} emission-reduction technologies and their deployment in the market will be key for the cement industry's mid- and long-term climate change mitigation strategies. This report is an initial effort to compile available information on process description, energy savings, environmental and other benefits, costs, commercialization status, and references for emerging technologies to reduce the cement industry'smore » energy use and CO{sub 2} emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies for the cement industry that have already been commercialized, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on nineteen emerging technologies for the cement industry, with the goal of providing engineers, researchers, investors, cement companies, policy makers, and other interested parties with easy access to a well-structured database of information on these technologies.« less
Impacts of Model Building Energy Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athalye, Rahul A.; Sivaraman, Deepak; Elliott, Douglas B.
The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) periodically evaluates national and state-level impacts associated with energy codes in residential and commercial buildings. Pacific Northwest National Laboratory (PNNL), funded by DOE, conducted an assessment of the prospective impacts of national model building energy codes from 2010 through 2040. A previous PNNL study evaluated the impact of the Building Energy Codes Program; this study looked more broadly at overall code impacts. This report describes the methodology used for the assessment and presents the impacts in terms of energy savings, consumer cost savings, and reduced CO 2 emissions atmore » the state level and at aggregated levels. This analysis does not represent all potential savings from energy codes in the U.S. because it excludes several states which have codes which are fundamentally different from the national model energy codes or which do not have state-wide codes. Energy codes follow a three-phase cycle that starts with the development of a new model code, proceeds with the adoption of the new code by states and local jurisdictions, and finishes when buildings comply with the code. The development of new model code editions creates the potential for increased energy savings. After a new model code is adopted, potential savings are realized in the field when new buildings (or additions and alterations) are constructed to comply with the new code. Delayed adoption of a model code and incomplete compliance with the code’s requirements erode potential savings. The contributions of all three phases are crucial to the overall impact of codes, and are considered in this assessment.« less
Ma, Ding; Chen, Wenying; Xu, Tengfang
2015-08-21
As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO 2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO 2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less
Predicting the quantifiable impacts of ISO 50001 on climate change mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKane, Aimee; Therkelsen, Peter; Scodel, Anna
The ISO 50001-Energy management standard provides a continual improvement framework for organizations to reduce their energy consumption, which in the industrial and commercial (service) sectors, accounts for nearly 40% of global greenhouse gas emissions. Reducing this energy consumption will be critical for countries to achieve their national greenhouse gas reduction commitments. Several national policies already support ISO 50001; however, there is no transparent, consistent process to estimate the potential impacts of its implementation. This paper presents the ISO 50001 Impacts Methodology, an internationally-developed methodology to calculate these impacts at a national, regional, or global scale suitable for use by policymakers.more » The recently-formed ISO 50001 Global Impacts Research Network provides a forum for policymakers to refine and encourage use of the methodology. Using this methodology, a scenario with 50% of projected global industrial and service sector energy consumption under ISO 50001 management by 2030 would generate cumulative primary energy savings of approximately 105 EJ, cost savings of nearly US $700 billion (discounted to 2016 net present value), and 6500 million metric tons (Mt) of avoided CO 2 emissions. The avoided annual CO 2 emissions in 2030 alone are equivalent to removing 210 million passenger vehicles from the road.« less
Shen, Wei; Han, Weijian; Wallington, Timothy J
2014-06-17
China's oil imports and greenhouse gas (GHG) emissions have grown rapidly over the past decade. Addressing energy security and GHG emissions is a national priority. Replacing conventional vehicles with electric vehicles (EVs) offers a potential solution to both issues. While the reduction in petroleum use and hence the energy security benefits of switching to EVs are obvious, the GHG benefits are less obvious. We examine the current Chinese electric grid and its evolution and discuss the implications for EVs. China's electric grid will be dominated by coal for the next few decades. In 2015 in Beijing, Shanghai, and Guangzhou, EVs will need to use less than 14, 19, and 23 kWh/100 km, respectively, to match the 183 gCO2/km WTW emissions for energy saving vehicles. In 2020, in Beijing, Shanghai, and Guangzhou EVs will need to use less than 13, 18, and 20 kWh/100 km, respectively, to match the 137 gCO2/km WTW emissions for energy saving vehicles. EVs currently demonstrated in China use 24-32 kWh/100 km. Electrification will reduce petroleum imports; however, it will be very challenging for EVs to contribute to government targets for GHGs emissions reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ding; Chen, Wenying; Xu, Tengfang
As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO 2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO 2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less
Beck, R A; Anes, J M; Savini, L M; Mateer, R A
2000-06-09
The concentration dependent reaction of sulfite with 57Co-labeled hydroxocobalamin (OH57CoCbl) to produce a sulfitocobalamin (SO(3)57CoCbl) adduct served as a quantification strategy for foodborne sulfite residues freely extracted into pH 5.2, 0.05 M acetate buffer. SO(3)57CoCbl was then resolved using SP-Sephadex C-25 gel chromatography and its radiometric detection allowed calculation of a standard logit plot from which unknown sulfite concentrations could be determined. The sulfite detection range was 6.0 nM-0.3 pM with respective relative standard deviations of 4.4-29.4% for 50-microl samples. Individual incidences of foodborne sulfite intolerances provoked by L-cysteine or sulfite additive use in bakery products, which remained undetected using conventional sulfite analytical methods, underscored the quantitative value of the method. The analytical significance and occurrences of detectable sulfides coexisting with foodborne sulfite residues was also addressed.
N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels
NASA Astrophysics Data System (ADS)
Crutzen, P. J.; Mosier, A. R.; Smith, K. A.; Winiwarter, W.
2007-08-01
The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. The relationship, in both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production and deforestation, is consistent, showing an overall conversion factor of 3-5%. This factor is covered only in part by the ~1% of "direct" emissions from agricultural crop lands estimated by IPCC (2006), or the "indirect" emissions cited therein. This means that the extra N2O entering the atmosphere as a result of using N to produce crops for biofuels will also be correspondingly greater than that estimated just on the basis of IPCC (2006). When the extra N2O emission from biofuel production is calculated in "CO2-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize), can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate each other. This needs to be analyzed in a full life cycle assessment.
Delta14 CO2 Atmospheric Record from Schauinsland, Germany
Levin, Ingeborg [Institut fur Umweltphysik, University of Heidelberg, Heidelberg, Germany; Kromer, Bernd [Institut fur Umweltphysik, University of Heidelberg, Heidelberg, Germany
1997-01-01
All air samples at Schauinsland have been collected from a ventilated intake stack approximately 7m above the ground. Bi-weekly integrated CO2 samples from about 15-20 m3 of air have been continuously collected by dynamic quantitative absorption in carbonate-free sodium hydroxide (NaOH) solution. Air has been pumped through a rotating glass tube filled with a packed bed of Raschig rings (hard glass) to enlarge the surface of the absorbing NaOH solution (200 ml of 4 normal NaOH). The CO2 absorption is quantitative and samples represent mean values of 10 days to 2 weeks. In the laboratory, the samples are extracted from the NaOH solution in a vacuum system by adding hydrochloric or sulfuric acid. 13C analyses of the CO2 are by mass spectrometry and 14C analyses are by high precision proportional counting, after purification of the CO2 sample over charcoal (Schoch et al. 1980, Kromer and Münnich 1992). δ13C values are given relative to the V-PDB standard (Hut 1987) with the overall precision of a single analysis reported to be +/- 0.15 per mil (Levin and Kromer 1997). δ14C data are given relative to the NIST oxalic acid activity corrected for decay (Stuiver and Polach 1977) with the precision of a single δ14C measurement reported to be +/- 3-5 per mil (Levin and Kromer 1997).
pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism.
Mangan, Niall M; Flamholz, Avi; Hood, Rachel D; Milo, Ron; Savage, David F
2016-09-06
Many carbon-fixing bacteria rely on a CO2 concentrating mechanism (CCM) to elevate the CO2 concentration around the carboxylating enzyme ribulose bisphosphate carboxylase/oxygenase (RuBisCO). The CCM is postulated to simultaneously enhance the rate of carboxylation and minimize oxygenation, a competitive reaction with O2 also catalyzed by RuBisCO. To achieve this effect, the CCM combines two features: active transport of inorganic carbon into the cell and colocalization of carbonic anhydrase and RuBisCO inside proteinaceous microcompartments called carboxysomes. Understanding the significance of the various CCM components requires reconciling biochemical intuition with a quantitative description of the system. To this end, we have developed a mathematical model of the CCM to analyze its energetic costs and the inherent intertwining of physiology and pH. We find that intracellular pH greatly affects the cost of inorganic carbon accumulation. At low pH the inorganic carbon pool contains more of the highly cell-permeable H2CO3, necessitating a substantial expenditure of energy on transport to maintain internal inorganic carbon levels. An intracellular pH ≈8 reduces leakage, making the CCM significantly more energetically efficient. This pH prediction coincides well with our measurement of intracellular pH in a model cyanobacterium. We also demonstrate that CO2 retention in the carboxysome is necessary, whereas selective uptake of HCO3 (-) into the carboxysome would not appreciably enhance energetic efficiency. Altogether, integration of pH produces a model that is quantitatively consistent with cyanobacterial physiology, emphasizing that pH cannot be neglected when describing biological systems interacting with inorganic carbon pools.
pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism
Flamholz, Avi; Hood, Rachel D.; Milo, Ron
2016-01-01
Many carbon-fixing bacteria rely on a CO2 concentrating mechanism (CCM) to elevate the CO2 concentration around the carboxylating enzyme ribulose bisphosphate carboxylase/oxygenase (RuBisCO). The CCM is postulated to simultaneously enhance the rate of carboxylation and minimize oxygenation, a competitive reaction with O2 also catalyzed by RuBisCO. To achieve this effect, the CCM combines two features: active transport of inorganic carbon into the cell and colocalization of carbonic anhydrase and RuBisCO inside proteinaceous microcompartments called carboxysomes. Understanding the significance of the various CCM components requires reconciling biochemical intuition with a quantitative description of the system. To this end, we have developed a mathematical model of the CCM to analyze its energetic costs and the inherent intertwining of physiology and pH. We find that intracellular pH greatly affects the cost of inorganic carbon accumulation. At low pH the inorganic carbon pool contains more of the highly cell-permeable H2CO3, necessitating a substantial expenditure of energy on transport to maintain internal inorganic carbon levels. An intracellular pH ≈8 reduces leakage, making the CCM significantly more energetically efficient. This pH prediction coincides well with our measurement of intracellular pH in a model cyanobacterium. We also demonstrate that CO2 retention in the carboxysome is necessary, whereas selective uptake of HCO3− into the carboxysome would not appreciably enhance energetic efficiency. Altogether, integration of pH produces a model that is quantitatively consistent with cyanobacterial physiology, emphasizing that pH cannot be neglected when describing biological systems interacting with inorganic carbon pools. PMID:27551079
Carbon-Carbon Recuperators in Closed-Brayton-Cycle Space Power Systems
NASA Technical Reports Server (NTRS)
Barrett, Michael J.; Johnson, Paul K.; Naples, Andrew G.
2006-01-01
The feasibility of using carbon-carbon (C-C) recuperators in conceptual closed-Brayton-cycle space power conversion systems was assessed. Recuperator performance expectations were forecast based on notional thermodynamic cycle state values for potential planetary missions. Resulting thermal performance, mass and volume for plate-fin C-C recuperators were estimated and quantitatively compared with values for conventional offset-strip-fin metallic designs. Mass savings of 30 to 60 percent were projected for C-C recuperators with effectiveness greater than 0.9 and thermal loads from 25 to 1400 kWt. The smaller thermal loads corresponded with lower mass savings; however, 60 percent savings were forecast for all loads above 300 kWt. System-related material challenges and compatibility issues were also discussed.
Hallab, Nadim James; Chan, Frank W; Harper, Megan L
2012-12-01
We evaluated the consequences of cobalt-chromium alloy (CoCr) wear debris challenge in the peri-spine region to determine the inflammation and toxicity associated with submicron particulates of CoCr-alloy and nickel on the peri-spine. The lumbar epidural spaces of (n = 50) New Zealand white rabbits were challenged with: 2.5 mg CoCr, 5.0 mg CoCr, 10.0 mg CoCr, a positive control (20.0 mg of nickel) and a negative control (ISOVUE-M-300). The CoCr-alloy and Ni particles had a mean diameter of 0.2 and 0.6 μm, respectively. Five rabbits per dose group were studied at 12 and 24 weeks. Local and distant tissues were analyzed histologically and quantitatively analyzed immunohistochemically (TNF-α and IL-6). Histologically, wear particles were observed in all animals. There was no evidence of toxicity or local irritation noted during macroscopic observations in any CoCr-dosed animals. However, Ni-treated control animals experienced bilateral hind leg paralysis and were euthanized at Day 2. Histopathology of the Ni particle-treated group revealed severe neuropathy. Quantitative immunohistochemistry demonstrated a CoCr-alloy dose-dependent increase in cytokines (IL-6, TNF-α, p < 0.05) at 12 and 24 weeks. Subtle peri-spine inflammation associated with CoCr-alloy implant particles was dose dependent and persistent. Neuropathy can be induced by highly reactive Ni particles. This suggests peri-spine challenge with CoCr-alloy implant debris (e.g., TDA) is consistent with past reports using titanium alloy particles, i.e., mild persistent inflammation.
Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion.
Costentin, Cyrille; Passard, Guillaume; Robert, Marc; Savéant, Jean-Michel
2014-10-21
A very efficient electrogenerated Fe(0) porphyrin catalyst was obtained by substituting in tetraphenylporphyrin two of the opposite phenyl rings by ortho-, ortho'-phenol groups while the other two are perfluorinated. It proves to be an excellent catalyst of the CO2-to-CO conversion as to selectivity (the CO faradaic yield is nearly quantitative), overpotential, and turnover frequency. Benchmarking with other catalysts, through catalytic Tafel plots, shows that it is the most efficient, to the best of our knowledge, homogeneous molecular catalyst of the CO2-to-CO conversion at present. Comparison with another Fe(0) tetraphenylporphyrin bearing eight ortho-, ortho'-phenol functionalities launches a general strategy where changes in substituents will be designed so as to optimize the operational combination of all catalyst elements of merit.
He, Z X; Qiao, J Y; Yan, Q X; Tan, Z L; Wang, M
2018-04-12
Methane produced from formate is one of the important methanogensis pathways in the rumen. However, quantitative information of CH4 production from formate has been rarely reported. The aim of this study was to characterize the conversion rate (CR) of formic acid into CH4 and CO2 by rumen microorganisms. Ground lucerne hay was incubated with buffered ruminal fluid for 6, 12, 24 and 48 h. Before the incubation, 13C-labeled H13COOH was also supplied into the incubation bottle at a dose of 0, 1.5, 2.2 or 2.9 mg/g of DM substrate. There were no interactions (P>0.05) between dose and incubation time for all variables evaluated. When expressed as an absolute amount (ml in gas sample) or a relative CR (%), both 13CH4 and 13CO2 production quadratically increased (P<0.01) with the addition of H13COOH. The total 13C (13CH4 and 13CO2) CR was also quadratically increased (P<0.01) when H13COOH was added. Moreover, formate addition linearly decreased (P<0.031) the concentrations of NH3-N, total and individual volatile fatty acids (acetate, propionate and butyrate), and quadratically decreased (P<0.014) the populations of protozoa, total methanogens, Methanosphaera stadtmanae, Methanobrevibacter ruminantium M1, Methanobrevibacter smithii and Methanosarcina barkeri. In summary, formate affects ruminal fermentation and methanogenesis, as well as the rumen microbiome, in particular microorganisms which are directly or indirectly involved in ruminal methanogenesis. This study provides quantitative verification for the rapid dissimilation of formate into CH4 and CO2 by rumen microorganisms.
NASA Astrophysics Data System (ADS)
Woldeyesus, Tibebe Argaw
Water supply constraints can significantly restrict electric power generation, and such constraints are expected to worsen with future climate change. The overarching goal of this thesis is to incorporate stochastic water-climate interactions into electricity portfolio models and evaluate various pathways for water savings in co-managed water-electric utilities. Colorado Springs Utilities (CSU) is used as a case study to explore the above issues. The thesis consists of three objectives: Characterize seasonality of water withdrawal intensity factors (WWIF) for electric power generation and develop a risk assessment framework due to water shortages; Incorporate water constraints into electricity portfolio models and evaluate the impact of varying capital investments (both power generation and cooling technologies) on water use and greenhouse gas emissions; Compare the unit cost and overall water savings from both water and electric sectors in co-managed utilities to facilitate overall water management. This thesis provided the first discovery and characterization of seasonality of WWIF with distinct summertime and wintertime variations of +/-17% compared to the power plant average (0.64gal/kwh) which itself is found to be significantly higher than the literature average (0.53gal/kwh). Both the streamflow and WWIF are found to be highly correlated with monthly average temperature (r-sq = 89%) and monthly precipitation (r-sq of 38%) enabling stochastic simulation of future WWIF under moderate climate change scenario. Future risk to electric power generation also showed the risk to be underestimated significantly when using either the literature average or the power plant average WWIF. Seasonal variation in WWIF along with seasonality in streamflow, electricity demand and other municipal water demands along with storage are shown to be important factors for more realistic risk estimation. The unlimited investment in power generation and/or cooling technologies is also found to save water and GHG emissions by 68% and 75% respectively at a marginal levelized cost increase of 12%. In contrast, the zero investment scenarios (which optimizes exiting technologies to address water scarcity constraints on power generation) shows 50% water savings and 23% GHG emissions reduction at a relatively high marginal levelized cost increase of 37%. Water saving strategies in electric sector show very high cost of water savings (48,000 and 200,000)/Mgal-year under unlimited investment and zero investment scenarios respectively, but they have greater water saving impacts of 6% to CSU municipal water demand; while the individual water saving strategies from water sector have low cost of water savings ranging from (37-1,500)/Mgal-year but with less than 0.5% water reduction impact to CSU due to their low penetration. On the other hand, use of reclaimed water for power plant cooling systems have shown great water savings of up to 92% against the BAU and cost of water saving from (0-73,000)/Mgal-year when integrated with unlimited investment and zero investment water minimizing scenarios respectively in the electric sector. Overall, cities need to focus primarily on use of reclaimed water and in new generation technologies' investment including cooling system retrofits while focusing on expanding the penetration rate of individual water saving strategies in the water sector.
Li, Kangkang; Yu, Hai; Yan, Shuiping; Feron, Paul; Wardhaugh, Leigh; Tade, Moses
2016-10-04
Using a rigorous, rate-based model and a validated economic model, we investigated the technoeconomic performance of an aqueous NH 3 -based CO 2 capture process integrated with a 650-MW coal-fired power station. First, the baseline NH 3 process was explored with the process design of simultaneous capture of CO 2 and SO 2 to replace the conventional FGD unit. This reduced capital investment of the power station by US$425/kW (a 13.1% reduction). Integration of this NH 3 baseline process with the power station takes the CO 2 -avoided cost advantage over the MEA process (US$67.3/tonne vs US$86.4/tonne). We then investigated process modifications of a two-stage absorption, rich-split configuration and interheating stripping to further advance the NH 3 process. The modified process reduced energy consumption by 31.7 MW/h (20.2% reduction) and capital costs by US$55.4 million (6.7% reduction). As a result, the CO 2 -avoided cost fell to $53.2/tonne: a savings of $14.1 and $21.9/tonne CO 2 compared with the NH 3 baseline and advanced MEA process, respectively. The analysis of energy breakdown and cost distribution indicates that the technoeconomic performance of the NH 3 process still has great potential to be improved.
2013-01-01
Background One of the main challenges for heterologous protein production by the methylotrophic yeast Pichia pastoris at large-scale is related to its high oxygen demand. A promising solution is a co-feeding strategy based on a methanol/sorbitol mixture during the induction phase. Nonetheless, a deep understanding of the cellular physiology and the regulation of the AOX1 promoter, used to govern heterologous protein production, during this co-feeding strategy is still scarce. Results Transient continuous cultures with a dilution rate of 0.023 h-1 at 25°C were performed to quantitatively assess the benefits of a methanol/sorbitol co-feeding process with a Mut+ strain in which the pAOX1-lacZ construct served as a reporter gene. Cell growth and metabolism, including O2 consumption together with CO2 and heat production were analyzed with regard to a linear change of methanol fraction in the mixed feeding media. In addition, the regulation of the promoter AOX1 was investigated by means of β-galactosidase measurements. Our results demonstrated that the cell-specific oxygen consumption (qO2) could be reduced by decreasing the methanol fraction in the feeding media. More interestingly, maximal β-galactosidase cell-specific activity (>7500 Miller unit) and thus, optimal pAOX1 induction, was achieved and maintained in the range of 0.45 ~ 0.75 C-mol/C-mol of methanol fraction. In addition, the qO2 was reduced by 30% at most in those conditions. Based on a simplified metabolic network, metabolic flux analysis (MFA) was performed to quantify intracellular metabolic flux distributions during the transient continuous cultures, which further shed light on the advantages of methanol/sorbitol co-feeding process. Finally, our observations were further validated in fed-batch cultures. Conclusion This study brings quantitative insight into the co-feeding process, which provides valuable data for the control of methanol/sorbitol co-feeding, aiming at enhancing biomass and heterologous protein productivities under given oxygen supply. According to our results, β-galactosidase productivity could be improved about 40% using the optimally mixed feed. PMID:23565774
Niu, Hongxing; Jost, Laurent; Pirlot, Nathalie; Sassi, Hosni; Daukandt, Marc; Rodriguez, Christian; Fickers, Patrick
2013-04-08
One of the main challenges for heterologous protein production by the methylotrophic yeast Pichia pastoris at large-scale is related to its high oxygen demand. A promising solution is a co-feeding strategy based on a methanol/sorbitol mixture during the induction phase. Nonetheless, a deep understanding of the cellular physiology and the regulation of the AOX1 promoter, used to govern heterologous protein production, during this co-feeding strategy is still scarce. Transient continuous cultures with a dilution rate of 0.023 h(-1) at 25°C were performed to quantitatively assess the benefits of a methanol/sorbitol co-feeding process with a Mut+ strain in which the pAOX1-lacZ construct served as a reporter gene. Cell growth and metabolism, including O2 consumption together with CO2 and heat production were analyzed with regard to a linear change of methanol fraction in the mixed feeding media. In addition, the regulation of the promoter AOX1 was investigated by means of β-galactosidase measurements. Our results demonstrated that the cell-specific oxygen consumption (qO2) could be reduced by decreasing the methanol fraction in the feeding media. More interestingly, maximal β-galactosidase cell-specific activity (>7500 Miller unit) and thus, optimal pAOX1 induction, was achieved and maintained in the range of 0.45 ~ 0.75 C-mol/C-mol of methanol fraction. In addition, the qO2 was reduced by 30% at most in those conditions. Based on a simplified metabolic network, metabolic flux analysis (MFA) was performed to quantify intracellular metabolic flux distributions during the transient continuous cultures, which further shed light on the advantages of methanol/sorbitol co-feeding process. Finally, our observations were further validated in fed-batch cultures. This study brings quantitative insight into the co-feeding process, which provides valuable data for the control of methanol/sorbitol co-feeding, aiming at enhancing biomass and heterologous protein productivities under given oxygen supply. According to our results, β-galactosidase productivity could be improved about 40% using the optimally mixed feed.
Improved heavy-duty vehicle fuel efficiency in India, benefits, costs and environmental impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal, Anand R.; Karali, Nihan; Sharpe, Ben
The main objectives of this analysis are to examine the benefits and costs of fuel-saving technologies for new heavy-duty vehicles (HDVs) in India over the next 10 years and, to explore how various scenarios for the deployment of vehicles with these technologies will impact petroleum consumption and carbon dioxide (CO 2) emissions over the next three decades. The study team developed simulation models for three representative HDV types—a 40-tonne tractor-trailer, 25-tonne rigid truck, and 16-tonne transit bus—based on top-selling vehicle models in the Indian market. The baseline technology profiles for all three vehicles were developed using India-specific engine data andmore » vehicle specification information from manufacturer literature and input from industry experts. For each of the three vehicles we developed a comprehensive set of seven efficiency technology packages drawing from five major areas: engine, transmission and driveline, tires, aerodynamics, and weight reduction. Our analysis finds that India has substantial opportunity to improve HDV fuel efficiency levels using cost-effective technologies. Results from our simulation modeling of three representative HDV types—a tractor-trailer, rigid truck, and transit bus—reveal that per-vehicle fuel consumption reductions between roughly 20% and 35% are possible with technologies that provide a return on the initial capital investment within 1 to 2 years. Though most of these technologies are currently unavailable in India, experiences in other more advanced markets such as the US and EU suggest that with sufficient incentives and robust regulatory design, significant progress can be made in developing and deploying efficiency technologies that can provide real-world fuel savings for new commercial vehicles in India over the next 10 years. Bringing HDVs in India up to world-class technology levels will yield substantial petroleum and GHG reductions. By 2030, the fuel and CO2 reductions of the scenarios range from 10% to 34%, and at the end of 2050, these reductions grow to 13% and 41%. If we constrain the analysis to select the most efficient technology package that provides the fleets with payback times of 3 years or less, there are annual fleet-wide savings of roughly 11 MTOE of diesel and 34 MMT of CO 2 in 2030, and this grows to 31 MTOE and 97 MMT by 2050.« less
Measurement and Visualization of Tight Rock Exposed to CO2 Using NMR Relaxometry and MRI
Wang, Haitao; Lun, Zengmin; Lv, Chengyuan; Lang, Dongjiang; Ji, Bingyu; Luo, Ming; Pan, Weiyi; Wang, Rui; Gong, Kai
2017-01-01
Understanding mechanisms of oil mobilization of tight matrix during CO2 injection is crucial for CO2 enhanced oil recovery (EOR) and sequestration engineering design. In this study exposure behavior between CO2 and tight rock of the Ordos Basin has been studied experimentally by using nuclear magnetic resonance transverse relaxation time (NMR T2) spectrum and magnetic resonance imaging (MRI) under the reservoir pressure and temperature. Quantitative analysis of recovery at the pore scale and visualization of oil mobilization are achieved. Effects of CO2 injection, exposure times and pressure on recovery performance have been investigated. The experimental results indicate that oil in all pores can be gradually mobilized to the surface of rock by CO2 injection. Oil mobilization in tight rock is time-consuming while oil on the surface of tight rock can be mobilized easily. CO2 injection can effectively mobilize oil in all pores of tight rock, especially big size pores. This understanding of process of matrix exposed to CO2 could support the CO2 EOR in tight reservoirs. PMID:28281697
Assessment of Selected Energy Efficiency Policies
2005-01-01
This report responds to a request from Senator Byron L. Dorgan, asking the Energy Information Administration (EIA) to undertake a quantitative analysis of a variety of energy efficiency policies using assumptions provided by the Alliance to Save Energy (ASE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debongnie, J.C.; Pauwels, S.; Raat, A.
1991-06-01
Gastric urease was studied isotopically in 230 patients with biopsy-proven normal mucosa or chronic gastritis, including 59 patients with ulcer disease. Carbon-14-urea was given in 25 ml of water without substrate carrier or nutrient-dense meal, and breath samples were collected over a 60-min period. The amount of 14CO2 excreted at 10 min was independent of the rate of gastric emptying and was not quantitatively influenced by the buccal urease activity. The 10-min 14CO2 values discriminated well between Helicobacter pylori positive and negative patients (94% sensitivity, 89% specificity) and correlated with the number of organisms assessed by histology. The test wasmore » a good predictor of chronic gastritis (95% sensitivity and 96% specificity), and a quantitative relationship was observed between 14CO2 values and the severity and activity of the gastritis. In H. pylori positive patients, breath 14CO2 was found to be similar in patients with and without ulcer disease, suggesting that the number of bacteria is not a determining factor for the onset of ulceration.« less
Anaerobic treatment of municipal wastewater using the UASB-technology.
Urban, I; Weichgrebe, D; Rosenwinkel, K-H
2007-01-01
The anaerobic treatment of municipal wastewater enables new applications for the reuse of wastewater. The effluent could be used for irrigation as the included nutrients are not affected by the treatment. Much more interesting now are renewable energies and the retrenchment of CO(2) emission. With the anaerobic treatment of municipal wastewater, not only can the CO(2) emission be reduced but "clean" energy supply can be gained by biogas. Most important for the sustainability of this process is the gathering of methane from the liquid effluent of the reactor, because the negative climate-relevant effect from the degassing methane is much higher than the positive effect from saving CO(2) emission. In this study, UASB reactors were used with a flocculent sludge blanket for the biodegradation of the carbon fraction in the wastewater with different temperatures and concentrations. It could be shown that the positive effect is much higher for municipal wastewater with high concentrations in hot climates.
Indoor Air Quality of Residential Building Before and After Renovation
NASA Astrophysics Data System (ADS)
Sánka, Imrich; Földváry, Veronika
2017-06-01
This study investigates the impact of energy renovation on the indoor air quality of an apartment building during the heating season. The study was performed in one residential building before and after its renovation. An evaluation of the indoor air quality was performed using objective measurements and a subjective survey. The concentration of CO2 was measured in the bedrooms, and a sampling of the total volatile compounds (TVOC) was performed in the living rooms of the selected apartments. Higher concentrations of CO2 and TVOC were observed in the residential building after its renovation. The concentrations of CO2, and TVOC in some of the cases exceeded the recommended maximum limits, especially after implementing energy-saving measures on the building. The average air exchange rate was visibly higher before the renovation of the building. The current study indicates that large-scale renovations may reduce the quality of an indoor environment in many apartments, especially in the winter season.
Song, Xianzhi; Peng, Chi; Li, Gensheng; He, Zhenguo; Wang, Haizhu
2016-01-01
Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells.
Song, Xianzhi; Peng, Chi; Li, Gensheng
2016-01-01
Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells. PMID:27249026
NASA Astrophysics Data System (ADS)
Thiyam, Priyadarshini; Parashar, Prachi; Shajesh, K. V.; Persson, Clas; Schaden, Martin; Brevik, Iver; Parsons, Drew F.; Milton, Kimball A.; Malyi, Oleksandr I.; Boström, Mathias
2015-11-01
In order to understand why carbon dioxide (CO2) and methane (CH4) molecules interact differently with surfaces, we investigate the Casimir-Polder energy of a linearly polarizable CO2 molecule and an isotropically polarizable CH4 molecule in front of an atomically thin gold film and an amorphous silica slab. We quantitatively analyze how the anisotropy in the polarizability of the molecule influences the van der Waals contribution to the binding energy of the molecule.
FY 17 Q1 Commercial integrated heat pump with thermal storage milestone report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Heiba, Ahmad; Baxter, Van D.; Shen, Bo
2017-01-01
The commercial integrated heat pump with thermal storage (AS-IHP) offers significant energy saving over a baseline heat pump with electric water heater. The saving potential is maximized when the AS-IHP serves coincident high water heating and high space cooling demands. A previous energy performance analysis showed that the AS-IHP provides the highest benefit in the hot-humid and hot-dry/mixed dry climate regions. Analysis of technical potential energy savings for these climate zones based on the BTO Market calculator indicated that the following commercial building market segments had the highest water heating loads relative to space cooling and heating loads education, foodmore » service, health care, lodging, and mercantile/service. In this study, we focused on these building types to conservatively estimate the market potential of the AS-IHP. Our analysis estimates maximum annual shipments of ~522,000 units assuming 100% of the total market is captured. An early replacement market based on replacement of systems in target buildings between 15 and 35 years old was estimated at ~136,000 units. Technical potential energy savings are estimated at ~0.27 quad based on the maximum market estimate, equivalent to ~13.9 MM Ton CO2 emissions reduction.« less
Electronic structure and microscopic model of CoNb2O6
NASA Astrophysics Data System (ADS)
Molla, Kaimujjaman; Rahaman, Badiur
2018-05-01
We present the first principle density functional calculations to figure out the underlying spin model of CoNb2O6. The first principles calculations define the main paths of superexchange interaction between Co spins in this compound. We discuss the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modeling based on analysis of the electronic structure of this system puts it in the interesting class of weakly couple geometrically frustrated isosceles triangular Ising antiferromagnet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za; Trois, Cristina
2013-11-15
Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well asmore » for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO{sub 2} e (glass) to −19 111 kg CO{sub 2} e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.« less
Mobile app self-care versus in-office care for stress reduction: a cost minimization analysis.
Luxton, David D; Hansen, Ryan N; Stanfill, Katherine
2014-12-01
We calculated the cost of providing stress reduction care with a mobile phone app (Breathe2Relax) in comparison with normal in-person care, the standard method for managing stress in military and civilian populations. We conducted a cost-minimization analysis. The total cost to the military healthcare system of treating 1000 patients with the app was $106,397. Treating 1000 patients with in-office care cost $68,820. Treatment using the app became less expensive than in-office treatment at approximately 1600 users. From the perspective of the civilian healthcare system, treatment using the app became less expensive than in-office treatment at approximately 1500 users. An online tool was used to obtain data about the number of app downloads and usage sessions. A total of 47,000 users had accessed the app for 10-30 min sessions in the 2.5 years since the release of the app. Assuming that all 47,000 users were military beneficiaries, the savings to the military healthcare system would be $2.7 million; if the 47,000 users were civilian, the savings to the civilian healthcare system would be $2.9 million. Because of the large number of potential users, the total societal savings resulting from self-care using the app may be considerable. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Climate-vegetation modelling and fossil plant data suggest low atmospheric CO2 in the late Miocene
NASA Astrophysics Data System (ADS)
Forrest, M.; Eronen, J. T.; Utescher, T.; Knorr, G.; Stepanek, C.; Lohmann, G.; Hickler, T.
2015-12-01
There is an increasing need to understand the pre-Quaternary warm climates, how climate-vegetation interactions functioned in the past, and how we can use this information to understand the present. Here we report vegetation modelling results for the Late Miocene (11-7 Ma) to study the mechanisms of vegetation dynamics and the role of different forcing factors that influence the spatial patterns of vegetation coverage. One of the key uncertainties is the atmospheric concentration of CO2 during past climates. Estimates for the last 20 million years range from 280 to 500 ppm. We simulated Late Miocene vegetation using two plausible CO2 concentrations, 280 ppm CO2 and 450 ppm CO2, with a dynamic global vegetation model (LPJ-GUESS) driven by climate input from a coupled AOGCM (Atmosphere-Ocean General Circulation Model). The simulated vegetation was compared to existing plant fossil data for the whole Northern Hemisphere. For the comparison we developed a novel approach that uses information of the relative dominance of different plant functional types (PFTs) in the palaeobotanical data to provide a quantitative estimate of the agreement between the simulated and reconstructed vegetation. Based on this quantitative assessment we find that pre-industrial CO2 levels are largely consistent with the presence of seasonal temperate forests in Europe (suggested by fossil data) and open vegetation in North America (suggested by multiple lines of evidence). This suggests that during the Late Miocene the CO2 levels have been relatively low, or that other factors that are not included in the models maintained the seasonal temperate forests and open vegetation.
FIRST INFRARED BAND STRENGTHS FOR AMORPHOUS CO{sub 2}, AN OVERLOOKED COMPONENT OF INTERSTELLAR ICES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerakines, Perry A.; Hudson, Reggie L., E-mail: Reggie.Hudson@NASA.gov
2015-08-01
Solid carbon dioxide (CO{sub 2}) has long been recognized as a component of both interstellar and solar system ices, but a recent literature search has revealed significant qualitative and quantitative discrepancies in the laboratory spectra on which the abundances of extraterrestrial CO{sub 2} are based. Here we report new infrared (IR) spectra of amorphous CO{sub 2}-ice along with band intensities (band strengths) of four mid-IR absorptions, the first such results in the literature. A possible thickness dependence for amorphous-CO{sub 2} IR band shapes and positions also is investigated, and the three discordant reports of amorphous CO{sub 2} spectra in themore » literature are addressed. Applications of our results are discussed with an emphasis on laboratory investigations and results from astronomical observations. A careful comparison with earlier work shows that the IR spectra calculated from several databases for CO{sub 2} ices, all ices being made near 10 K, are not for amorphous CO{sub 2}, but rather for crystalline CO{sub 2} or crystalline-amorphous mixtures.« less
Smith, Peter T; Benke, Bahiru Punja; Cao, Zhi; Kim, Younghoon; Nichols, Eva M; Kim, Kimoon; Chang, Christopher J
2018-06-19
We report the use of a porous organic cage composed of six iron tetraphenylporphyrins as a supramolecular catalyst for electrochemical CO2-to-CO conversion. This strategy enhances active site exposure and substrate diffusion relative to the monomeric catalyst, resulting in CO generation with near-quantitative Faradaic efficiency in pH 7.3 water, with activities reaching 55,250 turnovers. These results provide a starting point for the design of supramolecular catalysts that can exploit the properties of the surrounding matrix yet retain the tunability of the original molecular unit. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Estimation of methanogen biomass via quantitation of coenzyme M
Elias, Dwayne A.; Krumholz, Lee R.; Tanner, Ralph S.; Suflita, Joseph M.
1999-01-01
Determination of the role of methanogenic bacteria in an anaerobic ecosystem often requires quantitation of the organisms. Because of the extreme oxygen sensitivity of these organisms and the inherent limitations of cultural techniques, an accurate biomass value is very difficult to obtain. We standardized a simple method for estimating methanogen biomass in a variety of environmental matrices. In this procedure we used the thiol biomarker coenzyme M (CoM) (2-mercaptoethanesulfonic acid), which is known to be present in all methanogenic bacteria. A high-performance liquid chromatography-based method for detecting thiols in pore water (A. Vairavamurthy and M. Mopper, Anal. Chim. Acta 78:363–370, 1990) was modified in order to quantify CoM in pure cultures, sediments, and sewage water samples. The identity of the CoM derivative was verified by using liquid chromatography-mass spectroscopy. The assay was linear for CoM amounts ranging from 2 to 2,000 pmol, and the detection limit was 2 pmol of CoM/ml of sample. CoM was not adsorbed to sediments. The methanogens tested contained an average of 19.5 nmol of CoM/mg of protein and 0.39 ± 0.07 fmol of CoM/cell. Environmental samples contained an average of 0.41 ± 0.17 fmol/cell based on most-probable-number estimates. CoM was extracted by using 1% tri-(N)-butylphosphine in isopropanol. More than 90% of the CoM was recovered from pure cultures and environmental samples. We observed no interference from sediments in the CoM recovery process, and the method could be completed aerobically within 3 h. Freezing sediment samples resulted in 46 to 83% decreases in the amounts of detectable CoM, whereas freezing had no effect on the amounts of CoM determined in pure cultures. The method described here provides a quick and relatively simple way to estimate methanogenic biomass.
Sethi, Kalyan K; Verma, Saurabh M
2014-08-01
Drug design involves the design of small molecules that are complementary in shape and charge to the biomolecular target with which they interact and therefore will bind to it. Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed for a series of carbonic anhydrase IX inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques with the help of SYBYL 7.1 software. The large set of 36 different aromatic/heterocyclic sulfamates carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, such as hCA IX, was chosen for this study. The conventional ligand-based 3D-QSAR studies were performed based on the low energy conformations employing database alignment rule. The ligand-based model gave q(2) values 0.802 and 0.829 and r(2) values 1.000 and 0.994 for CoMFA and CoMSIA, respectively, and the predictive ability of the model was validated. The predicted r(2) values are 0.999 and 0.502 for CoMFA and CoMSIA, respectively. SEA (steric, electrostatic, hydrogen bond acceptor) of CoMSIA has the significant contribution for the model development. The docking of inhibitors into hCA IX active site using Glide XP (Schrödinger) software revealed the vital interactions and binding conformation of the inhibitors. The CoMFA and CoMSIA field contour maps are well in agreement with the structural characteristics of the binding pocket of hCA IX active site, which suggests that the information rendered by 3D-QSAR models and the docking interactions can provide guidelines for the development of improved hCA IX inhibitors as leads for various types of metastatic cancers including those of cervical, renal, breast and head and neck origin.
Quantitative description of realistic wealth distributions by kinetic trading models
NASA Astrophysics Data System (ADS)
Lammoglia, Nelson; Muñoz, Víctor; Rogan, José; Toledo, Benjamín; Zarama, Roberto; Valdivia, Juan Alejandro
2008-10-01
Data on wealth distributions in trading markets show a power law behavior x-(1+α) at the high end, where, in general, α is greater than 1 (Pareto’s law). Models based on kinetic theory, where a set of interacting agents trade money, yield power law tails if agents are assigned a saving propensity. In this paper we are solving the inverse problem, that is, in finding the saving propensity distribution which yields a given wealth distribution for all wealth ranges. This is done explicitly for two recently published and comprehensive wealth datasets.
K-shell photoabsorption coefficients of O2, CO2, CO, and N2O
NASA Technical Reports Server (NTRS)
Barrus, D. M.; Blake, R. L.; Burek, A. J.; Chambers, K. C.; Pregenzer, A. L.
1979-01-01
The total photoabsorption coefficient has been measured from 500 to 600 eV around the K edge of oxygen in gases O2, CO2, CO, and N2O by means of a gold continuum source and crystal spectrometer with better than 1-eV resolution. The cross sections are dominated by discrete molecular-orbital transitions below the K-edge energy. A few Rydberg transitions were barely detectable. Broad shape resonances appear at or above the K edge. Additional broad, weak features above the K edge possibly arise from shake up. Quantitative results are given that have about 10% accuracy except on the very strong peaks. All the measured features are discussed in relation to other related measurements and theory.
Cimpan, Ciprian; Rothmann, Marianne; Hamelin, Lorie; Wenzel, Henrik
2015-07-01
Municipal solid waste (MSW) management remains a challenge, even in Europe where several countries now possess capacity to treat all arising MSW, while others still rely on unsustainable disposal pathways. In the former, strategies to reach higher recycling levels are affecting existing waste-to-energy (WtE) treatment infrastructure, by inducing additional overcapacity and this in turn rebounds as pressure on the waste and recyclable materials markets. This study addresses such situations by documenting the effects, in terms of resource recovery, global warming potential (GWP) and cumulative energy demand (CED), of a transition from a self-sufficient waste management system based on minimal separate collection and efficient WtE, towards a system with extended separate collection of recyclable materials and biowaste. In doing so, it tackles key questions: (1) whether recycling and biological treatment are environmentally better compared to highly efficient WtE, and (2) what are the implications of overcapacity-related cascading effects, namely waste import, when included in the comparison of alternative waste management systems. System changes, such as the implementation of kerbside separate collection of recyclable materials were found to significantly increase material recovery, besides leading to substantial GWP and CED savings in comparison to the WtE-based system. Bio-waste separate collection contributed with additional savings when co-digested with manure, and even more significantly when considering future renewable energy background systems reflecting the benefits induced by the flexible use of biogas. Given the current liberalization of trade in combustible waste in Europe, waste landfilling was identified as a short-to-medium-term European-wide waste management marginal reacting to overcapacity effects induced by the implementation of increased recycling strategies. When waste import and, consequently, avoided landfilling were included in the system boundary, additional savings of up to 700 kg CO2 eq. and 16 GJ eq. of primary energy per tonne of imported waste were established. Conditions, such as energy recovery efficiency, and thresholds beyond which import-related savings potentially turn into GWP burdens were also determined. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karali, Nihan; Park, Won Young; McNeil, Michael A.
Increasing concerns on non-sustainable energy use and climate change spur a growing research interest in energy efficiency potentials in various critical areas such as industrial production. This paper focuses on learning curve aspects of energy efficiency measures in the U.S iron and steel sector. A number of early-stage efficient technologies (i.e., emerging or demonstration technologies) are technically feasible and have the potential to make a significant contribution to energy saving and CO 2 emissions reduction, but fall short economically to be included. However, they may also have the cost effective potential for significant cost reduction and/or performance improvement in themore » future under learning effects such as ‘learning-by-doing’. The investigation is carried out using ISEEM, a technology oriented, linear optimization model. We investigated how steel demand is balanced with/without the availability learning curve, compared to a Reference scenario. The retrofit (or investment in some cases) costs of energy efficient technologies decline in the scenario where learning curve is applied. The analysis also addresses market penetration of energy efficient technologies, energy saving, and CO 2 emissions in the U.S. iron and steel sector with/without learning impact. Accordingly, the study helps those who use energy models better manage the price barriers preventing unrealistic diffusion of energy-efficiency technologies, better understand the market and learning system involved, predict future achievable learning rates more accurately, and project future savings via energy-efficiency technologies with presence of learning. We conclude from our analysis that, most of the existing energy efficiency technologies that are currently used in the U.S. iron and steel sector are cost effective. Penetration levels increases through the years, even though there is no price reduction. However, demonstration technologies are not economically feasible in the U.S. iron and steel sector with the current cost structure. In contrast, some of the demonstration technologies are adapted in the mid-term and their penetration levels increase as the prices go down with learning curve. We also observe large penetration of 225kg pulverized coal injection with the presence of learning.« less
Directional Gila River crossing saves construction, mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saylor, L.A.
1994-12-01
Directional drilled river crossing technology gained a new convert this fall as El Paso Natural Gas Co. (EPNG) replaced a washed out 10 3/4-in. line that crossed the Gila River and two irrigation canals near Yuma, Ariz. The 1,650-ft bore, the company's first drilled river crossing, saved both construction costs and environmental reporting and mitigation expenses. This paper reviews the planning, engineering, and equipment used to install this river pipeline crossing.
Quantifying Direct and Indirect Effects of Elevated CO2 on Ecosystem Response
NASA Astrophysics Data System (ADS)
Fatichi, S.; Leuzinger, S.; Paschalis, A.; Donnellan-Barraclough, A.; Hovenden, M. J.; Langley, J. A.
2015-12-01
Increasing concentrations of atmospheric carbon dioxide are expected to affect carbon assimilation, evapotranspiration (ET) and ultimately plant growth. Direct leaf biochemical effects have been widely investigated, while indirect effects, although documented, are very difficult to quantify in experiments. We hypothesize that the interaction of direct and indirect effects is a possible reason for conflicting results concerning the magnitude of CO2 fertilization effects across different climates and ecosystems. A mechanistic ecohydrological model (Tethys-Chloris) is used to investigate the relative contribution of direct (through plant physiology) and indirect (via stomatal closure and thus soil moisture, and changes in Leaf Area Index, LAI) effects of elevated CO2 across a number of ecosystems. We specifically ask in which ecosystems and climate indirect effects are expected to be largest. Data and boundary conditions from flux-towers and free air CO2 enrichment (FACE) experiments are used to force the model and evaluate its performance. Numerical results suggest that indirect effects of elevated CO2, through water savings and increased LAI, are very significant and sometimes larger than direct effects. Indirect effects tend to be considerably larger in water-limited ecosystems, while direct effects correlate positively with mean air temperature. Increasing CO2 from 375 to 550 ppm causes a total effect on Net Primary Production in the order of 15 to 40% and on ET from 0 to -8%, depending on climate and ecosystem type. The total CO2 effect has a significant negative correlation with the wetness index and positive correlation with vapor pressure deficit. These results provide a more general mechanistic understanding of relatively short-term (less than 20 years) implications of elevated CO2 on ecosystem response and suggest plausible magnitudes for the expected changes.
Sarigiannis, D A; Kontoroupis, P; Nikolaki, S; Gotti, A; Chapizanis, D; Karakitsios, S
2017-02-01
Climate change is a major environmental threat of our time. Cities have a significant impact on greenhouse gas emissions as most of the traffic, industry, commerce and more than 50% of world population is situated in urban areas. Southern Europe is a region that faces financial turmoil, enhanced migratory fluxes and climate change pressure. The case study of Thessaloniki is presented, one of the only two cities in Greece with established climate change action plans. The effects of feasible traffic policies in year 2020 are assessed and their potential health impact is compared to a business as usual scenario. Two types of measures are investigated: operation of underground rail in the city centre and changes in fleet composition. Potential co-benefits from reduced greenhouse gas emissions on public health by the year 2020 are computed utilizing state-of-the-art concentration response functions for PM x , NO 2 and C 6 H 6 . Results show significant environmental health and monetary co-benefits when the city metro is coupled with appropriate changes in the traffic composition. Monetary savings due to avoided mortality or leukaemia incidence corresponding to the reduction in PM 10 , PM 2.5, NO 2 and C 6 H 6 exposure will be 56.6, 45, 37.7 and 1.0 million Euros respectively. Promotion of 'green' transportation in the city (i.e. the wide use of electric vehicles), will provide monetary savings from the reduction in PM 10 , PM 2.5 , NO 2 and C 6 H 6 exposure up to 60.4, 49.1, 41.2 and 1.08 million Euros. Overall, it was shown that the respective GHG emission reduction policies resulted in clear co-benefits in terms of air quality improvement, public health protection and monetary loss mitigation. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, X.; Lu, W.
2017-12-01
The concentration detection of the volatiles such as CH4 and CO2 in the hydrothermal systems and fluid inclusions is critical for understanding the fluxes of volatiles from mantle to crust and atmosphere. In-situ Raman spectroscopy has been developed successfully in laboratory, fluid inclusions and submarine environment because of its non-destructive and non-contact advantages. For improving the ability of detecting different species quantitatively by in-situ Raman spectroscopy in the extreme environment, such as the hydrothermal system and fluid inclusion, we studied the temperature- and salinity-dependence of Raman scattering cross section (RSCS) of the water OH stretching band at temperatures from 20 to 300 oC under 30 MPa. This is important because the water is often used as internal standard in the Raman quantitative application. Based on our previous study of NaCl-H2O system, we made further investigation on the CaCl2-H2O system. Our results revealed that the cation shows negligible effect on the RSCS of water OH stretching band, while the cations seems to have more obvious different effect on the structure of water within high temperatures. Besides the NaCl-CH4-H2O system, we also take the CO2-H2O system into account. Further conclusion can be made that the variation of the Raman quantitative factor (QF) (both PAR/mCH4 and PAR/mCO2) with the temperature and salinity is mainly caused by the temperature- and Cl- concentration-dependence of the relative RSCS of the water OH stretching band. If the Raman quantitative factor at ambient condition still being used, the RSCS of the water OH stretching band would induce about 47%, 34% and 29% error for the determined concentration of dissolved CH4 or CO2 (in mol/kg·H2O) by in-situ Raman spectroscopy for 0 m Cl-, 3 m Cl- and 5 m Cl- aqueous system when the temperature increases from 20 to 300 oC, respectively. Considering the wide range of the temperature and salinity in hydrothermal systems and fluid inclusions, the following equation can be used to calculate the relative QF at different temperatures and salinity referencing to the 0 m Cl- aqueous solution at 20 oC: QF(T, salinity)/QF(20 oC, 0 m Cl-)=k(T-20 oC)+b, where a=-0.0035× mCl-1/2+0.00168, b=-0.03× mCl-+1;
3D-QSAR modeling and molecular docking studies on a series of 2,5 disubstituted 1,3,4-oxadiazoles
NASA Astrophysics Data System (ADS)
Ghaleb, Adib; Aouidate, Adnane; Ghamali, Mounir; Sbai, Abdelouahid; Bouachrine, Mohammed; Lakhlifi, Tahar
2017-10-01
3D-QSAR (comparative molecular field analysis (CoMFA)) and comparative molecular similarity indices analysis (CoMSIA) were performed on novel 2,5 disubstituted 1,3,4-oxadiazoles analogues as anti-fungal agents. The CoMFA and CoMSIA models using 13 compounds in the training set gives Q2 values of 0.52 and 0.51 respectively, while R2 values of 0.92. The adapted alignment method with the suitable parameters resulted in reliable models. The contour maps produced by the CoMFA and CoMSIA models were employed to determine a three-dimensional quantitative structure-activity relationship. Based on this study a set of new molecules with high predicted activities were designed. Surflex-docking confirmed the stability of predicted molecules in the receptor.
Yang, Litao; Pan, Aihu; Zhang, Kewei; Guo, Jinchao; Yin, Changsong; Chen, Jianxiu; Huang, Cheng; Zhang, Dabing
2005-08-10
As the genetically modified organisms (GMOs) labeling policies are issued in many countries, qualitative and quantitative polymerase chain reaction (PCR) techniques are increasingly used for the detection of genetically modified (GM) crops in foods. Qualitative PCR and TaqMan real-time quantitative PCR methods to detect and identify three varieties of insect resistant cotton, i.e., Mon531 cotton (Monsanto Co.) and GK19 and SGK321 cottons (Chinese Academy of Agricultural Sciences), which were approved for commercialization in China, were developed in this paper. Primer pairs specific to inserted DNAs, such as Cowpea trypsin inhibitor (CpTI) gene of SGK321 cotton and the specific junction DNA sequences containing partial Cry1A(c) gene and NOS terminator of Mon531, GK19, and SGK321 cotton varieties were designed to conduct the identified PCR assays. In conventional specific identified PCR assays, the limit of detection (LOD) was 0.05% for Mon531, GK19, or SGK321 in 100 ng of cotton genomic DNA for one reaction. Also, the multiplex PCR method for screening the three GM cottons was also established, which could save time and cost in practical detection. Furthermore, a real-time quantitative PCR assay based on TaqMan chemistry for detection of insect resistant gene, Cry1A(c), was developed. This assay also featured the use of a standard plasmid as a reference molecule, which contained both a specific region of the transgene Cry1A(c) and an endogenous stearoyl-acyl carrier protein desaturase (Sad1) gene of the cotton. In quantitative PCR assay, the quantification range was from 0.01 to 100% in 100 ng of the genome DNA template, and in the detection of 1.0, 3.0, and 5.0% levels of three insect resistant cotton lines, respectively, all of the relative standard deviations (RSDs) were less than 8.2% except for the GM cotton samples with 1.0% Mon531 or GK19, which meant that our real-time PCR assays involving the use of reference molecule were reliable and practical for GM insect resistant cottons quantification. All of these results indicated that our established conventional and TaqMan real-time PCR assays were applicable to detect the three insect resistant cottons qualitatively and quantitatively.
Elevated CO2 reduces sap flux in mature deciduous forest trees.
Cech, Patrick G; Pepin, Steeve; Körner, Christian
2003-10-01
We enriched in CO2 the canopy of 14 broad-leaved trees in a species-rich, ca. 30-m-tall forest in NW Switzerland to test whether elevated CO2 reduces water use in mature forest trees. Measurements of sap flux density (JS) were made prior to CO2 enrichment (summer 2000) and throughout the first whole growing season of CO2 exposure (2001) using the constant heat-flow technique. The short-term responses of sap flux to brief (1.5-3 h) interruptions of CO2 enrichment were also examined. There were no significant a priori differences in morphological and physiological traits between trees which were later exposed to elevated CO2 (n=14) and trees later used as controls (n=19). Over the entire growing season, CO2 enrichment resulted in an average 10.7% reduction in mean daily JS across all species compared to control trees. Responses were most pronounced in Carpinus, Acer, Prunus and Tilia, smaller in Quercus and close to zero in Fagus trees. The JS of treated trees significantly increased by 7% upon transient exposure to ambient CO2 concentrations at noon. Hence, responses of the different species were, in the short term, similar in magnitude to those observed over the whole season (though opposite because of the reversed treatment). The reductions in mean JS of CO2-enriched trees were high (22%) under conditions of low evaporative demand (vapour pressure deficit, VPD <5 hPa) and small (2%) when mean daily VPD was greater than 10 hPa. During a relatively dry period, the effect of elevated CO2 on JS even appeared to be reversed. These results suggest that daily water savings by CO2-enriched trees may have accumulated to a significantly improved water status by the time when control trees were short of soil moisture. Our data indicate that the magnitude of CO2 effects on stand transpiration will depend on rainfall regimes and the relative abundance of the different species, being more pronounced under humid conditions and in stands dominated by species such as Carpinus and negligible in mono-specific Fagus forests.
NASA Astrophysics Data System (ADS)
Blackstock, J. M.; Covington, M. D.; Williams, S. G. W.; Myre, J. M.; Rodriguez, J.
2017-12-01
Variability in CO2 fluxes within Earth's Critical zone occurs over a wide range of timescales. Resolving this and its drivers requires high-temporal resolution monitoring of CO2 both in the soil and aquatic environments. High-cost (> 1,000 USD) gas analyzers and data loggers present cost-barriers for investigations with limited budgets, particularly if high spatial resolution is desired. To overcome high-costs, we developed an Arduino based CO2 measuring platform (i.e. gas analyzer and data logger). The platform was deployed at multiple sites within the Critical Zone overlying the Springfield Plateau aquifer in Northwest Arkansas, USA. The CO2 gas analyzer used in this study was a relatively low-cost SenseAir K30. The analyzer's optical housing was covered by a PTFE semi-permeable membrane allowing for gas exchange between the analyzer and environment. Total approximate cost of the monitoring platform was 200 USD (2% detection limit) to 300 USD (10% detection limit) depending on the K30 model used. For testing purposes, we deployed the Arduino based platform alongside a commercial monitoring platform. CO2 concentration time series were nearly identical. Notably, CO2 cycles at the surface water site, which operated from January to April 2017, displayed a systematic increase in daily CO2 amplitude. Preliminary interpretation suggests key observation of seasonally increasing stream metabolic function. Other interpretations of observed cyclical and event-based behavior are out of the scope of the study; however, the presented method describes an accurate near-hourly characterization of CO2 variability. The new platform has been shown to be operational for several months, and we infer reliable operation for much longer deployments (> 1 year) given adequate environmental protection and power supply. Considering cost-savings, this platform is an attractive option for continuous, accurate, low-power, and low-cost CO2 monitoring for remote locations, globally.
CO 2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent
Seipp, Charles A.; Univ. of Texas, Austin, TX; Williams, Neil J.; ...
2016-12-21
Carbon capture and storage is an important strategy for stabilizing the increasing concentration of atmospheric CO 2 and the global temperature. A possible approach toward reversing this trend and decreasing the atmospheric CO 2 concentration is to remove the CO 2 directly from air (direct air capture). In this paper, we report a simple aqueous guanidine sorbent that captures CO 2 from ambient air and binds it as a crystalline carbonate salt by guanidinium hydrogen bonding. The resulting solid has very low aqueous solubility (K sp=1.0(4)×10 -8), which facilitates its separation from solution by filtration. The bound CO 2 canmore » be released by relatively mild heating of the crystals at 80–120 °C, which regenerates the guanidine sorbent quantitatively. Finally and thus, this crystallization-based approach to CO 2 separation from air requires minimal energy and chemical input, and offers the prospect for low-cost direct air capture technologies.« less
Experimental study of CO2 dissolution a convection phenomenon at high pressure
NASA Astrophysics Data System (ADS)
Ben Salem, Imen; Chevalier, Sylvie; Faisal, Titly Farhana; Abderrahmane, Hamid; Sassi, Mohamed
2016-05-01
The density driven convection phenomenon has a significant role in enhancing the CO2 geological storage capacity. Deep saline aquifers are targeted for large scale geological sequestration. Once the CO2 is injected in saline aquifer, the supercritical CO2 rises up, forms a thin layer of free phase CO2, and the dissolution and molecular diffusion of the dissolved CO2 in brine begins. The CO2 saturated brine is denser than the original brine leading to gravitational convection of CO2 saturated brine. Convection accelerates the dissolution process and thus improves the safety and the efficiency of the sequestration. Laboratory experiments have been previously performed with experimental set-ups allowing the visualization of the phenomenon (1) eventually combined to the measurements of the dissolved CO2 mass transfer (2) as a function of the permeability of the medium. The visualization of the process was possible as Hele-Shaw cells at atmospheric pressure were used. Pressurized cylindrical vessel containing porous media allows measuring mass transfer of CO2 using the pressure decay concept (3) but visualization of the convection/dissolution was not possible for these setups. In this work, we performed experiments in a pressurized transparent cell similar to a Hele-Shaw cell but with bigger aperture. Permeability was varied by changing the size of the glass beads filling the cell. Bromocrysol green was used as a dye to track the pH change due to the presence of dissolved CO2 (1). The phenomenon is captured by a high resolution camera. We studied the effect of the pressure and of the permeability on the fingering pattern, the onset and the timescale of the phenomenon and the quantitative mass transfer of dissolved CO2. Experiments were validated on numerical simulations performed using STOMP (Subsurface Transport Over Multiple Phases) developed by the PNNL (Pacific Northwest National Laboratory) Hydrology group of the Department of Energy, USA. (1) Kneafsey, T.J., Pruess, K., 2010. Laboratory flow experiments for visualizing carbon dioxide-induced density-driven brine convection, Transport in Porous Media 82, 123-139. (2) Faisal, T. F., Chevalier, S., Bernabé, Y., Juanes, R. and M. Sassi. 2015. Quantitative and qualitative study of density driven CO2 mass transfer in a vertical Hele-Shaw cell. International Journal of Heat and Mass Transfer. Vol. 81, 901-914. (3) Farajzadeh, R.; Barati, A.; Delil, H. A.; Bruining, J.; Zitha, P. L. J., Mass transfer of CO2 into water and surfactant solutions, Petroleum Science and Technology 25 (12) (2007) 1493-1511.
McCord, Layne K; Scarfe, William C; Naylor, Rachel H; Scheetz, James P; Silveira, Anibal; Gillespie, Kevin R
2007-05-01
The objectives of this study were to compare the effect of JPEG 2000 compression of hand-wrist radiographs on observer image quality qualitative assessment and to compare with a software-derived quantitative image quality index. Fifteen hand-wrist radiographs were digitized and saved as TIFF and JPEG 2000 images at 4 levels of compression (20:1, 40:1, 60:1, and 80:1). The images, including rereads, were viewed by 13 orthodontic residents who determined the image quality rating on a scale of 1 to 5. A quantitative analysis was also performed by using a readily available software based on the human visual system (Image Quality Measure Computer Program, version 6.2, Mitre, Bedford, Mass). ANOVA was used to determine the optimal compression level (P < or =.05). When we compared subjective indexes, JPEG compression greater than 60:1 significantly reduced image quality. When we used quantitative indexes, the JPEG 2000 images had lower quality at all compression ratios compared with the original TIFF images. There was excellent correlation (R2 >0.92) between qualitative and quantitative indexes. Image Quality Measure indexes are more sensitive than subjective image quality assessments in quantifying image degradation with compression. There is potential for this software-based quantitative method in determining the optimal compression ratio for any image without the use of subjective raters.
Yao, Yunjin; Wu, Guodong; Lu, Fang; Wang, Shaobin; Hu, Yi; Zhang, Jie; Huang, Wanzheng; Wei, Fengyu
2016-11-01
Low-cost catalysts with high activity and stability toward producing strongly oxidative species are extremely desirable, but their development still remains a big challenge. Here, we report a novel strategy for the synthesis of a magnetic CoFe 2 O 4 /C 3 N 4 hybrid via a simple self-assembly method. The CoFe 2 O 4 /C 3 N 4 was utilized as a photo-Fenton-like catalyst for degradation of organic dyes in the presence of H 2 O 2 under natural indoor light irradiation, a green and energy-saving approach for environmental cleaning. It was found the CoFe 2 O 4 /C 3 N 4 hybrid with a CoFe 2 O 4 : g-C 3 N 4 mass ratio of 2:1 can completely degrade Rhodamine B nearly 100 % within 210 min under room-light irradiation. The effects of the amount of H 2 O 2 (0.01-0.5 M), initial dye concentration (5-20 mg/L), solution pH (3.08-10.09), fulvic acid concentration (5-50 mg/L), different dyes and catalyst stability on the organic dye degradation were investigated. The introduction of CoFe 2 O 4 on g-C 3 N 4 produced an enhanced separation efficiency of photogenerated electron - hole pairs by a Z-scheme mechanism between the interfaces of g-C 3 N 4 and CoFe 2 O 4 , leading to an excellent activity as compared with either g-C 3 N 4 or CoFe 2 O 4 and their mixture. This study demonstrates an efficient way to construct the low-cost magnetic CoFe 2 O 4 /C 3 N 4 heterojunction as a typical Z-scheme system in environmental remediation.
NASA Astrophysics Data System (ADS)
Zhao, Yuming; Zhao, Jingxiang
2017-08-01
The large-scale practical application of lithium-sulfur (Li-S) batteries cannot be relized unless the challenge of dissolving of soluble lithium polysulfides (Li2Sn) species in electrolytes can be solved. Herein, by means of density functional theory (DFT) computations, we systematically exploited the anchoring effects of various titanium carbide-based MXenes for Li-S batteries. Our results revealed that, due to the attraction between Li ions in Li2Sn species and O atoms in Ti2CO2 and Ti3C2O2 monolayer, the two Mxenes can strongly interact with Li2Sn species with remarkable but not too strong binding strength to effectively immobilize the soluble polysulfides. Especially, the intactness of the Li2Sn species can be well saved, although the Lisbnd S bonds are weakened. Therefore, Ti2CO2 and Ti3C2O2 monolayers are quite promising anchoring materials with good cycling performances for Li-S batteries.
In Situ Quantification of [Re(CO)3]+ by Fluorescence Spectroscopy in Simulated Hanford Tank Waste.
Branch, Shirmir D; French, Amanda D; Lines, Amanda M; Rapko, Brian M; Heineman, William R; Bryan, Samuel A
2018-02-06
A pretreatment protocol is presented that allows for the quantitative conversion and subsequent in situ spectroscopic analysis of [Re(CO) 3 ] + species in simulated Hanford tank waste. In this test case, the nonradioactive metal rhenium is substituted for technetium (Tc-99), a weak beta emitter, to demonstrate proof of concept for a method to measure a nonpertechnetate form of technetium in Hanford tank waste. The protocol encompasses adding a simulated waste sample containing the nonemissive [Re(CO) 3 ] + species to a developer solution that enables the rapid, quantitative conversion of the nonemissive species to a luminescent species which can then be detected spectroscopically. The [Re(CO) 3 ] + species concentration in an alkaline, simulated Hanford tank waste supernatant can be quantified by the standard addition method. In a test case, the [Re(CO) 3 ] + species was measured to be at a concentration of 38.9 μM, which was a difference of 2.01% from the actual concentration of 39.7 μM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathias, Paul M.; Zheng, Feng; Heldebrant, David J.
2015-09-17
The kinetics of the absorption of CO 2 into two nonaqueous CO 2-binding organic liquid (CO 2BOL) solvents were measured at T=35, 45, and 55 °C with a wetted-wall column. Selected CO 2 loadings were run with a so-called “first-generation” CO 2BOL, comprising an independent base and alcohol, and a “second-generation” CO 2BOL, in which the base and alcohol were conjoined. Liquid-film mass-transfer coefficient (k'g) values for both solvents were measured to be comparable to values for monoethanolamine and piperazine aqueous solvents under a comparable driving force, in spite of far higher solution viscosities. An inverse temperature dependence of themore » k'g value was also observed, which suggests that the physical solubility of CO 2 in organic liquids may be making CO 2 mass transfer faster than expected. Aspen Plus software was used to model the kinetic data and compare the CO 2 absorption behavior of nonaqueous solvents with that of aqueous solvent platforms. This work continues our development of the CO2BOL solvents. Previous work established the thermodynamic properties related to CO 2 capture. The present paper quantitatively studies the kinetics of CO 2 capture and develops a rate-based model.« less
NASA Technical Reports Server (NTRS)
Kieffer, Susan W.; Brown, K. L.; Simmons, Stuart F.; Watson, Arnold
2004-01-01
Water in the Earth's crust generally contains dissolved gases such as CO2. Models for both 'Blue Mars' (H2O-driven processes) and 'White Mars' (CO2-driven processes) predict liquid H2O with dissolved CO2 at depth. The fate of dissolved CO2 as this mixture rises toward the surface has not been quantitatively explored. Our approach is a variation on NASA's 'Follow the Water' as we 'Follow the Fluid' from depth to the surface in hydrothermal areas on Earth and extrapolate our results to Mars. This is a preliminary report on a field study of fluid flow in a producing geothermal well. For proprietary reasons, the name and location of this well cannot be revealed, so we have named it 'Earth1' for this study.
Enhanced weathering strategies for cooling the planet and saving coral reefs
NASA Astrophysics Data System (ADS)
Beerling, D. J.; Taylor, L.; Quirk, J.; Thorley, R.; Kharecha, P. A.; Hansen, J. E.; Ridgwell, A. J.; Lomas, M.; Banwart, S. A.
2014-12-01
Acceleration of the chemical weathering sink for atmospheric CO2 via distribution of pulverized silicate rocks across terrestrial landscapes has been proposed as a macro-engineering Carbon Dioxide Removal (CDR) scheme, but its effectiveness and response to ongoing global change is poorly understood. We employ a detailed spatially resolved weathering model driven by two ensemble Representative Concentration Pathway (RCP) projections of 21st Century climate (RCP8.5 and RCP4.5) to assess enhanced weathering and examine feedbacks on atmospheric CO2 and ocean carbonate biogeochemistry. Atmospheric CO2 reduction of ~100-260 ppm by year 2100, the range depending mainly on rock composition, is obtained by spreading 5 kg m-2 yr-1 over 20 Mkm2 tropical weathering 'hotspots'. Ocean acidification is neutralized in RCP4.5 and ameliorated in RCP8.5 due to enhanced land-ocean export of weathered alkalinity products and reduced CO2 forcings, and the aragonite saturation state of surface oceans is raised to >3.5, thus avoiding likely extinction of coral reef ecosystems. We suggest that accelerated weathering has substantial potential to help limit global warming and benefits to marine life not obtained from other CDR approaches, but major issues of cost, social acceptability, and potential unanticipated consequences should encourage urgent efforts to phase down fossil fuel emissions.
Achieving waste to energy through sewage sludge gasification using hot slags: syngas production
Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai
2015-01-01
To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400–800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*105 tons of standard coal and 1.74*106 tons of CO2, respectively. PMID:26074060
Achieving waste to energy through sewage sludge gasification using hot slags: syngas production
NASA Astrophysics Data System (ADS)
Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai
2015-06-01
To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400-800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*105 tons of standard coal and 1.74*106 tons of CO2, respectively.
Heavy Traffic Feasible Hybrid Intracycle and Cyclic Sleep for Power Saving in 10G-EPON
Wang, Liqian; Zhang, Zhiguo; Chen, Xue
2014-01-01
Energy consumption in optical access networks costs carriers substantial operational expense (OPEX) every year and is one of contributing factors for the global warming. To reduce energy consumption in the 10-gigabit Ethernet passive optical network (10G-EPON), a hybrid intracycle and cyclic sleep mechanism is proposed in this paper. Under heavy traffic load, optical network units (ONUs) can utilize short idle slots within each scheduling cycle to enter intracycle sleep without postponing data transmission. In this way, energy conservation is achieved even under heavy traffic load with quality of service (QoS) guarantee. Under light traffic load, ONUs perform long cyclic sleep for several scheduling cycles. The adoption of cyclic sleep instead of intracycle sleep under light traffic load can reduce unnecessary frequent transitions between sleep and full active work caused by using intracycle sleep. Further, the Markov chain of the proposed mechanism is established. The performances of the proposed mechanism and existing approaches are analyzed quantitatively based on the chain. For the proposed mechanism, power saving ability with QoS guarantee even under heavy traffic and better power saving performance than existing approaches are verified by the quantitative analysis. Moreover, simulations validate the above conclusions based on the chain. PMID:25177727
NASA Astrophysics Data System (ADS)
Hammouda, Tahar; Chantel, Julien; Manthilake, Geeth; Guignard, Jérémy; Crichton, Wilson; Gaillard, Fabrice
2014-05-01
Melting of peridotite + CO2 upon compression has been directly monitored in situ, for the first time. We have combined high pressure experiments in the multianvil apparatus with synchrotron-generated X-ray diffraction, in order to monitor sample decarbonation upon heating, followed by melting upon compression. Experiments were performed in the model system CaO-MgO-SiO2+CO2, using dolomite and silicates contained in graphite capsules as starting material. Save Al, starting composition was aimed at reproducing peridotitic system. The sample was first compressed at room temperature, then heated. Decarbonation was observed at 2.2 GPa and 1100°C. After further heating to 1300°C, pressure was increased. Melting was observed at 2.7 GPa, while temperature was kept at 1300°C. All transformations were followed using X-ray diffraction. Starting with silicate + carbonate mixtures, we were thus able to keep CO2 fluid in the experimental sample at high P and T, up to the solidus. Concerning carbon recycling at subduction zones, it is known that CO2 is a non-wetting fluid in silicate aggregates. Therefore, any CO2 resulting from carbonate breakdown likely remains trapped at grain corners either in the subducted lithosphere or in the mantle wedge before eventually being trapped in mantle minerals as fluid inclusions, due to dynamic recrystallization. In this way, CO2 released from the slab may be spread laterally due to mantle convection. Entrainment to further depths by deep subduction or in convection cells induces CO2 introduction to depth wherein the solidus can be crossed, due to pressure increase. The solidus corresponds to the so-called carbonate ledge, beyond which carbonatitic melts are produced. Therefore, compression melting of CO2-bearing lithologies is a way to produce carbonatitic melts at depths corresponding to about 80 km. This mechanism is a viable explanation for the observed geophysical anomalies, such as those revealed by electrical conductivity measurements.
Ngo, Ken T.; McKinnon, Meaghan; Mahanti, Bani; ...
2017-01-24
Electrocatalytic reduction of CO 2 to CO is reported for the complex, { fac-Mn I([(MeO) 2Ph] 2bpy)(CO) 3(CH 3CN)}(OTf), containing four pendant methoxy groups, where [(MeO) 2Ph] 2bpy = 6,6'-bis(2,6-dimethoxyphenyl)-2,2'-bipyridine. In addition to a steric influence similar to that previously established for the 6,6'-dimesityl-2,2'-bipyridine ligand in [ fac-MnI(mes 2bpy)(CO) 3(CH 3CN)](OTf), which prevents Mn 0–Mn 0 dimerization, the [(MeO) 2Ph] 2bpy ligand introduces an additional electronic influence combined with a weak allosteric hydrogen-bonding interaction that significantly lowers the activation barrier for C–OH bond cleavage from the metallocarboxylic acid intermediate. This provides access to the thus far elusive protonation-first pathway, minimizingmore » the required overpotential for electrocatalytic CO 2 to CO conversion by Mn(I) polypyridyl catalysts, while concurrently maintaining a respectable turnover frequency. Comprehensive electrochemical and computational studies here confirm the positive influence of the [(MeO) 2Ph] 2bpy ligand framework on electrocatalytic CO 2 reduction and its dependence upon the concentration and p K a of the external Bronsted acid proton source (water, methanol, trifluoroethanol, and phenol) that is required for this class of manganese catalyst. Linear sweep voltammetry studies show that both phenol and trifluoroethanol as proton sources exhibit the largest protonation-first catalytic currents in combination with { fac-Mn I([(MeO) 2Ph] 2bpy)(CO) 3(CH 3CN)}(OTf), saving up to 0.55 V in overpotential with respect to the thermodynamically demanding reduction-first pathway, while bulk electrolysis studies confirm a high product selectivity for CO formation. As a result, to gain further insight into catalyst activation, time-resolved infrared (TRIR) spectroscopy combined with pulse-radiolysis (PR-TRIR), infrared spectroelectrochemistry, and density functional theory calculations were used to establish the v(CO) stretching frequencies and energetics of key redox intermediates relevant to catalyst activation.« less
Zero bias STS Kondo anomalies of Co impurities on Cu surfaces: do ab initio calculations work?
NASA Astrophysics Data System (ADS)
Baruselli, Pier Paolo; Smogunov, Alexander; Fabrizio, Michele; Requist, Ryan; Tosatti, Erio
2012-02-01
Transition metal atoms such as Co on Cu (111), (100), and (110) surfaces produce STS I-V spectra showing different zero bias Kondo anomalies [1] but these differences have been neither quantitatively predicted nor fully explained theoretically. We apply to this problem the DFT+NRG scheme of Lucignano et al [2], where one solves by NRG an Anderson model built from ab initio phase shifts provided by DFT. For Co/Cu(100) and Co/Cu(110) our calculations describe correctly the experimental trend of Kondo temperatures, and fairly the lineshapes too. By contrast, they fail to describe Co/Cu(111) where in particular the anti-lorentzian lineshape found in experiment remains unexplained. This failure underscores the role of surface states, probably relevant for Co/Cu(111) [3] but not correctly described by our thin slab calculations. Future efforts to quantitatively include Kondo screening by surface states are therefore called for. 1. N. Knorr et al PRL 88, 096804 (2002); M. Ternes et al 2009 J. Phys.: Cond. Matt. 21, 053001 (2009); A. Gumbsch et al PRB81, 165420 (2010). 2. P. Lucignano et al Nature Mat. 8, 563 (2009); P.P. Baruselli et al, Physica E, doi:10.1016/j.physe.2011.05.005. 3. C. Lin et al. PRB 71, 035417 (2005).
Inexpensive health care reform: the mathematics of medicine.
Forsyth, Roger A
2010-02-01
There is data to support the hypothesis that US healthcare reform will require systemic changes in their delivery system rather than a segment-by-segment approach to improving individual components such as administrative or pharmaceutical costs or illness-by-illness programs such as comparative effectiveness or disease management. Mathematically, personnel costs provide the largest potential for savings. These costs are reflected in utilization rates. However, when governments or insurers try to control utilization, shortages or dissatisfaction ensue. Therefore, reform should be structured to encourage individually initiated reductions in utilization. This can be facilitated by changing from employer-paid comprehensive group policies of variable coverage to a three-part, standardized, individually purchased, group policy with a targeted deductible and co-pays that provide disincentives to over-utilization and incentives (refunds on unused contributions) to reduce utilization. There will be a public health policy (maternal, infant, and immunizations) that will be very inexpensive and not subject to any disincentives, a catastrophic policy with a deductible and enhanced but diminishing co-pays, and a Health Savings Account that pre-positions funds to cover the deductible and co-pays. These changes will lead to a reduction in administrative costs. The excess capacity created will provide care for the currently uninsured. Savings will be refunded to individuals thereby generating taxes that can pay for needed subsidies. Reform can be inexpensive if it puts the mathematics before the politics.
Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D
2016-07-01
In UV-254 nm/H2O2 advanced oxidation process (AOP), the potential degradation pathways for organic pollutants include (1) hydrolysis, (2) direct H2O2 oxidation, (3) UV direct photolysis, and (4) hydroxyl radical (HO(•)) reaction. In this study, the contribution of these pathways was quantitatively assessed in the photochemical destruction of 4-chlorophenol (4-CP), demonstrating pathways (3) and (4) to be predominantly responsible for the removal of 4-CP by UV/H2O2 in 50 mM phosphate buffer solution. Increasing reaction pH could significantly enhance the contribution of direct photolysis in UV/H2O2 process. The contribution of HO(•) oxidation was improved with increasing initial H2O2 concentration probably due to the increased formation of HO(•). Presence of sodium carbonate (Na2CO3) as in UV/H2O2/Na2CO3 system promoted the degradation of 4-CP, with carbonate radical (CO3 (•-)) reaction and direct photolysis identified to be the main contributing pathways. The trends in the contribution of each factor were further evaluated and validated on the degradation of the antibiotic compound oxytetracycline (OTC). This study provides valuable information on the relative importance of different reaction pathways on the photochemical degradation of organic contaminants such as 4-CP and OTC in the presence and absence of a CO3 (•-) precursor.
Energy and climate impacts of producing synthetic hydrocarbon fuels from CO(2).
van der Giesen, Coen; Kleijn, René; Kramer, Gert Jan
2014-06-17
Within the context of carbon dioxide (CO2) utilization there is an increasing interest in using CO2 as a resource to produce sustainable liquid hydrocarbon fuels. When these fuels are produced by solely using solar energy they are labeled as solar fuels. In the recent discourse on solar fuels intuitive arguments are used to support the prospects of these fuels. This paper takes a quantitative approach to investigate some of the claims made in this discussion. We analyze the life cycle performance of various classes of solar fuel processes using different primary energy and CO2 sources. We compare their efficacy with respect to carbon mitigation with ubiquitous fossil-based fuels and conclude that producing liquid hydrocarbon fuels starting from CO2 by using existing technologies requires much more energy than existing fuels. An improvement in life cycle CO2 emissions is only found when solar energy and atmospheric CO2 are used. Producing fuels from CO2 is a very long-term niche at best, not the panacea suggested in the recent public discourse.
Gao, Hanyang; Xue, Chen; Hu, Guoxin; Zhu, Kunxu
2017-07-01
In this research, three kinds of graphene quantum dots (GQDs)-pristine graphene quantum dots (PGQDs), expanded graphene quantum dots (EGQDs) and graphene oxide quantum dots (GOQDs)-were produced from natural graphite, expanded graphite, and oxide graphite respectively in an ultrasound-assisted supercritical CO 2 (scCO 2 )/H 2 O system. The effects of aqueous solution content ratio, system pressure, and ultrasonic power on the yields of different kinds of GQDs were investigated. According to these experiment results, the combination of the intense knocking force generated from high-pressure acoustic cavitation in a scCO 2 /H 2 O system and the superior penetration ability of scCO 2 was considered to be the key to the successful exfoliation of such tiny pieces from bulk graphite. An interesting result was found that, contrary to common experience, the yield of PGQDs from natural graphite was much higher than that of GOQDs from graphite oxide. Based on the experimental analysis, the larger interlayer resistance of natural graphite, which hindered the insertion of scCO 2 molecules, and the hydrophobic property of natural graphite surface, which made the planar more susceptible to the attack of ultrasonic collapsing bubbles, were deduced to be the two main reasons for this result. The differences in characteristics among the three kinds of GQDs were also studied and compared in this research. In our opinion, this low-cost and time-saving method may provide an alternative green route for the production of various kinds of GQDs, especially PGQDs. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Qingling; Zhang, Shenghui; Berthiaume, Jessica M; Simons, Brigitte; Zhang, Guo-Fang
2014-03-01
A metabolomic approach to selectively profile all acyl-CoAs was developed using a programmed multiple reaction monitoring (MRM) method in LC-MS/MS and was employed in the analysis of various rat organs. The programmed MRM method possessed 300 mass ion transitions with the mass difference of 507 between precursor ion (Q1) and product ion (Q3), and the precursor ion started from m/z 768 and progressively increased one mass unit at each step. Acyl-dephospho-CoAs resulting from the dephosphorylation of acyl-CoAs were identified by accurate MS and fragmentation. Acyl-dephospho-CoAs were also quantitatively scanned by the MRM method with the mass difference of 427 between Q1 and Q3 mass ions. Acyl-CoAs and dephospho-CoAs were assayed with limits of detection ranging from 2 to 133 nM. The accuracy of the method was demonstrated by assaying a range of concentrations of spiked acyl-CoAs with the results of 80-114%. The distribution of acyl-CoAs reflects the metabolic status of each organ. The physiological role of dephosphorylation of acyl-CoAs remains to be further characterized. The methodology described herein provides a novel strategy in metabolomic studies to quantitatively and qualitatively profile all potential acyl-CoAs and acyl-dephospho-CoAs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rich Ciora; Paul KT Liu
2012-06-27
In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings ofmore » $$2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $$750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.« less
NASA Astrophysics Data System (ADS)
Wang, Yaowu; You, Jing; Peng, Jianping; Di, Yuezhong
2016-06-01
The Pidgeon process currently accounts for 85% of the world's magnesium production. Although the Pidgeon process has been greatly improved over the past 10 years, such production still consumes much energy and material and creates much pollution. The present study investigates the process of producing magnesium by employing vacuum aluminothermic reduction and by using magnesite as material and obtaining magnesium aluminate spinel as a by-product. The results show that compared with the Pidgeon process, producing magnesium by vacuum aluminothermic reduction can save materials by as much as 50%, increase productivity up to 100%, and save energy by more than 50%. It can also reduce CO2 emission by up to 60% and realize zero discharge of waste residue. Vacuum aluminothermic reduction is a highly efficient, low-energy-consumption, and environmentally friendly method of producing magnesium.
12 CFR 550.390 - May my officer or employee retain compensation for acting as a co-fiduciary?
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 5 2010-01-01 2010-01-01 false May my officer or employee retain compensation for acting as a co-fiduciary? 550.390 Section 550.390 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF SAVINGS ASSOCIATIONS Exercising Fiduciary Powers Compensation...
12 CFR 550.390 - May my officer or employee retain compensation for acting as a co-fiduciary?
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 5 2011-01-01 2011-01-01 false May my officer or employee retain compensation for acting as a co-fiduciary? 550.390 Section 550.390 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF SAVINGS ASSOCIATIONS Exercising Fiduciary Powers Compensation...
The social inefficiency of regulating indirect land use change due to biofuels
Khanna, Madhu; Wang, Weiwei; Hudiburg, Tara W.; ...
2017-06-26
Efforts to reduce the indirect land use change (ILUC) -related carbon emissions caused by biofuels has led to inclusion of an ILUC factor as a part of the carbon intensity of biofuels in a Low Carbon Fuel Standard. While previous research has provided varying estimates of this ILUC factor, there has been no research examining the economic effects and additional carbon savings from including this factor in implementing a Low Carbon Fuel Standard. In this article we show that inclusion of an ILUC factor in a national Low Carbon Fuel Standard led to additional abatement of cumulative emissions over 2007–2027more » by 1.3 to 2.6% (0.6–1.1 billion mega-grams carbon-dioxide-equivalent (Mg CO 2e -1) compared to those without an ILUC factor, depending on the ILUC factors utilized. The welfare cost to the US of this additional abatement ranged from 61 dollars to 187 dollars Mg CO 2e -1 and was substantially greater than the social cost of carbon of $50 Mg CO 2e -1.« less
The social inefficiency of regulating indirect land use change due to biofuels
Khanna, Madhu; Wang, Weiwei; Hudiburg, Tara W.; DeLucia, Evan H.
2017-01-01
Efforts to reduce the indirect land use change (ILUC) -related carbon emissions caused by biofuels has led to inclusion of an ILUC factor as a part of the carbon intensity of biofuels in a Low Carbon Fuel Standard. While previous research has provided varying estimates of this ILUC factor, there has been no research examining the economic effects and additional carbon savings from including this factor in implementing a Low Carbon Fuel Standard. Here we show that inclusion of an ILUC factor in a national Low Carbon Fuel Standard led to additional abatement of cumulative emissions over 2007–2027 by 1.3 to 2.6% (0.6–1.1 billion mega-grams carbon-dioxide-equivalent (Mg CO2e−1) compared to those without an ILUC factor, depending on the ILUC factors utilized. The welfare cost to the US of this additional abatement ranged from $61 to $187 Mg CO2e−1 and was substantially greater than the social cost of carbon of $50 Mg CO2e−1. PMID:28649991
The social inefficiency of regulating indirect land use change due to biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khanna, Madhu; Wang, Weiwei; Hudiburg, Tara W.
Efforts to reduce the indirect land use change (ILUC) -related carbon emissions caused by biofuels has led to inclusion of an ILUC factor as a part of the carbon intensity of biofuels in a Low Carbon Fuel Standard. While previous research has provided varying estimates of this ILUC factor, there has been no research examining the economic effects and additional carbon savings from including this factor in implementing a Low Carbon Fuel Standard. In this article we show that inclusion of an ILUC factor in a national Low Carbon Fuel Standard led to additional abatement of cumulative emissions over 2007–2027more » by 1.3 to 2.6% (0.6–1.1 billion mega-grams carbon-dioxide-equivalent (Mg CO 2e -1) compared to those without an ILUC factor, depending on the ILUC factors utilized. The welfare cost to the US of this additional abatement ranged from 61 dollars to 187 dollars Mg CO 2e -1 and was substantially greater than the social cost of carbon of $50 Mg CO 2e -1.« less
Joint optimization of green vehicle scheduling and routing problem with time-varying speeds
Zhang, Dezhi; Wang, Xin; Ni, Nan; Zhang, Zhuo
2018-01-01
Based on an analysis of the congestion effect and changes in the speed of vehicle flow during morning and evening peaks in a large- or medium-sized city, the piecewise function is used to capture the rules of the time-varying speed of vehicles, which are very important in modelling their fuel consumption and CO2 emission. A joint optimization model of the green vehicle scheduling and routing problem with time-varying speeds is presented in this study. Extra wages during nonworking periods and soft time-window constraints are considered. A heuristic algorithm based on the adaptive large neighborhood search algorithm is also presented. Finally, a numerical simulation example is provided to illustrate the optimization model and its algorithm. Results show that, (1) the shortest route is not necessarily the route that consumes the least energy, (2) the departure time influences the vehicle fuel consumption and CO2 emissions and the optimal departure time saves on fuel consumption and reduces CO2 emissions by up to 5.4%, and (3) extra driver wages have significant effects on routing and departure time slot decisions. PMID:29466370
Joint optimization of green vehicle scheduling and routing problem with time-varying speeds.
Zhang, Dezhi; Wang, Xin; Li, Shuangyan; Ni, Nan; Zhang, Zhuo
2018-01-01
Based on an analysis of the congestion effect and changes in the speed of vehicle flow during morning and evening peaks in a large- or medium-sized city, the piecewise function is used to capture the rules of the time-varying speed of vehicles, which are very important in modelling their fuel consumption and CO2 emission. A joint optimization model of the green vehicle scheduling and routing problem with time-varying speeds is presented in this study. Extra wages during nonworking periods and soft time-window constraints are considered. A heuristic algorithm based on the adaptive large neighborhood search algorithm is also presented. Finally, a numerical simulation example is provided to illustrate the optimization model and its algorithm. Results show that, (1) the shortest route is not necessarily the route that consumes the least energy, (2) the departure time influences the vehicle fuel consumption and CO2 emissions and the optimal departure time saves on fuel consumption and reduces CO2 emissions by up to 5.4%, and (3) extra driver wages have significant effects on routing and departure time slot decisions.
Ferko, Nicole; Ferrante, Giuseppe; Hasegawa, James T; Schikorr, Tanya; Soleas, Ireena M; Hernandez, John B; Sabaté, Manel; Kaiser, Christoph; Brugaletta, Salvatore; de la Torre Hernandez, Jose Maria; Galatius, Soeren; Cequier, Angel; Eberli, Franz; de Belder, Adam; Serruys, Patrick W; Valgimigli, Marco
2017-05-01
Second-generation drug eluting stents (DES) may reduce costs and improve clinical outcomes compared to first-generation DES with improved cost-effectiveness when compared to bare metal stents (BMS). We aimed to conduct an economic evaluation of a cobalt-chromium everolimus eluting stent (Co-Cr EES) compared with BMS in percutaneous coronary intervention (PCI). To conduct a cost-effectiveness analysis (CEA) of a cobalt-chromium everolimus eluting stent (Co-Cr EES) versus BMS in PCI. A Markov state transition model with a 2-year time horizon was applied from a US Medicare setting with patients undergoing PCI with Co-Cr EES or BMS. Baseline characteristics, treatment effects, and safety measures were taken from a patient level meta-analysis of 5 RCTs (n = 4,896). The base-case analysis evaluated stent-related outcomes; a secondary analysis considered the broader set of outcomes reported in the meta-analysis. The base-case and secondary analyses reported an additional 0.018 and 0.013 quality-adjusted life years (QALYs) and cost savings of $236 and $288, respectively with Co-Cr EES versus BMS. Results were robust to sensitivity analyses and were most sensitive to the price of clopidogrel. In the probabilistic sensitivity analysis, Co-Cr EES was associated with a greater than 99% chance of being cost saving or cost effective (at a cost per QALY threshold of $50,000) versus BMS. Using data from a recent patient level meta-analysis and contemporary cost data, this analysis found that PCI with Co-Cr EES is more effective and less costly than PCI with BMS. © 2016 The Authors. Catheterization and Cardiovascular Interventions Published by Wiley Periodicals, Inc. © 2016 The Authors. Catheterization and Cardiovascular Interventions Published by Wiley Periodicals, Inc.
A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Arthur; Domszy, Roman; Yang, Jeff
Advanced thermal insulation is among the most effective technologies in transforming our nation’s energy system and contributing to DOE’s stated goal of 50% less building energy consumption by 2030. The installation of an advanced thermal insulation would prevent energy waste without the need for any maintenance, and ISTN conservatively estimates that the commercialization of such a new technology would contribute to annual U.S. energy savings of 0.361 Quads and $8 billion in annual economic savings. The key challenge to improving building insulation is to maintain and surpass the industry standard of R-5 per inch insulation value in a cost-competitive manner.more » Improvements in R-value without cost-efficiency are not likely to impact the market given the cost-sensitive nature of the construction industry (insulation is already the lowest-cost component of the building envelope). However, significantly higher insulating value at competitive costs is extremely appealing to the market given the greater potential to save on energy consumption and costs over the long-term. Thus, our goal is to develop a super-thermal insulation with 50% greater insulation value (R-9 to R-10 per inch) and manufacturing costs that are equal on a per-R-value basis (< $0.70/ft 2).« less
NASA Astrophysics Data System (ADS)
Yu, Miao; Wang, Lirui; Yang, Pingan; Fu, Jie
2017-12-01
Dendritic-like Co superstructures based on the self-assembly of nanoflakes that could efficiently suppress the eddy current were successfully synthesized via a facile, rapid, and energy-saving chemical reduction method. Since crystal structure, size, and special geometrical morphology, magnetism have a vital influence on microwave absorption properties, the as-obtained products were characterized by x-ray diffraction, scanning electron microscopy, vibrating sample magnetometry, and vector network analysis. The prepared dendritic Co possesses abundant secondary branches that extend to the 3D space. Their dimensions, spacing, sheet-like blocks, and high-ordering microstructures all contribute to the penetration, scattering, and attenuation of EM waves. The composites present attractive microwave absorption performances in the X band, as well as in the whole S band (2-4 GHz). This work investigates the mechanism of absorption for the as-obtained Co, offers a promising strategy for the fabrication of hierarchical Co microstructure assemblies by multi-leaf flakes and introduces the application of dendritic-like Co as a highly efficient absorber in the S band and X band.
A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea.
Berg, Ivan A; Kockelkorn, Daniel; Buckel, Wolfgang; Fuchs, Georg
2007-12-14
The assimilation of carbon dioxide (CO2) into organic material is quantitatively the most important biosynthetic process. We discovered that an autotrophic member of the archaeal order Sulfolobales, Metallosphaera sedula, fixed CO2 with acetyl-coenzyme A (acetyl-CoA)/propionyl-CoA carboxylase as the key carboxylating enzyme. In this system, one acetyl-CoA and two bicarbonate molecules were reductively converted via 3-hydroxypropionate to succinyl-CoA. This intermediate was reduced to 4-hydroxybutyrate and converted into two acetyl-CoA molecules via 4-hydroxybutyryl-CoA dehydratase. The key genes of this pathway were found not only in Metallosphaera but also in Sulfolobus, Archaeoglobus, and Cenarchaeum species. Moreover, the Global Ocean Sampling database contains half as many 4-hydroxybutyryl-CoA dehydratase sequences as compared with those found for another key photosynthetic CO2-fixing enzyme, ribulose-1,5-bisphosphate carboxylase-oxygenase. This indicates the importance of this enzyme in global carbon cycling.
Developing a Comprehensive Risk Assessment Framework for Geological Storage CO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, Ian
2014-08-31
The operational risks for CCS projects include: risks of capturing, compressing, transporting and injecting CO₂; risks of well blowouts; risk that CO 2 will leak into shallow aquifers and contaminate potable water; and risk that sequestered CO 2 will leak into the atmosphere. This report examines these risks by using information on the risks associated with analogue activities such as CO 2 based enhanced oil recovery (CO 2-EOR), natural gas storage and acid gas disposal. We have developed a new analysis of pipeline risk based on Bayesian statistical analysis. Bayesian theory probabilities may describe states of partial knowledge, even perhapsmore » those related to non-repeatable events. The Bayesian approach enables both utilizing existing data and at the same time having the capability to adsorb new information thus to lower uncertainty in our understanding of complex systems. Incident rates for both natural gas and CO 2 pipelines have been widely used in papers and reports on risk of CO 2 pipelines as proxies for the individual risk created by such pipelines. Published risk studies of CO 2 pipelines suggest that the individual risk associated with CO2 pipelines is between 10 -3 and 10 -4, which reflects risk levels approaching those of mountain climbing, which many would find unacceptably high. This report concludes, based on a careful analysis of natural gas pipeline failures, suggests that the individual risk of CO 2 pipelines is likely in the range of 10-6 to 10-7, a risk range considered in the acceptable to negligible range in most countries. If, as is commonly thought, pipelines represent the highest risk component of CCS outside of the capture plant, then this conclusion suggests that most (if not all) previous quantitative- risk assessments of components of CCS may be orders of magnitude to high. The potential lethality of unexpected CO 2 releases from pipelines or wells are arguably the highest risk aspects of CO 2 enhanced oil recovery (CO2-EOR), carbon capture, and storage (CCS). Assertions in the CCS literature, that CO 2 levels of 10% for ten minutes, or 20 to 30% for a few minutes are lethal to humans, are not supported by the available evidence. The results of published experiments with animals exposed to CO 2, from mice to monkeys, at both normal and depleted oxygen levels, suggest that lethal levels of CO 2 toxicity are in the range 50 to 60%. These experiments demonstrate that CO 2 does not kill by asphyxia, but rather is toxic at high concentrations. It is concluded that quantitative risk assessments of CCS have overestimated the risk of fatalities by using values of lethality a factor two to six lower than the values estimated in this paper. In many dispersion models of CO 2 releases from pipelines, no fatalities would be predicted if appropriate levels of lethality for CO 2 had been used in the analysis.« less
Modeling the Losses of Dissolved CO(2) from Laser-Etched Champagne Glasses.
Liger-Belair, Gérard
2016-04-21
Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate definitely impacts champagne tasting by modifying the neuro-physicochemical mechanisms responsible for aroma release and flavor perception. On the basis of theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics, and mass transfer equations, a global model is proposed, depending on various parameters of both the wine and the glass itself, which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses. The question of champagne temperature was closely examined, and its role on the modeled losses of dissolved CO2 was corroborated by a set of experimental data.
NASA Astrophysics Data System (ADS)
Zhao, Siqi; Zhang, Guanglong; Xia, Shuwei; Yu, Liangmin
2018-06-01
As a group of diversified frameworks, quinazolin derivatives displayed a broad field of biological functions, especially as anticancer. To investigate the quantitative structure-activity relationship, 3D-QSAR models were generated with 24 quinazolin scaffold molecules. The experimental and predicted pIC50 values for both training and test set compounds showed good correlation, which proved the robustness and reliability of the generated QSAR models. The most effective CoMFA and CoMSIA were obtained with correlation coefficient r 2 ncv of 1.00 (both) and leave-one-out coefficient q 2 of 0.61 and 0.59, respectively. The predictive abilities of CoMFA and CoMSIA were quite good with the predictive correlation coefficients ( r 2 pred ) of 0.97 and 0.91. In addition, the statistic results of CoMFA and CoMSIA were used to design new quinazolin molecules.
Process control, energy recovery and cost savings in acetic acid wastewater treatment.
Vaiopoulou, E; Melidis, P; Aivasidis, A
2011-02-28
An anaerobic fixed bed loop (AFBL) reactor was applied for treatment of acetic acid (HAc) wastewater. Two pH process control concepts were investigated; auxostatic and chemostatic control. In the auxostatic pH control, feed pump is interrupted when pH falls below a certain pH value in the bioreactor, which results in reactor operation at maximum load. Chemostatic control assures alkaline conditions by setting a certain pH value in the influent, preventing initial reactor acidification. The AFBL reactor treated HAc wastewater at low hydraulic residence time (HRT) (10-12 h), performed at high space time loads (40-45 kg COD/m(3) d) and high space time yield (30-35 kg COD/m(3) d) to achieve high COD (Chemical Oxygen Demand) removal (80%). Material and cost savings were accomplished by utilizing the microbial potential for wastewater neutralization during anaerobic treatment along with application of favourable pH-auxostatic control. NaOH requirement for neutralization was reduced by 75% and HRT was increased up to 20 h. Energy was recovered by applying costless CO(2) contained in the biogas for neutralization of alkaline wastewater. Biogas was enriched in methane by 4 times. This actually brings in more energy profits, since biogas extra heating for CO(2) content during biogas combustion is minimized and usage of other acidifying agents is omitted. Copyright © 2010 Elsevier B.V. All rights reserved.
Modaresi, Roja; Pauliuk, Stefan; Løvik, Amund N; Müller, Daniel B
2014-09-16
Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010-2050. We show that light-weighting of passenger cars can become a "gigaton solution": Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9-18 gigatons CO2-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4-6 gigatons CO2-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect.
Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin
2013-01-01
Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles in low-carbon transport.
Gralinski, Lisa E; Menachery, Vineet D; Morgan, Andrew P; Totura, Allison L; Beall, Anne; Kocher, Jacob; Plante, Jessica; Harrison-Shostak, D Corinne; Schäfer, Alexandra; Pardo-Manuel de Villena, Fernando; Ferris, Martin T; Baric, Ralph S
2017-06-07
Host genetic variation is known to contribute to differential pathogenesis following infection. Mouse models allow direct assessment of host genetic factors responsible for susceptibility to Severe Acute Respiratory Syndrome coronavirus (SARS-CoV). Based on an assessment of early stage lines from the Collaborative Cross mouse multi-parent population, we identified two lines showing highly divergent susceptibilities to SARS-CoV: the resistant CC003/Unc and the susceptible CC053/Unc. We generated 264 F2 mice between these strains, and infected them with SARS-CoV. Weight loss, pulmonary hemorrhage, and viral load were all highly correlated disease phenotypes. We identified a quantitative trait locus of major effect on chromosome 18 (27.1-58.6 Mb) which affected weight loss, viral titer and hemorrhage. Additionally, each of these three phenotypes had distinct quantitative trait loci [Chr 9 (weight loss), Chrs 7 and 12 (virus titer), and Chr 15 (hemorrhage)]. We identified Ticam2 , an adaptor protein in the TLR signaling pathways, as a candidate driving differential disease at the Chr 18 locus. Ticam2 -/- mice were highly susceptible to SARS-CoV infection, exhibiting increased weight loss and more pulmonary hemorrhage than control mice. These results indicate a critical role for Ticam2 in SARS-CoV disease, and highlight the importance of host genetic variation in disease responses. Copyright © 2017 Gralinski et al.
Gralinski, Lisa E.; Menachery, Vineet D.; Morgan, Andrew P.; Totura, Allison L.; Beall, Anne; Kocher, Jacob; Plante, Jessica; Harrison-Shostak, D. Corinne; Schäfer, Alexandra; Pardo-Manuel de Villena, Fernando; Ferris, Martin T.; Baric, Ralph S.
2017-01-01
Host genetic variation is known to contribute to differential pathogenesis following infection. Mouse models allow direct assessment of host genetic factors responsible for susceptibility to Severe Acute Respiratory Syndrome coronavirus (SARS-CoV). Based on an assessment of early stage lines from the Collaborative Cross mouse multi-parent population, we identified two lines showing highly divergent susceptibilities to SARS-CoV: the resistant CC003/Unc and the susceptible CC053/Unc. We generated 264 F2 mice between these strains, and infected them with SARS-CoV. Weight loss, pulmonary hemorrhage, and viral load were all highly correlated disease phenotypes. We identified a quantitative trait locus of major effect on chromosome 18 (27.1–58.6 Mb) which affected weight loss, viral titer and hemorrhage. Additionally, each of these three phenotypes had distinct quantitative trait loci [Chr 9 (weight loss), Chrs 7 and 12 (virus titer), and Chr 15 (hemorrhage)]. We identified Ticam2, an adaptor protein in the TLR signaling pathways, as a candidate driving differential disease at the Chr 18 locus. Ticam2−/− mice were highly susceptible to SARS-CoV infection, exhibiting increased weight loss and more pulmonary hemorrhage than control mice. These results indicate a critical role for Ticam2 in SARS-CoV disease, and highlight the importance of host genetic variation in disease responses. PMID:28592648
NASA Astrophysics Data System (ADS)
Pak, Pyong Sik
This paper evaluates two proposed repowering systems together with a conventional repowering system. A power generation system utilizing waste heat produced by a garbage incineration plant (GIP), which treats 45 t/d of garbage, was taken as an objective power generation system to be repowered. As the conventional repowering system (Sys-C), a gas turbine system with waste heat boiler was adopted. In the proposed system 1 (Sys-P1), temperature of the low temperature steam generated at the GIP is raised in the gas combustor by burning fuel, and used to drive a gas turbine generator. Hence, required power for compressing the air becomes remarkably small and expected to be high efficient compared with Sys-C. In the proposed system 2 (Sys-P2), the low temperature steam generated at the GIP is superheated by using regenerative burner and used to drive a steam turbine generator, and hence making steam condition optimal becomes easy. Various basic characteristics of the three repowering systems were estimated through computer simulation, such as repowering efficiency, energy saving characteristics, and amount of CO2 reduction. It was shown that Sys-P1 and Sys-P2 were both superior to the conventional repowering system Sys-C in the all characteristics, and Sys-P1 to Sys-P2 in repowering efficiency, and that Sys-P2 to Sys-P1 in energy saving characteristics and CO2 reduction effect. It has also been estimated that all the repowering systems are economically feasible, and that the proposed systems Sys-P1 and Sys-P2 are both superior to the Sys-C in the three economical indices of unit cost of power, annual gross profit and depreciation year.
Golomb, D; Pennell, S; Ryan, D; Barry, E; Swett, P
2007-07-01
The release into the deep ocean of an emulsion of liquid carbon dioxide-in-seawater stabilized by fine particles of pulverized limestone (CaCO3) is modeled. The emulsion is denser than seawater, hence, it will sink deeper from the injection point, increasing the sequestration period. Also, the presence of CaCO3 will partially buffer the carbonic acid that results when the emulsion eventually disintegrates. The distance that the plume sinks depends on the density stratification of the ocean, the amount of the released emulsion, and the entrainment factor. When released into the open ocean, a plume containing the CO2 output of a 1000 MW(el) coal-fired power plant will typically sink hundreds of meters below the injection point. When released from a pipe into a valley on the continental shelf, the plume will sink about twice as far because of the limited entrainment of ambient seawater when the plume flows along the valley. A practical system is described involving a static mixer for the in situ creation of the CO2/seawater/pulverized limestone emulsion. The creation of the emulsion requires significant amounts of pulverized limestone, on the order of 0.5 tons per ton of liquid CO2. That increases the cost of ocean sequestration by about $13/ ton of CO2 sequestered. However, the additional cost may be compensated by the savings in transportation costs to greater depth, and because the release of an emulsion will not acidify the seawater around the release point.
Wan, Xi; Chen, Kun; Xie, Weiguang; Wen, Jinxiu; Chen, Huanjun; Xu, Jian-Bin
2016-01-27
The electrical performance of highly crystalline monolayer MoS2 is remarkably enhanced by a self-limited growth strategy on octadecyltrimethoxysilane self-assembled monolayer modified SiO2 /Si substrates. The scattering mechanisms in low-κ dielectric, including the dominant charged impurities, acoustic deformation potentials, optical deformation potentials), Fröhlich interaction, and the remote interface phonon interaction in dielectrics, are quantitatively analyzed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolosz, Ben, E-mail: kolosz27@gmail.com; Grant-Muller, Susan, E-mail: S.M.Grant-Muller@its.leeds.ac.uk
The paper reports research involving three cost–benefit analyses performed on different ITS schemes (Active Traffic Management, Intelligent Speed Adaptation and the Automated Highway System) on one of the UK's busiest highways — the M42. The environmental scope of the assets involved is widened to take into account the possibility of new technology linked by ICT and located within multiple spatial regions. The areas focused on in the study were data centre energy emissions, the embedded emissions of the road-side infrastructure, vehicle tailpipe emissions, additional hardware required by the vehicles (if applicable) and safety, and all aspects of sustainability. Dual discountingmore » is applied which aims to provide a separate discount rate for environmental elements. For ATM, despite the energy costs of the data centre, the initial implementation costs and mitigation costs of its embedded emissions, a high cost–benefit ratio of 5.89 is achieved, although the scheme becomes less effective later on its lifecycle due to rising costs of energy. ISA and AHS generate a negative result, mainly due to the cost of getting the vehicle on the road. In order to negate these costs, the pricing of the vehicle should be scaled depending upon the technology that is outfitted. Retrofitting on vehicles without the technology should be paid for by the driver. ATM will offset greenhouse gas emissions by 99 kt of CO{sub 2} equivalency over a 25 year lifespan. This reduction has taken into account the expected improvement in vehicle technology. AHS is anticipated to save 280 kt of CO{sub 2} equivalency over 15 years of operational usage. However, this offset is largely dependent on assumptions such as the level of market penetration. - Highlights: • Three cost–benefit analyses are applied to inter-urban intelligent transport. • For ATM, a high cost–benefit ratio of 5.89 is achieved. • ATM offsets greenhouse gas emissions by 99 kt of CO{sub 2} equivalency over 25 years. • ISA and AHS generate a negative result due to vehicle implementation costs. • AHS is anticipated to save 280 kt of CO{sub 2} equivalency over 15 years.« less
Arnold, Matthias; Beran, David; Haghparast-Bidgoli, Hassan; Batura, Neha; Akkazieva, Baktygul; Abdraimova, Aida; Skordis-Worrall, Jolene
2016-04-05
The increasing number of patients co-affected with Diabetes and TB may place individuals with low socio-economic status at particular risk of persistent poverty. Kyrgyz health sector reforms aim at reducing this burden, with the provision of essential health services free at the point of use through a State-Guaranteed Benefit Package (SGBP). However, despite a declining trend in out-of-pocket expenditure, there is still a considerable funding gap in the SGBP. Using data from Bishkek, Kyrgyzstan, this study aims to explore how households cope with the economic burden of Diabetes, TB and co-prevalence. This study uses cross-sectional data collected in 2010 from Diabetes and TB patients in Bishkek, Kyrgyzstan. Quantitative questionnaires were administered to 309 individuals capturing information on patients' socioeconomic status and a range of coping strategies. Coarsened exact matching (CEM) is used to generate socio-economically balanced patient groups. Descriptive statistics and logistic regression are used for data analysis. TB patients are much younger than Diabetes and co-affected patients. Old age affects not only the health of the patients, but also the patient's socio-economic context. TB patients are more likely to be employed and to have higher incomes while Diabetes patients are more likely to be retired. Co-affected patients, despite being in the same age group as Diabetes patients, are less likely to receive pensions but often earn income in informal arrangements. Out-of-pocket (OOP) payments are higher for Diabetes care than for TB care. Diabetes patients cope with the economic burden by using social welfare support. TB patients are most often in a position to draw on income or savings. Co-affected patients are less likely to receive social welfare support than Diabetes patients. Catastrophic health spending is more likely in Diabetes and co-affected patients than in TB patients. This study shows that while OOP are moderate for TB affected patients, there are severe consequences for Diabetes affected patients. As a result of the underfunding of the SGBP, Diabetes and co-affected patients are challenged by OOP. Especially those who belong to lower socio-economic groups are challenged in coping with the economic burden.
Co-evolution of electric and telecommunications networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivkin, S.R.
1998-05-01
There are potentially significant societal benefits in co-evolution between electricity and telecommunications in the areas of common infrastructure, accelerated deployment of distributed energy, tighter integration of information flow for energy management and distribution, and improved customer care. With due regard for natural processes that are more potent than any regulation and more real than any ideology, the gains from co-evolution would far outweigh the attenuated and speculative savings from restructuring of electricity that is too simplistic.
Farr, Michelle; Banks, Jonathan; Edwards, Hannah B; Northstone, Kate; Bernard, Elly; Salisbury, Chris; Horwood, Jeremy
2018-03-19
To examine patient and staff views, experiences and acceptability of a UK primary care online consultation system and ask how the system and its implementation may be improved. Mixed-method evaluation of a primary care e-consultation system. Primary care practices in South West England. Qualitative interviews with 23 practice staff in six practices. Patient survey data for 756 e-consultations from 36 practices, with free-text survey comments from 512 patients, were analysed thematically. Anonymised patients' records were abstracted for 485 e-consultations from eight practices, including consultation types and outcomes. Descriptive statistics were used to analyse quantitative data. Analysis of implementation and the usage of the e-consultation system were informed by: (1) normalisation process theory, (2) a framework that illustrates how e-consultations were co-produced and (3) patients' and staff touchpoints. We found different expectations between patients and staff on how to use e-consultations 'appropriately'. While some patients used the system to try and save time for themselves and their general practitioners (GPs), some used e-consultations when they could not get a timely face-to-face appointment. Most e-consultations resulted in either follow-on phone (32%) or face-to-face appointments (38%) and GPs felt that this duplicated their workload. Patient satisfaction of the system was high, but a minority were dissatisfied with practice communication about their e-consultation. Where both patients and staff interact with technology, it is in effect 'co-implemented'. How patients used e-consultations impacted on practice staff's experiences and appraisal of the system. Overall, the e-consultation system studied could improve access for some patients, but in its current form, it was not perceived by practices as creating sufficient efficiencies to warrant financial investment. We illustrate how this e-consultation system and its implementation can be improved, through mapping the co-production of e-consultations through touchpoints. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Technical Reports Server (NTRS)
1971-01-01
Investigations were performed at the national economic level to explore the aggregate effects of technological progress on economic growth. Inadequacies in existing marco-economic yardsticks forced the study to focus on the cost savings effects achieved through technological progress. The central questions discussed in this report cover: (1) role of technological progress in economic growth, (2) factors determining the rate of economic growth due to technological progress; (3) quantitative measurements of relationships between technological progress, its determinants, and subsequent economic growth; and (4) effects of research and development activities of the space program. For Part 2, see N72-32174.
Hussin, Sayed; Geissler, Nicole; El-Far, Mervat M M; Koyro, Hans-Werner
2017-09-01
The effect of water salinity on plant growth and photosynthetic traits of Stevia rebaudiana was investigated to determine its level and mechanisms of salinity tolerance. It was also attempted to assess how short-term elevated CO 2 concentration would influence the boundaries and mechanisms of its photosynthetic capacity. The plants were grown in gravel/hydroponic system under controlled greenhouse conditions and irrigated with four different salinity levels (0, 25, 50 and 100 mol m -3 NaCl). Low salinity did not significantly alter the plant fresh weight, which was substantially decreased by 67% at high salinity treatment. Salinity tolerance threshold was reached at 50 mol m -3 NaCl while C50 was between 50 and 100 mol m -3 NaCl, indicating that S. rebaudiana is a moderate salt tolerant species. Salt-induced growth reduction was apparently linked to a significant decline of about 47% in the photosynthetic rates (A net ) at high salinity treatment, leading consequently to a disequilibrium between CO 2 -assimilation and electron transport rates (indicated by enhanced ETR max /A gross ratio). Elevated atmospheric CO 2 enhanced CO 2 assimilation rates by 65% and 80% for control and high-salt-stressed plants respectively, likely due to significant increases in intercellular CO 2 concentration (indicated by enhanced C i /C a ). The priority for Stevia under elevated atmospheric CO 2 was not to save water but to maximize photosynthesis so that the PWUE was progressively improved and the threat of oxidative stress was diminished (decline in ETR max /A gross ). The results imply that elevated CO 2 level could ameliorate some of the detrimental effects of salinity, conferring higher tolerance and survival of S. rebaudiana, a highlydesired feature with the forthcoming era of global changes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Loring, J. S.; Chen, J.; Thompson, C.; Schaef, T.; Miller, Q. R.; Martin, P. F.; Ilton, E. S.; Qafoku, O.; Felmy, A. R.; Rosso, K. M.
2012-12-01
The effectiveness of geologic sequestration as an enterprise for CO2 storage depends partly on the reactivity of supercritical CO2 (scCO2) with caprock minerals. Injection of scCO2 will displace formation water, and the pore space adjacent to overlying caprocks could eventually be dominated by dry to water-saturated scCO2. Caprock formations have high concentrations of clay minerals, including expandable montmorillonites. Water-bearing scCO2 is highly reactive and capable of hydrating or dehydrating clays, possibly leading to porosity and permeability changes that directly impact caprock performance. Dehydration will cause montmorillonite clay minerals in caprocks to contract, thereby decreasing solid volume and possibly increasing caprock permeability and porosity. On the other hand, water intercalation will cause these clays to expand, thereby increasing solid volume and possibly leading to self-sealing of caprock fractures. Pacific Northwest National Laboratory's Carbon Sequestration Initiative is developing capabilities for studying wet scCO2-mineral reactions in situ. Here, we introduce novel in situ infrared (IR) spectroscopic instrumentation that enables quantitative titrations of reactant minerals with water in scCO2. Results are presented for the infrared spectroscopic titrations of Na-, Ca-, and Mg-saturated Wyoming betonites with water over concentrations ranging from zero to scCO2 saturated. These experiments were carried out at 50°C and 90 bar. Transmission IR spectroscopy was used to measure concentrations of water dissolved in the scCO2 or intercalated into the clays. The titration curves evaluated from the transmission-IR data are compared between the three types of clays to assess the effects of the cation on water partitioning. Single-reflection attenuated total reflection (ATR) IR spectroscopy was used to collect the spectrum of the clays as they hydrate at every total water concentration during the titration. Clay hydration is evidenced by increases in absorbance of the OH stretching and HOH bending modes of the intercalated waters. The ATR-IR data also indicate that CO2 is intercalated in the clay. The asymmetric stretching band of the CO2 molecules that are intercalated in the clay is narrower than that stretching band of bulk scCO2, which indicates that the spectral contribution from rotational fine structure is minimal and the intercalated CO2 is rotationally constrained. A chemometrics analysis of the complete set of ATR-IR spectra spanning the range of total water concentrations covered in the titration finds that there are at least two types of intercalated waters, two types of intercalated CO2 molecules, and the concentrations of these intercalated waters and CO2 molecules are correlated. These quantitative data, when coupled with in situ XRD results that predict interlayer spacing and clay volume, demonstrate that water and CO2 intercalation processes in expandable montmorillonite clays could lead to porosity and permeability changes that directly impact caprock performance.
NASA Astrophysics Data System (ADS)
Li, Qinghao; Qiao, Ruimin; Wray, L. Andrew; Chen, Jun; Zhuo, Zengqing; Chen, Yanxue; Yan, Shishen; Pan, Feng; Hussain, Zahid; Yang, Wanli
2016-10-01
Most battery positive electrodes operate with a 3d transition-metal (TM) reaction centre. A direct and quantitative probe of the TM states upon electrochemical cycling is valuable for understanding the detailed cycling mechanism and charge diffusion in the electrodes, which is related with many practical parameters of a battery. This review includes a comprehensive summary of our recent demonstrations of five different types of quantitative analysis of the TM states in battery electrodes based on soft x-ray absorption spectroscopy and multiplet calculations. In LiFePO4, a system of a well-known two-phase transformation type, the TM redox could be strictly determined through a simple linear combination of the two end-members. In Mn-based compounds, the Mn states could also be quantitatively evaluated, but a set of reference spectra with all the three possible Mn valences needs to be deliberately selected and considered in the fitting. Although the fluorescence signals suffer the self-absorption distortion, the multiplet calculations could consider the distortion effect, which allows a quantitative determination of the overall Ni oxidation state in the bulk. With the aid of multiplet calculations, one could also achieve a quasi-quantitative analysis of the Co redox evolution in LiCoO2 based on the energy position of the spectroscopic peak. The benefit of multiplet calculations is more important for studying electrode materials with TMs of mixed spin states, as exemplified by the quantitative analysis of the mixed spin Na2-x Fe2(CN)6 system. At the end, we showcase that such quantitative analysis could provide valuable information for optimizing the electrochemical performance of Na0.44MnO2 electrodes for Na-ion batteries. The methodology summarized in this review could be extended to other energy application systems with TM redox centre for detailed analysis, for example, fuel cell and catalytic materials.
Marote, Georgina; Abramo, Francesca; McKay, Jenny; Thomson, Calum; Beltran, Mariana; Millar, Michael; Priestnall, Simon; Dobson, Jane; Costantino-Casas, Fernando; Petrou, Terry; McGonnell, Imelda M.; Davies, Anthony J.; Weetman, Malcolm; Garden, Oliver A.; Masters, John R.; Thrasivoulou, Christopher; Ahmed, Aamir
2016-01-01
Feline oral squamous cell carcinoma (FOSCC) is an aggressive neoplasm in cats. Little is known about the possible molecular mechanisms that may be involved in the initiation, maintenance and progression of FOSCC. Wnt signalling is critical in development and disease, including many mammalian cancers. In this study, we have investigated the expression of Wnt signalling related proteins using quantitative immunohistochemical techniques on tissue arrays. We constructed tissue arrays with 58 individual replicate tissue samples. We tested for the expression of four key Wnt/ß-catenin transcription targets, namely Cyclin D1 (CCND1 or CD1), FRA1, c-Myc and MMP7. All antibodies showed cross reactivity in feline tissue except MMP7. Quantitative immunohistochemical analysis of single proteins (expressed as area fraction / amount of tissue for normal vs tumor, mean ± SE) showed that the expression of CD1 (3.9 ± 0.5 vs 12.2 ± 0.9), FRA1 (5.5 ± 0.6 vs 16.8 ± 1.1) and c-Myc (5.4 ± 0.5 vs 12.5 ± 0.9) was increased in FOSCC tissue by 2.3 to 3 fold compared to normal controls (p<0.0001). By using a multilabel, quantitative fluorophore technique we further investigated if the co-localization of these proteins (all transcription factors) with each other and in the nucleus (stained with 4',6-diamidino-2-phenylindole, DAPI) was altered in FOSCC compared to normal tissue. The global intersection coefficients, a measure of the proximity of two fluorophore labeled entities, showed that there was a significant change (p < 0.01) in the co-localization for all permutations (e.g. CD1/FRA1 etc), except for the nuclear localization of CD1. Our results show that putative targets of Wnt signalling transcription are up-regulated in FOSCC with alterations in the co-localization of these proteins and could serve as a useful marker for the disease. PMID:27559731
Spatial relationships of sector-specific fossil fuel CO2 emissions in the United States
NASA Astrophysics Data System (ADS)
Zhou, Yuyu; Gurney, Kevin Robert
2011-09-01
Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multistate spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multistate perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements.
Freight Wing Trailer Aerodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Sean; Bigatel, Patrick
2004-10-17
Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck,more » require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.« less
Rathore, Atul S; Sathiyanarayanan, L; Deshpande, Shreekant; Mahadik, Kakasaheb R
2016-11-01
A rapid and sensitive method for the extraction and determination of four major polyphenolic components in Euphoria longana Lam. seeds is presented for the first time based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometry. Matrix solid-phase dispersion method was designed for the extraction of Euphoria longana seed constituents and compared with microwave-assisted extraction and ultrasonic-assisted extraction methods. An Ultra high performance liquid chromatography with hybrid triple quadrupole linear ion-trap mass spectrometry method was developed for quantitative analysis in multiple-reaction monitoring mode in negative electrospray ionization. The chromatographic separation was accomplished using an ACQUITY UPLC BEH C 18 (2.1 mm × 50 mm, 1.7 μm) column with gradient elution of 0.1% aqueous formic acid and 0.1% formic acid in acetonitrile. The developed method was validated with acceptable linearity (r 2 > 0.999), precision (RSD ≤ 2.22%) and recovery (RSD ≤ 2.35%). The results indicated that matrix solid-phase dispersion produced comparable extraction efficiency compared with other methods nevertheless was more convenient and time-saving with reduced requirements on sample and solvent volumes. The proposed method is rapid and sensitive in providing a promising alternative for extraction and comprehensive determination of active components for quality control of Euphoria longana products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Historical warming reduced due to enhanced land carbon uptake.
Shevliakova, Elena; Stouffer, Ronald J; Malyshev, Sergey; Krasting, John P; Hurtt, George C; Pacala, Stephen W
2013-10-15
Previous studies have demonstrated the importance of enhanced vegetation growth under future elevated atmospheric CO2 for 21st century climate warming. Surprisingly no study has completed an analogous assessment for the historical period, during which emissions of greenhouse gases increased rapidly and land-use changes (LUC) dramatically altered terrestrial carbon sources and sinks. Using the Geophysical Fluid Dynamics Laboratory comprehensive Earth System Model ESM2G and a reconstruction of the LUC, we estimate that enhanced vegetation growth has lowered the historical atmospheric CO2 concentration by 85 ppm, avoiding an additional 0.31 ± 0.06 °C warming. We demonstrate that without enhanced vegetation growth the total residual terrestrial carbon flux (i.e., the net land flux minus LUC flux) would be a source of 65-82 Gt of carbon (GtC) to atmosphere instead of the historical residual carbon sink of 186-192 GtC, a carbon saving of 251-274 GtC.
Frost-Christensen, Henning; Floto, Franz
2007-01-01
Cuticular membranes (CMs) were isolated from leaves of amphibious and submerged plants and their CO2 resistances were determined as a contribution to establish quantitatively the series of resistances met by CO2 diffusing from bulk water to the chloroplasts of submerged leaves. The isolation was performed enzymatically; permeabilities were determined and converted to resistances. The range of permeance values was 3 to 43 x 10(-6) m s(-1) corresponding to resistance values of 23 to 295 x 10(3) s m(-1), i.e. of the same order of magnitude as boundary layer resistances. The sum of boundary layer, CM, leaf cell and carboxylation resistances could be contained within the total diffusion resistance as determined from the photosynthetic CO2 affinity of the leaf. From the same species, the aerial leaf CM resistance was always higher than the aquatic leaf CM resistance. In a terrestrial plant, the CM resistance to CO2 diffusion was found lower in leaves developed submerged.
Gnayfeed, M H; Daood, H G; Illés, V; Biacs, P A
2001-06-01
Ground paprika (Capsicum annuum L.) was extracted with supercritical carbon dioxide (SC-CO(2)) and subcritical propane at different conditions of pressure and temperature to estimate the yield and variation in carotenoid, tocopherol, and capsaicinoid contents and composition. The yield of paprika extract was found to be affected by the extraction conditions with SC-CO(2) but fairly constant at different conditions with subcritical propane. The maximum yields of oleoresin were 7.9 and 8.1% of ground paprika by SC-CO(2) and subcritical propane, respectively. The quantitative distribution of carotenoids, tocopherols, and capsaicinoids between paprika extract and powder was influenced by extraction conditions. SC-CO(2) was inefficient in the extraction of diesters of xanthophylls even at 400 bar and 55 degrees C, whereas tocopherols and capsaicinoids were easy to extract at these conditions. Under mild conditions subcritical propane was superior to SC-CO(2) in the extraction of carotenoids and tocopherols but less efficient in the extraction of capsaicinoids.
Co-Optimization of Fuels and Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John
2016-03-24
The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the project.« less
Uptake of atmospheric carbon dioxide into silk fiber by silkworms.
Magoshi, Jun; Tanaka, Toshihisa; Sasaki, Haruto; Kobayashi, Masatoshi; Magoshi, Yoshiko; Tsuda, Hidetoshi; Becker, Mary A; Inoue, Shun-ichi; Ishimaru, Ken
2003-01-01
The relation between the uptake of atmospheric CO(2) and insect's production of silk fiber has not yet been reported. Here, we provide the first quantitative demonstrations that four species of silkworms (Bombyx mori, Samia cynthia ricini, Antheraea pernyi, and Antheraea yamamai) and a silk-producing spider (Nephila clavata) incorporate atmospheric CO(2) into their silk fibers. The abundance of (13)C incorporated from the environment was determined by mass spectrometry and (13)C NMR measurements. Atmospheric CO(2) was incorporated into the silk fibers in the carbonyl groups of alanine, aspartic acid, serine, and glycine and the C(gamma) of aspartic acid. We show a simple model for the uptake of atmospheric CO(2) by silkworms. These results will demonstrate that silkworm has incorporated atmospheric CO(2) into silk fiber via the TCA cycle; however, the magnitude of uptake into the silk fibers is smaller than that consumed by the photosynthesis in trees and coral reefs.
Nhien, Le Cao; Long, Nguyen Van Duc; Kim, Sangyong; Lee, Moonyong
2017-01-01
Lignocellulosic biomass is one of the most promising alternatives for replacing mineral resources to overcome global warming, which has become the most important environmental issue in recent years. Furfural was listed by the National Renewable Energy Laboratory as one of the top 30 potential chemicals arising from biomass. However, the current production of furfural is energy intensive and uses inefficient technology. Thus, a hybrid purification process that combines extraction and distillation to produce furfural from lignocellulosic biomass was considered and investigated in detail to improve the process efficiency. This effective hybrid process depends on the extracting solvent, which was selected based on a comprehensive procedure that ranged from solvent screening to complete process design. Various solvents were first evaluated in terms of their extraction ability. Then, the most promising solvents were selected to study the separation feasibility. Eventually, processes that used the three best solvents (toluene, benzene, and butyl chloride) were designed and optimized in detail using Aspen Plus. Sustainability analysis was performed to evaluate these processes in terms of their energy requirements, total annual costs (TAC), and carbon dioxide (CO 2 ) emissions. The results showed that butyl chloride was the most suitable solvent for the hybrid furfural process because it could save 44.7% of the TAC while reducing the CO 2 emissions by 45.5% compared to the toluene process. In comparison with the traditional purification process using distillation, this suggested hybrid extraction/distillation process can save up to 19.2% of the TAC and reduce 58.3% total annual CO 2 emissions. Furthermore, a sensitivity analysis of the feed composition and its effect on the performance of the proposed hybrid system was conducted. Butyl chloride was found to be the most suitable solvent for the hybrid extraction/distillation process of furfural production. The proposed hybrid sequence was more favorable than the traditional distillation process when the methanol fraction of the feed stream was <3% and more benefit could be obtained when that fraction decreased.
Quantitative insights for the design of substrate-based SIRT1 inhibitors.
Kokkonen, Piia; Mellini, Paolo; Nyrhilä, Olli; Rahnasto-Rilla, Minna; Suuronen, Tiina; Kiviranta, Päivi; Huhtiniemi, Tero; Poso, Antti; Jarho, Elina; Lahtela-Kakkonen, Maija
2014-08-01
Sirtuin 1 (SIRT1) is the most studied human sirtuin and it catalyzes the deacetylation reaction of acetylated lysine residues of its target proteins, for example histones. It is a promising drug target in the treatment of age-related diseases, such as neurodegenerative diseases and cancer. In this study, a series of known substrate-based sirtuin inhibitors was analyzed with comparative molecular field analysis (CoMFA), which is a three-dimensional quantitative structure-activity relationships (3D-QSAR) technique. The CoMFA model was validated both internally and externally, producing the statistical values concordance correlation coefficient (CCC) of 0.88, the mean value r(2)m of 0.66 and Q(2)F3 of 0.89. Based on the CoMFA interaction contours, 13 new potential inhibitors with high predicted activity were designed, and the activities were verified by in vitro measurements. This work proposes an effective approach for the design and activity prediction of new potential substrate-based SIRT1 inhibitors. Copyright © 2014 Elsevier B.V. All rights reserved.
Schultz, Nathan E; Gherman, Benjamin F; Cramer, Christopher J; Truhlar, Donald G
2006-11-30
Electrode poisoning by CO is a major concern in fuel cells. As interest in applying computational methods to electrochemistry is increasing, it is important to understand the levels of theory required for reliable treatments of metal-CO interactions. In this paper we justify the use of relativistic effective core potentials for the treatment of PdCO and hence, by inference, for metal-CO interactions where the predominant bonding mechanism is charge transfer. We also sort out key issues involving basis sets and we recommend that bond energies of 17.2, 43.3, and 69.4 kcal/mol be used as the benchmark bond energy for dissociation of Pd2 into Pd atoms, PdCO into Pd and CO, and Pd2CO into Pd2 and CO, respectively. We calculated the dipole moments of PdCO and Pd2CO, and we recommend benchmark values of 2.49 and 2.81 D, respectively. Furthermore, we tested 27 density functionals for this system and found that only hybrid density functionals can qualitatively and quantitatively predict the nature of the sigma-donation/pi-back-donation mechanism that is associated with the Pd-CO and Pd2-CO bonds. The most accurate density functionals for the systems tested in this paper are O3LYP, OLYP, PW6B95, and PBEh.
NASA Technical Reports Server (NTRS)
Fung, Inez Y.; Tucker, C. J.; Prentice, Katharine C.
1985-01-01
The 'normalized difference vegetation indices' (NVI) derived from AVHRR radiances are combined with field data of soil respiration and a global map of net primary productivity to prescribe, for the globe, the seasonal exchange of CO2 between the atmosphere and the terrestrial biosphere. The monthly fluxes of CO2 thus obtained are used as inputs to a 3-D tracer transport model which uses winds generated by a 3-D atmospheric general circulation model to advect CO2 as an inert constituent. Analysis of the 3-D model results shows reasonable agreement between the simulated and observed annual cycles of atmospheric CO2 at the locations of the remote monitoring stations. The application is shown of atmospheric CO2 distributions to calibrate the NVI in terms of carbon fluxes. The approach suggests that the NVI may be used to provide quantitative information about long term and global scale variations of photosynthetic activity and of atmospheric CO2 concentrations provided that variations in the atmospheric circulation and in atmospheric composition are known.
Yang, Yu-Chiao; Wei, Ming-Chi; Hong, Show-Jen
2014-01-03
This study evaluated ultrasound-assisted supercritical carbon dioxide (USC-CO2) extraction for determining the extraction yields of oils and the contents of eugenol, β-caryophyllene, eugenyl acetate and α-humulene from clove buds. Compared to traditional SC-CO2 extraction, USC-CO2 extraction might provide a 13.5% increase in the extraction yield for the oil while utilizing less severe operating parameters, such as temperature, pressure, CO2 flow rate and the time consumed by the process. Our results were comparable to those obtained using the heat reflux extraction method, though the yield was improved by 20.8% using USC-CO2. In kinetic studies, the USC-CO2 extraction of clove oil followed second-order kinetics. The activation energy for the oil extraction was 76.56kJ/mol. The USC-CO2 procedure facilitated the use of mild extraction conditions, improved extraction efficiency and the quality of products and is a potential method for industry. Copyright © 2013 Elsevier B.V. All rights reserved.
Yin, Xinyou
2013-01-01
Background Process-based ecophysiological crop models are pivotal in assessing responses of crop productivity and designing strategies of adaptation to climate change. Most existing crop models generally over-estimate the effect of elevated atmospheric [CO2], despite decades of experimental research on crop growth response to [CO2]. Analysis A review of the literature indicates that the quantitative relationships for a number of traits, once expressed as a function of internal plant nitrogen status, are altered little by the elevated [CO2]. A model incorporating these nitrogen-based functional relationships and mechanisms simulated photosynthetic acclimation to elevated [CO2], thereby reducing the chance of over-estimating crop response to [CO2]. Robust crop models to have small parameterization requirements and yet generate phenotypic plasticity under changing environmental conditions need to capture the carbon–nitrogen interactions during crop growth. Conclusions The performance of the improved models depends little on the type of the experimental facilities used to obtain data for parameterization, and allows accurate projections of the impact of elevated [CO2] and other climatic variables on crop productivity. PMID:23388883
Role of joined farmer groups in enhancing production and farmers income
NASA Astrophysics Data System (ADS)
Arsyad, M.; Rahmadanih; Bulkis, S.; Hasnah; Sulili, A.; Darwis; Bustan, A.; Aswad, M.
2018-05-01
Production and farmers income still becomes a global issue in economic development. The study aims to (1) describe the implementation of the role of Joined farmer groups (called Gapoktan) in accordance its function and (2) to analyze the role of Gapoktan in increasing production and farming income. The study was conducted in Camba Sub District, Maros District, South Sulawesi, Indonesia in 2017 and choosing Aspana Gapoktan as Case Unit. Data collection is done by a combination of qualitative and quantitative methods. Qualitative data were collected by Focus Group Discussions method, indepth interview and document study while quantitative data was collected through survey method on 60 farmers respondents. The results showed that, (1) Aspana Gapoktan has implemented a role related to its function as a business unit in the provision of production facilities and farming as well as marketing but has not implemented roles related to its function as a processing business unit, and saving and loan (2) Gapoktan role in increasing production and income of farming is facilitating procurement of farm inputs and agricultural production tools for farmers and developing various commodities in farming activities, especially horticultural crops. More than 44.00% of farmers perceived that their production increased about 10.00% - 25.00% and more than 68.00% of farmers perceived that their income increased by about 10.00% - 25.00% for the last three years. It is necessary to increase the role of Gapoktan through (1) the procurement of horticultural product processing industry and (2) doing savings and loan activities by utilizing 40.00% of funds managed by Gapoktan or through the formation of cooperatives under the management of Gapoktan.
76 FR 39860 - Proposed Agency Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... ``Broad Program Area Categories'' (BPACs) for purposes of conducting the research. For each evaluation... data collection methods than those prescribed for high-rigor. For example, data may be collected by... methods to produce energy savings and outcome estimates. A range of qualitative, quantitative (survey), on...
Magalhães, Uiaran de Oliveira; Souza, Alessandra Mendonça Teles de; Albuquerque, Magaly Girão; Brito, Monique Araújo de; Bello, Murilo Lamim; Cabral, Lucio Mendes; Rodrigues, Carlos Rangel
2013-01-01
Acquired immunodeficiency syndrome is a public health problem worldwide caused by the Human immunodeficiency virus (HIV). Treatment with antiretroviral drugs is the best option for viral suppression, reducing morbidity and mortality. However, viral resistance in HIV-1 therapy has been reported. HIV-1 integrase (IN) is an essential enzyme for effective viral replication and an attractive target for the development of new inhibitors. In the study reported here, two- and three-dimensional quantitative structure-activity relationship (2D/3D-QSAR) studies, applying hologram quantitative structure-activity relationship (HQSAR) and comparative molecular field analysis (CoMFA) methods, respectively, were performed on a series of tricyclic phthalimide HIV-1 IN inhibitors. The best HQSAR model (q (2) = 0.802, r (2) = 0.972) was obtained using atoms, bonds, and connectivity as the fragment distinction, a fragment size of 2-5 atoms, hologram length of 61 bins, and six components. The best CoMFA model (q (2) = 0.748, r (2) = 0.974) was obtained with alignment of all atoms of the tricyclic phthalimide moiety (alignment II). The HQSAR contribution map identified that the carbonyl-hydroxy-aromatic nitrogen motif made a positive contribution to the activity of the compounds. Furthermore, CoMFA contour maps suggested that bulky groups in meta and para positions in the phenyl ring would increase the biological activity of this class. The conclusions of this work may lead to a better understanding of HIV-1 IN inhibition and contribute to the design of new and more potent derivatives.
de Oliveira Magalhães, Uiaran; de Souza, Alessandra Mendonça Teles; Albuquerque, Magaly Girão; de Brito, Monique Araújo; Bello, Murilo Lamim; Cabral, Lucio Mendes; Rodrigues, Carlos Rangel
2013-01-01
Acquired immunodeficiency syndrome is a public health problem worldwide caused by the Human immunodeficiency virus (HIV). Treatment with antiretroviral drugs is the best option for viral suppression, reducing morbidity and mortality. However, viral resistance in HIV-1 therapy has been reported. HIV-1 integrase (IN) is an essential enzyme for effective viral replication and an attractive target for the development of new inhibitors. In the study reported here, two- and three-dimensional quantitative structure–activity relationship (2D/3D-QSAR) studies, applying hologram quantitative structure–activity relationship (HQSAR) and comparative molecular field analysis (CoMFA) methods, respectively, were performed on a series of tricyclic phthalimide HIV-1 IN inhibitors. The best HQSAR model (q2 = 0.802, r2 = 0.972) was obtained using atoms, bonds, and connectivity as the fragment distinction, a fragment size of 2–5 atoms, hologram length of 61 bins, and six components. The best CoMFA model (q2 = 0.748, r2 = 0.974) was obtained with alignment of all atoms of the tricyclic phthalimide moiety (alignment II). The HQSAR contribution map identified that the carbonyl-hydroxy-aromatic nitrogen motif made a positive contribution to the activity of the compounds. Furthermore, CoMFA contour maps suggested that bulky groups in meta and para positions in the phenyl ring would increase the biological activity of this class. The conclusions of this work may lead to a better understanding of HIV-1 IN inhibition and contribute to the design of new and more potent derivatives. PMID:24039405
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelikova, Tamara Jane; Blumenthal, Dana M.; Williams, David G.
Climate controls vegetation distribution across the globe, and some vegetation types are more vulnerable to climate change, whereas others are more resistant. Because resistance and resilience can influence ecosystem stability and determine how communities and ecosystems respond to climate change, we need to evaluate the potential for resistance as we predict future ecosystem function. In a mixed-grass prairie in the northern Great Plains, in this study we used a large field experiment to test the effects of elevated CO 2, warming, and summer irrigation on plant community structure and productivity, linking changes in both to stability in plant community compositionmore » and biomass production. We show that the independent effects of CO 2 and warming on community composition and productivity depend on interannual variation in precipitation and that the effects of elevated CO 2 are not limited to water saving because they differ from those of irrigation. We also show that production in this mixed-grass prairie ecosystem is not only relatively resistant to interannual variation in precipitation, but also rendered more stable under elevated CO 2 conditions. This increase in production stability is the result of altered community dominance patterns: Community evenness increases as dominant species decrease in biomass under elevated CO 2. In many grasslands that serve as rangelands, the economic value of the ecosystem is largely dependent on plant community composition and the relative abundance of key forage species. Finally, our results have implications for how we manage native grasslands in the face of changing climate.« less
Zelikova, Tamara Jane; Blumenthal, Dana M.; Williams, David G.; ...
2014-10-13
Climate controls vegetation distribution across the globe, and some vegetation types are more vulnerable to climate change, whereas others are more resistant. Because resistance and resilience can influence ecosystem stability and determine how communities and ecosystems respond to climate change, we need to evaluate the potential for resistance as we predict future ecosystem function. In a mixed-grass prairie in the northern Great Plains, in this study we used a large field experiment to test the effects of elevated CO 2, warming, and summer irrigation on plant community structure and productivity, linking changes in both to stability in plant community compositionmore » and biomass production. We show that the independent effects of CO 2 and warming on community composition and productivity depend on interannual variation in precipitation and that the effects of elevated CO 2 are not limited to water saving because they differ from those of irrigation. We also show that production in this mixed-grass prairie ecosystem is not only relatively resistant to interannual variation in precipitation, but also rendered more stable under elevated CO 2 conditions. This increase in production stability is the result of altered community dominance patterns: Community evenness increases as dominant species decrease in biomass under elevated CO 2. In many grasslands that serve as rangelands, the economic value of the ecosystem is largely dependent on plant community composition and the relative abundance of key forage species. Finally, our results have implications for how we manage native grasslands in the face of changing climate.« less
Presidential Green Chemistry Challenge: 2009 Greener Synthetic Pathways Award
Presidential Green Chemistry Challenge 2009 award winner, Eastman Chemical Co., makes esters for emollients and emulsifiers in cosmetics with immobilized enzymes, saving energy and avoiding strong acids and organic solvents.
Fecal /sup 13/C analysis for the detection and quantitation of intestinal malabsorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, P.D.; MacLean, W.C. Jr.; Watkins, J.B.
Use of /sup 14/CO/sub 2/ breath tests and fecal analyses for the detection and quantitation of intestinal malabsorption has been extensively documented in adult subjects. The use of radioisotopes has extended the range of breath test applications to include pediatric and geriatric subjects. Here we report a fecal /sup 13/C analysis that can be used in conjunction with /sup 14/CO/sub 2/ breath tests. Twenty-four-hour fecal samples were collected before and after the administration of a labeled substrate. Simultaneous cholyglycine /sup 13/CO/sub 2/ breath tests and fecal assays were performed in five children. One child with bacterial overgrowth had an abnormalmore » breath test and a normal fecal test. Of three children with ileal dysfunction, only one had an abnormal breath test, whereas the fecal test was abnormal in all three. Both the breath test and fecal test were abnormal for a child who had undergone an ileal resection. Both tests were normal for a child with ulcerative colitis.« less
Alternative stripper configurations for CO{sub 2} capture by aqueous amines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyenekan, B.A.; Rochelle, G.T.
2007-12-15
Aqueous absorption/stripping is a promising technology for the capture of CO{sub 2} from existing or new coal-fired power plants. Four new stripper configurations (matrix, internal exchange, flashing feed, and multipressure with split feed) have been evaluated with seven model solvents that approximate the thermodynamic and rate properties of 7m (30 wt %) monoethanolamine (MEA), potassium carbonate promoted bypiperazine (PZ), promoted MEA, methyldiethanolamine (MDEA) promoted by PZ, and hindered amines. The results show that solvents with high heats of absorption (MEA, MEA/PZ) favor operation at normal pressure. The relative performance of the alternative configurations is matrix > internal exchange > multipressuremore » with split feed > flashing feed. MEA/PZ and MDEA/PZ are attractive alternatives to 7m MEA. The best solvent and process configuration, matrix with MDEA/PZ, offers 22 and 15% energy savings over the baseline and improved baseline, respectively,with stripping and compression to 10 MPa. The energy requirement for stripping and compression to 10 MPa is about 20% of the power output from a 500 MW power plant with 90% CO{sub 2} removal.« less
Improved Oxygen Sources for Breathing Apparatus
NASA Technical Reports Server (NTRS)
Wood, P. C.; Wydeven, T.
1983-01-01
Research is described which is directed toward the preparation of chemical oxygen sources which exhibited improved O2 storage and reaction characteristics when compared to potassium superoxide (KO2). The initial focus of the research was the preparation of calcium superoxide (Ca(O2)2) by the disproportionation of calcium peroxide diperoxyhydrate. the Ca(O2)2 was characterized by chemical, thermal, and x ray analyses. Several methods for scaling up the Ca(O2)2 syntheis process were studied. The reactivity of Ca(O2)2 toward humidified carbon dioxide (CO2) was evaluated and was compared to that of KO2 under flow test conditions approximating those existing in portable breathing apparatus. The reactivities of mixtures of KO2 and Ca(O2)2 or lithium peroxide towards humidified CO2 were also studied. Finally, an analysis of two commercial, KO2-based, self contained self rescuers was conducted to determine the potential weight and volume savings which would be possible if Ca(O2)2 or a mixture of KO2 and Ca(O2)2 were used as a replacement for KO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babiuch, B.; Bilello, D. E.; Cowlin, S. C.
The 2008 Washington International Renewable Energy Conference (WIREC) was held in Washington, D.C., from March 4-6, 2008, and involved nearly 9,000 people from 125 countries. The event brought together worldwide leaders in renewable energy (RE) from governments, international organizations, nongovernmental organizations, and the private sector to discuss the role that renewables can play in alleviating poverty, growing economies, and passing on a healthy planet to future generations. The conference concluded with more than 140 governments, international organizations, and private-sector representatives pledging to advance the uptake of renewable energy. The U.S. government authorized the National Renewable Energy Laboratory (NREL) to estimatemore » the carbon dioxide (CO2) savings that would result from the pledges made at the 2008 conference. This report describes the methodology and assumptions used by NREL in quantifying the potential CO2 reductions derived from those pledges.« less
Wang, Wenlan; Xue, Li; Li, Ya; Li, Rong; Xie, Xiaoping; Bao, Junxiang; Hai, Chunxu; Li, Jinsheng
2016-01-01
To elucidate the altered gene network in the brains of carbon monoxide (CO) poisoned rats after treatment with hyperbaric oxygen (HBO₂). RNA sequencing (RNA-seq) analysis was performed to examine differentially expressed genes (DEGs) in brain tissue samples from nine male rats: a normal control group; a CO poisoning group; and an HBO₂ treatment group (three rats/group). Reverse transcription polymerase chain reaction (RT-PCR) and real-time quantitative PCR were used for validation of the DEGs in another 18 male rats (six rats/group). RNA-seq revealed that two genes were upregulated (4.18 and 8.76 log to the base 2 fold change) (p⟨0.05) in the CO-poisoned rats relative to the control rats; two genes were upregulated (3.88 and 7.69 log to the base 2 fold change); and 23 genes were downregulated (3.49-15.12 log to the base 2 fold change) (p⟨0.05) in the brains of the HBO₂-treated rats relative to the CO-poisoned rats. Target prediction of DEGs by gene network analysis and analysis of pathways affected suggested that regulation of gene expressions of dopamine metabolism and nitric oxide (NO) synthesis were significantly affected by CO poisoning and HBO₂ treatment. Results of RT-PCR and real-time quantitative PCR indicated that four genes (Pomc, GH-1, Pr1 and Fshβ) associated with hormone secretion in the hypothalamic-pituitary system have potential as markers for prognosis of CO. This study is the first RNA-seq analysis profile of HBO₂ treatment on rats with acute CO poisoning. It concludes that changes of hormone secretion in the hypothalamic-pituitary system, dopamine metabolism and NO synthesis involved in brain damage and behavior abnormalities after CO poisoning and HBO₂ therapy may regulate these changes.
Eichhöfer, Andreas; Buth, Gernot
2016-11-01
Reactions of [Co(N(SiMe 3 ) 2 ) 2 thf] with 2.1 equiv. of MesSH (Mes = C 6 H 2 -2,4,6-(CH 3 ) 3 ) yield dark brown crystals of the one dimensional chain compound [Co(SMes) 2 ]. In contrast reactions of [Co(N(SiMe 3 ) 2 ) 2 thf] with 2.1 equiv. of PhSH result in the formation of a dark brown almost X-ray amorphous powder of 'Co(SPh) 2 '. Addition of aliquots of CH 3 OH to the latter reaction resulted in the almost quantitative formation of crystalline ammonia thiolato complexes either [Co(SPh) 2 (NH 3 ) 2 ] or [Co(SPh) 2 NH 3 ]. Single crystal XRD reveals that [Co(SPh) 2 NH 3 ] forms one-dimensional chains in the crystal via μ 2 -SPh bridges whereas [Co(SPh) 2 (NH 3 ) 2 ] consists at a first glance of isolated distorted tetrahedral units. Magnetic measurements suggest strong antiferromagnetic coupling for the two chain compounds [Co(SMes) 2 ] (J = -38.6 cm -1 ) and [Co(SPh) 2 NH 3 ] (J = -27.1 cm -1 ). Interestingly, also the temperature dependence of the susceptibility of tetrahedral [Co(SPh) 2 (NH 3 ) 2 ] shows an antiferromagnetic transition at around 6 K. UV-Vis-NIR spectra display d-d bands in the NIR region between 500 and 2250 nm. Thermal gravimetric analysis of [Co(SPh) 2 (NH 3 ) 2 ] and [Co(SPh) 2 NH 3 ] reveals two well separated cleavage processes for NH 3 and SPh 2 upon heating accompanied by the stepwise formation of 'Co(SPh) 2 ' and cobalt sulfide.
NASA Astrophysics Data System (ADS)
Mansfield, C. D.; Rutt, H. N.
2002-02-01
The possible generation of spurious results, arising from the application of infrared spectroscopic techniques to the measurement of carbon isotope ratios in breath, due to coincident absorption bands has been re-examined. An earlier investigation, which approached the problem qualitatively, fulfilled its aspirations in providing an unambiguous assurance that 13C16O2/12C16O2 ratios can be confidently measured for isotopic breath tests using instruments based on infrared absorption. Although this conclusion still stands, subsequent quantitative investigation has revealed an important exception that necessitates a strict adherence to sample collection protocol. The results show that concentrations and decay rates of the coincident breath trace compounds acetonitrile and carbon monoxide, found in the breath sample of a heavy smoker, can produce spurious results. Hence, findings from this investigation justify the concern that breath trace compounds present a risk to the accurate measurement of carbon isotope ratios in breath when using broadband, non-dispersive, ground state absorption infrared spectroscopy. It provides recommendations on the length of smoking abstention required to avoid generation of spurious results and also reaffirms, through quantitative argument, the validity of using infrared absorption spectroscopy to measure CO2 isotope ratios in breath.
CO2 dynamics in the Amargosa Desert: Fluxes and isotopic speciation in a deep unsaturated zone
Walvoord, Michelle Ann; Striegl, Robert G.; Prudic, David E.; Stonestrom, David A.
2005-01-01
Natural unsaturated-zone gas profiles at the U.S. Geological Survey's Amargosa Desert Research Site, near Beatty, Nevada, reveal the presence of two physically and isotopically distinct CO2 sources, one shallow and one deep. The shallow source derives from seasonally variable autotrophic and heterotrophic respiration in the root zone. Scanning electron micrograph results indicate that at least part of the deep CO2 source is associated with calcite precipitation at the 110-m-deep water table. We use a geochemical gas-diffusion model to explore processes of CO2 production and behavior in the unsaturated zone. The individual isotopic species 12CO2, 13CO2, and 14CO2 are treated as separate chemical components that diffuse and react independently. Steady state model solutions, constrained by the measured δ13C (in CO2), and δ14C (in CO2) profiles, indicate that the shallow CO2 source from root and microbial respiration composes ∼97% of the annual average total CO2 production at this arid site. Despite the small contribution from deep CO2 production amounting to ∼0.1 mol m−2 yr−1, upward diffusion from depth strongly influences the distribution of CO2 and carbon isotopes in the deep unsaturated zone. In addition to diffusion from deep CO2 production, 14C exchange with a sorbed CO2 phase is indicated by the modeled δ14C profiles, confirming previous work. The new model of carbon-isotopic profiles provides a quantitative approach for evaluating fluxes of carbon under natural conditions in deep unsaturated zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatley, Darrel D.; Underhill, Ronald M.
Document describes an onsite workshop and building retuning training conducted in Guam in August 2010. Document reports on issues identified during an audit of several buildings and recommendations to save energy throughout the site. During the workshop, it became apparent that as site personnel maintain the facilities at Guam, the following retuning efforts and strategies should be prioritized: (1) Controlling the mechanical systems operational hours and zone temperature set points appeared to present the best opportunities for savings; (2) Zone temperature set points in some buildings are excessively low, especially at night, when the zone temperatures are so cold thatmore » they approached the dewpoint; and (3) Manually-set outside air dampers are providing excessive outside air, especially for spaces that are unoccupied. Two of the larger schools, one on the Naval Base and one on Anderson AFB, are in need of a significant recommissioning effort. These facilities are relatively new, with direct digital controls (DDC) but are significantly out of balance. The pressure in one school is extremely negative, which is pulling humid air through the facility each time a door is opened. The draft can be felt several feet down the halls. The pressure in the other school is extremely positive relative to the outside, and you can stand 20-feet outside and still feel cool drafts of air exiting the building. It is recommended that humidity sensors be installed in all new projects and retrofitted into exist facilities. In this humid climate, control of humidity is very important. There are significant periods of time when the mechanical systems in many buildings can be unloaded and dehumidification is not required. The use of CO{sub 2} sensors should also be considered in representative areas. CO{sub 2} sensors determine whether spaces are occupied so that fresh air is only brought into the space when needed. By reducing the amount of outside air brought into the space, the humidity load is also substantially reduced. CO{sub 2} and humidity sensors, combined with outside air sensors, can be used to predict whether conditions are amenable to mold growth and to automatically adjust systems to help prevent mold without using extra energy. The goal of this training is to give the building operators the knowledge needed to make positive changes in the operation of building systems. As class participants apply this knowledge, building systems will run more efficiently, occupant comfort should improve, while saving energy and reducing greenhouse gas emissions.« less
N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels
NASA Astrophysics Data System (ADS)
Crutzen, P. J.; Mosier, A. R.; Smith, K. A.; Winiwarter, W.
2008-01-01
The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. For both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production, we find an overall conversion factor of 3-5% from newly fixed N to N2O-N. We assume the same factor to be valid for biofuel production systems. It is covered only in part by the default conversion factor for "direct" emissions from agricultural crop lands (1%) estimated by IPCC (2006), and the default factors for the "indirect" emissions (following volatilization/deposition and leaching/runoff of N: 0.35-0.45%) cited therein. However, as we show in the paper, when additional emissions included in the IPCC methodology, e.g. those from livestock production, are included, the total may not be inconsistent with that given by our "top-down" method. When the extra N2O emission from biofuel production is calculated in "CO2-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize), depending on N fertilizer uptake efficiency by the plants, can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species, have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate each other. This needs to be analyzed in a full life cycle assessment.
Rahman, Khondokar M; Melville, Lynsey; Fulford, David; Huq, Sm Imamul
2017-10-01
Calculations towards determining the greenhouse gas mitigation capacity of a small-scale biogas plant (3.2 m 3 plant) using cow dung in Bangladesh are presented. A general life cycle assessment was used, evaluating key parameters (biogas, methane, construction materials and feedstock demands) to determine the net environmental impact. The global warming potential saving through the use of biogas as a cooking fuel is reduced from 0.40 kg CO 2 equivalent to 0.064 kg CO 2 equivalent per kilogram of dung. Biomethane used for cooking can contribute towards mitigation of global warming. Prior to utilisation of the global warming potential of methane (from 3.2 m 3 biogas plant), the global warming potential is 13 t of carbon dioxide equivalent. This reduced to 2 t as a result of complete combustion of methane. The global warming potential saving of a bioenergy plant across a 20-year life cycle is 217 t of carbon dioxide equivalent, which is 11 t per year. The global warming potential of the resultant digestate is zero and from construction materials is less than 1% of total global warming potential. When the biogas is used as a fuel for cooking, the global warming potential will reduce by 83% compare with the traditional wood biomass cooking system. The total 80 MJ of energy that can be produced from a 3.2 m 3 anaerobic digestion plant would replace 1.9 t of fuel wood or 632 kg of kerosene currently used annually in Bangladesh. The digestate can also be used as a nutrient rich fertiliser substituting more costly inorganic fertilisers, with no global warming potential impact.
Continuous high-solids corn liquefaction and fermentation with stripping of ethanol.
Taylor, Frank; Marquez, Marco A; Johnston, David B; Goldberg, Neil M; Hicks, Kevin B
2010-06-01
Removal of ethanol from the fermentor during fermentation can increase productivity and reduce the costs for dewatering the product and coproduct. One approach is to recycle the fermentor contents through a stripping column, where a non-condensable gas removes ethanol to a condenser. Previous research showed that this approach is feasible. Savings of $0.03 per gallon were predicted at 34% corn dry solids. Greater savings were predicted at higher concentration. Now the feasibility has been demonstrated at over 40% corn dry solids, using a continuous corn liquefaction system. A pilot plant, that continuously fed corn meal at more than one bushel (25 kg) per day, was operated for 60 consecutive days, continuously converting 95% of starch and producing 88% of the maximum theoretical yield of ethanol. A computer simulation was used to analyze the results. The fermentation and stripping systems were not significantly affected when the CO(2) stripping gas was partially replaced by nitrogen or air, potentially lowering costs associated with the gas recycle loop. It was concluded that previous estimates of potential cost savings are still valid. (c) 2010. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Andrews, A. E.
2016-12-01
CarbonTracker-Lagrange (CT-L) is a flexible modeling framework developed to take advantage of newly available atmospheric data for CO2 and other long-lived gases such as CH4 and N2O. The North American atmospheric CO2 measurement network has grown from three sites in 2004 to >100 sites in 2015. The US network includes tall tower, mountaintop, surface, and aircraft sites in the NOAA Global Greenhouse Gas Reference Network along with sites maintained by university, government and private sector researchers. The Canadian network is operated by Environment and Climate Change Canada. This unprecedented dataset can provide spatially and temporally resolved CO2 emissions and uptake flux estimates and quantitative information about drivers of variability, such as drought and temperature. CT-L is a platform for systematic comparison of data assimilation techniques and evaluation of assumed prior, model and observation errors. A novel feature of CT-L is the optimization of boundary values along with surface fluxes, leveraging vertically resolved data available from NOAA's aircraft sampling program. CT-L uses observation footprints (influence functions) from the Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) modeling system to relate atmospheric measurements to upwind fluxes and boundary values. Footprints are pre-computed and the optimization algorithms are efficient, so many variants of the calculation can be performed. Fluxes are adjusted using Bayesian or Geostatistical methods to provide optimal agreement with observations. Satellite measurements of CO2 and CH4 from GOSAT are available starting in July 2009 and from OCO-2 since September 2014. With support from the NASA Carbon Monitoring System, we are developing flux estimation strategies that use remote sensing and in situ data together, including geostatistical inversions using satellite retrievals of solar-induced chlorophyll fluorescence. CT-L enables quantitative investigation of what new measurements would best complement the existing carbon observing system. We are also working to implement multi-species inversions for CO2 flux estimation using CO2 data along with CO, δ13CO2, COS and radiocarbon observations and for CH4 flux estimation using data for various hydrocarbons.
NASA Astrophysics Data System (ADS)
Zivkovic, Sanja; Momcilovic, Milos; Staicu, Angela; Mutic, Jelena; Trtica, Milan; Savovic, Jelena
2017-02-01
The aim of this study was to develop a simple laser induced breakdown spectroscopy (LIBS) method for quantitative elemental analysis of powdered biological materials based on laboratory prepared calibration samples. The analysis was done using ungated single pulse LIBS in ambient air at atmospheric pressure. Transversely-Excited Atmospheric pressure (TEA) CO2 laser was used as an energy source for plasma generation on samples. The material used for the analysis was a blue-green alga Spirulina, widely used in food and pharmaceutical industries and also in a few biotechnological applications. To demonstrate the analytical potential of this particular LIBS system the obtained spectra were compared to the spectra obtained using a commercial LIBS system based on pulsed Nd:YAG laser. A single sample of known concentration was used to estimate detection limits for Ba, Ca, Fe, Mg, Mn, Si and Sr and compare detection power of these two LIBS systems. TEA CO2 laser based LIBS was also applied for quantitative analysis of the elements in powder Spirulina samples. Analytical curves for Ba, Fe, Mg, Mn and Sr were constructed using laboratory produced matrix-matched calibration samples. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used as the reference technique for elemental quantification, and reasonably well agreement between ICP and LIBS data was obtained. Results confirm that, in respect to its sensitivity and precision, TEA CO2 laser based LIBS can be successfully applied for quantitative analysis of macro and micro-elements in algal samples. The fact that nearly all classes of materials can be prepared as powders implies that the proposed method could be easily extended to a quantitative analysis of different kinds of materials, organic, biological or inorganic.
Saving Educational Dollars through Quality Objectives.
ERIC Educational Resources Information Center
Alvir, Howard P.
This document is a collection of working papers written to meet the specific needs of teachers who are starting to think about and write performance objectives. It emphasizes qualitative objectives as opposed to quantitative classroom goals. The author describes quality objectives as marked by their clarity, accessibility, accountability, and…
78 FR 69839 - Building Technologies Office Prioritization Tool
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-21
... innovative and cost-effective energy saving solutions: Supporting research and development of high impact... Description The tool was designed to inform programmatic decision-making and facilitate the setting of... quantitative analysis to assure only the highest impact measures are the focus of further effort. The approach...
2017-04-05
quantitative data on the expected savings. This research attempted to identify and quantify the ROI for transitioning programs to MOSA. Purpose of This...6 Significance of This Research ............................................................................................... 6 Overview...of the Research Methodology ............................................................................... 7 Limitations
ERIC Educational Resources Information Center
Reese, De'borah Reese
2017-01-01
The purpose of this quantitative comparative study was to determine the existence or nonexistence of performance pass rate differences of special education middle school students on standardized assessments between pre and post co-teaching eras disaggregated by subject area and school. Co-teaching has altered classroom environments in many ways.…
Monolayer dispersion of CoO on Al2O3 probed by positronium atom
NASA Astrophysics Data System (ADS)
Liu, Z. W.; Zhang, H. J.; Chen, Z. Q.
2014-02-01
CoO/Al2O3 catalysts were prepared by wet impregnation method with CoO contents ranging from 0 wt% to 24 wt%. X-ray diffraction and X-ray photoelectron spectroscopy measurements suggest formation of CoO after calcined in N2. Quantitative X-ray diffraction analysis indicates monolayer dispersion capacity of CoO in CoO/Al2O3 catalysts to be about 3 wt%. Positron annihilation lifetime and coincidence Doppler broadening measurements were performed to study the dispersion state of CoO on Al2O3. The positron lifetime measurements reveal two long lifetime components τ3 and τ4, which correspond to ortho-positronium annihilation lifetime in microvoids and large pores, respectively. It was found that the positronium atom is very sensitive to the dispersion state of CoO on Al2O3. The presence of CoO significantly decreases both the lifetime and the intensity of τ4. Detailed analysis of the coincidence Doppler broadening measurements suggests that with the CoO content lower than the monolayer dispersion, spin conversion reaction of positronium is induced by CoO. When the cobalt content is higher than the monolayer dispersion capacity, inhibition of positronium formation becomes the dominate effect.
QSAR studies on triazole derivatives as sglt inhibitors via CoMFA and CoMSIA
NASA Astrophysics Data System (ADS)
Zhi, Hui; Zheng, Junxia; Chang, Yiqun; Li, Qingguo; Liao, Guochao; Wang, Qi; Sun, Pinghua
2015-10-01
Forty-six sodium-dependent glucose cotransporters-2 (SGLT-2) inhibitors with hypoglycemic activity were selected to develop three-dimensional quantitative structure-activity relationship (3D-QSAR) using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models. A training set of 39 compounds were used to build up the models, which were then evaluated by a series of internal and external cross-validation techniques. A test set of 7 compounds was used for the external validation. The CoMFA model predicted a q2 value of 0.792 and an r2 value of 0.985. The best CoMSIA model predicted a q2 value of 0.633 and an r2 value of 0.895 based on a combination of steric, electrostatic, hydrophobic and hydrogen-bond acceptor effects. The predictive correlation coefficients (rpred2) of CoMFA and CoMSIA models were 0.872 and 0.839, respectively. The analysis of the contour maps from each model provided insight into the structural requirements for the development of more active sglt inhibitors, and on the basis of the models 8 new sglt inhibitors were designed and predicted.
Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Final Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Thornton C
2014-03-31
Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) is a balanced portfolio of R&D tasks that address energy-saving opportunities in the metalcasting industry. E-SMARRT was created to: • Improve important capabilities of castings • Reduce carbon footprint of the foundry industry • Develop new job opportunities in manufacturing • Significantly reduce metalcasting process energy consumption and includes R&D in the areas of: • Improvements in Melting Efficiency • Innovative Casting Processes for Yield Improvement/Revert Reduction • Instrumentation and Control Improvement • Material properties for Casting or Tooling Design Improvement The energy savings and process improvements developed under E-SMARRT have been mademore » possible through the unique collaborative structure of the E-SMARRT partnership. The E-SMARRT team consisted of DOE’s Office of Industrial Technology, the three leading metalcasting technical associations in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders’ Society of America; and SCRA Applied R&D, doing business as the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. This team provided collaborative leadership to a complex industry composed of approximately 2,000 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, these new processes and technologies that enable energy efficiencies and environment-friendly improvements would have been slow to develop and had trouble obtaining a broad application. The E-SMARRT R&D tasks featured low-threshold energy efficiency improvements that are attractive to the domestic industry because they do not require major capital investment. The results of this portfolio of projects are significantly reducing metalcasting process energy consumption while improving the important capabilities of metalcastings. Through June 2014, the E-SMARRT program predicts an average annual estimated savings of 59 Trillion BTUs per year over a 10 year period through Advanced Melting Efficiencies and Innovative Casting Processes. Along with these energy savings, an estimated average annual estimate of CO2 reduction per year over a ten year period is 3.56 Million Metric Tons of Carbon Equivalent (MM TCE).« less
Hospital steam sterilizer usage: could we switch off to save electricity and water?
McGain, Forbes; Moore, Graham; Black, Jim
2016-07-01
Steam sterilization in hospitals is an energy and water intensive process. Our aim was to identify opportunities to improve electricity and water use. The objectives were to find: the time sterilizers spent active, idle and off; the variability in sterilizer use with the time of day and day of the week; and opportunities to switch off sterilizers instead of idling when no loads were waiting, and the resultant electricity and water savings. Analyses of routine data for one year of the activity of the four steam sterilizers in one hospital in Melbourne, Australia. We examined active sterilizer cycles, routine sterilizer switch-offs, and when sterilizers were active, idle and off. Several switch-off strategies were examined to identify electricity and water savings: switch off idle sterilizers when no loads are waiting and switch off one sterilizer after 10:00 h and a second sterilizer after midnight on all days. Sterilizers were active for 13,430 (38%) sterilizer-hours, off for 4822 (14%) sterilizer-hours, and idle for 16,788 (48%) sterilizer-hours. All four sterilizers were simultaneously active 9% of the time, and two or more sterilizers were idle for 69% of the time. A sterilizer was idle for two hours or less 13% of the time and idle for more than 2 h 87% of the time. A strategy to switch off idle sterilizers would reduce electricity use by 66 MWh and water use by 1004 kl per year, saving 26% electricity use and 13% of water use, resulting in financial savings of AUD$13,867 (UK£6,517) and a reduction in 79 tonnes of CO2 emissions per year. An alternative switch-off strategy of one sterilizer from 10:00 h onwards and a second from midnight would have saved 30 MWh and 456 kl of water. The methodology used of how hospital sterilizer use could be improved could be applied to all hospitals and more broadly to other equipment used in hospitals. © The Author(s) 2016.
Soil CO2 emissions in terms of irrigation management in an agricultural soil
NASA Astrophysics Data System (ADS)
Zornoza, Raúl; Acosta, José A.; María de la Rosa, José; Faz, Ángel; Domingo, Rafael; Pérez-Pastor, Alejandro; Ángeles Muñoz, María
2014-05-01
Irrigation water restrictions in the Mediterranean area are reaching worrying proportions and represent a serious threat to traditional crops and encourage the movement of people who choose to work in other activities. This situation has created a growing interest in water conservation, particularly among practitioners of irrigated agriculture, the main recipient of water resources (>80%). For these and other reasons, the scientific and technical irrigation scheduling of water use to maintain and even improve harvest yield and quality has been and will remain a major challenge for irrigated agriculture. Apart from environmental and economic benefits by water savings, deficit irrigation may contribute to reduce soil CO2 emissions and enhance C sequestration in soils. The reduction of soil moisture levels decreases microbial activity, with the resulting slowing down of organic matter mineralization. Besides, the application of water by irrigation may increment the precipitation rate of carbonates, favoring the storage of C, but depending on the source of calcium or bicarbonate, the net reaction can be either storage or release of C. Thus, the objective of this study was to assess if deficit irrigation, besides contributing to water savings, can reduce soil CO2 emissions and favor the accumulation of C in soils in stable forms. The experiment was carried out along 2012 in a commercial orchard from southeast Spain cultivated with nectarine trees (Prunus persica cv. 'Viowhite'). The irrigation system was drip localized. Three irrigation treatments were assayed: a control (CT), irrigated to satisfy the total hydric needs of the crop; a first deficit irrigation (DI1), irrigated as CT except for postharvest period (16 June - 28 October) were 50% of CT was applied; and a second deficit irrigation (DI2), irrigated as DI1, except for two periods in which irrigation was suppressed (16 June-6 July and 21 July-17 August). Each treatment was setup in triplicate, randomly distributed in blocks. Each repetition had 15 rows with 15 trees per row. Soil CO2 emissions, moisture and temperature were monitored every 15 days. A soil sampling (0-30 cm) was carried out every three months, to determine the evolution of organic carbon, recalcitrant carbon, labile and soluble carbon, inorganic carbon, microbial biomass carbon, β-glucosidase and arylesterase enzyme activities, and organic functional groups measured by Fourier transform infrared spectroscopy (FTIR). A soil fractionation was carried out in all samples (<50, 50-250, 250-850, >2000 µm) to assess the weight and carbon content of each particles fraction in terms of irrigation treatments. Results showed that the application of deficit caused a significant decrease in CO2 emission rates, mainly in DI2, with rates 10 µg CO2-C m-2 s-1 lower than CT during this deficit period. When cumulative CO2-C released during one year was estimated, it was verified that water deficit contributed to decreases in the release of CO2, with a total release of 410 g CO2-C m-2 in CT, 355 g CO2-C m-2 in DI1, and 251 g CO2-C m-2 in DI2. This last treatment has supposed an annual reduction of 159 g CO2-C m-2 regarding CT. Soil properties, contrarily, showed no significant differences among treatments, with similar values in the C fractions and organic carbon quality, with an average organic C content of 4.5 kg m-2, 30 kg m-2 of inorganic C, a recalcitrance index of 57%, 1.40% of organic compounds solubility index and 160 g m-2 of microbial biomass C. There were no differences among particle sizes weigh and organic or inorganic carbon contents either. Thus, since no differences in quantity and quality of organic carbon was assess in soil with regard to irrigation treatment, it seems that longer periods are needed to assess shifts in soil properties related to carbon sequestration. Key words: carbon sequestration, CO2 emissions, organic carbon quality, irrigation
The kinetics of dissolution of dolomite in CO2-H2O systems at 1.5 to 65oC and 0 to 1 atm PCO2.
Busenberg, E.; Plummer, Niel
1982-01-01
Weight loss measurements at different T and PCO2 during experimental investigations of the dissolution kinetics of eight samples of dolomite permitted recognition of a two-stage process. During the first stage, which is brief, the surface composition of the dolomite becomes enriched with the MgCO3 component and the CaCO3 component dissolves faster. In the second and more important stage both components of the solid are released stoichiometrically, described quantitatively by three parallel consecutive forward reactions and one significant backward reaction. Dissolution rates are apparently more dependent on crystallographic order than on compositional variations. -M.S.
CO2calc: A User-Friendly Seawater Carbon Calculator for Windows, Mac OS X, and iOS (iPhone)
Robbins, L.L.; Hansen, M.E.; Kleypas, J.A.; Meylan, S.C.
2010-01-01
A user-friendly, stand-alone application for the calculation of carbonate system parameters was developed by the U.S. Geological Survey Florida Shelf Ecosystems Response to Climate Change Project in response to its Ocean Acidification Task. The application, by Mark Hansen and Lisa Robbins, USGS St. Petersburg, FL, Joanie Kleypas, NCAR, Boulder, CO, and Stephan Meylan, Jacobs Technology, St. Petersburg, FL, is intended as a follow-on to CO2SYS, originally developed by Lewis and Wallace (1998) and later modified for Microsoft Excel? by Denis Pierrot (Pierrot and others, 2006). Besides eliminating the need for using Microsoft Excel on the host system, CO2calc offers several improvements on CO2SYS, including: An improved graphical user interface for data entry and results Additional calculations of air-sea CO2 fluxes (for surface water calculations) The ability to tag data with sample name, comments, date, time, and latitude/longitude The ability to use the system time and date and latitude/ longitude (automatic retrieval of latitude and longitude available on iPhone? 3, 3GS, 4, and Windows? hosts with an attached National Marine Electronics Association (NMEA)-enabled GPS) The ability to process multiple files in a batch processing mode An option to save sample information, data input, and calculated results as a comma-separated value (CSV) file for use with Microsoft Excel, ArcGIS,? or other applications An option to export points with geographic coordinates as a KMZ file for viewing and editing in Google EarthTM
NASA Astrophysics Data System (ADS)
Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol
2015-03-01
A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.
A Pilot Study of the Performance Characteristics of the D-dimer in Presumed Sepsis
2010-05-01
20 breaths/min or PaCO2 ថ mm Hg White Blood Cell Count >12,000 cells /mm3, ɜ,000 cells /mm3, or >10% bands Table 2. Sepsis Definitions Sepsis 2 or...Jersey), a quantitative, microlatex agglutination test with a reference cut-off of 0.4 mg/dL as positive. The assay is run on venous blood collected...sensitivity of only ~61- 67% for patients who ultimately were found to have positive blood cultures.12 This study used a semi-quantitative D-dimer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konopacki, S.; Akbari, H.
2000-03-01
In 1997, the US Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'', to quantify the potential benefits of Heat Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective to investigate the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, Sacramento and Salt Lake City.more » This paper summarizes our efforts to calculate the annual energy savings, peak power avoidance and annual C02 reduction of HIR strategies in the three initial cities. In this analysis, we focused on three building types that offer most savings potential: single-family residence, office and retail store. Each building type was characterized in detail by old or new construction and with a gas furnace or an electric heat pump. We defined prototypical building characteristics for each building type and simulated the impact of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.IE model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on building [direct effect], (3) combined strategies I and 2 [direct effect], (4) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (5) combined strategies 1, 2 and 4 [direct and indirect effects]. We then estimated the total roof area of air-conditioned buildings in each city using readily obtainable data to calculate the metropolitan-wide impact of HIR strategies. The results show, that in Baton Rouge, potential annual energy savings of $15M could be realized by rate-payers from the combined direct and indirect effects of HIR strategies. Additionally, peak power avoidance is estimated at 133 MW and the reduction in annual carbon emissions at 41 kt. In Sacramento, the potential annual energy savings is estimated at $26M, with an avoidance of 486 MW in peak power and a reduction in annual carbon of 92 kt. In Salt Lake City, the potential annual energy savings is estimated at $4M, with an avoidance of 85 MW in peak power and a reduction in annual carbon of 20 kt.« less
Presidential Green Chemistry Challenge: 2005 Greener Synthetic Pathways Award (Merck & Co., Inc.)
Presidential Green Chemistry Challenge 2005 award winner, Merck, designed an atom-economical, energy- and water-saving, convergent synthesis for aprepitant, the active ingredient in Emend, a drug for nausea and vomiting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-06-01
This report documents the second phase of the Remote Operated Vehicle with CO{sub 2} Blasting (ROVCO{sub 2}) Program. The ROVCO{sub 2} Program`s goal is to develop and demonstrate a tool to improve the productivity of concrete floor decontamination. The second phase integrated non-developmental subsystems on to the ROVCO{sub 2} system and performed quantitative decontamination effectiveness, productivity, and reliability testings. The report documents these development activities and the analysis of cost and performance. The results show that the ROVCO{sub 2} system is an efficient decontamination tool.
Integrated air revitalization system for Space Station
NASA Technical Reports Server (NTRS)
Boyda, R. B.; Miller, C. W.; Schwartz, M. R.
1986-01-01
Fifty-one distinct functions are encompassed by the Space Station's Environmental Control and Life Support System; one exception to this noninteractivity of functions is the regenerative air revitalization system that removes and reduces CO2 and generates O2. The integration of these interdependent functions, and of humidity control, into a single system furnishes opportunities for process simplification as well as for power, weight and volume requirement reductions by comparison with discrete subsystems. Attention is presently given to a system which quantifies these integration-related savings and identifies additional advantages that accrue to this integrating design method.
Edwards, Christine E; Haselhorst, Monia S H; McKnite, Autumn M; Ewers, Brent E; Williams, David G; Weinig, Cynthia
2009-10-01
Growth chambers allow measurement of phenotypic differences among genotypes under controlled environment conditions. However, unintended variation in growth chamber air CO2 concentration ([CO2]) may affect the expression of diverse phenotypic traits, and genotypes may differ in their response to variation in [CO2]. We monitored [CO2] and quantified phenotypic responses of 22 Brassica rapa genotypes in growth chambers with either standard or enhanced venting. [CO2] in chambers with standard venting dropped to 280 micromol mol(-1) during the period of maximum canopy development, approximately 80 micromol mol(-1) lower than in chambers with enhanced venting. The stable carbon isotope ratio of CO2 in chamber air (delta13C(air)) was negatively correlated with [CO2], suggesting that photosynthesis caused observed [CO2] decreases. Significant genotype x chamber-venting interactions were detected for 12 of 20 traits, likely due to differences in the extent to which [CO2] changed in relation to genotypes' phenology or differential sensitivity of genotypes to low [CO2]. One trait, 13C discrimination (delta13C), was particularly influenced by unaccounted-for fluctuations in delta13C(air) and [CO2]. Observed responses to [CO2] suggest that genetic variance components estimated in poorly vented growth chambers may be influenced by the expression of genes involved in CO2 stress responses; genotypic values estimated in these chambers may likewise be misleading such that some mapped quantitative trait loci may regulate responses to CO2 stress rather than a response to the environmental factor of interest. These results underscore the importance of monitoring, and where possible, controlling [CO2].
CO2 dynamics on three habitats of mangrove ecosystem in Bintan Island, Indonesia
NASA Astrophysics Data System (ADS)
Dharmawan, I. W. E.
2018-02-01
Atmospheric carbon dioxide (CO2) has increased over time, implied on global warming and climate change. Blue carbon is one of interesting options to reduce CO2 concentration in the atmosphere. Indonesia has the largest mangrove area in the world which would be potential to mitigate elevated CO2 concentrations. A quantitative study on CO2 dynamic was conducted in the habitat-variable and pristine mangrove of Bintan island. The study was aimed to estimate CO2 flux on three different mangrove habitats, i.e., lagoon, oceanic and riverine. Even though all habitats were dominated by Rhizophora sp, they were significantly differed one another by species composition, density, and soil characteristics. Averagely, CO2 dynamics had the positive budget by ∼0.668 Mmol/ha (82.47%) which consisted of sequestration, decomposition, and soil efflux at 0.810 Mmol/ha/y, -0.125 Mmol/ha/y and -0.017 Mmol/ha/y, respectively. The study found that the fringing habitat had the highest CO2 capturing rate and the lowest rate of litter decomposition which was contrast to the riverine site. Therefore, oceanic mangrove was more efficient in controlling CO2 dynamics due to higher carbon storage on their biomass. A recent study also found that soil density and organic matter had a significant impact on CO2 dynamics.
Weiss, Ingrid M; Muth, Christina; Drumm, Robert; Kirchner, Helmut O K
2018-01-01
The pathways of thermal instability of amino acids have been unknown. New mass spectrometric data allow unequivocal quantitative identification of the decomposition products. Calorimetry, thermogravimetry and mass spectrometry were used to follow the thermal decomposition of the eight amino acids G, C, D, N, E, Q, R and H between 185 °C and 280 °C. Endothermic heats of decomposition between 72 and 151 kJ/mol are needed to form 12 to 70% volatile products. This process is neither melting nor sublimation. With exception of cysteine they emit mainly H 2 O, some NH 3 and no CO 2 . Cysteine produces CO 2 and little else. The reactions are described by polynomials, AA→ a NH 3 + b H 2 O+ c CO 2 + d H 2 S+ e residue, with integer or half integer coefficients. The solid monomolecular residues are rich in peptide bonds. Eight of the 20 standard amino acids decompose at well-defined, characteristic temperatures, in contrast to commonly accepted knowledge. Products of decomposition are simple. The novel quantitative results emphasize the impact of water and cyclic condensates with peptide bonds and put constraints on hypotheses of the origin, state and stability of amino acids in the range between 200 °C and 300 °C.
A SARA Timeseries Utility supports analysis and management of time-varying environmental data including listing, graphing, computing statistics, computing meteorological data and saving in a WDM or text file. File formats supported include WDM, HSPF Binary (.hbn), USGS RDB, and T...
NASA Astrophysics Data System (ADS)
Yustika, Ana; Purwanto; Hermawan, H.
2018-02-01
The increasing of energy supply trend in Indonesia seems to be a serious problem in the implementation of sustainable development. This study case research aimed to determine the potential of energy efficiency in school environment. The subject of this research was SMA N 1 Ambarawa, located on Semarang Regency of Central Java, Indonesia. The data collection was done by used documentation, observation and interview method. The results showed that the average of electrical energy consumption in this school reached 11022.008 kWh/month, which resulted in the emergence of secondary emissions of CO2 by 9644.257 kg CO2/month. Overall, the consumption of electrical energy in this school was very efficient, with an Intensity of Energy Consumption (IEC) average 1.7957 kWh/m2/month. In this case, the implementation of short-term no cost, long-term no cost, middle-cost, short-term high cost and long-term high-cost recommendation could save electricity energy sequent by 3.159%; 7.536%; 9.499%; 35.278% - 36.626%; and 42.084%. In conclusion, the school environment had a big potential of energy efficiency that could reduce the energy consumption and CO2 gas emissions.
Wang, Chunli; Xu, Chunming; Chen, Rongfu; Yang, Li; Sung, Kl Paul
2018-02-12
Purposes The anterior cruciate ligament (ACL) has poor functional healing response. The synovial tissue surrounding ACL ligament might be a major regulator of the microenvironment in the joint cavity after ACL injury, thus affecting the repair process. Using transwell co-culture, this study explored the direct influence of human synovial cells (HSCs) on ACL fibroblasts (ACLfs) by characterizing the differential expression of the lysyl oxidase family (LOXs) and matrix metalloproteinases (MMP-1, -2, -3), which facilitate extracellular matrix (ECM) repair and degradation, respectively. Methods The mRNA expression levels of LOXs and MMP-1, -2, -3 were analyzed by semi-quantitative PCR and quantitative real-time PCR. The protein expression levels of LOXs and MMP-1, -2, -3 were detected by western blot. Results We found that co-culture resulted in an increase in the mRNAs of LOXs in normal ACLfs and differentially regulated the expression of MMPs. Then we applied 12% mechanical stretch on ACLfs to induce injury and found the mRNA expression levels of LOXs in injured ACLfs were decreased in the co-culture group relative to the mono-culture group. Conversely, the mRNA expression levels of MMPs in injured ACLfs were promoted in the co-culture group compared with the mono-culture group. At translational level, we found that LOXs were lower while MMPs were highly expressed in the co-culture group compared to the mono-culture group. Conclusions The co-culture of ACLfs and HSCs, which mimicked the cell-to-cell contact in a micro-environment, could contribute to protein modulators for wound healing, inferring the potential reason for the poor self-healing of injured ACL.
Sazonov, Petr K; Ivushkin, Vasiliy A; Khrustalev, Victor N; Kolotyrkina, Natal'ya G; Beletskaya, Irina P
2014-09-21
The paper provides the first example of formal nucleophilic substitution by the halogenophilic pathway in Cr(CO)3 complexes of haloarenes with metal carbonyl anions. All metal carbonyl anions examined attack [(η(6)-iodobenzene)Cr(CO)3] at halogen, which is shown by aryl carbanion scavenging with t-BuOH. The reaction with K[CpFe(CO)2] gives only the dehalogenated arene, but the reaction with K[Cp*Fe(CO)2] (Cp* = η(5)-C5Me5) results in nucleophilic substitution to give [(η(6)-C6H5FeCp*(CO)2)Cr(CO)3]. Reaction with Na[Re(CO)5] quantitatively gives the iodo(acyl)rhenate anion Na[(η(6)-C6H5C(O)ReI(CO)4)Cr(CO)3] and in the case of K[Mn(CO)5] a mixture of σ-aryl complexes [(η(6)-C6H5Mn(CO)5)Cr(CO)3] and K[(η(6)-C6H5Mn(CO)4I)Cr(CO)3]. An analogous rhenium complex Na[(η(6)-C6H5Re(CO)4I)Cr(CO)3] is formed from the initial iodo(acyl)rhenate upon prolonged standing at 20 °C, and its structure (in the form of [NEt4](+) salt) is established by X-ray diffraction analysis. The reaction of [(η(6)-chlorobenzene)Cr(CO)3] with K[CpFe(CO)2], in contrast, proceeds by the common S(N)2Ar mechanism.
Quantitative structure activity relationship studies of mushroom tyrosinase inhibitors
NASA Astrophysics Data System (ADS)
Xue, Chao-Bin; Luo, Wan-Chun; Ding, Qi; Liu, Shou-Zhu; Gao, Xing-Xiang
2008-05-01
Here, we report our results from quantitative structure-activity relationship studies on tyrosinase inhibitors. Interactions between benzoic acid derivatives and tyrosinase active sites were also studied using a molecular docking method. These studies indicated that one possible mechanism for the interaction between benzoic acid derivatives and the tyrosinase active site is the formation of a hydrogen-bond between the hydroxyl (aOH) and carbonyl oxygen atoms of Tyr98, which stabilized the position of Tyr98 and prevented Tyr98 from participating in the interaction between tyrosinase and ORF378. Tyrosinase, also known as phenoloxidase, is a key enzyme in animals, plants and insects that is responsible for catalyzing the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the present study, the bioactivities of 48 derivatives of benzaldehyde, benzoic acid, and cinnamic acid compounds were used to construct three-dimensional quantitative structure-activity relationship (3D-QSAR) models using comparative molecular field (CoMFA) and comparative molecular similarity indices (CoMSIA) analyses. After superimposition using common substructure-based alignments, robust and predictive 3D-QSAR models were obtained from CoMFA ( q 2 = 0.855, r 2 = 0.978) and CoMSIA ( q 2 = 0.841, r 2 = 0.946), with 6 optimum components. Chemical descriptors, including electronic (Hammett σ), hydrophobic (π), and steric (MR) parameters, hydrogen bond acceptor (H-acc), and indicator variable ( I), were used to construct a 2D-QSAR model. The results of this QSAR indicated that π, MR, and H-acc account for 34.9, 31.6, and 26.7% of the calculated biological variance, respectively. The molecular interactions between ligand and target were studied using a flexible docking method (FlexX). The best scored candidates were docked flexibly, and the interaction between the benzoic acid derivatives and the tyrosinase active site was elucidated in detail. We believe that the QSAR models built here provide important information necessary for the design of novel tyrosinase inhibitors.
Energy-related emissions from telework.
Kitou, Erasmia; Horvath, Arpad
2003-08-15
Telework is a growing phenomenon that is thought to save energy and air emissions. This paper applies a systems model to telework and nontelework scenarios in order to quantify greenhouse gas and other air emissions from transportation, heating, cooling, lighting, and electronic and electrical equipment use both at the company and the home office. Using United States data, a WWW-based, scalable decision-support tool was created to evaluate the environmental impacts of teleworkers. For a typical case reflecting United States teleworker patterns, the analysis found that telework has the potential to reduce air emissions. However, Monte Carlo simulation employed to perform a probabilistic analysis over a set of likely parameters has revealed that telework may not affect equally the emissions of all types of pollutants. It may decrease CO2, NOx, SO2, PM10, and CO but not N2O and CH4 emissions. Therefore, the scope and goal of telework programs must be defined early in the implementation process. Work-related transportation (commuting) impacts could be reduced as a result of telework; however, home-related impacts due to an employee spending additional time at home could potentially offset these reductions. Company office-related impacts may not be reduced unless the office space is shared with other employees during telework days or eliminated entirely. In states with high telework potential (California, Georgia, Illinois, New York, Texas), telework could save emissions, but it would depend on commuting and climatic patterns and the electricity mix. Environmentally beneficial telework programs are found to depend mainly on commuting patterns, induced energy usage, and characteristics of the office and home space and equipment use.
NASA Technical Reports Server (NTRS)
Stewart, R. B.; Grose, W. L.
1975-01-01
Parametric studies were made with a multilayer atmospheric diffusion model to place quantitative limits on the uncertainty of predicting ground-level toxic rocket-fuel concentrations. Exhaust distributions in the ground cloud, cloud stabilized geometry, atmospheric coefficients, the effects of exhaust plume afterburning of carbon monoxide CO, assumed surface mixing-layer division in the model, and model sensitivity to different meteorological regimes were studied. Large-scale differences in ground-level predictions are quantitatively described. Cloud alongwind growth for several meteorological conditions is shown to be in error because of incorrect application of previous diffusion theory. In addition, rocket-plume calculations indicate that almost all of the rocket-motor carbon monoxide is afterburned to carbon dioxide CO2, thus reducing toxic hazards due to CO. The afterburning is also shown to have a significant effect on cloud stabilization height and on ground-level concentrations of exhaust products.
GIS-based preliminary wind-hydrogen energy assessment: A case study for Pakistan
NASA Astrophysics Data System (ADS)
Hussain Siyal, Shahid; Hopper, Miles; Lefvert, Adrian; Mentis, Dimitris; Korkovelos, Alexandros; Lopez De Briñas Gorosabel, Oier; Varela González, Cristina; Howells, Mark
2017-04-01
While the world is making progress on incorporating renewables in the electricity grid, the transport sector is still widely locked into using gasoline and diesel fuels. Simultaneously, wind energy is encountering resistance due to its intermittent nature. Wind to hydrogen energy conversion poses a solution to this problem, using wind powered electrolysis to produce hydrogen which can fuel the transport sector. In this report a preliminary assessment for wind to hydrogen energy conversion potential of Pakistan was made considering two different turbines; Vestas V82 and V112. Using available wind speed data, processed in ArcGIS, the hydrogen potential was calculated. Finally, the economic feasibility and potential environmental savings were assessed. From the results it was concluded that Pakistan has a good potential for wind to hydrogen conversion, with 63,807 and 80,232 ktons of hydrogen per year from the V82 and V112 turbines. This corresponds to 2,105 and 2,647 TWh of energy per year respectively. Only using 2% of that potential could give emissions savings of up to 11.43 and 14.37 MtCO2-eq, which would give good reason for more in-depth studies to evaluate the feasibility of a project in Pakistan.
Material flow and sustainability analyses of biorefining of municipal solid waste.
Sadhukhan, Jhuma; Martinez-Hernandez, Elias
2017-11-01
This paper presents material flow and sustainability analyses of novel mechanical biological chemical treatment system for complete valorization of municipal solid waste (MSW). It integrates material recovery facility (MRF); pulping, chemical conversion; effluent treatment plant (ETP), anaerobic digestion (AD); and combined heat and power (CHP) systems producing end products: recyclables (24.9% by mass of MSW), metals (2.7%), fibre (1.5%); levulinic acid (7.4%); recyclable water (14.7%), fertiliser (8.3%); and electricity (0.126MWh/t MSW), respectively. Refuse derived fuel (RDF) and non-recyclable other waste, char and biogas from MRF, chemical conversion and AD systems, respectively, are energy recovered in the CHP system. Levulinic acid gives profitability independent of subsidies; MSW priced at 50Euro/t gives a margin of 204Euro/t. Global warming potential savings are 2.4 and 1.3kg CO 2 equivalent per kg of levulinic acid and fertiliser, and 0.17kg CO 2 equivalent per MJ of grid electricity offset, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
3D-QSAR and docking studies of 3-Pyridine heterocyclic derivatives as potent PI3K/mTOR inhibitors
NASA Astrophysics Data System (ADS)
Yang, Wenjuan; Shu, Mao; Wang, Yuanqiang; Wang, Rui; Hu, Yong; Meng, Lingxin; Lin, Zhihua
2013-12-01
Phosphoinosmde-3-kinase/ mammalian target of rapamycin (PI3K/mTOR) dual inhibitors have attracted a great deal of interest as antitumor drugs research. In order to design and optimize these dual inhibitors, two types of 3D-quantitative structure-activity relationship (3D-QSAR) studies based on the ligand alignment and receptor alignment were applied using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). In the study based on ligands alignment, models of PI3K (CoMFA with r2, 0.770; q2, 0.622; CoMSIA with r2, 0.945; q2, 0.748) and mTOR (CoMFA with r2, 0.850; q2, 0.654; CoMSIA with r2, 0.983; q2, 0.676) have good predictability. And in the study based on receptor alignment, models of PI3K (CoMFA with r2, 0.745; q2, 0.538; CoMSIA with r2, 0.938; q2, 0.630) and mTOR (CoMFA with r2, 0.977; q2, 0.825; CoMSIA with r2, 0.985; q2, 0.728) also have good predictability. 3D contour maps and docking results suggested different groups on the core parts of the compounds could enhance the biological activities. Finally, ten derivatives as potential candidates of PI3K/mTOR inhibitors with good predicted activities were designed.
NASA Astrophysics Data System (ADS)
Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang
2017-04-01
Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. We will present a recently published study1 that estimates the current level of water demand for Mediterranean agriculture and simulates the potential impacts of climate change, population growth and transitions to water-saving irrigation and conveyance technologies. The results indicate that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems, with large differences in the saving potentials across countries. Under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean. Both the Eastern and the Southern Mediterranean would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. However, in some scenarios water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain. In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a large development2 that comprised the improved representation of Mediterranean crops.
Pyrolysis and gasification of meat-and-bone-meal: Energy balance and GHG accounting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cascarosa, Esther; Boldrin, Alessio, E-mail: aleb@env.dtu.dk; Astrup, Thomas
Highlights: • GHG savings are in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated. • Energy recovery differed in terms of energy products and efficiencies. • The results were largely determined by use of the products for energy purposes. - Abstract: Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were establishedmore » for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.« less
Heo, Ji Haeng; Rascati, Karen L; Lee, Eui-Kyung
2017-05-01
The reference pricing system (RPS) establishes reference prices within interchangeable reference groupings. For drugs priced higher than the reference point, patients pay the difference between the reference price and the total price. To predict potential changes in prescription ingredient costs and co-payment rates after implementation of an RPS in South Korea. Korean National Health Insurance claims data were used as a baseline to develop possible RPS models. Five components of a potential RPS policy were varied: reference groupings, reference pricing methods, co-pay reduction programs, manufacturer price reductions, and increased drug substitutions. The potential changes for prescription ingredient costs and co-payment rates were predicted for the various scenarios. It was predicted that transferring the difference (total price minus reference price) from the insurer to patients would reduce ingredient costs from 1.4% to 22.8% for the third-party payer (government), but patient co-payment rates would increase from a baseline of 20.4% to 22.0% using chemical groupings and to 25.0% using therapeutic groupings. Savings rates in prescription ingredient costs (government and patient combined) were predicted to range from 1.6% to 13.7% depending on various scenarios. Although the co-payment rate would increase, a 15% price reduction by manufacturers coupled with a substitution rate of 30% would result in a decrease in the co-payment amount (change in absolute dollars vs. change in rates). Our models predicted that the implementation of RPS in South Korea would lead to savings in ingredient costs for the third-party payer and co-payments for patients with potential scenarios. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Pujol Pereira, Engil Isadora; Suddick, Emma C; Six, Johan
2016-01-01
By converting biomass residue to biochar, we could generate power cleanly and sequester carbon resulting in overall greenhouse gas emissions (GHG) savings when compared to typical fossil fuel usage and waste disposal. We estimated the carbon dioxide (CO2) abatements and emissions associated to the concurrent production of bioenergy and biochar through biomass gasification in an organic walnut farm and processing facility in California, USA. We accounted for (i) avoided-CO2 emissions from displaced grid electricity by bioenergy; (ii) CO2 emissions from farm machinery used for soil amendment of biochar; (iii) CO2 sequestered in the soil through stable biochar-C; and (iv) direct CO2 and nitrous oxide (N2O) emissions from soil. The objective of these assessments was to pinpoint where the largest C offsets can be expected in the bioenergy-biochar chain. We found that energy production from gasification resulted in 91.8% of total C offsets, followed by stable biochar-C (8.2% of total C sinks), offsetting a total of 107.7 kg CO2-C eq Mg-1 feedstock. At the field scale, we monitored gas fluxes from soils for 29 months (180 individual observations) following field management and precipitation events in addition to weekly measurements within three growing seasons and two tree dormancy periods. We compared four treatments: control, biochar, compost, and biochar combined with compost. Biochar alone or in combination with compost did not alter total N2O and CO2 emissions from soils, indicating that under the conditions of this study, biochar-prompted C offsets may not be expected from the mitigation of direct soil GHG emissions. However, this study revealed a case where a large environmental benefit was given by the waste-to-bioenergy treatment, addressing farm level challenges such as waste management, renewable energy generation, and C sequestration.
Pujol Pereira, Engil Isadora; Suddick, Emma C.; Six, Johan
2016-01-01
By converting biomass residue to biochar, we could generate power cleanly and sequester carbon resulting in overall greenhouse gas emissions (GHG) savings when compared to typical fossil fuel usage and waste disposal. We estimated the carbon dioxide (CO2) abatements and emissions associated to the concurrent production of bioenergy and biochar through biomass gasification in an organic walnut farm and processing facility in California, USA. We accounted for (i) avoided-CO2 emissions from displaced grid electricity by bioenergy; (ii) CO2 emissions from farm machinery used for soil amendment of biochar; (iii) CO2 sequestered in the soil through stable biochar-C; and (iv) direct CO2 and nitrous oxide (N2O) emissions from soil. The objective of these assessments was to pinpoint where the largest C offsets can be expected in the bioenergy-biochar chain. We found that energy production from gasification resulted in 91.8% of total C offsets, followed by stable biochar-C (8.2% of total C sinks), offsetting a total of 107.7 kg CO2-C eq Mg-1 feedstock. At the field scale, we monitored gas fluxes from soils for 29 months (180 individual observations) following field management and precipitation events in addition to weekly measurements within three growing seasons and two tree dormancy periods. We compared four treatments: control, biochar, compost, and biochar combined with compost. Biochar alone or in combination with compost did not alter total N2O and CO2 emissions from soils, indicating that under the conditions of this study, biochar-prompted C offsets may not be expected from the mitigation of direct soil GHG emissions. However, this study revealed a case where a large environmental benefit was given by the waste-to-bioenergy treatment, addressing farm level challenges such as waste management, renewable energy generation, and C sequestration. PMID:26963623
Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.
2016-08-09
Injected CO 2 from geologic carbon storage is expected to impact the microbial communities of proposed storage sites, such as depleted oil reservoirs and deep saline aquifers, as well as overlying freshwater aquifers at risk of receiving leaking CO 2. Microbial community change in these subsurface sites may affect injectivity of CO 2, permanence of stored CO 2, and shallow subsurface water quality. The effect of CO 2 concentration on the microbial communities in fluid collected from a depleted oil reservoir and a freshwater aquifer was examined at subsurface pressures and temperatures. The community was exposed to 0%, 1%, 10%,more » and 100% pCO 2 for 56 days. Bacterial community structure was analyzed through 16S rRNA gene clone libraries, and total bacterial abundance was estimated through quantitative polymerase chain reaction. Changes in the microbial community observed in the depleted oil reservoir samples and freshwater samples were compared to previous results from CO 2-exposed deep saline aquifer fluids. Overall, results suggest that CO 2 exposure to microbial communities will result in pH-dependent population change, and the CO 2-selected microbial communities will vary among sites. In conclusion, this is the first study to compare the response of multiple subsurface microbial communities at conditions expected during geologic carbon storage, increasing the understanding of environmental drivers for microbial community changes in CO 2-exposed environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.
Injected CO 2 from geologic carbon storage is expected to impact the microbial communities of proposed storage sites, such as depleted oil reservoirs and deep saline aquifers, as well as overlying freshwater aquifers at risk of receiving leaking CO 2. Microbial community change in these subsurface sites may affect injectivity of CO 2, permanence of stored CO 2, and shallow subsurface water quality. The effect of CO 2 concentration on the microbial communities in fluid collected from a depleted oil reservoir and a freshwater aquifer was examined at subsurface pressures and temperatures. The community was exposed to 0%, 1%, 10%,more » and 100% pCO 2 for 56 days. Bacterial community structure was analyzed through 16S rRNA gene clone libraries, and total bacterial abundance was estimated through quantitative polymerase chain reaction. Changes in the microbial community observed in the depleted oil reservoir samples and freshwater samples were compared to previous results from CO 2-exposed deep saline aquifer fluids. Overall, results suggest that CO 2 exposure to microbial communities will result in pH-dependent population change, and the CO 2-selected microbial communities will vary among sites. In conclusion, this is the first study to compare the response of multiple subsurface microbial communities at conditions expected during geologic carbon storage, increasing the understanding of environmental drivers for microbial community changes in CO 2-exposed environments.« less
Zhang, Zhiyong; Chi, Miaofang; Veith, Gabriel M.; ...
2016-08-08
Here we report an efficient electrochemical conversion of CO 2 to CO on surface-activated bismuth nanoparticles (NPs) in acetonitrile (MeCN) under ambient conditions, with the assistance of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]). Through the comparison between electrodeposited Bi films (Bi-ED) and different types of Bi NPs, we, for the first time, demonstrate the effects of catalyst’s size and surface condition on organic phase electrochemical CO 2 reduction. Our study reveals that the surface inhibiting layer (hydrophobic surfactants and Bi 3+ species) formed during the synthesis and purification process hinders the CO 2 reduction, leading to a 20% drop in Faradaic efficiency formore » CO evolution (FE CO). Bi particle size showed a significant effect on FE CO when the surface of Bi was air-oxidized, but this effect of size on FE CO became negligible on surface-activated Bi NPs. After the surface activation (hydrazine treatment) that effectively removed the native inhibiting layer, activated 36-nm Bi NPs exhibited an almost-quantitative conversion of CO 2 to CO (96.1% FE CO), and a mass activity for CO evolution (MA CO) of 15.6 mA mg –1, which is three-fold higher than the conventional Bi-ED, at ₋2.0 V (vs Ag/AgCl). Ultimately, this work elucidates the importance of the surface activation for an efficient electrochemical CO 2 conversion on metal NPs and paves the way for understanding the CO 2 electrochemical reduction mechanism in nonaqueous media.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezyk, Stephen P.; Mincher, Bruce J.; Nilsson, Mikael
This document is the final report for the Nuclear Energy Universities Program (NEUP) grant 10-910 (DE-AC07-05ID14517) “Alpha Radiolysis of Nuclear Solvent Extraction Ligands used for An(III) and Ln(III) Separations”. The goal of this work was to obtain a quantitative understanding of the impacts of both low Linear Energy Transfer (LET, gamma-rays) and high LET (alpha particles) radiation chemistry occurring in future large-scale separations processes. This quantitative understanding of the major radiation effects on diluents and ligands is essential for optimal process implementation, and could result in significant cost savings in the future.
Ke, Shanming; Li, Tao; Ye, Mao; Lin, Peng; Yuan, Wenxiang; Zeng, Xierong; Chen, Lang; Huang, Haitao
2017-08-31
(In + Nb) co-doped TiO 2 (TINO) rutile is an emerging material with a colossal dielectric permittivity (CP) and a low dielectric loss over wide temperature and frequency ranges. The electrical inhomogeneous nature of TINO ceramics is demonstrated by direct local current probing with high-resolution conductive atomic force microscopy (cAFM). The CP response in TINO is found to originate from the electron-pinned defect dipole induced conductive cluster effect and the electrode effect. Two types of dielectric relaxations are simultaneously observed due to these two effects. With the given synthesis condition, we found TINO shows a highly leaky feature that impairs its application as a dielectric material. However, the fast-temperature-rising phenomenon found in this work may open a new door for TINO to be applied as a potential electrothermal material with high efficiency, oxidation-proof, high temperature stability, and energy saving.
Energy consumption and CO2 emissions in Tibet and its cities in 2014
NASA Astrophysics Data System (ADS)
Shan, Yuli; Zheng, Heran; Guan, Dabo; Li, Chongmao; Mi, Zhifu; Meng, Jing; Schroeder, Heike; Ma, Jibo; Ma, Zhuguo
2017-08-01
Because of its low level of energy consumption and the small scale of its industrial development, the Tibet Autonomous Region has historically been excluded from China's reported energy statistics, including those regarding CO2 emissions. In this paper, we estimate Tibet's energy consumption using limited online documents, and we calculate the 2014 energy-related and process-related CO2 emissions of Tibet and its seven prefecture-level administrative divisions for the first time. Our results show that 5.52 million tons of CO2 were emitted in Tibet in 2014; 33% of these emissions are associated with cement production. Tibet's emissions per capita amounted to 1.74 tons in 2014, which is substantially lower than the national average, although Tibet's emission intensity is relatively high at 0.60 tons per thousand yuan in 2014. Among Tibet's seven prefecture-level administrative divisions, Lhasa City and Shannan Region are the two largest CO2 contributors and have the highest per capita emissions and emission intensities. The Nagqu and Nyingchi regions emit little CO2 due to their farming/pasturing-dominated economies. This quantitative measure of Tibet's regional CO2 emissions provides solid data support for Tibet's actions on climate change and emission reductions.
No Cost – Low Cost Compressed Air System Optimization in Industry
NASA Astrophysics Data System (ADS)
Dharma, A.; Budiarsa, N.; Watiniasih, N.; Antara, N. G.
2018-04-01
Energy conservation is a systematic, integrated of effort, in order to preserve energy sources and improve energy utilization efficiency. Utilization of energy in efficient manner without reducing the energy usage it must. Energy conservation efforts are applied at all stages of utilization, from utilization of energy resources to final, using efficient technology, and cultivating an energy-efficient lifestyle. The most common way is to promote energy efficiency in the industry on end use and overcome barriers to achieve such efficiency by using system energy optimization programs. The facts show that energy saving efforts in the process usually only focus on replacing tools and not an overall system improvement effort. In this research, a framework of sustainable energy reduction work in companies that have or have not implemented energy management system (EnMS) will be conducted a systematic technical approach in evaluating accurately a compressed-air system and potential optimization through observation, measurement and verification environmental conditions and processes, then processing the physical quantities of systems such as air flow, pressure and electrical power energy at any given time measured using comparative analysis methods in this industry, to provide the potential savings of energy saving is greater than the component approach, with no cost to the lowest cost (no cost - low cost). The process of evaluating energy utilization and energy saving opportunities will provide recommendations for increasing efficiency in the industry and reducing CO2 emissions and improving environmental quality.
2011-01-01
Background Succinic acid is a building-block chemical which could be used as the precursor of many industrial products. The dissolved CO2 concentration in the fermentation broth could strongly regulate the metabolic flux of carbon and the activity of phosphoenolpyruvate (PEP) carboxykinase, which are the important committed steps for the biosynthesis of succinic acid by Actinobacillus succinogenes. Previous reports showed that succinic acid production could be promoted by regulating the supply of CO2 donor in the fermentation broth. Therefore, the effects of dissolved CO2 concentration and MgCO3 on the fermentation process should be investigated. In this article, we studied the impacts of gaseous CO2 partial pressure, dissolved CO2 concentration, and the addition amount of MgCO3 on succinic acid production by Actinobacillus succinogenes ATCC 55618. We also demonstrated that gaseous CO2 could be removed when MgCO3 was fully supplied. Results An effective CO2 quantitative mathematical model was developed to calculate the dissolved CO2 concentration in the fermentation broth. The highest succinic acid production of 61.92 g/L was obtained at 159.22 mM dissolved CO2 concentration, which was supplied by 40 g/L MgCO3 at the CO2 partial pressure of 101.33 kPa. When MgCO3 was used as the only CO2 donor, a maximal succinic acid production of 56.1 g/L was obtained, which was just decreased by 7.03% compared with that obtained under the supply of gaseous CO2 and MgCO3. Conclusions Besides the high dissolved CO2 concentration, the excessive addition of MgCO3 was beneficial to promote the succinic acid synthesis. This was the first report investigating the replaceable of gaseous CO2 in the fermentation of succinic acid. The results obtained in this study may be useful for reducing the cost of succinic acid fermentation process. PMID:22040346
Co-Optimization of Fuels and Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John
2016-04-11
The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the initiative and reviews recent progress focused on both advanced spark-ignition and compression-ignition approaches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scrucca, Flavio; Severi, Claudio; Galvan, Nicola
Nowadays an increasing attention of public and private agencies to the sustainability performance of events is observed, since it is recognized as a key issue in the context of sustainable development. Assessing the sustainability performance of events involves environmental, social and economic aspects; their impacts are complex and a quantitative assessment is often difficult. This paper presents a new quali-quantitative method developed to measure the sustainability of events, taking into account all its potential impacts. The 2014 World Orienteering Championship, held in Italy, was selected to test the proposed evaluation methodology. The total carbon footprint of the event was 165.34more » tCO{sub 2}eq and the avoided emissions were estimated as being 46 tCO{sub 2}eq. The adopted quali-quantitative method resulted to be efficient in assessing the sustainability impacts and can be applied for the evaluation of similar events. - Highlights: • A quali-quantitative method to assess events' sustainability is presented. • All the methodological issues related to the method are explained. • The method is used to evaluate the sustainability of an international sports event. • The method resulted to be valid to assess the event's sustainability level. • The carbon footprint of the event has been calculated.« less
Watershed-scale drivers of air-water CO2 exchanges in two lagoonal, North Carolina (USA) estuaries
NASA Astrophysics Data System (ADS)
Van Dam, B.; Crosswell, J.; Anderson, I. C.; Paerl, H. W.
2017-12-01
Riverine loading of nutrients and organic matter act in concert to modulate CO2 fluxes in estuaries, yet quantitative relationships between these factors remain poorly defined. This study explored watershed-scale mechanisms responsible for the relatively low CO2 fluxes observed in two microtidal, lagoonal estuaries. Air-water CO2 fluxes were quantified with 74 high-resolution spatial surveys in the neighboring New River Estuary (NewRE) and Neuse River Estuary (NeuseRE), North Carolina, which experience a common climatology, but differ in marine versus riverine influence. Annually, both estuaries were relatively small sources of CO2 to the atmosphere, 12.5 and 16.3 mmol C m2 d-1 in the NeuseRE and NewRE, respectively. Variations in riverine alkalinity and inorganic carbon loading caused zones of minimum buffering capacity to occur at different locations in each estuary, enhancing the sensitivity of estuarine inorganic C chemistry to acidification. Large-scale pCO2 variations were driven by changes in freshwater age (akin to residence time), which modulate nutrient and organic carbon supply and phytoplankton flushing. Greatest pCO2 under-saturation was observed at intermediate freshwater ages, between 2-3 weeks. Biological controls on CO2 fluxes were obscured by variable inputs of river-borne CO2, which drove CO2 degassing in the river-dominated NeuseRE. Internally produced CO2 exceeded river-borne CO2 in the marine-dominated NewRE, suggesting that net ecosystem heterotrophy, rather than riverine inputs, drove CO2 fluxes in this system. Although annual CO2 fluxes were similar between systems, watershed-specific hydrologic factors led to disparate controls on internal carbonate chemistry, which can influence overall ecosystem health and response to future perturbation.
Watershed-Scale Drivers of Air-Water CO2 Exchanges in Two Lagoonal North Carolina (USA) Estuaries
NASA Astrophysics Data System (ADS)
Van Dam, Bryce R.; Crosswell, Joseph R.; Anderson, Iris C.; Paerl, Hans W.
2018-01-01
Riverine loading of nutrients and organic matter act in concert to modulate CO2 fluxes in estuaries, yet quantitative relationships between these factors remain poorly defined. This study explored watershed-scale mechanisms responsible for the relatively low CO2 fluxes observed in two microtidal, lagoonal estuaries. Air-water CO2 fluxes were quantified with 74 high-resolution spatial surveys in the neighboring New River Estuary (NewRE) and Neuse River Estuary (NeuseRE), North Carolina, which experience a common climatology but differ in marine versus riverine influence. Annually, both estuaries were relatively small sources of CO2 to the atmosphere, 12.5 and 16.3 mmol C m-2 d-1 in the NeuseRE and NewRE, respectively. Large-scale pCO2 variations were driven by changes in freshwater age, which modulates nutrient and organic carbon supply and phytoplankton flushing. Greatest pCO2 undersaturation was observed at intermediate freshwater ages, between 2 and 3 weeks. Biological controls on CO2 fluxes were obscured by variable inputs of river-borne CO2, which drove CO2 degassing in the river-dominated NeuseRE. Internally produced CO2 exceeded river-borne CO2 in the marine-dominated NewRE, suggesting that net ecosystem heterotrophy, rather than riverine inputs, drove CO2 fluxes in this system. Variations in riverine alkalinity and inorganic carbon loading caused zones of minimum buffering capacity to occur at different locations in each estuary, enhancing the sensitivity of estuarine inorganic C chemistry to acidification. Although annual CO2 fluxes were similar between systems, watershed-specific hydrologic factors led to disparate controls on internal carbonate chemistry, which can influence ecosystem biogeochemical cycling, trophic state, and response to future perturbations.
Ullmann-Zeunert, Lynn; Muck, Alexander; Wielsch, Natalie; Hufsky, Franziska; Stanton, Mariana A; Bartram, Stefan; Böcker, Sebastian; Baldwin, Ian T; Groten, Karin; Svatoš, Aleš
2012-10-05
Herbivory leads to changes in the allocation of nitrogen among different pools and tissues; however, a detailed quantitative analysis of these changes has been lacking. Here, we demonstrate that a mass spectrometric data-independent acquisition approach known as LC-MS(E), combined with a novel algorithm to quantify heavy atom enrichment in peptides, is able to quantify elicited changes in protein amounts and (15)N flux in a high throughput manner. The reliable identification/quantitation of rabbit phosphorylase b protein spiked into leaf protein extract was achieved. The linear dynamic range, reproducibility of technical and biological replicates, and differences between measured and expected (15)N-incorporation into the small (SSU) and large (LSU) subunits of ribulose-1,5-bisphosphate-carboxylase/oxygenase (RuBisCO) and RuBisCO activase 2 (RCA2) of Nicotiana attenuata plants grown in hydroponic culture at different known concentrations of (15)N-labeled nitrate were used to further evaluate the procedure. The utility of the method for whole-plant studies in ecologically realistic contexts was demonstrated by using (15)N-pulse protocols on plants growing in soil under unknown (15)N-incorporation levels. Additionally, we quantified the amounts of lipoxygenase 2 (LOX2) protein, an enzyme important in antiherbivore defense responses, demonstrating that the approach allows for in-depth quantitative proteomics and (15)N flux analyses of the metabolic dynamics elicited during plant-herbivore interactions.
Chen, Mengmeng; Wu, Sanmang; Lei, Yalin; Li, Shantong
2018-05-01
Jing-Jin-Ji region (i.e., Beijing, Tianjin, and Hebei) is China's key development region, but it is also the leading and most serious air pollution region in China. High fossil fuel consumption is the major source of both carbon dioxide (CO 2 ) emissions and air pollutants. Therefore, it is important to reveal the source of CO 2 emissions to control the air pollution in the Jing-Jin-Ji region. In this study, an interregional input-output model was applied to quantitatively estimate the embodied CO 2 transfer between Jing-Jin-Ji region and other region in China using China's interregional input-output data in 2010. The results indicated that there was a significant difference in the production-based CO 2 emissions in China, and furthermore, the Jing-Jin-Ji region and its surrounding regions were the main regions of the production-based CO 2 emissions in China. Hebei Province exported a large amount of embodied CO 2 to meet the investment, consumption, and export demands of Beijing and Tianjin. The Jing-Jin-Ji regions exported a great deal of embodied CO 2 to the coastal provinces of southeast China and imported it from neighboring provinces.
Constraining East Asian CO2 emissions with GOSAT retrievals: methods and policy implications
NASA Astrophysics Data System (ADS)
Shim, C.; Henze, D. K.; Deng, F.
2017-12-01
The world largest CO2 emissions are from East Asia. However, there are large uncertainties in CO2 emission inventories, mainly because of imperfections in bottom-up statistics and a lack of observations for validating emission fluxes, particularly over China. Here we tried to constrain East Asian CO2 emissions with GOSAT retrievals applying 4-Dvar GEOS-Chem and its adjoint model. We applied the inversion to only the cold season (November - February) in 2009 - 2010 since the summer monsoon and greater transboundary impacts in spring and fall greatly reduced the GOSAT retrievals. In the cold season, the a posteriori CO2 emissions over East Asia generally higher by 5 - 20%, particularly Northeastern China shows intensively higher in a posteriori emissions ( 20%), where the Chinese government is recently focusing on mitigating the air pollutants. In another hand, a posteriori emissions from Southern China are lower 10 - 25%. A posteriori emissions in Korea and Japan are mostly higher by 10 % except over Kyushu region. With our top-down estimates with 4-Dvar CO2 inversion, we will evaluate the current regional CO2 emissions inventories and potential uncertainties in the sectoral emissions. This study will help understand the quantitative information on anthropogenic CO2 emissions over East Asia and will give policy implications for the mitigation targets.
Significance of the oceanic CO2 sink for national carbon accounts
McNeil, Ben I
2006-01-01
Background Under the United Nations convention on the law of the sea (1982), each participating country maintains exclusive economic and environmental rights within the oceanic region extending 200 nm from its coastline, known as the Exclusive Economic Zone (EEZ). Although the ocean within each EEZ has a vast capacity to absorb anthropogenic CO2 and therefore potentially be used as a carbon sink, it is not mentioned within the Kyoto Protocol most likely due to inadequate quantitative estimates. Here, I use two methods to estimate the anthropogenic CO2 storage and uptake for a typically large EEZ (Australia). Results Depending on whether the Antarctic territory is included I find that during the 1990s between 30–40% of Australia's fossil-fuel CO2 emissions were absorbed by its own EEZ. Conclusion This example highlights the potential significance of the EEZ carbon sink for national carbon accounts. However, this 'natural anthropogenic CO2 sink' could be used as a disincentive for certain nations to reduce their anthropogenic CO2 emissions, which would ultimately dampen global efforts to reduce atmospheric CO2 concentrations. Since the oceanic anthropogenic CO2 sink has limited ability to be controlled by human activities, current and future international climate change policies should have an explicit 'EEZ' clause excluding its use within national carbon accounts. PMID:16930461
Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li; Wang, Mengyi; Kang, Qinjun
Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less
Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping
Chen, Li; Wang, Mengyi; Kang, Qinjun; ...
2018-04-26
Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less
Research needs for finely resolved fossil carbon emissions
Gurney, K.; Ansley, W.; Mendoza, D.; Petron, G.; Frost, G.; Gregg, J.; Fischer, M.; Pataki, Diane E.; Ackerman, K.; Houweling, S.; Corbin, K.; Andres, R.; Blasing, T.J.
2007-01-01
Scientific research on the global carbon cycle has emerged as a high priority in biogeochemistry, climate studies, and global change policy. The emission of carbon dioxide (CO2) from fossil fuel combustion is a dominant driver of the current net carbon fluxes between the land, the oceans, and the atmosphere, and it is a key contributor to the rise in modern radiative forcing. Contrary to a commonly held perception, our quantitative knowledge about these emissions is insufficient to satisfy current scientific and policy needs. A more highly spatially and temporally resolved quantification of the social and economic drivers of fossil fuel combustion, and the resulting CO2 emissions, is essential to supporting scientific and policy progress. In this article, a new community of emissions researchers called the CO2 Fossil Fuel Emission Effort (CO2FFEE) outlines a research agenda to meet the need for improved fossil fuel CO2 emissions information and solicits comment from the scientific community and research agencies.
NASA Technical Reports Server (NTRS)
Edeen, Marybeth; Henninger, Donald
1991-01-01
By growing higher plants for food, lunar and Martian manned habitats will not only reduce resupply requirements but obtain CO2 removal and both oxygen-production and water-reclamation requirements. Plants have been grown in the RLSS at NASA-Johnson in order to quantitatively evaluate plant CO2 accumulation, O2 generation, evapotranspiration, trace-contaminant generation, and biomass productivity. Attention is presently given to test conditions and anomalies in these RLSS trials; areas where performance must be improved have been identified.
"In vivo" measurement of total gas pressure in mammalian tissue.
DOT National Transportation Integrated Search
1963-07-01
An in vivo method for the quantitative estimation of total gas pressure in mammalian tissue has been established. This method utilizes a rigid-walled capsule specially constructed to be permeable to oxygen, carbon dioxide and nitrogen (O2, Co2, and N...
Long-term thermal effects on injectivity evolution during CO 2 storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilarrasa, Victor; Rinaldi, Antonio P.; Rutqvist, Jonny
Carbon dioxide (CO 2 ) is likely to reach the bottom of injection wells at a colder temperature than that of the storage formation, causing cooling of the rock. This cooling, together with overpressure, tends to open up fractures, which may enhance injectivity. Here, we investigate cooling effects on injectivity enhancement by modeling the In Salah CO 2 storage site and a theoretical, long-term injection case. We use stress-dependent permeability functions that predict an increase in permeability as the effective stress acting normal to fractures decreases. Normal effective stress can decrease either due to overpressure or cooling. We calibrate ourmore » In Salah model, which includes a fracture zone perpendicular to the well, obtaining a good fitting with the injection pressure measured at KB-502 and the rapid CO 2 breakthrough that occurred at the observation well KB-5 located 2 km away from the injection well. CO 2 preferentially advances through the fracture zone, which becomes two orders of magnitude more permeable than the rest of the reservoir. Nevertheless, the effect of cooling on the long-term injectivity enhancement is limited in pressure dominated storage sites, like at In Salah, because most of the permeability enhancement is due to overpressure. But, thermal effects enhance injectivity in cooling dominated storage sites, which may decrease the injection pressure by 20%, saving a significant amount of compression energy all over the duration of storage projects. Overall, our simulation results show that cooling has the potential to enhance injectivity in fractured reservoirs.« less
Long-term thermal effects on injectivity evolution during CO 2 storage
Vilarrasa, Victor; Rinaldi, Antonio P.; Rutqvist, Jonny
2017-08-22
Carbon dioxide (CO 2 ) is likely to reach the bottom of injection wells at a colder temperature than that of the storage formation, causing cooling of the rock. This cooling, together with overpressure, tends to open up fractures, which may enhance injectivity. Here, we investigate cooling effects on injectivity enhancement by modeling the In Salah CO 2 storage site and a theoretical, long-term injection case. We use stress-dependent permeability functions that predict an increase in permeability as the effective stress acting normal to fractures decreases. Normal effective stress can decrease either due to overpressure or cooling. We calibrate ourmore » In Salah model, which includes a fracture zone perpendicular to the well, obtaining a good fitting with the injection pressure measured at KB-502 and the rapid CO 2 breakthrough that occurred at the observation well KB-5 located 2 km away from the injection well. CO 2 preferentially advances through the fracture zone, which becomes two orders of magnitude more permeable than the rest of the reservoir. Nevertheless, the effect of cooling on the long-term injectivity enhancement is limited in pressure dominated storage sites, like at In Salah, because most of the permeability enhancement is due to overpressure. But, thermal effects enhance injectivity in cooling dominated storage sites, which may decrease the injection pressure by 20%, saving a significant amount of compression energy all over the duration of storage projects. Overall, our simulation results show that cooling has the potential to enhance injectivity in fractured reservoirs.« less
Tong, Yang; Jin, Ke; Bei, Hongbin; ...
2018-05-26
Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Yang; Jin, Ke; Bei, Hongbin
Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.
Vasylenko, Inna V; Gavrylenko, Konstiantyn S; Il'yin, Vladimir G; Golub, Vladimir; Goloverda, Galina; Kolesnichenko, Vladimir; Addison, Anthony W; Pavlishchuk, Vitaly V
2010-05-15
Thermal decomposition of the trinuclear heterometallic oxoacetates [Fe(2)M(μ(3)-O)(CH(3)COO)(6)(H(2)O)(3)] has been used as a single-precursor method for synthesis of the spinel-structured ternary oxides MFe(2)O(4) (M = Mn(II), Co(II), and Ni(II)). This facile process occurring at 320 °C results in the formation of nanocrystalline, (7-20 nm) highly pure stoichiometric ferrites in quantitative yield. The magnetic properties of these nanoparticulate ferrites were studied in the 10-300 K temperature range, revealing superparamagnetic behaviour for the Ni and Mn particles and ferromagnetic behavior for the Co ones at room temperature. Their blocking temperatures follow the order: CoFe(2)O(4) > MnFe(2)O(4) > NiFe(2)O(4).
NASA Astrophysics Data System (ADS)
Fletcher, Benjamin J.; Beerling, David J.; Brentnall, Stuart J.; Royer, Dana L.
2005-09-01
Biological and geochemical CO2 proxies provide critical constraints on understanding the role of atmospheric CO2 in driving climate change during Earth history. As no single existing CO2 proxy is without its limitations, there is a clear need for new approaches to reconstructing past CO2 concentrations. Here we develop a new pre-Quaternary CO2 proxy based on the stable carbon isotope composition (δ13C) of astomatous land plants. In a series of CO2-controlled laboratory experiments, we show that the carbon isotope discrimination (Δ13C) of a range of bryophyte (liverwort and moss) species increases with atmospheric CO2 across the range 375 to 6000 ppm. Separate experiments establish that variations in growth temperature, water content and substrate type have minor impacts on the Δ13C of liverworts but not mosses, indicating the greater potential of liverworts to faithfully record past variations in CO2. A mechanistic model for calculating past CO2 concentrations from bryophyte Δ13C (White et al., 1994) is extended and calibrated using our experimental results. The potential for fossil liverworts to record past CO2 changes is investigated by analyzing the δ13C of specimens collected from Alexander Island, Antarctica dating to the "greenhouse" world of the mid-Cretaceous. Our analysis and isotopic model yield mid-Cretaceous CO2 concentrations of 1000-1400 ppm, in general agreement with independent proxy data and long-term carbon cycle models. The exceptionally long evolutionary history of bryophytes offers the possibility of reconstructing CO2 concentrations back to the mid-Ordovician, pre-dating all currently used quantitative CO2 proxies.
Cabezon, L M; Caballero, M; Cela, R; Perez-Bustamante, J A
1984-08-01
A method is proposed for the simultaneous quantitative separation of traces ofCu(II), Cd(II) and Co(II) from sea-water samples by means of the co-flotation (adsorbing colloid flotation) technique with ferric hydroxide as co-precipitant and octadecylamine as collector. The experimental parameters have been studied and optimized. The drawbacks arising from the low solubility of octadecylamine and the corresponding sublates in water have been avoided by use of a 6M hydrochloric acid-MIBK-ethanol (1:2:2 v v ) mixture. The results obtained by means of the proposed method have been compared with those given by the usual ammonium pyrrolidine dithiocarbamate/MIBK extraction method.
Zhang, Rui; Zhou, Tingting; Wang, Lili; Zhang, Tong
2018-03-21
Highly sensitive and stable gas sensors have attracted much attention because they are the key to innovations in the fields of environment, health, energy savings and security, etc. Sensing materials, which influence the practical sensing performance, are the crucial parts for gas sensors. Metal-organic frameworks (MOFs) are considered as alluring sensing materials for gas sensors because of the possession of high specific surface area, unique morphology, abundant metal sites, and functional linkers. Herein, four kinds of porous hierarchical Co 3 O 4 structures have been selectively controlled by optimizing the thermal decomposition (temperature, rate, and atmosphere) using ZIF-67 as precursor that was obtained from coprecipitation method with the co-assistance of cobalt salt and 2-methylimidazole in the solution of methanol. These hierarchical Co 3 O 4 structures, with controllable cross-linked channels, meso-/micropores, and adjustable surface area, are efficient catalytic materials for gas sensing. Benefits from structural advantages, core-shell, and porous core-shell Co 3 O 4 exhibit enhanced sensing performance compared to those of porous popcorn and nanoparticle Co 3 O 4 to acetone gas. These novel MOF-templated Co 3 O 4 hierarchical structures are so fantastic that they can be expected to be efficient sensing materials for development of low-temperature operating gas sensors.
Increased soil emissions of potent greenhouse gases under increased atmospheric CO2.
van Groenigen, Kees Jan; Osenberg, Craig W; Hungate, Bruce A
2011-07-13
Increasing concentrations of atmospheric carbon dioxide (CO(2)) can affect biotic and abiotic conditions in soil, such as microbial activity and water content. In turn, these changes might be expected to alter the production and consumption of the important greenhouse gases nitrous oxide (N(2)O) and methane (CH(4)) (refs 2, 3). However, studies on fluxes of N(2)O and CH(4) from soil under increased atmospheric CO(2) have not been quantitatively synthesized. Here we show, using meta-analysis, that increased CO(2) (ranging from 463 to 780 parts per million by volume) stimulates both N(2)O emissions from upland soils and CH(4) emissions from rice paddies and natural wetlands. Because enhanced greenhouse-gas emissions add to the radiative forcing of terrestrial ecosystems, these emissions are expected to negate at least 16.6 per cent of the climate change mitigation potential previously predicted from an increase in the terrestrial carbon sink under increased atmospheric CO(2) concentrations. Our results therefore suggest that the capacity of land ecosystems to slow climate warming has been overestimated. ©2011 Macmillan Publishers Limited. All rights reserved
Proton transport by phosphate diffusion--a mechanism of facilitated CO2 transfer
1976-01-01
We have measured CO2 fluxes across phosphate solutions at different carbonic anhydrase concentrations, bicarbonate concentration gradients, phosphate concentrations, and mobilities. Temperature was 22-25 degrees C, the pH of the phosphate solutions was 7.0-7.3. We found that under physiological conditions of pH and pCO2 a facilitated diffusion of CO2 occurs in addition to free diffusion when (a) sufficient carbonic anhydrase is present, and (b) a concentration gradient of HCO3- is established along with a pCO2 gradient, and (c) the phosphate buffer has a mobility comparable to that of bicarbonate. When the phosphate was immobilized by attaching 0.25-mm-long cellulose particles, no facilitation of CO2 diffusion was detectable. A mechanism of facilitated CO2 diffusion in phosphate solutions analogous to that in albumin solutions was proposed on the basis of these findings: bicarbonate diffusion together with a facilitated proton transport by phosphate diffusion. A mathematical model of this mechanism was formulated. The CO2 fluxed predicted by the model agree quantitatively with the experimentally determined fluxes. It is concluded that a highly effective proton transport mechanism acts in solutions of mobile phosphate buffers. By this mechanism; CO2 transfer may be increased up to fivefold and proton transfer may be increased to 10,000-fold. PMID:6619