NASA Astrophysics Data System (ADS)
Aoyama, C.; Matsumoto, R.; Okuda, Y.; Ishida, Y.; Hiruta, A.; Sunamura, M.; Numanami, H.; Tomaru, H.; Snyder, G.; Komatsubara, J.; Takeuchi, R.; Hiromatsu, M.; Aoyama, D.; Koike, Y.; Takeda, S.; Hayashi, T.; Hamada, H.
2004-12-01
The reseach and trainning/V, Umitaka-maru sailed to the methane seep area on a small ridge in the eastern margin of the Sea of Japan on July to August 2004 to survey the ocean floor gas hydrate and related acoustic signatures of methane plumes by using a quantitative echo sounder. Detailed bathymetric profiles have revealed a number of mounds, pockmarks and collapse structures within 3km x 4km on the ridge at the water depth of 910m to 980m. We mapped minutely methane plumes by using a quantitative echo sounder with positioning data from GPS. We also measured averaged echo intensity from the methane plumes both in every 100m range and every one minute by the echo integrator. We obtained the following results from the present echo-sounder survey. 1) We checked 36 plumes on echogram, ranging 100m to 200m in diameter and 600m to 700m in height, reaching up to 200m to 300m below sea level. 2) We measured the averaged volume backscattering strength (SV) of each methane plume. The strongest SV, -45dB, of the plumes was stronger than SV of fish school. 3) Averaged SV tend to show the highest values around the middle of plumes, whereas the SVs are relatively low at the bottom and the top of plumes. 4) Some of the plumes were observed to show daily fluctuation in height and width. 5) We recovered several fist-sized chunks of methane hydrate by piston coring at the area where we observed methane plumes. As a following up project, we are planning to measure SV of methane bubbles and methane hydrate floating in water columns through an experimental studies in a large water tanks.
Comparing acoustic measurement data in eastern margin of Sea of Japan and Umitaka Spur
NASA Astrophysics Data System (ADS)
Kondo, M., IV; Aoyama, C.
2017-12-01
Recently, methane hydrate is gaining remarkable attention for the abundant amount in the sea area around Japan, and also for its carbon dioxide emission amount being as little as that of natural resources when being combusted. Two types of methane hydrates are known to exist, depending on the settings. Sand layer type methane hydrate contains sand particles and is extracted mainly in the Pacific Ocean, around 100 to 400m below seafloor. On the other hand, shallow type is found around 100m below seafloor in the Sea of Japan, in clumps, veins, and particles. One of the extraction methods of shallow type methane hydrate observed in the Sea of Japan is the seabed exploration system using acoustic equipment, which Chiharu Aoyama owns patent. Methane plumes often exist in the vicinity of shallow type methane hydrate and these seeping plumes are visualized as images on acoustic instruments such as quantitative echo sounder and multi-beam echo sounder (hereinafter referred to as MBES). These images look like rising beams on monitors and are called gas plumes. Methane hydrate can be explored effectively in the area using this method and it is understood that even when the same plume is examined, backscattering strength data (hereinafter referred as SV) observed using acoustic equipment will not be the same on quantitative echo sounder and MBES. In June 2017, measurement of acoustic data using multi-beam sonar (EM122) and quantitative echo sounder (EA600) were performed onboard DAIICHI KAIYOMARU (KAIYO ENGINEERING CO., LTD) at eastern margin of Sea of Japn and at Umitaka Spur. In this study, author will make comparisons of the acoustic data.
Lessons Learned from Previous Space-Borne Sounders as a Guide to Future Sounder Development
NASA Technical Reports Server (NTRS)
Benson, Robert F.; Deshpande, Manohar D.; Farrell,William M.; Fung, Shing F.; Osherovich, Vladimir A.; Pfaff, Rovert E.; Rowland, Douglas E.; Adrian, Mark L.
2008-01-01
Space-borne radio sounding is considered to be the gold standard for electron-density (N(sub e)) measurements compared to other techniques even under low-density conditions, such as N(sub e) < 1/cu cm, when other techniques are known to experience difficulties. These reliable measurements are not restricted to in-situ N(sub e) determinations since a spaceborne sounder can provide vertical N(sub e) profiles (N(sub e)(h)) from the spacecraft altitude to the altitude of maximum N(sub e). Near-conjunction studies involving the International Satellites for Ionospheric Studies (ISIS) satellites in the topside ionosphere and Dynamics Explorer 2 (DE 2) near the altitude of the F-region peak density have verified that, even at the greatest distance from the sounder, the ISIS-derived N(sub e)(h) profiles agree with the DE-2 Langmuir-probe measurements to within about 30% over a density range of more than two decades. Space-borne sounders can also provide N(sub e) profiles along the magnetic-field B, by inverting echoes that are ducted along field-aligned irregularities (FAI), and can provide information about the terrain beneath the satellite by examining surface reflections in the frequency range above the ionospheric penetration frequency. Many nations have launched rocket and satellite radio sounders in geospace over more than 4 decades and there have been sounders on space-probes and in orbit around other planets. Here we will summarize some of the lessons learned from these accomplishments by analyzing data from radio sounders on the Alouette and ISIS satellites and the OEDIPUS and other rockets in the terrestrial ionosphere, the IMAGE satellite in the terrestrial magnetosphere, the Ulysses space probe in Jupiter's 10 plasma torus and the MARSIS satellite in orbit around Mars. The emphasis will be on information deduced concerning (1) fundamental plasma processes and gradients in N, and B in the vicinity of the sounders from sounder-stimulated plasma resonances and short-range echoes involving ion as well as electron motions, (2) the importance of the antenna orientation relative to B for the detection of different plasma resonances, (3) sounder-stimulated plasma phenomena, including FAI, when special plasma conditions are satisfied, (4) the minimum power required for long-range echoes, as indicated by echoes from frequency components of the transmitted pulse and by multiple ducted echoes, and (5) the terrain beneath the satellite from surface reflections. Knowledge of these results should enable the optimum design of a future sounder to satisfy specific science requirements with minimal spacecraft resources.
Underwater Acoustic Transponders Tracking While Mapping With A Multibeam Echo-Sounder
NASA Astrophysics Data System (ADS)
de Moustier, C. P.; Franzheim, A.; Testa, W.; Burns, J. M.; Foy, R.
2010-12-01
A 160 kHz multibeam echo-sounder was used to interrogate and receive the replies from custom-built miniature underwater acoustic transponders attached to the carapace of king crabs in Womens Bay, Alaska. This new application of multibeam echo-sounders combines acoustic tracking and mapping, thus providing environmental context to the tracking information. Each transponder replies with its own coded sequence that stands out from other echoes received by the sonar. Range and bearing of the replies from multiple transponders can be obtained in a single sonar ping. The king crab experiment was done in 25-35 m of water depth, and the system was successfully tested without animals at 190 m depth. Work supported by NOAA's Undersea Research Program Grant G4768, with field work support from NOAA-NMFS/AFSC/RACE and Electronic Navigation Ltd.
NASA Technical Reports Server (NTRS)
1994-01-01
The classical method of observing the sea surface height has been to make shipboard measurements of the vertical - density profile, and then calculating the surface height relative to a deeper reference surface. Two methods (a moored vertical string of instruments and an inverted echo sounder) were subsequently developed to obtain longer time in situ measurements. The first of these can be thought of as an extension of the discrete bottle hydrocast while the second integrates acoustically over the water column. One purpose of this note is to compare the result when coincidental observations are made by these two methods. This was done at two sites in the western tropical Pacific. Two inverted echo sounders were deployed alongside two enhanced TOGA-COARE moorings to be used in an in situ evaluation of TOPEX/Poseidon altimetric measurements of sea surface height. The mooring and inverted echo sounder data reproduced one another, at low frequency, with a correlation of 0.93 and 0.95 and the altimeter correlated with each of the above values ranging from 0.84 to 0.94. It is concluded that the altimetric measurements are statistically equivalent to the in situ measurements in the area of study.
200 kHz Commercial Sonar Systems Generate Lower Frequency Side Lobes Audible to Some Marine Mammals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Zhiqun; Southall, Brandon; Carlson, Thomas J.
2014-04-15
The spectral properties of pulses transmitted by three commercially available 200 kHz echo sounders were measured to assess the possibility that sound energy in below the center (carrier) frequency might be heard by marine mammals. The study found that all three sounders generated sound at frequencies below the center frequency and within the hearing range of some marine mammals and that this sound was likely detectable by the animals over limited ranges. However, at standard operating source levels for the sounders, the sound below the center frequency was well below potentially harmful levels. It was concluded that the sounds generatedmore » by the sounders could affect the behavior of marine mammals within fairly close proximity to the sources and that that the blanket exclusion of echo sounders from environmental impact analysis based solely on the center frequency output in relation to the range of marine mammal hearing should be reconsidered.« less
Detection of Intact Lava Tubes at Marius Hills on the Moon by SELENE (Kaguya) Lunar Radar Sounder
NASA Astrophysics Data System (ADS)
Kaku, T.; Haruyama, J.; Miyake, W.; Kumamoto, A.; Ishiyama, K.; Nishibori, T.; Yamamoto, K.; Crites, Sarah T.; Michikami, T.; Yokota, Y.; Sood, R.; Melosh, H. J.; Chappaz, L.; Howell, K. C.
2017-10-01
Intact lunar lava tubes offer a pristine environment to conduct scientific examination of the Moon's composition and potentially serve as secure shelters for humans and instruments. We investigated the SELENE Lunar Radar Sounder (LRS) data at locations close to the Marius Hills Hole (MHH), a skylight potentially leading to an intact lava tube, and found a distinctive echo pattern exhibiting a precipitous decrease in echo power, subsequently followed by a large second echo peak that may be evidence for the existence of a lava tube. The search area was further expanded to 13.00-15.00°N, 301.85-304.01°E around the MHH, and similar LRS echo patterns were observed at several locations. Most of the locations are in regions of underground mass deficit suggested by GRAIL gravity data analysis. Some of the observed echo patterns are along rille
Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton.
Churnside, James H; Thorne, Richard E
2005-09-10
Airborne lidar has the potential to survey large areas quickly and at a low cost per kilometer along a survey line. For this reason, we investigated the performance of an airborne lidar for surveys of zooplankton. In particular, we compared the lidar returns with echo-sounder measurements of zooplankton in Prince William Sound, Alaska. Data from eight regions of the Sound were compared, and the correlation between the two methods was 0.78. To obtain this level of agreement, a threshold was applied to the lidar return to remove the effects of scattering from phytoplankton.
NASA Astrophysics Data System (ADS)
Kim, W. H.; Park, C.; Lee, M.; Park, H. Y.; Kim, C.
2015-12-01
A side scan sonar launches ultrasonic wave from both sides of the transducer. And it restores the image by receiving signals. It measures the strength of how "loud" the return echo is, and paints a picture. Hard areas of the sea floor like rocks reflect more return signal than softer areas like sand. We conducted seafloor image survey from 4, Mar. 2013 using R/V Jangmok2 (35ton), side scan sonar 4125 (Edge Tech corporation). The side scan sonar system (4125) is a dual frequency system of 400/900kHz. Seafloor image survey is commonly used to tow the sensor in the rear side of vessel. However, we fixed the tow-fish on right side of the vessel in the seawater with a long frame. The mounted side scan sonar survey was useful in shallow water like the port having many obstacles. And we conducted submarine topography using multi-beam echo sounder EM3001 (Kongs-berg corporation). Multi-beam echo sounder is a device for observing and recording the submarine topography using sound. We mounted the EM3001 on right side of the vessel. Multi-beam echo sounder transducer commonly to mount at right angles to the surface of water. However, we tilted 20-degrees of transducer for long range with 85-degrees measurement on the right side of the vessel. We were equipped with a motion sensor, DGPS(Differential Global Positioning System), and SV(Sound velocity) sensor for the vessel's motion compensation, vessel's position, and the velocity of sound of seawater. The surveys showed the sediment, waste materials, and a lot of discarded tires accumulated in the port. The maximum depth was 12m in the port. Such multi-beam echo sounder survey and side scan sonar survey will facilitate the management and the improvement of environment of port.
200 kHz Commercial Sonar Systems Generate Lower Frequency Side Lobes Audible to Some Marine Mammals
Deng, Z. Daniel; Southall, Brandon L.; Carlson, Thomas J.; Xu, Jinshan; Martinez, Jayson J.; Weiland, Mark A.; Ingraham, John M.
2014-01-01
The spectral properties of pulses transmitted by three commercially available 200 kHz echo sounders were measured to assess the possibility that marine mammals might hear sound energy below the center (carrier) frequency that may be generated by transmitting short rectangular pulses. All three sounders were found to generate sound at frequencies below the center frequency and within the hearing range of some marine mammals, e.g. killer whales, false killer whales, beluga whales, Atlantic bottlenose dolphins, harbor porpoises, and others. The frequencies of these sub-harmonic sounds ranged from 90 to 130 kHz. These sounds were likely detectable by the animals over distances up to several hundred meters but were well below potentially harmful levels. The sounds generated by the sounders could potentially affect the behavior of marine mammals within fairly close proximity to the sources and therefore the exclusion of echo sounders from environmental impact analysis based solely on the center frequency output in relation to the range of marine mammal hearing should be reconsidered. PMID:24736608
Determination of film processing specifications for the Apollo 17 S-209 lunar sounder experiment
NASA Technical Reports Server (NTRS)
Weinstein, M. S.
1972-01-01
The lunar sounder is described as a radar system operating at carrier frequencies of 5, 15, and 150 MHz. The radar echoes are recorded onto Kodak type S0-394 film through the use of an optical recorder utilizing a cathode ray tube as the exposing device. A processing configuration is determined with regard to linearity, dynamic range, and noise.
The radio power reflected from rough and undulating ionospheric surfaces
NASA Astrophysics Data System (ADS)
Whitehead, J. D.; From, W. R.; Smith, L. G.
1984-08-01
It is shown for both rough and undulating surfaces that the mean radio power reflected by the ionosphere averaged over a sufficiently long time is exactly the same as for a smooth flat surface at the same height provided the sounder is equally sensitive for echoes from all directions. When making radio wave absorption measurements under spread conditions the total integrated power over the whole time the direct echoes are being received must be used but the distance attenuation factor must be calculated from the time of arrival of the first echo.
Estimating sub-surface dispersed oil concentration using acoustic backscatter response.
Fuller, Christopher B; Bonner, James S; Islam, Mohammad S; Page, Cheryl; Ojo, Temitope; Kirkey, William
2013-05-15
The recent Deepwater Horizon disaster resulted in a dispersed oil plume at an approximate depth of 1000 m. Several methods were used to characterize this plume with respect to concentration and spatial extent including surface supported sampling and autonomous underwater vehicles with in situ instrument payloads. Additionally, echo sounders were used to track the plume location, demonstrating the potential for remote detection using acoustic backscatter (ABS). This study evaluated use of an Acoustic Doppler Current Profiler (ADCP) to quantitatively detect oil-droplet suspensions from the ABS response in a controlled laboratory setting. Results from this study showed log-linear ABS responses to oil-droplet volume concentration. However, the inability to reproduce ABS response factors suggests the difficultly in developing meaningful calibration factors for quantitative field analysis. Evaluation of theoretical ABS intensity derived from the particle size distribution provided insight regarding method sensitivity in the presence of interfering ambient particles. Copyright © 2013 Elsevier Ltd. All rights reserved.
Toward a standard line for use in multibeam echo sounder calibration
NASA Astrophysics Data System (ADS)
Weber, Thomas C.; Rice, Glen; Smith, Michael
2018-06-01
A procedure is suggested in which a relative calibration for the intensity output of a multibeam echo sounder (MBES) can be performed. This procedure identifies a common survey line (i.e., a standard line), over which acoustic backscatter from the seafloor is collected with multiple MBES systems or by the same system multiple times. A location on the standard line which exhibits temporal stability in its seafloor backscatter response is used to bring the intensity output of the multiple MBES systems to a common reference. This relative calibration procedure has utility for MBES users wishing to generate an aggregate seafloor backscatter mosaic using multiple systems, revisiting an area to detect changes in substrate type, and comparing substrate types in the same general area but with different systems or different system settings. The calibration procedure is demonstrated using three different MBES systems over 3 different years in New Castle, NH, USA.
Mastin, M.C.; Fosness, R.L.
2009-01-01
Yakima County is collaborating with the Bureau of Reclamation on a study of the hydraulics and sediment-transport in the lower Naches River and in the Yakima River between Union Gap and Selah Gap in Washington. River bathymetry and topographic data of the river channels are needed for the study to construct hydraulic models. River survey data were available for most of the study area, but river bathymetry and near-river topography were not available for Selah Gap, near the confluence of the Naches and Yakima Rivers, and for Union Gap. In August 2008, the U.S. Geological Survey surveyed the areas where data were not available. If possible, the surveys were made with a boat-mounted, single-beam echo sounder attached to a survey-grade Real-Time Kinematic (RTK) global positioning system (GPS). An RTK GPS rover was used on a walking survey of the river banks, shallow river areas, and river bed areas that were impenetrable to the echo sounder because of high densities of macrophytes. After the data were edited, 95,654 bathymetric points from the boat survey with the echo sounder and 1,069 points from the walking survey with the GPS rover were used in the study. The points covered 4.6 kilometers on the Yakima River and 0.6 kilometers on the Naches River. GPS-surveyed points checked within 0.014 to 0.047 meters in the horizontal direction and -0.036 to 0.078 meters in the vertical direction compared to previously established survey control points
Acoustic detection of ice crystals in Antarctic waters
NASA Astrophysics Data System (ADS)
Penrose, John D.; Conde, M.; Pauly, T. J.
1994-06-01
During the voyage of the RSV Aurora Australis to the region of Prydz Bay, Antarctica in January-March 1991, ice crystals were encountered at depths from the surface to 125-m in the western area of the bay. On two occasions, crystals were retrieved by netting, and echo sounder records have been used to infer additional regions of occurrence. Acoustic target strength estimates made on the ice crystal assemblies encountered show significant spatial variation, which may relate to crystal size and/or aggregation. Data from a suite of conductivity-temperature-depth casts have been used to map regions of the study area where in situ water temperatures fell below the computed freezing point. Such regions correlate well with those selected on the basis of echogram type and imply that ice crystals occurred at depth over large areas of the bay during the cruise period. The ice crystal distribution described is consistent with that expected from a plume of supercooled water emerging from under the Amery Ice Shelf and forming part of the general circulation of the bay. The magnitude of the supercooled water plume is greater than those reported previously in the Prydz Bay region. If misinterpreted as biota on echo sounder records, ice crystals could significantly bias biomass estimates based on echo integration in this and potentially other areas.
Microwave Atmospheric-Pressure Sensor
NASA Technical Reports Server (NTRS)
Flower, D. A.; Peckham, G. E.; Bradford, W. J.
1986-01-01
Report describes tests of microwave pressure sounder (MPS) for use in satellite measurements of atmospheric pressure. MPS is multifrequency radar operating between 25 and 80 GHz. Determines signal absorption over vertical path through atmosphere by measuring strength of echoes from ocean surface. MPS operates with cloud cover, and suitable for use on current meteorological satellites.
DOT National Transportation Integrated Search
2010-11-01
Bathymetric surveys were conducted by the U.S. Geological Survey, in cooperation with the Missouri Department of Transportation, on the Missouri River in the vicinity of nine bridges at seven highway crossings in Kansas City, Missouri, in March 2010....
Regional Characteristics for Interpreting Inverted Echo Sounder (IES) observations
1987-06-01
rounding the IESs. There are seasonal warming and and ideally, we should like to have a series of hydro- cooling effects which may be missed with...thermocline This shallo, sanabihlit\\ , Is lkck to be spatialk and temporall , aliased: it ma\\ 01 ." b assoi ated ws.ith internal \\ awes or frontal tluctua
Extraction of Ice Sheet Layers from Two Intersected Radar Echograms Near Neem Ice Core in Greenland
NASA Astrophysics Data System (ADS)
Xiong, S.; Muller, J.-P.
2016-06-01
Accumulation of snow and ice over time result in ice sheet layers. These can be remotely sensed where there is a contrast in electromagnetic properties, which reflect variations of the ice density, acidity and fabric orientation. Internal ice layers are assumed to be isochronous, deep beneath the ice surface, and parallel to the direction of ice flow. The distribution of internal layers is related to ice sheet dynamics, such as the basal melt rate, basal elevation variation and changes in ice flow mode, which are important parameters to model the ice sheet. Radar echo sounder is an effective instrument used to study the sedimentology of the Earth and planets. Ice Penetrating Radar (IPR) is specific kind of radar echo sounder, which extends studies of ice sheets from surface to subsurface to deep internal ice sheets depending on the frequency utilised. In this study, we examine a study site where folded ice occurs in the internal ice sheet south of the North Greenland Eemian ice drilling (NEEM) station, where two intersected radar echograms acquired by the Multi-channel Coherent Radar Depth Sounder (MCoRDS) employed in the NASA's Operation IceBridge (OIB) mission imaged this folded ice. We propose a slice processing flow based on a Radon Transform to trace and extract these two sets of curved ice sheet layers, which can then be viewed in 3-D, demonstrating the 3-D structure of the ice folds.
NASA Astrophysics Data System (ADS)
Mano, T.; Guo, X.; Fujii, N.; Yoshie, N.; Takeoka, H.
2016-02-01
Jellyfishes often form dense aggregation that causes a variety of social problems such as clogging seawater intake of power plant, breaking fisheries net and more. Understanding on jellyfish aggregation is not sufficient due to the difficulty of observation on this phenomenon. In this study, high-resolution observations using scientific echo sounder and underwater camera were carried out to reveal the fine structure of moon jellyfish distribution in a 3D space, as well as its abundance and temporal variation. In addition, water temperature, salinity and current speed were also measured for inferring formation mechanisms of jellyfish aggregation. The field observations with a target on moon jellyfish were carried out in August 2013 and August 2014, in a semi-enclosed bay in Japan. The ship equipped with scientific echo sounder was cruised over the entire bay to reveal the distribution and the form of the moon jellyfish aggregation. In August 2013, the jellyfish aggregations present a high density (maximum: 70 ind. /m3) and their outline shows spherical or zonal shape with a hollow structure. In August 2014, the jellyfish aggregations present a low density (maximum: 20 ind./m3) and the jellyfishes distributed in a layer structure over a wide area. The depth of jellyfish aggregation was consistent with thermocline. During three days of observations in 2014, the average population density of jellyfish reduced by one-tenth, showing a possibility that the jellyfish abundance in a bay may vary significantly in a short timescale of several days. Not only the active swimming of jellyfishes but also the ambient flow field associated with internal waves or Langmuir circulation may contribute to the jellyfish aggregations. In order to clarify the mechanisms for the formation of high density patchy aggregation, we plan to perform more detailed observations and numerical simulations that are able to capture the fine structure of these physical processes in the future.
Deep scattering layer migration and composition: observations from a diving saucer.
Barham, E G
1966-03-18
The distribution of a myctophid fish and physonect siphonophores observed during dives in the Soucoupe off Baja California closely correlates with scattering layers recorded simultaneously with a 12-kcy/sec echo sounder. These organisms were observed while they were migrating vertically, and at their night and daytime levels. They are capable of rapid, extensive changes in depth.
RAWS: The spaceborne radar wind sounder
NASA Technical Reports Server (NTRS)
Moore, Richard K.
1991-01-01
The concept of the Radar Wind Sounder (RAWS) is discussed. The goals of the RAWS is to estimate the following three qualities: the echo power, to determine rain rate and surface wind velocity; the mean Doppler frequency, to determine the wind velocity in hydrometers; and the spread of the Doppler frequency, to determine the turbulent spread of the wind velocity. Researchers made significant progress during the first year. The feasibility of the concept seems certain. Studies indicate that a reasonably sized system can measure in the presence of ice clouds and dense water clouds. No sensitivity problems exist in rainy environments. More research is needed on the application of the radar to the measurement of rain rates and winds at the sea surface.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
...]Pa rms. Due to its high frequency range, NMFS does not consider its acoustic energy would be strong... source levels of the sub-bottom profiler and the high-frequency nature of the multi-beam echo sounder...-frequency side scan sonar, (100-400 kHz or 300-600 kHz): Based on Shell's 2006 90-day report, the source...
Physical Oceanography Program Science Abstracts.
1986-04-01
8217- % unit will be deployed from R/V Endeavor in a rapid sampling mode. It will be suspended along with an inverted echo sounder and video camera, below a...va r 4 1 i ty 0 Cal .5St i recK Jutc . Ph.2 .Ocemnonr. 15, i(15 Pedo ~k J ., N’. Sthand 3. Luytr-n, 1. t odynarics a -. of Thai o&?-anic surfce
New Bottom Roughness Calculation from Multibeam Echo Sounders for Mine Warfare
2012-09-01
complex including craters, gullies, seaweed , rocks, sand ridges, tall obstructions, deep holes and sloping regions. Underwater mines can be hidden...and shadows for detecting objects lying on the seafloor. The seafloor is rather complex including craters, gullies, seaweed , rocks, sand ridges, tall...roughness as craters, gullies, seaweed , sand ridges, tall obstructions, deep holes, or steeply sloping regions. Slopes can make it possible for mines to
Multifrequency acoustic observations of zooplankton in Knight Inlet, B.C
NASA Astrophysics Data System (ADS)
Trevorrow, Mark V.; Mackas, David L.; Benfield, Mark C.
2004-05-01
A collaborative investigation of midwater zooplankton aggregations in a coastal fjord was conducted in November 2002. Midwater aggregations of zooplankton in a coastal fjord were sampled and mapped using a calibrated, three-frequency (38, 120, and 200 kHz) vessel-based echo-sounder system, a multinet towed zooplankton net (BIONESS), and a high-resolution in situ camera system (ZOOVIS). Dense daytime layers of euphausiids and amphipods near 70- to 90-m depth were found in the lower reaches of the inlet, especially concentrated by tidal flows around a sill which rises above the layer. Quantitative euphausiid and amphipod backscattering measurements, combined with in situ species, size, and abundance estimates, were found to agree closely with recent size- and orientation-averaged fluid-cylinder scattering models produced by Stanton et al. Also, in situ scattering measurements of physonect siphonophores were found to have a much stronger low-frequency (38 kHz) scattering strength, in agreement with a simple bubble scattering model. [Work supported by Dr. J. Eckman, ONR code 322BC.
Sonic depth sounder for laboratory and field use
Richardson, E.V.; Simons, Daryl B.; Posakony, G.J.
1961-01-01
The laboratory investigation of roughness in alluvial channels has led to the development of a special electronic device capable of mapping the streambed configuration under dynamic conditions. This electronic device employs an ultrasonic pulse-echo principle, similar to that of a fathometer, that utilizes microsecond techniques to give high accuracy in shallow depths. This instrument is known as the sonic depth sounder and was designed to cover a depth range of 0 to 4 feet with an accuracy of ? 0.5 percent. The sonic depth sounder is capable of operation at frequencies of 500, 1,000 and 2,000 kilocycles. The ultrasonic beam generated at the transducer is designed to give a minimum-diameter interrogating signal over the extended depth range. The information obtained from a sonic depth sounder is recorded on a strip-chart recorder. This permanent record allows an analysis to be made of the streambed configuration under different dynamic conditions. The model 1024 sonic depth sounder was designed principally as a research instrument to meet laboratory needs. As such, it is somewhat limited in its application as a field instrument on large streams and rivers. The principles employed in this instrument, however, have many potentials for field applications such as the indirect measurement of bed load when the bed roughness is ripples and (or) dunes, depth measurement, determination of bed configuration, and determination of depth of scour around bridge piers and abutments. For field application a modification of the present system into a battery-operated lightweight instrument designed to operate at a depth range of 0 to 30 feet is possible and desirable.
NASA Astrophysics Data System (ADS)
Carrer, Leonardo; Gerekos, Christopher; Bruzzone, Lorenzo
2018-03-01
Lunar lava tubes have attracted special interest as they would be suitable shelters for future human outposts on the Moon. Recent experimental results from optical images and gravitational anomalies have brought strong evidence of their existence, but such investigative means have very limited potential for global mapping of lava tubes. In this paper, we investigate the design requirement and feasibility of a radar sounder system specifically conceived for detecting subsurface Moon lava tubes from orbit. This is done by conducting a complete performance assessment and by simulating the electromagnetic signatures of lava tubes using a coherent 3D simulator. The results show that radar sounding of lava tubes is feasible with good performance margins in terms of signal-to-noise and signal-to-clutter ratio, and that a dual-frequency radar sounder would be able to detect the majority of lunar lava tubes based on their potential dimension with some limitations for very small lava tubes having width smaller than 250 m. The electromagnetic simulations show that lava tubes display an unique signature characterized by a signal phase inversion on the roof echo. The analysis is provided for different acquisition geometries with respect to the position of the sounded lava tube. This analysis confirms that orbiting multi-frequency radar sounder can detect and map in a reliable and unambiguous way the majority of Moon lava tubes.
Remote Acoustic Sensing of Oceanic Fluid and Biological Processes.
1980-06-01
Oceanography (FISHER and SQUIER, 1975; SQUIER, WILLIAMS , BURKE and FISHER, 1976) have developed 3 and used a narrow-beam 87.5 kHz echo sounder and detected...of the ocean (PRONI and APEL , 1975; PRONI, 1978). He has detected internal waves and interleaving water masses (NEWMAN, PRONI and WALTER, 1977). He...Theoretical considerations (WESTON, 1958; TATARSKII, 1961; MUNK and GARRETT, 1973; PRONI and APEL , 1975; ORR and HESS, 1978b) indicate that the
2016-11-29
travel time between the seafloor and the sea surface; bottom pressure and temperature; and near-bottom horizontal currents hourly for up to 5 years...pressure and current sensors (CPIESs). CPIESs (Figure 1) are moored instruments that measure (1) the round-trip acoustic travel time between the...measurements of surface-to-bottom round-trip acoustic- travel time (’c), bottom pressure and temperature, and near-bottom horizontal currents
2016-11-29
travel time between the seafloor and the sea surface; bottom pressure and temperature; and near-bottom horizontal currents hourly for up to 5 years...pressure and current sensors (CPIESs). CPIESs (Figure 1) are moored instruments that measure (1) the round-trip acoustic travel time between the...measurements of surface-to-bottom round-trip acoustic- travel time (’c), bottom pressure and temperature, and near-bottom horizontal currents
User expectations for multibeam echo sounders backscatter strength data-looking back into the future
NASA Astrophysics Data System (ADS)
Lucieer, Vanessa; Roche, Marc; Degrendele, Koen; Malik, Mashkoor; Dolan, Margaret; Lamarche, Geoffroy
2018-06-01
With the ability of multibeam echo sounders (MBES) to measure backscatter strength (BS) as a function of true angle of insonification across the seafloor, came a new recognition of the potential of backscatter measurements to remotely characterize the properties of the seafloor. Advances in transducer design, digital electronics, signal processing capabilities, navigation, and graphic display devices, have improved the resolution and particularly the dynamic range available to sonar and processing software manufacturers. Alongside these improvements the expectations of what the data can deliver has also grown. In this paper, we identify these user-expectations and explore how MBES backscatter is utilized by different communities involved in marine seabed research at present, and the aspirations that these communities have for the data in the future. The results presented here are based on a user survey conducted by the GeoHab (Marine Geological and Biological Habitat Mapping) association. This paper summarises the different processing procedures employed to extract useful information from MBES backscatter data and the various intentions for which the user community collect the data. We show how a range of backscatter output products are generated from the different processing procedures, and how these results are taken up by different scientific disciplines, and also identify common constraints in handling MBES BS data. Finally, we outline our expectations for the future of this unique and important data source for seafloor mapping and characterisation.
NASA Astrophysics Data System (ADS)
Lopez, Jon; Moreno, Gala; Lennert-Cody, Cleridy; Maunder, Mark; Sancristobal, Igor; Caballero, Ainhoa; Dagorn, Laurent
2017-06-01
Understanding the relationship between environmental variables and pelagic species concentrations and dynamics is helpful to improve fishery management, especially in a changing environment. Drifting fish aggregating device (DFAD)-associated tuna and non-tuna biomass data from the fishers' echo-sounder buoys operating in the Atlantic Ocean have been modelled as functions of oceanographic (Sea Surface Temperature, Chlorophyll-a, Salinity, Sea Level Anomaly, Thermocline depth and gradient, Geostrophic current, Total Current, Depth) and DFAD variables (DFAD speed, bearing and soak time) using Generalized Additive Mixed Models (GAMMs). Biological interaction (presence of non-tuna species at DFADs) was also included in the tuna model, and found to be significant at this time scale. All variables were included in the analyses but only some of them were highly significant, and variable significance differed among fish groups. In general, most of the fish biomass distribution was explained by the ocean productivity and DFAD-variables. Indeed, this study revealed different environmental preferences for tunas and non-tuna species and suggested the existence of active habitat selection. This improved assessment of environmental and DFAD effects on tuna and non-tuna catchability in the purse seine tuna fishery will contribute to transfer of better scientific advice to regional tuna commissions for the management and conservation of exploited resources.
Trevorrow, Mark V; Mackas, David L; Benfield, Mark C
2005-06-01
An investigation of midwater zooplankton aggregations in a coastal fjord was conducted in November 2002. This study focused on quantitative comparisons between a calibrated, three-frequency (38, 120, and 200 kHz) vessel-based echo-sounder, a multinet towed zooplankton sampler (BIONESS), and a high-resolution underwater camera (ZOOVIS). Daytime layers of euphausiids and amphipods near 70-90-m depth were observed in lower parts of the inlet, especially concentrated by tidal flows around a sill. Quantitative backscatter measurements of euphausiids and amphipods, combined with in situ size and abundance estimates, and using an assumed tilt-angle distribution, were in agreement with averaged fluid-cylinder scattering models produced by Stanton and Chu [ICES J. Mar. Sci. 57, 793-807, (2000)]. Acoustic measurements of physonect siphonophores in the upper inlet were found to have a strong 38-kHz scattering strength, in agreement with a damped bubble scattering model using a diameter of 0.4 mm. In relatively dense euphausiid layers, ZOOVIS abundance estimates were found to be a factor of 2 to 4 higher than the acoustic estimates, potentially due to deviations from assumed euphausiid orientation. Nocturnal near-surface euphausiid scattering exhibited a strong (15 dB) and rapid (seconds) sensitivity to vessel lights, interpreted as due to changing animal orientation.
NASA Astrophysics Data System (ADS)
Trevorrow, Mark V.; Mackas, David L.; Benfield, Mark C.
2005-06-01
An investigation of midwater zooplankton aggregations in a coastal fjord was conducted in November 2002. This study focused on quantitative comparisons between a calibrated, three-frequency (38, 120, and 200 kHz) vessel-based echo-sounder, a multinet towed zooplankton sampler (BIONESS), and a high-resolution underwater camera (ZOOVIS). Daytime layers of euphausiids and amphipods near 70-90-m depth were observed in lower parts of the inlet, especially concentrated by tidal flows around a sill. Quantitative backscatter measurements of euphausiids and amphipods, combined with in situ size and abundance estimates, and using an assumed tilt-angle distribution, were in agreement with averaged fluid-cylinder scattering models produced by Stanton and Chu [ICES J. Mar. Sci. 57, 793-807, (2000)]. Acoustic measurements of physonect siphonophores in the upper inlet were found to have a strong 38-kHz scattering strength, in agreement with a damped bubble scattering model using a diameter of 0.4 mm. In relatively dense euphausiid layers, ZOOVIS abundance estimates were found to be a factor of 2 to 4 higher than the acoustic estimates, potentially due to deviations from assumed euphausiid orientation. Nocturnal near-surface euphausiid scattering exhibited a strong (15 dB) and rapid (seconds) sensitivity to vessel lights, interpreted as due to changing animal orientation. .
NASA Astrophysics Data System (ADS)
Kumamoto, A.; Yamaguchi, Y.; Yamaji, A.; Kobayashi, T.; Oshigami, S.; Ishiyama, K.; Nakamura, N.; Goto, Y.
2015-12-01
The Lunar Radar Sounder (LRS) onboard the SELENE (Kaguya) spacecraft has successfully performed radar sounder observations of the lunar subsurface structures and passive observations of natural radio and plasma waves from the lunar orbit. After the transfer of the spacecraft into the final lunar orbit and antenna deployment, the operation of LRS started on October 29, 2007. Through the operation until June 10, 2009, 130 million pulses worth of radar sounder data have been obtained [Ono et al., 2010]. Based on the datasets of the first lunar global subsurface radar sounding, Ono et al. [2009] revealed that there are distinct reflectors at a depth of several hundred meters in the nearside maria, which are inferred to be buried regolith layers covered by a basalt layer with a thickness of several hundred meters. Based on the further survey, Pommerol et al. [2010] pointed out the negative correlation of clear subsurface echoes with the maps of ilmenite, and suggested that dense ilmenite attenuates the radar pulse in the basaltic mare lava, and cause the absence of the clear subsurface echoes. That also suggests there are undetected subsurface reflectors especially below the young lava flow units with high ilmenite abundance. Kobayashi et al. [2012] applied synthetic aperture radar (SAR) processing to SELENE LRS data in order to obtain distinct radargram. Taking advantage of analyzing waveform data sent via high data rate telemetry from the Moon, we can perform advanced data analyses on the ground. We started providing the both SAR processed and waveform datasets via SELENE Data Archive (http://l2db.selene.darts.isas.jaxa.jp/index.html.en) since 2015. Oshigami et al. [2014] estimated volumes of basalt units in the ages of 2.7 Ga to 3.8 Ga in the nearside maria. The volume was derived from the depth of subsurface reflectors measured by LRS. The volumes of the geologic units were 103 to 104 km3. The average eruption rates were 10-5 to 10-3 km3 yr-1. The estimated volumes of the geologic mare units and average eruption rate showed clear positive correlations with their ages. In the presentation, we are going to review not only the studies mentioned above but also some recent studies such as Ishiyama et al. [2013], and Bando et al. [2015].
The Calibration and error analysis of Shallow water (less than 100m) Multibeam Echo-Sounding System
NASA Astrophysics Data System (ADS)
Lin, M.
2016-12-01
Multibeam echo-sounders(MBES) have been developed to gather bathymetric and acoustic data for more efficient and more exact mapping of the oceans. This gain in efficiency does not come without drawbacks. Indeed, the finer the resolution of remote sensing instruments, the harder they are to calibrate. This is the case for multibeam echo-sounding systems (MBES). We are no longer dealing with sounding lines where the bathymetry must be interpolated between them to engender consistent representations of the seafloor. We now need to match together strips (swaths) of totally ensonified seabed. As a consequence, misalignment and time lag problems emerge as artifacts in the bathymetry from adjacent or overlapping swaths, particularly when operating in shallow water. More importantly, one must still verify that bathymetric data meet the accuracy requirements. This paper aims to summarize the system integration involved with MBES and identify the various source of error pertaining to shallow water survey (100m and less). A systematic method for the calibration of shallow water MBES is proposed and presented as a set of field procedures. The procedures aim at detecting, quantifying and correcting systematic instrumental and installation errors. Hence, calibrating for variations of the speed of sound in the water column, which is natural in origin, is not addressed in this document. The data which used in calibration will reference International Hydrographic Organization(IHO) and other related standards to compare. This paper aims to set a model in the specific area which can calibrate the error due to instruments. We will construct a procedure in patch test and figure out all the possibilities may make sounding data with error then calculate the error value to compensate. In general, the problems which have to be solved is the patch test's 4 correction in the Hypack system 1.Roll 2.GPS Latency 3.Pitch 4.Yaw. Cause These 4 correction affect each others, we run each survey line to calibrate. GPS Latency is synchronized GPS to echo sounder. Future studies concerning any shallower portion of an area, by this procedure can be more accurate sounding value and can do more detailed research.
Estimation of Characteristics of Echo Envelope Using RF Echo Signal from the Liver
NASA Astrophysics Data System (ADS)
Yamaguchi, Tadashi; Hachiya, Hiroyuki; Kamiyama, Naohisa; Ikeda, Kazuki; Moriyasu, Norifumi
2001-05-01
To realize quantitative diagnosis of liver cirrhosis, we have been analyzing the probability density function (PDF) of echo amplitude using B-mode images. However, the B-mode image is affected by the various signal and image processing techniques used in the diagnosis equipment, so a detailed and quantitative analysis is very difficult. In this paper, we analyze the PDF of echo amplitude using RF echo signal and B-mode images of normal and cirrhotic livers, and compare both results to examine the validity of the RF echo signal.
NASA Astrophysics Data System (ADS)
Aoyama, C.
2017-12-01
Methane plumes often exist in the vicinity sea area where shallow type methane hydrates are extracted and they are observed as images displayed on monitors of multi-beam sonar and echo sounder onboard, where methane hydrates are expected at sea bottom on ROV observation data. The hydrates are generally considered to be generated in shallow depths below the sea floor. In this study, author examined annual amount of methane dissolving into seawater by measuring the amount of plume in order to make a quantification of dissolving methane from seafloor. Measurement procedure is plume exploration using multi-beam and quantitative echo sounder , submerge ROV to gushing point at seafloor , calculate the rising speed of methane plumes and examine the phases by monitoring seeping plumes from seafloor with high-definition camera. Components of seeping plumes were defined as methane hydrate particles based on the result by measuring water temperature. From this procedure, it can be concluded that the minimum rising speed of methane hydrate particles from gushing point is 1.6×10-1(m/s) and the maximum of 2.0×10-1(m/s) indicating a difference of more than ten times the gaseous theoretical value of 2.74(m/s). This speed is theoretically closer to the solid speed of the material with physical property similar to hydrates, which is 3.05×10-1 (m/s). Therefore, it can be determined that those particles are in the solid state, immediately above seafloor. To measure the amount of plumes seeping from gushing points funnel-shaped instruments with 20cm diameter opening were used to collect methane plumes in this sea area. This was performed in three different gushing points. As a result, 300ml of methane plume was collected in 643 seconds. Assuming that gushing points exist evenly in the sea area, the annual amount of methane gas seeping from these points will be 7.7×105m3 /per m2. Result shows a large quantity of methane seeping from seafloor into the water. This data is an important factor when considering carbon cycle and future development the shallow methane hydrate resources.
McInnes, Alistair M.; Khoosal, Arjun; Murrell, Ben; Merkle, Dagmar; Lacerda, Miguel; Nyengera, Reason; Coetzee, Janet C.; Edwards, Loyd C.; Ryan, Peter G.; Rademan, Johan; van der Westhuizen, Jan J; Pichegru, Lorien
2015-01-01
Studies investigating how mobile marine predators respond to their prey are limited due to the challenging nature of the environment. While marine top predators are increasingly easy to study thanks to developments in bio-logging technology, typically there is scant information on the distribution and abundance of their prey, largely due to the specialised nature of acquiring this information. We explore the potential of using single-beam recreational fish-finders (RFF) to quantify relative forage fish abundance and draw inferences of the prey distribution at a fine spatial scale. We compared fish school characteristics as inferred from the RFF with that of a calibrated scientific split-beam echo-sounder (SES) by simultaneously operating both systems from the same vessel in Algoa Bay, South Africa. Customized open-source software was developed to extract fish school information from the echo returns of the RFF. For schools insonified by both systems, there was close correspondence between estimates of mean school depth (R2 = 0.98) and school area (R2 = 0.70). Estimates of relative school density (mean volume backscattering strength; Sv) measured by the RFF were negatively biased through saturation of this system given its smaller dynamic range. A correction factor applied to the RFF-derived density estimates improved the comparability between the two systems. Relative abundance estimates using all schools from both systems were congruent at scales from 0.5 km to 18 km with a strong positive linear trend in model fit estimates with increasing scale. Although absolute estimates of fish abundance cannot be derived from these systems, they are effective at describing prey school characteristics and have good potential for mapping forage fish distribution and relative abundance. Using such relatively inexpensive systems could greatly enhance our understanding of predator-prey interactions. PMID:26600300
NASA Astrophysics Data System (ADS)
Artemov, Yu. G.
2003-04-01
Relatively recent discovery of the natural CH_4 gas seepage from the sea bed had action upon the philosophy of CH_4 contribution to global budgets. So far as numerous gas vent sites are known, an acceptable method for released gas quantification is required. In particular, the questions should be answered as follows: 1) how much amount of gas comes into the water column due to a certain bubble stream, 2) how much amount of gas comes into the water column due to a certain seepage area of the see floor, 3) how much amount of gas diffuses into the water and how much gas phase enters the atmosphere. Echo-sounder is the habitual equipment for detecting gas plumes (flares) in the water column. To provide observations of gas seeps with bubbles tracking, single target and volume backscattering strength measurements, we use installed on board the R/V "Professor Vodyanitskiy" dual frequency (38 and 120 kHz) split-beam scientific echo-sounder SIMRAD EK-500. Dedicated software is developed to extract from the raw echo data and to handle the definite information for analyses of gas bubble streams features. This improved hydroacoustic techniques allows to determine gas bubbles size spectrum at different depths through the water column as well as rise velocity of bubbles of different sizes. For instance, bubble of 4.5 mm diameter has rising speed of 25.8 cm/sec at 105 m depth, while bubble of 1.7 mm diameter has rising speed of 16.3 cm/sec at 32 m depth. Using volume backscattering measurements in addition, it is possible to evaluate flux of the gas phase produced by methane bubble streams and to learn of its fate in the water column. Ranking of various gas plumes by flux rate value is available also. In this presentation results of acoustic observations at the shallow NW Black Sea seepage area are given.
Mars radar clutter and surface roughness characteristics from MARSIS data
NASA Astrophysics Data System (ADS)
Campbell, Bruce A.; Schroeder, Dustin M.; Whitten, Jennifer L.
2018-01-01
Radar sounder studies of icy, sedimentary, and volcanic settings can be affected by reflections from surface topography surrounding the sensor nadir location. These off-nadir ;clutter; returns appear at similar time delays to subsurface echoes and complicate geologic interpretation. Additionally, broadening of the radar echo in delay by surface returns sets a limit on the detectability of subsurface interfaces. We use MARSIS 4 MHz data to study variations in the nadir and off-nadir clutter echoes, from about 300 km to 1000 km altitude, R, for a wide range of surface roughness. This analysis uses a new method of characterizing ionospheric attenuation to merge observations over a range of solar zenith angle and date. Mirror-like reflections should scale as R-2, but the observed 4 MHz nadir echoes often decline by a somewhat smaller power-law factor because MARSIS on-board processing increases the number of summed pulses with altitude. Prior predictions of the contributions from clutter suggest a steeper decline with R than the nadir echoes, but in very rough areas the ratio of off-nadir returns to nadir echoes shows instead an increase of about R1/2 with altitude. This is likely due in part to an increase in backscatter from the surface as the radar incidence angle at some round-trip time delay declines with increasing R. It is possible that nadir and clutter echo properties in other planetary sounding observations, including RIME and REASON flyby data for Europa, will vary in the same way with altitude, but there may be differences in the nature and scale of target roughness (e.g., icy versus rocky surfaces). We present global maps of the ionosphere- and altitude-corrected nadir echo strength, and of a ;clutter; parameter based on the ratio of off-nadir to nadir echoes. The clutter map offers a view of surface roughness at ∼75 m length scale, bridging the spatial-scale gap between SHARAD roughness estimates and MOLA-derived parameters.
NASA Technical Reports Server (NTRS)
Haines, D. Mark; Reinisch, Bodo W.
1995-01-01
The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N(sub e)) as a function of height (the N(sub e) profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year (1958). The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N(sub e) profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al., 1992), has never been put into space. NASA's 1990 Space Physics Strategy Implementation Study "The NASA Space Physics Program from 1995 to 2010" suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung, 1993). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R(sub e) (Reiff et al., 1994; Calvert et al., 1995). Magnetospheric radio sounding from space will provide remote density measurements of unprecedented precision and coverage in the plasmasphere, inner magnetosphere and magnetopause, from which the structure, inter-relationship, and variations of different plasma regions can be determined (Armstrong Johnson, 1995). A space-borne Radio Plasma Imager (RPI) could provide a unique global view of the magnetosphere revealing the underlying structure of remote plasma regions, thereby providing a framework for the interpretation of images obtained by other techniques as identified in the technical areas TA1 to TA4 in the MSFC NRA8-8.
Acoustical Measurement of Nonlinear Internal Waves Using the Inverted Echo Sounder
2009-05-05
showed that the vertical round-trip travel time of an acoustic pulse allowed measurement of the variation of thermal stratification caused by internal...translate from distance to time , note that reflection from a position 56 m from zenith to a PIES at 1024-m depth would have a delay time of 2 ms. Note that...approximation of the travel time scatter, the delay to the arrival of the dis- tribution peak tp is directly related to the width b: t p 5 t 0 1 b. (24) The
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzgerald, T.J.; Carlos, R.C.; Argo, P.E.
As part of the integrated verification experiment (IVE), we deployed a network of hf ionospheric sounders to detect the effects of acoustic waves generated by surface ground motion following underground nuclear tests at the Nevada Test Site. The network sampled up to four geographic locations in the ionosphere from almost directly overhead of the surface ground zero out to a horizontal range of 60 km. We present sample results for four of the IVEs: Misty Echo, Texarkana, Mineral Quarry, and Bexar.
Siphonophores and the Deep Scattering Layer.
Barham, E G
1963-05-17
Bathyscaphe dives in the San Diego Trough have revealed a close spatial relation between siphonophores and the deep scattering layer as recorded by precision depth recording echo-sounders. Measurements of gas bubbles within the flotation structures of Nanomia bijuga captured in a closing net in an ascended scattering layer indicate that these are very close to the resonant size for 12-kcy/sec sound. Because such organisms are capable of making prolonged vertical migrations, and are widespread geographically, they are very probably the major cause of stratified zones of scattering throughout the oceans of the world.
NASA Astrophysics Data System (ADS)
Jeon, Chanhyung; Park, Jae-Hun; Kim, Dong Guk; Kim, Eung; Jeon, Dongchull
2018-04-01
An array of 5 pressure-recording inverted echo sounders (PIESs) was deployed along the Jason-2 214 ground track in the North Equatorial Current (NEC) region of the western Pacific Ocean for about 2 years from June 2012. Round-trip acoustic travel time from the bottom to the sea surface and bottom pressure measurements from PIES were converted to sea level anomaly (SLA). AVISO along-track mono-mission SLA (Mono-SLA), reference mapped SLA (Ref-MSLA), and up-to-date mapped SLA (Upd-MSLA) products were used for comparison with PIESderived SLA (η tot). Comparisons of η tot with Mono-SLA revealed that hump artifact errors significantly contaminate the Mono-SLA. Differences of η tot from both Ref-MSLA and Upd-MSLA decreased as the hump errors were reduced in mapped SLA products. Comparisons of Mono-SLA measurements at crossover points of ground tracks near the observation sites revealed large differences though the time differences of their measurements were only 1.53 and 4.58 days. Comparisons between Mono-SLA and mapped SLA suggested that mapped SLA smooths out the hump artifact errors by taking values between the two discrepant Mono-SLA measurements at the crossover points. Consequently, mapped SLA showed better agreement with η tot at our observation sites. AVISO mapped sea surface height (SSH) products are the preferable dataset for studying SSH variability in the NEC region of the western Pacific, though some portions of hump artifact errors seem to still remain in them.
The Keelung Submarine volcanoes and gas plumes in the nearshore of northern Taiwan
NASA Astrophysics Data System (ADS)
Huang, J. C.; Tsia, C. H.; Hsu, S. K.; Lin, S. S.
2016-12-01
Taiwan is located in the collision zone between Philippine Sea Plate and Eurasian Plate. The Philippine Sea Plate subducts northward beneath the Ryukyu arc system while the Eurasian Plate subducts eastward beneath the Luzon arc system. The Taiwan mountain building started at 9 My ago and the most active collision has migrated to middle Taiwan. In consequence, the northern Taiwan has changed its stress pattern from forms a series of thrust faults to normal faults. The stress pattern change has probably induced the post-collisional extension and volcanism in and off northern Taiwan. Under such a tectonic environment, the volcanism and gas plumes are widespread in northern Taiwan and its offshore area. Among the volcanoes of the northern Taiwan volcanic zone, the Tatun Volcano Group is the most obvious one. In this study, we use sub-bottom profiler, EK500 echo sounder, and multibeam echo sounder to study the geophysical structure of a submarine volcano in the nearshore of northern Taiwan. We have analyzed the shallow structures and identified the locations of the gas plumes. The identification of the gas plumes can help us understand the nature of the submarine volcano. Our results show that the gas plumes appear near the Kanchiao Fault and Keelung islet. Some intrusive volcanoes can be observed in the subbottom profiler data. Finally, according to the observations, we found that the Keelung Submarine Volcano is still active. We need the monitor of the active Keelung Submarine Volcano to avoid the volcanic hazard. Additionally, we need to pay attention to the earthquakes related to the Keelung Submarine Volcano.
SSPARR: Development of an efficient autonomous sampling strategy
NASA Astrophysics Data System (ADS)
Chayes, D. N.
2013-12-01
The Seafloor Sounding in Polar and Remote Regions (SSPARR) effort was launched in 2004 with funding from the US National Science Foundation (Anderson et al. 2005.) Experiments with a prototype were encouraging (Greenspan et al., 2012, Chayes et al. 2012) and we are proceeding toward building and testing units for deployment during the 2014 season season in ice covered parts of the Arctic ocean. The simplest operational mode for a SSPARR buoy will be to wake and sample on a fixed time interval. A slightly more complex mode will check the distance traveled since the pervious sounding and potentially return to sleep-mode if it has not traveled far enough to make a significant new measurement. We are developing a mode that will use a sampling strategy based on querying an on-board copy of the best available digital terrain model (DTM) e.g. IBCAO in the Arctic, to help decide if it is appropriate to turn on the echo sounder and make a new measurement. We anticipate that a robust strategy of this type will allow a buoy to operate substantially longer on a fixed battery size. Anderson, R., D. Chayes, et al. (2005). "Seafloor Soundings in Polar and Remote Regions - A new instrument for unattended bathymetric observations," Eos Trans. AGU 86(18): Abstract C43A-10. Greenspan, D., D. Porter, et al. (2012). "IBuoy: Expendable Echo Sounder Buoy with Satellite Telemetry." EOS Fall Meeting Supplement C13E-0660. Chayes, D. N., S. A. Goemmer, et al. (2012). "SSPARR-3: A cost-effective autonomous drifting echosounder." EOS Fall Meeting supplement C13E-0659.
Bathymetry of Totten Reservoir, Montezuma County, Colorado, 2011
Kohn, Michael S.
2012-01-01
In order to better characterize the water supply capacity of Totten Reservoir, Montezuma County, Colorado, the U.S. Geological Survey, in cooperation with the Dolores Water Conservancy District, conducted a bathymetric survey of Totten Reservoir. The study was performed in June 2011 using a man-operated boat-mounted multibeam echo sounder integrated with a global positioning system and a terrestrial real-time kinematic global positioning system. The two collected datasets were merged and imported into geographic information system software. A bathymetric map of the reservoir was generated in addition to plots for the stage-area and the stage-volume relations.
Bathymetry of Groundhog Reservoir, Dolores County, Colorado, 2011
Kohn, Michael S.
2012-01-01
In order to better characterize the water supply capacity of Groundhog Reservoir, Dolores County, Colorado, the U.S. Geological Survey, in cooperation with the Dolores Water Conservancy District, conducted a bathymetric survey of Groundhog Reservoir. The study was performed in June 2011 using a man-operated boat-mounted multibeam echo sounder integrated with a global positioning system and a terrestrial real-time kinematic global positioning system. The two collected datasets were merged and imported into geographic information system software. A bathymetric map of the reservoir was generated in addition to plots for the stage-area and the stage-volume relations.
A microwave pressure sounder. [for remote measurement of atmospheric pressure
NASA Technical Reports Server (NTRS)
Peckham, G. E.; Flower, D. A.
1981-01-01
A technique for the remote measurement of atmospheric surface pressure will be described. Such measurements could be made from a satellite in polar orbit and would cover many areas for which conventional meteorological data are not available. An active microwave instrument is used to measure the strength of return echoes from the ocean surface at a number of frequencies near the 60 GHz oxygen absorption band. Factors which affect the accuracy with which surface pressure can be deduced from these measurements will be discussed and an instrument designed to test the method by making measurements from an aircraft will be described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzgerald, T.J.; Carlos, R.C.; Argo, P.E.
As part of the integrated verification experiment (IVE), we deployed a network of hf ionospheric sounders to detect the effects of acoustic waves generated by surface ground motion following underground nuclear tests at the Nevada Test Site. The network sampled up to four geographic locations in the ionosphere from almost directly overhead of the surface ground zero out to a horizontal range of 60 km. We present sample results for four of the IVEs: Misty Echo, Texarkana, Mineral Quarry, and Bexar.
Frequency-selective quantitation of short-echo time 1H magnetic resonance spectra
NASA Astrophysics Data System (ADS)
Poullet, Jean-Baptiste; Sima, Diana M.; Van Huffel, Sabine; Van Hecke, Paul
2007-06-01
Accurate and efficient filtering techniques are required to suppress large nuisance components present in short-echo time magnetic resonance (MR) spectra. This paper discusses two powerful filtering techniques used in long-echo time MR spectral quantitation, the maximum-phase FIR filter (MP-FIR) and the Hankel-Lanczos Singular Value Decomposition with Partial ReOrthogonalization (HLSVD-PRO), and shows that they can be applied to their more complex short-echo time spectral counterparts. Both filters are validated and compared through extensive simulations. Their properties are discussed. In particular, the capability of MP-FIR for dealing with macromolecular components is emphasized. Although this property does not make a large difference for long-echo time MR spectra, it can be important when quantifying short-echo time spectra.
Contact heterogeneities in feral swine: implications for disease management and future research
Pepin, Kim M.; Davis, Amy J.; Beasley, James; ...
2016-03-17
Contact rates vary widely among individuals in socially structured wildlife populations. Understanding the interplay of factors responsible for this variation is essential for planning effective disease management. Feral swine (Sus scrofa) are a socially structured species which pose an increasing threat to livestock and human health, and little is known about contact structure. We analyzed 11 GPS data sets from across the United States to understand the interplay of ecological and demographic factors on variation in co-location rates, a proxy for contact rates. Between-sounder contact rates strongly depended on the distance among home ranges (less contact among sounders separated bymore » >2 km; negligible between sounders separated by >6 km), but other factors causing high clustering between groups of sounders also seemed apparent. Our results provide spatial parameters for targeted management actions, identify data gaps that could lead to improved management and provide insight on experimental design for quantitating contact rates and structure.« less
Contact heterogeneities in feral swine: implications for disease management and future research
Pepin, Kim; Davis, Amy J.; Beasley, James; Boughton, Raoul; Campbell, Tyler; Cooper, Susan; Gaston, Wes; Hartley, Stephen B.; Kilgo, John C.; Wisely, Samantha; Wyckoff, Christy; VerCauteren, Kurt
2016-01-01
Contact rates vary widely among individuals in socially structured wildlife populations. Understanding the interplay of factors responsible for this variation is essential for planning effective disease management. Feral swine (Sus scrofa) are a socially structured species which pose an increasing threat to livestock and human health, and little is known about contact structure. We analyzed 11 GPS data sets from across the United States to understand the interplay of ecological and demographic factors on variation in co-location rates, a proxy for contact rates. Between-sounder contact rates strongly depended on the distance among home ranges (less contact among sounders separated by >2 km; negligible between sounders separated by >6 km), but other factors causing high clustering between groups of sounders also seemed apparent. Our results provide spatial parameters for targeted management actions, identify data gaps that could lead to improved management and provide insight on experimental design for quantitating contact rates and structure.
Contact heterogeneities in feral swine: implications for disease management and future research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pepin, Kim M.; Davis, Amy J.; Beasley, James
Contact rates vary widely among individuals in socially structured wildlife populations. Understanding the interplay of factors responsible for this variation is essential for planning effective disease management. Feral swine (Sus scrofa) are a socially structured species which pose an increasing threat to livestock and human health, and little is known about contact structure. We analyzed 11 GPS data sets from across the United States to understand the interplay of ecological and demographic factors on variation in co-location rates, a proxy for contact rates. Between-sounder contact rates strongly depended on the distance among home ranges (less contact among sounders separated bymore » >2 km; negligible between sounders separated by >6 km), but other factors causing high clustering between groups of sounders also seemed apparent. Our results provide spatial parameters for targeted management actions, identify data gaps that could lead to improved management and provide insight on experimental design for quantitating contact rates and structure.« less
Volcano-tectonic structures and CO2-degassing patterns in the Laacher See basin, Germany
NASA Astrophysics Data System (ADS)
Goepel, Andreas; Lonschinski, Martin; Viereck, Lothar; Büchel, Georg; Kukowski, Nina
2015-07-01
The Laacher See Volcano is the youngest (12,900 year BP) eruption center of the Quarternary East-Eifel Volcanic Field in Germany and has formed Laacher See, the largest volcanic lake in the Eifel area. New bathymetric data of Laacher See were acquired by an echo sounder system and merged with topographic light detection and ranging (LiDAR) data of the Laacher See Volcano area to form an integrated digital elevation model. This model provides detailed morphological information about the volcano basin and results of sediment transport therein. Morphological analysis of Laacher See Volcano indicates a steep inner crater wall (slope up to 30°) which opens to the south. The Laacher See basin is divided into a deep northern and a shallower southern part. The broader lower slopes inclined with up to 25° change to the almost flat central part (maximum water depth of 51 m) with a narrow transition zone. Erosion processes of the crater wall result in deposition of volcaniclastics as large deltas in the lake basin. A large subaqueous slide was identified at the northeastern part of the lake. CO2-degassing vents (wet mofettes) of Laacher See were identified by a single-beam echo sounder system through gas bubbles in the water column. These are more frequent in the northern part of the lake, where wet mofettes spread in a nearly circular-shaped pattern, tracing the crater rim of the northern eruption center of the Laacher See Volcano. Additionally, preferential paths for gas efflux distributed concentrically inside the crater rim are possibly related to volcano-tectonic faults. In the southern part of Laacher See, CO2 vents occur in a high spatial density only within the center of the arc-shaped structure Barschbuckel possibly tracing the conduit of a tuff ring.
Nystrom, Elizabeth A.
2018-02-01
Drinking water for New York City is supplied from several large reservoirs, including a system of reservoirs west of the Hudson River. To provide updated reservoir capacity tables and bathymetry maps of the City’s six West of Hudson reservoirs, bathymetric surveys were conducted by the U.S. Geological Survey from 2013 to 2015. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system along planned transects at predetermined intervals for each reservoir. A separate quality assurance dataset of echo sounder points was collected along transects at oblique angles to the main transects for accuracy assessment. Field-survey data were combined with water surface elevations in a geographic information system to create three-dimensional surfaces in the form of triangulated irregular networks (TINs) representing the elevations of the reservoir geomorphology. The TINs were linearly enforced to better represent geomorphic features within the reservoirs. The linearly enforced TINs were then used to create raster surfaces and 2-foot-interval contour maps of the reservoirs. Elevation-area-capacity tables were calculated at 0.01-foot intervals. The results of the surveys show that the total capacity of the West of Hudson reservoirs has decreased by 11.5 billion gallons (Ggal), or 2.3 percent, since construction, and the useable capacity (the volume above the minimum operating level required to deliver full flow for drinking water supply) has decreased by 7.9 Ggal (1.7 percent). The available capacity (the volume between the spillway elevation and the lowest intake or sill elevation used for drinking water supply) decreased by 9.6 Ggal (2.0 percent), and dead storage (the volume below the lowest intake or sill elevation) decreased by 1.9 Ggal (11.6 percent).
Cold water corals - Converting short term scientific excitement into long term public interest
NASA Astrophysics Data System (ADS)
Maestad, K.
2009-04-01
The Vesteraalen area off the Northern Norwegian coast is of ecological importance as a spawning ground for several fish stocks and as a corridor for migrating mature fish and drifting fish larvae for other stocks. The area is also of great interest to oil exploration companies for its hitherto untapped energy supplies. In the midst of it all, there are a number of cold-water coral reefs. Researchers at the Institute of Marine Research in Norway have constructed a sophisticated system for monitoring habitats around the cold-water corals and their environment over time. Two so-called landers will be placed next to coral reefs, will be equipped with echo sounders, camera, hydrophone, acoustic current profiler, CTD-sensor and sediment traps in March 09. This will provide high quality data regarding both physical conditions and biological activity. The sensors will make it possible to observe how different species interact with each other, with particular focus on the activity of fish and how they use the reef habitat. The system will have the capacity to transmit data live from the ocean floor. Creating attention in national media regarding such a ground-breaking project is not all that difficult. Already, the Norwegian national TV channel NRK has confirmed participation on the cruise that will deploy the landers. However, this project also presents communication challenges. One of which is to find a way of making echogram images of the reef understandable ("readable") to people not familiar with interpreting echo sounder signals. This will be especially important if it is decided to make the data from the coral reef available live on the internet. Furthermore, the aim will be to create interest amongst specific audiences in following the life in and around the coral reef over time.
van Schie, H T; Bakker, E M; Jonker, A M; van Weeren, P R
2001-07-01
To evaluate effectiveness of computerized discrimination between structure-related and non-structure-related echoes in ultrasonographic images for quantitative evaluation of tendon structural integrity in horses. 4 superficial digital flexor tendons (2 damaged tendons, 2 normal tendons). Transverse ultrasonographic images that precisely matched histologic sections were obtained in fixed steps along the long axis of each tendon. Distribution, intensity, and delineation of structure-related echoes, quantitatively expressed as the correlation ratio and steadiness ratio , were compared with histologic findings in tissue that was normal or had necrosis, early granulation, late granulation, early fibrosis, or inferior repair. In normal tendon, the even distribution of structure-related echoes with high intensity and sharp delineation yielded high correlation ratio and steadiness ratio. In areas of necrosis, collapsed endotendon septa yielded solid but blurred structure-related echoes (high correlation ration and low steadiness ratio). In early granulation tissue, complete lack of organization caused zero values for both ratios. In late granulation tissue, reorganization and swollen endotendon septa yielded poorly delineated structure-related echoes (high correlation ratio, low steadiness ratio). In early fibrosis, rearrangement of bundles resulted in normal correlation ration and slightly low steadiness ratio. In inferior repair, the almost complete lack of structural reorganization resulted in heterogeneous poorly delineated low-intensity echoes (low correlation ratio and steadiness ratio). The combination of correlation ratio and steadiness ratio accurately reflects histopathologic findings, making computerized correlation of ultrasonographic images an efficient tool for quantitative evaluation of tendon structural integrity.
Bathymetry of the Hong and Luoc River Junction, Red River Delta, Vietnam, 2010
Kinzel, Paul J.; Nelson, Jonathan M.; Toan, Duong Duc; Thanh, Mung Dinh; Shimizu, Yasuyuki
2012-01-01
The U.S. Geological Survey, in collaboration with the Water Resources University in Hanoi, Vietnam, conducted a bathymetric survey of the junction of the Hong and Luoc Rivers. The survey was done to characterize the channel morphology of this delta distributary network and provide input for hydrodynamic and sediment transport models. The survey was carried out in December 2010 using a boat-mounted multibeam echo sounder integrated with a global positioning system. A bathymetric map of the Hong and Luoc River junction was produced which was referenced to the datum of the Trieu Duong tide gage on the Luoc River.
The 3D Visualization of Slope Terrain in Sun Moon Lake.
NASA Astrophysics Data System (ADS)
Deng, F.; Gwo-shyn, S.; Pei-Kun, L.
2015-12-01
By doing topographical surveys in a reservoir, we can calculate siltation volume in the period of two measurements. It becomes basic requirement to provide more precise siltation value especially when the differential GPS positioning method and the multi-beams echo sounders have been prevailed; however, there are two problems making the result become challenging when doing the siltation-survey in reservoir. They are both relative with the difficulty in keeping survey accuracy to the area of side slope around the boundary of reservoir. Firstly, the efficiency or accuracy of horizontal positioning using the DGPS may decrease because of the satellite-blocking effect when the surveying ship nears the bank especially in the canyon type of reservoir. Secondly, measurement can only be acquired in the area covered by water using the echo sounder, such that the measuring data of side slope area above water surface are lack to decrease the accuracy or seriously affect the calculation of reservoir water volume. This research is to hold the terrain accuracy when measuring the reservoir side slope and the Sun Moon Lake Reservoir in central Taiwan is chosen as the experimental location. Sun Moon Lake is the most popular place for tourists in Taiwan and also the most important reservoir of the electricity facilities. Furthermore, it owns the biggest pumped-storage hydroelectricity in Asia. The water in the lake is self-contained, and its water supply has been input through two underground tunnels, such that a deposit fan is formed when the muds were settled down from the silty water of the Cho-Shui Shi. Three kinds of survey are conducted in this experiment. First, a close-range photogrammetry, around the border of the Sun Moon Lake is made, or it takes shoots along the bank using a camera linked with a computer running the software Pix4D. The result can provide the DTM data to the side slope above the water level. Second, the bathymetrical data can be obtained by sweeping the side-slope using the multi-beam sounder below the water surface. Finally, the image of the side-scan sonar is taken and merges with contour lines produced from underwater topographic DTM data. Combining those data, our purpose is by creating different 3D images to have good visualization checking the data of side-slope DTM surveys if they are in well qualified controlled.
Ultrasound hepatic/renal ratio and hepatic attenuation rate for quantifying liver fat content.
Zhang, Bo; Ding, Fang; Chen, Tian; Xia, Liang-Hua; Qian, Juan; Lv, Guo-Yi
2014-12-21
To establish and validate a simple quantitative assessment method for nonalcoholic fatty liver disease (NAFLD) based on a combination of the ultrasound hepatic/renal ratio and hepatic attenuation rate. A total of 170 subjects were enrolled in this study. All subjects were examined by ultrasound and (1)H-magnetic resonance spectroscopy ((1)H-MRS) on the same day. The ultrasound hepatic/renal echo-intensity ratio and ultrasound hepatic echo-intensity attenuation rate were obtained from ordinary ultrasound images using the MATLAB program. Correlation analysis revealed that the ultrasound hepatic/renal ratio and hepatic echo-intensity attenuation rate were significantly correlated with (1)H-MRS liver fat content (ultrasound hepatic/renal ratio: r = 0.952, P = 0.000; hepatic echo-intensity attenuation r = 0.850, P = 0.000). The equation for predicting liver fat content by ultrasound (quantitative ultrasound model) is: liver fat content (%) = 61.519 × ultrasound hepatic/renal ratio + 167.701 × hepatic echo-intensity attenuation rate -26.736. Spearman correlation analysis revealed that the liver fat content ratio of the quantitative ultrasound model was positively correlated with serum alanine aminotransferase, aspartate aminotransferase, and triglyceride, but negatively correlated with high density lipoprotein cholesterol. Receiver operating characteristic curve analysis revealed that the optimal point for diagnosing fatty liver was 9.15% in the quantitative ultrasound model. Furthermore, in the quantitative ultrasound model, fatty liver diagnostic sensitivity and specificity were 94.7% and 100.0%, respectively, showing that the quantitative ultrasound model was better than conventional ultrasound methods or the combined ultrasound hepatic/renal ratio and hepatic echo-intensity attenuation rate. If the (1)H-MRS liver fat content had a value < 15%, the sensitivity and specificity of the ultrasound quantitative model would be 81.4% and 100%, which still shows that using the model is better than the other methods. The quantitative ultrasound model is a simple, low-cost, and sensitive tool that can accurately assess hepatic fat content in clinical practice. It provides an easy and effective parameter for the early diagnosis of mild hepatic steatosis and evaluation of the efficacy of NAFLD treatment.
Song, Yan; Feng, Jun; Dang, Ying; Zhao, Chao; Zheng, Jie; Ruan, Litao
2017-12-01
The aim of this study was to determine the relationship between plaque echo, thickness and neovascularization in different stenosis groups using quantitative and semi-quantitative contrast-enhanced ultrasound (CEUS) in patients with carotid atherosclerosis plaque. A total of 224 plaques were divided into mild stenosis (<50%; 135 plaques, 60.27%), moderate stenosis (50%-69%; 39 plaques, 17.41%) and severe stenosis (70%-99%; 50 plaques, 22.32%) groups. Quantitative and semi-quantitative methods were used to assess plaque neovascularization and determine the relationship between plaque echo, thickness and neovascularization. Correlation analysis revealed no relationship of neovascularization with plaque echo in the groups using either quantitative or semi-quantitative methods. Furthermore, there was no correlation of neovascularization with plaque thickness using the semi-quantitative method. The ratio of areas under the curve (RAUC) was negatively correlated with plaque thickness (r = -0.317, p = 0.001) in the mild stenosis group. With the quartile method, plaque thickness of the mild stenosis group was divided into four groups, with significant differences between the 1.5-2.2 mm and ≥3.5 mm groups (p = 0.002), 2.3-2.8 mm and ≥3.5 mm groups (p <0.001) and 2.9-3.4 mm and ≥3.5 mm groups (p <0.001). Both semi-quantitative and quantitative CEUS methods characterizing neovascularization of plaque are equivalent with respect to assessing relationships between neovascularization, echogenicity and thickness. However, the quantitative method could fail for plaque <3.5 mm because of motion artifacts. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Radio Sounding Science at High Powers
NASA Technical Reports Server (NTRS)
Green, J. L.; Reinisch, B. W.; Song, P.; Fung, S. F.; Benson, R. F.; Taylor, W. W. L.; Cooper, J. F.; Garcia, L.; Markus, T.; Gallagher, D. L.
2004-01-01
Future space missions like the Jupiter Icy Moons Orbiter (JIMO) planned to orbit Callisto, Ganymede, and Europa can fully utilize a variable power radio sounder instrument. Radio sounding at 1 kHz to 10 MHz at medium power levels (10 W to kW) will provide long-range magnetospheric sounding (several Jovian radii) like those first pioneered by the radio plasma imager instrument on IMAGE at low power (less than l0 W) and much shorter distances (less than 5 R(sub E)). A radio sounder orbiting a Jovian icy moon would be able to globally measure time-variable electron densities in the moon ionosphere and the local magnetospheric environment. Near-spacecraft resonance and guided echoes respectively allow measurements of local field magnitude and local field line geometry, perturbed both by direct magnetospheric interactions and by induced components from subsurface oceans. JIMO would allow radio sounding transmissions at much higher powers (approx. 10 kW) making subsurface sounding of the Jovian icy moons possible at frequencies above the ionosphere peak plasma frequency. Subsurface variations in dielectric properties, can be probed for detection of dense and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts.
Standard-target calibration of an acoustic backscatter system
Foote, Kenneth G.; Martini, Marinna A.
2010-01-01
The standard-target method used to calibrate scientific echo sounders and other scientific sonars by a single, solid elastic sphere is being adapted to acoustic backscatter (ABS) systems. Its first application, to the AQUAscat 1000, is described. The on-axis sensitivity and directional properties of transducer beams at three operating frequencies, nominally 1, 2.5, and 4 MHz, have been determined using a 10-mm-diameter sphere of tungsten carbide with 6% cobalt binder. Preliminary results are reported for the 1-MHz transducer. Their application to measurements of suspended sediment made in situ with the same device is described. This will enable the data to be expressed directly in physical units of volume backscattering.
Seismic Imaging of Circumpolar Deep Water Exchange across the Shelf Break of the Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Gunn, K.; White, N.; Larter, R. D.; Falder, M.; Caulfield, C. C. P.
2016-02-01
The western Antarctic Peninsula is an area of recent extreme atmospheric warming. In the adjacent ocean, there is particular interest in on-shelf movement of Circumpolar Deep Water as a possible link to changing climate by affecting ice shelf processes. Here, we investigate on-shelf intrusions using two-dimensional seismic imaging of the water column which has vertical and horizontal resolutions of 10 m. 8 seismic profiles were acquired in February 2015 using the RRS James Clark Ross. These profiles traverse the shelf break and cross two bathymetric features, the Marguerite and Biscoe troughs, which may play a role in water exchange processes. Seismic data were acquired using two Generator-Injector air guns fired every 10 s with a pressure of 2000 psi. Reflections were recorded on a 2.4 km streamer of 192 receivers spaced every 12.5 m. Observed reflections in the processed records are caused by rapid changes of temperature ( 80%) and salinity ( 20%), delineating water masses of different properties. 13 XCTDs and XBTs plus a 38 kHz echo-sounder profile were simultaneously acquired along seismic profiles and used for calibration. Preliminary results show the top of the Winter Water layer as a bright reflection at 50-120 m depth across the entire survey, corresponding to temperatures ≤ -1°C. Curved, discontinuous, eddy-like reflections, also seen on echo-sounder profiles, are attributed to modified Upper Circumpolar Deep Water with temperatures ≥ 1.34°C. A warm core eddy, 11 km long and 220 m high, is visible 2 km inland of the shelf break. Pure Upper Circumpolar Deep Water of temperatures ≥ 1.80°C is aligned with weak but discernible, lens-shaped reflections. Eddy-like structures and the overall reflective morphology yield useful insights into shelf exchange processes, suggestive of three potential mechanisms: (i) topography controlled flow; (ii) an 'ice-pump' mechanism; and (iii) mesoscale eddies.
NASA Astrophysics Data System (ADS)
Watson, S. J.; Spain, E. A.; Coffin, M. F.; Whittaker, J. M.; Fox, J. M.; Bowie, A. R.
2016-12-01
Heard and McDonald islands (HIMI) are two active volcanic edifices on the Central Kerguelen Plateau. Scientists aboard the Heard Earth-Ocean-Biosphere Interactions voyage in early 2016 explored how this volcanic activity manifests itself near HIMI. Using Simrad EK60 split-beam echo sounder and deep tow camera data from RV Investigator, we recorded the distribution of seafloor emissions, providing the first direct evidence of seabed discharge around HIMI, mapping >244 acoustic plume signals. Northeast of Heard, three distinct plume clusters are associated with bubbles (towed camera) and the largest directly overlies a sub-seafloor opaque zone (sub-bottom profiler) with >140 zones observed within 6.5 km. Large temperature anomalies did not characterize any of the acoustic plumes where temperature data were recorded. We therefore suggest that these plumes are cold methane seeps. Acoustic properties - mean volume backscattering and target strength - and morphology - height, width, depth to surface - of plumes around McDonald resembled those northeast of Heard, also suggesting gas bubbles. We observed no bubbles on extremely limited towed camera data around McDonald; however, visibility was poor. The acoustic response of the plumes at different frequencies (120 kHz vs. 18 kHz), a technique used to classify water column scatterers, differed between HIMI, suggestiing dissimilar target size (bubble radii) distributions. Environmental context and temporal characteristics of the plumes differed between HIMI. Heard plumes were concentrated on flat, sediment rich plains, whereas around McDonald plumes emanated from sea knolls and mounds with hard volcanic seafloor. The Heard plumes were consistent temporally, while the McDonald plumes varied temporally possibly related to tides or subsurface processes. Our data and analyses suggest that HIMI acoustic plumes were likely caused by gas bubbles; however, the bubbles may originate from two or more distinct processes.
Zheng, Shuwei; Xu, Y Jun; Cheng, Heqin; Wang, Bo; Lu, Xuejun
2017-12-12
Riverbed scour of bridge piers can cause rapid loss in foundation strength, leading to sudden bridge collapse. This study used multi-beam echo sounders (Seabat 7125) to map riverbed surrounding the foundations of four major bridges in the lower, middle, and upper reaches of the 700-km Yangtze River Estuary (YRE) during June 2015 and September 2016. The high-resolution data were utilized to analyze the morphology of the bridge scour and the deformation of the wide-area riverbed (i.e., 5-18 km long and 1.3-8.3 km wide). In addition, previous bathymetric measurements collected in 1998, 2009, and 2013 were used to determine riverbed erosion and deposition at the bridge reaches. Our study shows that the scour depth surrounding the bridge foundations progressed up to 4.4-19.0 m in the YRE. Over the past 5-15 years, the total channel erosion in some river reaches was up to 15-17 m, possessing a threat to the bridge safety in the YRE. Tide cycles seemed to have resulted in significant variation in the scour morphology in the lower and middle YRE. In the lower YRE, the riverbed morphology displayed one long erosional ditch on both sides of the bridge foundations and a long-strip siltation area distributed upstream and downstream of the bridge foundations; in the middle YRE, the riverbed morphology only showed erosional morphology surrounding the bridge foundations. Large dunes caused deep cuts and steeper contours in the bridge scour. Furthermore, this study demonstrates that the high-resolution grid model formed by point cloud data of multi-beam echo sounders can clearly display the morphology of the bridge scour in terms of wide areas and that the sonar technique is a very useful tool in the assessment of bridge scours.
Gutierrez, Benjamin T.; Butman, Bradford; Blackwood, Dann S.
2001-01-01
This CD-ROM contains photographs and sediment sample analyses of the sea floor obtained at 142 sites in western Massachusetts Bay (Figure 1) during a research cruise (USGS cruise ISBL99024) aboard the Fishing Vessel (FV) Isabel S. (Figure 2) conducted July 18-21, 1999. These photographs and samples provide critical ground truth information for the interpretation of shaded relief and backscatter intensity maps created using data collected with a multibeam echo sounder system (Butman and others, in press, a, b, c; Valentine and others, in press, a, b, c). Collection of these photographs and samples was undertaken in support of a large project whose overall objective is to map and describe the sea floor of Massachusetts Bay.
Nekton Interaction Monitoring System
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-03-15
The software provides a real-time processing system for sonar to detect and track animals, and to extract water column biomass statistics in order to facilitate continuous monitoring of an underwater environment. The Nekton Interaction Monitoring System (NIMS) extracts and archives tracking and backscatter statistics data from a real-time stream of data from a sonar device. NIMS also sends real-time tracking messages over the network that can be used by other systems to generate other metrics or to trigger instruments such as an optical video camera. A web-based user interface provides remote monitoring and control. NIMS currently supports three popular sonarmore » devices: M3 multi-beam sonar (Kongsberg), EK60 split-beam echo-sounder (Simrad) and BlueView acoustic camera (Teledyne).« less
Multibeam mapping of the Pinnacles region, Gulf of Mexico
Gardner, James V.; Dartnell, Peter; Sulak, Kenneth J.
2002-01-01
Recent USGS mapping shows an extensive deep (~100 m) reef tract occurs on the Mississippi-Alabama outer continental shelf (Figure 1). The tract, known as "The Pinnacles", is apparently part of a sequence of drowned reef complexes along the "40-fathom" shelf edge of the northern Gulf of Mexico (Ludwick and Walton, 1957). It is critical to determine the accurate geomorphology of these deep-reefs because of their importance as benthic habitats for fisheries. The Pinnacles have previously been mapped using a single-beam echo sounder (Ludwick and Walton,1957), sidescan sonar (Laswell et al., 1990), and the TAMU2 towed single-beam sidescan-sonar system (Anonymous, 1999). These existing studies do not provide the quality of geomorphic data necessary for reasonable habitat studies.
Sonoki, Shiori; Shao, Huamei; Morita, Yuka; Minami, Kenji; Shoji, Jun; Hori, Masakazu; Miyashita, Kazushi
2016-01-01
Eelgrass beds are an important source of primary production in coastal ecosystems. Understanding seasonal variation in the abundance and distribution of eelgrass is important for conservation, and the objectives of this study were to 1) monitor seasonal variation in eelgrass beds using an acoustic monitoring method (Quantitative echo sounder) and 2) broadly quantify the carbon circulation function. We obtained acoustic data of eelgrass beds in coastal areas north and east of Ikunojima Island. Surveys were conducted nine times over the 3-year period from 2011 to 2013 in order to monitor seasonal variation. Acoustic data were obtained and used to estimate the spatial distribution of eelgrass by geostatistical methods. To determine supporting services, we determined carbon sink and carbon fixation by eelgrass beds using data from the National Research Institute of Fisheries and Environment of Inland Sea (2011). The height and distribution of eelgrass beds were at a maximum in May and at a minimum in November of each year. Distribution trends were different between the north and east areas. Supporting services showed the same patterns throughout the year. The area of distribution was considered to be coincident with the life history of eelgrass. Distribution differed by area and changed yearly due to the effects of bottom characteristics and wind direction. Quantifying the supporting services of eelgrass beds was shown to be useful for managing the conservation of coastal ecosystems.
Quantitative muscle ultrasound and quadriceps strength in patients with post-polio syndrome.
Bickerstaffe, Alice; Beelen, Anita; Zwarts, Machiel J; Nollet, Frans; van Dijk, Johannes P
2015-01-01
We investigated whether muscle ultrasound can distinguish muscles affected by post-polio syndrome (PPS) from healthy muscles and whether severity of ultrasound abnormalities is associated with muscle strength. Echo intensity, muscle thickness, and isometric strength of the quadriceps muscles were measured in 48 patients with PPS and 12 healthy controls. Patients with PPS had significantly higher echo intensity and lower muscle thickness than healthy controls. In patients, both echo intensity and muscle thickness were associated independently with muscle strength. A combined measure of echo intensity and muscle thickness was more strongly related to muscle strength than either parameter alone. Quantitative ultrasound distinguishes healthy muscles from those affected by PPS, and measures of muscle quality and quantity are associated with muscle strength. Hence, ultrasound could be a useful tool for assessing disease severity and monitoring changes resulting from disease progression or clinical intervention in patients with PPS. © 2014 Wiley Periodicals, Inc.
Czuba, John A.; Oberg, Kevin A.; Best, Jim L.; Parsons, Daniel R.; Simmons, S. M.; Johnson, K.K.; Malzone, C.
2009-01-01
This paper investigates the flow in the lee of a large sand dune located at the confluence of the Mississippi and Missouri Rivers, USA. Stationary profiles collected from an anchored boat using an acoustic Doppler current profiler (ADCP) were georeferenced with data from a real-time kinematic differential global positioning system. A multibeam echo sounder was used to map the bathymetry of the confluence and provided a morphological context for the ADCP measurements. The flow in the lee of a low-angle dune shows good correspondence with current conceptual models of flow over dunes. As expected, quadrant 2 events (upwellings of low-momentum fluid) are associated with high backscatter intensity. Turbulent events generated in the lower lee of a dune near the bed are associated with periods of vortex shedding and wake flapping. Remnant coherent structures that advect over the lower lee of the dune in the upper portion of the water column, have mostly dissipated and contribute little to turbulence intensities. The turbulent events that occupy most of the water column in the upper lee of the dune are associated with periods of wake flapping.
Chen, Yongsheng; Liu, Saifeng; Wang, Yu; Kang, Yan; Haacke, E Mark
2018-02-01
To provide whole brain grey matter (GM) to white matter (WM) contrast enhanced T1W (T1WE) images, multi-echo quantitative susceptibility mapping (QSM), proton density (PD) weighted images, T1 maps, PD maps, susceptibility weighted imaging (SWI), and R2* maps with minimal misregistration in scanning times <5min. Strategically acquired gradient echo (STAGE) imaging includes two fully flow compensated double echo gradient echo acquisitions with a resolution of 0.67×1.33×2.0mm 3 acquired in 5min for 64 slices. Ten subjects were recruited and scanned at 3 Tesla. The optimum pair of flip angles (6° and 24° with TR=25ms at 3T) were used for both T1 mapping with radio frequency (RF) transmit field correction and creating enhanced GM/WM contrast (the T1WE). The proposed T1WE image was created from a combination of the proton density weighted (6°, PDW) and T1W (24°) images and corrected for RF transmit field variations. Prior to the QSM calculation, a multi-echo phase unwrapping strategy was implemented using the unwrapped short echo to unwrap the longer echo to speed up computation. R2* maps were used to mask deep grey matter and veins during the iterative QSM calculation. A weighted-average sum of susceptibility maps was generated to increase the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). The proposed T1WE image has a significantly improved CNR both for WM to deep GM and WM to cortical GM compared to the acquired T1W image (the first echo of 24° scan) and the T1MPRAGE image. The weighted-average susceptibility maps have 80±26%, 55±22%, 108±33% SNR increases across the ten subjects compared to the single echo result of 17.5ms for the putamen, caudate nucleus, and globus pallidus, respectively. STAGE imaging offers the potential to create a standardized brain imaging protocol providing four pieces of quantitative tissue property information and multiple types of qualitative information in just 5min. Published by Elsevier Inc.
Yamada, Ichiro; Yoshino, Norio; Hikishima, Keigo; Miyasaka, Naoyuki; Yamauchi, Shinichi; Uetake, Hiroyuki; Yasuno, Masamichi; Saida, Yukihisa; Tateishi, Ukihide; Kobayashi, Daisuke; Eishi, Yoshinobu
2017-05-01
In this study, we aimed to evaluate the feasibility of determining the mural invasion depths of colorectal carcinomas using high-spatial-resolution (HSR) quantitative T2 mapping on a 3-T magnetic resonance (MR) scanner. Twenty colorectal specimens containing adenocarcinomas were imaged on a 3-T MR system equipped with a 4-channel phased-array surface coil. HSR quantitative T2 maps were acquired using a spin-echo sequence with a repetition time/echo time of 7650/22.6-361.6ms (16 echoes), 87×43.5-mm field of view, 2-mm section thickness, 448×224 matrix, and average of 1. HSR fast-spin-echo T2-weighted images were also acquired. Differences between the T2 values (ms) of the tumor tissue, colorectal wall layers, and fibrosis were measured, and the MR images and histopathologic findings were compared. In all specimens (20/20, 100%), the HSR quantitative T2 maps clearly depicted an 8-layer normal colorectal wall in which the T2 values of each layer differed from those of the adjacent layer(s) (P<0.001). Using this technique, fibrosis (73.6±9.4ms) and tumor tissue (104.2±6.4ms) could also be clearly differentiated (P<0.001). In 19 samples (95%), the HSR quantitative T2 maps and histopathologic data yielded the same findings regarding the tumor invasion depth. Our results indicate that 3-T HSR quantitative T2 mapping is useful for distinguishing colorectal wall layers and differentiating tumor and fibrotic tissues. Accordingly, this technique could be used to determine mural invasion by colorectal carcinomas with a high level of accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
Imaging Cerebral Microhemorrhages in Military Service Members with Chronic Traumatic Brain Injury
Liu, Wei; Soderlund, Karl; Senseney, Justin S.; Joy, David; Yeh, Ping-Hong; Ollinger, John; Sham, Elyssa B.; Liu, Tian; Wang, Yi; Oakes, Terrence R.; Riedy, Gerard
2017-01-01
Purpose To detect cerebral microhemorrhages in military service members with chronic traumatic brain injury by using susceptibility-weighted magnetic resonance (MR) imaging. The longitudinal evolution of microhemorrhages was monitored in a subset of patients by using quantitative susceptibility mapping. Materials and Methods The study was approved by the Walter Reed National Military Medical Center institutional review board and is compliant with HIPAA guidelines. All participants underwent two-dimensional conventional gradient-recalled-echo MR imaging and three-dimensional flow-compensated multi-echo gradient-recalled-echo MR imaging (processed to generate susceptibility-weighted images and quantitative susceptibility maps), and a subset of patients underwent follow-up imaging. Microhemorrhages were identified by two radiologists independently. Comparisons of microhemorrhage number, size, and magnetic susceptibility derived from quantitative susceptibility maps between baseline and follow-up imaging examinations were performed by using the paired t test. Results Among the 603 patients, cerebral microhemorrhages were identified in 43 patients, with six excluded for further analysis owing to artifacts. Seventy-seven percent (451 of 585) of the microhemorrhages on susceptibility-weighted images had a more conspicuous appearance than on gradient-recalled-echo images. Thirteen of the 37 patients underwent follow-up imaging examinations. In these patients, a smaller number of microhemorrhages were identified at follow-up imaging compared with baseline on quantitative susceptibility maps (mean ± standard deviation, 9.8 microhemorrhages ± 12.8 vs 13.7 microhemorrhages ± 16.6; P = .019). Quantitative susceptibility mapping–derived quantitative measures of microhemorrhages also decreased over time: −0.85 mm3 per day ± 1.59 for total volume (P = .039) and −0.10 parts per billion per day ± 0.14 for mean magnetic susceptibility (P = .016). Conclusion The number of microhemorrhages and quantitative susceptibility mapping–derived quantitative measures of microhemorrhages all decreased over time, suggesting that hemosiderin products undergo continued, subtle evolution in the chronic stage. PMID:26371749
Hydrographic surveys of rivers and lakes using a multibeam echosounder mapping system
Huizinga, Richard J.; Heimann, David C.
2018-06-12
A multibeam echosounder is a type of sound navigation and ranging device that uses sound waves to “see” through even murky waters. Unlike a single beam echosounder (also known as a depth sounder or fathometer) that releases a single sound pulse in a single, narrow beam and “listens” for the return echo, a multibeam system emits a multidirectional radial beam to obtain information within a fan-shaped swath. The timing and direction of the returning sound waves provide detailed information on the depth of water and the shape of the river channel, lake bottom, or any underwater features of interest. This information has been used by the U.S. Geological Survey to efficiently generate high-resolution maps of river and lake bottoms.
Nelson, Timothy R.; Miselis, Jennifer L.; Hapke, Cheryl J.; Brenner, Owen T.; Henderson, Rachel E.; Reynolds, Billy J.; Wilson, Kathleen E.
2017-05-12
Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island from May 6-20, 2015. The USGS is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach as a part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected with single-beam echo sounders and Global Positioning Systems, which were mounted to personal watercraft, along the Fire Island shoreface and within the wilderness breach. Additional bathymetry and elevation data were collected using backpack Global Positioning Systems on flood shoals and in shallow channels within the wilderness breach.
Acoustic properties of healthy and reconstructed cleft lip
NASA Astrophysics Data System (ADS)
Thijssen, Johan M.; van Hees, Nancy J.; Weijers, Gert G.; Huyskens, Rinske W.; Nillesen, Maartje; Katsaros, Christos; de Korte, Chris L.
2006-03-01
The feasibility of echographic imaging of the tissues in healthy lip and in reconstructed cleft lip and estimating the dimensions and the normalized echo level of these tissues is investigated. Echographic images of the upper lip were made with commercial medical ultrasound equipment, using a linear array transducer (7-11 MHz bandwidth) and a non-contact gel coupling. Tissue dimensions were measured by means of software calipers. Echo levels were calibrated and corrected for beam characteristics, gel path and tissue attenuation by using a tissue-mimicking phantom. At central position of philtrum, mean thickness (and standard deviation) of lip loose connective tissue layer, orbicularis oris muscle and dense connective layer was 4.0 (sd 0.1) mm, 2.3 (sd 0.7) mm, 2.2 (sd 0.7) mm, respectively, in healthy lip at rest. Mean (sd) echo level of muscle and dense connective tissue layer with respect to echo level of lip loose connective tissue layer was in relaxed condition: - 19.3 (sd 0.6) dB and - 10.7 (sd 4.0) dB, respectively. Echo level of loose connective tissue layer was +25.6 (sd 4.2) dB relative to phantom echo level obtained in the focus of the transducer. Color mode echo images were calculated, after adaptive filtering of the images, which show the tissues in separate colors and highlight the details of healthy lip and reconstructed cleft lip. Quantitative assessment of thickness and echo level of various lip tissues is feasible after proper calibration of the echographic equipment. Diagnostic potentials of the developed quantitative echographic techniques for non-invasive evaluation of the outcome of cleft lip reconstruction are promising.
NASA Astrophysics Data System (ADS)
Lin, Saulwood; Tseng, Yi-Ting; Cheng, Wan-Yen; Chou, Cheng-Tien; Chen, NeiChen; Hsieh, I.-Chih
2016-04-01
TsanYao Mud Volcano (TYMV) is the largest mud volcano cone in the Hengchun Mud Volcano Group (HCMVG), located at the upper slope of the accrretionary wedge, southwest of Taiwan. The region is under active tectonic activity with the Philippine Plate, moving northwestward at a rate of ~8 cm/year. This region also receives huge quantity of suspended particle load of ~100 mT/year at present time from adjacent small rivers of the Island of Taiwan. Large loads of suspended sediments influx become a major source of organic carbon and later gas and other hydrocarbon. Gas and fluid in the mud volcano are actively venting from deep to the sea floor on the upper slope of the accretionary wedge. In order to understand venting on the HCMVG, echo sounder, towcam and coring were carried out. Pore water sulfate, chloride, potassium, calcium, stable isotope O-18, gas compositions, dissolved sulfide were analysed. The HCMVG consists of 12 volcano cones of different sizes. Large quantity of gas and fluid are venting directly from deep to the TYMV structure high, as well as 50+ other vents as appeared as flares on the echo sounder. Some flares are reaching to the atmosphere and likely a source of green house gases to the atmosphere. Venting fluids include gas bubbles, suspended particle, mud, and breccia. Breccia size could reach more than 12 cm in diameter. Circular bands in different color appeared around the cone may represent stages of vent eruptions. Compositions of vent gas include methane, ethane and propane. High proportions of ethane and propane in the vent gas demonstrated that source of gas are thermogenic in origin. Patchy authigenic carbonate, bacterial mats, bivalves, tube worms and other chemosynthesis organisms were supported by venting gas AOM process near the sea floor. Pore water chloride concentrations show distinct variation pattern from center cone to the side of the volcano, with low in the center and high away from the cone. Pore water with higher than seawater chloride indicated gas hydrate formation in sediments away from the mud volcano cone.
Chen, Yongsheng; Liu, Saifeng; Buch, Sagar; Hu, Jiani; Kang, Yan; Haacke, E Mark
2018-04-01
To image the entire vasculature of the brain with complete suppression of signal from background tissue using a single 3D excitation interleaved rephased/dephased multi-echo gradient echo sequence. This ensures no loss of signal from fast flow and provides co-registered susceptibility weighted images (SWI) and quantitative susceptibility maps (QSM) from the same scan. The suppression of background tissue was accomplished by subtracting the flow-dephased images from the flow-rephased images with the same echo time of 12.5ms to generate a magnetic resonance angiogram and venogram (MRAV). Further, a 2.5ms flow-compensated echo was added in the rephased portion to provide sufficient signal for major arteries with fast flow. The QSM data from the rephased 12.5ms echo was used to suppress veins on the MRAV to generate an artery-only MRA. The proposed approach was tested on five healthy volunteers at 3T. This three-echo interleaved GRE sequence provided complete background suppression of stationary tissues, while the short echo data gave high signal in the internal carotid and middle cerebral arteries (MCA). The contrast-to-noise ratio (CNR) of the arteries was significantly improved in the M3 territory of the MCA compared to the non-linear subtraction MRA and TOF-MRA. Veins were suppressed successfully utilizing the QSM data. The background tissue can be properly suppressed using the proposed interleaved MRAV sequence. One can obtain whole brain MRAV, MRA, SWI, true-SWI (or tSWI) and QSM data simultaneously from a single scan. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Yamaguchi, Tadashi; Hachiya, Hiroyuki; Kamiyama, Naohisa; Moriyasu, Fuminori
2002-05-01
To realize a quantitative diagnosis of liver cirrhosis, we have been analyzing the characteristics of echo amplitude in B-mode images. Realizing the distinction between liver diseases such as liver cirrhosis and chronic hepatitis is required in the field of medical ultrasonics. In this study, we examine the spatial correlation, with the coefficient of correlation between the frames and the amplitude characteristics of each frame, using the volumetric data of RF echo signals from normal and diseased liver. It is found that there is a relationship between the tissue structure of liver and the spatial correlation of echo information.
Sonoki, Shiori; Shao, Huamei; Morita, Yuka; Minami, Kenji; Shoji, Jun; Hori, Masakazu; Miyashita, Kazushi
2016-01-01
Eelgrass beds are an important source of primary production in coastal ecosystems. Understanding seasonal variation in the abundance and distribution of eelgrass is important for conservation, and the objectives of this study were to 1) monitor seasonal variation in eelgrass beds using an acoustic monitoring method (Quantitative echo sounder) and 2) broadly quantify the carbon circulation function. We obtained acoustic data of eelgrass beds in coastal areas north and east of Ikunojima Island. Surveys were conducted nine times over the 3-year period from 2011 to 2013 in order to monitor seasonal variation. Acoustic data were obtained and used to estimate the spatial distribution of eelgrass by geostatistical methods. To determine supporting services, we determined carbon sink and carbon fixation by eelgrass beds using data from the National Research Institute of Fisheries and Environment of Inland Sea (2011). The height and distribution of eelgrass beds were at a maximum in May and at a minimum in November of each year. Distribution trends were different between the north and east areas. Supporting services showed the same patterns throughout the year. The area of distribution was considered to be coincident with the life history of eelgrass. Distribution differed by area and changed yearly due to the effects of bottom characteristics and wind direction. Quantifying the supporting services of eelgrass beds was shown to be useful for managing the conservation of coastal ecosystems. PMID:26954673
Reliability of the echoMRI infant system for water and fat measurements in newborns
USDA-ARS?s Scientific Manuscript database
The precision and accuracy of a quantitative magnetic resonance (EchoMRI Infants) system in newborns were determined. Canola oil and drinking water phantoms (increments of 10 g to 1.9 kg) were scanned four times. Instrument reproducibility was assessed from three scans (within 10 minutes) in 42 heal...
On the analysis of time-of-flight spin-echo modulated dark-field imaging data
NASA Astrophysics Data System (ADS)
Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Habicht, Klaus; Strobl, Markus
2017-06-01
Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first assessment of data quality and delaying decisions on potentially information content limiting further reduction steps to a later and better informed state, but also, as results suggest, generally better analyses. In addition the method enables to drop the spatial resolution detector requirement for non-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering.
TU-H-CAMPUS-IeP2-01: Quantitative Evaluation of PROPELLER DWI Using QIBA Diffusion Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yung, J; Ai, H; Liu, H
Purpose: The purpose of this study is to determine the quantitative variability of apparent diffusion coefficient (ADC) values when varying imaging parameters in a diffusion-weighted (DW) fast spin echo (FSE) sequence with Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) k-space trajectory. Methods: Using a 3T MRI scanner, a NIST traceable, quantitative magnetic resonance imaging (MRI) diffusion phantom (High Precision Devices, Inc, Boulder, Colorado) consisting of 13 vials filled with various concentrations of polymer polyvinylpyrrolidone (PVP) in aqueous solution was imaged with a standard Quantitative Imaging Biomarkers Alliance (QIBA) DWI spin echo, echo planar imaging (SE EPI) acquisition. Themore » same phantom was then imaged with a DWI PROPELLER sequence at varying echo train lengths (ETL) of 8, 20, and 32, as well as b-values of 400, 900, and 2000. QIBA DWI phantom analysis software was used to generate ADC maps and create region of interests (ROIs) for quantitative measurements of each vial. Mean and standard deviations of the ROIs were compared. Results: The SE EPI sequence generated ADC values that showed very good agreement with the known ADC values of the phantom (r2 = 0.9995, slope = 1.0061). The ADC values measured from the PROPELLER sequences were inflated, but were highly correlated with an r2 range from 0.8754 to 0.9880. The PROPELLER sequence with an ETL=20 and b-value of 0 and 2000 showed the closest agreement (r2 = 0.9034, slope = 0.9880). Conclusion: The DW PROPELLER sequence is promising for quantitative evaluation of ADC values. A drawback of the PROPELLER sequence is the longer acquisition time. The 180° refocusing pulses may also cause the observed increase in ADC values compared to the standard SE EPI DW sequence. However, the FSE sequence offers an advantage with in-plane motion and geometric distortion which will be investigated in future studies.« less
Processing RoxAnn sonar data to improve its categorization of lake bed surficial sediments
Cholwek, Gary; Bonde, John; Li, Xing; Richards, Carl; Yin, Karen
2000-01-01
To categorize spawning and nursery habitat for lake trout in Minnesota's near shore waters of Lake Superior, data was collected with a single beam echo sounder coupled with a RoxAnn bottom classification sensor. Test areas representative of different bottom surficial substrates were sampled. The collected data consisted of acoustic signals which showed both depth and substrate type. The location of the signals was tagged in real-time with a DGPS. All data was imported into a GIS database. To better interpret the output signal from the RoxAnn, several pattern classifiers were developed by multivariate statistical method. From the data a detailed and accurate map of lake bed bathymetry and surficial substrate types was produced. This map will be of great value to fishery and other natural resource managers.
Bathymetry of Clear Creek Reservoir, Chaffee County, Colorado, 2016
Kohn, Michael S.; Kinzel, Paul J.; Mohrmann, Jacob S.
2017-03-06
To better characterize the water supply capacity of Clear Creek Reservoir, Chaffee County, Colorado, the U.S. Geological Survey, in cooperation with the Pueblo Board of Water Works and Colorado Mountain College, carried out a bathymetry survey of Clear Creek Reservoir. A bathymetry map of the reservoir is presented here with the elevation-surface area and the elevation-volume relations. The bathymetry survey was carried out June 6–9, 2016, using a man-operated boat-mounted, multibeam echo sounder integrated with a Global Positioning System and a terrestrial survey using real-time kinematic Global Navigation Satellite Systems. The two collected datasets were merged and imported into geographic information system software. The equipment and methods used in this study allowed water-resource managers to maintain typical reservoir operations, eliminating the need to empty the reservoir to carry out the survey.
Seafloor geology and benthic habitats, San Pedro Shelf, southern California
Wong, Florence L.; Dartnell, Peter; Edwards, Brian D.; Phillips, Eleyne L.
2012-01-01
Seafloor samples, videography, still photography, and real-time descriptions of geologic and biologic constituents at or near the seafloor of the San Pedro Shelf, southern California, advance the study of natural and man-made processes on this coastal area off the metropolitan Los Angeles area. Multibeam echo-sounder data collected by the U.S. Geological Survey in 1998 and 1999 guided sampling and camera work in 2004 resulting in a new seafloor character map that shows possible benthic habitats in much higher resolution (4- and 16-m pixels) than previously available. The seafloor is characterized by primarily muddy sand and sand with outcrops of Miocene and Pliocene bedrock along the Palos Verdes Fault Zone. Observed benthic populations indicate low abiotic complexity, low biotic complexity, and low biotic coverage. The data are provided for use in geographic information systems (GIS).
Nelson, Timothy R.; Miselis, Jennifer L.; Hapke, Cheryl J.; Wilson, Kathleen E.; Henderson, Rachel E.; Brenner, Owen T.; Reynolds, Billy J.; Hansen, Mark E.
2016-08-02
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, collected bathymetric data along the upper shoreface and within the wilderness breach at Fire Island, New York, in June 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the shoreface along Fire Island and model the evolution of the wilderness breach as a part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry was collected with single-beam echo sounders and global positioning systems, mounted to personal watercraft, along the Fire Island shoreface and within the wilderness breach. Additional bathymetry was collected using backpack global positioning systems along the flood shoals and shallow channels within the wilderness breach.
Alizai, Hamza; Nardo, Lorenzo; Karampinos, Dimitrios C; Joseph, Gabby B; Yap, Samuel P; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M
2012-07-01
The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Sixty-two women (age 61 ± 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P < 0.0001, R values ranging from 0.79 to 0.88). Goutallier grades 0-4 had a fat fraction ranging from 3.5 to 19%. Intra-observer and inter-observer agreement values of 0.83 and 0.81 were calculated for the semi-quantitative grading. Semi-quantitative grading of intramuscular fat and quantitative fat fraction were significantly correlated and both techniques had excellent reproducibility. However, the clinical grading was found to overestimate muscle fat. Fat infiltration of muscle commonly occurs in many metabolic and neuromuscular diseases. • Image-based semi-quantitative classifications for assessing fat infiltration are not well validated. • Quantitative MRI techniques provide an accurate assessment of muscle fat.
Psychoacoustic influences of the echoing environments of prehistoric art
NASA Astrophysics Data System (ADS)
Waller, Steven J.
2002-11-01
Cave paintings and ancient petroglyphs around the world are typically found in echo rich locations such as caves, canyons, and rocky cliff faces. Analysis of field data shows that echo decibel levels at a large number of prehistoric art sites are higher than those at nondecorated locations. The selection of these echoing environments by the artists appears not to be a mere coincidence. This paper considers the perception of an echoed sound as a psychoacoustic event that would have been inexplicable to ancient humans. A variety of ancient legends from cultures on several continents attribute the phenomenon of echoes to supernatural beings. These legends, together with the quantitative data, strongly implicate echoing as relevant to the artists of the past. The notion that the echoes were caused by spirits within the rock would explain not only the unusual locations of prehistoric art, but also the perplexing subject matter. For example, the common theme of hoofed animal imagery could have been inspired by echoes of percussion noises perceived as hoof beats. Further systematic acoustical studies of prehistoric art sites is warranted. Conservation of the natural acoustic properties of rock art environments--a previously unrecognized need--is urged.
Turbulence Characterization and Control
1975-07-01
backscatter experiment, measures the returns from density fluctuations over the lower 1000 ft. of the atmosphere. Microthermal sensors measure local... microthermal sensors mentioned above provide useful data of this type. In additiona an optical experiment capable of making quantitative...analysis of these data has been completed. During some of these experimental runs, microthermal and acoustic sounder data was also col- lected by
Nardo, Lorenzo; Karampinos, Dimitrios C.; Joseph, Gabby B.; Yap, Samuel P.; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M.
2013-01-01
Objective The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Methods Sixty-two women (age 61±6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. Results A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P<0.0001, R values ranging from 0.79 to 0.88). Goutallier grades 0–4 had a fat fraction ranging from 3.5 to 19%. Intra-observer and inter-observer agreement values of 0.83 and 0.81 were calculated for the semi-quantitative grading. Conclusion Semi-quantitative grading of intramuscular fat and quantitative fat fraction were significantly correlated and both techniques had excellent reproducibility. However, the clinical grading was found to overestimate muscle fat. PMID:22411305
Takahashi, Kohji; Sawada, Hideki; Murakami, Hiroaki; Tsuji, Satsuki; Hashizume, Hiroki; Kubonaga, Shou; Horiuchi, Tomoya; Hongo, Masamichi; Nishida, Jo; Okugawa, Yuta; Fujiwara, Ayaka; Fukuda, Miho; Hidaka, Shunsuke; Suzuki, Keita W.; Miya, Masaki; Araki, Hitoshi; Yamanaka, Hiroki; Maruyama, Atsushi; Miyashita, Kazushi; Masuda, Reiji; Minamoto, Toshifumi; Kondoh, Michio
2016-01-01
Recent studies in streams and ponds have demonstrated that the distribution and biomass of aquatic organisms can be estimated by detection and quantification of environmental DNA (eDNA). In more open systems such as seas, it is not evident whether eDNA can represent the distribution and biomass of aquatic organisms because various environmental factors (e.g., water flow) are expected to affect eDNA distribution and concentration. To test the relationships between the distribution of fish and eDNA, we conducted a grid survey in Maizuru Bay, Sea of Japan, and sampled surface and bottom waters while monitoring biomass of the Japanese jack mackerel (Trachurus japonicus) using echo sounder technology. A linear model showed a high R2 value (0.665) without outlier data points, and the association between estimated eDNA concentrations from the surface water samples and echo intensity was significantly positive, suggesting that the estimated spatial variation in eDNA concentration can reflect the local biomass of the jack mackerel. We also found that a best-fit model included echo intensity obtained within 10–150 m from water sampling sites, indicating that the estimated eDNA concentration most likely reflects fish biomass within 150 m in the bay. Although eDNA from a wholesale fish market partially affected eDNA concentration, we conclude that eDNA generally provides a ‘snapshot’ of fish distribution and biomass in a large area. Further studies in which dynamics of eDNA under field conditions (e.g., patterns of release, degradation, and diffusion of eDNA) are taken into account will provide a better estimate of fish distribution and biomass based on eDNA. PMID:26933889
Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P
2014-01-01
In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.
Mulkern, Robert V; Balasubramanian, Mukund; Mitsouras, Dimitrios
2014-07-30
To determine whether Lorentzian or Gaussian intra-voxel frequency distributions are better suited for modeling data acquired with gradient-echo sampling of single spin-echoes for the simultaneous characterization of irreversible and reversible relaxation rates. Clinical studies (e.g., of brain iron deposition) using such acquisition schemes have typically assumed Lorentzian distributions. Theoretical expressions of the time-domain spin-echo signal for intra-voxel Lorentzian and Gaussian distributions were used to fit data from a human brain scanned at both 1.5 Tesla (T) and 3T, resulting in maps of irreversible and reversible relaxation rates for each model. The relative merits of the Lorentzian versus Gaussian model were compared by means of quality of fit considerations. Lorentzian fits were equivalent to Gaussian fits primarily in regions of the brain where irreversible relaxation dominated. In the multiple brain regions where reversible relaxation effects become prominent, however, Gaussian fits were clearly superior. The widespread assumption that a Lorentzian distribution is suitable for quantitative transverse relaxation studies of the brain should be reconsidered, particularly at 3T and higher field strengths as reversible relaxation effects become more prominent. Gaussian distributions offer alternate fits of experimental data that should prove quite useful in general. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
Sublacustrine river valley in the shelf zone of the Black Sea parallel to the Bulgarian coast
NASA Astrophysics Data System (ADS)
Preisinger, A.; Aslanian, S.; Beigelbeck, R.; Heinitz, W.-D.
2009-04-01
The considered sublacustrine river valley is situated in the shelf zone of the Black Sea. It runs in parallel to the Bulgarian coast, was formed in the time period of the Younger Dryas (Preisinger et al., 2005), and features an inclination of about 0.5 m/km. An about 200 km long sediment wall separates the approximately 10 km broad river valley from the outside shelf zone. This wall was generated during the Older Dryas until the beginning of the Younger Dryas. Its shape was formed by transportation of water and sediment from the Strait of Kerch by a circulating rim current in the Black Sea and water as well as sediment flow of the Danube in direction to the Bosporus. New investigations of the sediments of this river valley were performed by utilizing a Sediment Echo Sounder (SES 2000). This Echo Sounder is a parametric sub-bottom profiler enabling a high resolution sub-bottom analyses. It is capable of penetrating sea beds up to more than 50 m of water depth. The received echo data are real-time processed. The signal amplitudes are valuated in context to a logarithmic scale and graphically visualized by means of a colorized echogram utilizing false colours ranging from red for a high to blue representing a low signal (W.-D. Heinitz et al., 1998). The highest signal (red) is given by the acoustic impedance of the boundary between sea water and river sediment. The echograms of the river valley depict spatially isolated (red) high-signal peaks, which are periodically repeated in vertical direction between the sediment surface and the bottom of the valley. The number of these high-signal parts increase with an increasing valley depth. Studying of the distribution of these peaks allows to draw conclusions regarding the content and composition of the sediment. This prediction of the sediment composition obtained by means of the SES 2000 was successfully verified by analyzing a gravity core taken near Nos Maslen (at 44 m water depth) with a particular focus on the water content. The first 36 cm of the core exhibited the highest water content of 40%. A similar result was found by utilizing quantitative analyses on the basis of framboidal greigites (Fe3S4) in sulfat-reducing bacteria, which show a minimum in this part. The results achieved by our SES-based sediment analysis method enable an insight into the evolution of the sublacustrine river valley. For example, they revealed that the sediment layers are asymmetrically deposited regarding the vertical centre of the river's cross section. This effect can be attributed to Baer-Babinet's law, which is, in this particular case, a direct consequence of the Coriolis forces acting on the counterclockwise flowing rim current near the coast line of the Bulgarian Black Sea (Einstein, 1926). Another important result of our analysis is the localization of different periods which took place since the entrance of water from the Marmara Sea over the Bosporus 9.300 years ago. They are identified by different water and greigites contents and last 352 ± 16 years. References: Preisinger, A., Aslanian, S., Heinitz, W.-D., 2005. The formation of a sublacustrine river valley in the Bulgarian shelf zone of the Black Sea. EGU-Meeting, Vienna, April 2005. Heinitz, W.-D., Ewert, J., Wunderlich, J., 1998. DSP-gestützte Signalverarbeitung im Sediment-Echolot-System SES-96, 9. Symposium Maritime Elektronik, Tagungsband, Rostock 1998. Einstein, A., 1926. Die Ursache der Mäanderbildung der Flussläufe und des sogenannten Baerschen Gesetzes. Die Naturwissenschaften, Volume 2, p.223-224.
Cho, Junghun; Kee, Youngwook; Spincemaille, Pascal; Nguyen, Thanh D; Zhang, Jingwei; Gupta, Ajay; Zhang, Shun; Wang, Yi
2018-03-07
To map the cerebral metabolic rate of oxygen (CMRO 2 ) by estimating the oxygen extraction fraction (OEF) from gradient echo imaging (GRE) using phase and magnitude of the GRE data. 3D multi-echo gradient echo imaging and perfusion imaging with arterial spin labeling were performed in 11 healthy subjects. CMRO 2 and OEF maps were reconstructed by joint quantitative susceptibility mapping (QSM) to process GRE phases and quantitative blood oxygen level-dependent (qBOLD) modeling to process GRE magnitudes. Comparisons with QSM and qBOLD alone were performed using ROI analysis, paired t-tests, and Bland-Altman plot. The average CMRO 2 value in cortical gray matter across subjects were 140.4 ± 14.9, 134.1 ± 12.5, and 184.6 ± 17.9 μmol/100 g/min, with corresponding OEFs of 30.9 ± 3.4%, 30.0 ± 1.8%, and 40.9 ± 2.4% for methods based on QSM, qBOLD, and QSM+qBOLD, respectively. QSM+qBOLD provided the highest CMRO 2 contrast between gray and white matter, more uniform OEF than QSM, and less noisy OEF than qBOLD. Quantitative CMRO 2 mapping that fits the entire complex GRE data is feasible by combining QSM analysis of phase and qBOLD analysis of magnitude. © 2018 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Ochałek, Agnieszka; Lipecki, Tomasz; Jaśkowski, Wojciech; Jabłoński, Mateusz
2018-03-01
The significant part of the hydrography is bathymetry, which is the empirical part of it. Bathymetry is the study of underwater depth of waterways and reservoirs, and graphic presentation of measured data in form of bathymetric maps, cross-sections and three-dimensional bottom models. The bathymetric measurements are based on using Global Positioning System and devices for hydrographic measurements - an echo sounder and a side sonar scanner. In this research authors focused on introducing the case of obtaining and processing the bathymetrical data, building numerical bottom models of two post-mining reclaimed water reservoirs: Dwudniaki Lake in Wierzchosławice and flooded quarry in Zabierzów. The report includes also analysing data from still operating mining water reservoirs located in Poland to depict how bathymetry can be used in mining industry. The significant issue is an integration of bathymetrical data and geodetic data from tachymetry, terrestrial laser scanning measurements.
Advances in Inner Magnetosphere Passive and Active Wave Research
NASA Technical Reports Server (NTRS)
Green, James L.; Fung, Shing F.
2004-01-01
This review identifies a number of the principal research advancements that have occurred over the last five years in the study of electromagnetic (EM) waves in the Earth's inner magnetosphere. The observations used in this study are from the plasma wave instruments and radio sounders on Cluster, IMAGE, Geotail, Wind, Polar, Interball, and others. The data from passive plasma wave instruments have led to a number of advances such as: determining the origin and importance of whistler mode waves in the plasmasphere, discovery of the source of kilometric continuum radiation, mapping AKR source regions with "pinpoint" accuracy, and correlating the AKR source location with dipole tilt angle. Active magnetospheric wave experiments have shown that long range ducted and direct echoes can be used to obtain the density distribution of electrons in the polar cap and along plasmaspheric field lines, providing key information on plasmaspheric filling rates and polar cap outflows.
The aluminum ordering in aluminosilicates: a dipolar 27Al NMR spectroscopy study.
Gee, Becky A
2004-01-01
The spatial ordering of aluminum atoms in CsAl(SiO3)2 and 3Al2O3.2SiO2 was probed by 27Al dipolar solid-state NMR spectroscopy. The 27Al response to a Hahn spin-echo pulse sequence in a series of aluminum-containing model crystalline compounds demonstrates that quantitative 27Al homonuclear dipolar second moments can be obtained to within +/-20% of the theoretical values, if evaluation of the spin-echo response curve is limited to short evolution periods (2t1 < or = 0.10 ms). Additionally, selective excitation of the central transition m = 1/2 --> -1/2 is necessary in order to ensure quantitative results. Restriction of spin exchange affecting the dephasing of the magnetization may decelerate the spin-echo decay at longer evolution periods. Considering these restraints, the method was used to probe the spatial distribution of aluminum atoms among the tetrahedral sites in two aluminosilicate materials. Experimental 27Al spin-echo response data for the aluminosilicates CsAl(SiO3)2 (synthetic pollucite) and 3Al2O3.2SiO2 (mullite) are compared with theoretical data based on (I) various degrees of aluminum-oxygen-aluminum bond formation among tetrahedrally coordinated aluminum atoms (Al(T(d) )-O-Al(T(d) )) and (II) the maximum avoidance of Al(T(d) )-O-Al(T(d) ) bonding. Analysis of the second moment values and resulting echo decay responses suggests that partial suppression of spin exchange among aluminum atoms in crystallographically distinct sites may contribute to the 27Al spin echo decay in 3Al2O3.2SiO2, thus complicating quantitative analysis of the data. Silicon-29 and aluminum-27 magic angle spinning (MAS) NMR spectra of 3Al2O3.2SiO2 are consistent with those previously reported. The experimental 27Al spin-echo response behavior of CsAl(SiO3)2 differs from the theoretical response behavior based on the maximum avoidance of Al-O-Al bonding between tetrahedral aluminum sites in CsAl(SiO3)2. A single unresolved resonance is observed in both the silicon-29 and aluminum-27 MAS spectra of CsAl(SiO3)2. Copyright 2003 John Wiley & Sons, Ltd.
A satellite-based radar wind sensor
NASA Technical Reports Server (NTRS)
Xin, Weizhuang
1991-01-01
The objective is to investigate the application of Doppler radar systems for global wind measurement. A model of the satellite-based radar wind sounder (RAWS) is discussed, and many critical problems in the designing process, such as the antenna scan pattern, tracking the Doppler shift caused by satellite motion, and backscattering of radar signals from different types of clouds, are discussed along with their computer simulations. In addition, algorithms for measuring mean frequency of radar echoes, such as the Fast Fourier Transform (FFT) estimator, the covariance estimator, and the estimators based on autoregressive models, are discussed. Monte Carlo computer simulations were used to compare the performance of these algorithms. Anti-alias methods are discussed for the FFT and the autoregressive methods. Several algorithms for reducing radar ambiguity were studied, such as random phase coding methods and staggered pulse repitition frequncy (PRF) methods. Computer simulations showed that these methods are not applicable to the RAWS because of the broad spectral widths of the radar echoes from clouds. A waveform modulation method using the concept of spread spectrum and correlation detection was developed to solve the radar ambiguity. Radar ambiguity functions were used to analyze the effective signal-to-noise ratios for the waveform modulation method. The results showed that, with suitable bandwidth product and modulation of the waveform, this method can achieve the desired maximum range and maximum frequency of the radar system.
NASA Technical Reports Server (NTRS)
Shenk, W. E.; Adler, R. F.; Chesters, D.; Susskind, J.; Uccellini, L.
1984-01-01
The measurements from current and planned geosynchronous satellites provide quantitative estimates of temperature and moisture profiles, surface temperature, wind, cloud properties, and precipitation. A number of significant observation characteristics remain, they include: (1) temperature and moisture profiles in cloudy areas; (2) high vertical profile resolution; (3) definitive precipitation area mapping and precipitation rate estimates on the convective cloud scale; (4) winds from low level cloud motions at night; (5) the determination of convective cloud structure; and (6) high resolution surface temperature determination. Four major new observing capabilities are proposed to overcome these deficiencies: a microwave sounder/imager, a high resolution visible and infrared imager, a high spectral resolution infrared sounder, and a total ozone mapper. It is suggested that the four sensors are flown together and used to support major mesoscale and short range forecasting field experiments.
Addressing Phase Errors in Fat-Water Imaging Using a Mixed Magnitude/Complex Fitting Method
Hernando, D.; Hines, C. D. G.; Yu, H.; Reeder, S.B.
2012-01-01
Accurate, noninvasive measurements of liver fat content are needed for the early diagnosis and quantitative staging of nonalcoholic fatty liver disease. Chemical shift-based fat quantification methods acquire images at multiple echo times using a multiecho spoiled gradient echo sequence, and provide fat fraction measurements through postprocessing. However, phase errors, such as those caused by eddy currents, can adversely affect fat quantification. These phase errors are typically most significant at the first echo of the echo train, and introduce bias in complex-based fat quantification techniques. These errors can be overcome using a magnitude-based technique (where the phase of all echoes is discarded), but at the cost of significantly degraded signal-to-noise ratio, particularly for certain choices of echo time combinations. In this work, we develop a reconstruction method that overcomes these phase errors without the signal-to-noise ratio penalty incurred by magnitude fitting. This method discards the phase of the first echo (which is often corrupted) while maintaining the phase of the remaining echoes (where phase is unaltered). We test the proposed method on 104 patient liver datasets (from 52 patients, each scanned twice), where the fat fraction measurements are compared to coregistered spectroscopy measurements. We demonstrate that mixed fitting is able to provide accurate fat fraction measurements with high signal-to-noise ratio and low bias over a wide choice of echo combinations. PMID:21713978
Cerebral Microbleeds: Burden Assessment by Using Quantitative Susceptibility Mapping
Liu, Tian; Surapaneni, Krishna; Lou, Min; Cheng, Liuquan; Spincemaille, Pascal
2012-01-01
Purpose: To assess quantitative susceptibility mapping (QSM) for reducing the inconsistency of standard magnetic resonance (MR) imaging sequences in measurements of cerebral microbleed burden. Materials and Methods: This retrospective study was HIPAA compliant and institutional review board approved. Ten patients (5.6%) were selected from among 178 consecutive patients suspected of having experienced a stroke who were imaged with a multiecho gradient-echo sequence at 3.0 T and who had cerebral microbleeds on T2*-weighted images. QSM was performed for various ranges of echo time by using both the magnitude and phase components in the morphology-enabled dipole inversion method. Cerebral microbleed size was measured by two neuroradiologists on QSM images, T2*-weighted images, susceptibility-weighted (SW) images, and R2* maps calculated by using different echo times. The sum of susceptibility over a region containing a cerebral microbleed was also estimated on QSM images as its total susceptibility. Measurement differences were assessed by using the Student t test and the F test; P < .05 was considered to indicate a statistically significant difference. Results: When echo time was increased from approximately 20 to 40 msec, the measured cerebral microbleed volume increased by mean factors of 1.49 ± 0.86 (standard deviation), 1.64 ± 0.84, 2.30 ± 1.20, and 2.30 ± 1.19 for QSM, R2*, T2*-weighted, and SW images, respectively (P < .01). However, the measured total susceptibility with QSM did not show significant change over echo time (P = .31), and the variation was significantly smaller than any of the volume increases (P < .01 for each). Conclusion: The total susceptibility of a cerebral microbleed measured by using QSM is a physical property that is independent of echo time. © RSNA, 2011 PMID:22056688
Gilbert, Guillaume; Savard, Geneviève; Bard, Céline; Beaudoin, Gilles
2012-06-01
The aim of this study was to investigate the benefits arising from the use of a multiecho sequence for susceptibility-weighted phase imaging using a quantitative comparison with a standard single-echo acquisition. Four healthy adult volunteers were imaged on a clinical 3-T system using a protocol comprising two different three-dimensional susceptibility-weighted gradient-echo sequences: a standard single-echo sequence and a multiecho sequence. Both sequences were repeated twice in order to evaluate the local noise contribution by a subtraction of the two acquisitions. For the multiecho sequence, the phase information from each echo was independently unwrapped, and the background field contribution was removed using either homodyne filtering or the projection onto dipole fields method. The phase information from all echoes was then combined using a weighted linear regression. R2 maps were also calculated from the multiecho acquisitions. The noise standard deviation in the reconstructed phase images was evaluated for six manually segmented regions of interest (frontal white matter, posterior white matter, globus pallidus, putamen, caudate nucleus and lateral ventricle). The use of the multiecho sequence for susceptibility-weighted phase imaging led to a reduction of the noise standard deviation for all subjects and all regions of interest investigated in comparison to the reference single-echo acquisition. On average, the noise reduction ranged from 18.4% for the globus pallidus to 47.9% for the lateral ventricle. In addition, the amount of noise reduction was found to be strongly inversely correlated to the estimated R2 value (R=-0.92). In conclusion, the use of a multiecho sequence is an effective way to decrease the noise contribution in susceptibility-weighted phase images, while preserving both contrast and acquisition time. The proposed approach additionally permits the calculation of R2 maps. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Stamper, R.; Davis, C. J.; Bradford, W. J.; Hapgood, M. A.; McCrea, I. W.
2009-04-01
Ionosondes continue to be important for the study of the ionosphere; they are relatively cheap and simple to install and operate, so can be distributed widely across the globe; they can give information on plasma density, structure and motion; their direct measurements of electron densities are also important for calibrating other more complicated observation methods such as incoherent scatter radar, satellite beacon tomography and radio occultation. The low cost of sounders, however, is relative to facilities such as space-based instrumentation and incoherent scatter radars; one type of ionosonde widely used for monitoring costs in excess of €150,000, representing a significant investment for many organisations. A new instrument design is under development at RAL for a low-power sounder using pulse-coding techniques to get good signal-to-noise. The design uses COTS components wherever possible, and has a projected cost in the region of €6,000 for the simplest version, making such a system accessible to all. The design is tiered so that the simplest version would give information about layer heights and electron densities, but adding multiple receivers would enable plasma velocities and echo direction to be determined, increasing the science output. The intention is that sounders of this new design be installed widely, in particular in developing nations. This would be especially beneficial for study of the equatorial and low-latitude ionosphere, which is relatively poorly understood because of a relative lack of instrumentation in this region. A wide range of studies would be enabled or enhanced by a much denser network of ionosondes across Africa, South America and Asia including: study of planetary-scale oscillations and gravity waves in the ionosphere; investigation of longitudinal variation in the equatorial electrojet and equatorial anomaly; examination of mechanisms for vertical coupling in the atmosphere with, for example, global thunderstorm activity being concentrated in Africa and South America; the study of ionospheric scintillation mechanisms and occurrence in the equatorial region; thorough characterisation of ionospheric variability on a wide range of spatial and temporal scales across a wide range of longitudes.
NASA Astrophysics Data System (ADS)
Stamper, R.; Davis, C.; Bradford, J.
2005-12-01
Ionosondes continue to be important for the study of the ionosphere; they are relatively cheap and simple to install and operate, so can be distributed widely across the globe; they can give information on plasma density, structure and motion; their direct measurements of electron densities are also important for calibrating other more complicated observation methods such as incoherent scatter radar, satellite beacon tomography and radio occultation. The low cost of sounders, however, is relative to facilities such as space-based instrumentation and incoherent scatter radars; one type of ionosonde widely used for monitoring costs in excess of 200,000, representing a significant investment for many organisations. A new instrument design is under development at RAL for a low-power sounder using pulse-coding techniques to get good signal-to-noise. The design uses COTS components wherever possible, and has a projected cost in the region of 7,500 for the simplest version, making such a system accessible to all. The design is tiered so that the simplest version would give information about layer heights and electron densities, but adding multiple receivers would enable plasma velocities and echo direction to be determined, increasing the science output. The intention is that sounders of this new design be installed widely, in particular in developing nations. This would be especially beneficial for study of the equatorial and low-latitude ionosphere, which is relatively poorly understood because of a relative lack of instrumentation in this region. A wide range of studies would be enabled or enhanced by a much denser network of ionosondes across Africa, South America and Asia including: study of planetary-scale oscillations and gravity waves in the ionosphere; investigation of longitudinal variation in the equatorial electrojet and equatorial anomaly; examination of mechanisms for vertical coupling in the atmosphere with, for example, global thunderstorm activity being concentrated in Africa and South America; the study of ionospheric scintillation mechanisms and occurrence in the equatorial region; thorough characterisation of ionospheric variability on a wide range of spatial and temporal scales across a wide range of longitudes.
Results of a joint NOAA/NASA sounder simulation study
NASA Technical Reports Server (NTRS)
Phillips, N.; Susskind, Joel; Mcmillin, L.
1988-01-01
This paper presents the results of a joint NOAA and NASA sounder simulation study in which the accuracies of atmospheric temperature profiles and surface skin temperature measuremnents retrieved from two sounders were compared: (1) the currently used IR temperature sounder HIRS2 (High-resolution Infrared Radiation Sounder 2); and (2) the recently proposed high-spectral-resolution IR sounder AMTS (Advanced Moisture and Temperature Sounder). Simulations were conducted for both clear and partial cloud conditions. Data were analyzed at NASA using a physical inversion technique and at NOAA using a statistical technique. Results show significant improvement of AMTS compared to HIRS2 for both clear and cloudy conditions. The improvements are indicated by both methods of data analysis, but the physical retrievals outperform the statistical retrievals.
Lankford, Christopher L; Does, Mark D
2018-02-01
Quantitative MRI may require correcting for nuisance parameters which can or must be constrained to independently measured or assumed values. The noise and/or bias in these constraints propagate to fitted parameters. For example, the case of refocusing pulse flip angle constraint in multiple spin echo T 2 mapping is explored. An analytical expression for the mean-squared error of a parameter of interest was derived as a function of the accuracy and precision of an independent estimate of a nuisance parameter. The expression was validated by simulations and then used to evaluate the effects of flip angle (θ) constraint on the accuracy and precision of T⁁2 for a variety of multi-echo T 2 mapping protocols. Constraining θ improved T⁁2 precision when the θ-map signal-to-noise ratio was greater than approximately one-half that of the first spin echo image. For many practical scenarios, constrained fitting was calculated to reduce not just the variance but the full mean-squared error of T⁁2, for bias in θ⁁≲6%. The analytical expression derived in this work can be applied to inform experimental design in quantitative MRI. The example application to T 2 mapping provided specific cases, depending on θ⁁ accuracy and precision, in which θ⁁ measurement and constraint would be beneficial to T⁁2 variance or mean-squared error. Magn Reson Med 79:673-682, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Imaging Cerebral Microhemorrhages in Military Service Members with Chronic Traumatic Brain Injury.
Liu, Wei; Soderlund, Karl; Senseney, Justin S; Joy, David; Yeh, Ping-Hong; Ollinger, John; Sham, Elyssa B; Liu, Tian; Wang, Yi; Oakes, Terrence R; Riedy, Gerard
2016-02-01
To detect cerebral microhemorrhages in military service members with chronic traumatic brain injury by using susceptibility-weighted magnetic resonance (MR) imaging. The longitudinal evolution of microhemorrhages was monitored in a subset of patients by using quantitative susceptibility mapping. The study was approved by the Walter Reed National Military Medical Center institutional review board and is compliant with HIPAA guidelines. All participants underwent two-dimensional conventional gradient-recalled-echo MR imaging and three-dimensional flow-compensated multiecho gradient-recalled-echo MR imaging (processed to generate susceptibility-weighted images and quantitative susceptibility maps), and a subset of patients underwent follow-up imaging. Microhemorrhages were identified by two radiologists independently. Comparisons of microhemorrhage number, size, and magnetic susceptibility derived from quantitative susceptibility maps between baseline and follow-up imaging examinations were performed by using the paired t test. Among the 603 patients, cerebral microhemorrhages were identified in 43 patients, with six excluded for further analysis owing to artifacts. Seventy-seven percent (451 of 585) of the microhemorrhages on susceptibility-weighted images had a more conspicuous appearance than on gradient-recalled-echo images. Thirteen of the 37 patients underwent follow-up imaging examinations. In these patients, a smaller number of microhemorrhages were identified at follow-up imaging compared with baseline on quantitative susceptibility maps (mean ± standard deviation, 9.8 microhemorrhages ± 12.8 vs 13.7 microhemorrhages ± 16.6; P = .019). Quantitative susceptibility mapping-derived quantitative measures of microhemorrhages also decreased over time: -0.85 mm(3) per day ± 1.59 for total volume (P = .039) and -0.10 parts per billion per day ± 0.14 for mean magnetic susceptibility (P = .016). The number of microhemorrhages and quantitative susceptibility mapping-derived quantitative measures of microhemorrhages all decreased over time, suggesting that hemosiderin products undergo continued, subtle evolution in the chronic stage. © RSNA, 2015.
Research of laser echo signal simulator
NASA Astrophysics Data System (ADS)
Xu, Rui; Shi, Rui; Wang, Xin; Li, Zhou
2015-11-01
Laser echo signal simulator is one of the most significant components of hardware-in-the-loop (HWIL) simulation systems for LADAR. System model and time series model of laser echo signal simulator are established. Some influential factors which could induce fixed error and random error on the simulated return signals are analyzed, and then these system insertion errors are analyzed quantitatively. Using this theoretical model, the simulation system is investigated experimentally. The results corrected by subtracting fixed error indicate that the range error of the simulated laser return signal is less than 0.25m, and the distance range that the system can simulate is from 50m to 20km.
NASA Astrophysics Data System (ADS)
Mori, Shohei; Hirata, Shinnosuke; Yamaguchi, Tadashi; Hachiya, Hiroyuki
To develop a quantitative diagnostic method for liver fibrosis using an ultrasound B-mode image, a probability imaging method of tissue characteristics based on a multi-Rayleigh model, which expresses a probability density function of echo signals from liver fibrosis, has been proposed. In this paper, an effect of non-speckle echo signals on tissue characteristics estimated from the multi-Rayleigh model was evaluated. Non-speckle signals were determined and removed using the modeling error of the multi-Rayleigh model. The correct tissue characteristics of fibrotic tissue could be estimated with the removal of non-speckle signals.
High Resolution Qualitative and Quantitative MR Evaluation of the Glenoid Labrum
Iwasaki, Kenyu; Tafur, Monica; Chang, Eric Y.; SherondaStatum; Biswas, Reni; Tran, Betty; Bae, Won C.; Du, Jiang; Bydder, Graeme M.; Chung, Christine B.
2015-01-01
Objective To implement qualitative and quantitative MR sequences for the evaluation of labral pathology. Methods Six glenoid labra were dissected and the anterior and posterior portions were divided into normal, mildly degenerated, or severely degenerated groups using gross and MR findings. Qualitative evaluation was performed using T1-weighted, proton density-weighted (PD), spoiled gradient echo (SPGR) and ultra-short echo time (UTE) sequences. Quantitative evaluation included T2 and T1rho measurements as well as T1, T2*, and T1rho measurements acquired with UTE techniques. Results SPGR and UTE sequences best demonstrated labral fiber structure. Degenerated labra had a tendency towards decreased T1 values, increased T2/T2* values and increased T1 rho values. T2* values obtained with the UTE sequence allowed for delineation between normal, mildly degenerated and severely degenerated groups (p<0.001). Conclusion Quantitative T2* measurements acquired with the UTE technique are useful for distinguishing between normal, mildly degenerated and severely degenerated labra. PMID:26359581
NASA Astrophysics Data System (ADS)
Bilitza, Dieter; Huang, Xueqin; Reinisch, Bodo W.; Benson, Robert F.; Hills, H. Kent; Schar, William B.
2004-02-01
The United States/Canadian ISIS-1 and ISIS-2 satellites collected several million topside ionograms in the 1960s and 1970s with a multinational network of ground stations that provided good global coverage. However, processing of these ionograms into electron density profiles required time-consuming manual scaling of the traces from the analog ionograms, and as a result, only a few percent of the ionograms had been processed into electron density profiles. In recent years an effort began to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2002, approximately 390,000 ISIS-1 and ISIS-2 digital topside-sounder ionograms have been produced. The Topside Ionogram Scaler With True Height Algorithm (TOPIST) program was developed for the automated scaling of the echo traces and for the inversion of these traces into topside electron density profiles. The program is based on the techniques that have been successfully applied in the analysis of ground-based Digisonde ionograms. The TOPIST software also includes an "editing option" for manual scaling of the more difficult ionograms, which could not be scaled during the automated TOPIST run. TOPIST is now successfully scaling ˜60% of the ISIS ionograms, and the electron density profiles are available through the online archive of the National Space Science Data Center at ftp://nssdcftp.gsfc.nasa.gov/spacecraft_data/isis/topside_sounder. This data restoration effort is producing a unique global database of topside electron densities over more than one solar cycle, which will be of particular importance for improvements of topside ionosphere models, especially the International Reference Ionosphere.
Optimization of Brain T2 Mapping Using Standard CPMG Sequence In A Clinical Scanner
NASA Astrophysics Data System (ADS)
Hnilicová, P.; Bittšanský, M.; Dobrota, D.
2014-04-01
In magnetic resonance imaging, transverse relaxation time (T2) mapping is a useful quantitative tool enabling enhanced diagnostics of many brain pathologies. The aim of our study was to test the influence of different sequence parameters on calculated T2 values, including multi-slice measurements, slice position, interslice gap, echo spacing, and pulse duration. Measurements were performed using standard multi-slice multi-echo CPMG imaging sequence on a 1.5 Tesla routine whole body MR scanner. We used multiple phantoms with different agarose concentrations (0 % to 4 %) and verified the results on a healthy volunteer. It appeared that neither the pulse duration, the size of interslice gap nor the slice shift had any impact on the T2. The measurement accuracy was increased with shorter echo spacing. Standard multi-slice multi-echo CPMG protocol with the shortest echo spacing, also the smallest available interslice gap (100 % of slice thickness) and shorter pulse duration was found to be optimal and reliable for calculating T2 maps in the human brain.
NASA Astrophysics Data System (ADS)
Papenmeier, Svenja; Hass, H. Christian
2016-04-01
The detection of hard substrate habitats in sublittoral environments is a considerable challenge in spite of modern high resolution hydroacoustic techniques. In offshore areas those habitats are mainly represented by either cobbles and boulders (stones) often located in wide areas of soft sediments or by glacial relict sediments (heterogeneous mixture of medium sand to gravel size with cobbles and boulders). Sediment classification and object detection is commonly done on the basis of hydroacoustic backscatter intensities recorded with e.g. sidescan sonar (SSS) and multibeam echo sounder (MBES). Single objects lying on the sediment such as stones can generally be recognized by the acoustic shadow behind the object. However, objects close to the sonar's nadir may remain undetected because their shadows are below the data resolution. Further limitation in the detection of objects is caused by sessile communities that thrive on the objects. The bio-cover tends to absorb most of the acoustic signal. Automated identification based on the backscatter signal is often not satisfactory, especially when stones are present in a setting with glacial deposits. Areas characterized by glacial relict sediments are hardly differentiable in their backscatter characteristics from rippled coarse sand and fine gravel (rippled coarse sediments) without an intensive ground-truthing program. From the ecological point of view the relict and rippled coarse sediments are completely different habitats and need to be distinguished. The case study represents a seismo-acoustic approach in which SSS and nonlinear sediment echo sounder (SES) data are combined to enable a reliable and reproducible differentiation between relict sediments (with stones and coarse gravels) and rippled coarse sediments. Elevated objects produce hyperbola signatures at the sediment surface in the echo data which can be used to complement the SSS data. The nonlinear acoustic propagation of the SES sound pulses produces a comparably small foot print which results in high spatial resolution (decimeter in the xyz directions) and hence allows a more precise demarcation of hard substrate areas. Data for this study were recorded in the "Sylt Outer Reef" (German Bight, North Sea) in May 2013 and March 2015. The investigated area is characterized by heterogeneously distributed moraine deposits and rippled coarse sediments partly draped with Holocene fine sands. The relict sediments and the rippled coarse sediments indicate both high backscatter intensities but can be distinguished by means of the hyperbola locations. The northeast of the study area is dominated by rippled coarse sediments (without hyperbolas) and the southwestern part by relict sediments with a high amount of stones represented by hyperbolas which is also proven by extensive ground-truthing (grab sampling and high quality underwater videos). An automated procedure to identify and export the hyperbola positions makes the demarcation of hard substrate grounds (here: relict sediments) reproducible, faster and less complex in comparison to the visual-manual identification on the basis of sidescan sonar data.
Ruschke, Stefan; Eggers, Holger; Kooijman, Hendrik; Diefenbach, Maximilian N; Baum, Thomas; Haase, Axel; Rummeny, Ernst J; Hu, Houchun H; Karampinos, Dimitrios C
2017-09-01
To propose a phase error correction scheme for monopolar time-interleaved multi-echo gradient echo water-fat imaging that allows accurate and robust complex-based quantification of the proton density fat fraction (PDFF). A three-step phase correction scheme is proposed to address a) a phase term induced by echo misalignments that can be measured with a reference scan using reversed readout polarity, b) a phase term induced by the concomitant gradient field that can be predicted from the gradient waveforms, and c) a phase offset between time-interleaved echo trains. Simulations were carried out to characterize the concomitant gradient field-induced PDFF bias and the performance estimating the phase offset between time-interleaved echo trains. Phantom experiments and in vivo liver and thigh imaging were performed to study the relevance of each of the three phase correction steps on PDFF accuracy and robustness. The simulation, phantom, and in vivo results showed in agreement with the theory an echo time-dependent PDFF bias introduced by the three phase error sources. The proposed phase correction scheme was found to provide accurate PDFF estimation independent of the employed echo time combination. Complex-based time-interleaved water-fat imaging was found to give accurate and robust PDFF measurements after applying the proposed phase error correction scheme. Magn Reson Med 78:984-996, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Roebuck, Joseph R.; Haker, Steven J.; Mitsouras, Dimitris; Rybicki, Frank J.; Tempany, Clare M.; Mulkern, Robert V.
2009-01-01
Quantitative, apparent T2 values of suspected prostate cancer and healthy peripheral zone tissue in men with prostate cancer were measured using a Carr-Purcell-Meiboom-Gill (CPMG) imaging sequence in order to assess the cancer discrimination potential of tissue T2 values. The CPMG imaging sequence was used to image the prostates of 18 men with biopsy proven prostate cancer. Whole gland coverage with nominal voxel volumes of 0.54 × 1.1 × 4 mm3 was obtained in 10.7 minutes, resulting in data sets suitable for generating high quality images with variable T2-weighting and for evaluating quantitative T2 values on a pixel-by-pixel basis. Region-of-interest analysis of suspected healthy peripheral zone tissue and suspected cancer, identified on the basis of both T1- and T2-weighted signal intensities and available histopathology reports, yielded significantly (p < 0.0001) longer apparent T2 values in suspected healthy tissue (193 ± 49 ms) vs. suspected cancer (100 ± 26 ms), suggesting potential utility of this method as a tissue specific discrimination index for prostate cancer. We conclude that CPMG imaging of the prostate can be performed in reasonable scan times and can provide advantages over T2-weighted fast spin echo imaging alone, including quantitative T2 values for cancer discrimination as well as proton density maps without the point spread function degradation associated with short effective echo time fast spin echo (FSE) sequences. PMID:18823731
NASA Astrophysics Data System (ADS)
Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.
2014-05-01
Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and RMS profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.
NASA Astrophysics Data System (ADS)
Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.
2014-11-01
Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and rms profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.
Spin echo SPI methods for quantitative analysis of fluids in porous media.
Li, Linqing; Han, Hui; Balcom, Bruce J
2009-06-01
Fluid density imaging is highly desirable in a wide variety of porous media measurements. The SPRITE class of MRI methods has proven to be robust and general in their ability to generate density images in porous media, however the short encoding times required, with correspondingly high magnetic field gradient strengths and filter widths, and low flip angle RF pulses, yield sub-optimal S/N images, especially at low static field strength. This paper explores two implementations of pure phase encode spin echo 1D imaging, with application to a proposed new petroleum reservoir core analysis measurement. In the first implementation of the pulse sequence, we modify the spin echo single point imaging (SE-SPI) technique to acquire the k-space origin data point, with a near zero evolution time, from the free induction decay (FID) following a 90 degrees excitation pulse. Subsequent k-space data points are acquired by separately phase encoding individual echoes in a multi-echo acquisition. T(2) attenuation of the echo train yields an image convolution which causes blurring. The T(2) blur effect is moderate for porous media with T(2) lifetime distributions longer than 5 ms. As a robust, high S/N, and fast 1D imaging method, this method will be highly complementary to SPRITE techniques for the quantitative analysis of fluid content in porous media. In the second implementation of the SE-SPI pulse sequence, modification of the basic measurement permits fast determination of spatially resolved T(2) distributions in porous media through separately phase encoding each echo in a multi-echo CPMG pulse train. An individual T(2) weighted image may be acquired from each echo. The echo time (TE) of each T(2) weighted image may be reduced to 500 micros or less. These profiles can be fit to extract a T(2) distribution from each pixel employing a variety of standard inverse Laplace transform methods. Fluid content 1D images are produced as an essential by product of determining the spatially resolved T(2) distribution. These 1D images do not suffer from a T(2) related blurring. The above SE-SPI measurements are combined to generate 1D images of the local saturation and T(2) distribution as a function of saturation, upon centrifugation of petroleum reservoir core samples. The logarithm mean T(2) is observed to shift linearly with water saturation. This new reservoir core analysis measurement may provide a valuable calibration of the Coates equation for irreducible water saturation, which has been widely implemented in NMR well logging measurements.
NASA Astrophysics Data System (ADS)
Das, B.; Wilson, M.; Divakarla, M. G.; Chen, W.; Barnet, C.; Wolf, W.
2013-05-01
Algorithm Development Library (ADL) is a framework that mimics the operational system IDPS (Interface Data Processing Segment) that is currently being used to process data from instruments aboard Suomi National Polar-orbiting Partnership (S-NPP) satellite. The satellite was launched successfully in October 2011. The Cross-track Infrared and Microwave Sounder Suite (CrIMSS) consists of the Advanced Technology Microwave Sounder (ATMS) and Cross-track Infrared Sounder (CrIS) instruments that are on-board of S-NPP. These instruments will also be on-board of JPSS (Joint Polar Satellite System) that will be launched in early 2017. The primary products of the CrIMSS Environmental Data Record (EDR) include global atmospheric vertical temperature, moisture, and pressure profiles (AVTP, AVMP and AVPP) and Ozone IP (Intermediate Product from CrIS radiances). Several algorithm updates have recently been proposed by CrIMSS scientists that include fixes to the handling of forward modeling errors, a more conservative identification of clear scenes, indexing corrections for daytime products, and relaxed constraints between surface temperature and air temperature for daytime land scenes. We have integrated these improvements into the ADL framework. This work compares the results from ADL emulation of future IDPS system incorporating all the suggested algorithm updates with the current official processing results by qualitative and quantitative evaluations. The results prove these algorithm updates improve science product quality.
Dimov, Alexey V; Liu, Zhe; Spincemaille, Pascal; Prince, Martin R; Du, Jiang; Wang, Yi
2018-01-01
To develop quantitative susceptibility mapping (QSM) of bone using an ultrashort echo time (UTE) gradient echo (GRE) sequence for signal acquisition and a bone-specific effective transverse relaxation rate ( R2*) to model water-fat MR signals for field mapping. Three-dimensional radial UTE data (echo times ≥ 40 μs) was acquired on a 3 Tesla scanner and fitted with a bone-specific signal model to map the chemical species and susceptibility field. Experiments were performed ex vivo on a porcine hoof and in vivo on healthy human subjects (n = 7). For water-fat separation, a bone-specific model assigning R2* decay mostly to water was compared with the standard models that assigned the same decay for both fat and water. In the ex vivo experiment, bone QSM was correlated with CT. Compared with standard models, the bone-specific R2* method significantly reduced errors in the fat fraction within the cortical bone in all tested data sets, leading to reduced artifacts in QSM. Good correlation was found between bone CT and QSM values in the porcine hoof (R 2 = 0.77). Bone QSM was successfully generated in all subjects. The QSM of bone is feasible using UTE with a conventional echo time GRE acquisition and a bone-specific R2* signal model. Magn Reson Med 79:121-128, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Laule, Cornelia; Bjarnason, Thorarin A; Vavasour, Irene M; Traboulsee, Anthony L; Wayne Moore, G R; Li, David K B; MacKay, Alex L
2017-11-01
Prolonged spin-spin relaxation times in tumour tissue have been observed since some of the earliest nuclear magnetic resonance investigations of the brain. Over the last three decades, numerous studies have sought to characterize tumour morphology and malignancy using quantitative assessment of T 2 relaxation times, although attempts to categorize and differentiate tumours have had limited success. However, previous work must be interpreted with caution as relaxation data were typically acquired using a variety of multiple echo sequences with a range of echoes and T 2 decay curves and were frequently fit with monoexponential analysis. We defined the distribution of T 2 components in three different human brain tumours (glioblastoma, oligodendroglioma, meningioma) using a multi-echo sequence with a greater number of echoes and a longer acquisition window than previously used (48 echoes, data collection out to 1120 ms) with no a priori assumptions about the number of exponential components contributing to the T 2 decay. T 2 relaxation times were increased in tumour tissue and each tumour showed a distinct T 2 distribution profile. Tumours have complex and unique compartmentalization characteristics. Quantitative assessment of T 2 relaxation in brain cancer may be useful in evaluating different grades of brain tumours on the basis of their T 2 distribution profile, and has the potential to be a non-invasive diagnostic tool which may also be useful in monitoring therapy. Further study with a larger sample size and varying grades of tumours is warranted.
Aoki, Takatoshi; Yamaguchi, Shinpei; Kinoshita, Shunsuke; Hayashida, Yoshiko; Korogi, Yukunori
2016-09-01
To determine the reproducibility of the quantitative chemical shift-based water-fat separation method with a multiecho gradient echo sequence [iteraterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation sequence (IDEAL-IQ)] for assessing bone marrow fat fraction (FF); to evaluate variation of FF at different bone sites; and to investigate its association with age and menopause. 31 consecutive females who underwent pelvic iterative decomposition of water and fat with echo asymmetry and least-squares estimation at 3-T MRI were included in this study. Quantitative FF using IDEAL-IQ of four bone sites were analyzed. The coefficients of variance (CV) on each site were evaluated repeatedly 10 times to assess the reproducibility. Correlations between FF and age were evaluated on each site, and the FFs between pre- and post-menopausal groups were compared. The CV in the quantification of marrow FF ranged from 0.69% to 1.70%. A statistically significant correlation was established between the FF and the age in lumbar vertebral body, ilium and intertrochanteric region of the femur (p < 0.001). The average FF of post-menopausal females was significantly higher than that of pre-menopausal females in these sites (p < 0.05). In the greater trochanter of the femur, there was no significant correlation between FF and age. In vivo IDEAL-IQ would provide reliable quantification of bone marrow fat. IDEAL-IQ is simple to perform in a short time and may be practical for providing information on bone quality in clinical settings.
Shimizu, Kie; Namimoto, Tomohiro; Nakagawa, Masataka; Morita, Kosuke; Oda, Seitaro; Nakaura, Takeshi; Utsunomiya, Daisuke; Yamashita, Yasuyuki
To compare automated six-point Dixon (6-p-Dixon) MRI comparing with dual-echo chemical-shift-imaging (CSI) and CT for hepatic fat fraction in phantoms and clinical study. Phantoms and fifty-nine patients were examined both MRI and CT for quantitative fat measurements. In phantom study, linear regression between fat concentration and 6-p-Dixon showed good agreement. In clinical study, linear regression between 6-p-Dixon and dual-echo CSI showed good agreement. CT attenuation value was strongly correlated with 6-p-Dixon (R 2 =0.852; P<0.001) and dual-echo CSI (R 2 =0.812; P<0.001). Automated 6-p-Dixon and dual-echo CSI were accurate correlation with CT attenuation value of liver parenchyma. 6-p-Dixon has the potential for automated hepatic fat quantification. Copyright © 2017 Elsevier Inc. All rights reserved.
Twichell, David C.
1981-01-01
Cruise NE 79-06 of the R/V NEECHO was conducted by the U.S. Geological Survey during September 27-0ctober 3, 1979, in the nearshore zone (3-30 m water depth) seaward of Coast Guard Beach and the northern part of Orleans Beach, east of Cape Cod, Massachusetts. The purpose of the study was to map the types and extent of nearshore bed forms and to define the late Pleistocene and Holocene history of the area.The equipment used on this cruise consisted of an EG&G Uniboom, Raytheon echo sounder, and Edo Western sidescan-sonar system. The Uniboom data were mostly filtered to 400-4000 Hz and were recorded at a 1/4-s sweep rate. The 60-kHz echo-sounding data were recorded on a 6-in strip chart on which the depth was calibrated in feet. The sidescan sonar had an operating frequency of 100 kHz and was set to scan 50 m or 100 m to each side of the towed fish. All three data types were collected along 153 km of trackline.Navigation during the survey was by Loran-C and Motorola miniranger systems. Two shore stations were set up for the miniranger system and fixes were collected at either 1- or 2-min intervals. This system malfunctioned during parts of the survey, and during these times navigation was by Loran-C using a Northstar system.The original records can be seen and studied at the U.S. Geological Survey Data Library at Woods Hole, MA 02543. Microfilm copies of the subbottom, echo-sounding, and sidescan-sonar records can be purchased only from the National Geophysical and Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder, CO 80303, (303-497-6338).
NASA Technical Reports Server (NTRS)
Safaeinili, Ali; Kofman, Wlodek; Mouginot, Jeremie; Gim, Yonggyu; Herique, Alain; Ivanov, Anton B.; Plaut, Jeffrey J.; Picardi, Giovanni
2007-01-01
The Martian ionosphere's local total electron content (TEC) and the neutral atmosphere scale height can be derived from radar echoes reflected from the surface of the planet. We report the global distribution of the TEC by analyzing more than 750,000 echoes of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS). This is the first direct measurement of the TEC of the Martian ionosphere. The technique used in this paper is a novel 'transmission-mode' sounding of the ionosphere of Mars in contrast to the Active Ionospheric Sounding experiment (AIS) on MARSIS, which generally operates in the reflection mode. This technique yields a global map of the TEC for the Martian ionosphere. The radar transmits a wideband chirp signal that travels through the ionosphere before and after being reflected from the surface. The received waves are attenuated, delayed and dispersed, depending on the electron density in the column directly below the spacecraft. In the process of correcting the radar signal, we are able to estimate the TEC and its global distribution with an unprecedented resolution of about 0.1 deg in latitude (5 km footprint). The mapping of the relative geographical variations in the estimated nightside TEC data reveals an intricate web of high electron density regions that correspond to regions where crustal magnetic field lines are connected to the solar wind. Our data demonstrates that these regions are generally but not exclusively associated with areas that have magnetic field lines perpendicular to the surface of Mars. As a result, the global TEC map provides a high-resolution view of where the Martian crustal magnetic field is connected to the solar wind. We also provide an estimate of the neutral atmospheric scale height near the ionospheric peak and observe temporal fluctuations in peak electron density related to solar activity.
Four Decades of Space-Borne Radio Sounding
NASA Technical Reports Server (NTRS)
Benson, Robert F.
2010-01-01
A review is given of the 38 rocket, satellite, and planetary payloads dedicated to ionospheric/magnetospheric radio sounding since 1961. Between 1961 and 1995, eleven sounding-rocket payloads from four countries evolved from proof-of-concept flights to sophisticated instruments. Some involved dual payloads, with the sounder transmitter on one and the sounder receiver on the other. The rocket sounders addressed specific space-plasma-wave questions, and provided improved measurements of ionospheric electron-density (N(sub e)) field-aligned irregularities (FAI). Four countries launched 12 ionospheric topside-sounder satellites between 1962 and 1994, and an ionospheric sounder was placed on the Mir Space Station in 1998. Eleven magnetospheric radio sounders, most of the relaxation type, were launched from 1977 to 2000. The relaxation sounders used low-power transmitters, designed to stimulate plasma resonances for accurate local Ne determinations. The latest magnetospheric sounder designed for remote sensing incorporated long antennas and digital signal processing techniques to overcome the challenges posed by low Ne values and large propagation distances. Three radio sounders from three countries were included on payloads to extraterrestrial destinations from 1990 to 2003. The scientific accomplishments of space-borne radio sounders included (1) a wealth of global N(sub e) information on the topside ionosphere and magnetosphere, based on vertical and magnetic-field-aligned N(sub e) profiles; (2) accurate in-situ N(sub e) values, even under low-density conditions; and (3) fundamental advances in our understanding of the excitation and propagation of plasma waves, which have even led to the prediction of a new plasma-wave mode.
NASA Astrophysics Data System (ADS)
Guerry, Paul; Brown, Steven P.; Smith, Mark E.
2017-10-01
In the context of improving J coupling measurements in disordered solids, strong coupling effects have been investigated in the spin-echo and refocused INADEQUATE spin-echo (REINE) modulations of three- and four-spin systems under magic-angle-spinning (MAS), using density matrix simulations and solid-state NMR experiments on a cadmium phosphate glass. Analytical models are developed for the different modulation regimes, which are shown to be distinguishable in practice using Akaike's information criterion. REINE modulations are shown to be free of the damping that occurs for spin-echo modulations when the observed spin has the same isotropic chemical shift as its neighbour. Damping also occurs when the observed spin is bonded to a strongly-coupled pair. For mid-chain units, the presence of both direct and relayed damping makes both REINE and spin-echo modulations impossible to interpret quantitatively. We nonetheless outline how a qualitative comparison of the modulation curves can provide valuable information on disordered networks, possibly also pertaining to dynamic effects therein.
Quantitative nuclear magnetic resonance to measure body composition in infants and children
USDA-ARS?s Scientific Manuscript database
Quantitative Nuclear Magnetic Resonance (QMR) is being used in human adults to obtain measures of total body fat (FM) with high precision. The current study assessed a device specially designed to accommodate infants and children between 3 and 50 kg (EchoMRI-AH™). Body composition of 113 infants and...
Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters.
Giordano, Francesco; Mattei, Gaia; Parente, Claudio; Peluso, Francesco; Santamaria, Raffaele
2015-12-29
This paper demonstrates that accurate data concerning bathymetry as well as environmental conditions in shallow waters can be acquired using sensors that are integrated into the same marine vehicle. An open prototype of an unmanned surface vessel (USV) named MicroVeGA is described. The focus is on the main instruments installed on-board: a differential Global Position System (GPS) system and single beam echo sounder; inertial platform for attitude control; ultrasound obstacle-detection system with temperature control system; emerged and submerged video acquisition system. The results of two cases study are presented, both concerning areas (Sorrento Marina Grande and Marechiaro Harbour, both in the Gulf of Naples) characterized by a coastal physiography that impedes the execution of a bathymetric survey with traditional boats. In addition, those areas are critical because of the presence of submerged archaeological remains that produce rapid changes in depth values. The experiments confirm that the integration of the sensors improves the instruments' performance and survey accuracy.
The effect of recombination and attachment on meteor radar diffusion coefficient profiles
NASA Astrophysics Data System (ADS)
Lee, C. S.; Younger, J. P.; Reid, I. M.; Kim, Y. H.; Kim, J.-H.
2013-04-01
Estimates of the ambipolar diffusion coefficient producedusing meteor radar echo decay times display an increasing trend below 80-85 km, which is inconsistent with a diffusion-only theory of the evolution of meteor trails. Data from the 33 MHz meteor radar at King Sejong Station, Antarctica, have been compared with observations from the Aura Earth Observing System Microwave Limb Sounder satellite instrument. It has been found that the height at which the diffusion coefficient gradient reverses follows the height of a constant neutral atmospheric density surface. Numerical simulations of meteor trail diffusion including dissociative recombination with atmospheric ions and three-body attachment of free electrons to neutral molecules indicate that three-body attachment is responsible for the distortion of meteor radar diffusion coefficient profiles at heights below 90 km, including the gradient reversal below 80-85 km. Further investigation has revealed that meteor trails with low initial electron line density produce decay times more consistent with a diffusion-only model of meteor trail evolution.
Valentine, P.C.; Middleton, T.J.; Fuller, S.J.
2000-01-01
This data set contains the sea floor topographic contours, sun-illuminated topographic imagery, and backscatter intensity generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Data were collected on four cruises over a two year period from the fall of 1994 to the fall of 1996. The surveys were conducted aboard the Candian Hydrographic Service vessel Frederick G. Creed, a SWATH (Small Waterplane Twin Hull) ship that surveys at speeds of 16 knots. The multibeam data were collected utilizing a Simrad Subsea EM 1000 Multibeam Echo Sounder (95 kHz) that is permanently installed in the hull of the Creed.
Marcos, Ma Shiela Angeli; David, Laura; Peñaflor, Eileen; Ticzon, Victor; Soriano, Maricor
2008-10-01
We introduce an automated benthic counting system in application for rapid reef assessment that utilizes computer vision on subsurface underwater reef video. Video acquisition was executed by lowering a submersible bullet-type camera from a motor boat while moving across the reef area. A GPS and echo sounder were linked to the video recorder to record bathymetry and location points. Analysis of living and non-living components was implemented through image color and texture feature extraction from the reef video frames and classification via Linear Discriminant Analysis. Compared to common rapid reef assessment protocols, our system can perform fine scale data acquisition and processing in one day. Reef video was acquired in Ngedarrak Reef, Koror, Republic of Palau. Overall success performance ranges from 60% to 77% for depths of 1 to 3 m. The development of an automated rapid reef classification system is most promising for reef studies that need fast and frequent data acquisition of percent cover of living and nonliving components.
Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters
Giordano, Francesco; Mattei, Gaia; Parente, Claudio; Peluso, Francesco; Santamaria, Raffaele
2015-01-01
This paper demonstrates that accurate data concerning bathymetry as well as environmental conditions in shallow waters can be acquired using sensors that are integrated into the same marine vehicle. An open prototype of an unmanned surface vessel (USV) named MicroVeGA is described. The focus is on the main instruments installed on-board: a differential Global Position System (GPS) system and single beam echo sounder; inertial platform for attitude control; ultrasound obstacle-detection system with temperature control system; emerged and submerged video acquisition system. The results of two cases study are presented, both concerning areas (Sorrento Marina Grande and Marechiaro Harbour, both in the Gulf of Naples) characterized by a coastal physiography that impedes the execution of a bathymetric survey with traditional boats. In addition, those areas are critical because of the presence of submerged archaeological remains that produce rapid changes in depth values. The experiments confirm that the integration of the sensors improves the instruments’ performance and survey accuracy. PMID:26729117
Butman, Bradford; Valentine, Page C.; Middleton, Tammie J.; Danforth, William W.
2007-01-01
Introduction The U.S. Geological Survey (USGS) has mapped the sea floor of the Stellwagen Bank National Marine Sanctuary and western Massachusetts Bay, offshore of Boston, Massachusetts (figure 1a, figure 1b). The mapping was carried out using a Simrad Subsea EM1000 Multibeam Echo Sounder (95 kHz) on the Frederick G. Creed on four cruises between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. This GIS Library contains images and grids of bathymetry, shaded relief bathymetry, and backscatter intensity data from these surveys in an Environmental Systems Research Institute (http://www.esri.com) (ESRI) ArcMap 9.1 Geographic Information System (GIS) project. The shapefiles, images, grids and associated metadata may also be downloaded individually. Descriptions and interpretations of the data are available in a series of published maps.
Discharge and other hydraulic measurements for characterizing the hydraulics of Lower Congo River
Oberg, Kevin; Shelton, John M.; Gardiner, Ned; Jackson, P. Ryan
2009-01-01
The first direct measurements of discharge of the Lower Congo River below Malebo Pool and upstream from Kinganga, Democratic Republic of Congo (DRC) were made in July 2008 using acoustic Doppler current profilers, differential GPS, and echo sounders. These measurements were made in support of research that is attempting to understand the distribution of fish species in the Lower Congo River and reasons for separation of species within this large river. Analyses of these measurements show that the maximum depth in the Lower Congo River was in excess of 200 m and maximum water velocities were greater than 4 m/s. The discharge measured near Luozi, DRC was 35,800 m3/s, and decreased slightly beginning midway through the study. Local bedrock controls seem to have a large effect on the flow in the river, even in reaches without waterfalls and rapids. Dramatic changes in bed topography are evident in transects across the river.
Nelson, Timothy R.; Miselis, Jennifer L.; Hapke, Cheryl J.; Brenner, Owen T.; Henderson, Rachel E.; Reynolds, Billy J.; Wilson, Kathleen E.
2017-03-24
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from October 5 to 10, 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach, which formed in October 2012 during Hurricane Sandy, as part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected, using single-beam echo sounders and global positioning systems mounted to personal watercraft, along the Fire Island shoreface and within the wilderness breach, Fire Island Inlet, Narrow Bay, and Great South Bay east of Nicoll Bay. Additional bathymetry and elevation data were collected using backpack and wheel-mounted global positioning systems along the subaerial beach (foreshore and backshore), flood shoals, and shallow channels within the wilderness breach and adjacent shoreface.
Investigation of lunar maria structure from cross-analysis of GRAIL gravity and Kaguya radar data
NASA Astrophysics Data System (ADS)
Zuber, M. T.; Ermakov, A.; Smith, D. E.; Mastroguiseppe, M.; Raguso, M.
2016-12-01
The Lunar Radar Sounder (LRS) on JAXA's Kaguya spacecraft investigated the subsurface structure of the Moon to a depth of a few km. GRAIL gravity models are potentially sensitive to subsurface structure at such depths. GRAIL gravity and LRS radar data are complementary since both are sensitive to density/compositional heterogeneities. Cross-correlation of GRAIL and LRS data has the potential to produce new constraints on the structure and evolution of the lunar maria. Originally, subsurface reflections within the lunar maria were detected with Lunar Sounder Experiment aboard Apollo 17. Subsurface layering was attributed to multiple episodes of volcanism. Later, Kaguya's LRS produced similar measurements but with global-scale coverage. Laboratory measurements show that density variations among mare basalts can be up to 200 kg m-3 or 7%. The LRS measurements have detected subsurface reflection in the upper 1 km of the crust. Combining these two estimates and using the Bouguer slab approximation, we estimate that anomalies of order 1-10 mGal are expected due to potentially varying density of surface and/or subsurface horizons. This accuracy is achievable with the latest GRAIL gravity models. The LRS surface backscattering power is indicative of surface and near sub-surface dielectric properties, which are sensitive to target density and roughness. We investigate the northwestern part of the Procellarum basin because it is the region with the strongest signal-to-noise ratios in gravity models within maria. To examine shallow subsurface structure, we map the surface received power by tracking the first return of radar echoes and compare it with gravity gradients, which are particularly sensitive to small-scale structures.
Monitoring a local extreme weather event with the scope of hyperspectral sounding
NASA Astrophysics Data System (ADS)
Satapathy, Jyotirmayee; Jangid, Buddhi Prakash
2018-06-01
Operational space-based hyperspectral Infrared sounders retrieve atmospheric temperature and humidity profiles from the measured radiances. These sounders like Atmospheric InfraRed Sounder, Infrared Atmospheric Sounding Interferometer as well as INSAT-3D sounders on geostationary orbit have proved to be very successful in providing these retrievals on global and regional scales, respectively, with good enough spatio-temporal resolutions and are well competent with that of traditional profiles from radiosondes and models fields. The aim of this work is to show how these new generation hyperspectral Infrared sounders can benefit in real-time weather monitoring. We have considered a regional extreme weather event to demonstrate how the profiles retrieved from these operational sounders are consistent with the environmental conditions which have led to this severe weather event. This work has also made use of data products of Moderate Resolution Imaging Spectroradiometer as well as by radiative transfer simulation of clear and cloudy atmospheric conditions using Numerical Weather Prediction profiles in conjunction with INSAT-3D sounder. Our results indicate the potential use of high-quality hyperspectral atmospheric profiles to aid in delineation of real-time weather prediction.
NASA Astrophysics Data System (ADS)
Levchenko, O.; Eisin, A. E.; Ivanenko, A. N.; Marinova, J. G.; Paul, C. F.; Sborshchikov, I. M.; Sager, W. W.
2008-12-01
Detailed geophysical survey was carried out during the NSF-funded KNOX06RR cruise of R/V Roger Revelle in July 2007 over the ~70×70 km area near ODP Site 758, the northern Ninetyeast Ridge (NER). In addition to multibeam echo-sounder bathymetry, 3.5 kHz echo-sounder profiles, magnetic, and gravity data, high-resolution multichannel seismic reflection data were collected on eight orthogonal profiles of total length ~270 km. Large NE-trending depressions with complicated horst and graben morphology dominate the whole detailed survey area. The numerous basement faults extend upward into overlying sediments filling out these depressions. Thickness of the sedimentary fill is highly variable due to very rough basement topography, and is up to 800 m maximum. This fill is divided in two clear sedimentary layers: transparent pelagic sediments above and stratified shallow-water ones below. Two high ~400-450 m isometric seamounts extend from the surrounding NER seafloor. High-resolution seismic records show that these igneous basement highs are covered by thin transparent pelagic sediments which hamper the dredging of volcanic rocks. Seismic stratigraphy analyses for sedimentary cover over the seamounts buried slopes suggest that they seem to be recent volcanoes superimposed on the main NER edifice. Both volcanoes are clearly delineated in the constructed map of total anomaly magnetic field. Since water depths are ~2.5 km above these seamounts, the lower edge of the magnetic body in these volcanoes is situated deep at ~7 km under sea level. That appears to represent deep roots of the volcanoes. Preliminary magnetic modeling shows that they were generated during negative chron of the geomagnetic scale rather not long ago and not far from their present location, seeming to confirm the inference that these volcanoes are recent in origin. In general, one may assume a secondary phase of magmatic activity on the NER. It is important to reveal, any recent phase of tectonic and magnetic activity occurred over the northern NER during the same time of well-known intense intraplate deformation in the Central Indian Basin which was initiated ~8 Ma in response to growing regional compression due to continental collision Hindustan and Eurasia. It appears to be nonrandom that this NER segment is located in an anomalous zone of high oceanic intraplate seismicity. Seismic stratigraphy analyses of high-resolution seismic records over the fault features simultaneously with careful study of reflectors on the buried slopes of the recent volcanoes will allow us to examine this problem.
Temporal binding of neural responses for focused attention in biosonar
Simmons, James A.
2014-01-01
Big brown bats emit biosonar sounds and perceive their surroundings from the delays of echoes received by the ears. Broadcasts are frequency modulated (FM) and contain two prominent harmonics sweeping from 50 to 25 kHz (FM1) and from 100 to 50 kHz (FM2). Individual frequencies in each broadcast and each echo evoke single-spike auditory responses. Echo delay is encoded by the time elapsed between volleys of responses to broadcasts and volleys of responses to echoes. If echoes have the same spectrum as broadcasts, the volley of neural responses to FM1 and FM2 is internally synchronized for each sound, which leads to sharply focused delay images. Because of amplitude–latency trading, disruption of response synchrony within the volleys occurs if the echoes are lowpass filtered, leading to blurred, defocused delay images. This effect is consistent with the temporal binding hypothesis for perceptual image formation. Bats perform inexplicably well in cluttered surroundings where echoes from off-side objects ought to cause masking. Off-side echoes are lowpass filtered because of the shape of the broadcast beam, and they evoke desynchronized auditory responses. The resulting defocused images of clutter do not mask perception of focused images for targets. Neural response synchronization may select a target to be the focus of attention, while desynchronization may impose inattention on the surroundings by defocusing perception of clutter. The formation of focused biosonar images from synchronized neural responses, and the defocusing that occurs with disruption of synchrony, quantitatively demonstrates how temporal binding may control attention and bring a perceptual object into existence. PMID:25122915
Research on key technologies of LADAR echo signal simulator
NASA Astrophysics Data System (ADS)
Xu, Rui; Shi, Rui; Ye, Jiansen; Wang, Xin; Li, Zhuo
2015-10-01
LADAR echo signal simulator is one of the most significant components of hardware-in-the-loop (HWIL) simulation systems for LADAR, which is designed to simulate the LADAR return signal in laboratory conditions. The device can provide the laser echo signal of target and background for imaging LADAR systems to test whether it is of good performance. Some key technologies are investigated in this paper. Firstly, the 3D model of typical target is built, and transformed to the data of the target echo signal based on ranging equation and targets reflection characteristics. Then, system model and time series model of LADAR echo signal simulator are established. Some influential factors which could induce fixed delay error and random delay error on the simulated return signals are analyzed. In the simulation system, the signal propagating delay of circuits and the response time of pulsed lasers are belong to fixed delay error. The counting error of digital delay generator, the jitter of system clock and the desynchronized between trigger signal and clock signal are a part of random delay error. Furthermore, these system insertion delays are analyzed quantitatively, and the noisy data are obtained. The target echo signals are got by superimposing of the noisy data and the pure target echo signal. In order to overcome these disadvantageous factors, a method of adjusting the timing diagram of the simulation system is proposed. Finally, the simulated echo signals are processed by using a detection algorithm to complete the 3D model reconstruction of object. The simulation results reveal that the range resolution can be better than 8 cm.
Knoll, Florian; Raya, José G; Halloran, Rafael O; Baete, Steven; Sigmund, Eric; Bammer, Roland; Block, Tobias; Otazo, Ricardo; Sodickson, Daniel K
2015-01-01
Radial spin echo diffusion imaging allows motion-robust imaging of tissues with very low T2 values like articular cartilage with high spatial resolution and signal-to-noise ratio (SNR). However, in vivo measurements are challenging due to the significantly slower data acquisition speed of spin-echo sequences and the less efficient k-space coverage of radial sampling, which raises the demand for accelerated protocols by means of undersampling. This work introduces a new reconstruction approach for undersampled DTI. A model-based reconstruction implicitly exploits redundancies in the diffusion weighted images by reducing the number of unknowns in the optimization problem and compressed sensing is performed directly in the target quantitative domain by imposing a Total Variation (TV) constraint on the elements of the diffusion tensor. Experiments were performed for an anisotropic phantom and the knee and brain of healthy volunteers (3 and 2 volunteers, respectively). Evaluation of the new approach was conducted by comparing the results to reconstructions performed with gridding, combined parallel imaging and compressed sensing, and a recently proposed model-based approach. The experiments demonstrated improvement in terms of reduction of noise and streaking artifacts in the quantitative parameter maps as well as a reduction of angular dispersion of the primary eigenvector when using the proposed method, without introducing systematic errors into the maps. This may enable an essential reduction of the acquisition time in radial spin echo diffusion tensor imaging without degrading parameter quantification and/or SNR. PMID:25594167
Bae, Won C; Ruangchaijatuporn, Thumanoon; Chang, Eric Y; Biswas, Reni; Du, Jiang; Statum, Sheronda; Chung, Christine B
2016-04-01
To evaluate pathology of the triangular fibrocartilage complex (TFCC) using high-resolution morphologic magnetic resonance (MR) imaging, and compare with quantitative MR and biomechanical properties. Five cadaveric wrists (22-70 years) were imaged at 3 T using morphologic (proton density weighted spin echo, PD FS, and 3D spoiled gradient echo, 3D SPGR) and quantitative MR sequences to determine T2 and T1rho properties. In eight geographic regions, morphology of TFC disc and laminae were evaluated for pathology and quantitative MR values. Samples were disarticulated and biomechanical indentation testing was performed on the distal surface of the TFC disc. On morphologic PD SE images, TFC disc pathology included degeneration and tears, while that of the laminae included degeneration, degeneration with superimposed tear, mucinous transformation, and globular calcification. Punctate calcifications were highly visible on 3D SPGR images and found only in pathologic regions. Disc pathology occurred more frequently in proximal regions of the disc than distal regions. Quantitative MR values were lowest in normal samples, and generally higher in pathologic regions. Biomechanical testing demonstrated an inverse relationship, with indentation modulus being high in normal regions with low MR values. The laminae studied were mostly pathologic, and additional normal samples are needed to discern quantitative changes. These results show technical feasibility of morphologic MR, quantitative MR, and biomechanical techniques to characterize pathology of the TFCC. Quantitative MRI may be a suitable surrogate marker of soft tissue mechanical properties, and a useful adjunct to conventional morphologic MR techniques.
View to the eastnortheast of the Sounder Antenna OvertheHorizon ...
View to the east-northeast of the Sounder Antenna - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Five Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR
View to the northeast of the Sounder Antenna OvertheHorizon ...
View to the northeast of the Sounder Antenna - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Five Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR
NASA Astrophysics Data System (ADS)
Elywa, M.
2015-07-01
The separation of N-acetyl aspartyl glutamate (NAAG) from N-acetyl aspartate (NAA) and other metabolites, such as glutamate, by in vivo proton magnetic resonance spectroscopy at 7 T is described. This method is based on the stimulated echo acquisition mode (STEAM), with short and long echo time (TE) and allows quantitative measurements of NAAG in the parietal and pregenual anterior cingulate cortex (pgACC) of human brain. Two basesets for the LCModel have been established using nuclear magnetic resonance simulator software (NMR-SIM). Six healthy volunteers (age 25-35 years) have been examined at 7 T. It has been established that NAAG can be separated and quantified in the parietal location and does not get quantified in the pgACC location when using a short echo time, TE = 20 ms. On the other hand, by using a long echo time, TE = 74 ms, NAAG can be quantified in pgACC structures.
A nowcasting technique based on application of the particle filter blending algorithm
NASA Astrophysics Data System (ADS)
Chen, Yuanzhao; Lan, Hongping; Chen, Xunlai; Zhang, Wenhai
2017-10-01
To improve the accuracy of nowcasting, a new extrapolation technique called particle filter blending was configured in this study and applied to experimental nowcasting. Radar echo extrapolation was performed by using the radar mosaic at an altitude of 2.5 km obtained from the radar images of 12 S-band radars in Guangdong Province, China. The first bilateral filter was applied in the quality control of the radar data; an optical flow method based on the Lucas-Kanade algorithm and the Harris corner detection algorithm were used to track radar echoes and retrieve the echo motion vectors; then, the motion vectors were blended with the particle filter blending algorithm to estimate the optimal motion vector of the true echo motions; finally, semi-Lagrangian extrapolation was used for radar echo extrapolation based on the obtained motion vector field. A comparative study of the extrapolated forecasts of four precipitation events in 2016 in Guangdong was conducted. The results indicate that the particle filter blending algorithm could realistically reproduce the spatial pattern, echo intensity, and echo location at 30- and 60-min forecast lead times. The forecasts agreed well with observations, and the results were of operational significance. Quantitative evaluation of the forecasts indicates that the particle filter blending algorithm performed better than the cross-correlation method and the optical flow method. Therefore, the particle filter blending method is proved to be superior to the traditional forecasting methods and it can be used to enhance the ability of nowcasting in operational weather forecasts.
Juras, Vladimir; Bohndorf, Klaus; Heule, Rahel; Kronnerwetter, Claudia; Szomolanyi, Pavol; Hager, Benedikt; Bieri, Oliver; Zbyn, Stefan; Trattnig, Siegfried
2016-06-01
To assess the clinical relevance of T2 relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T2-mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T2 mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T2 values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T2 values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B1 and B0 changes. • 3D-TESS T 2 mapping provides clinically comparable results to CPMG in shorter scan-time. • Clinical and investigational studies may benefit from high temporal resolution of 3D-TESS. • 3D-TESS T 2 values are able to differentiate between healthy and damaged cartilage.
NASA Astrophysics Data System (ADS)
Shakhmuratova, L. N.; Hutchison, W. D.; Isbister, D. J.; Chaplin, D. H.
1997-07-01
A new coherent transient in pulsed NMR, the two-pulse nutational stimulated echo, is reported for the ferromagnetic system 60CoFe using resonant perturbations on the directional emission of anisotropic γ-radiation from thermally oriented nuclei. The new spin echo is a result of non-linear nuclear spin dynamics due to large Larmor inhomogeneity active during radiofrequency pulse application. It is made readily observable through the gross detuning between NMR radiofrequency excitation and gamma radiation detection, and inhomogeneity in the Rabi frequency caused by metallic skin-effect. The method of concatenation of perturbation factors in a statistical tensor formalism is quantitatively applied to successfully predict and then fit in detail the experimental time-domain data.
NASA Astrophysics Data System (ADS)
Bingham, G. E.; Pougatchev, N. S.; Zavyalov, V.; Esplin, M.; Blackwell, W. J.; Barnet, C.
2009-12-01
The NPOESS Preparatory Project is serving the operations and research community as the bridge mission between the Earth Observing System and the National Polar-orbiting Operational Environmental Satellite System. The Cross-track Infrared Sounder (CrIS), combined with the Advanced Technology Microwave Sounder (ATMS) are the core instruments to provide the key performance temperature and humidity profiles (along with some other atmospheric constituent information). Both the high spectral resolution CrIS and the upgraded microwave sounder (ATMS) will be working in parallel with already orbiting Advanced Atmospheric Infrared Sounder (AIRS/AMSU) on EOS AQUA platform and Infrared Atmospheric Sounding Interferometer (IASI/AMSU) on METOP-A satellite. This presentation will review the CrIS/ATMS capabilities in the context of continuity with the excellent performance records established by AIRS and IASI. The CrIS sensor is in the process of its final calibration and characterization testing and the results and Sensor Data Record process are being validated against this excellent dataset. The comparison between CrIS, AIRS, and IASI will include spectral, spatial, radiometric performance and sounding capability comparisons.
Optical Recorder of the Lunar Sounder Experiment
1972-11-22
S72-49482 (November 1972) --- The Optical Recorder of the Lunar Sounder Experiment (S-209) which will be mounted in the SIM bay of the Apollo 17 Service Module. The three functional parts of the Lunar Sounder are the optical recorder, the coherent synthetic aperture radar, and the antennas, a retractable dipole for HF and a yagi for VHF. The Lunar Sounder will probe three-quarters of a mile below the moon's surface from the orbiting Apollo 17 spacecraft. Electronic data recorded on film will be retrieved by the crew during trans-Earth EVA. Geologic information on the lunar interior obtained by the sounder will permit scientific investigation of underground rock layers, lava flow patterns, rille (canyon) structures, mascon properties, and any areas containing water. A prototype lunar sounder has been flight tested in aircraft over selected Earth sites to confirm the equipment design and develop scientific analysis techniques. The Lunar Sounder Experiment was developed by North American Rockwell's (NR) Space Division for NASA's Manned Spacecraft Center to provide data for a scientific investigation team with representatives from the Jet Propulsion Laboratory, University of Utah, University of Michigan, U.S. Geological Survey, and NASA Ames Research Center.
View to the south with the Two Sounder Antennas on ...
View to the south with the Two Sounder Antennas on the left - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Four Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR
Analysis of test data film generated by the lunar sounder (S-209)
NASA Technical Reports Server (NTRS)
Massey, N.
1973-01-01
The analysis of test films pertaining to the readiness of the Apollo 17 radar equipment is discussed. Emphasis is placed on the evaluation of the lunar sounder equipment. The lunar sounder experiment was to examine the lunar surface at three different radar frequencies of 2 meters, 60 meters, and 20 meters. Test films were made on the lunar sounder system to describe the purpose of the test, to describe the experiments used for analysis, and to provide conclusions reached after analysis.
Quantitative Assessment of Fat Infiltration in the Rotator Cuff Muscles using water-fat MRI
Nardo, Lorenzo; Karampinos, Dimitrios C.; Lansdown, Drew A.; Carballido-Gamio, Julio; Lee, Sonia; Maroldi, Roberto; Ma, C. Benjamin; Link, Thomas M.; Krug, Roland
2013-01-01
Purpose To evaluate a chemical shift-based fat quantification technique in the rotator cuff muscles in comparison with the semi-quantitative Goutallier fat infiltration classification (GC) and to assess their relationship with clinical parameters. Materials and Methods The shoulders of 57 patients were imaged using a 3T MR scanner. The rotator cuff muscles were assessed for fat infiltration using GC by two radiologists and an orthopedic surgeon. Sequences included oblique-sagittal T1-, T2- and proton density-weighted fast spin echo, and six-echo gradient echo. The iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) was used to measure fat fraction. Pain and range of motion of the shoulder were recorded. Results Fat fraction values were significantly correlated with GC grades (p< 0.0001, kappa>0.9) showing consistent increase with GC grades (grade=0, 0%–5.59%; grade=1, 1.1%–9.70%; grade=2, 6.44%–14.86%; grade=3, 15.25%–17.77%; grade=4, 19.85%–29.63%). A significant correlation between fat infiltration of the subscapularis muscle quantified with IDEAL versus a) deficit in internal rotation (Spearman Rank Correlation Coefficient=0.39, 95% CI 0.13–0.60, p<0.01) and b) pain (Spearman Rank Correlation coefficient=0.313, 95% CI 0.049–0.536, p=0.02) was found but was not seen between the clinical parameters and GC grades. Additionally, only quantitative fat infiltration measures of the supraspinatus muscle were significantly correlated with a deficit in abduction (Spearman Rank Correlation Coefficient=0.45, 95% CI 0.20–0.60, p<0.01). Conclusion We concluded that an accurate and highly reproducible fat quantification in the rotator cuff muscles using water-fat MRI techniques is possible and significantly correlates with shoulder pain and range of motion. PMID:24115490
Temporal binding of neural responses for focused attention in biosonar.
Simmons, James A
2014-08-15
Big brown bats emit biosonar sounds and perceive their surroundings from the delays of echoes received by the ears. Broadcasts are frequency modulated (FM) and contain two prominent harmonics sweeping from 50 to 25 kHz (FM1) and from 100 to 50 kHz (FM2). Individual frequencies in each broadcast and each echo evoke single-spike auditory responses. Echo delay is encoded by the time elapsed between volleys of responses to broadcasts and volleys of responses to echoes. If echoes have the same spectrum as broadcasts, the volley of neural responses to FM1 and FM2 is internally synchronized for each sound, which leads to sharply focused delay images. Because of amplitude-latency trading, disruption of response synchrony within the volleys occurs if the echoes are lowpass filtered, leading to blurred, defocused delay images. This effect is consistent with the temporal binding hypothesis for perceptual image formation. Bats perform inexplicably well in cluttered surroundings where echoes from off-side objects ought to cause masking. Off-side echoes are lowpass filtered because of the shape of the broadcast beam, and they evoke desynchronized auditory responses. The resulting defocused images of clutter do not mask perception of focused images for targets. Neural response synchronization may select a target to be the focus of attention, while desynchronization may impose inattention on the surroundings by defocusing perception of clutter. The formation of focused biosonar images from synchronized neural responses, and the defocusing that occurs with disruption of synchrony, quantitatively demonstrates how temporal binding may control attention and bring a perceptual object into existence. © 2014. Published by The Company of Biologists Ltd.
Automated detection of arterial input function in DSC perfusion MRI in a stroke rat model
NASA Astrophysics Data System (ADS)
Yeh, M.-Y.; Lee, T.-H.; Yang, S.-T.; Kuo, H.-H.; Chyi, T.-K.; Liu, H.-L.
2009-05-01
Quantitative cerebral blood flow (CBF) estimation requires deconvolution of the tissue concentration time curves with an arterial input function (AIF). However, image-based determination of AIF in rodent is challenged due to limited spatial resolution. We evaluated the feasibility of quantitative analysis using automated AIF detection and compared the results with commonly applied semi-quantitative analysis. Permanent occlusion of bilateral or unilateral common carotid artery was used to induce cerebral ischemia in rats. The image using dynamic susceptibility contrast method was performed on a 3-T magnetic resonance scanner with a spin-echo echo-planar-image sequence (TR/TE = 700/80 ms, FOV = 41 mm, matrix = 64, 3 slices, SW = 2 mm), starting from 7 s prior to contrast injection (1.2 ml/kg) at four different time points. For quantitative analysis, CBF was calculated by the AIF which was obtained from 10 voxels with greatest contrast enhancement after deconvolution. For semi-quantitative analysis, relative CBF was estimated by the integral divided by the first moment of the relaxivity time curves. We observed if the AIFs obtained in the three different ROIs (whole brain, hemisphere without lesion and hemisphere with lesion) were similar, the CBF ratios (lesion/normal) between quantitative and semi-quantitative analyses might have a similar trend at different operative time points. If the AIFs were different, the CBF ratios might be different. We concluded that using local maximum one can define proper AIF without knowing the anatomical location of arteries in a stroke rat model.
Assessment of Data Assimilation with the Prototype High Resolution Rapid Refresh for Alaska (HRRRAK)
NASA Technical Reports Server (NTRS)
Harrison, Kayla; Morton, Don; Zavodsky, Brad; Chou, Shih
2012-01-01
The Arctic Region Supercomputing Center has been running a quasi-operational prototype of a High Resolution Rapid Refresh for Alaska (HRRRAK) at 3km resolution, initialized by the 13km Rapid Refresh (RR). Although the RR assimilates a broad range of observations into its analyses, experiments with the HRRRAK suggest that there may be added value in assimilating observations into the 3km initial conditions, downscaled from the 13km RR analyses. The NASA Short-term Prediction Research and Transition (SPoRT) group has been using assimilated data from the Atmospheric Infrared Sounder (AIRS) in WRF and WRF-Var simulations since 2004 with promising results. The sounder is aboard NASA s Aqua satellite, and provides vertical profiles of temperature and humidity. The Gridpoint Statistical Interpolation (GSI) system is then used to assimilate these vertical profiles into WRF forecasts. In this work, we assess the use of AIRS data in combination with other global data assimilation products on non-assimilated HRRRAK case studies. Two separate weather events will be assessed to qualitatively and quantitatively assess the impacts of AIRS data on HRRRAK forecasts.
Soman, S; Liu, Z; Kim, G; Nemec, U; Holdsworth, S J; Main, K; Lee, B; Kolakowsky-Hayner, S; Selim, M; Furst, A J; Massaband, P; Yesavage, J; Adamson, M M; Spincemallie, P; Moseley, M; Wang, Y
2018-04-01
Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE, require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology. Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition. Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All images were reviewed by a neuroradiologist and a radiology resident. Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative susceptibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantitative susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping; they were worse on preconditioned quantitative susceptibility mapping. Preconditioned quantitative susceptibility mapping MR imaging can bring the benefits of quantitative susceptibility mapping imaging to clinical practice without the limitations of mask-based quantitative susceptibility mapping, especially for evaluating cerebral microhemorrhage-associated pathologies, such as traumatic brain injury. © 2018 by American Journal of Neuroradiology.
Retrieved Products from Simulated Hyperspectral Observations of a Hurricane
NASA Technical Reports Server (NTRS)
Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John
2015-01-01
Demonstrate via Observing System Simulation Experiments (OSSEs) the potential utility of flying high spatial resolution AIRS class IR sounders on future LEO and GEO missions.The study simulates and analyzes radiances for 3 sounders with AIRS spectral and radiometric properties on different orbits with different spatial resolutions: 1) Control run 13 kilometers AIRS spatial resolution at nadir on LEO in Aqua orbit; 2) 2 kilometer spatial resolution LEO sounder at nadir ARIES; 3) 5 kilometers spatial resolution sounder on a GEO orbit, radiances simulated every 72 minutes.
A quantitative experimental phantom study on MRI image uniformity.
Felemban, Doaa; Verdonschot, Rinus G; Iwamoto, Yuri; Uchiyama, Yuka; Kakimoto, Naoya; Kreiborg, Sven; Murakami, Shumei
2018-05-23
Our goal was to assess MR image uniformity by investigating aspects influencing said uniformity via a method laid out by the National Electrical Manufacturers Association (NEMA). Six metallic materials embedded in a glass phantom were scanned (i.e. Au, Ag, Al, Au-Ag-Pd alloy, Ti and Co-Cr alloy) as well as a reference image. Sequences included spin echo (SE) and gradient echo (GRE) scanned in three planes (i.e. axial, coronal, and sagittal). Moreover, three surface coil types (i.e. head and neck, Brain, and temporomandibular joint coils) and two image correction methods (i.e. surface coil intensity correction or SCIC, phased array uniformity enhancement or PURE) were employed to evaluate their effectiveness on image uniformity. Image uniformity was assessed using the National Electrical Manufacturers Association peak-deviation non-uniformity method. Results showed that temporomandibular joint coils elicited the least uniform image and brain coils outperformed head and neck coils when metallic materials were present. Additionally, when metallic materials were present, spin echo outperformed gradient echo especially for Co-Cr (particularly in the axial plane). Furthermore, both SCIC and PURE improved image uniformity compared to uncorrected images, and SCIC slightly surpassed PURE when metallic metals were present. Lastly, Co-Cr elicited the least uniform image while other metallic materials generally showed similar patterns (i.e. no significant deviation from images without metallic metals). Overall, a quantitative understanding of the factors influencing MR image uniformity (e.g. coil type, imaging method, metal susceptibility, and post-hoc correction method) is advantageous to optimize image quality, assists clinical interpretation, and may result in improved medical and dental care.
Bae, Won C.; Ruangchaijatuporn, Thumanoon; Chang, Eric Y; Biswas, Reni; Du, Jiang; Statum, Sheronda
2016-01-01
Objective To evaluate pathology of the triangular fibrocartilage complex (TFCC) using high resolution morphologic magnetic resonance (MR) imaging, and compare with quantitative MR and biomechanical properties. Materials and Methods Five cadaveric wrists (22 to 70 yrs) were imaged at 3T using morphologic (proton density weighted spin echo, PD FS, and 3D spoiled gradient echo, 3D SPGR) and quantitative MR sequences to determine T2 and T1rho properties. In eight geographic regions, morphology of TFC disc and laminae were evaluated for pathology and quantitative MR values. Samples were disarticulated and biomechanical indentation testing was performed on the distal surface of the TFC disc. Results On morphologic PD SE images, TFC disc pathology included degeneration and tears, while that of the laminae included degeneration, degeneration with superimposed tear, mucinous transformation, and globular calcification. Punctate calcifications were highly visible on 3D SPGR images and found only in pathologic regions. Disc pathology occurred more frequently in proximal regions of the disc than distal regions. Quantitative MR values were lowest in normal samples, and generally higher in pathologic regions. Biomechanical testing demonstrated an inverse relationship, with indentation modulus being high in normal regions with low MR values. The laminae studied were mostly pathologic, and additional normal samples are needed to discern quantitative changes. Conclusion These results show technical feasibility of morphologic MR, quantitative MR, and biomechanical techniques to characterize pathology of the TFCC. Quantitative MRI may be a suitable surrogate marker of soft tissue mechanical properties, and a useful adjunct to conventional morphologic MR techniques. PMID:26691643
Influence of echo time in quantitative proton MR spectroscopy using LCModel.
Yamamoto, Tetsuya; Isobe, Tomonori; Akutsu, Hiroyoshi; Masumoto, Tomohiko; Ando, Hiroki; Sato, Eisuke; Takada, Kenta; Anno, Izumi; Matsumura, Akira
2015-06-01
The objective of this study was to elucidate the influence on quantitative analysis using LCModel with the condition of echo time (TE) longer than the recommended values in the spectrum acquisition specifications. A 3T magnetic resonance system was used to perform proton magnetic resonance spectroscopy. The participants were 5 healthy volunteers and 11 patients with glioma. Data were collected at TE of 72, 144 and 288ms. LCModel was used to quantify several metabolites (N-acetylaspartate, creatine and phosphocreatine, and choline-containing compounds). The results were compared with quantitative values obtained by using the T2-corrected internal reference method. In healthy volunteers, when TE was long, the quantitative values obtained using LCModel were up to 6.8-fold larger (p<0.05) than those obtained using the T2-corrected internal reference method. The ratios of the quantitative values obtained by the two methods differed between metabolites (p<0.05). In patients with glioma, the ratios of quantitative values obtained by the two methods tended to be larger at longer TE, similarly to the case of healthy volunteers, and large between-individual variation in the ratios was observed. In clinical practice, TE is sometimes set longer than the value recommended for LCModel. If TE is long, LCModel overestimates the quantitative value since it cannot compensate for signal attenuation, and this effect is different for each metabolite and condition. Therefore, if TE is longer than recommended, it is necessary to account for the possibly reduced reliability of quantitative values calculated using LCModel. Copyright © 2015 Elsevier Inc. All rights reserved.
Nanoscale Magnetism in Next Generation Magnetic Nanoparticles
2018-03-17
as dextran coated SPIONs were studied. From the measured T1 and T2 relaxation times, a new method called Quantitative Ultra- Short Time-to-Echo...angiograms with high clarity and definition, and enabled quantitative MRI in biological samples. At UCL, the work included (i) fabricating multi-element...distribution unlimited. I. Introduction Compared to flat biosensor devices, 3D engineered biosensors achievemore intimate and conformal interfaces with cells
GRE T2∗-Weighted MRI: Principles and Clinical Applications
Tang, Meng Yue; Chen, Tian Wu; Zhang, Xiao Ming; Huang, Xiao Hua
2014-01-01
The sequence of a multiecho gradient recalled echo (GRE) T2*-weighted imaging (T2*WI) is a relatively new magnetic resonance imaging (MRI) technique. In contrast to T2 relaxation, which acquires a spin echo signal, T2* relaxation acquires a gradient echo signal. The sequence of a GRE T2*WI requires high uniformity of the magnetic field. GRE T2*WI can detect the smallest changes in uniformity in the magnetic field and can improve the rate of small lesion detection. In addition, the T2* value can indirectly reflect changes in tissue biochemical components. Moreover, it can be used for the early diagnosis and quantitative diagnosis of some diseases. This paper reviews the principles and clinical applications as well as the advantages and disadvantages of GRE T2*WI. PMID:24987676
NASA Astrophysics Data System (ADS)
Swadley, S. D.; Baker, N.; Derber, J.; Collard, A.; Hilton, F.; Ruston, B.; Bell, W.; Candy, B.; Kleespies, T. J.
2009-12-01
The NPOESS atmospheric sounding functionality will be accomplished using two separate sensor suites, the combined infrared (IR) and microwave (MW) sensor suite (CrIMSS), and the Microwave Imager/Sounder (MIS) instrument. CrIMSS consists of the Cross Track Infrared Sounder (CrIS) and the cross track Advanced Technology Microwave Sounder (ATMS), and is scheduled to fly on the NPOESS Preparatory Project (NPP), and NPOESS operational flight units C1 and C3. The MIS is a conical scanning polarimetric imager and sounder patterned after the heritage WindSat, and DMSP Special Sensor Microwave Imagers and Sounders (SSMI and SSMIS), and is scheduled for flight units C2, C3 and C4. ATMS combines the current operational Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), but with an additional channel in the 51.76 GHz oxygen absorption region and 3 additional channels in the 165.5 and 183 GHz water vapor absorption band. CrIS is a Fourier Transform Spectrometer and will provide 159 shortwave IR channels, 433 mid-range IR channels, and 713 longwave IR channels. The heritage sensors for CrIS are the NASA Advanced Infrared Sounder (AIRS) and the MetOp-A Infrared Atmospheric Sounding Interferometer (IASI). Both AIRS and IASI are high quality, high spectral resolution sounders which represent a significant improvement in the effective vertical resolution over previous IR sounders. This presentation will give an overview of preparations underway for day-1 monitoring of NPP/NPOESS radiances, and subsequent operational radiance assimilation. These preparations capitalize on experience gained during the pre-launch preparations, sensor calibration/validation and operational assimilation for the heritage sensors. One important step is to use pre-flight sensor channel specifications, noise estimates and knowledge of the antenna patterns, to generate and test proxy NPP/NPOESS sensor observations in existing assimilation systems. Other critical factors for successful radiance assimilation include low noise measurements, channel sets that span the vertical space defined within the NWP model, a fast and accurate radiative transfer model, and bias correction schemes designed to remove systematic biases in the departures between the observed versus calculated radiances.
Simultaneous Quantitative MRI Mapping of T1, T2* and Magnetic Susceptibility with Multi-Echo MP2RAGE
Kober, Tobias; Möller, Harald E.; Schäfer, Andreas
2017-01-01
The knowledge of relaxation times is essential for understanding the biophysical mechanisms underlying contrast in magnetic resonance imaging. Quantitative experiments, while offering major advantages in terms of reproducibility, may benefit from simultaneous acquisitions. In this work, we demonstrate the possibility of simultaneously recording relaxation-time and susceptibility maps with a prototype Multi-Echo (ME) Magnetization-Prepared 2 RApid Gradient Echoes (MP2RAGE) sequence. T1 maps can be obtained using the MP2RAGE sequence, which is relatively insensitive to inhomogeneities of the radio-frequency transmit field, B1+. As an extension, multiple gradient echoes can be acquired in each of the MP2RAGE readout blocks, which permits the calculation of T2* and susceptibility maps. We used computer simulations to explore the effects of the parameters on the precision and accuracy of the mapping. In vivo parameter maps up to 0.6 mm nominal resolution were acquired at 7 T in 19 healthy volunteers. Voxel-by-voxel correlations and the test-retest reproducibility were used to assess the reliability of the results. When using optimized paramenters, T1 maps obtained with ME-MP2RAGE and standard MP2RAGE showed excellent agreement for the whole range of values found in brain tissues. Simultaneously obtained T2* and susceptibility maps were of comparable quality as Fast Low-Angle SHot (FLASH) results. The acquisition times were more favorable for the ME-MP2RAGE (≈ 19 min) sequence as opposed to the sum of MP2RAGE (≈ 12 min) and FLASH (≈ 10 min) acquisitions. Without relevant sacrifice in accuracy, precision or flexibility, the multi-echo version may yield advantages in terms of reduced acquisition time and intrinsic co-registration, provided that an appropriate optimization of the acquisition parameters is performed. PMID:28081157
How Well Can Infrared Sounders Observe the Atmosphere and Surface Through Clouds?
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping
2010-01-01
Infrared sounders, such as the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared sounder (CrIS), have a cloud-impenetrable disadvantage in observing the atmosphere and surface under opaque cloudy conditions. However, recent studies indicate that hyperspectral, infrared sounders have the ability to detect cloud effective-optical and microphysical properties and to penetrate optically thin clouds in observing the atmosphere and surface to a certain degree. We have developed a retrieval scheme dealing with atmospheric conditions with cloud presence. This scheme can be used to analyze the retrieval accuracy of atmospheric and surface parameters under clear and cloudy conditions. In this paper, we present the surface emissivity results derived from IASI global measurements under both clear and cloudy conditions. The accuracy of surface emissivity derived under cloudy conditions is statistically estimated in comparison with those derived under clear sky conditions. The retrieval error caused by the clouds is shown as a function of cloud optical depth, which helps us to understand how well infrared sounders can observe the atmosphere and surface through clouds.
Tan, Huan; Hoge, W Scott; Hamilton, Craig A; Günther, Matthias; Kraft, Robert A
2011-07-01
Arterial spin labeling is a noninvasive technique that can quantitatively measure cerebral blood flow. While traditionally arterial spin labeling employs 2D echo planar imaging or spiral acquisition trajectories, single-shot 3D gradient echo and spin echo (GRASE) is gaining popularity in arterial spin labeling due to inherent signal-to-noise ratio advantage and spatial coverage. However, a major limitation of 3D GRASE is through-plane blurring caused by T(2) decay. A novel technique combining 3D GRASE and a periodically rotated overlapping parallel lines with enhanced reconstruction trajectory (PROPELLER) is presented to minimize through-plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3 × 3 × 5 mm(3) nominal voxel size with pulsed arterial spin labeling preparation sequence. Data from five healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in cerebral blood flow quantification with 3D gradient echo and spin echo, 3D GRASE PROPELLER demonstrated reduced through-plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. Copyright © 2011 Wiley-Liss, Inc.
Wei, Wei; Wang, Jingyuan; Zhao, Qiaoling; Yang, Jinru
2012-10-01
To assess the value of echo-tracking technology in evaluating endothelial function of the femoral artery in patients with Grave's disease. Thirty-four patients with Grave's disease patients and 30 normal adults as controls were recruited in this study. The intima-media thickness (IMT), arterial stiffness (β), pressure strain elastic modulus (Ep), arterial compliance (AC), pulse wave conducting velocity (PWVβ) and augmentation index (AI) parameters were examined using echo-tracking technology for evaluating the right femoral arterial elasticity. Compared with the control subjects, the patients with Grave's disease showed significantly increased β, Ep, and PWVβ and significantly decreased AC (P<0.05), but the argumentation index were similar between the two groups (P>0.05). In patients with Grave's disease, β and Ep were positively correlated with FT3, FT4, TT3, TT4, and PWVβ was positively correlated with FT3 and FT4. Echo-tracking technology can provide more accurate quantitative evidences for early diagnosis of femoral artery endothelial dysfunction in patients with Grave's disease, but the influence of procedural factors on the measurement accuracy should be considered in the evaluation.
Debunking in a world of tribes
Bessi, Alessandro; Del Vicario, Michela; Scala, Antonio; Caldarelli, Guido; Shekhtman, Louis; Havlin, Shlomo; Quattrociocchi, Walter
2017-01-01
Social media aggregate people around common interests eliciting collective framing of narratives and worldviews. However, in such a disintermediated environment misinformation is pervasive and attempts to debunk are often undertaken to contrast this trend. In this work, we examine the effectiveness of debunking on Facebook through a quantitative analysis of 54 million users over a time span of five years (Jan 2010, Dec 2014). In particular, we compare how users usually consuming proven (scientific) and unsubstantiated (conspiracy-like) information on Facebook US interact with specific debunking posts. Our findings confirm the existence of echo chambers where users interact primarily with either conspiracy-like or scientific pages. However, both groups interact similarly with the information within their echo chamber. Then, we measure how users from both echo chambers interacted with 50,220 debunking posts accounting for both users consumption patterns and the sentiment expressed in their comments. Sentiment analysis reveals a dominant negativity in the comments to debunking posts. Furthermore, such posts remain mainly confined to the scientific echo chamber. Only few conspiracy users engage with corrections and their liking and commenting rates on conspiracy posts increases after the interaction. PMID:28742163
Sustained ecological observing, how hard can it be?
NASA Astrophysics Data System (ADS)
Moltmann, T.; Proctor, R.
2016-02-01
Australia's Integrated Marine Observing System (IMOS) is a national scale, sustained observing system that has now been operating for a decade. The direction of IMOS has been strongly influenced by developments in the Global Ocean Observing System, particularly the integration of physical, chemical and biological observing, from open-ocean to coast. In addition to more mature approaches for measuring physical and chemical variables, IMOS has piloted sustained observing of benthic habitats, primary and secondary producers, mid-trophic, and higher trophic level organisms. Observing technologies used include autonomous underwater vehicles, continuous plankton recorders, underway measurements from ships of opportunity, monthly vessel-based sampling, bio-optical sensors on buoys and gliders, echo sounders, acoustic telemetry, bio-logging, noise logging and satellite remote sensing. Increased focus is now being placed on producing valued added products from biological time series, and working with biogeochemical and ecosystem modellers to help reduce model uncertainties, and to get feedback on future design of the observing system. Significant steps have been made towards the long term goal of sustained ecological observing, and important lessons learned along the way.
Acquision of Geometrical Data of Small Rivers with AN Unmanned Water Vehicle
NASA Astrophysics Data System (ADS)
Sardemann, H.; Eltner, A.; Maas, H.-G.
2018-05-01
Rivers with small- and medium-scaled catchments have been increasingly affected by extreme events, i.e. flash floods, in the last years. New methods to describe and predict these events are developed in the interdisciplinary research project EXTRUSO. Flash flood events happen on small temporal and spatial scales, stressing the necessity of high-resolution input data for hydrological and hydrodynamic modelling. Among others, the benefit of high-resolution digital terrain models (DTMs) will be evaluated in the project. This article introduces a boat-based approach for the acquisition of geometrical and morphological data of small rivers and their banks. An unmanned water vehicle (UWV) is used as a multi-sensor platform to collect 3D-point clouds of the riverbanks, as well as bathymetric measurements of water depth and river morphology. The UWV is equipped with a mobile Lidar, a panorama camera, an echo sounder and a positioning unit. Whole (sub-) catchments of small rivers can be digitalized and provided for hydrological modelling when UWV-based and UAV (unmanned aerial vehicle) based point clouds are fused.
NASA Technical Reports Server (NTRS)
Howe, J. T.; Gibson, D. B.; Evans, T. O.; Breaker, L.; Wrigley, R. C.; Broenkow, W. W.
1981-01-01
An upwelling episode in the Point Sal region of the central California coast is examined by using data obtained by a data buoy. The episodes was interrupted by the abrupt abatement of the strong wind which promotes coastal upwelling. The mean hourly upwelling index is calculated to be higher than the 20 year mean monthly value. During 3 days of light wind commercial bottom trawl operations were possible. Shipboard estimates of chlorophyll content in surface waters during trawling show the high concentrations that are indicative of a rich biomass of phytoplankton, a result of the upwelling episode. Satellite imagery shows the extent of the upwelling water to be of the order of 100 km offshore; the result of many upwelling episodes. Shipboard echo sounder data show the presence of various delmersal species and of zooplakton; the latter graze on the phytoplankton in the upper euphotic layers. The fish catch data are recorded according to species for 2 days of trawling, and the catch per trawl hour is recorded.
Rapid myelin water imaging in human cervical spinal cord.
Ljungberg, Emil; Vavasour, Irene; Tam, Roger; Yoo, Youngjin; Rauscher, Alexander; Li, David K B; Traboulsee, Anthony; MacKay, Alex; Kolind, Shannon
2017-10-01
Myelin water imaging (MWI) using multi-echo T 2 relaxation is a quantitative MRI technique that can be used as an in vivo biomarker for myelin in the central nervous system. MWI using a multi-echo spin echo sequence currently takes more than 20 min to acquire eight axial slices (5 mm thickness) in the cervical spinal cord, making spinal cord MWI impractical for implementation in clinical studies. In this study, an accelerated gradient and spin echo sequence (GRASE), previously validated for brain MWI, was adapted for spinal cord MWI. Ten healthy volunteers were scanned with the GRASE sequence (acquisition time 8.5 min) and compared with the multi-echo spin echo sequence (acquisition time 23.5 min). Using region of interest analysis, myelin estimates obtained from the two sequences were found to be in good agreement (mean difference = -0.0092, 95% confidence interval = - 0.0092 ± 0.061; regression slope = 1.01, ρ = 0.9). MWI using GRASE was shown to be highly reproducible with an average coefficient of variation of 6.1%. The results from this study show that MWI can be performed in the cervical spinal cord in less than 10 min, allowing for practical implementation in multimodal clinical studies. Magn Reson Med 78:1482-1487, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Method for using acoustic sounder categories to determine atmospheric stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schubert, J.F.
1979-01-01
Capabilities of the diffusion meteorologist have been expanded by the acoustic sounder, an economical tool for monitoring in real time the height of the mixed layer. The acoustic sounder continuously measures the rate of change in the height of the mixed layer which is an important parameter in calculating the transport and diffusion of radioactive and nonradioactive air pollutants. Continuous record of convective cells, gravity waves, inversions, and frontal systems permit analysis of the synoptic (analysis of stability in terms of simultaneous weather information) and complex (analysis of the stability of a single place by the relative frequencies of variousmore » stability types or groups of such types) stabilities of the local area. Sounder data obtained at the Savannah River Plant was compared on an hourly basis to data obtained at the WJBF-TV tower located approximately 20 km northwest of the acoustic sounder site.« less
Space-Borne Radio-Sounding Investigations Facilitated by the Virtual Wave Observatory (VWO)
NASA Technical Reports Server (NTRS)
Benson, Robert F.; Fung, Shing F.; Bilitza,Dieter; Garcia, Leonard N.; Shao, Xi; Galkin, Ivan A.
2011-01-01
The goal of the Virtual Wave Observatory (VWO) is to provide userfriendly access to heliophysics wave data. While the VWO initially emphasized the vast quantity of wave data obtained from passive receivers, the VWO infrastructure can also be used to access active sounder data sets. Here we use examples from some half-million Alouette-2, ISIS-1, and ISIS-2 digital topside-sounder ionograms to demonstrate the desirability of such access to the actual ionograms for investigations of both natural and sounder-stimulated plasma-wave phenomena. By this demonstration, we wish to encourage investigators to make other valuable space-borne sounder data sets accessible via the VWO.
Spectral Resolution and Coverage Impact on Advanced Sounder Information Content
NASA Technical Reports Server (NTRS)
Larar, Allen M.; Liu, Xu; Zhou, Daniel K.; Smith, William L.
2010-01-01
Advanced satellite sensors are tasked with improving global measurements of the Earth s atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such measurement improvements requires instrument system advancements. This presentation focuses on the impact of spectral resolution and coverage changes on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species variables obtainable from advanced atmospheric sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and Cross-track Infrared Sounder (CrIS) systems on the MetOp and NPP/NPOESS series of satellites. Key words: remote sensing, advanced sounders, information content, IASI, CrIS
Bedform dynamics in a large sand-bedded river using multibeam echo sounding
NASA Astrophysics Data System (ADS)
Elliott, C. M.; Jacobson, R. B.; Erwin, S.; Eric, A. B.; DeLonay, A. J.
2014-12-01
High-resolution repeat multibeam Echo Sounder (MBES) surveys of the Lower Missouri River in Missouri, USA demonstrate sand bedform movement at a variety of scales over a range of discharges. Understanding dune transport rates and the temporal and spatial variability in sizes across the channel has implications for how sediment transport measurements are made and for understanding the dynamics of habitats utilized by benthic organisms over a range of life stages. Nearly 800 miles of the Lower Missouri River has been altered through channelization and bank stabilization that began in the early 1900's for navigation purposes. Channelization of the Lower Missouri River has created a self-scouring navigation channel with large dunes that migrate downstream over a wide range of discharges. Until the use of MBES surveys on the Missouri River the spatial variability of dune forms in the Missouri River navigation channel was poorly understood. MBES surveys allow for visualization of a range of sand bedforms and repeat measurements demonstrate that dunes are moving over a wide range of discharges on the river. Understanding the spatial variability of dunes and dune movement across the channel and in different channel settings (bends, channel cross-overs, near channel structures) will inform emerging methods in sediment transport measurement that use bedform differencing calculations and provide context for physical bedload sediment sampling on large sand-bedded rivers. Multiple benthic fish species of interest including the endangered pallid sturgeon utilize Missouri River dune fields and adjacent regions for migration, feeding, spawning, early development and dispersal. Surveys using MBES and other hydroacoustic tools provide fisheries biologists with broad new insights into the functionality of bedforms as habitat for critical life stages of large river fish species in the Missouri River, and similar sand-bedded systems.
NASA Astrophysics Data System (ADS)
Peters, S. T.; Schroeder, D. M.; Romero-Wolf, A.; Haynes, M.
2017-12-01
The Radar for Icy Moon Exploration (RIME) and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) have been identified as potential candidates for the implementation of passive sounding as additional observing modes for the ESA and NASA missions to Ganymede and Europa. Recent work has shown the theoretical potential for Jupiter's decametric radiation to be used as a source for passive radio sounding of its icy moons. We are further developing and adapting this geophysical approach for use in terrestrial glaciology. Here, we present results from preliminary field testing of a prototype passive radio sounder from cliffs along the California coast. This includes both using a Lloyd's mirror to measure the Sun's direct path and its reflection off the ocean's surface and exploiting autocorrelation to detect the delay time of the echo. This is the first in-situ demonstration of the autocorrelation-based passive-sounding approach using an astronomical white noise signal. We also discuss preliminary field tests on rougher terrestrial and subglacial surfaces, including at Store Glacier in Greenland. Additionally, we present modeling and experimental results that demonstrate the feasibility of applying presumming approaches to the autocorrelations to achieve coherent gain from an inherently random signal. We note that while recording with wider bandwidths and greater delays places fundamental limits on the Lloyd's mirror approach, our new autocorrelation method has no such limitation. Furthermore, we show how achieving wide bandwidths via spectral-stitching methods allows us to obtain a finer range resolution than given by the receiver's instantaneous bandwidth. Finally, we discuss the potential for this technique to eliminate the need for active transmitters in certain types of ice sounding experiments, thereby reducing the complexity, power consumption, and cost of systems and observations.
Work of PZT ceramics sounder for sound source artificial larynx
NASA Astrophysics Data System (ADS)
Sugio, Yuuichi; Kanetake, Ryota; Tanaka, Akimitsu; Ooe, Katsutoshi
2007-04-01
We aim to develop the easy-to-use artificial larynx with high tone quality. We focus on using a PZT ceramics sounder as its sound source, because it is small size, low power consumption, and harmless to humans. But conventional PZT ceramics sounder have the problem that it cannot generate an enough sound in the low frequency range, thus they cannot be used for artificial larynx. Then, we aim to develop the PZT ceramics sounder which can generate enough volume in the low frequency range. If we can lower the resonance frequency of the sounder, it can generate low pitch sound easily. Therefore I created the new diaphragm with low resonance frequency. In addition, we could obtain the high amplitude by changing method of driving. This time, we report on the characteristic comparison of this new PZT ceramics sounder and conventional one. Furthermore, for this new one, we analyzed the best alignment of PZT ceramics and the shape of the diaphragm to obtain low resonance frequency and big amplitude. In fact we analyzed the optimization of the structure. The analysis is done by computer simulation of ANSYS and Laser Doppler Vibrometer. In the future, we will add intonation to the generated sound by input wave form which is developed concurrently, and implant the sounder inside of the body by the method of fixing metal to biomolecule which is done too. And so high tone quality and convenient artificial larynx will be completed.
Eddy-Kuroshio Interactions: Local and Remote Effects
NASA Astrophysics Data System (ADS)
Jan, Sen; Mensah, Vigan; Andres, Magdalena; Chang, Ming-Huei; Yang, Yiing Jang
2017-12-01
Quasi-geostrophic mesoscale eddies regularly impinge on the Kuroshio in the western North Pacific, but the processes underlying the evolution of these eddy-Kuroshio interactions have not yet been thoroughly investigated in the literature. Here this interaction is examined with results from a semi-idealized three-dimensional numerical model and observations from four pressure-sensor equipped inverted echo sounders (PIESs) in a zonal section east of Taiwan and satellite altimeters. Both the observations and numerical simulations suggest that, during the interaction of a cyclonic eddy with the Kuroshio, the circular eddy is deformed into an elliptic shape with the major axis in the northwest-southeast direction, before being dissipated; the poleward velocity and associated Kuroshio transport decrease and the sea level and pycnocline slopes across the Kuroshio weaken. In contrast, for an anticyclonic eddy during the eddy-Kuroshio interaction, variations in the velocity, sea level, and isopycnal depth are reversed; the circular eddy is also deformed to an ellipse but with the major axis parallel to the Kuroshio. The model results also demonstrate that the velocity field is modified first and consequently the SSH and isopycnal depth evolve during the interaction. Furthermore, due to the combined effect of impingement latitude and realistic topography, some eddy-Kuroshio interactions east of Taiwan are found to have remote effects, both in the Luzon Strait and on the East China Sea shelf northeast of Taiwan.
NASA Astrophysics Data System (ADS)
Capperucci, Ruggero Maria; Bartholomä, Alexander; Renken, Sabrina; De Lange, Willem
2013-04-01
The Tauranga Harbour Bay (New Zealand) is a mesotidal estuary system, enclosed by the Matakana barrier island. It hosts the leading export port in New Zealand and the second largest import port by value. Coastal changes are well documented over the last decades, mainly at the southern entrance of the area, between Matakana Island and Mt. Maunganui. It is an extremely dynamic environment, where natural processes are strongly influenced by human activities. In particular, the understanding of the recent evolution of the system is crucial for policymakers. In fact, the cumulative impact due to the maintenance of the port (mainly dredging activities, shipping, facilities construction, but also increasing tourism) and its already approved expansion clashes with the claim of the local Maori communities, which recently leaded to a court action. A hydroacoustic multiple-device survey (Side-scan Sonar SSS, Multibeam Echo-sounder MBES and Single Beam Echo-sounder) coupled with sediment sampling was carried out in March 2011 over an area of 0.8 km2, southern Matakana Island, along the Western Channel. The area is not directly impacted by dredging activities, resulting in an optimal testing site for assessing indirect effects of human disturbance on coastal dynamics. The main goals were: 1. To test the response of different acoustic systems in such a highly dynamic environment; 2. To study the influence of dredging activities on sediment dynamics and habitat changes, by means of comparing the current data with existing ones, in order to distinguish between natural and human induced changes Results demonstrate a good agreement between acoustic classifications from different systems. They seem to be mainly driven by the sediment distribution, with a distinctive fingerprint given by shells and shell fragments. Nevertheless, the presence of relevant topographic features (i.e. large bedform fields) influences swath-looking systems (SSS and MBES). SSS and MBES classifications tend to be described by a larger number of acoustic classes, allowing a better sub-division of acoustic zones that carries both the sedimentological and the topographic information into the final map. The evolution of the channel morphology and occurred largely in the past, thus the differences observed in the data can not be univocally ascribed to the dredging operations. Changes in the distribution of surface sediments, bedforms and shell lags can also be mapped. Although a general sedimentary pattern can be recognised over the time series data, a reduction in the shell coverage and the shallowing of the lower Western Channel could be related to an adjustment of the hydrodynamic conditions due to the dredging activities in the shipping channel nearby.
UAS-Based Radar Sounding of Ice
NASA Astrophysics Data System (ADS)
Hale, R. D.; Keshmiri, S.; Leuschen, C.; Ewing, M.; Yan, J. B.; Rodriguez-Morales, F.; Gogineni, S.
2014-12-01
The University of Kansas Center for Remote Sensing of Ice Sheets developed two Unmanned Aerial Systems (UASs) to support polar research. We developed a mid-range UAS, called the Meridian, for operating a radar depth sounder/imager at 195 MHz with an eight-element antenna array. The Meridian weighs 1,100 lbs, has a 26-foot wingspan, and a range of 950 nm at its full payload capacity of 120 lbs. Ice-penetrating radar performance drove the configuration design, though additional payloads and sensors were considered to ensure adaptation to multi-mission science payloads. We also developed a short range UAS called the G1X for operating a low-frequency radar sounder that operates at 14 and 35 MHz. The G1X weighs 85 lbs, has a 17-foot wingspan, and a range of about 60 nm per gallon of fuel. The dual-frequency HF/VHF radar depth sounder transmits at 100 W peak power at a pulse repetition frequency of 10 KHz and weighs approximately 4.5 lbs. We conducted flight tests of the G1X integrated with the radar at the Sub-glacial Lake Whillans ice stream and the WISSARD drill site. The tests included pilot-controlled and fully autonomous flights to collect data over closely-spaced lines to synthesize a 2-D aperture. We obtained clear bed echoes with a signal-to-noise (S/N) ratio of more than 50 dB at this location. These are the first-ever successful soundings of glacial ice with a UAS-based radar. Although ice attenuation losses in this location are low in comparison to more challenging targets, in-field performance improvements to the UAS and HF/VHF radar system enabled significant gains in the signal-to-noise ratio, such that the system can now be demonstrated on more challenging outlet glaciers. We are upgrading the G1X UAS and radar system for further tests and data collection in Greenland. We are reducing the weight and volume of the radar, which, when coupled with further reductions in airframe and avionics weight and a larger fuel bladder, will offer extended range. Finally, we are increasing the radar transmit peak power to about 250-500 W using high-efficiency power amplifiers and hardening the aircraft actuators for potential electromagnetic interference. The main focus of the Spring 2015 deployment is to collect fine-resolution data near the outlet and grounding lines of Kangiata Nunaata Sermia (KNS) glacier in Greenland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, S; Wloch, J; Pirkola, M
Purpose: Quantitative fat-water segmentation is important not only because of the clinical utility of fat-suppressed MRI images in better detecting lesions of clinical significance (in the midst of bright fat signal) but also because of the possible physical need, in which CT-like images based on the materials’ photon attenuation properties may have to be generated from MR images; particularly, as in the case of MR-only radiation oncology environment to obtain radiation dose calculation or as in the case of hybrid PET/MR modality to obtain attenuation correction map for the quantitative PET reconstruction. The majority of such fat-water quantitative segmentations havemore » been performed by utilizing the Dixon’s method and its variations, which have to enforce the proper settings (often predefined) of echo time (TE) in the pulse sequences. Therefore, such methods have been unable to be directly combined with those ultrashort TE (UTE) sequences that, taking the advantage of very low TE values (∼ 10’s microsecond), might be beneficial to directly detect bones. Recently, an RF pulse-based method (http://dx.doi.org/10.1016/j.mri.2015.11.006), termed as PROD pulse method, was introduced as a method of quantitative fat-water segmentation that does not have to depend on predefined TE settings. Here, the clinical feasibility of this method is verified in brain tumor patients by combining the PROD pulse with several sequences. Methods: In a clinical 3T MRI, the PROD pulse was combined with turbo spin echo (e.g. TR=1500, TE=16 or 60, ETL=15) or turbo field echo (e.g. TR=5.6, TE=2.8, ETL=12) sequences without specifying TE values. Results: The fat-water segmentation was possible without having to set specific TE values. Conclusion: The PROD pulse method is clinically feasible. Although not yet combined with UTE sequences in our laboratory, the method is potentially compatible with UTE sequences, and thus, might be useful to directly segment fat, water, bone and air.« less
Cai, Congbo; Wang, Chao; Zeng, Yiqing; Cai, Shuhui; Liang, Dong; Wu, Yawen; Chen, Zhong; Ding, Xinghao; Zhong, Jianhui
2018-04-24
An end-to-end deep convolutional neural network (CNN) based on deep residual network (ResNet) was proposed to efficiently reconstruct reliable T 2 mapping from single-shot overlapping-echo detachment (OLED) planar imaging. The training dataset was obtained from simulations that were carried out on SPROM (Simulation with PRoduct Operator Matrix) software developed by our group. The relationship between the original OLED image containing two echo signals and the corresponding T 2 mapping was learned by ResNet training. After the ResNet was trained, it was applied to reconstruct the T 2 mapping from simulation and in vivo human brain data. Although the ResNet was trained entirely on simulated data, the trained network was generalized well to real human brain data. The results from simulation and in vivo human brain experiments show that the proposed method significantly outperforms the echo-detachment-based method. Reliable T 2 mapping with higher accuracy is achieved within 30 ms after the network has been trained, while the echo-detachment-based OLED reconstruction method took approximately 2 min. The proposed method will facilitate real-time dynamic and quantitative MR imaging via OLED sequence, and deep convolutional neural network has the potential to reconstruct maps from complex MRI sequences efficiently. © 2018 International Society for Magnetic Resonance in Medicine.
Dual-pathway multi-echo sequence for simultaneous frequency and T2 mapping
NASA Astrophysics Data System (ADS)
Cheng, Cheng-Chieh; Mei, Chang-Sheng; Duryea, Jeffrey; Chung, Hsiao-Wen; Chao, Tzu-Cheng; Panych, Lawrence P.; Madore, Bruno
2016-04-01
Purpose: To present a dual-pathway multi-echo steady state sequence and reconstruction algorithm to capture T2, T2∗ and field map information. Methods: Typically, pulse sequences based on spin echoes are needed for T2 mapping while gradient echoes are needed for field mapping, making it difficult to jointly acquire both types of information. A dual-pathway multi-echo pulse sequence is employed here to generate T2 and field maps from the same acquired data. The approach might be used, for example, to obtain both thermometry and tissue damage information during thermal therapies, or susceptibility and T2 information from a same head scan, or to generate bonus T2 maps during a knee scan. Results: Quantitative T2, T2∗ and field maps were generated in gel phantoms, ex vivo bovine muscle, and twelve volunteers. T2 results were validated against a spin-echo reference standard: A linear regression based on ROI analysis in phantoms provided close agreement (slope/R2 = 0.99/0.998). A pixel-wise in vivo Bland-Altman analysis of R2 = 1/T2 showed a bias of 0.034 Hz (about 0.3%), as averaged over four volunteers. Ex vivo results, with and without motion, suggested that tissue damage detection based on T2 rather than temperature-dose measurements might prove more robust to motion. Conclusion: T2, T2∗ and field maps were obtained simultaneously, from the same datasets, in thermometry, susceptibility-weighted imaging and knee-imaging contexts.
Trade-off studies of a hyperspectral infrared sounder on a geostationary satellite.
Wang, Fang; Li, Jun; Schmit, Timothy J; Ackerman, Steven A
2007-01-10
Trade-off studies on spectral coverage, signal-to-noise ratio (SNR), and spectral resolution for a hyperspectral infrared (IR) sounder on a geostationary satellite are summarized. The data density method is applied for the vertical resolution analysis, and the rms error between true and retrieved profiles is used to represent the retrieval accuracy. The effects of spectral coverage, SNR, and spectral resolution on vertical resolution and retrieval accuracy are investigated. The advantages of IR and microwave sounder synergy are also demonstrated. When focusing on instrument performance and data processing, the results from this study show that the preferred spectral coverage combines long-wave infrared (LWIR) with the shorter middle-wave IR (SMidW). Using the appropriate spectral coverage, a hyperspectral IR sounder with appropriate SNR can achieve the required science performance (1 km vertical resolution, 1 K temperature, and 10% relative humidity retrieval accuracy). The synergy of microwave and IR sounders can improve the vertical resolution and retrieval accuracy compared to either instrument alone.
1972-11-17
S72-53472 (November 1972) --- An artist's concept illustrating how radar beams of the Apollo 17 lunar sounder experiment will probe three-quarters of a mile below the moon's surface from the orbiting spacecraft. The Lunar Sounder will be mounted in the SIM bay of the Apollo 17 Service Module. Electronic data recorded on film will be retrieved by the crew during trans-Earth EVA. Geologic information on the lunar interior obtained by the sounder will permit scientific investigation of underground rock layers, lava flow patterns, rille (canyon) structures, mascon properties, and any areas containing water. A prototype lunar sounder has been flight tested in aircraft over selected Earth sites to confirm the equipment design and develop scientific analysis techniques. The Lunar Sounder Experiment (S-209) was developed by North American Rockwell's (NR) Space Division for NASA's Manned Spacecraft Center to provide data for a scientific investigation team with representatives from the Jet Propulsion Laboratory, University of Utah, University of Michigan, U.S. Geological Survey, and NASA Ames Research Center.
NASA Astrophysics Data System (ADS)
Tobin, David C.; Revercomb, Henry E.; Moeller, Chris C.; Knuteson, Robert O.; Best, Fred A.; Smith, William L.; van Delst, Paul; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark D.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, Hugh B.; Dutcher, Steven B.; Taylor, Joe K.
2004-11-01
The ability to accurately validate high spectral resolution infrared radiance measurements from space using comparisons with aircraft spectrometer observations has been successfully demonstrated. The demonstration is based on an under-flight of the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua spacecraft by the Scanning High resolution Interferometer Sounder (S-HIS) on the NASA ER-2 high altitude aircraft on 21 November 2002 and resulted in brightness temperature differences approaching 0.1K for most of the spectrum. This paper presents the details of this AIRS/S-HIS validation case and also presents comparisons of Aqua AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) radiance observations. Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations. It is expected that aircraft flights of the S-HIS and its close cousin the National Polar Orbiting Environmental Satellite System (NPOESS) Atmospheric Sounder Testbed (NAST) will be used to check the long-term stability of the NASA EOS spacecrafts (Terra, Aqua and Aura) and the follow-on complement of operational instruments, including the Cross-track Infrared Sounder (CrIS).
MR Fingerprinting Using The Quick Echo Splitting NMR Imaging Technique
Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A.
2016-01-01
Purpose The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining Magnetic Resonance Fingerprinting (MRF) technique with Quick Echo Splitting NMR Imaging Technique (QUEST). Methods A QUEST-based MRF sequence was implemented to acquire high order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T1 and T2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The SAR of QUEST-MRF was compared to the clinically available methods. Results MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head Specific Absorption Rate (SAR) of 0.03 W/kg. T1 and T2 values estimated by MRF-QUEST are in good agreement with the traditional methods. Conclusion The combination of the MRF and the QUEST provides an accurate quantification of T1 and T2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. PMID:26924639
NASA Astrophysics Data System (ADS)
Kaub, C.; Perrot, J.; Le Roy, P., Sr.; Authemayou, C.; Bollinger, L.; Hebert, H.; Geoffroy, L.
2017-12-01
The coastal Vendee (France) is located to the south of the intraplate Armorican area. This region is affected by a system of dominantly NW-SE trending shear zones and faults inherited from a long and poly-phased tectonic history since Variscan times. This area currently presents a moderate background seismic activity, but was affected by a significant historical earthquake (magnitude M 6) on the 1799 January 25th. This event generated particularly strong site effects in a Neogene basin located along a major onshore/offshore discontinuity bounding the basin, the Machecoul fault. The objective of this study is to identify and qualify active faults potentially responsible for such major seismic event in order to better constrain the seismic hazard of this area. We adopt for this purpose a multidisciplinary approach including an onshore seismological survey, high-resolution low-penetration offshore seismic data (CHIRP echo sounder, Sparker source and single channel streamer), high-resolution interferometric sonar bathymetry (GeoSwath), compilation of onshore drilling database (BSS, BRGM), and quantitative geomorphology In the meantime, the seismicity of the area was characterized by a network of 10 REFTEK stations, deployed since January 2016 around the Bay of Bourgneuf (MACHE network). About 50 local earthquakes, with coda magnitudes ranging from 0.5 to 3.1 and local magnitude ranging from 0.2 to 2.9 were identified so far. This new database complement a local earthquake catalog acquired since 2011 from previous regional networks. We surveyed the fault segments offshore, in the Bay of Bourgneuf, analyzing 700 km of high-resolution seismic profiles and 40 km² of high-resolution bathymetry acquired during the RETZ1 (2016) and RETZ2 (2017) campaigns, in addition to HR-bathymetry along the fault scarp. Those data are interpreted in conjunction with onshore wells to determine if (and since when) the Machecoul fault controlled tectonically the Neogene sedimentation.
Deller, Timothy W; Khalighi, Mohammad Mehdi; Jansen, Floris P; Glover, Gary H
2018-01-01
The recent introduction of simultaneous whole-body PET/MR scanners has enabled new research taking advantage of the complementary information obtainable with PET and MRI. One such application is kinetic modeling, which requires high levels of PET quantitative stability. To accomplish the required PET stability levels, the PET subsystem must be sufficiently isolated from the effects of MR activity. Performance measurements have previously been published, demonstrating sufficient PET stability in the presence of MR pulsing for typical clinical use; however, PET stability during radiofrequency (RF)-intensive and gradient-intensive sequences has not previously been evaluated for a clinical whole-body scanner. In this work, PET stability of the GE SIGNA PET/MR was examined during simultaneous scanning of aggressive MR pulse sequences. Methods: PET performance tests were acquired with MR idle and during simultaneous MR pulsing. Recent system improvements mitigating RF interference and gain variation were used. A fast recovery fast spin echo MR sequence was selected for high RF power, and an echo planar imaging sequence was selected for its high heat-inducing gradients. Measurements were performed to determine PET stability under varying MR conditions using the following metrics: sensitivity, scatter fraction, contrast recovery, uniformity, count rate performance, and image quantitation. A final PET quantitative stability assessment for simultaneous PET scanning during functional MRI studies was performed with a spiral in-and-out gradient echo sequence. Results: Quantitation stability of a 68 Ge flood phantom was demonstrated within 0.34%. Normalized sensitivity was stable during simultaneous scanning within 0.3%. Scatter fraction measured with a 68 Ge line source in the scatter phantom was stable within the range of 40.4%-40.6%. Contrast recovery and uniformity were comparable for PET images acquired simultaneously with multiple MR conditions. Peak noise equivalent count rate was 224 kcps at an effective activity concentration of 18.6 kBq/mL, and the count rate curves and scatter fraction curve were consistent for the alternating MR pulsing states. A final test demonstrated quantitative stability during a spiral functional MRI sequence. Conclusion: PET stability metrics demonstrated that PET quantitation was not affected during simultaneous aggressive MRI. This stability enables demanding applications such as kinetic modeling. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
NPP ATMS Prelaunch Performance Assessment and Sensor Data Record Validation
2011-04-29
TMS to sense scattering of cold cosmic background radiance from the tops of preci pitating clouds allows the retrieval of preCipitation intensities...operational and research missions over the last 40 years. The Cross-track Infrared and Microwave Sounding Suite (CrIMSS), consisting of the Cross-track...Infrared Sounder (CrrS) and the flIst space-based, Nyquist-sampled cross-track microwave sounder, the Advanced Technology Microwave Sounder (ATMS), will
NASA Technical Reports Server (NTRS)
Whitlock, Charles H.; Wylie, Donald P.; Lecroy, Stuart R.
1988-01-01
Maps and concise tables are presented which show TOVS (TIROS Operational Vertical Sounder) HIRS/2 (High Resolution Infrared Sounder) data products, resolution size, and sounding location for the FIRE/SRB (First ISCCP Experiment/Surface Radiation Budget) Wisconsin experiment region from October 14 through November 2, 1986. The data presented are the result of a special analysis of the HIRS/2 sounder from the NOAA-9 and -10 satellites.
Territoriality of feral pigs in a highly persecuted population on Fort Benning, Georgia
Sparklin, B.D.; Mitchell, M.S.; Hanson, L.B.; Jolley, D.B.; Ditchkoff, S.S.
2009-01-01
We examined home range behavior of female feral pigs (Sus scrofa) in a heavily hunted population on Fort Benning Military Reservation in west-central Georgia, USA. We used Global Positioning System location data from 24 individuals representing 18 sounders (i.e., F social groups) combined with markrecapture and camera-trap data to evaluate evidence of territorial behavior at the individual and sounder levels. Through a manipulative experiment, we examined evidence for an inverse relationship between population density and home range size that would be expected for territorial animals. Pigs from the same sounder had extensive home range overlap and did not have exclusive core areas. Sounders had nearly exclusive home ranges and had completely exclusive core areas, suggesting that female feral pigs on Fort Benning were territorial at the sounder level but not at the individual level. Lethal removal maintained stable densities of pigs in our treatment area, whereas density increased in our control area; territory size in the 2 areas was weakly and inversely related to density of pigs. Territorial behavior in feral pigs could influence population density by limiting access to reproductive space. Removal strategies that 1) match distribution of removal efforts to distribution of territories, 2) remove entire sounders instead of individuals, and 3) focus efforts where high-quality food resources strongly influence territorial behaviors may be best for long-term control of feral pigs.
NASA Astrophysics Data System (ADS)
Omura, Masaaki; Yoshida, Kenji; Akita, Shinsuke; Yamaguchi, Tadashi
2018-07-01
We aim to develop an ultrasonic tissue characterization method for the follow-up of healing ulcers by diagnosing collagen fibers properties. In this paper, we demonstrated a computer simulation with simulation phantoms reflecting irregularly distributed collagen fibers to evaluate the relationship between physical properties, such as number density and periodicity, and the estimated characteristics of the echo amplitude envelope using the homodyned-K distribution. Moreover, the consistency between echo signal characteristics and the structures of ex vivo human tissues was verified from the measured data of normal skin and nonhealed ulcers. In the simulation study, speckle or coherent signal characteristics are identified as periodically or uniformly distributed collagen fibers with high number density and high periodicity. This result shows the effectiveness of the analysis using the homodyned-K distribution for tissues with complicated structures. Normal skin analysis results are characterized as including speckle or low-coherence signal components, and a nonhealed ulcer is different from normal skin with respect to the physical properties of collagen fibers.
Stationary echo canceling in velocity estimation by time-domain cross-correlation.
Jensen, J A
1993-01-01
The application of stationary echo canceling to ultrasonic estimation of blood velocities using time-domain cross-correlation is investigated. Expressions are derived that show the influence from the echo canceler on the signals that enter the cross-correlation estimator. It is demonstrated that the filtration results in a velocity-dependent degradation of the signal-to-noise ratio. An analytic expression is given for the degradation for a realistic pulse. The probability of correct detection at low signal-to-noise ratios is influenced by signal-to-noise ratio, transducer bandwidth, center frequency, number of samples in the range gate, and number of A-lines employed in the estimation. Quantitative results calculated by a simple simulation program are given for the variation in probability from these parameters. An index reflecting the reliability of the estimate at hand can be calculated from the actual cross-correlation estimate by a simple formula and used in rejecting poor estimates or in displaying the reliability of the velocity estimated.
Introduction and analysis of several FY3C-MWHTS cloud/rain screening methods
NASA Astrophysics Data System (ADS)
Li, Xiaoqing
2017-04-01
Data assimilation of satellite microwave sounders are very important for numerical weather prediction. Fengyun-3C (FY-3C),launched in September, 2013, has two such sounders: MWTS (MicroWave Temperature Sounder) and MWHTS (MicroWave Humidity and Temperature Sounder). These data should be quality-controlled before assimilation and cloud/rain detection is one of the crucial steps. This paper introduced different cloud/rain detection methods based on MWHTS, VIRR (Visible and InfraRed Radiometer) and MWRI (Microwave Radiation Imager) observations. We designed 6 cloud/rain detection combinations and then analyzed the application effect of these schemes. The difference between observations and model simulations for FY-3C MWHTS channels were calculated as a parameter for analysis. Both RTTOV and CRTM were used to fast simulate radiances of MWHTS channels.
Quiet echo planar imaging for functional and diffusion MRI
Price, Anthony N.; Cordero‐Grande, Lucilio; Malik, Shaihan; Ferrazzi, Giulio; Gaspar, Andreia; Hughes, Emer J.; Christiaens, Daan; McCabe, Laura; Schneider, Torben; Rutherford, Mary A.; Hajnal, Joseph V.
2017-01-01
Purpose To develop a purpose‐built quiet echo planar imaging capability for fetal functional and diffusion scans, for which acoustic considerations often compromise efficiency and resolution as well as angular/temporal coverage. Methods The gradient waveforms in multiband‐accelerated single‐shot echo planar imaging sequences have been redesigned to minimize spectral content. This includes a sinusoidal read‐out with a single fundamental frequency, a constant phase encoding gradient, overlapping smoothed CAIPIRINHA blips, and a novel strategy to merge the crushers in diffusion MRI. These changes are then tuned in conjunction with the gradient system frequency response function. Results Maintained image quality, SNR, and quantitative diffusion values while reducing acoustic noise up to 12 dB (A) is illustrated in two adult experiments. Fetal experiments in 10 subjects covering a range of parameters depict the adaptability and increased efficiency of quiet echo planar imaging. Conclusion Purpose‐built for highly efficient multiband fetal echo planar imaging studies, the presented framework reduces acoustic noise for all echo planar imaging‐based sequences. Full optimization by tuning to the gradient frequency response functions allows for a maximally time‐efficient scan within safe limits. This allows ambitious in‐utero studies such as functional brain imaging with high spatial/temporal resolution and diffusion scans with high angular/spatial resolution to be run in a highly efficient manner at acceptable sound levels. Magn Reson Med 79:1447–1459, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28653363
A rapid and robust gradient measurement technique using dynamic single-point imaging.
Jang, Hyungseok; McMillan, Alan B
2017-09-01
We propose a new gradient measurement technique based on dynamic single-point imaging (SPI), which allows simple, rapid, and robust measurement of k-space trajectory. To enable gradient measurement, we utilize the variable field-of-view (FOV) property of dynamic SPI, which is dependent on gradient shape. First, one-dimensional (1D) dynamic SPI data are acquired from a targeted gradient axis, and then relative FOV scaling factors between 1D images or k-spaces at varying encoding times are found. These relative scaling factors are the relative k-space position that can be used for image reconstruction. The gradient measurement technique also can be used to estimate the gradient impulse response function for reproducible gradient estimation as a linear time invariant system. The proposed measurement technique was used to improve reconstructed image quality in 3D ultrashort echo, 2D spiral, and multi-echo bipolar gradient-echo imaging. In multi-echo bipolar gradient-echo imaging, measurement of the k-space trajectory allowed the use of a ramp-sampled trajectory for improved acquisition speed (approximately 30%) and more accurate quantitative fat and water separation in a phantom. The proposed dynamic SPI-based method allows fast k-space trajectory measurement with a simple implementation and no additional hardware for improved image quality. Magn Reson Med 78:950-962, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Muzamil, Akhmad; Haries Firmansyah, Achmad
2017-05-01
The research was done the optimization image of Magnetic Resonance Imaging (MRI) T2 Fast Spin Echo (FSE) with variation Echo Train Length (ETL) on the Rupture Tendon Achilles case. This study aims to find the variations Echo Train Length (ETL) from the results of ankle’s MRI image and find out how the value of Echo Train Length (ETL) works on the MRI ankle to produce optimal image. In this research, the used ETL variations were 12 and 20 with the interval 2 on weighting T2 FSE sagittal. The study obtained the influence of Echo Train Length (ETL) on the quality of ankle MRI image sagittal using T2 FSE weighting and analyzed in 25 images of five patients. The data analysis has done quantitatively with the Region of Interest (ROI) directly on computer MRI image planes which conducted statistical tests Signal to Noise Ratio (SNR) and Contras to Noise Ratio (CNR). The Signal to Noise Ratio (SNR) was the highest finding on fat tissue, while the Contras to Noise Ratio (CNR) on the Tendon-Fat tissue with ETL 12 found in two patients. The statistics test showed the significant SNR value of the 0.007 (p<0.05) of Tendon tissue, 0.364 (p>0.05) of the Fat, 0.912 (p>0.05) of the Fibula, and 0.436 (p>0.05) of the Heel Bone. For the contrast to noise ratio (CNR) of the Tendon-FAT tissue was about 0.041 (p>0.05). The results of the study showed that ETL variation with T2 FSE sagittal weighting had difference at Tendon tissue and Tendon-Fat tissue for MRI imaging quality. SNR and CNR were an important aspect on imaging optimization process to give the diagnose information.
Single-shot turbo spin echo acquisition for in vivo cardiac diffusion MRI.
Edalati, Masoud; Lee, Gregory R; Hui Wang; Taylor, Michael D; Li, Yu Y
2016-08-01
Diffusion MRI offers the ability to noninvasively characterize the microstructure of myocardium tissue and detect disease related pathology in cardiovascular examination. This study investigates the feasibility of in vivo cardiac diffusion MRI under free-breathing condition. A high-speed imaging technique, correlation imaging, is used to enable single-shot turbo spin echo for free-breathing cardiac data acquisition. The obtained in vivo cardiac diffusion-weighted images illustrate robust image quality and minor geometry distortions. The resultant diffusion scalar maps show reliable quantitative values consistent with those previously published in the literature. It is demonstrated that this technique has the potential for in vivo free-breathing cardiac diffusion MRI.
Ultrasound introscopic image quantitative characteristics for medical diagnosis
NASA Astrophysics Data System (ADS)
Novoselets, Mikhail K.; Sarkisov, Sergey S.; Gridko, Alexander N.; Tcheban, Anatoliy K.
1993-09-01
The results on computer aided extraction of quantitative characteristics (QC) of ultrasound introscopic images for medical diagnosis are presented. Thyroid gland (TG) images of Chernobil Accident sufferers are considered. It is shown that TG diseases can be associated with some values of selected QCs of random echo distribution in the image. The possibility of these QCs usage for TG diseases recognition in accordance with calculated values is analyzed. The role of speckle noise elimination in the solution of the problem on TG diagnosis is considered too.
2018-03-01
ER D C/ CR RE L TR -1 8- 3 ERDC 6.1 Basic Research Measuring the Non-Line-of-Sight Ultra- High - Frequency Channel in Mountainous Terrain... High - Frequency Channel in Mountainous Terrain A Spread-Spectrum, Portable Channel Sounder Samuel S. Streeter and Daniel J. Breton U.S. Army...spread-spectrum, portable channel sounder specifically designed to meas- ure the non-line-of-sight, ultra- high -frequency channel in mountainous terrain
Hoffman, Scott A.; Roland, Mark A.; Schalk, Luther F.; Fulton, John W.
2013-01-01
The U.S. Geological Survey (USGS) conducted velocity, water-quality, and bathymetric surveys from spring 2010 to summer 2011 in the Grays Landing and Maxwell navigation pools of the Monongahela River, Pennsylvania, and selected tributaries in response to elevated levels of total dissolved solids (TDS) recorded in early September 2009. Velocity data were collected using an Acoustic Doppler Current Profiler. Water-quality surveys included the in-situ collection of specific-conductance, water-temperature, and turbidity data using a water-quality sonde. Additionally, discrete water samples were collected and analyzed for TDS, chloride, and sulfate. Bathymetric data were collected using an echo sounder, and the shoreline was delineated using a laser range finder and electronic compass. The data were geo-referenced using a differential global positioning system and navigational software. Horizontal (x, y) coordinates were referenced to the North American Datum of 1983. Depth (z) elevations were referenced to the North American Vertical Datum of 1988. The data are provided in electronic format (appendix 1) and may be downloaded and can be used in a geographic information system for cartographic display and data analysis.
Structural features related to the volcanic gases in Southern Okinawa Trough
NASA Astrophysics Data System (ADS)
Wang, H. F.; Hsu, S. K.; Tsia, C. H.; Chen, S. C.; Wu, M. F.
2016-12-01
The Okinawa Trough is a rifted back-arc basin, heavily sedimented and formed in an intracontinental rift zone behind the Ryukyu trench-arc system. The Southern Okinawa Trough (SOT) east of Taiwan is the place where post-collisional extension happened. The collision moved southwestward and the Ryukyu trench-arc extension westward, Arc volcanism is dominant in the Northern Ryukyu volcanic arc and back-arc volcanism in the Southern Okinawa Trough. Marine geophysical data including side-scan sonar (SSS), sub-bottom profiler (SBP) and echo sounder system (EK60) data are used in this study. Active fluid activities out of seafloor are obvious from various images observed on these data, such as gas plumes. These hydrothermal vents have been located at a water depth of 1400 m. Our preliminary results show that gas seepage structures appear in the location where is a week zone, such as a normal fault in the slope. The hydrothermal activity within the Okinawa Trough is associated with volcanism located in rift zones in the Southern Okinawa Trough. However, the origin of the submarine hydrothermal fluids within the Okinawa Trough is diverse with contributions from volcanic, sedimentary and magmatic sources, needed further investigations.
Observations of frequency shift associated with schooling fish
NASA Astrophysics Data System (ADS)
Diachok, Orest
2003-04-01
The number of sardines per school, N, is nominally 10
Hydrographic Surveys for Six Water Bodies in Eastern Nebraska, 2005-07
Johnson, Michaela R.; Andersen, Michael J.; Sebree, Sonja K.
2008-01-01
The U.S. Geological Survey, in cooperation with the Nebraska Department of Environmental Quality, completed hydrographic surveys for six water bodies in eastern Nebraska: Maskenthine Wetland, Olive Creek Lake, Standing Bear Lake, Wagon Train Lake and Wetland, Wildwood Lake, and Yankee Hill Lake and sediment basin. The bathymetric data were collected using a boat-mounted survey-grade fathometer that operated at 200 kHz, and a differentially corrected Global Positioning System with antenna mounted directly above the echo-sounder transducer. Shallow-water and terrestrial areas were surveyed using a Real-Time Kinematic Global Positioning System. The bathymetric, shallow-water, and terrestrial data were processed in a geographic information system to generate a triangulated irregular network representation of the bottom of the water body. Bathymetric contours were interpolated from the triangulated irregular network data using a 2-foot contour interval. Bathymetric contours at the conservation pool elevation for Maskenthine Wetland, Yankee Hill Lake, and Yankee Hill sediment pond also were interpolated in addition to the 2-foot contours. The surface area and storage capacity of each lake or wetland were calculated for 1-foot intervals of water surface elevation and are tabulated in the Appendix for all water bodies.
Bathymetric Surveys of Lake Arthur and Raccoon Lake, Pennsylvania, June 2007
Hittle, Clinton D.; Ruby, A. Thomas
2008-01-01
In spring of 2007, bathymetric surveys of two Pennsylvania State Park lakes were performed to collect accurate data sets of lake-bed elevations and to develop methods and techniques to conduct similar surveys across the state. The lake-bed elevations and associated geographical position data can be merged with land-surface elevations acquired through Light Detection and Ranging (LIDAR) techniques. Lake Arthur in Butler County and Raccoon Lake in Beaver County were selected for this initial data-collection activity. In order to establish accurate water-surface elevations during the surveys, benchmarks referenced to NAVD 88 were established on land at each lake by use of differential global positioning system (DGPS) surveys. Bathymetric data were collected using a single beam, 210 kilohertz (kHz) echo sounder and were coupled with the DGPS position data utilizing a computer software package. Transects of depth data were acquired at predetermined intervals on each lake, and the shoreline was delineated using a laser range finder and compass module. Final X, Y, Z coordinates of the geographic positions and lake-bed elevations were referenced to NAD 83 and NAVD 88 and are available to create bathymetric maps of the lakes.
Hatten, James R.; Batt, Thomas R.
2010-01-01
We used a two-dimensional (2D) hydrodynamic model to simulate and compare the hydraulic characteristics in a 74-km reach of the Columbia River (the Bonneville Reach) before and after construction of Bonneville Dam. For hydrodynamic modeling, we created a bathymetric layer of the Bonneville Reach from single-beam and multi-beam echo-sounder surveys, digital elevation models, and navigation surveys. We calibrated the hydrodynamic model at 100 and 300 kcfs with a user-defined roughness layer, a variable-sized mesh, and a U.S. Army Corps of Engineers backwater curve. We verified the 2D model with acoustic Doppler current profiler (ADCP) data at 14 transects and three flows. The 2D model was 88% accurate for water depths, and 77% accurate for velocities. We verified a pre-dam 2D model run at 126 kcfs using pre-dam aerial photos from September 1935. Hydraulic simulations indicated that mean water depths in the Bonneville Reach increased by 34% following dam construction, while mean velocities decreased by 58%. There are numerous activities that would benefit from data output from the 2D model, including biological sampling, bioenergetics, and spatially explicit habitat modeling.
NASA Astrophysics Data System (ADS)
Sokolov, S. Yu.; Moroz, E. A.; Abramova, A. S.; Zarayskaya, Yu. A.; Dobrolubova, K. O.
2017-07-01
On cruises 25 (2007) and 28 (2011) of the R/V Akademik Nikolai Strakhov in the northern part of the Barents Sea, the Geological Institute, Russian Academy of Sciences, conducted comprehensive research on the bottom relief and upper part of the sedimentary cover profile under the auspices of the International Polar Year program. One of the instrument components was the SeaBat 8111 shallow-water multibeam echo sounder, which can map the acoustic field similarly to a side scan sonar, which records the response both from the bottom and from the water column. In the operations area, intense sound scattering objects produced by the discharge of deep fluid flows are detected in the water column. The sound scattering objects and pockmarks in the bottom relief are related to anomalies in hydrocarbon gas concentrations in bottom sediments. The sound scattering objects are localized over Triassic sequences outcropping from the bottom. The most intense degassing processes manifest themselves near the contact of the Triassic sequences and Jurassic clay deposits, as well as over deep depressions in a field of Bouguer anomalies related to the basement of the Jurassic-Cretaceous rift system
Vertical distribution of the sound-scattering layer in the Amundsen Sea, Antarctica
NASA Astrophysics Data System (ADS)
Lee, Hyungbeen; La, Hyoung Sul; Kang, Donhyug; Lee, SangHoon
2018-03-01
Mid-trophic level at high-latitude coastal water in the Southern Ocean reside unique geographical condition with sea ice, coastal polynya, and ice shelf. To investigate the regional differences in their vertical distribution during summer, we examined acoustic backscatter data from scientific echo sounder, collected in the three representative regions in the Amundsen Sea: pack ice zone, coastal polynya zone, and ice shelf zone. The weighted mean depths (WMDs) representing zooplankton were calculated with the high resolution acoustic backscatter (1-m depth) to identify the vertical variability of the sound-scattering layer (SSL). WMDs were mainly distributed between 50 and 130 m exhibiting clear regional differences. The WMDs were detected in the shallow depth ranged between 48 and 84 m within the pack ice and coastal polynya, whereas they were observed at deeper depths around near ice shelf ranged between 117 and 126 m. WMDs varied with changing the stratification of water column structure representing strong linear relationship with the mixed layer depth (r = 0.69). This finding implies that understanding the essential forcing of zooplankton behavior will improve our ability to assess the coastal ecosystem in the Southern Ocean facing dramatic change.
Effects of fish with swim bladders on absorption and scintillation
NASA Astrophysics Data System (ADS)
Diachok, Orest
2004-10-01
Bioacoustic absorption spectroscopy (BAS) experiments, which were conducted in the Santa Barbara Channel in 2001 and 2002, were designed to investigate the effects of fish with swim bladders on absorption and scintillation. These experiments included a broadband source, which transmitted a sequence of 65-s-long tones between 0.25 and 10 kHz, and a vertical array which spanned most of the water column. The range was fixed. A fisheries echo sounder and trawls provided bio-acoustic parameters. Strongest absorption lines and highest values of the scintillation index were observed at night at about 1.1 kHz, the resonance frequency of 15 cm long sardines, when they were dispersed at an average depth of 13 m. Smaller absorption lines were correlated with other species. During the day sardines occupied a depth of about 50 m, where their extinction cross sections were diminished; some were dispersed and resonated at the frequency of individuals; others formed schools and resonated at collective frequencies. As a result of these phenomena, absorption lines due to sardines were much weaker, and the effect of this species on the scintillation index was not evident. [Work was supported by ONR.
Quantitative 17O imaging towards oxygen consumption study in tumor bearing mice at 7 T.
Narazaki, Michiko; Kanazawa, Yoko; Koike, Sachiko; Ando, Koichi; Ikehira, Hiroo
2013-06-01
(17)O magnetic resonance imaging (MRI) using a conventional pulse sequence was explored as a method of quantitative imaging towards regional oxygen consumption rate measurement for tumor evaluation in mice. At 7 T, fast imaging with steady state (FISP) was the best among gradient echo, fast spin echo and FISP for the purpose. The distribution of natural abundance H2(17)O in mice was visualized under spatial resolution of 2.5 × 2.5mm(2) by FISP in 10 min. The signal intensity by FISP showed a linear relationship with (17)O quantity both in phantom and mice. Following the injection of 5% (17)O enriched saline, (17)O re-distribution was monitored in temporal resolution down to 5 sec with an image quality sufficient to distinguish each organ. The image of labeled water produced from inhaled (17)O2 gas was also obtained. The present method provides quantitative (17)O images under sufficient temporal and spatial resolution for the evaluation of oxygen consumption rate in each organ. Experiments using various model compounds of R-OH type clarified that the signal contribution of body constituents other than water in the present in vivo(17)O FISP image was negligible. Copyright © 2013 Elsevier Inc. All rights reserved.
Yoon, Min A; Hong, Suk-Joo; Lee, Kyu-Chong; Lee, Chang Hee
2018-06-12
This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P < 0.05). There was no significant difference in conspicuity, signal-to-noise ratio, or contrast-to-noise ratio of the smallest metastases (P > 0.05). Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.
Truong, Trong-Kha; Song, Allen W; Chen, Nan-Kuei
2015-01-01
In most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T2(∗) -weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed.
Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging
Truong, Trong-Kha; Song, Allen W.; Chen, Nan-kuei
2015-01-01
In most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T 2 ∗-weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed. PMID:26413505
MR fingerprinting using the quick echo splitting NMR imaging technique.
Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A
2017-03-01
The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining magnetic resonance fingerprinting (MRF) technique with quick echo splitting NMR imaging technique (QUEST). A QUEST-based MRF sequence was implemented to acquire high-order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T 1 and T 2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The specific absorption rate (SAR) of MRF-QUEST was compared with the clinically available methods. MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head SAR of 0.03 W/kg. T 1 and T 2 values estimated by MRF-QUEST are in good agreement with the traditional methods. The combination of the MRF and the QUEST provides an accurate quantification of T 1 and T 2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. Magn Reson Med 77:979-988, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Bernatowicz, P.; Czerski, I.; Jaźwiński, J.; Szymański, S.
2004-08-01
In the standard NMR spectra, the lineshape patterns produced by a molecular rate process are often poorly structured. When alternative theoretical models of such a process are to be compared, even quantitative lineshape fits may then give inconclusive results. A detailed description is presented of an approach involving fits of the competing models to series of Carr-Purcell echo spectra. Its high discriminative power has already been exploited in a number of cases of practical significance. An explanation is given why it can be superior to methods based on the standard spectra. Its applicability in practice is now illustrated on example of the methyl proton spectra in 1,2,3,4-tetrachloro-9,10-dimethyltriptycene TCDMT. It is shown that, in the echo spectra, the recently discovered effect of nonclassical stochastic reorientation of the methyl group can be identified clearly while it is practically nondiscernible in the standard spectra of TCDMT. This is the first detection of the effect at temperatures above 200 K. It is also shown that in computer-assisted interpretation of exchange-broadened echo spectra, the usual description of the stimulating radiofrequency pulses in terms of rotation operators ought to be replaced by a more realistic pulse model.
Wengert, Georg Johannes; Helbich, Thomas H; Vogl, Wolf-Dieter; Baltzer, Pascal; Langs, Georg; Weber, Michael; Bogner, Wolfgang; Gruber, Stephan; Trattnig, Siegfried; Pinker, Katja
2015-02-01
The purposes of this study were to introduce and assess an automated user-independent quantitative volumetric (AUQV) breast density (BD) measurement system on the basis of magnetic resonance imaging (MRI) using the Dixon technique as well as to compare it with qualitative and quantitative mammographic (MG) BD measurements. Forty-three women with normal mammogram results (Breast Imaging Reporting and Data System 1) were included in this institutional review board-approved prospective study. All participants were subjected to BD assessment with MRI using the following sequence with the Dixon technique (echo time/echo time, 6 milliseconds/2.45 milliseconds/2.67 milliseconds; 1-mm isotropic; 3 minutes 38 seconds). To test the reproducibility, a second MRI after patient repositioning was performed. The AUQV magnetic resonance (MR) BD measurement system automatically calculated percentage (%) BD. The qualitative BD assessment was performed using the American College of Radiology Breast Imaging Reporting and Data System BD categories. Quantitative BD was estimated semiautomatically using the thresholding technique Cumulus4. Appropriate statistical tests were used to assess the agreement between the AUQV MR measurements and to compare them with qualitative and quantitative MG BD estimations. The AUQV MR BD measurements were successfully performed in all 43 women. There was a nearly perfect agreement of AUQV MR BD measurements between the 2 MR examinations for % BD (P < 0.001; intraclass correlation coefficient, 0.998) with no significant differences (P = 0.384). The AUQV MR BD measurements were significantly lower than quantitative and qualitative MG BD assessment (P < 0.001). The AUQV MR BD measurement system allows a fully automated, user-independent, robust, reproducible, as well as radiation- and compression-free volumetric quantitative BD assessment through different levels of BD. The AUQV MR BD measurements were significantly lower than the currently used qualitative and quantitative MG-based approaches, implying that the current assessment might overestimate breast density with MG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, B; Rao, Y; Tsien, C
Purpose: To implement the Gradient Echo Plural Contrast Imaging(GEPCI) technique in MRI-simulation for radiation therapy and assess the feasibility of using GEPCI images with advanced inhomogeneity correction in MRI-guided radiotherapy for brain treatment. Methods: An optimized multigradient-echo GRE sequence (TR=50ms;TE1=4ms;delta-TE=4ms;flip angle=300,11 Echoes) was developed to generate both structural (T1w and T2*w) and functional MRIs (field and susceptibility maps) from a single acquisition. One healthy subject (Subject1) and one post-surgical brain cancer patient (Subject2) were scanned on a Philips Ingenia 1.5T MRI used for radiation therapy simulation. Another healthy subject (Subject3) was scanned on a 0.35T MRI-guided radiotherapy (MR-IGRT) system (ViewRay).more » A voxel spread function (VSF) was used to correct the B0 inhomogeneities caused by surgical cavities and edema for Subject2. GEPCI images and standard radiotherapy planning MRIs for this patient were compared focusing the delineation of radiotherapy target region. Results: GEPCI brain images were successfully derived from all three subjects with scan times of <7 minutes. The images derived for Subjects1&2 demonstrated that GEPCI can be applied and combined into radiotherapy MRI simulation. Despite low field, T1-weighted and R2* images were successfully reconstructed for Subject3 and were satisfactory for contour and target delineation. The R2* distribution of grey matter (center=12,FWHM=4.5) and white matter (center=14.6, FWHM=2) demonstrated the feasibility for tissue segmentation and quantification. The voxel spread function(VSF) corrected surgical site related inhomogeneities for Subject2. R2* and quantitative susceptibility map(QSM) images for Subject2 can be used to quantitatively assess the brain structure response to radiation over the treatment course. Conclusion: We implemented the GEPCI technique in MRI-simulation and in MR-IGRT system for radiation therapy. The images demonstrated that it is feasible to adopt this technique in radiotherapy for structural delineation. The preliminary data also enable the opportunity for quantitative assessment of radiation response of the target region and normal tissue.« less
NASA Astrophysics Data System (ADS)
Orosei, R.; Jordan, R. L.; Morgan, D. D.; Cartacci, M.; Cicchetti, A.; Duru, F.; Gurnett, D. A.; Heggy, E.; Kirchner, D. L.; Noschese, R.; Kofman, W.; Masdea, A.; Plaut, J. J.; Seu, R.; Watters, T. R.; Picardi, G.
2015-07-01
Mars Express, the first European interplanetary mission, carries the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) to search for ice and water in the Martian subsurface. Developed by an Italian-US team, MARSIS transmits low-frequency, wide-band radio pulses penetrating below the surface and reflected by dielectric discontinuities linked to structural or compositional changes. MARSIS is also a topside ionosphere sounder, transmitting a burst of short, narrow-band pulses at different frequencies that are reflected by plasma with varying densities at different altitudes. The radar operates since July 2005, after the successful deployment of its 40 m antenna, acquiring data at altitudes lower than 1200 km. Subsurface sounding (SS) data are processed on board by stacking together a batch of echoes acquired at the same frequency. On ground, SS data are further processed by correlating the received echo with the transmitted waveform and compensating de-focusing caused by the dispersive ionosphere. Ground processing of active ionospheric sounding (AIS) data consists in the reconstruction of the electron density profile as a function of altitude. MARSIS observed the internal structure of Planum Boreum outlining the Basal Unit, an icy deposit lying beneath the North Polar Layered Deposits thought to have formed in an epoch in which climate was markedly different from the current one. The total volume of ice in polar layered deposits could be estimated, and parts of the Southern residual ice cap were revealed to consist of ≈ 10 m of CO2 ice. Radar properties of the Vastitas Borealis Formation point to the presence of large quantities of ice buried beneath the surface. Observations of the ionosphere revealed the complex interplay between plasma, crustal magnetic field and solar wind, contributing to space weather studies at Mars. The presence of three-dimensional plasma structures in the ionosphere was revealed for the first time. MARSIS could successfully operate at Phobos, becoming the first instrument of its kind to observe an asteroid-like body. The main goal pursued by MARSIS, the search for liquid water beneath the surface, remains elusive. However, because of the many factors affecting detection and of the difficulties in identifying water in radar echoes, a definitive conclusion on its presence cannot yet be drawn.
Bell, L C; Does, M D; Stokes, A M; Baxter, L C; Schmainda, K M; Dueck, A C; Quarles, C C
2017-09-01
The optimal TE must be calculated to minimize the variance in CBV measurements made with DSC MR imaging. Simulations can be used to determine the influence of the TE on CBV, but they may not adequately recapitulate the in vivo heterogeneity of precontrast T2*, contrast agent kinetics, and the biophysical basis of contrast agent-induced T2* changes. The purpose of this study was to combine quantitative multiecho DSC MRI T2* time curves with error analysis in order to compute the optimal TE for a traditional single-echo acquisition. Eleven subjects with high-grade gliomas were scanned at 3T with a dual-echo DSC MR imaging sequence to quantify contrast agent-induced T2* changes in this retrospective study. Optimized TEs were calculated with propagation of error analysis for high-grade glial tumors, normal-appearing white matter, and arterial input function estimation. The optimal TE is a weighted average of the T2* values that occur as a contrast agent bolus transverses a voxel. The mean optimal TEs were 30.0 ± 7.4 ms for high-grade glial tumors, 36.3 ± 4.6 ms for normal-appearing white matter, and 11.8 ± 1.4 ms for arterial input function estimation (repeated-measures ANOVA, P < .001). Greater heterogeneity was observed in the optimal TE values for high-grade gliomas, and mean values of all 3 ROIs were statistically significant. The optimal TE for the arterial input function estimation is much shorter; this finding implies that quantitative DSC MR imaging acquisitions would benefit from multiecho acquisitions. In the case of a single-echo acquisition, the optimal TE prescribed should be 30-35 ms (without a preload) and 20-30 ms (with a standard full-dose preload). © 2017 by American Journal of Neuroradiology.
Quantitative assessment of fat infiltration in the rotator cuff muscles using water-fat MRI.
Nardo, Lorenzo; Karampinos, Dimitrios C; Lansdown, Drew A; Carballido-Gamio, Julio; Lee, Sonia; Maroldi, Roberto; Ma, C Benjamin; Link, Thomas M; Krug, Roland
2014-05-01
To evaluate a chemical shift-based fat quantification technique in the rotator cuff muscles in comparison with the semiquantitative Goutallier fat infiltration classification (GC) and to assess their relationship with clinical parameters. The shoulders of 57 patients were imaged using a 3T MR scanner. The rotator cuff muscles were assessed for fat infiltration using GC by two radiologists and an orthopedic surgeon. Sequences included oblique-sagittal T1-, T2-, and proton density-weighted fast spin echo, and six-echo gradient echo. The iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) was used to measure fat fraction. Pain and range of motion of the shoulder were recorded. Fat fraction values were significantly correlated with GC grades (P < 0.0001, κ >0.9) showing consistent increase with GC grades (grade = 0, 0%-5.59%; grade = 1, 1.1%-9.70%; grade = 2, 6.44%-14.86%; grade = 3, 15.25%-17.77%; grade = 4, 19.85%-29.63%). A significant correlation between fat infiltration of the subscapularis muscle quantified with IDEAL versus 1) deficit in internal rotation (Spearman Rank Correlation Coefficient [SRC] = 0.39, 95% confidence interval [CI] 0.13-0.60, P < 0.01) and 2) pain (SRC coefficient = 0.313, 95% CI 0.049-0.536, P = 0.02) was found but was not seen between the clinical parameters and GC grades. Additionally, only quantitative fat infiltration measures of the supraspinatus muscle were significantly correlated with a deficit in abduction (SRC coefficient = 0.45, 95% CI 0.20-0.60, P < 0.01). An accurate and highly reproducible fat quantification in the rotator cuff muscles using water-fat magnetic resonance imaging (MRI) techniques is possible and significantly correlates with shoulder pain and range of motion. Copyright © 2013 Wiley Periodicals, Inc.
Simulation Studies for a Space-Based CO2 Lidar Mission
NASA Technical Reports Server (NTRS)
Kawa, S. R.; Mao, J.; Abshire, J. B.; Collatz, G. J.; Sun, X.; Weaver, C. J.
2010-01-01
We report results of initial space mission simulation studies for a laser-based, atmospheric CO2 sounder, which are based on real-time carbon cycle process modelling and data analysis. The mission concept corresponds to the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) recommended by the US National Academy of Sciences' Decadal Survey. As a pre-requisite for meaningful quantitative evaluation, we employ a CO2 model that has representative spatial and temporal gradients across a wide range of scales. In addition, a relatively complete description of the atmospheric and surface state is obtained from meteorological data assimilation and satellite measurements. We use radiative transfer calculations, an instrument model with representative errors and a simple retrieval approach to quantify errors in 'measured' CO2 distributions, which are a function of mission and instrument design specifications along with the atmospheric/surface state. Uncertainty estimates based on the current instrument design point indicate that a CO2 laser sounder can provide data consistent with ASCENDS requirements and will significantly enhance our ability to address carbon cycle science questions. Test of a dawn/dusk orbit deployment, however, shows that diurnal differences in CO2 column abundance, indicative of plant photosynthesis and respiration fluxes, will be difficult to detect
Han, Zhihua; Shao, Lixin; Xie, Yan; Wu, Jianhong; Zhang, Yan; Xin, Hongkui; Ren, Aijun; Guo, Yong; Wang, Deli; He, Qing; Ruan, Dike
2014-01-01
Objective The objective of this study was to evaluate the efficacy of quantitative T2 magnetic resonance imaging (MRI) for quantifying early cervical intervertebral disc (IVD) degeneration in asymptomatic young adults by correlating the T2 value with Pfirrmann grade, sex, and anatomic level. Methods Seventy asymptomatic young subjects (34 men and 36 women; mean age, 22.80±2.11 yr; range, 18–25 years) underwent 3.0-T MRI to obtain morphological data (one T1-fast spin echo (FSE) and three-plane T2-FSE, used to assign a Pfirrmann grade (I–V)) and for T2 mapping (multi-echo spin echo). T2 values in the nucleus pulposus (NP, n = 350) and anulus fibrosus (AF, n = 700) were obtained. Differences in T2 values between sexes and anatomic level were evaluated, and linear correlation analysis of T2 values versus degenerative grade was conducted. Findings Cervical IVDs of healthy young adults were commonly determined to be at Pfirrmann grades I and II. T2 values of NPs were significantly higher than those of AF at all anatomic levels (P<0.000). The NP, anterior AF and posterior AF values did not differ significantly between genders at the same anatomic level (P>0.05). T2 values decreased linearly with degenerative grade. Linear correlation analysis revealed a strong negative association between the Pfirrmann grade and the T2 values of the NP (P = 0.000) but not the T2 values of the AF (P = 0.854). However, non-degenerated discs (Pfirrmann grades I and II) showed a wide range of T2 relaxation time. T2 values according to disc degeneration level classification were as follows: grade I (>62.03 ms), grade II (54.60–62.03 ms), grade III (<54.60 ms). Conclusions T2 quantitation provides a more sensitive and robust approach for detecting and characterizing the early stage of cervical IVD degeneration and to create a reliable quantitative in healthy young adults. PMID:24498384
Chen, Chun; Huang, Minghua; Han, Zhihua; Shao, Lixin; Xie, Yan; Wu, Jianhong; Zhang, Yan; Xin, Hongkui; Ren, Aijun; Guo, Yong; Wang, Deli; He, Qing; Ruan, Dike
2014-01-01
The objective of this study was to evaluate the efficacy of quantitative T2 magnetic resonance imaging (MRI) for quantifying early cervical intervertebral disc (IVD) degeneration in asymptomatic young adults by correlating the T2 value with Pfirrmann grade, sex, and anatomic level. Seventy asymptomatic young subjects (34 men and 36 women; mean age, 22.80±2.11 yr; range, 18-25 years) underwent 3.0-T MRI to obtain morphological data (one T1-fast spin echo (FSE) and three-plane T2-FSE, used to assign a Pfirrmann grade (I-V)) and for T2 mapping (multi-echo spin echo). T2 values in the nucleus pulposus (NP, n = 350) and anulus fibrosus (AF, n = 700) were obtained. Differences in T2 values between sexes and anatomic level were evaluated, and linear correlation analysis of T2 values versus degenerative grade was conducted. Cervical IVDs of healthy young adults were commonly determined to be at Pfirrmann grades I and II. T2 values of NPs were significantly higher than those of AF at all anatomic levels (P<0.000). The NP, anterior AF and posterior AF values did not differ significantly between genders at the same anatomic level (P>0.05). T2 values decreased linearly with degenerative grade. Linear correlation analysis revealed a strong negative association between the Pfirrmann grade and the T2 values of the NP (P = 0.000) but not the T2 values of the AF (P = 0.854). However, non-degenerated discs (Pfirrmann grades I and II) showed a wide range of T2 relaxation time. T2 values according to disc degeneration level classification were as follows: grade I (>62.03 ms), grade II (54.60-62.03 ms), grade III (<54.60 ms). T2 quantitation provides a more sensitive and robust approach for detecting and characterizing the early stage of cervical IVD degeneration and to create a reliable quantitative in healthy young adults.
Evolution of Satellite Imagers and Sounders for Low Earth Orbit and Technology Directions at NASA
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.; McClain, Charles R.
2010-01-01
Imagers and Sounders for Low Earth Orbit (LEO) provide fundamental global daily observations of the Earth System for scientists, researchers, and operational weather agencies. The imager provides the nominal 1-2 km spatial resolution images with global coverage in multiple spectral bands for a wide range of uses including ocean color, vegetation indices, aerosol, snow and cloud properties, and sea surface temperature. The sounder provides vertical profiles of atmospheric temperature, water vapor cloud properties, and trace gases including ozone, carbon monoxide, methane and carbon dioxide. Performance capabilities of these systems has evolved with the optical and sensing technologies of the decade. Individual detectors were incorporated on some of the first imagers and sounders that evolved to linear array technology in the '80's. Signal-to-noise constraints limited these systems to either broad spectral resolution as in the case of the imager, or low spatial resolution as in the case of the sounder. Today's area 2-dimensional large format array technology enables high spatial and high spectral resolution to be incorporated into a single instrument. This places new constraints on the design of these systems and enables new capabilities for scientists to examine the complex processes governing the Earth System.
Development and Applications of the GOES Sounder Products
NASA Astrophysics Data System (ADS)
Li, Jun; Menzel, W. P.; Li, Z.; Wade, G.; Schmit, T. J.; Li, J. L.; Aune, R.; Schreiner, A. J.; Schmidt, C. C.; Genkova, I.
Since 1994 a new generation of Geostationary Operational Environmental Satellite GOES Sounders GOES-8 9 10 11 12 has been measuring radiances in 18 infrared spectral bands ranging from approximately 3 7um - 14 7 um This data has been used to provide atmospheric sounding and cloud products for meteorological applications on an hourly basis over North America and adjacent oceanic regions The products include atmospheric temperature and moisture profiles total precipitable water cloud-top pressure water-vapor tracked winds etc Products are generated operationally by NOAA NESDIS in Washington D C Some Sounder products including total column ozone are also produced at the Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin-Madison Applications of those products include nowcasting and forecasting of weather events assimilation of cloud products into regional numerical forecast models and monitoring of temperature and moisture changes during active convective periods The impact of GOES Sounder products on numerical model forecasts will be demonstrated Furthermore recent improvements to several of the products have been made by taking into account the GOES Sounder temporal and spatial information within the processing algorithms These improvements and implications thereof will be presented and discussed
Roebuck, Joseph R; Haker, Steven J; Mitsouras, Dimitris; Rybicki, Frank J; Tempany, Clare M; Mulkern, Robert V
2009-05-01
Quantitative, apparent T(2) values of suspected prostate cancer and healthy peripheral zone tissue in men with prostate cancer were measured using a Carr-Purcell-Meiboom-Gill (CPMG) imaging sequence in order to assess the cancer discrimination potential of tissue T(2) values. The CPMG imaging sequence was used to image the prostates of 18 men with biopsy-proven prostate cancer. Whole gland coverage with nominal voxel volumes of 0.54 x 1.1 x 4 mm(3) was obtained in 10.7 min, resulting in data sets suitable for generating high-quality images with variable T(2)-weighting and for evaluating quantitative T(2) values on a pixel-by-pixel basis. Region-of-interest analysis of suspected healthy peripheral zone tissue and suspected cancer, identified on the basis of both T(1)- and T(2)-weighted signal intensities and available histopathology reports, yielded significantly (P<.0001) longer apparent T(2) values in suspected healthy tissue (193+/-49 ms) vs. suspected cancer (100+/-26 ms), suggesting potential utility of this method as a tissue specific discrimination index for prostate cancer. We conclude that CPMG imaging of the prostate can be performed in reasonable scan times and can provide advantages over T(2)-weighted fast spin echo (FSE) imaging alone, including quantitative T(2) values for cancer discrimination as well as proton density maps without the point spread function degradation associated with short effective echo time FSE sequences.
Vertical velocity structure and geometry of clear air convective elements
NASA Technical Reports Server (NTRS)
Rowland, J. R.; Arnold, A.
1975-01-01
The paper discusses observations of individual convective elements with a high-power narrow-beam scanning radar, an FM-CW radar, and an acoustic sounder, including the determination of the vertical air velocity patterns of convective structures with the FM-CW radar and acoustic sounder. Data are presented which link the observed velocity structure and geometrical patterns to previously proposed models of boundary layer convection. It is shown that the high-power radar provides a clear three-dimensional picture of convective cells and fields over a large area with a resolution of 150 m, where the convective cells are roughly spherical. Analysis of time-height records of the FM-CW radar and acoustic sounder confirms the downdraft-entrainment mechanism of the convective cell. The Doppler return of the acoustic sounder and the insect-trail slopes on FM-CW radar records are independent but redundant methods for obtaining the vertical velocity patterns of convective structures.
Alibek, Sedat; Adamietz, Boris; Cavallaro, Alexander; Stemmer, Alto; Anders, Katharina; Kramer, Manuel; Bautz, Werner; Staatz, Gundula
2008-08-01
We compared contrast-enhanced T1-weighted magnetic resonance (MR) imaging of the brain using different types of data acquisition techniques: periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER, BLADE) imaging versus standard k-space sampling (conventional spin-echo pulse sequence) in the unsedated pediatric patient with focus on artifact reduction, overall image quality, and lesion detectability. Forty-eight pediatric patients (aged 3 months to 18 years) were scanned with a clinical 1.5-T whole body MR scanner. Cross-sectional contrast-enhanced T1-weighted spin-echo sequence was compared to a T1-weighted dark-fluid fluid-attenuated inversion-recovery (FLAIR) BLADE sequence for qualitative and quantitative criteria (image artifacts, image quality, lesion detectability) by two experienced radiologists. Imaging protocols were matched for imaging parameters. Reader agreement was assessed using the exact Bowker test. BLADE images showed significantly less pulsation and motion artifacts than the standard T1-weighted spin-echo sequence scan. BLADE images showed statistically significant lower signal-to-noise ratio but higher contrast-to-noise ratios with superior gray-white matter contrast. All lesions were demonstrated on FLAIR BLADE imaging, and one false-positive lesion was visible in spin-echo sequence images. BLADE MR imaging at 1.5 T is applicable for central nervous system imaging of the unsedated pediatric patient, reduces motion and pulsation artifacts, and minimizes the need for sedation or general anesthesia without loss of relevant diagnostic information.
WEB downloadable software for training in cardiovascular hemodynamics in the (3-D) stress echo lab
2010-01-01
When a physiological (exercise) stress echo is scheduled, interest focuses on wall motion segmental contraction abnormalities to diagnose ischemic response to stress, and on left ventricular ejection fraction to assess contractile reserve. Echocardiographic evaluation of volumes (plus standard assessment of heart rate and blood pressure) is ideally suited for the quantitative and accurate calculation of a set of parameters allowing a complete characterization of cardiovascular hemodynamics (including cardiac output and systemic vascular resistance), left ventricular elastance (mirroring left ventricular contractility, theoretically independent of preload and afterload changes heavily affecting the ejection fraction), arterial elastance, ventricular arterial coupling (a central determinant of net cardiovascular performance in normal and pathological conditions), and diastolic function (through the diastolic mean filling rate). All these parameters were previously inaccessible, inaccurate or labor-intensive and now become, at least in principle, available in the stress echocardiography laboratory since all of them need an accurate estimation of left ventricular volumes and stroke volume, easily derived from 3 D echo. Aims of this paper are: 1) to propose a simple method to assess a set of parameters allowing a complete characterization of cardiovascular hemodynamics in the stress echo lab, from basic measurements to calculations 2) to propose a simple, web-based software program, to learn and training calculations as a phantom of the everyday activity in the busy stress echo lab 3) to show examples of software testing in a way that proves its value. The informatics infrastructure is available on the web, linking to http://cctrainer.ifc.cnr.it PMID:21073738
Reliability of the EchoMRI-Infant System for Water and Fat Measurements in Newborns
Toro-Ramos, Tatiana; Paley, Charles; Wong, William W.; Pi-Sunyer, F. Xavier; Yu, W.; Thornton, John; Gallagher, Dympna
2017-01-01
Objective The precision and accuracy of a quantitative magnetic resonance (EchoMRI-Infants™) system in newborn was determined. Methods: Canola oil and drinking water phantoms (increments of 10g to 1.9kg) were scanned four times. Instrument reproducibility was assessed from 3 scans (within 10-minutes) in 42 healthy term newborns (12–70 hours post-birth). Instrument precision was determined from the coefficient of variation (CV) of repeated scans for total water, lean, and fat measures for newborns and the mean difference between weight and measurement for phantoms. In newborns, the system accuracy for total body water (TBW) was tested against deuterium dilution (D2O). Results In phantoms, the repeatability and accuracy of fat and water measurements increased as the weight of oil and water increased. TBW was overestimated in amounts >200g. In newborns weighing 3.14kg, fat, lean and TBW were 0.52kg (16.48%), 2.28kg and 2.40kg, respectively. EchoMRI’s reproducibility (CV) was 3.27%, 1.83% and 1.34% for total body fat, lean, and TBW, respectively. EchoMRI-TBW values did not differ from D2O; mean difference − 1.95±6.76%, p=0.387; mean bias (limits of agreement) 0.046 kg (−0.30 to 0.39 kg). Conclusions EchoMRI infant system’s precision and accuracy for total body fat and lean are better than established techniques and equivalent to D2O for TBW in phantoms and newborns. PMID:28712143
Comparison of OLR Data Sets from AIRS, CERES and MERRA 2
NASA Technical Reports Server (NTRS)
Lee, Jae N.; Susskind, Joel; Iredell, Lena; Loeb, Norman; Lim, Young-Kwon
2015-01-01
Organizers of the NASA Sounder Science Team Meeting would like to post the presentations to a the JPL Atmospheric Infrared Sounder (AIRS) publicly-available website. The meeting was held in Greenbelt, Maryland, October 13-16, 2015.
Microwave Limb Sounder/El Niño Watch - Water Vapor Measurement, October, 1997
1997-10-30
This image shows atmospheric water vapor in Earth upper troposphere, about 10 kilometers 6 miles above the surface, as measured by NASA Microwave Limb Sounder MLS instrument flying aboard the Upper Atmosphere Research Satellite.
NASA Astrophysics Data System (ADS)
Pagano, T. S.
2016-12-01
Hyperspectral infrared sounding of the atmosphere has become a vital element in the observational system for weather forecast prediction at National Weather Prediction (NWP) centers worldwide. The NASA Atmospheric Infrared Sounder (AIRS) instrument was the pathfinder for the hyperspectral infrared observations and was designed to provide accurate atmospheric temperature and water vapor profile information in support of weather prediction. AIRS was launched in 2002 and continues to operate well. The Cross-track Infrared Sounder (CrIS) on the Suomi NPP satellite was launched in 2011 to continue the AIRS measurement record. CrIS also continues to operate well and additional sensors are planned for launch promising to continue the hyperspectral infrared measurements in support of NWP into the late 2030's. The high cost of IR sounders makes it costly to launch them into multiple orbits to improve temporal sampling, or into GEO, although EUMETSAT is planning a GEO IR Sounder to launch in the early 2020's. JPL NASA is offering an alternate hyperspectral IR sounder architecture for the future involving CubeSats. The latest technology in large format focal plane assemblies, wide field optics and active cryocoolers enables a reduction in size, mass and cost of the legacy sounders and offer new configurations. Lessons learned from AIRS and CrIS indicate that temperature and water vapor sounding in the lower troposphere can be achieved with only the MWIR portion of the spectrum. The CubeSat Infrared Atmospheric Sounder (CIRAS) employs only an MWIR spectrometer to achieve lower tropospheric temperature and water vapor profiles, but with comparable spatial, spectral and radiometric sensitivity in this band as AIRS and CrIS. CIRAS operates from 4.08-5.13 µm with 625 channels and spectral resolution of 1.2-2.0 cm-1. CIRAS employs an immersion grating spectrometer making the optics incredibly compact, and HOT-BIRD detectors enabling good uniformity and operability over the large 512 x 640 element focal plane. The CIRAS is packaged in a 6U CubeSat and uses less than 14 W. This presentation will discuss the requirements, expected performance and state of development of the CIRAS and concepts for future space architectures. Technology advancements and retrieved product accuracy will also be included.
Investigation of Planets and Small Bodies Using Decameter Wavelength Radar Sounders
NASA Astrophysics Data System (ADS)
Safaeinili, A.
2003-12-01
Decameter wavelength radar sounders provide a unique capability for the exploration of subsurface of planets and internal structure of small bodies. Recently, a number of experimental radar sounding instruments have been proposed and/or are planned to become operational in the near future. The first of these radar sounders is MARSIS (Picardi et al.) that is about to arrive at Mars on ESA's Mars Express for a two-year mission. The second radar sounder, termed SHARAD (Seu et. al), will fly on NASA's Mars Reconnaissance orbiter in 2005. MARSIS and SHARAD have complementary science objectives in that MARSIS (0.1-5.5 MHz) is designed to explore the deep subsurface with a depth resolution of ˜100 m while SHARAD (15-25 MHz) focuses its investigation to near-surface (< 1000 m) with a higher depth resolution of ˜ 10-15 m. In addition to its subsurface exploration goals, MARSIS, that has a frequency range between 0.1 to 5.5 MHz, will study the ionosphere of Mars and providing a wealth of new information on Martian ionosphere. Both MARSIS and SHARAD have the potential of providing answers to a number of questions such as depth of ice-layers in the polar region and recently discovered ice-rich regions in both northern and southern hemispheres of Mars. The next generation of radar sounders will benefit from high power and high data rate capability that is made available through the use of Nuclear Electric generators. An example of such high-capability mission is the Jovian Icy Moons Orbiter (JIMO) where, for example, the radar sounder can be used to explore beneath the icy surfaces of Europa in search of the ice/ocean interface. The decameter wave radar sounder is probably the only instrument that has the potential of providing an accurate estimate for the ocean depth. Another exciting and rewarding area of application for planetary radar sounding is the investigation of the deep interior of small bodies (asteroids and comets). The small size of asteroids and comets provides the opportunity to collect data in a manner that enables Radio Reflection Tomographic (RRT) reconstruction of the body in the same manner that a medical ultrasound probe can image the interior of our body. This paper provides an overview of current technical capabilities and challenges and the potential of radio sounders in the investigation of planets and small bodies.
Pulse-echo sound speed estimation using second order speckle statistics
NASA Astrophysics Data System (ADS)
Rosado-Mendez, Ivan M.; Nam, Kibo; Madsen, Ernest L.; Hall, Timothy J.; Zagzebski, James A.
2012-10-01
This work presents a phantom-based evaluation of a method for estimating soft-tissue speeds of sound using pulse-echo data. The method is based on the improvement of image sharpness as the sound speed value assumed during beamforming is systematically matched to the tissue sound speed. The novelty of this work is the quantitative assessment of image sharpness by measuring the resolution cell size from the autocovariance matrix for echo signals from a random distribution of scatterers thus eliminating the need of strong reflectors. Envelope data were obtained from a fatty-tissue mimicking (FTM) phantom (sound speed = 1452 m/s) and a nonfatty-tissue mimicking (NFTM) phantom (1544 m/s) scanned with a linear array transducer on a clinical ultrasound system. Dependence on pulse characteristics was tested by varying the pulse frequency and amplitude. On average, sound speed estimation errors were -0.7% for the FTM phantom and -1.1% for the NFTM phantom. In general, no significant difference was found among errors from different pulse frequencies and amplitudes. The method is currently being optimized for the differentiation of diffuse liver diseases.
Wavelength-independent constant period spin-echo modulated small angle neutron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sales, Morten, E-mail: lsp260@alumni.ku.dk; Plomp, Jeroen; Bouwman, Wim
2016-06-15
Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) in Time-of-Flight (ToF) mode has been shown to be a promising technique for measuring (very) small angle neutron scattering (SANS) signals and performing quantitative Dark-Field Imaging (DFI), i.e., SANS with 2D spatial resolution. However, the wavelength dependence of the modulation period in the ToF spin-echo mode has so far limited the useful modulation periods to those resolvable with the limited spatial resolution of the detectors available. Here we present our results of an approach to keep the period of the induced modulation constant for the wavelengths utilised in ToF. This is achieved bymore » ramping the magnetic fields in the coils responsible for creating the spatially modulated beam in synchronisation with the neutron pulse, thus keeping the modulation period constant for all wavelengths. Such a setup enables the decoupling of the spatial detector resolution from the resolution of the modulation period by the use of slits or gratings in analogy to the approach in grating-based neutron DFI.« less
Mars Radar Opens a Planet's Third Dimension
NASA Technical Reports Server (NTRS)
2008-01-01
Radar sounder instruments orbiting Mars have looked beneath the Martian surface and opened up the third dimension for planetary exploration. The technique's success is prompting scientists to think of all the other places in the Solar System where they would like to use radar sounders. The first radar sounder at Mars was the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the European Space Agency's Mars Express Orbiter. It has been joined by the complementary Shallow Subsurface Radar (SHARAD), operating at a different wavelength aboard NASA's Mars Reconnaissance Orbiter. The data in this animation are from SHARAD.Assimilation of IASI and AIRS Data: Information Content and Quality Control
NASA Technical Reports Server (NTRS)
Joiner, J.; Einaudi, Franco (Technical Monitor)
2000-01-01
The Infrared Atmospheric Sounding Interferometer (IASI) and Atmospheric Infrared Sounder (AIRS) instruments have two orders of magnitude more channels that the current operational infrared sounder (High Resolution Infra-Red Sounder (HIRS)). This data volume presents a technological challenge for using the data in a data assimilation system. Data reduction will be a necessary for assimilation. It is important to understand the information content of the radiance measurements for data reduction purposes. In this talk, I will discuss issues relating to information content and quality control for assimilation of the AIRS and IASI data.
Targeted Single-Shot Methods for Diffusion-Weighted Imaging in the Kidneys
Jin, Ning; Deng, Jie; Zhang, Longjiang; Zhang, Zhuoli; Lu, Guangming; Omary, Reed A.; Larson, Andrew C.
2011-01-01
Purpose To investigate the feasibility of combining the inner-volume-imaging (IVI) technique with single-shot diffusion-weighted (DW) spin-echo echo-planar imaging (SE-EPI) and DW-SPLICE (split acquisition of fast spin-echo) sequences for renal DW imaging. Materials and Methods Renal DW imaging was performed in 10 healthy volunteers using single-shot DW-SE-EPI, DW-SPLICE, targeted-DW-SE-EPI and targeted-DW-SPLICE. We compared the quantitative diffusion measurement accuracy and image quality of these targeted-DW-SE-EPI and targeted DW-SPLICE methods with conventional full FOV DW-SE-EPI and DW-SPLICE measurements in phantoms and normal volunteers. Results Compared with full FOV DW-SE-EPI and DW-SPLICE methods, targeted-DW-SE-EPI and targeted-DW-SPLICE approaches produced images of superior overall quality with fewer artifacts, less distortion and reduced spatial blurring in both phantom and volunteer studies. The ADC values measured with each of the four methods were similar and in agreement with previously published data. There were no statistically significant differences between the ADC values and intra-voxel incoherent motion (IVIM) measurements in the kidney cortex and medulla using single-shot DW-SE-EPI, targeted-DW-EPI and targeted-DW-SPLICE (p > 0.05). Conclusion Compared with full-FOV DW imaging methods, targeted-DW-SE-EPI and targeted-DW-SPLICE techniques reduced image distortion and artifacts observed in the single-shot DW-SE-EPI images, reduced blurring in DW-SPLICE images and produced comparable quantitative DW and IVIM measurements to those produced with conventional full-FOV approaches. PMID:21591023
Agrawal, Sony; Cifelli, Steven; Johnstone, Richard; Pechter, David; Barbey, Deborah A; Lin, Karen; Allison, Tim; Agrawal, Shree; Rivera-Gines, Aida; Milligan, James A; Schneeweis, Jonathan; Houle, Kevin; Struck, Alice J; Visconti, Richard; Sills, Matthew; Wildey, Mary Jo
2016-02-01
Quantitative reverse transcription PCR (qRT-PCR) is a valuable tool for characterizing the effects of inhibitors on viral replication. The amplification of target viral genes through the use of specifically designed fluorescent probes and primers provides a reliable method for quantifying RNA. Due to reagent costs, use of these assays for compound evaluation is limited. Until recently, the inability to accurately dispense low volumes of qRT-PCR assay reagents precluded the routine use of this PCR assay for compound evaluation in drug discovery. Acoustic dispensing has become an integral part of drug discovery during the past decade; however, acoustic transfer of microliter volumes of aqueous reagents was time consuming. The Labcyte Echo 525 liquid handler was designed to enable rapid aqueous transfers. We compared the accuracy and precision of a qPCR assay using the Labcyte Echo 525 to those of the BioMek FX, a traditional liquid handler, with the goal of reducing the volume and cost of the assay. The data show that the Echo 525 provides higher accuracy and precision compared to the current process using a traditional liquid handler. Comparable data for assay volumes from 500 nL to 12 µL allowed the miniaturization of the assay, resulting in significant cost savings of drug discovery and process streamlining. © 2015 Society for Laboratory Automation and Screening.
Coherent pump pulses in Double Electron Electron Resonance Spectroscopy
Tait, Claudia E.; Stoll, Stefan
2016-01-01
The recent introduction of shaped pulses to Double Electron Electron Resonance (DEER) spectroscopy has led to significant enhancements in sensitivity through increased excitation bandwidths and improved control over spin dynamics. The application of DEER has so far relied on the presence of an incoherent pump channel to average out most undesired coherent effects of the pump pulse(s) on the observer spins. However, in fully coherent EPR spectrometers that are increasingly used to generate shaped pulses, the presence of coherent pump pulses means that these effects need to be explicitly considered. In this paper, we examine the effects of coherent rectangular and sech/tanh pump pulses in DEER experiments with up to three pump pulses. We show that, even in the absence of significant overlap of the observer and pump pulse excitation bandwidths, coherence transfer pathways involving both types of pulses generate spin echoes of considerable intensity. These echoes introduce artefacts, which, if not identified and removed, can easily lead to misinterpretation. We demonstrate that the observed echoes can be quantitatively modelled using a simple spin quantum dynamics approach that includes instrumental transfer functions. Based on an analysis of the echo crossing artefacts, we propose efficient phase cycling schemes for their suppression. This enables the use of advanced DEER experiments, characterized by high sensitivity and increased accuracy for long-distance measurements, on novel fully coherent EPR spectrometers. PMID:27339858
Adipose tissue MRI for quantitative measurement of central obesity.
Poonawalla, Aziz H; Sjoberg, Brett P; Rehm, Jennifer L; Hernando, Diego; Hines, Catherine D; Irarrazaval, Pablo; Reeder, Scott B
2013-03-01
To validate adipose tissue magnetic resonance imaging (atMRI) for rapid, quantitative volumetry of visceral adipose tissue (VAT) and total adipose tissue (TAT). Data were acquired on normal adults and clinically overweight girls with Institutional Review Board (IRB) approval/parental consent using sagittal 6-echo 3D-spoiled gradient-echo (SPGR) (26-sec single-breath-hold) at 3T. Fat-fraction images were reconstructed with quantitative corrections, permitting measurement of a physiologically based fat-fraction threshold in normals to identify adipose tissue, for automated measurement of TAT, and semiautomated measurement of VAT. TAT accuracy was validated using oil phantoms and in vivo TAT/VAT measurements validated with manual segmentation. Group comparisons were performed between normals and overweight girls using TAT, VAT, VAT-TAT-ratio (VTR), body-mass-index (BMI), waist circumference, and waist-hip-ratio (WHR). Oil phantom measurements were highly accurate (<3% error). The measured adipose fat-fraction threshold was 96% ± 2%. VAT and TAT correlated strongly with manual segmentation (normals r(2) ≥ 0.96, overweight girls r(2) ≥ 0.99). VAT segmentation required 30 ± 11 minutes/subject (14 ± 5 sec/slice) using atMRI, versus 216 ± 73 minutes/subject (99 ± 31 sec/slice) manually. Group discrimination was significant using WHR (P < 0.001) and VTR (P = 0.004). The atMRI technique permits rapid, accurate measurements of TAT, VAT, and VTR. Copyright © 2012 Wiley Periodicals, Inc.
Saldanha, Karl J; Doan, Ryan P; Ainslie, Kristy M; Desai, Tejal A; Majumdar, Sharmila
2011-01-01
To examine mesenchymal stem cell (MSC) labeling with micrometer-sized iron oxide particles (MPIOs) for magnetic resonance imaging (MRI)-based tracking and its application to monitoring articular cartilage regeneration. Rabbit MSCs were labeled using commercial MPIOs. In vitro MRI was performed with gradient echo (GRE) and spin echo (SE) sequences at 3T and quantitatively characterized using line profile and region of interest analysis. Ex vivo MRI of hydrogel-encapsulated labeled MSCs implanted within a bovine knee was performed with spoiled GRE (SPGR) and T(1ρ) sequences. Fluorescence microscopy, labeling efficiency, and chondrogenesis of MPIO-labeled cells were also examined. MPIO labeling results in efficient contrast uptake and signal loss that can be visualized and quantitatively characterized via MRI. SPGR imaging of implanted cells results in ex vivo detection within native tissue, and T(1ρ) imaging is unaffected by the presence of labeled cells immediately following implantation. MPIO labeling does not affect quantitative glycosaminoglycan production during chondrogenesis, but iron aggregation hinders extracellular matrix visualization. This aggregation may result from excess unincorporated particles following labeling and is an issue that necessitates further investigation. This study demonstrates the promise of MPIO labeling for monitoring cartilage regeneration and highlights its potential in the development of cell-based tissue engineering strategies. Published by Elsevier Inc.
Iqbal, Zohaib; Wilson, Neil E; Thomas, M Albert
2017-07-24
1 H Magnetic Resonance Spectroscopic imaging (SI) is a powerful tool capable of investigating metabolism in vivo from mul- tiple regions. However, SI techniques are time consuming, and are therefore difficult to implement clinically. By applying non-uniform sampling (NUS) and compressed sensing (CS) reconstruction, it is possible to accelerate these scans while re- taining key spectral information. One recently developed method that utilizes this type of acceleration is the five-dimensional echo planar J-resolved spectroscopic imaging (5D EP-JRESI) sequence, which is capable of obtaining two-dimensional (2D) spectra from three spatial dimensions. The prior-knowledge fitting (ProFit) algorithm is typically used to quantify 2D spectra in vivo, however the effects of NUS and CS reconstruction on the quantitation results are unknown. This study utilized a simulated brain phantom to investigate the errors introduced through the acceleration methods. Errors (normalized root mean square error >15%) were found between metabolite concentrations after twelve-fold acceleration for several low concentra- tion (<2 mM) metabolites. The Cramér Rao lower bound% (CRLB%) values, which are typically used for quality control, were not reflective of the increased quantitation error arising from acceleration. Finally, occipital white (OWM) and gray (OGM) human brain matter were quantified in vivo using the 5D EP-JRESI sequence with eight-fold acceleration.
Film handling procedures for Apollo 17 lunar sounder
NASA Technical Reports Server (NTRS)
Weinstein, M. S.
1972-01-01
Film handling procedures for the Apollo 17 Lunar Sounder are itemized, including purchase of flight film, establishment of processing standards, transportation of flight films, flight film certification, application of pre- and post-sensitometry, film loading and downloading, film processing, titling, and duplication.
Aura Microwave Limb Sounder Estimates of Ozone Loss, 2004/2005 Arctic Winter
2005-06-02
These data maps from the Microwave Limb Sounder on NASA Aura spacecraft depict levels of hydrogen chloride, chlorine monoxide, and ozone at an altitude of approximately 19 km 490,000 ft on selected days during the 2004-05 Arctic winter.
Inter-Comparison of GOES-8 Imager and Sounder Skin Temperature Retrievals
NASA Technical Reports Server (NTRS)
Haines, Stephanie L.; Suggs, Ronnie J.; Jedlovec, Gary J.; Arnold, James E. (Technical Monitor)
2001-01-01
Skin temperature (ST) retrievals derived from geostationary satellite observations have both high temporal and spatial resolutions and are therefore useful for applications such as assimilation into mesoscale forecast models, nowcasting, and diagnostic studies. Our retrieval method uses a Physical Split Window technique requiring at least two channels within the longwave infrared window. On current GOES satellites, including GOES-11, there are two Imager channels within the required spectral interval. However, beginning with the GOES-M satellite the 12-um channel will be removed, leaving only one longwave channel. The Sounder instrument will continue to have three channels within the longwave window, and therefore ST retrievals will be derived from Sounder measurements. This research compares retrievals from the two instruments and evaluates the effects of the spatial resolution and sensor calibration differences on the retrievals. Both Imager and Sounder retrievals are compared to ground-truth data to evaluate the overall accuracy of the technique. An analysis of GOES-8 and GOES-11 intercomparisons is also presented.
High-resolution Interferometer Sounder (HIS), phase 2
NASA Technical Reports Server (NTRS)
1988-01-01
The High-resolution Interferometer Sounder (HIS) was successfully built, tested, and flight proven on the NASA U-2/ER-2 high altitude aircraft. The HIS demonstration has shown that, by using the technology of Fourier Transform Spectroscopy (FTS), it is possible to measure the spectrum of upwelling infrared radiance needed for temperature and humidity sounding with high spectral resolution and high radiometric precision. By resolving individual carbon dioxide lines, the retrieved temperature profiles have vertical resolutions of 1 to 2 km and RMS errors less than 1 C, about 2 to 4 times better than possible with current sounders. Implementing this capability on satellite sounders will greatly enhance the dynamical information content of temperature measurements from space. The aircraft model HIS is now a resource which should be used to support field experiments in mesoscale meteorology, to monitor trace gas concentrations and to better understand their effects on climate, to monitor the surface radiation budget and the radiative effects of clouds, and to collect data for research into retrieval techniques, especially under partially cloudy conditions.
Second SNPP Cal/Val Campaign: Environmental Data Retrieval Analysis
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Tian, Jialin; Smith, William L.; Kizer, Susan H.; Goldberg, Mitch D.
2016-01-01
Satellite ultraspectral infrared sensors provide key data records essential for weather forecasting and climate change science. The Suomi National Polar-orbiting Partnership (Soumi NPP) satellite Environmental Data Records (EDRs) are retrieved from calibrated ultraspectral radiance or Sensor Data Records (SDRs). Understanding the accuracy of retrieved EDRs is critical. The second Suomi NPP Calibration/Validation field campaign was conducted during March 2015 with flights over Greenland. The NASA high-altitude ER-2 aircraft carrying ultraspectral interferometer sounders such as the National Airborne Sounder Testbed-Interferometer (NAST-I) flew under the Suomi NPP satellite that carries the Crosstrack Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). Herein we inter-compare the EDRs produced from different retrieval algorithms employed on these satellite and aircraft campaign data. The available radiosonde measurements together with the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses are used to assess atmospheric temperature and moisture retrievals from the aircraft and satellite platforms. Preliminary results of this experiment under a winter, Arctic environment are presented.
Results of a Monitoring Program at a Sediment Trap in the Elbe Estuary near Wedel
NASA Astrophysics Data System (ADS)
Ohle, N.; Entelmann, I.; Winterscheid, A.
2012-04-01
In June 2008 a sediment trap was built in the Tidal Elbe River near Wedel. The trap is about 2 km long, 2 m deep in average and spans the whole roughly 300 meter width of the navigation channel. The geometry of the trap is aligned to the zones with maximum sedimentation in the past. Therefore it has a triangular geometry on the western side. The dimensions of the sediment traps were restricted due to more or less legal circumstances. A longer and deeper sediment trap requires a planning approval as the used dimensions were evaluated as supporting maintenance works. Hamburg Port Authority (HPA) and the Waterway and Shipping Administration of the Federal Government (WSV) want jointly further improve the management of sediments and dredging activities by means of this measure. Until end of 2010 a total amount of about 4 Mio. m3 of fine sediments has been removed from the basin in 4 maintenance campaigns and was relocated about 50 km downstream to the relocation area at Elbe-km 690. The main function of the sediment trap is to reduce the residual transport of marine sediments from the North Sea in direction of Hamburg by trapping minor polluted sediments before they reach the port area. In this area these sediments mix-up with higher polluted sediments. The three specific objectives of the sediment trap are: to reduce the dredging amounts in the area of the Hamburg port; to be able to relocate minor polluted sediments further downstream to areas where the ebb-tidal current dominates the flow regime; to economically optimize maintenance dredging activities within the sediment trap. Beside these qualitative advantages the sediment trap has additional advantages in regard to maintenance works of the fairway due to a higher flexibility. Since sediments are collected in one defined place they can be dredged more efficiently through the use of optimized equipment, e.g. larger hopper dredgers can be used resulting in a cost-benefit. Another optimisation possibility can be found in the higher densities that can be dredged through a longer period of consolidation, resulting in higher hopper densities. In contrast to these advantages, a cost increase through preparation of the sediment trap in the first place needs to be considered. In order to report stakeholders, HPA runs a monitoring programme on how this sediment trap affects hydrology, morphology and ecological issues. Besides that, HPA carries out further monitoring activities tailored to system analysis and to study morphological processes in detail. The Federal Institute of Hydrology (BfG) analyses the data and carries out further investigations on the measuring data (refer to BfG, 2009 and BfG, 2010). Hydrological and morphological parameters are being constantly recorded at four monitoring stations which are located up- and downstream to the sediment trap. The current velocities were analysed by ADCP campaigns on several profiles. In order to study the near-bed morphological processes a steel-frame-platform - equipped with measurement devices and traps for suspended material - was installed directly on the bottom of the sediment trap. A pump sampler collects water samples from a survey vessel to obtain suspended matter (SPM) content. Furthermore, HPA uses a multibeam echo sounder to observe the resulting sedimentation patterns in the trap. Surface grab samples are used to collect data about grain size distributions. Echo soundings with two frequencies and sediment echo sounders were used to get a picture of the density and consolidation of the settled sediments within the trap. In this paper short results of the mentioned monitoring program should be presented.
Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space: Progress
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Krainak, M.; Riris, H. J.; Sun, X.; Riris, H.; Andrews, A. E.; Collatz, J.
2004-01-01
We describe progress toward developing a laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft at the few ppm level, with a capability of scaling to permit global CO2 measurements from orbit. Accurate measurements of the tropospheric CO2 mixing ratio from space are challenging due to the many potential error sources. These include possible interference from other trace gas species, the effects of temperature, clouds, aerosols & turbulence in the path, changes in surface reflectivity, and variability in dry air density caused by changes in atmospheric pressure, water vapor and topographic height. Some potential instrumental errors include frequency drifts in the transmitter, small transmission and sensitivity drifts in the instrument. High signal-to-noise ratios and measurement stability are needed for mixing ratio estimates at the few ppm level. We have been developing a laser sounder approach as a candidate for a future space mission. It utilizes multiple different laser transmitters to permit simultaneous measurement of CO2 and O2 extinction, and aerosol backscatter in the same measurement path. It directs the narrow co-aligned laser beams from the instrument's fiber lasers toward nadir, and measures the energy of the strong laser echoes reflected from the Earth's land and water surfaces. During the measurement its narrow linewidth lasers are rapidly tuned on- and off- selected CO2 line near 1572 nm and an O2 absorption line near 770 nm. The receiver measures the energies of the laser echoes from the surface and any clouds and aerosols in the path with photon counting detectors. Ratioing the on- to off-line echo pulse energies for each gas permits the column extinction and column densities of CO2 and O2 to be estimated simultaneously via the differential absorption lidar technique. For the on-line wavelengths, the side of the selected absorption lines are used, which due to pressure broadening, weights the measurements to the lower troposphere, where CO2 variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column abundance are made using an identical approach using an O2 line. The laser backscatter profiles from clouds and aerosols are measured with other lidar channels, which permits identifying measurements influenced by clouds and/or aerosol scattering in the path. For space use, our lidar would continuously measure at nadir in near polar circular orbit. Using dawn and dusk measurements made over the same region will make it possible to sample the diurnal variations in CO2 mixing ratios. A 1-m diameter telescope is used for the receiver for all wavelengths. When averaging over 50 seconds, our calculations show a SNR of approximately 1500 is achievable for each gas at each on- and off-line measurement. Measurements from such a mission can be used to generate monthly global maps of the lower tropospheric CO2 column abundance. Our calculations show global coverage with an accuracy of a few ppm with a spatial resolution of approximately 50,000 sq. km are achievable each month. We have demonstrated some key elements of the laser, detector and receiver approaches in the laboratory and with measurements over a 206 m horizontal path. These include stable measurements of CO2 line shapes in an absorption cell using a fiber laser amplifier seeded by a tunable diode laser, measurement of small amplitude changes at low optical signal levels with the PMT receiver, and comparison of the horizontal path measurements of CO2 against those from an in-situ instrument.
CubeSat infrared atmospheric sounder (CIRAS) NASA InVEST technology demonstration
NASA Astrophysics Data System (ADS)
Pagano, Thomas S.
2017-02-01
Infrared sounders measure the upwelling radiation of the Earth in the Midwave Infrared (MWIR) and Longwave Infrared (LWIR) region of the spectrum with global daily coverage from space. The observed radiances are assimilated into weather forecast models and used to retrieve lower tropospheric temperature and water vapor for climate studies. There are several operational sounders today including the Atmospheric Infrared Sounder (AIRS) on Aqua, the Crosstrack Infrared Sounder (CrIS) on Suomi NPP and JPSS, and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp spacecraft. The CubeSat Infrared Atmospheric Sounder (CIRAS) is a NASA In-flight Validation of Earth Science Technologies (InVEST) program to demonstrate three new instrument technologies in an imaging sounder configuration. The first is a 2D array of High Operating Temperature Barrier Infrared Detector (HOT-BIRD) material, selected for its high uniformity, low cost, low noise and higher operating temperatures than traditional materials. The detectors are hybridized to a commercial ROIC and commercial camera electronics. The second technology is a MWIR Grating Spectrometer (MGS) designed to provide imaging spectroscopy for atmospheric sounding in a CubeSat volume. The MGS employs an immersion grating or grism, has no moving parts, and is based on heritage spectrometers including the OCO- 2. The third technology is a Black Silicon infrared blackbody calibration target. The Black Silicon offers very low reflectance over a broad spectral range on a flat surface and is more robust than carbon nanotubes. JPL will also develop the mechanical, electronic and thermal subsystems for the CIRAS payload. The spacecraft will be a commercially available CubeSat. The integrated system will be a complete 6U CubeSat capable of measuring temperature and water vapor profiles with good lower tropospheric sensitivity. The low cost of CIRAS enables multiple units to be flown to improve temporal coverage or measure 3D Atmospheric Motion Vector (AMV) winds. CIRAS will launch in 2019 and is only a technology demonstration. However, what we learn will benefit future instruments that support operational weather forecasting and climate studies.
The DST group ionospheric sounder replacement for JORN
NASA Astrophysics Data System (ADS)
Harris, T. J.; Quinn, A. D.; Pederick, L. H.
2016-06-01
The Jindalee Over-the-horizon Radar Network (JORN) is an integral part of Australia's national defense capability. JORN uses a real-time ionospheric model as part of its operations. The primary source of data for this model is a set of 13 vertical-incidence sounders (VIS) scattered around the Australian coast and inland locations. These sounders are a mix of Lowell digisonde portable sounder (DPS)-1 and DPS-4. Both of these sounders, the DPS-1 in particular, are near the end of their maintainable life. A replacement for these aging sounders was required as part of the ongoing sustainment program for JORN. Over the last few years the High-Frequency Radar Branch (HFRB) of the Defence Science and Technology (DST) Group, Australian Department of Defence, has been developing its own sounders based on its successful radar hardware technology. The DST Group VIS solution known as PRIME (Portable Remote Ionospheric Monitoring Equipment) is a 100% duty cycle, continuous wave system that receives the returned ionospheric signal while it is still transmitting and operates the receiver in the near field of the transmitter. Of considerable importance to a successful VIS is the autoscaling software, which takes the ionogram data and produces an ionogram trace (group delay as a function of frequency), and from that produces a set of ionospheric parameters that represent the (bottomside) overhead electron density profile. HFRB has developed its own robust autoscaling software. The performance of DST Group's PRIME under a multitude of challenging ionospheric conditions has been studied. In December 2014, PRIME was trialed at a JORN VIS site collocated with the existing Lowell Digisonde DPS-1. This side-by-side testing determined that PRIME was fit for purpose. A summary of the results of this comparison and example PRIME output will be discussed. Note that this paper compares PRIME with the 25 year old Lowell Digisonde DPS-1, which is planned to be replaced. Our future plans include PRIME comparisons with the much newer Digisonde DPS-4D located at Learmonth in Western Australia.
Anisotropy of the permittivity field inferred from aspect-sensitive radar echoes
NASA Technical Reports Server (NTRS)
Waterman, A. T.
1984-01-01
An attempt is made to draw some quantitative conclusions regarding the anisotropy of the clear-air back-scattering mechanism based on the measured variation of echo power with zenith angle. The measurements were made by the SOUSY group of the Max Planck Institute for Aeronomy at Lindau, FRG. They installed their 47-MHz transmitter and antenna feed in the 300-meter diameter reflector at Arecibo. The resulting 1.7-degree beam was stepped successively through seven 1.7-degree intervals from 1.7 to 11.7 degrees in zenith angle, obtaining about four minutes of data at each setting. This procedure was carried out in an eastward pointing azimuth and in a northward pointing azimuth, the entire set of measurements consuming an hour and twenty minutes. Range resolution was 150 meters.
Kim, Yeo Ju; Cha, Jang Gyu; Shin, Yoon Sang; Chaudhari, Akshay S; Suh, Young Ju; Hwan Yoon, Seung; Gold, Garry E
2018-05-01
The purpose of this study was to evaluate the feasibility of 3D ultrashort TE (UTE) MRI in depicting the cartilaginous endplate (CEP) and its abnormalities and to investigate the association between CEP abnormalities and disk degeneration on T2-weighted spin-echo (SE) MR images in cervical disks in vivo. Eight healthy volunteers and 70 patients were examined using 3-T MRI with the 3D UTE cones trajectory technique (TR/TE, 16.1/0.032, 6.6). In the volunteer study, quantitative and qualitative assessments of CEP depiction were conducted for the 3D UTE and T2-weighted SE imaging. In the patient study, CEP abnormalities were analyzed. Intersequence agreement between the images obtained with the first-echo 3D UTE sequence and the images created by subtracting the second-echo from the first-echo 3D UTE sequence (subtracted 3D UTE) and the intraobserver and interobserver agreements for 3D UTE overall were also tested. The CEP abnormalities on the 3D UTE images correlated with the Miyazaki grading of the T2-weighted SE images. In the volunteer study, the CEP was well visualized on 3D UTE images but not on T2-weighted SE images (p < 0.001). In the patient study, for evaluation of CEP abnormalities, intersequence agreements were substantial to almost perfect, intraobserver agreements were substantial to almost perfect, and interobserver agreements were moderate to substantial (p < 0.001). All of the CEP abnormalities correlated with the Miyazaki grade with statistical significance (p < 0.001). Three-dimensional UTE MRI feasibly depicts the CEP and CEP abnormalities, which may be associated with the severity of disk degeneration on T2-weighted SE MRI.
Koh, Hong; Kim, Seung; Kim, Myung-Joon; Kim, Hyun Gi; Shin, Hyun Joo; Lee, Mi-Jung
2015-09-07
To evaluate the possibility of treatment effect monitoring using hepatic fat quantification magnetic resonance (MR) in pediatric nonalcoholic steatohepatitis (NASH). We retrospectively reviewed the medical records of patients who received educational recommendations and vitamin E for NASH and underwent hepatic fat quantification MR from 2011 to 2013. Hepatic fat fraction (%) was measured using dual- and triple-echo gradient-recalled-echo sequences at 3T. The compliant and non-compliant groups were compared clinically, biochemically, and radiologically. Twenty seven patients (M:F = 24:3; mean age: 12 ± 2.3 years) were included (compliant group = 22, non-compliant = 5). None of the baseline findings differed between the 2 groups, except for triglyceride level (compliant vs non-compliant, 167.7 mg/dL vs 74.2 mg/dL, P = 0.001). In the compliant group, high-density lipoprotein increased and all other parameters decreased after 1-year follow-up. However, there were various changes in the non-compliant group. Dual-echo fat fraction (-19.2% vs 4.6, P < 0.001), triple-echo fat fraction (-13.4% vs 3.5, P < 0.001), alanine aminotransferase (-110.7 IU/L vs -10.6 IU/L, P = 0.047), total cholesterol (-18.1 mg/dL vs 3.8 mg/dL, P = 0.016), and triglyceride levels (-61.3 mg/dL vs 11.2 mg/dL, P = 0.013) were significantly decreased only in the compliant group. The change in body mass index and dual-echo fat fraction showed a positive correlation (ρ = 0.418, P = 0.030). Hepatic fat quantification MR can be a non-invasive, quantitative and useful tool for monitoring treatment effects in pediatric NASH.
Le, Yuan; Kipfer, Hal D; Majidi, Shadie S; Holz, Stephanie; Lin, Chen
2014-09-01
The purpose of this article is to evaluate and compare the artifacts caused by metal implants in breast MR images acquired with dual-echo Dixon and two conventional fat-suppression techniques. Two types of biopsy markers were embedded into a uniform fat-water emulsion. T1-weighted gradient-echo images were acquired on a clinical 3-T MRI scanner with three different fat-suppression techniques-conventional or quick fat saturation, spectrally selective adiabatic inversion recovery (SPAIR), and dual-echo Dixon-and the 3D volumes of artifacts were measured. Among the subjects of a clinical breast MRI study using the same scanner, five patients were found to have one or more metal implants. The artifacts in Dixon and SPAIR fat-suppressed images were evaluated by three radiologists, and the results were compared with those of the phantom study. In the phantom study, the artifacts appeared as interleaved bright and dark rings on SPAIR and quick-fat-saturation images, whereas they appeared as dark regions with a thin bright rim on Dixon images. The artifacts imaged with the Dixon technique had the smallest total volume. However, the reviewers found larger artifact diameters on patient images using the Dixon sequence because only the central region was recognized as an artifact on the SPAIR images. Metal implants introduce artifacts of different types and sizes, according to the different fat-suppression techniques used. The dual-echo Dixon technique produces a larger central void, allowing the implant to be easily identified, but presents a smaller overall artifact volume by obscuring less area in the image, according to a quantitative phantom study.
Ground Clutter as a Monitor of Radar Stability at Kwajalein,RMI
NASA Technical Reports Server (NTRS)
Silberstein, David S.; Wolff, David B.; Marks, David A.; Atlas, David; Pippitt, Jason L.
2007-01-01
There are many applications in which the absolute and day-to-day calibration of radar sensitivity is necessary. This is particularly so in the case of quantitative radar measurements of precipitation. While absolute calibrations can be done periodically using solar radiation, variations that occur between such absolute checks are required to maintain the accuracy of the data. The authors have developed a method for h s purpose using the radar on Kwajalein Atoll, which has been used to provide a baseline calibration for control of measurements of rainfall made by the Tropical Rainfall Measuring Mission 0T.he method u ses echoes from a multiplicity of ground targets. The average clutter echoes at the lowest elevation scan have been found to be remarkably stable from hour to hour, day to day, and month to month within better than +1 dB. They vary significantly only after either deliberate system modifications, equipment failure or unknown causes. A cumulative probability distribution of echo reflectivities (Ze in dBZ) is obtained on a daily basis. This CDF includes both the precipitation and clutter echoes. Because the precipitation echoes at Kwajalein rarely exceed 45 dBZ, selecting an upper percentile of the CDF associated with intense clutter reflectivities permits monitoring of radar stability. The reflectivity level at which the CDF attains 95% is our reference. Daily measurements of the CDFs have been made since August 1999 and have been used to correct the 7 M years of measurements and thus enhance the integrity of the global record of precipitation observed by TRMM. The method also has potential applicability to other pound radar sites.
2005-06-02
This still from an animation created from data from the Microwave Limb Sounder instrument on NASA Aura spacecraft depicts the complex interaction of chemicals involved in the destruction of ozone during the 2005 Arctic winter.
Tropical Cyclone Intensity and Position Analysis Using Passive Microwave Imager and Sounder Data
2015-03-26
NPP) Advanced Technology Microwave Sounder (ATMS) for a sample of 28 North Atlantic storms from the 2011 through 2013 TC seasons . Using a stepwise...58 27. NOAA NHC 2011 TC Season Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 28...per Season and TCs with Aircraft Reconnaissance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
First SNPP Cal/Val Campaign: Satellite and Aircraft Sounding Retrieval Intercomparison
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Tian, Jialin; Smith, William L.; Wu, Wan; Kizer, Susan; Goldberg, Mitch; Liu, Q.
2015-01-01
Satellite ultraspectral infrared sensors provide key data records essential for weather forecasting and climate change science. The Suomi National Polar-orbiting Partnership (SNPP) satellite Environmental Data Record (EDR) is retrieved from calibrated ultraspectral radiance so called Sensor Data Record (SDR). It is critical to understand the accuracy of retrieved EDRs, which mainly depends on SDR accuracy (e.g., instrument random noise and absolute accuracy), an ill-posed retrieval system, and radiative transfer model errors. There are few approaches to validate EDR products, e.g., some common methods are to rely on radiosonde measurements, ground-based measurements, and dedicated aircraft campaign providing in-situ measurements of atmosphere and/or employing similar ultraspectral interferometer sounders. Ultraspectral interferometer sounder aboard aircraft measures SDR to retrieve EDR, which is often used to validate satellite measurements of SDR and EDR. The SNPP Calibration/Validation Campaign was conducted during May 2013. The NASA high-altitude aircraft ER-2 that carried ultraspectral interferometer sounders such as the NASA Atmospheric Sounder Testbed-Interferometer (NAST-I) flew under the SNPP satellite that carries the Cross-track Infrared Sounder (CrIS). Here we inter-compare the EDRs produced with different retrieval algorithms from SDRs measured by the sensors from satellite and aircraft. The available dropsonde and radiosonde measurements together with the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis were also used to draw the conclusion from this experiment.
NASA Astrophysics Data System (ADS)
Ai, Yufei; Li, Jun; Shi, Wenjing; Schmit, Timothy J.; Cao, Changyong; Li, Wanbiao
2017-02-01
Deep convective storms have contributed to airplane accidents, making them a threat to aviation safety. The most common method to identify deep convective clouds (DCCs) is using the brightness temperature difference (BTD) between the atmospheric infrared (IR) window band and the water vapor (WV) absorption band. The effectiveness of the BTD method for DCC detection is highly related to the spectral resolution and signal-to-noise ratio (SNR) of the WV band. In order to understand the sensitivity of BTD to spectral resolution and SNR for DCC detection, a BTD to noise ratio method using the difference between the WV and IR window radiances is developed to assess the uncertainty of DCC identification for different instruments. We examined the case of AirAsia Flight QZ8501. The brightness temperatures (Tbs) over DCCs from this case are simulated for BTD sensitivity studies by a fast forward radiative transfer model with an opaque cloud assumption for both broadband imager (e.g., Multifunction Transport Satellite imager, MTSAT-2 imager) and hyperspectral IR sounder (e.g., Atmospheric Infrared Sounder) instruments; we also examined the relationship between the simulated Tb and the cloud top height. Results show that despite the coarser spatial resolution, BTDs measured by a hyperspectral IR sounder are much more sensitive to high cloud tops than broadband BTDs. As demonstrated in this study, a hyperspectral IR sounder can identify DCCs with better accuracy.
Preliminary theoretical acoustic and rf sounding calculations for MILL RACE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warshaw, S.I.; Dubois, P.F.
1981-11-02
As participant in DOE/ISA's Ionospheric Monitoring Program, LLNL has the responsibility of providing theoretical understanding and calculational support for experimental activities carried out by Los Alamos National Laboratory in using ionospheric sounders to remotely detect violent atmospheric phenomena. We have developed a system of interconnected computer codes which simulate the entire range of atmospheric and ionospheric processes involved in this remote detection procedure. We are able to model the acoustic pulse shape from an atmospheric explosion, the subsequent nonlinear transport of this energy to all parts of the immediate atmosphere including the ionosphere, and the propagation of high-frequency ratio wavesmore » through the acoustically perturbed ionosphere. Los Alamos' coverage of DNA's MILL RACE event provided an excellent opportunity to assess the credibility of the calculational system to correctly predict how ionospheric sounders would respond to a surface-based chemical explosion. In this experiment, 600 tons of high explosive were detonated at White Sands Missile Range at 12:35:40 local time on 16 September 1981. Vertical incidence rf phase sounders and bistatic oblique incidence rf sounders fielded by Los Alamos and SRI International throughout New Mexico and southern Colorado detected the ionospheric perturbation that ensued. A brief account of preliminary calculations of the acoustic disturbance and the predicted ionospheric sounder signatures for MILL RACE is presented. (WHK)« less
NASA Technical Reports Server (NTRS)
Benson, Robert F.; Fung, Shing F.
2008-01-01
Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).
Kiyan, Wataru; Ito, Akira; Nakagawa, Yasuaki; Mukai, Shogo; Mori, Koji; Arai, Tatsuo; Uchino, Eiichiro; Okuno, Yasushi; Kuroki, Hiroshi
2017-08-01
We aimed to quantitatively investigate the relationship between amplitude-based pulse-echo ultrasound parameters and early degeneration of the knee articular cartilage. Twenty samples from six human femoral condyles judged as grade 0 or 1 according to International Cartilage Repair Society grading were assessed using a 15-MHz pulsed-ultrasound 3-D scanning system ex vivo. Surface roughness (R q ), average collagen content (A 1 ) and collagen orientation (A 12 ) in the superficial zone of the cartilage were measured via laser microscopy and Fourier transform infrared imaging spectroscopy. Multiple regression analysis with a linear mixed-effects model (LMM) revealed that a time-domain reflection coefficient at the cartilage surface (R c ) had a significant coefficient of determination with R q and A 12 (R LMMm 2 =0.79); however, R c did not correlate with A 1 . Concerning the collagen characteristic in the superficial zone, R c was found to be a sensitive indicator reflecting collagen disorganization, not collagen content, for the early degeneration samples. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rossini, L.; Khan, A.; Del Alamo, J. C.; Martinez-Legazpi, P.; Pérez Del Villar, C.; Benito, Y.; Yotti, R.; Barrio, A.; Delgado-Montero, A.; Gonzalez-Mansilla, A.; Fernandez-Avilés, F.; Bermejo, J.
2016-11-01
Left ventricular thrombosis (LVT) is a major complication of acute myocardial infarction (AMI). In these patients, the benefits of chronic anticoagulation therapy need to be balanced with its pro-hemorrhagic effects. Blood stasis in the cardiac chambers, a risk factor for LVT, is not addressed in current clinical practice. We recently developed a method to quantitatively assess the blood residence time (RT) inside the left ventricle (LV) based on 2D color-Doppler velocimetry (echo-CDV). Using time-resolved blood velocity fields acquired non-invasively, we integrate a modified advection equation to map intraventricular stasis regions. Here, we present how this tool can be used to estimate the risk of LVT in patients with AMI. 73 patients with a first anterior-AMI were studied by echo-CDV and RT analysis within 72h from admission and at a 5-month follow-up. Patients who eventually develop LVT showed early abnormalities of intraventricular RT: the apical region with RT>2s was significantly larger, had a higher RT and a longer wall contact length. Thus, quantitative analysis of intraventricular flow based on echocardiography may provide subclinical markers of LV thrombosis risk to guide clinical decision making.
Will We Soon Have a Geostationary Microwave Sounder and What Can We Do with It?
NASA Technical Reports Server (NTRS)
Lambrigtsen, Bjorn
2008-01-01
This slide presentation reviews the Geostationary Microwave Sounder (GEO/MW). GEO/MW applications include weather forecasting, hurricane diagnostics, rain, tropospheric wind profiling, and climate research. The presentation also includes information on prototype development, system tests, the notational PATH mission, and data products.
Karampinos, Dimitrios C; Holwein, Christian; Buchmann, Stefan; Baum, Thomas; Ruschke, Stefan; Gersing, Alexandra S; Sutter, Reto; Imhoff, Andreas B; Rummeny, Ernst J; Jungmann, Pia M
2017-07-01
Quantitative muscle fat-fraction magnetic resonance (MR) imaging techniques correlate with semiquantitative Goutallier scores with failure after rotator cuff (RC) repair. To investigate the relationship of proton density fat fraction (PDFF) of the RC muscles with semiquantitative MR scores, cartilage T2 relaxation times, and clinical isometric strength measurements in patients 10 years after unilateral RC repair. Cross-sectional study; Level of evidence, 3. Bilateral shoulder MR imaging was performed in 13 patients (11 male, 2 female; age, 72 ± 8 years) 10.9 ± 0.4 years after unilateral autologous periosteal flap augmented RC repair (total shoulders assessed, N = 26). Goutallier classification, muscle atrophy, RC tendon integrity, and cartilage defects were determined based on morphological MR sequences. A paracoronal 2D multi-slice multi-echo sequence was used for quantitative cartilage T2 mapping. A chemical shift-encoding-based water-fat separation technique (based on a 6-echo 3D spoiled gradient echo sequence) was used for quantification of the PDFF of RC muscles. Isometric shoulder abduction strength was measured clinically. Mean and SD, Pearson correlation, and partial Spearman correlation were calculated. There were 6 RC full-thickness retears in ipsilateral shoulders and 6 RC full-thickness tears in contralateral shoulders. Isometric shoulder abduction strength was not significantly different between ipsilateral and contralateral shoulders (50 ± 24 N vs 54 ± 24 N; P = .159). The mean PDFF of RC muscles was 11.7% ± 10.4% (ipsilateral, 14.2% ± 8.5%; contralateral, 9.2% ± 7.8%; P = .002). High supraspinatus PDFF correlated significantly with higher Goutallier scores ( R = 0.75, P < .001) and with lower isometric muscle strength ( R = -0.49, P = .011). This correlation remained significant after adjustment for muscle area measurements and tendon rupture ( R = -0.41, P = .048). More severe cartilage defects at the humerus were significantly associated with higher supraspinatus PDFF ( R = 0.44; P = .023). Cartilage T2 values did not correlate with muscle PDFF ( P > .05). MR imaging-derived RC muscle PDFF is associated with isometric strength independent of muscle atrophy and tendon rupture in shoulders with early and advanced degenerative changes. It therefore provides complementary, clinically relevant information in tracking RC muscle composition on a quantitative level.
Tsai, Shang-Yueh; Lin, Yi-Ru; Wang, Woan-Chyi; Niddam, David M
2012-11-15
Proton echo planar spectroscopic imaging (PEPSI) is a fast magnetic resonance spectroscopic imaging (MRSI) technique that allows mapping spatial metabolite distributions in the brain. Although the medial wall of the cortex is involved in a wide range of pathological conditions, previous MRSI studies have not focused on this region. To decide the magnitude of metabolic changes to be considered significant in this region, the reproducibility of the method needs to be established. The study aims were to establish the short- and long-term reproducibility of metabolites in the right medial wall and to compare regional differences using a constant short-echo time (TE30) and TE averaging (TEavg) optimized to yield glutamatergic information. 2D sagittal PEPSI was implemented at 3T using a 32 channel head coil. Acquisitions were repeated immediately and after approximately 2 weeks to assess the coefficients of variation (COV). COVs were obtained from eight regions-of-interest (ROIs) of varying size and location. TE30 resulted in better spectral quality and similar or lower quantitation uncertainty for all metabolites except glutamate (Glu). When Glu and glutamine (Gln) were quantified together (Glx) reduced quantitation uncertainty and increased reproducibility was observed for TE30. TEavg resulted in lowered quantitation uncertainty for Glu but in less reliable quantification of several other metabolites. TEavg did not result in a systematically improved short- or long-term reproducibility for Glu. The ROI volume was a major factor influencing reproducibility. For both short- and long-term repetitions, the Glu COVs obtained with TEavg were 5-8% for the large ROIs, 12-17% for the medium sized ROIs and 16-26% for the smaller cingulate ROIs. COVs obtained with TE30 for the less specific Glx were 3-5%, 8-10% and 10-15%. COVs for N-acetyl aspartate, creatine and choline using TE30 with long-term repetition were between 2-10%. Our results show that the cost of more specific glutamatergic information (Glu versus Glx) is the requirement of an increased effect size especially with increasing anatomical specificity. This comes in addition to the loss of sensitivity for other metabolites. Encouraging results were obtained with TE30 compared to other previously reported MRSI studies. The protocols implemented here are reliable and may be used to study disease progression and intervention mechanisms. Copyright © 2012 Elsevier Inc. All rights reserved.
Owen Fracture Zone: The Arabia-India plate boundary unveiled
NASA Astrophysics Data System (ADS)
Fournier, M.; Chamot-Rooke, N.; Rodriguez, M.; Huchon, P.; Petit, C.; Beslier, M. O.; Zaragosi, S.
2011-02-01
We surveyed the Owen Fracture Zone at the boundary between the Arabia and India plates in the NW Indian Ocean using a high-resolution multibeam echo-sounder (Owen cruise, 2009) for search of active faults. Bathymetric data reveal a previously unrecognized submarine fault scarp system running for over 800 km between the Sheba Ridge in the Gulf of Aden and the Makran subduction zone. The primary plate boundary structure is not the bathymetrically high Owen Ridge, but is instead a series of clearly delineated strike-slip fault segments separated by several releasing and restraining bends. Despite an abundant sedimentary supply by the Indus River flowing from the Himalaya, fault scarps are not obscured by recent deposits and can be followed over hundreds of kilometres, pointing to very active tectonics. The total strike-slip displacement of the fault system is 10-12 km, indicating that it has been active for the past ~ 3 to 6 Ma if its current rate of motion of 3 ± 1 mm yr- 1 has remained stable. We describe the geometry of this recent fault system, including a major pull-apart basin at the latitude 20°N, and we show that it closely follows an arc of small circle centred on the Arabia-India pole of rotation, as expected for a transform plate boundary.
NASA Astrophysics Data System (ADS)
Naumenko, Mikhail; Guzivaty, Vadim; Sapelko, Tatiana
2016-04-01
Lake morphometry refers to physical factors (shape, size, structure, etc) that determine the lake depression. Morphology has a great influence on lake ecological characteristics especially on water thermal conditions and mixing depth. Depth analyses, including sediment measurement at various depths, volumes of strata and shoreline characteristics are often critical to the investigation of biological, chemical and physical properties of fresh waters as well as theoretical retention time. Management techniques such as loading capacity for effluents and selective removal of undesirable components of the biota are also dependent on detailed knowledge of the morphometry and flow characteristics. During the recent years a lake bathymetric surveys were carried out by using echo sounder with a high bottom depth resolution and GPS coordinate determination. Few digital bathymetric models have been created with 10*10 m spatial grid for some small lakes of Russian Plain which the areas not exceed 1-2 sq. km. The statistical characteristics of the depth and slopes distribution of these lakes calculated on an equidistant grid. It will provide the level-surface-volume variations of small lakes and reservoirs, calculated through combination of various satellite images. We discuss the methodological aspects of creating of morphometric models of depths and slopes of small lakes as well as the advantages of digital models over traditional methods.
Processing and Analysis of Multibeam Sonar Data and Images near the Yellow River Estuary
NASA Astrophysics Data System (ADS)
Tang, Q.
2017-12-01
Yellow River Estuary is a typical high-suspended particulate matter estuary in the world. A lot of sediments from Yellow River and other substances produced by human activity cause high-concentration suspended matter and depositional system in the estuary and adjacent water area. Multibeam echo sounder (MBES) was developed in the 1970s, and it not only provided high-precision bathymetric data, but also provided seabed backscatter strength data and water column data with high temporal and spatial resolution. Here, based on high-precision sonar data of the seabed and water column collected by SeaBat7125 MBES system near the Yellow River Estuary, we use advanced data and image processing methods to generate seabed sonar images and water suspended particulate matter acoustic images. By analyzing these data and images, we get a lot of details of the seabed and whole water column features, and we also acquire their shape, size and basic physical characteristics of suspended particulate matters in the experiment area near the Yellow River Estuary. This study shows great potential for monitoring suspended particulate matter use MBES, and the research results will contribute to a comprehensive understanding of sediment transportation, evolution of river trough and shoal in Yellow River Estuary.
Recent Advances in Bathymetric Surveying of Continental Shelf Regions Using Autonomous Vehicles
NASA Astrophysics Data System (ADS)
Holland, K. T.; Calantoni, J.; Slocum, D.
2016-02-01
Obtaining bathymetric observations within the continental shelf in areas closer to the shore is often time consuming and dangerous, especially when uncharted shoals and rocks present safety concerns to survey ships and launches. However, surveys in these regions are critically important to numerical simulation of oceanographic processes, as bathymetry serves as the bottom boundary condition in operational forecasting models. We will present recent progress in bathymetric surveying using both traditional vessels retrofitted for autonomous operations and relatively inexpensive, small team deployable, Autonomous Underwater Vehicles (AUV). Both systems include either high-resolution multibeam echo sounders or interferometric sidescan sonar sensors with integrated inertial navigation system capabilities consistent with present commercial-grade survey operations. The advantages and limitations of these two configurations employing both unmanned and autonomous strategies are compared using results from several recent survey operations. We will demonstrate how sensor data collected from unmanned platforms can augment or even replace traditional data collection technologies. Oceanographic observations (e.g., sound speed, temperature and currents) collected simultaneously with bathymetry using autonomous technologies provide additional opportunities for advanced data assimilation in numerical forecasts. Discussion focuses on our vision for unmanned and autonomous systems working in conjunction with manned or in-situ systems to optimally and simultaneously collect data in environmentally hostile or difficult to reach areas.
Basal melt rates of Filchner Ice Shelf, Antarctica
NASA Astrophysics Data System (ADS)
Humbert, A.; Nicholls, K. W.; Corr, H. F. J.; Steinhage, D.; Stewart, C.; Zeising, O.
2017-12-01
Thinning of ice shelves around Antarctica has been found to be partly driven by an increase in basal melt as a result of warmer waters entering the sub-ice shelf cavity. In-situ observations of basal melt rate are, however, sparse. A new robust and efficient phase sensitive radio echo sounder (pRES) allows to measure change in ice thickness and vertical strain at high accuracy, so that the contribution of basal melt to the change in thickness can be estimated. As modeling studies suggest that the cavity beneath Filchner Ice Shelf, Antarctica, might be prone to intrusion of warm water pulses within this century, we wished to derive a baseline dataset and an understanding of its present day spatial variability. Here we present results from pRES measurements over two field seasons, 2015/16-16/17, comprising 86 datasets over the southern Filchner Ice Shelf, covering an area of about 6500km2. The maximum melt rate is only slightly more than 1m/a, but the spatial distribution exhibits a complex pattern. For the purpose of testing variability of basal melt rates on small spatial scales, we performed 26 measurements over distances of about 1km, and show that the melt rates do not vary by more than 0.25m/a.
Kobayashi, K.; Cadet, J.-P.; Aubouin, J.; Boulegue, J.; Dubois, J.; von Huene, Roland E.; Jolivet, L.; Kanazawa, T.; Kasahara, J.; Koizumi, K.-i.; Lallemand, S.; Nakamura, Y.; Pautot, G.; Suyehiro, K.; Tani, S.; Tokuyama, H.; Yamazaki, T.
1987-01-01
A detailed topographic and geophysical survey of the Daiichi-Kashima Seamount area in the southern Japan Trench, northwestern Pacific margin, clearly defines a high-angle normal fault which splits the seamount into two halves. A fan-shaped zone was investigated along 2-4 km spaced, 100 km long subparallel tracks using narrow multi-beam (Seabeam) echo-sounder with simultaneous measurements of gravity, magnetic total field and single-channel seismic reflection records. Vertical displacement of the inboard half was clearly mapped and its normal fault origin was supported. The northern and southern extensions of the normal fault beyond the flank of the seamount were delineated. Materials on the landward trench slope are displaced upward and to sideways away from the colliding seamount. Canyons observed in the upper landward slope terminate at the mid-slope terrace which has been uplifted since start of subduction of the seamount. Most of the landward slope except for the landward walls aside the seamount comprises only a landslide topography in a manner similar to the northern Japan Trench wall. This survey was conducted on R/V "Jean Charcot" as a part of the Kaiko I cruise, Leg 3, in July-August 1984 under the auspices of the French-Japanese scientific cooperative program. ?? 1987.
Real-time data collection of scour at bridges
Mueller, David S.; Landers, Mark N.
1994-01-01
The record flood on the Mississippi River during the summer of 1993 provided a rare opportunity to collect data on scour of the streambed at bridges and to test data collection equipment under extreme hydraulic conditions. Detailed bathymetric and hydraulic information were collected at two bridges crossing the Mississippi River during the rising limb, near the peak, and during the recession of the flood. Bathymetric data were collected using a digital echo sounder. Three-dimensional velocities were collected using Broadband Acoustic Doppler Current Profilers (BB-ADCP) operating at 300 kilohertz (kHz), 600 kHz, and 1,200 kHz. Positioning of the data collected was measured using a range-azimuth tracking system and two global positioning systems (GPS). Although differential GPS was able to provide accurate positions and tracking information during approach- and exit-reach data collection, it was unable to maintain lock on a sufficient number of satellites when the survey vessel was under the bridge or near the piers. The range-azimuth tracking system was used to collect position and tracking information for detailed data collection near the bridge piers. These detailed data indicated local scour ranging from 3 to 8 meters and will permit a field-based evaluation of the ability of various numerical models to compute the hydraulics, depth, geometry, and time-dependent development of local scour.
Large Kelvin-Helmholtz Billow Trains Observed in the Kuroshio above a Seamount
NASA Astrophysics Data System (ADS)
Chang, M. H.; Jheng, S. Y.; Lien, R. C.
2016-02-01
Trains of large Kelvin-Helmholtz (KH) billows were observed within the Kuroshio core, off southeastern Taiwan, at 230-m depth above a seamount in shipboard echo sounder, ADCP, and LADCP/CTD profiling, and moored ADCP measurements. The large KH billow trains were present in a strong shear band along 0.55 ms-1 isotach within the Kuroshio core as a result of the Kuroshio current interacting with the rapid changing topography. Each individual billow, resembling a cats' eye, had a horizontal length scale of 200 m and a vertical amplitude scale of 100 m, and a propagation timescale of 7 minutes, near local buoyancy period. Overturns were frequently observed in both the billow core and the upper eyelid. The shear instability criterion (Ri < 0.25) was reached in the billow core. The dissipation rate of turbulent kinetic energy in the core and in the eyelid is comparable at an average value of O(10-4) WKg-1 and a maximum value of O(10-3) WKg-1. The KH billows derive energy from the Kuroshio kinetic energy. The corresponding turbulence mixing allows the water mass exchange between the Kuroshio and the surrounding water. These small-scale processes play an important role in the energy and water mass budgets within the Kuroshio.
Validation of a quantitative magnetic resonance method for measuring human body composition.
Napolitano, Antonella; Miller, Sam R; Murgatroyd, Peter R; Coward, W Andrew; Wright, Antony; Finer, Nick; De Bruin, Tjerk W; Bullmore, Edward T; Nunez, Derek J
2008-01-01
To evaluate a novel quantitative magnetic resonance (QMR) methodology (EchoMRI-AH, Echo Medical Systems) for measurement of whole-body fat and lean mass in humans. We have studied (i) the in vitro accuracy and precision by measuring 18 kg Canola oil with and without 9 kg water (ii) the accuracy and precision of measures of simulated fat mass changes in human subjects (n = 10) and (iii) QMR fat and lean mass measurements compared to those obtained using the established 4-compartment (4-C) model method (n = 30). (i) QMR represented 18 kg of oil at 40 degrees C as 17.1 kg fat and 1 kg lean while at 30 degrees C 15.8 kg fat and 4.7 kg lean were reported. The s.d. of repeated estimates was 0.13 kg for fat and 0.23 kg for lean mass. Adding 9 kg of water reduced the fat estimates, increased misrepresentation of fat as lean, and degraded the precision. (ii) the simulated change in the fat mass of human volunteers was accurately represented, independently of added water. (iii) compared to the 4-C model, QMR underestimated fat and over-estimated lean mass. The extent of difference increased with body mass. The s.d. of repeated measurements increased with adiposity, from 0.25 kg (fat) and 0.51 kg (lean) with BMI <25 kg/m(2) to 0.43 kg and 0.81 kg respectively with BMI >30 kg/m(2). EchoMRI-AH prototype showed shortcomings in absolute accuracy and specificity of fat mass measures, but detected simulated body composition change accurately and with precision roughly three times better than current best measures. This methodology should reduce the study duration and cohort number needed to evaluate anti-obesity interventions.
Tissue velocity imaging of coronary artery by rotating-type intravascular ultrasound.
Saijo, Yoshifumi; Tanaka, Akira; Owada, Naoki; Akino, Yoshihisa; Nitta, Shinichi
2004-04-01
Intravascular ultrasound (IVUS) provides not only the dimensions of coronary artery but the information of tissue components. In catheterization laboratory, soft and hard plaques are classified by visual inspection of echo intensity. So-called soft plaque contains lipid core or thrombus and it is believed to be more vulnerable than a hard plaque. However, it is not simple to analyze the echo signals quantitatively. When we look at a reflection signal, the intensity is affected by the distance of the object, the medium between transducer and objects and the fluctuation caused by rotation of IVUS probe. The time of flight is also affected by the sound speed of the medium and Doppler shift caused by tissue motion but usually those can be neglected. Thus, the analysis of RF signal in time domain can be more quantitative than intensity of RF signal. In the present study, a novel imaging technique called "intravascular tissue velocity imaging" was developed for searching a vulnerable plaque. Radio-frequency (RF) signal from a clinically used IVUS apparatus was digitized at 500 MSa/s and stored in a workstation. First, non-uniform rotation was corrected by maximizing the correlation coefficient of circumferential RF signal distribution in two consecutive frames. Then, the correlation and displacement were calculated by analyzing the radial difference of RF signal. Tissue velocity was determined by the displacement and the frame rate. The correlation image of normal and atherosclerotic coronary arteries clearly showed the internal and external borders of arterial wall. Soft plaque with low echo area in the intima showed high velocity while the calcified lesion showed the very low tissue velocity. This technique provides important information on tissue character of coronary artery.
NASA Astrophysics Data System (ADS)
Kikuchi, Tsuneo; Nakazawa, Toshihiro; Furukawa, Tetsuo; Higuchi, Toshiyuki; Maruyama, Yukio; Sato, Sojun
1995-05-01
This paper describes the quantitative measurement of the amount of fibrosis in the rat liver using the fractal dimension of the shape of power spectrum. The shape of the power spectrum of the scattered echo from biotissues is strongly affected by its internal structure. The fractal dimension, which is one of the important parameters of the fractal theory, is useful to express the complexity of shape of figures such as the power spectrum. From in vitro experiments using rat liver, it was found that this method can be used to quantitatively measure the amount of fibrosis in the liver, and has the possibility for use in the diagnosis of human liver cirrhosis.
NASA Technical Reports Server (NTRS)
Pagano, Thomas
2003-01-01
Aqua measures the Earth's water cycle, energy fluxes, vegetation and temperatures. The Atmospheric Infrared Sounder (AIRS), Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder for Brazil (HSB) were launched on the EOS Aqua spacecraft in May 2002. AIRS has had good radiometric and spectral sensitivity, stability, and accuracy and is suitable for climate studies. Temperature products compare well with radiosondes and models over the limited test range (|LAT| less than 40 degrees). Early trace gas products demonstrate the potential of AIRS. NASA is developing the next generation of hyperspectral IR imagers. JPL is ready to participate with US government agencies and US industry to transfer AIRS technology and science experience.
Technology Development for a Hyperspectral Microwave Atmospheric Sounder (HyMAS)
NASA Technical Reports Server (NTRS)
Blackwell, W.; Galbraith, C.; Hilliard, L.; Racette, P.; Thompson, E.
2014-01-01
The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term hyperspectral microwave is used to indicate an all-weather sounding instrument that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earths atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions.
Chamberlain, Ryan; Reyes, Denise; Curran, Geoffrey L.; Marjanska, Malgorzata; Wengenack, Thomas M.; Poduslo, Joseph F.; Garwood, Michael; Jack, Clifford R.
2009-01-01
One of the hallmark pathologies of Alzheimer’s disease (AD) is amyloid plaque deposition. Plaques appear hypointense on T2- and T2*-weighted MR images probably due to the presence of endogenous iron, but no quantitative comparison of various imaging techniques has been reported. We estimated the T1, T2, T2*, and proton density values of cortical plaques and normal cortical tissue and analyzed the plaque contrast generated by a collection of T2-, T2*-, and susceptibility-weighted imaging (SWI) methods in ex vivo transgenic mouse specimens. The proton density and T1 values were similar for both cortical plaques and normal cortical tissue. The T2 and T2* values were similar in cortical plaques, which indicates that the iron content of cortical plaques may not be as large as previously thought. Ex vivo plaque contrast was increased compared to a previously reported spin echo sequence by summing multiple echoes and by performing SWI; however, gradient echo and susceptibility weighted imaging was found to be impractical for in vivo imaging due to susceptibility interface-related signal loss in the cortex. PMID:19253386
Sutherland-Smith, James; Tilley, Brenda
2012-01-01
Magnetic resonance imaging (MRI) artifacts secondary to metallic implants and foreign bodies are well described. Herein, we provide quantitative data from veterinary implants including total hip arthroplasty implants, cranial cruciate repair implants, surgical screws, a skin staple, ligation clips, an identification microchip, ameroid constrictor, and potential foreign bodies including air gun and BB projectiles and a sewing needle. The objects were scanned in a gelatin phantom with plastic grid using standardized T2-weighted turbo-spin echo (TSE), T1-weighted spin echo, and T2*-weighted gradient recalled echo (GRE) image acquisitions at 1.5 T. Maximum linear dimensions and areas of signal voiding and grid distortion were calculated using a DICOM workstation for each sequence and object. Artifact severity was similar between the T2-weighted TSE and T1-weighted images, while the T2*-weighted images were most susceptible to artifact. Metal type influenced artifact size with the largest artifacts arising from steel objects followed by surgical stainless steel, titanium, and lead. For animals with metallic surgical implants or foreign bodies, the quantification of the artifact size will help guide clinicians on the viability of MRI. © 2012 Veterinary Radiology & Ultrasound.
The Advanced Technology Microwave Sounder (ATMS): The First 10 Months On-Orbit
NASA Technical Reports Server (NTRS)
Kim, Edward; Lyu, C-H Joseph; Blackwell, Willaim; Leslie, R. Vince; Baker, Neal; Mo, Tsan; Sun, Ninghai; Bi, Li; Anderson, Kent; Landrum, Mike;
2012-01-01
The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the NPOESS Preparatory Project (NPP) satellite. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models, especially under cloudy sky conditions. ATMS has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-A1/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). All this is accomplished with approximately 1/4 the volume, 1/2 the mass, and 1/2 the power of the three AMSUs. A description of ATMS cal/val activities will be presented followed by examples of its performance after its first 10 months on orbit.
Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast
NASA Technical Reports Server (NTRS)
Zhu, Jiang; Stevens, E.; Zhang, X.; Zavodsky, B. T.; Heinrichs, T.; Broderson, D.
2014-01-01
A case study and monthly statistical analysis using sounder data assimilation to improve the Alaska regional weather forecast model are presented. Weather forecast in Alaska faces challenges as well as opportunities. Alaska has a large land with multiple types of topography and coastal area. Weather forecast models must be finely tuned in order to accurately predict weather in Alaska. Being in the high-latitudes provides Alaska greater coverage of polar orbiting satellites for integration into forecasting models than the lower 48. Forecasting marine low stratus clouds is critical to the Alaska aviation and oil industry and is the current focus of the case study. NASA AIRS/CrIS sounder profiles data are used to do data assimilation for the Alaska regional weather forecast model to improve Arctic marine stratus clouds forecast. Choosing physical options for the WRF model is discussed. Preprocess of AIRS/CrIS sounder data for data assimilation is described. Local observation data, satellite data, and global data assimilation data are used to verify and/or evaluate the forecast results by the MET tools Model Evaluation Tools (MET).
NASA Technical Reports Server (NTRS)
Larar, A.; Zhou, D.; Smith, W.
2009-01-01
Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Validation of the entire measurement system is crucial to achieving this goal and thus maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This paper focuses on some of the challenges associated with validating advanced atmospheric sounders and the benefits obtained from employing airborne interferometers such as the NAST-I. Select results from underflights of the Aqua Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) obtained during recent field campaigns will be presented.
On the remote sensing of cloud properties from satellite infrared sounder data
NASA Technical Reports Server (NTRS)
Yeh, H. Y. M.
1984-01-01
A method for remote sensing of cloud parameters by using infrared sounder data has been developed on the basis of the parameterized infrared transfer equation applicable to cloudy atmospheres. The method is utilized for the retrieval of the cloud height, amount, and emissivity in 11 micro m region. Numerical analyses and retrieval experiments have been carried out by utilizing the synthetic sounder data for the theoretical study. The sensitivity of the numerical procedures to the measurement and instrument errors are also examined. The retrieved results are physically discussed and numerically compared with the model atmospheres. Comparisons reveal that the recovered cloud parameters agree reasonably well with the pre-assumed values. However, for cases when relatively thin clouds and/or small cloud fractional cover within a field of view are present, the recovered cloud parameters show considerable fluctuations. Experiments on the proposed algorithm are carried out utilizing High Resolution Infrared Sounder (HIRS/2) data of NOAA 6 and TIROS-N. Results of experiments show reasonably good comparisons with the surface reports and GOES satellite images.
NASA Astrophysics Data System (ADS)
Swanberg, Kelley M.; Prinsen, Hetty; Coman, Daniel; de Graaf, Robin A.; Juchem, Christoph
2018-05-01
Glutathione (GSH) is an endogenous antioxidant implicated in numerous biological processes, including those associated with multiple sclerosis, aging, and cancer. Spectral editing techniques have greatly facilitated the acquisition of glutathione signal in living humans via proton magnetic resonance spectroscopy, but signal quantification at 7 Tesla is still hampered by uncertainty about the glutathione transverse decay rate T2 relative to those of commonly employed quantitative references like N-acetyl aspartate (NAA), total creatine, or water. While the T2 of uncoupled singlets can be derived in a straightforward manner from exponential signal decay as a function of echo time, similar estimation of signal decay in GSH is complicated by a spin system that involves both weak and strong J-couplings as well as resonances that overlap those of several other metabolites and macromolecules. Here, we extend a previously published method for quantifying the T2 of GABA, a weakly coupled system, to quantify T2 of the strongly coupled spin system glutathione in the human brain at 7 Tesla. Using full density matrix simulation of glutathione signal behavior, we selected an array of eight optimized echo times between 72 and 322 ms for glutathione signal acquisition by J-difference editing (JDE). We varied the selectivity and symmetry parameters of the inversion pulses used for echo time extension to further optimize the intensity, simplicity, and distinctiveness of glutathione signals at chosen echo times. Pairs of selective adiabatic inversion pulses replaced nonselective pulses at three extended echo times, and symmetry of the time intervals between the two extension pulses was adjusted at one extended echo time to compensate for J-modulation, thereby resulting in appreciable signal-to-noise ratio and quantifiable signal shapes at all measured points. Glutathione signal across all echo times fit smooth monoexponential curves over ten scans of occipital cortex voxels in nine subjects. The T2 of glutathione was calculated to be 145.0 ± 20.1 ms (mean ± standard deviation); this result was robust within one standard deviation to changes in metabolite fitting baseline corrections and removal of individual data points on the signal decay curve. The measured T2 of NAA (222.1 ± 24.7 ms) and total creatine (153.0 ± 19.9 ms) were both higher than that calculated for GSH. Apparent glutathione concentration quantified relative to both reference metabolites increased by up to 32% and 6%, respectively, upon correction with calculated T2 values, emphasizing the importance of considering T2 relaxation differences in the spectroscopic measurement of these metabolites, especially at longer echo times.
Swanberg, Kelley M; Prinsen, Hetty; Coman, Daniel; de Graaf, Robin A; Juchem, Christoph
2018-05-01
Glutathione (GSH) is an endogenous antioxidant implicated in numerous biological processes, including those associated with multiple sclerosis, aging, and cancer. Spectral editing techniques have greatly facilitated the acquisition of glutathione signal in living humans via proton magnetic resonance spectroscopy, but signal quantification at 7 Tesla is still hampered by uncertainty about the glutathione transverse decay rate T 2 relative to those of commonly employed quantitative references like N-acetyl aspartate (NAA), total creatine, or water. While the T 2 of uncoupled singlets can be derived in a straightforward manner from exponential signal decay as a function of echo time, similar estimation of signal decay in GSH is complicated by a spin system that involves both weak and strong J-couplings as well as resonances that overlap those of several other metabolites and macromolecules. Here, we extend a previously published method for quantifying the T 2 of GABA, a weakly coupled system, to quantify T 2 of the strongly coupled spin system glutathione in the human brain at 7 Tesla. Using full density matrix simulation of glutathione signal behavior, we selected an array of eight optimized echo times between 72 and 322 ms for glutathione signal acquisition by J-difference editing (JDE). We varied the selectivity and symmetry parameters of the inversion pulses used for echo time extension to further optimize the intensity, simplicity, and distinctiveness of glutathione signals at chosen echo times. Pairs of selective adiabatic inversion pulses replaced nonselective pulses at three extended echo times, and symmetry of the time intervals between the two extension pulses was adjusted at one extended echo time to compensate for J-modulation, thereby resulting in appreciable signal-to-noise ratio and quantifiable signal shapes at all measured points. Glutathione signal across all echo times fit smooth monoexponential curves over ten scans of occipital cortex voxels in nine subjects. The T 2 of glutathione was calculated to be 145.0 ± 20.1 ms (mean ± standard deviation); this result was robust within one standard deviation to changes in metabolite fitting baseline corrections and removal of individual data points on the signal decay curve. The measured T 2 of NAA (222.1 ± 24.7 ms) and total creatine (153.0 ± 19.9 ms) were both higher than that calculated for GSH. Apparent glutathione concentration quantified relative to both reference metabolites increased by up to 32% and 6%, respectively, upon correction with calculated T 2 values, emphasizing the importance of considering T 2 relaxation differences in the spectroscopic measurement of these metabolites, especially at longer echo times. Copyright © 2018 Elsevier Inc. All rights reserved.
TRMM precipitation analysis of extreme storms in South America: Bias and climatological contribution
NASA Astrophysics Data System (ADS)
Rasmussen, K. L.; Houze, R.; Zuluaga, M. D.; Choi, S. L.; Chaplin, M.
2013-12-01
The TRMM (Tropical Rainfall Measuring Mission) satellite was designed both to measure spatial and temporal variation of tropical rainfall around the globe and to understand the factors controlling the precipitation. TRMM observations have led to the realization that storms just east of the Andes in southeastern South America are among the most intense deep convection in the world. For a complete perspective of the impact of intense precipitation systems on the hydrologic cycle in South America, it is necessary to assess the contribution from various forms of extreme storms to the climatological rainfall. However, recent studies have suggested that the TRMM Precipitation Radar (PR) algorithm significantly underestimates surface rainfall in deep convection over land. Prior to investigating the climatological behavior, this research first investigates the range of the rain bias in storms containing four different types of extreme radar echoes: deep convective cores, deep and wide convective cores, wide convective cores, and broad stratiform regions over South America. The TRMM PR algorithm exhibits bias in all four extreme echo types considered here when the algorithm rates are compared to a range of conventional Z-R relations. Storms with deep convective cores, defined as high reflectivity echo volumes that extend above 10 km in altitude, show the greatest underestimation, and the bias is unrelated to their echo top height. The bias in wide convective cores, defined as high reflectivity echo volumes that extend horizontally over 1,000 km2, relates to the echo top, indicating that storms with significant mixed phase and ice hydrometeors are similarly affected by assumptions in the TRMM PR algorithm. The subtropical region tends to have more intense precipitating systems than the tropics, but the relationship between the TRMM PR rain bias and storm type is the same regardless of the climatological regime. The most extreme storms are typically not collocated with regions of high climatological precipitation. A quantitative approach that accounts for the previously described bias using TRMM PR data is employed to investigate the role of the most extreme precipitating systems on the hydrological cycle in South America. These data are first used to investigate the relative contribution of precipitation from the TRMM-identified echo cores to each separate storm in which the convective cores are embedded. The second part of the study assesses how much of the climatological rainfall in South America is accounted for by storms containing deep convective, wide convective, and broad stratiform echo components. Systems containing these echoes produce very different hydrologic responses. From a hydrologic and climatological viewpoint, this empirical knowledge is critical, as the type of runoff and flooding that may occur depends on the specific character of the convective storm and has broad implications for the hydrological cycle in this region.
Extended phase graphs with anisotropic diffusion
NASA Astrophysics Data System (ADS)
Weigel, M.; Schwenk, S.; Kiselev, V. G.; Scheffler, K.; Hennig, J.
2010-08-01
The extended phase graph (EPG) calculus gives an elegant pictorial description of magnetization response in multi-pulse MR sequences. The use of the EPG calculus enables a high computational efficiency for the quantitation of echo intensities even for complex sequences with multiple refocusing pulses with arbitrary flip angles. In this work, the EPG concept dealing with RF pulses with arbitrary flip angles and phases is extended to account for anisotropic diffusion in the presence of arbitrary varying gradients. The diffusion effect can be expressed by specific diffusion weightings of individual magnetization pathways. This can be represented as an action of a linear operator on the magnetization state. The algorithm allows easy integration of diffusion anisotropy effects. The formalism is validated on known examples from literature and used to calculate the effective diffusion weighting in multi-echo sequences with arbitrary refocusing flip angles.
NASA Astrophysics Data System (ADS)
Pagano, T. S.
2017-12-01
Hyperspectral infrared sounding of the atmosphere has become a vital element in the observational system for weather forecast prediction at National Weather Prediction (NWP) centers worldwide. The NASA Atmospheric Infrared Sounder (AIRS) instrument was the pathfinder for the hyperspectral infrared observations and was designed to provide accurate atmospheric temperature and water vapor profile information in support of weather prediction, climate processes and weather related applications. AIRS was launched in 2002 and continues to operate well. JPL NASA is offering an alternate hyperspectral IR sounder architecture for the future involving CubeSats under the Earth Science Technology Office (ESTO) In-flight Validation of Earth Science Technologies (InVEST) program. The latest technology in large format focal plane assemblies, wide field optics and active cryocoolers enables a reduction in size, mass and cost of the legacy sounders and offer new orbit configurations. The CubeSat Infrared Atmospheric Sounder (CIRAS) employs an MWIR spectrometer operating from 4.08-5.13 µm with 625 channels and spectral resolution of 1.2-2.0 cm-1 to achieve lower tropospheric temperature and water vapor profiles. The CIRAS is packaged in a 6U CubeSat and uses less than 14 W. CIRAS is under development at NASA JPL and scheduled for launch in 2019. This presentation will discuss the CIRAS measurement approach, development status and the plan to demonstrate, in-orbit, higher spatial resolution IR sounding to support new science involving regional weather prediction, applications and weather process studies.
Doganay, Selim; Gumus, Kazim; Koc, Gonca; Bayram, Ayse Kacar; Dogan, Mehmet Sait; Arslan, Duran; Gumus, Hakan; Gorkem, Sureyya Burcu; Ciraci, Saliha; Serin, Halil Ibrahim; Coskun, Abdulhakim
2018-01-10
Wilson's disease (WD) is characterized with the accumulation of copper in the liver and brain. The objective of this study is to quantitatively measure the susceptibility changes of basal ganglia and brain stem of pediatric patients with neurological WD using quantitative susceptibility mapping (QSM) in comparison to healthy controls. Eleven patients with neurological WD (mean age 15 ± 3.3 years, range 10-22 years) and 14 agematched controls were prospectively recruited. Both groups were scanned on a 1.5 Tesla clinical scanner. In addition to T 1 - and T 2 -weighted MR images, a 3D multi-echo spoiled gradient echo (GRE) sequence was acquired and QSM images were derived offline. The quantitative measurement of susceptibility of corpus striatum, thalamus of each hemisphere, midbrain, and pons were assessed with the region of interest analysis on the QSM images. The susceptibility values for the patient and control groups were compared using twosample t-test. One patient with WD had T 1 shortening in the bilateral globus pallidus. Another one had hyperintensity in the bilateral putamen, caudate nuclei, and substantia nigra on T 2 -weighted images. The rest of the patients with WD and all subjects of the control group had no signal abnormalities on conventional MR images. The susceptibility measures of right side of globus pallidus, putamen, thalamus, midbrain, and entire pons were significantly different in patients compared to controls (P < 0.05). QSM method exhibits increased susceptibility differences of basal ganglia and brain stem in patients with WD that have neurologic impairment even if no signal alteration is detected on T 1 - and T 2 -weighted MR images.
Ma, Gao; Xu, Xiao-Quan; Hu, Hao; Su, Guo-Yi; Shen, Jie; Shi, Hai-Bin; Wu, Fei-Yun
2018-01-01
To compare the diagnostic performance of readout-segmented echo-planar imaging (RS-EPI)-based diffusion kurtosis imaging (DKI) and that of diffusion-weighted imaging (DWI) for differentiating malignant from benign masses in head and neck region. Between December 2014 and April 2016, we retrospectively enrolled 72 consecutive patients with head and neck masses who had undergone RS-EPI-based DKI scan (b value of 0, 500, 1000, and 1500 s/mm 2 ) for pretreatment evaluation. Imaging data were post-processed by using monoexponential and diffusion kurtosis (DK) model for quantitation of apparent diffusion coefficient (ADC), apparent diffusion for Gaussian distribution (D app ), and apparent kurtosis coefficient (K app ). Unpaired t test and Mann-Whitney U test were used to compare differences of quantitative parameters between malignant and benign groups. Receiver operating characteristic curve analyses were performed to determine and compare the diagnostic ability of quantitative parameters in predicting malignancy. Malignant group demonstrated significantly lower ADC (0.754 ± 0.167 vs. 1.222 ± 0.420, p < 0.001) and D app (1.029 ± 0.226 vs. 1.640 ± 0.445, p < 0.001) while higher K app (1.344 ± 0.309 vs. 0.715 ± 0.249, p < 0.001) than benign group. Using a combination of D app and K app as diagnostic index, significantly better differentiating performance was achieved than using ADC alone (area under curve: 0.956 vs. 0.876, p = 0.042). Compared to DWI, DKI could provide additional data related to tumor heterogeneity with significantly better differentiating performance. Its derived quantitative metrics could serve as a promising imaging biomarker for differentiating malignant from benign masses in head and neck region.
NOAA Interest in Small Satellite Solutions for Mitigation of Data Gaps
NASA Astrophysics Data System (ADS)
Caulfield, M.; Tewey, K.; John, P.
2016-12-01
The National Oceanic and Atmospheric Administration (NOAA) is undertaking a strategy to achieve satellite constellation robustness by 2023 to maintain continuity of polar satellite observations, which are central to NOAA's weather forecast capability. NOAA's plans include mitigation activities in the event of a loss of polar observations. In 2017, NOAA will begin development of the Earth Observing Nanosatellite - Microwave (EON-MW). EON-MW is a miniature microwave sounder that approximates the atmospheric profiling capabilities of the Advanced Technology Microwave Sounder (ATMS) instrument on the NOAA Joint Polar Satellite System (JPSS). NOAA is collaborating with the Massachusetts Institute of Technology's Lincoln Laboratory (MIT / LL) on EON-MW, which includes 2 years of risk reduction efforts to further define the EON-MW mission and identify and manage key technical risks. These studies will refine designs and evaluate system trades for operational earth observations from a U-class satellite platform, as well as examine microwave sensor concepts and investigated payload architecture to support microwave frequencies for atmospheric remote sensing. Similar to EON-MW, NOAA is also investigating the potential to mitigate against the loss of the JPSS Cross Track Infrared Sounder (CrIS) data with a CubeSat based mid-wave Infrared sounder. NOAA is collaborating with the Jet Propulsion Laboratory (JPL) to design the Earth Observation Nanosatellite-Infrared (EON-IR). EON-IR will leverage the NASA-JPL CubSat based infrared sounder CubSat Infrared Atmospheric Sounder (CIRAS) mission. In FY 2015 NOAA funded a study to analyze the feasibility of meeting the essential requirements of the CrIS from a CubeSat platform and began exploring the basic design of the EON-IR payload and bus. NOAA will continue to study EON-IR in 2016 by examining ways to modify the CIRAS design to better meet NOAA's observational and operational needs. These modifications will aim to increase mission reliability and increase spatial and spectral resolution.
AMOS Seeing Quality Measurements.
1976-01-01
Measurement Atmosphere Turbulence Propagation Observatory Acoustic Sounder Maui Optical Station Astronomy Microthermal Probe TEAL BLUE Degradation...presence of the site structures. Instruments used were an acoustic sounder (to probe the altitudes of 100 to 1000 ft), fine- wire microthermal probes...responsibility during the experiment for the microthermal probes. The report itself, while compiled and edited at RADC, may be considered as coming from
Turbulence Environment Characterization
1979-06-01
of ro is consistent with the simultaneous measurement made with the Seeing Monitor. An average turbulent profile developed primarily from microthermal ...data. The operation of the routine meteorological instrumentation, microthermal probes, acoustic sounder, Seeing Monitor and Star Sensor have been...and J. Spencer of RADC gave sub- stantial support and assistance with the microthermal probes, acoustic sounder and PDP-8 software. We acknowledge R
Kretzschmar, M; Bieri, O; Miska, M; Wiewiorski, M; Hainc, N; Valderrabano, V; Studler, U
2015-04-01
The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm(2)/ms) was significantly higher compared to normal cartilage (1.46 μm(2)/ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. • MRI is used to assess morphology of the repair tissue during follow-up. • Quantitative MRI allows an estimation of biochemical properties of the repair tissue. • Differences between repair tissue and cartilage were more significant with dwDESS than T2 mapping.
NASA Astrophysics Data System (ADS)
Shortell, Matthew P.; Althomali, Marwan A. M.; Wille, Marie-Luise; Langton, Christian M.
2017-11-01
We demonstrate a simple technique for quantitative ultrasound imaging of the cortical shell of long bone replicas. Traditional ultrasound computed tomography instruments use the transmitted or reflected waves for separate reconstructions but suffer from strong refraction artefacts in highly heterogenous samples such as bones in soft tissue. The technique described here simplifies the long bone to a two-component composite and uses both the transmitted and reflected waves for reconstructions, allowing the speed of sound and thickness of the cortical shell to be calculated accurately. The technique is simple to implement, computationally inexpensive and sample positioning errors are minimal.
NASA Astrophysics Data System (ADS)
Crowley, G.; Chau, J. L.
2012-12-01
The equatorial ionosphere is the site of complex interactions between various geospace drivers, including thermospheric winds, electric fields, and tides propagating from below. Less well known is the effect of gravity waves, and their manifestation as traveling ionospheric disturbances (TIDs). HF Doppler sounders represent a low-cost and low-maintenance solution for monitoring wave activity in the F region ionosphere. Together with modern data analysis techniques, they can provide comprehensive TID characteristics, including both horizontal and vertical TID velocities and wavelengths across the entire spectrum from periods of 1 min to over an hour. In this invited talk, we review some of the previous observations of TIDs at low latitudes, and present new observations from the TIDDBIT HF Doppler Sounder recently developed by Atmospheric and Space Technology Research Associates LLC, and deployed at Jicamarca, Peru. The completeness of the wave information obtained from the TIDDBIT system makes it possible to reconstruct the vertical displacement of isoionic contours over the 200 km horizontal dimension of the sounder array, and movies revealing the detailed shape and motion of isoionic surfaces over Peru will be shown. We demonstrate how the TID characteristics in Peru vary with season and magnetic activity. We discuss their possible impact on triggering of ionospheric bubbles and irregularities. Such information will be relevant for various operational needs involving navigation, communication, and surveillance systems. Crowley G., and F.S. Rodrigues (2012), Characteristics of Traveling Ionospheric Disturbances Observed by the TIDDBIT Sounder, Radio Sci., doi:10.1029/2011RS004959.
High Resolution Infrared Radiation Sounder (HIRS) for the Nimbus F Spacecraft
NASA Technical Reports Server (NTRS)
Koenig, E. W.
1975-01-01
Flown on Nimbus F in June 1975, the high resolution infrared radiation sounder (HIRS) scans with a geographical resolution of 23KM and samples radiance in seventeen selected spectral channels from visible (.7 micron) to far IR (15 micron). Vertical temperature profiles and atmospheric moisture content can be inferred from the output. System operation and test results are described.
GOES Sounder Instrument - NOAA Satellite Information System (NOAASIS);
ground-based, balloon system. The Sounder has 4 sets of detectors (visible, long wave IR, medium wave IR , short wave IR). The incoming radiation passes through a set of filters before reaching the detectors concentric rings, one for each IR detector group. The outer ring contains 7 long wave filters, the middle
NASA Technical Reports Server (NTRS)
Livesey, N. J.; Fromm, M. D.; Waters, J. W.; Manney, G. L.; Santee, M. L.; Read, W. G.
2004-01-01
On 25 August 1992, the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite observed a significant enhancement in the abundance of lower stratospheric methyl cyanide (CH3CN) at 100??hPa (16??km altitude) in a small region off the east coast of Florida.
Low Latitude Ionospheric Effects on Radiowave Propagation
1998-06-01
was used. Active earth-based observation equipment includes coherent and non-coherent scatter radars, and vertical and oblique incidence sounders...ionospheric monitoring during this experiment consisted of an oblique sounder, apparatus to measure time-of-flight of transionospheric signals, and an...is configured to monitor the ionosphere directly overhead in the vertical incidence configuration, or with an obliquely -launched antenna elevation
NASA Astrophysics Data System (ADS)
John, Viju O.; Holl, Gerrit; Buehler, Stefan A.; Candy, Brett; Saunders, Roger W.; Parker, David E.
2012-01-01
Simultaneous nadir overpasses (SNOs) of polar-orbiting satellites are most frequent in polar areas but can occur at any latitude when the equatorial crossing times of the satellites become close owing to orbital drift. We use global SNOs of polar orbiting satellites to evaluate the intercalibration of microwave humidity sounders from the more frequent high-latitude SNOs. We have found based on sensitivity analyses that optimal distance and time thresholds for defining collocations are pixel centers less than 5 km apart and time differences less than 300 s. These stringent collocation criteria reduce the impact of highly variable surface or atmospheric conditions on the estimated biases. Uncertainties in the estimated biases are dominated by the combined radiometric noise of the instrument pair. The effects of frequency changes between different versions of the humidity sounders depend on the amount of water vapor in the atmosphere. There are significant scene radiance and thus latitude dependencies in the estimated biases and this has to taken into account while intercalibrating microwave humidity sounders. Therefore the results obtained using polar SNOs will not be representative for moist regions, necessitating the use of global collocations for reliable intercalibration.
NASA Astrophysics Data System (ADS)
Bowman, K. W.; Lee, M.
2015-12-01
Dramatic changes in the global distribution of emissions over the last decade have fundamentally altered source-receptor pollution impacts. A new generation of low-earth orbiting (LEO) sounders complimented by geostationary sounders over North America, Europe, and Asia providing a unique opportunity to quantify the current and future trajectory of emissions and their impact on global pollution. We examine the potential of this constellation of air quality sounders to quantify the role of local and non-local sources of pollution on background ozone in the US. Based upon an adjoint sensitivity method, we quantify the role synoptic scale transport of non-US pollution on US background ozone over months representative of different source-receptor relationships. This analysis allows us distinguish emission trajectories from megacities, e.g. Beijing, or regions, e.g., western China, from natural trends on downwind ozone. We subsequently explore how a combination of LEO and GEO observations could help quantify the balance of local emissions against changes in distant sources . These results show how this unprecedented new international ozone observing system can monitor the changing structure of emissions and their impact on global pollution.
2016-12-01
tiple dimensions (20). Hu et al. employed pseudo-random phase-encoding blips during the EPSI readout to create nonuniform sampling along the spatial...resolved MRSI with Nonuniform Undersampling and Compressed Sensing 514 30.5 Prior-knowledge Fitting for Metabolite Quantitation 515 30.6 Future Directions... NONUNIFORM UNDERSAMPLING AND COMPRESSED SENSING Nonuniform undersampling (NUS) of k-space and subsequent reconstruction using compressed sensing (CS
Kenouche, S; Perrier, M; Bertin, N; Larionova, J; Ayadi, A; Zanca, M; Long, J; Bezzi, N; Stein, P C; Guari, Y; Cieslak, M; Godin, C; Goze-Bac, C
2014-12-01
Nondestructive studies of physiological processes in agronomic products require increasingly higher spatial and temporal resolutions. Nuclear Magnetic Resonance (NMR) imaging is a non-invasive technique providing physiological and morphological information on biological tissues. The aim of this study was to design a robust and accurate quantitative measurement method based on NMR imaging combined with contrast agent (CA) for mapping and quantifying water transport in growing cherry tomato fruits. A multiple flip-angle Spoiled Gradient Echo (SGE) imaging sequence was used to evaluate the intrinsic parameters maps M0 and T1 of the fruit tissues. Water transport and paths flow were monitored using Gd(3+)/[Fe(CN)6](3-)/D-mannitol nanoparticles as a tracer. This dynamic study was carried out using a compartmental modeling. The CA was preferentially accumulated in the surrounding tissues of columella and in the seed envelopes. The total quantities and the average volume flow of water estimated are: 198 mg, 1.76 mm(3)/h for the columella and 326 mg, 2.91 mm(3)/h for the seed envelopes. We demonstrate in this paper that the NMR imaging technique coupled with efficient and biocompatible CA in physiological medium has the potential to become a major tool in plant physiology research. Copyright © 2014 Elsevier Inc. All rights reserved.
Rohrbaugh, Michael J
2014-09-01
Social cybernetic (systemic) ideas from the early Family Process era, though emanating from qualitative clinical observation, have underappreciated heuristic potential for guiding quantitative empirical research on problem maintenance and change. The old conceptual wines we have attempted to repackage in new, science-friendly bottles include ironic processes (when "solutions" maintain problems), symptom-system fit (when problems stabilize relationships), and communal coping (when we-ness helps people change). Both self-report and observational quantitative methods have been useful in tracking these phenomena, and together the three constructs inform a team-based family consultation approach to working with difficult health and behavior problems. In addition, a large-scale, quantitatively focused effectiveness trial of family therapy for adolescent drug abuse highlights the importance of treatment fidelity and qualitative approaches to examining it. In this sense, echoing the history of family therapy research, our experience with juxtaposing quantitative and qualitative methods has gone full circle-from qualitative to quantitative observation and back again. © 2014 FPI, Inc.
Rohrbaugh, Michael J.
2015-01-01
Social cybernetic (systemic) ideas from the early Family Process era, though emanating from qualitative clinical observation, have underappreciated heuristic potential for guiding quantitative empirical research on problem maintenance and change. The old conceptual wines we have attempted to repackage in new, science-friendly bottles include ironic processes (when “solutions” maintain problems), symptom-system fit (when problems stabilize relationships), and communal coping (when we-ness helps people change). Both self-report and observational quantitative methods have been useful in tracking these phenomena, and together the three constructs inform a team-based family consultation (FAMCON) approach to working with difficult health and behavior problems. In addition, a large-scale, quantitatively focused effectiveness trial of family therapy for adolescent drug abuse highlights the importance of treatment fidelity and qualitative approaches to examining it. In this sense, echoing the history of family therapy research, our experience with juxtaposing quantitative and qualitative methods has gone full circle – from qualitative to quantitative observation and back again. PMID:24905101
Extended phase graphs with anisotropic diffusion.
Weigel, M; Schwenk, S; Kiselev, V G; Scheffler, K; Hennig, J
2010-08-01
The extended phase graph (EPG) calculus gives an elegant pictorial description of magnetization response in multi-pulse MR sequences. The use of the EPG calculus enables a high computational efficiency for the quantitation of echo intensities even for complex sequences with multiple refocusing pulses with arbitrary flip angles. In this work, the EPG concept dealing with RF pulses with arbitrary flip angles and phases is extended to account for anisotropic diffusion in the presence of arbitrary varying gradients. The diffusion effect can be expressed by specific diffusion weightings of individual magnetization pathways. This can be represented as an action of a linear operator on the magnetization state. The algorithm allows easy integration of diffusion anisotropy effects. The formalism is validated on known examples from literature and used to calculate the effective diffusion weighting in multi-echo sequences with arbitrary refocusing flip angles. Copyright 2010 Elsevier Inc. All rights reserved.
Lingam, Ravi Kumar; Mundada, Pravin; Lee, Vickie
2018-01-10
To examine the novel use of non-echo-planar diffusion weighted MRI (DWI) in depicting activity and treatment response in active Grave's orbitopathy (GO) by assessing, with inter-observer agreement, for a correlation between its apparent diffusion coefficients (ADCs) and conventional Short tau Inversion Recovery (STIR) MRI signal-intensity ratios (SIRs). A total of 23 actively inflamed muscles and 30 muscle response episodes were analysed in patients with active GO who underwent medical treatment. The MRI orbit scans included STIR sequences and non-echo-planar DWI were evaluated. Two observers independently assessed the images qualitatively for the presence of activity in the extraocular muscles (EOMs) and recorded the STIR signal-intensity (SI), SIR (SI ratio of EOM/temporalis muscle), and ADC values of any actively inflamed muscle on the pre-treatment scans and their corresponding values on the subsequent post-treatment scans. Inter-observer agreement was examined. There was a significant positive correlation (0.57, p < 0.001) between ADC and both SIR and STIR SI of the actively inflamed EOM. There was also a significant positive correlation (0.75, p < 0.001) between SIR and ADC values depicting change in muscle activity associated with treatment response. There was good inter-observer agreement. Our preliminary results indicate that quantitative evaluation with non-echo-planar DWI ADC values correlates well with conventional STIR SIR in detecting active GO and monitoring its treatment response, with good inter-observer agreement.
Krafft, Axel J; Loeffler, Ralf B; Song, Ruitian; Tipirneni-Sajja, Aaryani; McCarville, M Beth; Robson, Matthew D; Hankins, Jane S; Hillenbrand, Claudia M
2017-11-01
Hepatic iron content (HIC) quantification via transverse relaxation rate (R2*)-MRI using multi-gradient echo (mGRE) imaging is compromised toward high HIC or at higher fields due to the rapid signal decay. Our study aims at presenting an optimized 2D ultrashort echo time (UTE) sequence for R2* quantification to overcome these limitations. Two-dimensional UTE imaging was realized via half-pulse excitation and radial center-out sampling. The sequence includes chemically selective saturation pulses to reduce streaking artifacts from subcutaneous fat, and spatial saturation (sSAT) bands to suppress out-of-slice signals. The sequence employs interleaved multi-echo readout trains to achieve dense temporal sampling of rapid signal decays. Evaluation was done at 1.5 Tesla (T) and 3T in phantoms, and clinical applicability was demonstrated in five patients with biopsy-confirmed massively high HIC levels (>25 mg Fe/g dry weight liver tissue). In phantoms, the sSAT pulses were found to remove out-of-slice contamination, and R2* results were in excellent agreement to reference mGRE R2* results (slope of linear regression: 1.02/1.00 for 1.5/3T). UTE-based R2* quantification in patients with massive iron overload proved successful at both field strengths and was consistent with biopsy HIC values. The UTE sequence provides a means to measure R2* in patients with massive iron overload, both at 1.5T and 3T. Magn Reson Med 78:1839-1851, 2017. © 2017 Wiley Periodicals, Inc. © 2017 International Society for Magnetic Resonance in Medicine.
Rinella, Mary E; McCarthy, Richard; Thakrar, Kiran; Finn, John Paul; Rao, Sambasiva M; Koffron, Alan J; Abecassis, Michael; Blei, Andres T
2003-08-01
In living liver donation, a fatty liver poses risks for both recipient and donor. Currently, liver biopsy is the standard for assessing the presence and extent of steatosis. The goals of this study were to correlate a steatosis index derived from magnetic resonance imaging (MRI) to the histologic grade on biopsy as well as to determine the topographic distribution of steatosis within the liver. We examined the ability of dual-echo, chemical shift gradient-echo MRI to predict the degree of steatosis on liver biopsy. A total of 22 subjects received both a liver biopsy and detailed MRI evaluation. These individuals included 15 potential living donors and 7 patients with nonalcoholic fatty liver disease. MRI steatosis index was then compared with histologic grade on liver biopsy. The topographic distribution of hepatic steatosis was determined from those subjects in whom MRI detected hepatic steatosis. The steatosis index had a positive correlation with grade of steatosis on liver biopsy (correlation coefficient, 0.84). There was no significant variation in the degree of steatosis among segments. A steatosis index of >0.2 had good positive and negative predictive value for the presence of significant steatosis (>15%) on biopsy. Our quantitative MRI protocol can predict the degree of hepatic steatosis when it is minimal to moderate, and may obviate the need for liver biopsy for the purpose of quantification of steatosis in living donors. Fat saturation added to the MRI protocol may further improve diagnostic accuracy. This technique may be applicable to the larger population with hepatic steatosis.
Akima, Hiroshi; Hioki, Maya; Yoshiko, Akito; Koike, Teruhiko; Sakakibara, Hisataka; Takahashi, Hideyuki; Oshida, Yoshiharu
2016-05-01
The purpose of this study was to assess relationships between intramuscular adipose tissue (IntraMAT) content determined by MRI and intramyocellular lipids (IMCL) and extramyocellular lipids (EMCL) determined by (1)H magnetic resonance spectroscopy ((1)H MRS) or echo intensity determined by B-mode ultrasonography of human skeletal muscles. Thirty young and elderly men and women were included. T1-weighted MRI was taken from the right mid-thigh to measure IntraMAT content of the vastus lateralis (VL) and biceps femoris (BF) using a histogram shape-based thresholding technique. IMCL and EMCL were measured from the VL and BF at the right mid-thigh using (1)H MRS. Ultrasonographic images were taken from the VL and BF of the right mid-thigh to measure echo intensity based on gray-scale level for quantitative analysis. There was a significant correlation between IntraMAT content by MRI and EMCL of the VL and BF (VL, r=0.506, P<0.01; BF, r=0.591, P<0.001) and between echo intensity and EMCL of the VL and BF (VL, r=0.485, P<0.05; BF, r=0.648, P<0.01). IntraMAT content was also significantly correlated with echo intensity of the VL and BF (VL, r=0.404, P<0.05; BF, r=0.493, P<0.01). Our study suggests that IntraMAT content determined by T1-weighted MRI at 3T primarily reflects extramyocellular lipids, not intramyocellular lipids, in human skeletal muscles. Copyright © 2016 Elsevier Inc. All rights reserved.
Lloyd, C H; Scrimgeour, S N; Lane, D M; Hunter, G; McDonald, P J
2001-09-01
To investigate the application of stray-field nuclear magnetic resonance imaging (STRAFI) to the visible light curing of dental restorative materials. STRAFI can overcome peak broadening associated with the conventional magnetic resonance microimaging (MRM) of glassy polymers, and has the potential to image dental restorative resins at both low and high degrees of conversion. Cylindrical composite specimens were light-cured from one end to produce some that were fully cured throughout their length and others that were fully cured at one end and uncured at the other. A one-dimensional probe was used to measure the magnetisation in 40 microm thick slices at 100 microm intervals along the length of the specimen. A quadrature pulse sequence was applied and the magnetisation decay recorded in a train of eight echoes. A value for T(2) could be obtained only for the polymer (59+/-16 microms), therefore the echoes were summed to give an approximate indication of the degree of conversion. The echo sum for the monomer was significantly higher than that for the polymer. Differences in composite shade and cure time produced changes in the cure profiles. STRAFI produced measurements for both monomer and polymer in all stages of conversion that allowed cure profiles to be produced. Summing the decay echoes produced a qualitative measure of the condition of the material in the selected slice. The same data can be used to calculate T(2), a quantitative parameter. This first investigation has demonstrated that STRAFI is well suited to polymerisation studies.
Ferreira Botelho, Marcos P; Koktzoglou, Ioannis; Collins, Jeremy D; Giri, Shivraman; Carr, James C; Gupta, NavYash; Edelman, Robert R
2017-06-01
The presence of vascular calcifications helps to determine percutaneous access for interventional vascular procedures and has prognostic value for future cardiovascular events. Unlike CT, standard MRI techniques are insensitive to vascular calcifications. In this prospective study, we tested a proton density-weighted, in-phase (PDIP) three-dimensional (3D) stack-of-stars gradient-echo pulse sequence with approximately 1 mm 3 isotropic spatial resolution at 1.5 Tesla (T) and 3T to detect iliofemoral peripheral vascular calcifications and correlated MR-determined lesion volumes with CT angiography (CTA). The study was approved by the Institutional Review Board. The prototype PDIP stack-of-stars pulse sequence was applied in 12 patients with iliofemoral peripheral vascular calcifications who had undergone CTA. Vascular calcifications were well visualized in all subjects, excluding segments near prostheses or stents. The location, size, and shape of the calcifications were similar to CTA. Quantitative analysis showed excellent correlation (r 2 = 0.84; P < 0.0001) between MR- and CT-based measures of calcification volume. In one subject in whom three pulse sequences were compared, PDIP stack-of-stars outperformed cartesian 3D gradient-echo and point-wise encoding time reduction with radial acquisition (PETRA). In this pilot study, a PDIP 3D stack-of-stars gradient-echo pulse sequence with high spatial resolution provided excellent image quality and accurately depicted the location and volume of iliofemoral vascular calcifications. Magn Reson Med 77:2146-2152, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Multiple Echo Diffusion Tensor Acquisition Technique (MEDITATE) on a 3T clinical scanner
Baete, Steven H.; Cho, Gene; Sigmund, Eric E.
2013-01-01
This paper describes the concepts and implementation of an MRI method, Multiple Echo Diffusion Tensor Acquisition Technique (MEDITATE), which is capable of acquiring apparent diffusion tensor maps in two scans on a 3T clinical scanner. In each MEDITATE scan, a set of RF-pulses generates multiple echoes whose amplitudes are diffusion-weighted in both magnitude and direction by a pattern of diffusion gradients. As a result, two scans acquired with different diffusion weighting strengths suffice for accurate estimation of diffusion tensor imaging (DTI)-parameters. The MEDITATE variation presented here expands previous MEDITATE approaches to adapt to the clinical scanner platform, such as exploiting longitudinal magnetization storage to reduce T2-weighting. Fully segmented multi-shot Cartesian encoding is used for image encoding. MEDITATE was tested on isotropic (agar gel), anisotropic diffusion phantoms (asparagus), and in vivo skeletal muscle in healthy volunteers with cardiac-gating. Comparisons of accuracy were performed with standard twice-refocused spin echo (TRSE) DTI in each case and good quantitative agreement was found between diffusion eigenvalues, mean diffusivity, and fractional anisotropy derived from TRSE-DTI and from the MEDITATE sequence. Orientation patterns were correctly reproduced in both isotropic and anisotropic phantoms, and approximately so for in vivo imaging. This illustrates that the MEDITATE method of compressed diffusion encoding is feasible on the clinical scanner platform. With future development and employment of appropriate view-sharing image encoding this technique may be used in clinical applications requiring time-sensitive acquisition of DTI parameters such as dynamical DTI in muscle. PMID:23828606
Lee, Hyunyeol; Sohn, Chul-Ho; Park, Jaeseok
2017-07-01
To develop a current-induced, alternating reversed dual-echo-steady-state-based magnetic resonance electrical impedance tomography for joint estimation of tissue relaxation and electrical properties. The proposed method reverses the readout gradient configuration of conventional, in which steady-state-free-precession (SSFP)-ECHO is produced earlier than SSFP-free-induction-decay (FID) while alternating current pulses are applied in between the two SSFPs to secure high sensitivity of SSFP-FID to injection current. Additionally, alternating reversed dual-echo-steady-state signals are modulated by employing variable flip angles over two orthogonal injections of current pulses. Ratiometric signal models are analytically constructed, from which T 1 , T 2 , and current-induced B z are jointly estimated by solving a nonlinear inverse problem for conductivity reconstruction. Numerical simulations and experimental studies are performed to investigate the feasibility of the proposed method in estimating relaxation parameters and conductivity. The proposed method, if compared with conventional magnetic resonance electrical impedance tomography, enables rapid data acquisition and simultaneous estimation of T 1 , T 2 , and current-induced B z , yielding a comparable level of signal-to-noise ratio in the parameter estimates while retaining a relative conductivity contrast. We successfully demonstrated the feasibility of the proposed method in jointly estimating tissue relaxation parameters as well as conductivity distributions. It can be a promising, rapid imaging strategy for quantitative conductivity estimation. Magn Reson Med 78:107-120, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Li, Xiaowen; Janiga, Matthew A.; Wang, Shuguang; Tao, Wei-Kuo; Rowe, Angela; Xu, Weixin; Liu, Chuntao; Matsui, Toshihisa; Zhang, Chidong
2018-04-01
Evolution of precipitation structures are simulated and compared with radar observations for the November Madden-Julian Oscillation (MJO) event during the DYNAmics of the MJO (DYNAMO) field campaign. Three ground-based, ship-borne, and spaceborne precipitation radars and three cloud-resolving models (CRMs) driven by observed large-scale forcing are used to study precipitation structures at different locations over the central equatorial Indian Ocean. Convective strength is represented by 0-dBZ echo-top heights, and convective organization by contiguous 17-dBZ areas. The multi-radar and multi-model framework allows for more stringent model validations. The emphasis is on testing models' ability to simulate subtle differences observed at different radar sites when the MJO event passed through. The results show that CRMs forced by site-specific large-scale forcing can reproduce not only common features in cloud populations but also subtle variations observed by different radars. The comparisons also revealed common deficiencies in CRM simulations where they underestimate radar echo-top heights for the strongest convection within large, organized precipitation features. Cross validations with multiple radars and models also enable quantitative comparisons in CRM sensitivity studies using different large-scale forcing, microphysical schemes and parameters, resolutions, and domain sizes. In terms of radar echo-top height temporal variations, many model sensitivity tests have better correlations than radar/model comparisons, indicating robustness in model performance on this aspect. It is further shown that well-validated model simulations could be used to constrain uncertainties in observed echo-top heights when the low-resolution surveillance scanning strategy is used.
NASA Astrophysics Data System (ADS)
Fukushima, Taku; Hasegawa, Hideyuki; Kanai, Hiroshi
2011-07-01
Red blood cell (RBC) aggregation, as one of the determinants of blood viscosity, plays an important role in blood rheology, including the condition of blood. RBC aggregation is induced by the adhesion of RBCs when the electrostatic repulsion between RBCs weakens owing to increases in protein and saturated fatty acid levels in blood, excessive RBC aggregation leads to various circulatory diseases. This study was conducted to establish a noninvasive quantitative method for assessment of RBC aggregation. The power spectrum of ultrasonic RF echoes from nonaggregating RBCs, which shows the frequency property of scattering, exhibits Rayleigh behavior. On the other hand, ultrasonic RF echoes from aggregating RBCs contain the components of reflection, which have no frequency dependence. By dividing the measured power spectrum of echoes from RBCs in the lumen by that of echoes from a posterior wall of the vein in the dorsum manus, the attenuation property of the propagating medium and the frequency responses of transmitting and receiving transducers are removed from the former spectrum. RBC aggregation was assessed by the diameter of a scatterer, which was estimated by minimizing the square difference between the measured normalized power spectrum and the theoretical power spectrum. In this study, spherical scatterers with diameters of 5, 11, 15, and 30 µm were measured in basic experiments. The estimated scatterer diameters were close to the actual diameters. Furthermore, the transient change of the scatterer diameters were measured in an in vivo experiment with respect to a 24-year-old healthy male during the avascularization using a cuff. The estimated diameters (12-22 µm) of RBCs during avascularization were larger than the diameters (4-8 µm) at rest and after recirculation. These results show the possibility of the use of the proposed method for noninvasive assessment of RBC aggregation.
NASA Astrophysics Data System (ADS)
Gumley, L.
2013-12-01
The Space Science and Engineering Center at the University of Wisconsin-Madison is creating a network of direct broadcast satellite data reception stations to acquire and process infrared and microwave sounder data in real-time from polar orbiting meteorological satellites and deliver the resulting products to NOAA with low latency for assimilation in NCEP numerical weather prediction models. The network will include 4 antenna sites that will be operated directly by SSEC, including Madison WI, Honolulu HI, Miami FL, and Mayaguez PR. The network will also include partner antenna sites not directly controlled by SSEC, including Corvallis OR, Monterey CA, Suitland MD, Fairbanks AK, and Guam. All of the antenna sites will have a combined X/L-band reception system capable of receiving data via direct broadcast from polar orbiting satellites including Suomi NPP and JPSS-1, Metop-A/B, POES,Terra, and Aqua. Each site will collect raw data from these satellites locally, process it to Level 1 (SDR) and Level 2 (EDR) products, and transmit the products back to SSEC for delivery to NOAA/NCEP. The primary purpose of the antenna systems is to provide real-time infrared and microwave sounder data from Metop and Suomi-NPP to NOAA to support data assimilation for NOAA/NCEP operational numerical weather prediction models. At present, NOAA/NCEP use of advanced infrared (CrIS, IASI, AIRS) and microwave (ATMS, AMSU) sounder data over North America in NWP data assimilation is limited because of the latency of the products in relation to the cutoff times for assimilation runs. This network will deliver infrared and microwave sounder data to NCEP with the lowest latency possible, via the reception and processing of data received via direct broadcast. CIMSS/SSEC is managing the procurement and installation of the antenna systems at the two new sites, and will operate the stations remotely. NOAA will establish the reception priorities (Metop and SNPP will be at the highest priority) and SSEC will set the reception schedule to acquire data from these satellites, and any other satellites at lower priority as determined jointly by NOAA, CIMSS/SSEC, and the antenna site hosts. SSEC is providing a product generation server at each site (where applicable) as part of the installed hardware to create satellite products in real-time. The host locations will provide the necessary network resources to enable infrared sounder (CrIS, IASI, and AIRS) and microwave sounder (ATMS and AMSU) data to be sent back to SSEC (and hence to NOAA/NCEP) with low latency (< 15 minutes). This presentation will described how the network realizes the goal of providing data to end users within 15 minutes of observation, and will give examples of the positive impact already observed on NCEP forecast model skill from assimilating real-time infrared and microwave sounder data in the NAM regional domain.
Quantitative Ultrasound Imaging Using Acoustic Backscatter Coefficients.
NASA Astrophysics Data System (ADS)
Boote, Evan Jeffery
Current clinical ultrasound scanners render images which have brightness levels related to the degree of backscattered energy from the tissue being imaged. These images offer the interpreter a qualitative impression of the scattering characteristics of the tissue being examined, but due to the complex factors which affect the amplitude and character of the echoed acoustic energy, it is difficult to make quantitative assessments of scattering nature of the tissue, and thus, difficult to make precise diagnosis when subtle disease effects are present. In this dissertation, a method of data reduction for determining acoustic backscatter coefficients is adapted for use in forming quantitative ultrasound images of this parameter. In these images, the brightness level of an individual pixel corresponds to the backscatter coefficient determined for the spatial position represented by that pixel. The data reduction method utilized rigorously accounts for extraneous factors which affect the scattered echo waveform and has been demonstrated to accurately determine backscatter coefficients under a wide range of conditions. The algorithms and procedures used to form backscatter coefficient images are described. These were tested using tissue-mimicking phantoms which have regions of varying scattering levels. Another phantom has a fat-mimicking layer for testing these techniques under more clinically relevant conditions. Backscatter coefficient images were also formed of in vitro human liver tissue. A clinical ultrasound scanner has been adapted for use as a backscatter coefficient imaging platform. The digital interface between the scanner and the computer used for data reduction are described. Initial tests, using phantoms are presented. A study of backscatter coefficient imaging of in vivo liver was performed using several normal, healthy human subjects.
Sackmann, Eric K; Majlof, Lars; Hahn-Windgassen, Annett; Eaton, Brent; Bandzava, Temo; Daulton, Jay; Vandenbroucke, Arne; Mock, Matthew; Stearns, Richard G; Hinkson, Stephen; Datwani, Sammy S
2016-02-01
Acoustic liquid handling uses high-frequency acoustic signals that are focused on the surface of a fluid to eject droplets with high accuracy and precision for various life science applications. Here we present a multiwell source plate, the Echo Qualified Reservoir (ER), which can acoustically transfer over 2.5 mL of fluid per well in 25-nL increments using an Echo 525 liquid handler. We demonstrate two Labcyte technologies-Dynamic Fluid Analysis (DFA) methods and a high-voltage (HV) grid-that are required to maintain accurate and precise fluid transfers from the ER at this volume scale. DFA methods were employed to dynamically assess the energy requirements of the fluid and adjust the acoustic ejection parameters to maintain a constant velocity droplet. Furthermore, we demonstrate that the HV grid enhances droplet velocity and coalescence at the destination plate. These technologies enabled 5-µL per destination well transfers to a 384-well plate, with accuracy and precision values better than 4%. Last, we used the ER and Echo 525 liquid handler to perform a quantitative polymerase chain reaction (qPCR) assay to demonstrate an application that benefits from the flexibility and larger volume capabilities of the ER. © 2015 Society for Laboratory Automation and Screening.
The Sonic Altimeter for Aircraft
NASA Technical Reports Server (NTRS)
Draper, C S
1937-01-01
Discussed here are results already achieved with sonic altimeters in light of the theoretical possibilities of such instruments. From the information gained in this investigation, a procedure is outlined to determine whether or not a further development program is justified by the value of the sonic altimeter as an aircraft instrument. The information available in the literature is reviewed and condensed into a summary of sonic altimeter developments. Various methods of receiving the echo and timing the interval between the signal and the echo are considered. A theoretical discussion is given of sonic altimeter errors due to uncertainties in timing, variations in sound velocity, aircraft speed, location of the sending and receiving units, and inclinations of the flight path with respect to the ground surface. Plots are included which summarize the results in each case. An analysis is given of the effect of an inclined flight path on the frequency of the echo. A brief study of the acoustical phases of the sonic altimeter problem is carried through. The results of this analysis are used to predict approximately the maximum operating altitudes of a reasonably designed sonic altimeter under very good and very bad conditions. A final comparison is made between the estimated and experimental maximum operating altitudes which shows good agreement where quantitative information is available.
A unified model for reverberation and submerged object scattering in a stratified ocean waveguide.
Makris, N C; Ratilal, P
2001-03-01
A unified model for reverberation and submerged target scattering in a stratified medium is developed from wave theory. The advantage of the unified approach is that it enables quantitative predictions to be made of the target-echo-to-reverberation ratio in an ocean waveguide. Analytic expressions are derived for both deterministic and stochastic scattering from the seafloor and subseafloor. Asymptotic techniques are used to derive expressions for the scattering of broadband waveforms from distant objects or surfaces. Expressions are then obtained for the scattered field after beamforming with a horizontal line array. The model is applied to problems of active detection in shallow water. Sample calculations for narrow-band signals indicate that the detection of submerged target echoes above diffuse seafloor reverberation is highly dependent upon water column and sediment stratification as well as array aperture, source, receiver, and target locations, in addition to the scattering properties of the target and seafloor. The model is also applied to determine the conditions necessary for echo returns from discrete geomorphologic features of the seafloor and subseafloor to stand prominently above diffuse seafloor reverberation. This has great relevance to the geologic clutter problem encountered by active sonar systems operating in shallow water, as well as to the remote sensing of underwater geomorphology.
Music-based magnetic resonance fingerprinting to improve patient comfort during MRI examinations.
Ma, Dan; Pierre, Eric Y; Jiang, Yun; Schluchter, Mark D; Setsompop, Kawin; Gulani, Vikas; Griswold, Mark A
2016-06-01
Unpleasant acoustic noise is a drawback of almost every MRI scan. Instead of reducing acoustic noise to improve patient comfort, we propose a technique for mitigating the noise problem by producing musical sounds directly from the switching magnetic fields while simultaneously quantifying multiple important tissue properties. MP3 music files were converted to arbitrary encoding gradients, which were then used with varying flip angles and repetition times in a two- and three-dimensional magnetic resonance fingerprinting (MRF) examination. This new acquisition method, named MRF-Music, was used to quantify T1 , T2 , and proton density maps simultaneously while providing pleasing sounds to the patients. MRF-Music scans improved patient comfort significantly during MRI examinations. The T1 and T2 values measured from phantom are in good agreement with those from the standard spin echo measurements. T1 and T2 values from the brain scan are also close to previously reported values. MRF-Music sequence provides significant improvement in patient comfort compared with the MRF scan and other fast imaging techniques such as echo planar imaging and turbo spin echo scans. It is also a fast and accurate quantitative method that quantifies multiple relaxation parameters simultaneously. Magn Reson Med 75:2303-2314, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Lebel, R Marc; Menon, Ravi S; Bowen, Chris V
2006-03-01
Magnetic resonance microscopy using magnetically labeled cells is an emerging discipline offering the potential for non-destructive studies targeting numerous cellular events in medical research. The present work develops a technique to quantify superparamagnetic iron-oxide (SPIO) loaded cells using fully balanced steady state free precession (b-SSFP) imaging. An analytic model based on phase cancellation was derived for a single particle and extended to predict mono-exponential decay versus echo time in the presence of multiple randomly distributed particles. Numerical models verified phase incoherence as the dominant contrast mechanism and evaluated the model using a full range of tissue decay rates, repetition times, and flip angles. Numerical simulations indicated a relaxation rate enhancement (DeltaR(2b)=0.412 gamma . LMD) proportional to LMD, the local magnetic dose (the additional sample magnetization due to the SPIO particles), a quantity related to the concentration of contrast agent. A phantom model of SPIO loaded cells showed excellent agreement with simulations, demonstrated comparable sensitivity to gradient echo DeltaR(*) (2) enhancements, and 14 times the sensitivity of spin echo DeltaR(2) measurements. We believe this model can be used to facilitate the generation of quantitative maps of targeted cell populations. Magn Reson Med, 2006. (c) 2006 Wiley-Liss, Inc.
Asbach, Patrick; Hein, Patrick A; Stemmer, Alto; Wagner, Moritz; Huppertz, Alexander; Hamm, Bernd; Taupitz, Matthias; Klessen, Christian
2008-01-01
To evaluate soft tissue contrast and image quality of a respiratory-triggered echo-planar imaging based diffusion-weighted sequence (EPI-DWI) with different b values for magnetic resonance imaging (MRI) of the liver. Forty patients were examined. Quantitative and qualitative evaluation of contrast was performed. Severity of artifacts and overall image quality in comparison with a T2w turbo spin-echo (T2-TSE) sequence were scored. The liver-spleen contrast was significantly higher (P < 0.05) for the EPI-DWI compared with the T2-TSE sequence (0.47 +/- 0.11 (b50); 0.48 +/- 0.13 (b300); 0.47 +/- 0.13 (b600) vs 0.38 +/- 0.11). Liver-lesion contrast strongly depends on the b value of the DWI sequence and decreased with higher b values (b50, 0.47 +/- 0.19; b300, 0.40 +/- 0.20; b600, 0.28 +/- 0.23). Severity of artifacts and overall image quality were comparable to the T2-TSE sequence when using a low b value (P > 0.05), artifacts increased and image quality decreased with higher b values (P < 0.05). Respiratory-triggered EPI-DWI of the liver is feasible because good image quality and favorable soft tissue contrast can be achieved.
The validation of ozone measurements from the improved stratospheric and mesospheric sounder
NASA Technical Reports Server (NTRS)
Connor, Brian J.; Scheuer, Christopher J.; Chu, D. A.; Remedios, John J.; Marks, C. J.; Rodgers, Clive D.; Taylor, Fredric W.
1994-01-01
We present preliminary results of the validation of ozone measurements from the Improved Stratospheric and Mesospheric Sounder (ISAMS). The indications are that the ISAMS provides ozone data which generally agrees with other experiments and climatological values, except in regions of large thermal gradients or high aerosol loading. Corrections for these effects will be included in future reprocessing of the data.
Simultaneous Observations fo Polar Stratospheric Clouds and HNO3 over Scandinavia in January, 1992
NASA Technical Reports Server (NTRS)
Massie, S. T.; Santee, M. L.; Read, W. G.; Grainger, R. G.; Lambert, A.; Mergenthaler, J. L.; Dye, J. E.; Baumbardner, D.; Randel, W. J.; Tabazadeh, A.;
1996-01-01
Simultaneous observations of Polar Stratospheric Cloud aerosol extinction and HNO3 mixing ratios over Scandinavia are examined for January 9-10, 1992. Data measured by the Microwave Limb Sounder (MLS), Cryogenic Limb Array Etalon, Spectrometer (CLAES), and Improved Stratospheric and Mesospheric Sounder (ISAMA) experiments on the Upper Atmosphere Research Satellite (UARS) are examined at locations adjacent to parcel trajectory positions.
NASA Astrophysics Data System (ADS)
Wright, Corwin J.; Hindley, Neil P.; Moss, Andrew C.; Mitchell, Nicholas J.
2016-03-01
Gravity waves in the terrestrial atmosphere are a vital geophysical process, acting to transport energy and momentum on a wide range of scales and to couple the various atmospheric layers. Despite the importance of these waves, the many studies to date have often exhibited very dissimilar results, and it remains unclear whether these differences are primarily instrumental or methodological. Here, we address this problem by comparing observations made by a diverse range of the most widely used gravity-wave-resolving instruments in a common geographic region around the southern Andes and Drake Passage, an area known to exhibit strong wave activity. Specifically, we use data from three limb-sounding radiometers (Microwave Limb Sounder, MLS-Aura; HIgh Resolution Dynamics Limb Sounder, HIRDLS; Sounding of the Atmosphere using Broadband Emission Radiometry, SABER), the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS-RO constellation, a ground-based meteor radar, the Advanced Infrared Sounder (AIRS) infrared nadir sounder and radiosondes to examine the gravity wave potential energy (GWPE) and vertical wavelengths (λz) of individual gravity-wave packets from the lower troposphere to the edge of the lower thermosphere ( ˜ 100 km). Our results show important similarities and differences. Limb sounder measurements show high intercorrelation, typically > 0.80 between any instrument pair. Meteor radar observations agree in form with the limb sounders, despite vast technical differences. AIRS and radiosonde observations tend to be uncorrelated or anticorrelated with the other data sets, suggesting very different behaviour of the wave field in the different spectral regimes accessed by each instrument. Evidence of wave dissipation is seen, and varies strongly with season. Observed GWPE for individual wave packets exhibits a log-normal distribution, with short-timescale intermittency dominating over a well-repeated monthly-median seasonal cycle. GWPE and λz exhibit strong correlations with the stratospheric winds, but not with local surface winds. Our results provide guidance for interpretation and intercomparison of such data sets in their full context.
Study of Geological Analogues for Understanding the Radar Sounder Response of the RIME Targets
NASA Astrophysics Data System (ADS)
Thakur, S.; Bruzzone, L.
2017-12-01
Radar for Icy Moon Exploration (RIME), the radar sounder onboard the Jupiter Icy Moons Explorer (JUICE), is aimed at characterizing the ice shells of the Jovian moons - Ganymede, Europa and Callisto. RIME is optimized to operate at 9 MHz central frequency with bandwidth of 1 MHz and 2.7 MHz to achieve a penetration depth up to 9 km through ice. We have developed an approach to the definition of a database of simulated RIME radargrams by leveraging the data available from airborne and orbital radar sounder acquisitions over geological analogues of the expected icy moon features. These simulated radargrams are obtained by merging real radar sounder data with models of the subsurface of the Jupiter icy moons. They will be useful for geological interpretation of the RIME radargrams and for better predicting the performance of RIME. The database will also be useful in developing pre-processing and automatic feature extraction algorithms to support data analysis during the mission phase of RIME. Prior to the JUICE mission exploring the Jovian satellites with RIME, there exist radar sounders such as SHARAD (onboard MRO) and MARSIS (onboard MEX) probing Mars, the LRS (onboard SELENE) probing the Moon, and many airborne sounders probing the polar regions of Earth. Analogues have been identified in these places based on similarity in geo-morphological expression. Moreover, other analogues have been identified on the Earth for possible dedicated acquisition campaigns before the RIME operations. By assuming that the subsurface structure of the RIME targets is approximately represented in the analogue radargrams, the difference in composition is accounted for by imposing different dielectric and subsurface attenuation models. The RIME radargrams are simulated from the analogue radargrams using the radar equation and the RIME processing chain and accounting for different possible scenarios in terms of subsurface structure, dielectric properties and instrument parameters. For cross-validation, the database is compared with radargrams simulated from the analysis of radio wave propagation through geo-electrical models representing the subsurface hypotheses for the RIME targets.
Radiometric consistency assessment of hyperspectral infrared sounders
NASA Astrophysics Data System (ADS)
Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.
2015-07-01
The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark datasets for both inter-calibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and -B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through one year of simultaneous nadir overpass (SNO) observations to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the longwave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both Polar and Tropical SNOs. The combined global SNO datasets indicate that, the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 comparison spectral regions and they range from 0.15 to 0.21 K in the remaining 4 spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.
Radiometric consistency assessment of hyperspectral infrared sounders
NASA Astrophysics Data System (ADS)
Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.
2015-11-01
The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark data sets for both intercalibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and MetOp-B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through simultaneous nadir overpass (SNO) observations in 2013, to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the long-wave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both polar and tropical SNOs. The combined global SNO data sets indicate that the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 spectral regions and they range from 0.15 to 0.21 K in the remaining four spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.
AIRS Subpixel Cloud Characterization Using MODIS Cloud Products.
NASA Astrophysics Data System (ADS)
Li, Jun; Menzel, W. Paul; Sun, Fengying; Schmit, Timothy J.; Gurka, James
2004-08-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is able to provide, at high spatial resolution (1 5 km), a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud optical thickness (COT). AIRS is able to provide CTP, ECA, CPS, and COT at coarser spatial resolution (13.5 km at nadir) but with much better accuracy using its high-spectral-resolution measurements. The combined MODIS AIRS system offers the opportunity for improved cloud products over those possible from either system alone. The key steps for synergistic use of imager and sounder radiance measurements are 1) collocation in space and time and 2) imager cloud amount, type, and phase determination within the sounder pixel. The MODIS and AIRS measurements from the EOS Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. As the first step, the MODIS classification procedure is applied to identify various surface and cloud types within an AIRS footprint. Cloud-layer information (lower, midlevel, or high clouds) and phase information (water, ice, or mixed-phase clouds) within the AIRS footprint are sorted and characterized using MODIS 1-km-spatial-resolution data. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of the synergistic use of high-spatial-resolution imager products and high-spectral-resolution sounder radiance measurements. There is relevance to the optimal use of data from the Advanced Baseline Imager (ABI) and Hyperspectral Environmental Suite (HES) systems, which are to fly on the Geostationary Operational Environmental Satellite (GOES)-R.
Improved Visualization of Hydroacoustic Plumes Using the Split-Beam Aperture Coherence.
Blomberg, Ann E A; Weber, Thomas C; Austeng, Andreas
2018-06-25
Natural seepage of methane into the oceans is considerable, and plays a role in the global carbon cycle. Estimating the amount of this greenhouse gas entering the water column is important in order to understand their environmental impact. In addition, leakage from man-made structures such as gas pipelines may have environmental and economical consequences and should be promptly detected. Split beam echo sounders (SBES) detect hydroacoustic plumes due to the significant contrast in acoustic impedance between water and free gas. SBES are also powerful tools for plume characterization, with the ability to provide absolute acoustic measurements, estimate bubble trajectories, and capture the frequency dependent response of bubbles. However, under challenging conditions such as deep water and considerable background noise, it can be difficult to detect the presence of gas seepage from the acoustic imagery alone. The spatial coherence of the wavefield measured across the split beam sectors, quantified by the coherence factor (CF), is a computationally simple, easily available quantity which complements the acoustic imagery and may ease the ability to automatically or visually detect bubbles in the water column. We demonstrate the benefits of CF processing using SBES data from the Hudson Canyon, acquired using the Simrad EK80 SBES. We observe that hydroacoustic plumes appear more clearly defined and are easier to detect in the CF imagery than in the acoustic backscatter images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Leary, D.W.
1989-03-01
The US Geological Survey's remote sensing instrument for regional imaging of the deep sea floor (> 400 m water depth) is the GLORIA (Geologic Long-Range Inclined Asdic) sidescan sonar system, designed and operated by the British Institute of Oceanographic Sciences. A 30-sec sweep rate provides for a swath width of approximately 45 km, depending on water depth. The return signal is digitally recorded as 8 bit data to provide a cross-range pixel dimension of 50 m. Postcruise image processing is carried out by using USGS software. Processing includes precision water-column removal, geometric and radiometric corrections, and contrast enhancement. Mosaicking includesmore » map grid fitting, concatenation, and tone matching. Seismic reflection profiles, acquired along track during the survey, are image correlative and provide a subsurface dimension unique to marine remote sensing. Generally GLORIA image interpretation is based on brightness variations which are largely a function of (1) surface roughness at a scale of approximately 1 m and (2) slope changes of more than about 4/degrees/ over distances of at least 50 m. Broader, low-frequency changes in slope that cannot be detected from the Gloria data can be determined from seismic profiles. Digital files of bathymetry derived from echo-sounder data can be merged with GLORIA image data to create relief models of the sea floor for geomorphic interpretation of regional slope effects.« less
Wen, Hsin-Yi; Sano, Yuji; Takahata, Naoto; Tomonaga, Yama; Ishida, Akizumi; Tanaka, Kentaro; Kagoshima, Takanori; Shirai, Kotaro; Ishibashi, Jun-ichiro; Yokose, Hisayoshi; Tsunogai, Urumu; Yang, Tsanyao F.
2016-01-01
Shallow submarine volcanoes have been newly discovered near the Tokara Islands, which are situated at the volcanic front of the northern Ryukyu Arc in southern Japan. Here, we report for the first time the volatile geochemistry of shallow hydrothermal plumes, which were sampled using a CTD-RMS system after analyzing water column images collected by multi-beam echo sounder surveys. These surveys were performed during the research cruise KS-14-10 of the R/V Shinsei Maru in a region stretching from the Wakamiko Crater to the Tokara Islands. The 3He flux and methane flux in the investigated area are estimated to be (0.99–2.6) × 104 atoms/cm2/sec and 6–60 t/yr, respectively. The methane in the region of the Tokara Islands is a mix between abiotic methane similar to that found in the East Pacific Rise and thermogenic one. Methane at the Wakamiko Crater is of abiotic origin but affected by isotopic fractionation through rapid microbial oxidation. The helium isotopes suggest the presence of subduction-type mantle helium at the Wakamiko Crater, while a larger crustal component is found close to the Tokara Islands. This suggests that the Tokara Islands submarine volcanoes are a key feature of the transition zone between the volcanic front and the spreading back-arc basin. PMID:27671524
Wen, Hsin-Yi; Sano, Yuji; Takahata, Naoto; Tomonaga, Yama; Ishida, Akizumi; Tanaka, Kentaro; Kagoshima, Takanori; Shirai, Kotaro; Ishibashi, Jun-Ichiro; Yokose, Hisayoshi; Tsunogai, Urumu; Yang, Tsanyao F
2016-09-27
Shallow submarine volcanoes have been newly discovered near the Tokara Islands, which are situated at the volcanic front of the northern Ryukyu Arc in southern Japan. Here, we report for the first time the volatile geochemistry of shallow hydrothermal plumes, which were sampled using a CTD-RMS system after analyzing water column images collected by multi-beam echo sounder surveys. These surveys were performed during the research cruise KS-14-10 of the R/V Shinsei Maru in a region stretching from the Wakamiko Crater to the Tokara Islands. The 3 He flux and methane flux in the investigated area are estimated to be (0.99-2.6) × 10 4 atoms/cm 2 /sec and 6-60 t/yr, respectively. The methane in the region of the Tokara Islands is a mix between abiotic methane similar to that found in the East Pacific Rise and thermogenic one. Methane at the Wakamiko Crater is of abiotic origin but affected by isotopic fractionation through rapid microbial oxidation. The helium isotopes suggest the presence of subduction-type mantle helium at the Wakamiko Crater, while a larger crustal component is found close to the Tokara Islands. This suggests that the Tokara Islands submarine volcanoes are a key feature of the transition zone between the volcanic front and the spreading back-arc basin.
Ten Years of Observatory Science from Saanich Inlet on the VENUS Cabled Ocean Observatory
NASA Astrophysics Data System (ADS)
Dewey, R. K.; Tunnicliffe, V.; Macoun, P.; Round, A.
2016-02-01
The Saanich Inlet array of the VENUS cabled ocean observatory, maintained and operated by Ocean Networks Canada, was installed in February 2006, and in 2016 will have supported ten years of comprehensive interactive science. Representing the first in the present generation of cabled observing technologies, this coastal array has provided continuous high power and broadband communications to a variety of instrument platforms, hundreds of sensors, and enabled dozens of short, medium, and long-term studies. Saanich Inlet is a protected fjord with limited tidal action, resulting in an extremely productive environment, with strong seasonal chemical variations driven by episodic deep water renewal events and oxygen reduction processes. The breadth of the research has included microbial and benthic community dynamics, biogeochemical cycles, forensics, quantifying inter-annual variations, benthic-pelagic coupling, sensor testing, plankton dynamics, and bio-turbulence. Observatory measurements include core water properties (CTD & O2) and water-column echo-sounder records, as well as experiment-oriented deployments utilizing cameras, Gliders, Dopplers, hydrophones, and a variety of biogeochemical sensors. With a recently installed Buoy Profiler System for monitoring the entire water column, community plans continue with a dedicated Redox experiment through the 2016-17 seasons. Highlights from the dozens of research papers and theses will be presented to demonstrate the achievements enabled by a comprehensive coastal cabled observing system.
The gas-hydrate-related seabed features in the Palm Ridge off southwest Taiwan
NASA Astrophysics Data System (ADS)
Su, Zheng-Wei; Hsu, Shu-Kun; Tsai, Ching-Hui; Chen, Song-Chuen; Lin, Hsiao-Shan
2016-04-01
The offshore area of the SW Taiwan is located in the convergence zone between the northern continental margin of the South China Sea and the Manila subduction complex. Our study area, the Palm Ridge, is located in the passive continental margin. According to the geophysical, geochemical and geothermal data, abundant gas hydrate may exist in the offshore area of SW Taiwan. In this study, we will study the relation between the seabed features and the gas hydrate formation of the Palm Ridge. The data used in this study include high-resolution sidescan sonar images, sub-bottom profiles, echo sounder system, multi-beam bathymetric data, multi-channel reflection seismic and submarine photography in the Palm Ridge. Our results show the existing authigenic carbonates, gas seepages and gas plumes are mainly distributed in the bathymetric high of the Palm Ridge. Numerous submarine landslides have occurred in the place where the BSR distribution is not continuous. We suggest that it may be because of rapid slope failure, causing the change of the gas hydrate stability zone. We also found several faults on the R3.1 anticline structure east of the deformation front. These features imply that abundant deep methane gases have migrated to shallow strata, causing submarine landslides or collapse. The detailed relationship of gas migration and submarine landslides need further studies.
Dissipation processes in the Tongue of the Ocean
NASA Astrophysics Data System (ADS)
Hooper V, James A.; Baringer, Molly O.; St. Laurent, Louis C.; Dewar, William K.; Nowacek, Doug
2016-05-01
The Tongue of the Ocean (TOTO) region located within the Bahamas archipelago is a relatively understudied region in terms of both its biological and physical oceanographic characteristics. A prey-field mapping cruise took place in the fall between 15 September 2008 and 1 October 2008, consisting of a series of transects and "clovers" to study the spatial and temporal variability. The region is characterized by a deep scattering layer (DSL), which is preyed on by nekton that serves as the food for beaked whale and other whale species. This study marks the first of its kind where concurrent measurements of acoustic backscatter and turbulence have been conducted for a nekton scattering layer well below the euphotic zone. Turbulence data collected from a Deep Microstructure Profiler are compared to biological and shear data collected by a 38 kHz Simrad EK 60 echo sounder and a hydrographic Doppler sonar system, respectively. From these measurements, the primary processes responsible for the turbulent production in the TOTO region are assessed. The DSL around 500 m and a surface scattering layer (SSL) are investigated for raised ɛ values. Strong correlation between turbulence levels and scattering intensity of prey is generally found in the SSL with dissipation levels as large as ˜10-7 W kg-1, 3 orders of magnitude above background levels. In the DSL and during the diel vertical migration, dissipation levels ˜10-8 W kg-1 were observed.
NASA Astrophysics Data System (ADS)
Suhari, K. T.; Karim, H.; Gunawan, P. H.; Purwanto, H.
2017-10-01
Current practices in bathymetry survey (available method) are indeed having some limitations. New technologies for bathymetry survey such as using unmanned boat has becoming popular in developed countries - filled in and served those limitations of existing survey methods. Malaysia as one of tropical country has it own river/water body characteristics and suitable approaches in conducting bathymetry survey. Thus, a study on this emerging technology should be conducted using enhanced version of small ROV boat with Malaysian rivers and best approaches so that the surveyors get benefits from the innovative surveying product. Among the available ROV boat for bathymetry surveying in the market, an Indonesian product called SHUMOO is among the promising products - economically and practically proven using a few sample areas in Indonesia. The boat was equipped and integrated with systems of remote sensing technology, GNSS, echo sounder and navigational engine. It was designed for riverbed surveys on shallow area such as small /medium river, lakes, reservoirs, oxidation/detention pond and other water bodies. This paper tries to highlight the needs and enhancement offered to Malaysian' bathymetry surveyors/practitioners on the new ROV boat which make their task easier, faster, safer, economically effective and better riverbed modelling results. The discussion continues with a sample of Indonesia river (data collection and modelling) since it is mostly similar to Malaysia's river characteristics and suggests some improvement for Malaysia best practice.
Glacier volume estimation of Cascade Volcanoes—an analysis and comparison with other methods
Driedger, Carolyn L.; Kennard, P.M.
1986-01-01
During the 1980 eruption of Mount St. Helens, the occurrence of floods and mudflows made apparent a need to assess mudflow hazards on other Cascade volcanoes. A basic requirement for such analysis is information about the volume and distribution of snow and ice on these volcanoes. An analysis was made of the volume-estimation methods developed by previous authors and a volume estimation method was developed for use in the Cascade Range. A radio echo-sounder, carried in a backpack, was used to make point measurements of ice thickness on major glaciers of four Cascade volcanoes (Mount Rainier, Washington; Mount Hood and the Three Sisters, Oregon; and Mount Shasta, California). These data were used to generate ice-thickness maps and bedrock topographic maps for developing and testing volume-estimation methods. Subsequently, the methods were applied to the unmeasured glaciers on those mountains and, as a test of the geographical extent of applicability, to glaciers beyond the Cascades having measured volumes. Two empirical relationships were required in order to predict volumes for all the glaciers. Generally, for glaciers less than 2.6 km in length, volume was found to be estimated best by using glacier area, raised to a power. For longer glaciers, volume was found to be estimated best by using a power law relationship, including slope and shear stress. The necessary variables can be estimated from topographic maps and aerial photographs.
Hamzah, Azimi; Krauss, Steven E; Shaffril, Hayrol A M; Suandi, Turiman; Ismail, Ismi A; Abu Samah, Bahaman
2014-10-01
The vast majority of Malaysia's fishermen are located in rural areas, specifically in the Western and Eastern coastal regions of Peninsular Malaysia and the Sabah and Sarawak central zones. In these areas, the fishing industry is relied upon as a major economic contributor to the region's residents. Despite the widespread application of various modern technologies into the fishing industry (i.e., GPS, sonar, echo sounder, remote sensing), and the Malaysian government's efforts to encourage their adoption, many small-scale fishermen in the country's rural areas continue to rely on traditional fishing methods. This refusal to embrace new technologies has resulted in significant losses in fish yields and needed income, and has raised many questions regarding the inputs to decision making of the fishermen. Drawing on multiple literatures, in this article we argue for the use of a mental model approach to gain an in-depth understanding of rural Malaysian fishermen's choices of technology adoption according to four main constructs--prior experience, knowledge, expertise and beliefs or values. To provide needed inputs to agricultural specialists and related policy makers for the development of relevant plans of action, this article aims to provide a way forward for others to understand dispositional barriers to technology adoption among fishermen who use traditional methods in non-Western contexts. © 2013 International Union of Psychological Science.
On th meridional surface profile of the Gulf Stream at 55 deg W
NASA Technical Reports Server (NTRS)
Hallock, Zachariah R.; Teague, William J.
1995-01-01
Nine-month records from nine inverted echo sounders (IESs) are analyzed to describe the mean baroclinic Gulf Stream at 55 deg W. IES acoustic travel times are converted to thermocline depth which is optimally interpolated. Kinematic and dynamic parameters (Gulf Stream meridional position, velocity, and vorticity) are calculated. Primary Gulf Stream variabiltiy is attributed to meandering and and changes in direction. A mean, stream-coordinate (relative to Gulf Stream instantaneous position and direction) meridional profile is derived and compared with results presented by other investigators. The mean velocity is estimated at 0.84 m/s directed 14 deg to the right eastward, and the thermocline (12 c) drops 657 m (north to south), corresponding to a baroclinic rise of the surface of 0.87 m. The effect of Gulf Stream curvature on temporal mean profiles is found to be unimportant and of minimal importance overall. The derived, downstream current profile is well represented by a Gaussian function and is about 190 km wide where it crosses zero. Surface baroclinic transport is estimated to be 8.5 x 10(exp 4) sq m/s, and maximum shear (flanking the maximum) is 1.2 x 10(exp -5). Results compare well with other in situ observational results from the same time period. On the other hand, analyses (by others) of concurrent satellite altimetry (Geosat) suggest a considerable narrower, more intense mean Gulf Stream.
Poppe, Larry J.; Paskevich, Valerie F.; Butman, Bradford; Ackerman, Seth D.; Danforth, William W.; Foster, Dave S.; Blackwood, Dann S.
2006-01-01
The imagery, interpretive data layers, and data presented herein were derived from multibeam echo-sounder data collected off Eastern Cape Cod, Massachusetts, and from the stations occupied to verify these acoustic data. The basic data layers show sea-floor topography, sun-illuminated shaded relief, and backscatter intensity; interpretive layers show the distributions of surficial sediment and sedimentary environments. Presented verification data include new and historical sediment grain-size analyses and a gallery of still photographs of the seabed. The multibeam data, which cover a narrow band of the sea floor extending from Provincetown around the northern tip of Cape Cod and south southeastward to off Monomoy Island, were collected during transits between concurrent mapping projects in the Stellwagen Bank National Marine Sanctuary (Valentine and others, 2001; Butman and others, 2004; and Valentine, 2005) and Great South Channel (Valentine and others, 2003a, b, c, d). Although originally collected to maximize the use of time aboard ship, these data provide a fundamental framework for research and management activities in this part of the Gulf of Maine (Noji and others, 2004), show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. These data and interpretations also support ongoing modeling studies of the lower Cape's aquifer system (Masterson, 2004) and of erosional hotspots along the Cape Cod National Seashore (List and others, 2006).
Ultrasonic Fingerprinting of Structural Materials: Spent Nuclear Fuel Containers Case-Study
NASA Astrophysics Data System (ADS)
Sednev, D.; Lider, A.; Demyanuk, D.; Kroening, M.; Salchak, Y.
Nowadays, NDT is mainly focused on safety purposes, but it seems possible to apply those methods to provide national and IAEA safeguards. The containment of spent fuel in storage casks could be dramatically improved in case of development of so-called "smart" spent fuel storage and transfer casks. Such casks would have tamper indicating and monitoring/tracking features integrated directly into the cask design. The microstructure of the containers material as well as of the dedicated weld seam is applied to the lid and the cask body and provides a unique fingerprint of the full container, which can be reproducibly scanned by using an appropriate technique. The echo-sounder technique, which is the most commonly used method for material inspection, was chosen for this project. The main measuring parameter is acoustic noise, reflected from material's artefacts. The purpose is to obtain structural fingerprinting. Reference measurement and additional measurement results were compared. Obtained results have verified the appliance of structural fingerprint and the chosen control method. The successful authentication demonstrates the levels of the feature points' compliance exceeding the given threshold which differs considerably from the percentage of the concurrent points during authentication from other points. Since reproduction or doubling of the proposed unique identification characteristics is impossible at the current state science and technology, application of this technique is considered to identify the interference into the nuclear materials displacement with high accuracy.
NASA Astrophysics Data System (ADS)
Nagano, A.; Hasegawa, T.; Matsumoto, H.; Ariyoshi, K.
2016-02-01
The Kuroshio, the western boundary current of the North Pacific subtropical gyre, takes a stable meandering path off the southern coast of Japan, called the large meander (LM), on interannual to decadal timescales. The LM of the Kuroshio formed in July 2004 associated with the intensified anticyclonic recirculation gyre south of the Kuroshio, and gradually decayed in the latter half of 2005. The variations of the Kuroshio and the southern recirculating currents may be related to deep currents, which are expected to be associated with bottom pressure (BP) variation. In order to examine the variation of BP associated with the variations of the sea surface currents, we analyzed data of eleven pressure sensors equipped to inverted echo sounders deployed from July 2004 to October 2006. An abrupt enhancement of BP is found on the continental slope off Shikoku, lagging a few months behind an elevation of sea surface height (SSH) due to the onshore shift of the recirculation gyre associated with the LM formation. Subsequently, BP beneath the recirculation gyre dwindles, leading the gradual depression of SSH due to the decay of the LM. The relationship between BP and SSH may suggest that the occurrence and decay of the LM depend on the extension of the recirculation gyre current down to the ocean bottom.
2012-10-01
parameters using the phantom (Months 6-12). Accomplished during September 29, 2011-October 28 2012: The sequence was tested using a prostate phantom...mI, Glu, Gln, sI, phosphoethanolamine and lactate using a GAMMA C++ library. Prostate metabolite quantitation has been tested using the ProFit...using phantom solutions containing metabolites and corn oil, the protocol has been successfully tested in healthy males, and malignant and BPH
Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.
2008-01-01
Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.
Next Generation Grating Spectrometer Sounders for LEO and GEO
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.
2011-01-01
AIRS and MODIS are widely used for weather, climate, composition, carbon cycle, cross-calibration, and applications. The community asking for new capability in the 2020 timeframe, capabilities desired: (1) Hyperspectral UV to LWIR, High Spatial ?1km IFOV (2) Maximize Synergies of Solar Reflected and IR. Synergies with OCO-2. We expect more users and applications of next gen LEO IR Sounder than GEO. These include: weather, climate, GHG monitoring, aviation, disaster response. There is a new direction for imagers and sounders: (1) Separate Vis/NIR/SWIR from MWIR/LWIR instruments reduces technology risk and complexity. (2) Expect Costs to be lower than CrIS & VIIRS Some additional ideas to reduce costs include: (1) minimum set of requirements (2) mini-grating spectrometers. supports constellation for higher revisit (3) new technology to reduce instrument size (large format fpa's) (4) hosted payloads
Development of the Advanced Technology Microwave Sounder (ATMS) for NPOESS C1
NASA Astrophysics Data System (ADS)
Brann, C.; Kunkee, D.
2008-12-01
The National Polar-orbiting Operational Environmental Satellite System's Advanced Technology Microwave Sounder (ATMS) is planned for flight on the first NPOESS mission (C1) in 2013. The C1 ATMS will be the second instrument of the ATMS series and will provide along with the companion Cross-track Infrared Sounder (CrIS), atmospheric temperature and moisture profiles for NPOESS. The first flight of the ATMS is scheduled in 2010 on the NPOESS Preparatory Project (NPP) satellite, which is an early instrument risk reduction component of the NPOESS mission. This poster will focus on the development of the ATMS for C1 including aspects of the sensor calibration, antenna beam and RF characteristics and scanning. New design aspects of the C1 ATMS, required primarily by parts obsolescence, will also be addressed in this poster.
Detection to the DepositFan Occurring in the Sun Moon Lake Using Geophysical Sonar Data
NASA Astrophysics Data System (ADS)
Mimi, L.
2014-12-01
Located in central Taiwan, the Sun Moon Lake is an U-shaped basin with the waters capacity for 138.68 × 106m³. The water is input through two underground tunnels from the Wu-Jie dam in the upstream of the Zhuo-shui river. Although the Wu-Jie dam has been trying to keep the tunnels transporting clean water into the lake, the water is still mixed with muds. The silty water brings the deposits accumulating outwards from positions of the tunnel outlets resulting in a deposit fan formed in the lake. To monitor how the fan is accumulated is then very important in terms of environmental issue, tourism and electric power resources. Institute of Oceanography, National Taiwan University therefore conducted projects to use the multi-beam echo sounders to collect bathymetric data, and used the Chirp sub-bottom profiler to explore silted pattern inside the deposit fan. With these data, underwater topographic maps were plotted to observe the shape and internal structure of the fan. Moreover, two sets of data obtained in 2006 and 2012 were used to estimate the siltation magnitude and pattern in the six years period.The multi-beam sounder is Resons Seabat 9001s model; it collects 60 values in each of the swaths positioned by the DGPS method.The sub-bottom profiler is the EdgeTech 3100P Chirp Sonar, its acoustic wave frequency is in 2 ~ 16kHz. The data give the siltation amount in the Sun Moon Lake was around 3× 106 m³, which gives annual siltation rate at 5× 105 m³. The leading edge of the deposit fan has been expanded westwards 2 km from the water outlet since the tunnel was built 70 years ago; however, outside the deposit fan, the siltation shows insignificant amount on the water bottom.In the past few years the siltation mainly occurs outside in the east side of lake, more closer to the water outlets, the terrain had been increased from 744 m to 746 m (748.5 meters is stranded level of the lake).Observing sub-bottom profiler data, we can clearly see the location of the paleo-hard- bottom of the lake before the siltation occurred. These sub-bottom profiles can be used to check or to analyze episodic deposition behavior in producing the deposit fan.
Lin, Huimin; Fu, Caixia; Kannengiesser, Stephan; Cheng, Shu; Shen, Jun; Dong, Haipeng; Yan, Fuhua
2018-03-07
The coexistence of hepatic iron and fat is common in patients with hyperferritinemia, which plays an interactive and aggressive role in the progression of diseases (fibrosis, cirrhosis, and hepatocellular carcinomas). To evaluate a modified high-speed T 2 -corrected multi-echo, single voxel spectroscopy sequence (HISTOV) for liver iron concentration (LIC) quantification in patients with hyperferritinemia, with simultaneous fat fraction (FF) estimation. Retrospective cohort study. Thirty-eight patients with hyperferritinemia were enrolled. HISTOV, a fat-saturated multi-echo gradient echo (GRE) sequence, and a spin echo sequence (FerriScan) were performed at 1.5T. R 2 of the water signal and FF were calculated with HISTOV, and R2* values were derived from the GRE sequence, with R 2 and LIC from FerriScan serving as the references. Linear regression, correlation analyses, receiver operating characteristic analyses, and Bland-Altman analyses were conducted. Abnormal hepatic iron load was detected in 32/38 patients, of whom 10/32 had coexisting steatosis. Strong correlation was found between R2* and FerriScan-LIC (R 2 = 0.861), and between HISTOV-R 2_ water and FerriScan-R 2 (R 2 = 0.889). Furthermore, HISTOV-R 2_ water was not correlated with HISTOV-FF. The area under the curve (AUC) for HISTOV-R 2_ water was 0.974, 0.971, and 1, corresponding to clinical FerriScan-LIC thresholds of 1.8, 3.2, and 7.0 mg/g dw, respectively. No significant difference in the AUC was found between HISTOV-R 2_ water and R2* at any of the LIC thresholds, with P-values of 0.42, 0.37, and 1, respectively. HISTOV-LIC showed excellent agreement with FerriScan-LIC, with a mean bias of 0.00 ± 1.18 mg/g dw, whereas the mean bias between GRE-LIC and FerriScan-LIC was 0.53 ± 1.49 mg/g dw. HISTOV is useful for the quantification and grading of liver iron overload in patients with hyperferritinemia, particularly in cases with coexisting steatosis. HISTOV-LIC showed no systematic bias compared with FerriScan-LIC, making it a promising alternative for iron quantification. 3 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Gaida, T. C.; Snellen, M.; van Dijk, T. A. G. P.; Simons, D. G.
2017-12-01
Coastal erosion induced by natural processes, such as wind, waves, tidal currents, or human interferences endangers human beings, infrastructure, fauna and flora at the oceans and rivers all over the world. In The Netherlands, in particular the North Sea islands are strongly affected by sediment erosion. To protect and stabilize the coastline, beach and shoreface nourishments are frequently performed. Thereby, sediment reservoirs are created that replace the eroded sediments. Increasing the long-term efficiency of coastal protection requires monitoring of the temporal and spatial development of the coastal nourishments. Multi-beam echo-sounders (MBES) allow for detailed and comprehensive investigations of the seabed composition and structure. To investigate the potential of using MBES for monitoring nourishments in a tidal inlet, four MBES surveys per year are carried out at the Dutch Wadden island Ameland. A pre-nourishment MBES survey was performed in April 2017 and the subsequent post-nourishment survey will take place in September 2017. Both surveys are equipped with a Kongsberg EM 2040C dual-head MBES and are supported with extensive grab sampling. In this study the use of MBES backscatter and bathymetry data are considered as an approach for monitoring coastal nourishments. The aim is to develop a monitoring procedure that allows for comparing MBES data taken during different surveys, i.e., with variations in environmental conditions, MBES characteristics and acquisition procedures. Different unsupervised and supervised acoustic seafloor classification techniques are applied to the processed MBES data to classify the seabed sediments. The analysis of the pre-nourishment MBES data indicates that the backscatter and consequently the classification are highly driven by the abundancy of shell fragments. These results will be used as a baseline to investigate the accumulation of the underwater nourishments. Independent grab samples will be used to select the optimal method for monitoring the development of underwater nourishments. This work will contribute to conventional and also to modern coastal protection strategies, e.g. using nature-based solutions, where natural processes (tides, waves) are used to redistribute coastal nourishments.
NASA Astrophysics Data System (ADS)
Grima, C.; Rosales, A.; Blankenship, D. D.; Young, D. A.
2014-12-01
McMurdo Ice Shelf, Antarctica, is characterized by two particular geophysical processes. (1) Marine ice accretion supplies most of the ice shelf material rather than meteoric ice from glacier outflow and snow-falls. (2) A brine layer infiltrates the ice shelf laterally up to 20-km inward. The infiltration mainly initiates at the ice-front from sea water percolation when the firn/snow transition is below sea-level. A better characterization of the McMurdo ice shelf could constrain our knowledges of these mechanisms and assess the stability of the region that hosts numerous human activities from the close McMurdo station (USA) and Scott base (New-Zealand). McMurdo ice shelf is also an analog for the Jovian icy moon Europa where brine pockets are supposed to reside in the ice crust and accretion to occur at the 10-30-km deep ice-ocean interface.The University of Texas Institute for Geophysics (UTIG) acquired two radar survey grids over the McMurdo Ice Shelf during southern summers 2011-2012 and 2012-2013 with the High Capability Radar Sounder (HiCARS) on-board a Basler DC-3 aircraft. HiCARS transmits a chirped signal at 60-MHz central frequency and 15-MHz bandwidth. The corresponding vertical resolution in ice is 5-10 m. An important design goal of the radar was to maintain sufficient dynamic range to correctly measure echo intensities.Here we present the brine infiltration extent and bathymetry derived from its dielectric horizon well distinguishable on the HiCARS radargram. We complement the ice-shelf characterization by classifying its surface thanks to the novel Radar Statistical Reconnaissance (RSR) methodology. The RSR observable is the statistical distribution of the surface echo amplitudes from successive areas defined along-track. The distributions are best-fitted with a theoretical stochastic envelop parameterized with the signal reflectance and scattering. Once those two components are deduced from the fit, they are used in a backscattering model to invert surface properties such as roughness, density, and/or impurity load. This combined analysis gives new insights into the superficial processes and exchanges at the McMurdo ice shelf.
On Cirrus Cloud Fields Measured by the Atmospheric Infrared Sounder
NASA Technical Reports Server (NTRS)
Kahn, Brian H.; Eldering, Annmarie; Liou, Kuo Nan
2006-01-01
A viewgraph presentation showing trends in clouds measured by the Atmospheric Infrared Sounder (AIRS) is given. The topics include: 1) Trends in clouds measured by AIRS: Are they reasonable? 2) Single and multilayered cloud trends; 3) Retrievals of thin cirrus D(sub e) and tau: Single-layered cloud only; 4) Relationships between ECF, D(sub e), tau, and T(sub CLD); and 5) MODIS vs. AIRS retrievals.
NASA Technical Reports Server (NTRS)
Aumann, Hartmut H.; Manning, Evan
2008-01-01
Retrieval Skill quantifies the ability of one retrieval from a sounder to be more accurate than the best forecast relative to another with the same of another sounder. This is summarized using a Retrieval Anomaly Skill Score (RASS) which is the cor (retrieved-background, truth-background) * sqrt(f), Where f is defined as the ratio of accepted to the possible retrievals. Charts show various features and comparisons of RASS to other methods of retrieval.
NASA Technical Reports Server (NTRS)
Tobin, David C.
2005-01-01
The main goal of the project has been to use specialized measurements collected at the Antarctic Plateau to provide validation of the Atmospheric InfraRed Sounder (AIRS) spectral radiances and some AIRS Level 2 products. As proposed, efforts conducted at the University of Wisconsin are focused on providing technical information, data, and software in support of the validation studies.
VAS demonstration: (VISSR Atmospheric Sounder) description
NASA Technical Reports Server (NTRS)
Montgomery, H. E.; Uccellini, L. W.
1985-01-01
The VAS Demonstration (VISSR Atmospheric Sounder) is a project designed to evaluate the VAS instrument as a remote sensor of the Earth's atmosphere and surface. This report describes the instrument and ground processing system, the instrument performance, the valiation as a temperature and moisture profiler compared with ground truth and other satellites, and assesses its performance as a valuable meteorological tool. The report also addresses the availability of data for scientific research.
Rocket/Nimbus Sounder Comparison (RNSC)
NASA Technical Reports Server (NTRS)
1972-01-01
The experimental results for radiance and temperature differences in the Wallops Island comparisons indicate that the differences between satellite and rocket systems are of the same order of magnitude as the differences among the various satellite and rocket sounders. The Arcasondes produced usable data to about 50 km, while the Datasondes require design modification. The SIRS and IRIS soundings provided usable data to 30 mb; extension of these soundings was also investigated.
NASA Astrophysics Data System (ADS)
Feltz, M. L.; Knuteson, R. O.; Revercomb, H. E.
2017-08-01
Upper air temperature is defined as an essential climate variable by the World Meteorological Organization. Two remote sensing technologies being promoted for monitoring stratospheric temperatures are GPS radio occultation (RO) and spectrally resolved IR radiances. This study assesses RO and hyperspectral IR sounder derived temperature products within the stratosphere by comparing IR spectra calculated from GPS RO and IR sounder products to coincident IR observed radiances, which are used as a reference standard. RO dry temperatures from the University Corporation for Atmospheric Research (UCAR) Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission are compared to NASA Atmospheric Infrared Sounder (AIRS) retrievals using a previously developed profile-to-profile collocation method and vertical temperature averaging kernels. Brightness temperatures (BTs) are calculated for both COSMIC and AIRS temperature products and are then compared to coincident AIRS measurements. The COSMIC calculated minus AIRS measured BTs exceed the estimated 0.5 K measurement uncertainty for the winter time extratropics around 35 hPa. These differences are attributed to seasonal UCAR COSMIC biases. Unphysical vertical oscillations are seen in the AIRS L2 temperature product in austral winter Antarctic regions, and results imply a small AIRS tropical warm bias around 35 hPa in the middle stratosphere.
Temperature Anomalies from the AIRS Product in Giovanni for the Climate Community
NASA Technical Reports Server (NTRS)
Ding, Feng; Hearty, Thomas J.; Wei, Jennifer; Theobald, Michael; Vollmer, Bruce; Seiler, Edward; Meyer, David
2018-01-01
The Atmospheric Infrared Sounder (AIRS) mission began with the launch of Aqua in 2002. Over 15 years of AIRS products have been used by the climate research and application communities. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in collaboration with NASA Sounder Team at JPL, provides processing, archiving, and distribution services for NASA sounders: the present Aqua AIRS mission and the succeeding Suomi National Polar-Orbiting Partnership (SNPP) Cross-track Infrared Sounder (CrIS) mission. We generated a Multi-year Monthly Mean and Anomaly product using 14 years of AIRS standard monthly product. The product includes Air Temperature at the Surface and Surface Skin Temperature, both in Ascending/Daytime and Descending/Nighttime mode. The temperature variables and their anomalies are deployed to Giovanni, a Web-based application developed by the GES DISC. Giovanni provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. It is also a powerful tool that stakeholders can use for decision support in planning and preparing for increased climate variability. In this presentation, we demonstrate the functions in Giovanni with use cases employing AIRS Multi-year Monthly Mean and Anomaly variables.
Wide Field Collimator 2 (WFC2) for GOES Imager and Sounder
NASA Technical Reports Server (NTRS)
Etemad, Shahriar; Bremer, James C.; Zukowski, Barbara J.; Pasquale, Bert A.; zukowski, Tmitri J.; Prince, Robert E.; O'Neill, Patrick A.; Ross, Robert W.
2004-01-01
Two of the GOES instruments, the Imager and the Sounder, perform scans of the Earth to provide a full disc picture of the Earth. To verify the entire scan process, an image of a target that covers an 18 deg. circular field-of-view is collimated and projected into the field of regard of each instrument. The Wide Field Collimator 2 (WFC2) has many advantages over its predecessor, WFC1, including lower thermal dissipation higher fir field MTF, smaller package, and a more intuitive (faster) focusing process. The illumination source is an LED array that emits in a narrow spectral band centered at 689 nm, within the visible spectral bands of the Imager and Sounder. The illumination level can be continuously adjusted electronically. Lower thermal dissipation eliminates the need for forced convection cooling and minimizes time to reach thermal stability. The lens system has been optimized for the illumination source spectral output and athernalized to remain in focus during bulk temperature changes within the laboratory environment. The MTF of the lens is higher than that of the WFC1 at the edge of FOV. The target is focused in three orthogonal motions, controlled by an ergonomic system that saves substantial time and produces a sharper focus. Key words: Collimator, GOES, Imager, Sounder, Projector
Togao, Osamu; Keupp, Jochen; Hiwatashi, Akio; Yamashita, Koji; Kikuchi, Kazufumi; Yoneyama, Masami; Honda, Hiroshi
2017-06-01
To assess the quantitative performance of three-dimensional (3D) fast spin-echo (FSE) Dixon amide proton transfer (APT) imaging of brain tumors compared with B 0 correction with separate mapping methods. Twenty-two patients with brain tumors (54.2 ± 18.7 years old, 12 males and 10 females) were scanned at 3 Tesla (T). Z-spectra were obtained at seven different frequency offsets at ±3.1 ppm, ± 3.5 ppm, ± 3.9 ppm, and -1560 ppm. The scan was repeated three times at +3.5 ppm with echo shifts for Dixon B 0 mapping. The APT image corrected by a three-point Dixon-type B 0 map from the same scan (3D-Dixon) or a separate B 0 map (2D-separate and 3D-separate), and an uncorrected APT image (3D-uncorrected) were generated. We compared the APT-weighted signals within a tumor obtained with each 3D method with those obtained with 2D-separate as a reference standard. Excellent agreements and correlations with the 2D-separate were obtained by the 3D-Dixon method for both mean (ICC = 0.964, r = 0.93, P < 0.0001) and 90th-percentile (ICC = 0.972, r = 0.95, P < 0.0001) APT-weighted signals. These agreements and correlations for 3D-Dixon were better than those obtained by the 3D-uncorrected and 3D-separate methods. The 3D FSE Dixon APT method with intrinsic B 0 correction offers a quantitative performance that is similar to that of established two-dimensional (2D) methods. Magn Reson Med 77:2272-2279, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Cronin, Matthew J; Wang, Nian; Decker, Kyle S; Wei, Hongjiang; Zhu, Wen-Zhen; Liu, Chunlei
2017-04-01
Quantitative susceptibility mapping (QSM) is increasingly used to measure variation in tissue composition both in the brain and in other areas of the body in a range of disease pathologies. Although QSM measurements were originally believed to be independent of the echo time (TE) used in the gradient-recalled echo (GRE) acquisition from which they are derived; recent literature (Sood et al., 2016) has shown that these measurements can be highly TE-dependent in a number of brain regions. In this work we systematically investigate possible causes of this effect through analysis of apparent frequency and QSM measurements derived from data acquired at multiple TEs in vivo in healthy brain regions and in cerebral microbleeds (CMBs); QSM data acquired in a gadolinium-doped phantom; and in QSM data derived from idealized simulated phase data. Apparent frequency measurements in the optic radiations (OR) and central corpus callosum (CC) were compared to those predicted by a 3-pool white matter model, however the model failed to fully explain contrasting frequency profiles measured in the OR and CC. Our results show that TE-dependent QSM measurements can be caused by a failure of phase unwrapping algorithms in and around strong susceptibility sources such as CMBs; however, in healthy brain regions this behavior appears to result from intrinsic non-linear phase evolution in the MR signal. From these results we conclude that care must be taken when deriving frequency and QSM measurements in strong susceptibility sources due to the inherent limitations in phase unwrapping; and that while signal compartmentalization due to tissue microstructure and content is a plausible cause of TE-dependent frequency and QSM measurements in healthy brain regions, better sampling of the MR signal and more complex models of tissue are needed to fully exploit this relationship. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavroidis, P; Boci, N; Kostopoulos, S
2015-06-15
Purpose: The aim of this present study is to increase bandwidth (BW) and echo train length (ETL) in Proton Density Turbo Spin Echo (PD TSE) sequences with and without fat saturation (FS) as well as in Turbo Inversion Recovery Magnitude sequences (TIRM) in order to assess whether these sequences are capable of reducing susceptibility artifacts. Methods: We compared 1) TIRM coronal (COR) with the same sequence with increased both BW and ETL 2) Conventional PD TSE sagittal (SAG) with FS with an increased BW 3) Conventional PD TSE SAG without FS with an increased BW 4) Conventional PD TSE SAGmore » without FS with increased both BW and ETL. A quantitative analysis was performed to measure the extent of the susceptibility artifacts. Furthermore, a qualitative analysis was performed by two radiologists in order to evaluate the susceptibility artifacts, image distortion and fat suppression. The depiction of cartilage, menisci, muscles, tendons and bone marrow were also qualitatively analyzed. Results: The quantitative analysis found that the modified TIRM sequence is significantly superior to the conventional one regarding the extent of the susceptibility artifacts. In the qualitative analysis, the modified TIRM sequence was superior to the corresponding conventional one in eight characteristics out of ten that were analyzed. The modified PD TSE with FS was superior to the corresponding conventional one regarding the susceptibility artifacts, image distortion and depiction of bone marrow and cartilage while achieving effective fat saturation. The modified PD TSE sequence without FS with a high (H) BW was found to be superior corresponding to the conventional one in the case of cartilage. Conclusion: Consequently, TIRM sequence with an increased BW and ETL is proposed for producing images of high quality and modified PD TSE with H BW for smaller metals, especially when FS is used.« less
Iqbal, Zohaib; Wilson, Neil E; Thomas, M Albert
2016-03-01
Several different pathologies, including many neurodegenerative disorders, affect the energy metabolism of the brain. Glutamate, a neurotransmitter in the brain, can be used as a biomarker to monitor these metabolic processes. One method that is capable of quantifying glutamate concentration reliably in several regions of the brain is TE-averaged (1) H spectroscopic imaging. However, this type of method requires the acquisition of multiple TE lines, resulting in long scan durations. The goal of this experiment was to use non-uniform sampling, compressed sensing reconstruction and an echo planar readout gradient to reduce the scan time by a factor of eight to acquire TE-averaged spectra in three spatial dimensions. Simulation of glutamate and glutamine showed that the 2.2-2.4 ppm spectral region contained 95% glutamate signal using the TE-averaged method. Peak integration of this spectral range and home-developed, prior-knowledge-based fitting were used for quantitation. Gray matter brain phantom measurements were acquired on a Siemens 3 T Trio scanner. Non-uniform sampling was applied retrospectively to these phantom measurements and quantitative results of glutamate with respect to creatine 3.0 (Glu/Cr) ratios showed a coefficient of variance of 16% for peak integration and 9% for peak fitting using eight-fold acceleration. In vivo scans of the human brain were acquired as well and five different brain regions were quantified using the prior-knowledge-based algorithm. Glu/Cr ratios from these regions agreed with previously reported results in the literature. The method described here, called accelerated TE-averaged echo planar spectroscopic imaging (TEA-EPSI), is a significant methodological advancement and may be a useful tool for categorizing glutamate changes in pathologies where affected brain regions are not known a priori. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Huizinga, Richard J.
2010-01-01
Bathymetric surveys were conducted by the U.S. Geological Survey, in cooperation with the Missouri Department of Transportation, on the Missouri River in the vicinity of nine bridges at seven highway crossings in Kansas City, Missouri, in March 2010. A multibeam echo sounder mapping system was used to obtain channel-bed elevations for river reaches that ranged from 1,640 to 1,800 feet long and extending from bank to bank in the main channel of the Missouri River. These bathymetric scans will be used by the Missouri Department of Transportation to assess the condition of the bridges for stability and integrity with respect to bridge scour. Bathymetric data were collected around every pier that was in water, except those at the edge of the water or in extremely shallow water, and one pier that was surrounded by a large debris raft. A scour hole was present at every pier for which bathymetric data could be obtained. The scour hole at a given pier varied in depth relative to the upstream channel bed, depending on the presence and proximity of other piers or structures upstream from the pier in question. The surveyed channel bed at the bottom of the scour hole was between 5 and 50 feet above bedrock. At bridges with drilled shaft foundations, generally there was exposure of the upstream end of the seal course and the seal course often was undermined to some extent. At one site, the minimum elevation of the scour hole at the main channel pier was about 10 feet below the bottom of the seal course, and the sides of the drilled shafts were evident in a point cloud visualization of the data at that pier. However, drilled shafts generally penetrated 20 feet into bedrock. Undermining of the seal course was evident as a sonic 'shadow' in the point cloud visualization of several of the piers. Large dune features were present in the channel at nearly all of the surveyed sites, as were numerous smaller dunes and many ripples. Several of the sites are on or near bends in the river, resulting in a deep channel thalweg on the outside of the bend at these sites. At structure A5817 on State Highway 269, bedrock exposure was evident in the channel thalweg. The surveyed channel bed at a given site from this study generally was lower than the channel bed obtained during Level II scour assessments in 2002. At piers with well-defined scour holes, the frontal slopes of the holes were somewhat less than recommended values in the literature, and the shape of the holes appeared to be affected by the movement of dune features into and around the holes. The channel bed at all of the surveyed sites was lower than the channel bed at the time of construction, and an analysis of measurement data from the U.S. Geological Survey continuous streamflow-gaging station on the Missouri River at Kansas City, Missouri (station number 06893000), confirmed a lowering trend of the channel-bed elevations with time at the gaging station. The size of the scour holes observed at the surveyed sites likely was affected by the moderate flood conditions on the Missouri River at the time of the surveys. The scour holes likely would be substantially smaller during conditions of low flow.
Quantitative Chemical Shift-Encoded MRI Is an Accurate Method to Quantify Hepatic Steatosis
Kühn, Jens-Peter; Hernando, Diego; Mensel, Birger; Krüger, Paul C.; Ittermann, Till; Mayerle, Julia; Hosten, Norbert; Reeder, Scott B.
2014-01-01
Purpose To compare the accuracy of liver fat quantification using a three-echo chemical shift-encoded magnetic resonance imaging (MRI) technique without and with correction for confounders with spectroscopy (MRS) as the reference standard. Materials and Methods Fifty patients (23 women, mean age 56.6 ± 13.2 years) with fatty liver disease were enrolled. Patients underwent T2-corrected single-voxel MRS and a three-echo chemical shift-encoded gradient echo (GRE) sequence at 3.0T. MRI fat fraction (FF) was calculated without and with T2* and T1 correction and multispectral modeling of fat and compared with MRS-FF using linear regression. Results The spectroscopic range of liver fat was 0.11%–38.7%. Excellent correlation between MRS-FF and MRI-FF was observed when using T2* correction (R2=0.96). With use of T2* correction alone, the slope was significantly different from 1 (1.16 ± 0.03, P < 0.001) and the intercept was different from 0 (1.14% ± 0.50%, P < 0.023). This slope was significantly different than 1.0 when no T1 correction was used (P=0.001). When T2*, T1, and spectral complexity of fat were addressed, the results showed equivalence between fat quantification using MRI and MRS (slope: 1.02 ± 0.03, P=0.528; intercept: 0.26% ± 0.46%, P=0.572). Conclusion Complex three-echo chemical shift-encoded MRI is equivalent to MRS for quantifying liver fat, but only with correction for T2* decay and T1 recovery and use of spectral modeling of fat. This is necessary because T2* decay, T1 recovery, and multispectral complexity of fat are processes which may otherwise bias the measurements. PMID:24123655
Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis.
Kühn, Jens-Peter; Hernando, Diego; Mensel, Birger; Krüger, Paul C; Ittermann, Till; Mayerle, Julia; Hosten, Norbert; Reeder, Scott B
2014-06-01
To compare the accuracy of liver fat quantification using a three-echo chemical shift-encoded magnetic resonance imaging (MRI) technique without and with correction for confounders with spectroscopy (MRS) as the reference standard. Fifty patients (23 women, mean age 56.6 ± 13.2 years) with fatty liver disease were enrolled. Patients underwent T2-corrected single-voxel MRS and a three-echo chemical shift-encoded gradient echo (GRE) sequence at 3.0T. MRI fat fraction (FF) was calculated without and with T2* and T1 correction and multispectral modeling of fat and compared with MRS-FF using linear regression. The spectroscopic range of liver fat was 0.11%-38.7%. Excellent correlation between MRS-FF and MRI-FF was observed when using T2* correction (R(2) = 0.96). With use of T2* correction alone, the slope was significantly different from 1 (1.16 ± 0.03, P < 0.001) and the intercept was different from 0 (1.14% ± 0.50%, P < 0.023). This slope was significantly different than 1.0 when no T1 correction was used (P = 0.001). When T2*, T1, and spectral complexity of fat were addressed, the results showed equivalence between fat quantification using MRI and MRS (slope: 1.02 ± 0.03, P = 0.528; intercept: 0.26% ± 0.46%, P = 0.572). Complex three-echo chemical shift-encoded MRI is equivalent to MRS for quantifying liver fat, but only with correction for T2* decay and T1 recovery and use of spectral modeling of fat. This is necessary because T2* decay, T1 recovery, and multispectral complexity of fat are processes which may otherwise bias the measurements. Copyright © 2013 Wiley Periodicals, Inc.
Random Forest Application for NEXRAD Radar Data Quality Control
NASA Astrophysics Data System (ADS)
Keem, M.; Seo, B. C.; Krajewski, W. F.
2017-12-01
Identification and elimination of non-meteorological radar echoes (e.g., returns from ground, wind turbines, and biological targets) are the basic data quality control steps before radar data use in quantitative applications (e.g., precipitation estimation). Although WSR-88Ds' recent upgrade to dual-polarization has enhanced this quality control and echo classification, there are still challenges to detect some non-meteorological echoes that show precipitation-like characteristics (e.g., wind turbine or anomalous propagation clutter embedded in rain). With this in mind, a new quality control method using Random Forest is proposed in this study. This classification algorithm is known to produce reliable results with less uncertainty. The method introduces randomness into sampling and feature selections and integrates consequent multiple decision trees. The multidimensional structure of the trees can characterize the statistical interactions of involved multiple features in complex situations. The authors explore the performance of Random Forest method for NEXRAD radar data quality control. Training datasets are selected using several clear cases of precipitation and non-precipitation (but with some non-meteorological echoes). The model is structured using available candidate features (from the NEXRAD data) such as horizontal reflectivity, differential reflectivity, differential phase shift, copolar correlation coefficient, and their horizontal textures (e.g., local standard deviation). The influence of each feature on classification results are quantified by variable importance measures that are automatically estimated by the Random Forest algorithm. Therefore, the number and types of features in the final forest can be examined based on the classification accuracy. The authors demonstrate the capability of the proposed approach using several cases ranging from distinct to complex rain/no-rain events and compare the performance with the existing algorithms (e.g., MRMS). They also discuss operational feasibility based on the observed strength and weakness of the method.
Initial experience with 3D isotropic high-resolution 3 T MR arthrography of the wrist.
Sutherland, John K; Nozaki, Taiki; Kaneko, Yasuhito; J Yu, Hon; Rafijah, Gregory; Hitt, David; Yoshioka, Hiroshi
2016-01-16
Our study was performed to evaluate the image quality of 3 T MR wrist arthrograms with attention to ulnar wrist structures, comparing image quality of isotropic 3D proton density fat suppressed turbo spin echo (PDFS TSE) sequence versus standard 2D 3 T sequences as well as comparison with 1.5 T MR arthrograms. Eleven consecutive 3 T MR wrist arthrograms were performed and the following sequences evaluated: 3D isotropic PDFS, repetition time/echo time (TR/TE) 1400/28.3 ms, voxel size 0.35x0.35x0.35 mm, acquisition time 5 min; 2D coronal sequences with slice thickness 2 mm: T1 fat suppressed turbo spin echo (T1FS TSE) (TR/TE 600/20 ms); proton density (PD) TSE (TR/TE 3499/27 ms). A 1.5 T group of 18 studies with standard sequences were evaluated for comparison. All MR imaging followed fluoroscopically guided intra-articular injection of dilute gadolinium contrast. Qualitative assessment related to delineation of anatomic structures between 1.5 T and 3 T MR arthrograms was carried out using Mann-Whitney test and the differences in delineation of anatomic structures among each sequence in 3 T group were analyzed with Wilcoxon signed-rank test. Quantitative assessment of mean relative signal intensity (SI) and relative contrast measurements was performed using Wilcoxon signed-rank test. Mean qualitative scores for 3 T sequences were significantly higher than 1.5 T (p < 0.01), with isotropic 3D PDFS sequence having highest mean qualitative scores (p < 0.05). Quantitative analysis demonstrated no significant difference in relative signal intensity among the 3 T sequences. Significant differences were found in relative contrast between fluid-bone and fluid-fat comparing 3D and 2D PDFS (p < 0.01). 3D isotropic PDFS sequence showed promise in both qualitative and quantitative assessment, suggesting this may be useful for MR wrist arthrograms at 3 T. Primary reasons for diagnostic potential include the ability to make reformations in any obliquity to follow the components of ulnar side wrist structures including triangular fibrocartilage complex. Additionally, isotropic imaging provides thinner slice thickness with less partial volume averaging allowing for identification of subtle injuries.
1988-09-01
S’ardard Form 298 Rev 2-89) • " Del " 1 , -iNS, 19 , q f .If - ACKNOWLEDGMENTS The authors would like to acknowledge the support of numerous...plates, etc.); estimation of rain rate and the observation of the horizontal and vertical structure of rain. The data from the radar sounder will be...crytal habit. The microphysical properties and vertical structure of the clouds are needed for applications of interest to the Air Force such as
New Collections of Aura Atmospheric data Products at the GES DISC
NASA Technical Reports Server (NTRS)
Johnson, James; Ahmad, Suraiya; Gerasimov, Irina; Lepthoukh, Gregory
2008-01-01
The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the primary archive of atmospheric composition data from the Aura Ozone Monitoring Instrument (OMI), Microwave Limb sounder (MLS), and High-Resolution Dynamics Limb Sounder (HIRDLS) instruments. The most recent versions of Aura OMI, MLS and HIRDLS data are available free to the public (http://disc.gsfc.nasa.gov/Aura). TES data are at ASDC (http://eosweb.larc.nasa.gov).
NASA Technical Reports Server (NTRS)
Luhmann, Janet G. (Principal Investigator)
1996-01-01
The purpose of this investigation has been to provide United States co-investigator support toward the preparation of the Topside Ionospheric Sounder and Magnetometer experiments on the Russian Mars-96 (previously Mars-94) mission. The main role has been to assist in the preparation of software tools for the optimum design of the investigation and the evaluation of mission operational plans and orbits.
High resolution microwave spectrometer sounder (HIMSS), volume 1, book 2
NASA Technical Reports Server (NTRS)
1990-01-01
The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) preliminary program plans; (2) contract end item (CEI) specification; and (3) the instrument interface description document. Under the preliminary program plans section, plans dealing with the following subject areas are discussed: spares, performance assurance, configuration management, software implementation, contamination, calibration management, and verification.
1980-06-01
Microthermal Probe System; 2) Acoustic Sounder; 3) Star Sensor; and i 4) Seeing Monitor. Thý in ..ru. cn.tat -ion, much of it one-of-a-kind prototype...profiles of C 2 N2 3) Acoustic Sounder: an instrument that measures C to 300 m altitude; 4) Microthermal Probes: two systems, consisting of three 2...atmospheric program produced - 146 - Y- MICROTHERMAL NICRPHMERI-AL PROBES (3) _j PPRBES (3) WIND SPEED & WIND SPEED & DIRECTION ---- I- DIRECTION
Science Study For A Low Cost Upper Atmosphere Sounder (LOCUS)
NASA Astrophysics Data System (ADS)
Gerber, D.; Swinyard, B. M.; Ellison, B. N.; Siddans, R.; Kerridge, B. J.; Plane, J. M. C.; Feng, W.
2013-12-01
We present the findings of an initial science study to define the spectral bands for the proposed Mesosphere / Lower Thermosphere (MLT) sounder LOCUS. The LOCUS mission (Fig 1) uses disruptive technologies to make key MLT species detectable globally by satellite remote sensing for the first time. This presentation summarises the technological and scientific foundation on which the current 4-band Terahertz (THz) and sub- millimetre wave (SMW) instrument configuration was conceived.
Analysis of Acoustic Depth Sounder Signals with Artificial Neural Networks
1991-04-01
battery pack, processor, and mode switches and (2) a stainless steel shaft 1 meter long and 27 millimeters in diameter, containing 8 milliCurie of...returned signal which is not used in conventional depth sounders due to lack of real-time tools for interpreting the 36 information. The shape and...develop some software tools for conducting the research. Commercial programs for neural network implementation were available, but were "black box" in
High resolution microwave spectrometer sounder (HIMSS), volume 1, book 1
NASA Technical Reports Server (NTRS)
1990-01-01
The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) an instrument overview; (2) an instrument description; (3) the instrument's conceptual design; (4) technical risks and offsets; (5) instrument reliability; (6) commands and telemetry; (7) mass and power budgets; (8) integration and test program; (9) program implementation; and (10) phase CD schedule.
Science Highlights and Lessons Learned from the Atmospheric Infrared Sounder (AIRS)
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.; Fetzer, Eric J.; Suda, Jarrod; Licata, Steve
2011-01-01
The Atmospheric Infrared Sounder (AIRS) and companion instrument, the Advanced Microwave Sounding Unit (AMSU) on the NASA Earth Observing System Aqua spacecraft are facility instruments designed to support measurements of atmospheric temperature, water vapor and a wide range of atmospheric constituents in support of weather forecasting and scientific research in climate and atmospheric chemistry. This paper is an update to the science highlights from a paper by the authors released last year and also looks back at the lessons learned and future needs of the scientific community. These lessons not only include requirements on the measurements, but scientific shortfalls as well. Results from the NASA Science Community Workshop in IR and MW Sounders relating to AIRS and AMSU requirements and concerns are covered and reflect much of what has been learned and what is needed for future atmospheric sounding from Low Earth Orbit.
Initial Retrieval Validation from the Joint Airborne IASI Validation Experiment (JAIVEx)
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Smith, WIlliam L.; Larar, Allen M.; Taylor, Jonathan P.; Revercomb, Henry E.; Mango, Stephen A.; Schluessel, Peter; Calbet, Xavier
2007-01-01
The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite, but also included a strong component focusing on validation of the Atmospheric InfraRed Sounder (AIRS) aboard the AQUA satellite. The cross validation of IASI and AIRS is important for the joint use of their data in the global Numerical Weather Prediction process. Initial inter-comparisons of geophysical products have been conducted from different aspects, such as using different measurements from airborne ultraspectral Fourier transform spectrometers (specifically, the NPOESS Airborne Sounder Testbed Interferometer (NAST-I) and the Scanning-High resolution Interferometer Sounder (S-HIS) aboard the NASA WB-57 aircraft), UK Facility for Airborne Atmospheric Measurements (FAAM) BAe146-301 aircraft insitu instruments, dedicated dropsondes, radiosondes, and ground based Raman Lidar. An overview of the JAIVEx retrieval validation plan and some initial results of this field campaign are presented.
GeoSTAR - A Synthetic Aperture Microwave Sounder for Geostationary Missions
NASA Technical Reports Server (NTRS)
Lambrigtsen, Bjorn; Wilson, William; Tanner, Alan; Kangaslahti, Pekka
2004-01-01
The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new microwave atmospheric sounder under development. It will bring capabilities similar to those now available on low-earth orbiting environmental satellites to geostationary orbit - where such capabilities have not been available. GeoSTAR will synthesize the multimeter aperture needed to achieve the required spatial resolution, which will overcome the obstacle that has prevented a GEO microwave sounder from being implemented until now. The synthetic aperture approach has until recently not been feasible, due to the high power needed to operate the on-board high-speed massively parallel processing system required for 2D-synthesis, as well as a number of system and calibration obstacles. The development effort under way at JPL, with important contributions from the Goddard Space Flight Center and the University of Michigan, is intended to demonstrate the measurement concept and retire much of the technology risk.
Ohno, Naoki; Miyati, Tosiaki; Suzuki, Shuto; Kan, Hirohito; Aoki, Toshitaka; Nakamura, Yoshitaka; Hiramatsu, Yuki; Kobayashi, Satoshi; Gabata, Toshifumi
2018-07-01
To suppress olefinic signals and enable simultaneous and quantitative estimation of multiple functional parameters associated with water and lipid, we investigated a modified method using chemical shift displacement and recovery-based separation of lipid tissue (SPLIT) involving acquisitions with different inversion times (TIs), echo times (TEs), and b-values. Single-shot diffusion echo-planar imaging (SSD-EPI) with multiple b-values (0-3000 s/mm 2 ) was performed without fat suppression to separate water and lipid images using the chemical shift displacement of lipid signals in the phase-encoding direction. An inversion pulse (TI = 292 ms) was applied to SSD-EPI to remove olefinic signals. Consecutively, SSD-EPI (b = 0 s/mm 2 ) was performed with TI = 0 ms and TE = 31.8 ms for T 1 and T 2 measurements, respectively. Under these conditions, transverse water and lipid images at the maximum diameter of the right calf were obtained in six healthy subjects. T 1 , T 2 , and the apparent diffusion coefficients (ADC) were then calculated for the tibialis anterior (TA), gastrocnemius (GM), and soleus (SL) muscles, tibialis bone marrow (TB), and subcutaneous fat (SF). Perfusion-related (D*) and restricted diffusion coefficients (D) were calculated for the muscles. Lastly, the lipid fractions (LF) of the muscles were determined after T 1 and T 2 corrections. The modified SPLIT method facilitated sufficient separation of water and lipid images of the calf, and the inversion pulse with TI of 292 ms effectively suppressed olefinic signals. All quantitative parameters obtained with the modified SPLIT method were found to be in general agreement with those previously reported in the literature. The modified SPLIT technique enabled sufficient suppression of olefinic signals and simultaneous acquisition of quantitative parameters including diffusion, perfusion, T 1 and T 2 relaxation times, and LF. Copyright © 2018. Published by Elsevier Inc.
An, Yeong Yi; Kim, Sung Hun; Kang, Bong Joo
2017-01-01
To determine the added value of qualitative analysis as an adjunct to quantitative analysis for the discrimination of benign and malignant lesions in patients with breast cancer using diffusion-weighted imaging (DWI) with readout-segmented echo-planar imaging (rs-EPI). A total of 99 patients with 144 lesions were reviewed from our prospectively collected database. DWI data were obtained using rs-EPI acquired at 3.0 T. The diagnostic performances of DWI in the qualitative, quantitative, and combination analyses were compared with that of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Additionally, the effect of lesion size on the diagnostic performance of the DWI combination analysis was evaluated. The strongest indicators of malignancy on DWI were a heterogeneous pattern (P = 0.005) and an apparent diffusion coefficient (ADC) value <1.0 × 10-3 mm2/sec (P = 0.002). The area under the curve (AUC) values for the qualitative analysis, quantitative analysis, and combination analysis on DWI were 0.732 (95% CI, 0.651-0.803), 0.780 (95% CI, 0.703-0.846), and 0.826 (95% CI, 0.754-0.885), respectively (P<0.0001). The AUC for the combination analysis on DWI was superior to that for DCE-MRI alone (0.651, P = 0.003) but inferior to that for DCE-MRI plus the ADC value (0.883, P = 0.03). For the DWI combination analysis, the sensitivity was significantly lower in the size ≤1 cm group than in the size >1 cm group (80% vs. 95.6%, P = 0.034). Qualitative analysis of tumor morphology was diagnostically applicable on DWI using rs-EPI. This qualitative analysis adds value to quantitative analyses for lesion characterization in patients with breast cancer.
Water Vapor Measurements by Howard University Raman Lidar during the WAVES 2006 Campaign
NASA Technical Reports Server (NTRS)
Adam, M.; Demoz, B. B.; Whiteman, D. N.; Venable, D. D.; Joseph E.; Gambacorta, A.; Wei, J.; Shephard, M. W.; Miloshevich, L. M.; Barnet, C. D.;
2009-01-01
Retrieval of water vapor mixing ratio using the Howard University Raman Lidar is presented with emphasis on three aspects: i) performance of the lidar against collocated radiosondes and Raman lidar, ii) investigation of the atmospheric state variables when poor agreement between lidar and radiosondes values occurred and iii) a comparison with satellite-based measurements. The measurements were acquired during the Water Vapor Validation Experiment Sondes/Satellites 2006 field campaign. Ensemble averaging of water vapor mixing ratio data from ten night-time comparisons with Vaisala RS92 radiosondes shows on average an agreement within 10 % up to approx. 8 km. A similar analysis of lidar-to-lidar data of over 700 profiles revealed an agreement to within 20 % over the first 7 km (10 % below 4 km). A grid analysis, defined in the temperature - relative humidity space, was developed to characterize the lidar - radiosonde agreement and quantitatively localizes regions of strong and weak correlations as a function of altitude, temperature or relative humidity. Three main regions of weak correlation emerge: i) regions of low relative humidity and low temperature, ii) moderate relative humidity at low temperatures and iii) low relative humidity at moderate temperatures. Comparison of Atmospheric InfraRed Sounder and Tropospheric Emission Sounder satellites retrievals of moisture with that of Howard University Raman Lidar showed a general agreement in the trend but the formers miss a lot of the details in atmospheric structure due to their low resolution. A relative difference of about 20 % is usually found between lidar and satellites measurements.
Remote Sensing of Stratospheric Trace Gases by TELIS
NASA Astrophysics Data System (ADS)
Xu, Jian; Schreier, Franz; Doicu, Adrian; Birk, Manfred; Wagner, Georg; Trautmann, Thomas
2015-11-01
TELIS (TErahertz and submillimeter LImb Sounder) is a balloon-borne cryogenic heterodyne spectrometer with two far infrared and submillimeter channels (1.8THz and 480-650GHz developed by DLR and SRON, respectively). The instrument was designed to investigate atmospheric chemistry and dynamics with a focus on the stratosphere. Between 2009 and 2011, TELIS participated in three winter campaigns in Kiruna, Sweden. The recent campaign took place in 2014 over Timmins, Canada. During previous campaigns, TELIS shared a stratospheric balloon gondola with the balloon version of MIPAS (MIPAS-B) and mini-DOAS. The primary scientific goal of these campaigns has been to monitor the time-dependent chemistry of chlorine and bromine, and to achieve the closure of chemical families inside the polar vortex. In this work, we present retrieved profiles of ozone (O3), hydrogen chlorine (HCl), carbon monoxide (CO), and hydroxyl radical (OH) obtained by the 1.8 THz channel from the polar winter flights during 2009-2011. Furthermore, the corresponding retrieval algorithm is briefly described. The quality of the retrieval products is analyzed in a quantitative manner including: error characterization, internal comparisons of the two different channels, and external comparisons with coincident spaceborne observations. The errors due to the instrument parameters and pressure dominate in the upper troposphere and lower stratosphere, while the errors at higher altitudes are mainly due to the spectroscopic parameters and the radiometric calibration. The comparisons with other limb sounders help us to assess the measurement capabilities and instrument characteristics of TELIS, thereby establishing the instrument as a valuable tool to study the chemical interactions in the stratosphere.
Kameyama, Kyoko Nakao; Kido, Aki; Himoto, Yuki; Moribata, Yusaku; Minamiguchi, Sachiko; Konishi, Ikuo; Togashi, Kaori
2018-06-01
Background Half-Fourier acquisition single-shot turbo spin-echo (HASTE) imaging is now widely used for placental and fetal imaging because of its rapidity and low sensitivity to fetal movement. If placental dysfunction is also predicted by quantitative value obtained from HASTE image, then it might be beneficial for evaluating placental wellbeing. Purpose To ascertain the most suitable magnetic resonance (MR) signal indexes reflecting placental function using HASTE imaging. Material and Methods This retrospective study included 37 consequent patients who had given informed consent to MR imaging (MRI) examinations. All had undergone MRI examinations between February 2014 and June 2015. First, the correlation between T2-relaxation time of normal placenta and gestational age (GA) was examined. Second, correlation between signal intensity ratios (SIRs) using HASTE imaging and placental T2-relaxation time were assessed. The SIRs were calculated using placental signal intensity (SI) relative to the SI of the amniotic fluid, fetal ocular globes, gastric fluid, bladder, maternal psoas major muscles, and abdominal subcutaneous adipose tissue. Results Among the 37 patients, the correlation between T2-relaxation time of the 25 normal placentas and GA showed a moderately strong correlation (Spearman rho = -0.447, P = 0.0250). The most significant correlation with placental T2-relaxation time was observed with the placental SIR relative to the maternal psoas major muscles (SIR pl./psoas muscle ) (Spearman rho = -0.531, P = 0.0007). Conclusion This study revealed that SIR pl./psoas muscle showed the best correlation to placental T2-relaxation time. Results show that SIR pl./psoas muscle might be optimal as a clinically available quantitative index of placental function.
Quantitative Susceptibility Mapping in Parkinson's Disease.
Langkammer, Christian; Pirpamer, Lukas; Seiler, Stephan; Deistung, Andreas; Schweser, Ferdinand; Franthal, Sebastian; Homayoon, Nina; Katschnig-Winter, Petra; Koegl-Wallner, Mariella; Pendl, Tamara; Stoegerer, Eva Maria; Wenzel, Karoline; Fazekas, Franz; Ropele, Stefan; Reichenbach, Jürgen Rainer; Schmidt, Reinhold; Schwingenschuh, Petra
2016-01-01
Quantitative susceptibility mapping (QSM) and R2* relaxation rate mapping have demonstrated increased iron deposition in the substantia nigra of patients with idiopathic Parkinson's disease (PD). However, the findings in other subcortical deep gray matter nuclei are converse and the sensitivity of QSM and R2* for morphological changes and their relation to clinical measures of disease severity has so far been investigated only sparsely. The local ethics committee approved this study and all subjects gave written informed consent. 66 patients with idiopathic Parkinson's disease and 58 control subjects underwent quantitative MRI at 3T. Susceptibility and R2* maps were reconstructed from a spoiled multi-echo 3D gradient echo sequence. Mean susceptibilities and R2* rates were measured in subcortical deep gray matter nuclei and compared between patients with PD and controls as well as related to clinical variables. Compared to control subjects, patients with PD had increased R2* values in the substantia nigra. QSM also showed higher susceptibilities in patients with PD in substantia nigra, in the nucleus ruber, thalamus, and globus pallidus. Magnetic susceptibility of several of these structures was correlated with the levodopa-equivalent daily dose (LEDD) and clinical markers of motor and non-motor disease severity (total MDS-UPDRS, MDS-UPDRS-I and II). Disease severity as assessed by the Hoehn & Yahr scale was correlated with magnetic susceptibility in the substantia nigra. The established finding of higher R2* rates in the substantia nigra was extended by QSM showing superior sensitivity for PD-related tissue changes in nigrostriatal dopaminergic pathways. QSM additionally reflected the levodopa-dosage and disease severity. These results suggest a more widespread pathologic involvement and QSM as a novel means for its investigation, more sensitive than current MRI techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jutras, Jean-David
MRI-only Radiation Treatment Planning (RTP) is becoming increasingly popular because of a simplified work-flow, and less inconvenience to the patient who avoids multiple scans. The advantages of MRI-based RTP over traditional CT-based RTP lie in its superior soft-tissue contrast, and absence of ionizing radiation dose. The lack of electron-density information in MRI can be addressed by automatic tissue classification. To distinguish bone from air, which both appear dark in MRI, an ultra-short echo time (UTE) pulse sequence may be used. Quantitative MRI parametric maps can provide improved tissue segmentation/classification and better sensitivity in monitoring disease progression and treatment outcome thanmore » standard weighted images. Superior tumor contrast can be achieved on pure T{sub 1} images compared to conventional T{sub 1}-weighted images acquired in the same scan duration and voxel resolution. In this study, we have developed a robust and fast quantitative MRI acquisition and post-processing work-flow that integrates these latest advances into the MRI-based RTP of brain lesions. Using 3D multi-echo FLASH images at two different optimized flip angles (both acquired in under 9 min, and 1mm isotropic resolution), parametric maps of T{sub 1}, proton-density (M{sub 0}), and T{sub 2}{sup *} are obtained with high contrast-to-noise ratio, and negligible geometrical distortions, water-fat shifts and susceptibility effects. An additional 3D UTE MRI dataset is acquired (in under 4 min) and post-processed to classify tissues for dose simulation. The pipeline was tested on four healthy volunteers and a clinical trial on brain cancer patients is underway.« less
Zhang, Jingwei; Zhou, Dong; Nguyen, Thanh D; Spincemaille, Pascal; Gupta, Ajay; Wang, Yi
2017-05-01
Our objective was to demonstrate the feasibility of using hyperventilation as an efficient vasoconstrictive challenge and prior knowledge as denoising constraints for cerebral metabolic rate of oxygen (CMRO 2 ) mapping based upon quantitative susceptibility mapping (QSM). Three-dimensional (3D) multi-echo gradient echo and arterial spin labeling imaging were performed to calculate QSM and perfusion maps before and after a hyperventilation challenge in 11 healthy subjects. For comparison, this was repeated using a caffeine challenge. Whole-brain CMRO 2 and oxygen extraction fraction (OEF) maps were computed using constrained optimization. Hyperventilation scans were repeated to measure reproducibility. Regional agreement of CMRO 2 and OEF maps was analyzed within the cortical gray matter (CGM) using t-test and Bland-Altman plots. Hyperventilation challenge eliminates the 30-min waiting time needed for caffeine to exert its vasoconstrictive effects. Mean CMRO 2 (in µmol/100g/min) obtained in CGM using the caffeine and repeated hyperventilation scans were 149 ± 16, 153 ± 19, and 150 ± 20, respectively. This corresponded to an OEF of 33.6 ± 3.4%, 32.3 ± 3.2%, and 34.1 ± 3.8% at baseline state and 39.8 ± 4.8%, 43.6 ± 6.2%, and 42.8 ± 6.8% at challenged state, respectively. Hyperventilation scans produced a good agreement of CMRO 2 and OEF values. Hyperventilation is a feasible, reproducible, and efficient vasoconstrictive challenge for QSM-based quantitative CMRO 2 mapping. Magn Reson Med 77:1762-1773, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Lancione, Marta; Tosetti, Michela; Donatelli, Graziella; Cosottini, Mirco; Costagli, Mauro
2017-11-01
The aim of this work was to assess the impact of tissue structural orientation on quantitative susceptibility mapping (QSM) reliability, and to provide a criterion to identify voxels in which measures of magnetic susceptibility (χ) are most affected by spatial orientation effects. Four healthy volunteers underwent 7-T magnetic resonance imaging (MRI). Multi-echo, gradient-echo sequences were used to obtain quantitative maps of frequency shift (FS) and χ. Information from diffusion tensor imaging (DTI) was used to investigate the relationship between tissue orientation and FS measures and QSM. After sorting voxels on the basis of their fractional anisotropy (FA), the variations in FS and χ values over tissue orientation were measured. Using a K-means clustering algorithm, voxels were separated into two groups depending on the variability of measures within each FA interval. The consistency of FS and QSM values, observed at low FA, was disrupted for FA > 0.6. The standard deviation of χ measured at high FA (0.0103 ppm) was nearly five times that at low FA (0.0022 ppm). This result was consistent through data across different head positions and for different brain regions considered separately, which confirmed that such behavior does not depend on structures with different bulk susceptibility oriented along particular angles. The reliability of single-orientation QSM anticorrelates with local FA. QSM provides replicable values with little variability in brain regions with FA < 0.6, but QSM should be interpreted cautiously in major and coherent fiber bundles, which are strongly affected by structural anisotropy and magnetic susceptibility anisotropy. Copyright © 2017 John Wiley & Sons, Ltd.
Nketiah, Gabriel; Selnaes, Kirsten M; Sandsmark, Elise; Teruel, Jose R; Krüger-Stokke, Brage; Bertilsson, Helena; Bathen, Tone F; Elschot, Mattijs
2018-05-01
To evaluate the effect of correction for B 0 inhomogeneity-induced geometric distortion in echo-planar diffusion-weighted imaging on quantitative apparent diffusion coefficient (ADC) analysis in multiparametric prostate MRI. Geometric distortion correction was performed in echo-planar diffusion-weighted images (b = 0, 50, 400, 800 s/mm 2 ) of 28 patients, using two b 0 scans with opposing phase-encoding polarities. Histology-matched tumor and healthy tissue volumes of interest delineated on T 2 -weighted images were mapped to the nondistortion-corrected and distortion-corrected data sets by resampling with and without spatial coregistration. The ADC values were calculated on the volume and voxel level. The effect of distortion correction on ADC quantification and tissue classification was evaluated using linear-mixed models and logistic regression, respectively. Without coregistration, the absolute differences in tumor ADC (range: 0.0002-0.189 mm 2 /s×10 -3 (volume level); 0.014-0.493 mm 2 /s×10 -3 (voxel level)) between the nondistortion-corrected and distortion-corrected were significantly associated (P < 0.05) with distortion distance (mean: 1.4 ± 1.3 mm; range: 0.3-5.3 mm). No significant associations were found upon coregistration; however, in patients with high rectal gas residue, distortion correction resulted in improved spatial representation and significantly better classification of healthy versus tumor voxels (P < 0.05). Geometric distortion correction in DWI could improve quantitative ADC analysis in multiparametric prostate MRI. Magn Reson Med 79:2524-2532, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
I Vivo Quantitative Ultrasound Imaging and Scatter Assessments.
NASA Astrophysics Data System (ADS)
Lu, Zheng Feng
There is evidence that "instrument independent" measurements of ultrasonic scattering properties would provide useful diagnostic information that is not available with conventional ultrasound imaging. This dissertation is a continuing effort to test the above hypothesis and to incorporate quantitative ultrasound methods into clinical examinations for early detection of diffuse liver disease. A well-established reference phantom method was employed to construct quantitative ultrasound images of tissue in vivo. The method was verified by extensive phantom tests. A new method was developed to measure the effective attenuation coefficient of the body wall. The method relates the slope of the difference between the echo signal power spectrum from a uniform region distal to the body wall and the echo signal power spectrum from a reference phantom to the body wall attenuation. The accuracy obtained from phantom tests suggests further studies with animal experiments. Clinically, thirty-five healthy subjects and sixteen patients with diffuse liver disease were studied by these quantitative ultrasound methods. The average attenuation coefficient in normals agreed with previous investigators' results; in vivo backscatter coefficients agreed with the results from normals measured by O'Donnell. Strong discriminating power (p < 0.001) was found for both attenuation and backscatter coefficients between fatty livers and normals; a significant difference (p < 0.01) was observed in the backscatter coefficient but not in the attenuation coefficient between cirrhotic livers and normals. An in vivo animal model of steroid hepatopathy was used to investigate the system sensitivity in detecting early changes in canine liver resulting from corticosteroid administration. The average attenuation coefficient slope increased from 0.7 dB/cm/MHz in controls to 0.82 dB/cm/MHz (at 6 MHz) in treated animals on day 14 into the treatment, and the backscatter coefficient was 26times 10^{ -4}cm^{-1}sr^{-1} in controls compared with 74times 10^{-4}cm^{-1}sr^ {-1} (at 6 MHz) in treated animals. A simplified quantitative approach using video image signals was developed. Results derived both from the r.f. signal analysis and from the video signal analysis are sensitive to the changes in the liver in this animal model.
Open Science CBS Neuroimaging Repository: Sharing ultra-high-field MR images of the brain.
Tardif, Christine Lucas; Schäfer, Andreas; Trampel, Robert; Villringer, Arno; Turner, Robert; Bazin, Pierre-Louis
2016-01-01
Magnetic resonance imaging at ultra high field opens the door to quantitative brain imaging at sub-millimeter isotropic resolutions. However, novel image processing tools to analyze these new rich datasets are lacking. In this article, we introduce the Open Science CBS Neuroimaging Repository: a unique repository of high-resolution and quantitative images acquired at 7 T. The motivation for this project is to increase interest for high-resolution and quantitative imaging and stimulate the development of image processing tools developed specifically for high-field data. Our growing repository currently includes datasets from MP2RAGE and multi-echo FLASH sequences from 28 and 20 healthy subjects respectively. These datasets represent the current state-of-the-art in in-vivo relaxometry at 7 T, and are now fully available to the entire neuroimaging community. Copyright © 2015 Elsevier Inc. All rights reserved.
An approach to real-time magnetic resonance imaging for speech production
NASA Astrophysics Data System (ADS)
Narayanan, Shrikanth; Nayak, Krishna; Byrd, Dani; Lee, Sungbok
2003-04-01
Magnetic resonance imaging has served as a valuable tool for studying primarily static postures in speech production. Now, recent improvements in imaging techniques, particularly in temporal resolution, are making it possible to examine the dynamics of vocal tract shaping during speech. Examples include Mady et al. (2001, 2002) (8 images/second, T1 fast gradient echo) and Demolin et al. (2000) (4-5 images/second, ultra fast turbo spin echo sequence). The present study uses a non 2D-FFT acquisition strategy (spiral k-space trajectory) on a GE Signa 1.5T CV/i scanner with a low-flip angle spiral gradient echo originally developed for cardiac imaging [Kerr et al. (1997), Nayak et al. (2001)] with reconstruction rates of 8-10 images/second. The experimental stimuli included English sentences varying the syllable position of /n, r, l/ (spoken by 2 subjects) and Tamil sentences varying among five liquids (spoken by one subject). The imaging parameters were the following: 15 deg flip angle, 20-interleaves, 6.7 ms TR, 1.88 mm resolution over a 20 cm FOV, 5 mm slice thickness, and 2.4 ms spiral readouts. Data show clear real-time movements of the lips, tongue and velum. Sample movies and data analysis strategies will be presented. Segmental durations, positions, and inter-articulator timing can all be quantitatively evaluated. [Work supported by NIH.
Surface and Basal Roughness in Radar Sounding Data: Obstacle and Opportunity
NASA Astrophysics Data System (ADS)
Schroeder, D. M.; Grima, C.; Haynes, M.
2015-12-01
The surface and basal roughness of glaciers, ice sheets, and ice shelves can pose a significant obstacle to the visual interpretation and quantitative analysis of radar sounding data. Areas of high surface roughness - including grounding zones, shear margins, and crevasse fields - can produce clutter and side-lobe signals that obscure the interpretation of englacial and subglacial features. These areas can also introduce significant variation in bed echo strength profiles as a result of losses from two-way propagation through rough ice surfaces. Similarly, reflections from rough basal interfaces beneath ice sheets and ice shelves can also result in large, spatially variable losses in bed echo power. If unmitigated and uncorrected, these effects can degrade or prevent the definitive interpretation of material and geometric properties at the base of ice sheets and ice shelves using radar reflectivity and bed echo character. However, these effects also provide geophysical signatures of surface and basal interface character - including surface roughness, firn density, subglacial bedform geometry, ice shelf basal roughness, marine-ice/brine detection, and crevasse geometry - that can be observed and constrained by exploiting roughness effects in radar sounding data. We present a series of applications and approaches for characterizing and correcting surface and basal roughness effects for airborne radar sounding data collected in Antarctica. We also present challenges, insights, and opportunities for extending these techniques to the orbital radar sounding of Europa's ice shell.
The Atmospheric Transmission Generation System for Satellite Infrared Sounders.
1981-07-01
OF REPORT & PERIOD COVERED .) The Atmospheric Transmission Generation System Final 7.. for Satellite Infrared Sounders. .PERF6~0,1 D* C . R TR 81-03 7...2E10.3) (I card) DEPTH - optical depth SWING - molecular rejection criterion Card Set C NMODL, ISMDL, INMDL, ZA FORMAT (313,FlO.3) (1 card) NMODL...the satellite imagery on the SPADS . The list of clear column station indices corresponding to the station locations in storage are read from logical
Millimeter radiometer system technology
NASA Technical Reports Server (NTRS)
Wilson, W. J.; Swanson, P. N.
1989-01-01
JPL has had a large amount of experience with spaceborne microwave/millimeter wave radiometers for remote sensing. All of the instruments use filled aperture antenna systems from 5 cm diameter for the microwave Sounder Units (MSU), 16 m for the microwave limb sounder (MLS) to 20 m for the large deployable reflector (LDR). The advantages of filled aperture antenna systems are presented. The requirements of the 10 m Geoplat antenna system, 10 m multified antenna, and the MLS are briefly discussed.
Millimeter radiometer system technology
NASA Astrophysics Data System (ADS)
Wilson, W. J.; Swanson, P. N.
1989-07-01
JPL has had a large amount of experience with spaceborne microwave/millimeter wave radiometers for remote sensing. All of the instruments use filled aperture antenna systems from 5 cm diameter for the microwave Sounder Units (MSU), 16 m for the microwave limb sounder (MLS) to 20 m for the large deployable reflector (LDR). The advantages of filled aperture antenna systems are presented. The requirements of the 10 m Geoplat antenna system, 10 m multified antenna, and the MLS are briefly discussed.
NASA Astrophysics Data System (ADS)
Penny, M. F.; Phillips, D. M.
1981-03-01
At this Symposium, research on laser hydrography and related development programs currently in progress in the United States of America, Canada, and Australia, were reported. The depth sounding systems described include the US Airborne Oceanographic Lidar and Hydrographic Airborne Laser Sounder, the Canadian Profiling Lidar Bathymeter, and the Australian Laser Airborne Depth Sounder. Other papers presented research on blue-green lasers, theoretical modelling, position fixing, and data processing.
An Investigation of the Characterization of Cloud Contamination in Hyperspectral Radiances
NASA Technical Reports Server (NTRS)
McCarty, William; Jedlovec, Gary J.; LeMarshall, John
2007-01-01
In regions lacking direct observations, the assimilation of radiances from infrared and microwave sounders is the primary method for characterizing the atmosphere in the analysis process. In recent years, technological advances have led to the launching of more advanced sounders, particularly in the thermal infrared spectrum. With the advent of these hyperspectral sounders, the amount of data available for the analysis process has and will continue to be dramatically increased. However, the utilization of infrared radiances in variational assimilation can be problematic in the presence of clouds; specifically the assessment of the presence of clouds in an instantaneous field of view (IFOV) and the contamination in the individual channels within the IFOV. Various techniques have been developed to determine if a channel is contaminated by clouds. The work presented in this paper and subsequent presentation will investigate traditional techniques and compare them to a new technique, the C02 sorting technique, which utilizes the high spectral resolution of the Atmospheric Infrared Sounder (AIRS) within the framework of the Gridpoint Statistical Interpolation (GSI) 3DVAR system. Ultimately, this work is done in preparation for the assessment of short-term forecast impacts with the regional assimilation of AIRS radiances within the analysis fields of the Weather Research and Forecast Nonhydrostatic Mesoscale Model (WRF-NMM) at the NASA Short-term Prediction Research and Transition (SPORT) Center.
NASA Technical Reports Server (NTRS)
Manyin, Michael; Douglass, Anne; Schoeberl, Mark
2010-01-01
Vertical convective transport is a key element of the tropospheric circulation. Convection lofts air from the boundary layer into the free troposphere, allowing surface emissions to travel much further, and altering the rate of chemical processes such as ozone production. This study uses satellite observations to focus on the convective transport of CO from the boundary layer to the mid and upper troposphere. Our hypothesis is that strong convection associated with high rain rate regions leads to a correlation between mid level and upper level CO amounts. We first test this hypothesis using the Global Modeling Initiative (GMI) chemistry and transport model. We find the correlation is robust and increases as the precipitation rate (the strength of convection) increases. We next examine three years of CO profiles from the Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) instruments aboard EOS Aura. Rain rates are taken from the Tropical Rainfall Measuring Mission (TRMM) 3B-42 multi-satellite product. Again we find a correlation between mid-level and upper tropospheric CO, which increases with rain rate. Our result shows the critical importance of tropical convection in coupling vertical levels of the troposphere in the transport of trace gases. The effect is seen most clearly in strong convective regions such as the Inter-tropical Convergence Zone.
Extending Stability Through Hierarchical Clusters in Echo State Networks
Jarvis, Sarah; Rotter, Stefan; Egert, Ulrich
2009-01-01
Echo State Networks (ESN) are reservoir networks that satisfy well-established criteria for stability when constructed as feedforward networks. Recent evidence suggests that stability criteria are altered in the presence of reservoir substructures, such as clusters. Understanding how the reservoir architecture affects stability is thus important for the appropriate design of any ESN. To quantitatively determine the influence of the most relevant network parameters, we analyzed the impact of reservoir substructures on stability in hierarchically clustered ESNs, as they allow a smooth transition from highly structured to increasingly homogeneous reservoirs. Previous studies used the largest eigenvalue of the reservoir connectivity matrix (spectral radius) as a predictor for stable network dynamics. Here, we evaluate the impact of clusters, hierarchy and intercluster connectivity on the predictive power of the spectral radius for stability. Both hierarchy and low relative cluster sizes extend the range of spectral radius values, leading to stable networks, while increasing intercluster connectivity decreased maximal spectral radius. PMID:20725523
Echo simulator with novel training and competency testing tools.
Sheehan, Florence H; Otto, Catherine M; Freeman, Rosario V
2013-01-01
We developed and validated an echo simulator with three novel tools that facilitate training and enable quantitative and objective measurement of psychomotor as well as cognitive skill. First, the trainee can see original patient images - not synthetic or simulated images - that morph in real time as the mock transducer is manipulated on the mannequin. Second, augmented reality is used for Visual Guidance, a tool that assists the trainee in scanning by displaying the target organ in 3-dimensions (3D) together with the location of the current view plane and the plane of the anatomically correct view. Third, we introduce Image Matching, a tool that leverages the aptitude of the human brain for recognizing similarities and differences to help trainees learn to perform visual assessment of ultrasound images. Psychomotor competence is measured in terms of the view plane angle error. The construct validity of the simulator for competency testing was established by demonstrating its ability to discriminate novices vs. experts.
Wu, Pei-Hsin; Cheng, Cheng-Chieh; Wu, Ming-Long; Chao, Tzu-Cheng; Chung, Hsiao-Wen; Huang, Teng-Yi
2014-01-01
The dual echo steady-state (DESS) sequence has been shown successful in achieving fast T2 mapping with good precision. Under-estimation of T2, however, becomes increasingly prominent as the flip angle decreases. In 3D DESS imaging, therefore, the derived T2 values would become a function of the slice location in the presence of non-ideal slice profile of the excitation RF pulse. Furthermore, the pattern of slice-dependent variation in T2 estimates is dependent on the RF pulse waveform. Multi-slice 2D DESS imaging provides better inter-slice consistency, but the signal intensity is subject to integrated effects of within-slice distribution of the actual flip angle. Consequently, T2 measured using 2D DESS is prone to inaccuracy even at the designated flip angle of 90°. In this study, both phantom and human experiments demonstrate the above phenomena in good agreement with model prediction. © 2013.
Geith, Tobias; Schmidt, Gerwin; Biffar, Andreas; Dietrich, Olaf; Dürr, Hans Roland; Reiser, Maximilian; Baur-Melnyk, Andrea
2012-11-01
The objective of our study was to compare the diagnostic value of qualitative diffusion-weighted imaging (DWI), quantitative DWI, and chemical-shift imaging in a single prospective cohort of patients with acute osteoporotic and malignant vertebral fractures. The study group was composed of patients with 26 osteoporotic vertebral fractures (18 women, eight men; mean age, 69 years; age range, 31 years 6 months to 86 years 2 months) and 20 malignant vertebral fractures (nine women, 11 men; mean age, 63.4 years; age range, 24 years 8 months to 86 years 4 months). T1-weighted, STIR, and T2-weighted sequences were acquired at 1.5 T. A DW reverse fast imaging with steady-state free precession (PSIF) sequence at different delta values was evaluated qualitatively. A DW echo-planar imaging (EPI) sequence and a DW single-shot turbo spin-echo (TSE) sequence at different b values were evaluated qualitatively and quantitatively using the apparent diffusion coefficient. Opposed-phase sequences were used to assess signal intensity qualitatively. The signal loss between in- and opposed-phase images was determined quantitatively. Two-tailed Fisher exact test, Mann-Whitney test, and receiver operating characteristic analysis were performed. Sensitivities, specificities, and accuracies were determined. Qualitative DW-PSIF imaging (delta = 3 ms) showed the best performance for distinguishing between benign and malignant fractures (sensitivity, 100%; specificity, 88.5%; accuracy, 93.5%). Qualitative DW-EPI (b = 50 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.50]) and DW single-shot TSE imaging (b = 100 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.18]; b = 400 s/mm(2) [p = 0.18]; b = 600 s/mm(2) [p = 0.39]) did not indicate significant differences between benign and malignant fractures. DW-EPI using a b value of 500 s/mm(2) (p = 0.01) indicated significant differences between benign and malignant vertebral fractures. Quantitative DW-EPI (p = 0.09) and qualitative opposed-phase imaging (p = 0.06) did not exhibit significant differences, quantitative DW single-shot TSE imaging (p = 0.002) and quantitative chemical-shift imaging (p = 0.01) showed significant differences between benign and malignant fractures. The DW-PSIF sequence (delta = 3 ms) had the highest accuracy in differentiating benign from malignant vertebral fractures. Quantitative chemical-shift imaging and quantitative DW single-shot TSE imaging had a lower accuracy than DW-PSIF imaging because of a large overlap. Qualitative assessment of opposed-phase, DW-EPI, and DW single-shot TSE sequences and quantitative assessment of the DW-EPI sequence were not suitable for distinguishing between benign and malignant vertebral fractures.
Liu, Jonathan; Decatur, John; Proni, Gloria; Champeil, Elise
2010-01-30
Identification of 3,4-methylenedioxy-N-methylamphetamine (MDMA, ecstasy) in five cases of intoxication using nuclear magnetic resonance (NMR) spectroscopy of human urine is reported. A new water suppression technique PURGE (Presaturation Utilizing Relaxation Gradients and Echoes) was used. A calibration curve was obtained using spiked samples. The method gave a linear response (correlation coefficient of 0.992) over the range 0.01-1mg/mL. Subsequently, quantitation of the amount of MDMA present in the samples was performed. The benefit and reliability of NMR investigations of human urine for cases of intoxication with MDMA are discussed. Published by Elsevier Ireland Ltd.
Callot, Virginie; Duhamel, Guillaume; Cozzone, Patrick J; Kober, Frank
2008-10-01
Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images from the SC are needed, in cases of rapidly evolving conditions, to decrease the duration of anesthesia or to improve MR exploration by including additional MR measurements. Copyright (c) 2008 John Wiley & Sons, Ltd.
Kumar, Dushyant; Hariharan, Hari; Faizy, Tobias D; Borchert, Patrick; Siemonsen, Susanne; Fiehler, Jens; Reddy, Ravinder; Sedlacik, Jan
2018-05-12
We present a computationally feasible and iterative multi-voxel spatially regularized algorithm for myelin water fraction (MWF) reconstruction. This method utilizes 3D spatial correlations present in anatomical/pathological tissues and underlying B1 + -inhomogeneity or flip angle inhomogeneity to enhance the noise robustness of the reconstruction while intrinsically accounting for stimulated echo contributions using T2-distribution data alone. Simulated data and in vivo data acquired using 3D non-selective multi-echo spin echo (3DNS-MESE) were used to compare the reconstruction quality of the proposed approach against those of the popular algorithm (the method by Prasloski et al.) and our previously proposed 2D multi-slice spatial regularization spatial regularization approach. We also investigated whether the inter-sequence correlations and agreements improved as a result of the proposed approach. MWF-quantifications from two sequences, 3DNS-MESE vs 3DNS-gradient and spin echo (3DNS-GRASE), were compared for both reconstruction approaches to assess correlations and agreements between inter-sequence MWF-value pairs. MWF values from whole-brain data of six volunteers and two multiple sclerosis patients are being reported as well. In comparison with competing approaches such as Prasloski's method or our previously proposed 2D multi-slice spatial regularization method, the proposed method showed better agreements with simulated truths using regression analyses and Bland-Altman analyses. For 3DNS-MESE data, MWF-maps reconstructed using the proposed algorithm provided better depictions of white matter structures in subcortical areas adjoining gray matter which agreed more closely with corresponding contrasts on T2-weighted images than MWF-maps reconstructed with the method by Prasloski et al. We also achieved a higher level of correlations and agreements between inter-sequence (3DNS-MESE vs 3DNS-GRASE) MWF-value pairs. The proposed algorithm provides more noise-robust fits to T2-decay data and improves MWF-quantifications in white matter structures especially in the sub-cortical white matter and major white matter tract regions. Copyright © 2018 Elsevier Inc. All rights reserved.
The Advanced Technology Microwave Sounder (ATMS): First Year On-Orbit
NASA Technical Reports Server (NTRS)
Kim, Edward J.
2012-01-01
The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first flight unit was launched a year ago in October, 2011 aboard the Suomi-National Polar-Orbiting Partnership (S-NPP) satellite, part of the new Joint Polar-Orbiting Satellite System (JPSS). Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction models; and A TMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet sounding requirements under cloudy sky conditions and provide key profile information near the surface. ATMS was designed & built by Aerojet Corporation in Azusa, California, (now Northrop Grumman Electronic Systems). It has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-AI/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). It continues their cross-track scanning geometry, but for the first time, provides Nyquist sample spacing. All this is accomplished with approximately V. the volume, Y, the mass, and Y, the power of the three AMSUs. A description will be given of its performance from its first year of operation as determined by post-launch calibration activities. These activities include radiometric calibration using the on-board warm targets and cold space views, and geolocation determination. Example imagery and zooms of specific weather events will be shown. The second ATMS flight model is currently under construction and planned for launch on the "Jl" satellite of the JPSS program in approximately 2016. Additional units are expected on the J2 and 13 satellites, as well as potentially on future European METOP satellites.
NASA Astrophysics Data System (ADS)
Ramanathan, A. K.; Mao, J.; Abshire, J. B.; Kawa, S. R.
2015-12-01
Remote sensing measurements of CO2 from space can help improve our understanding of the carbon cycle and help constrain the global carbon budget. However, such measurements need to be sufficiently accurate to detect small (1 ppm) changes in the CO2 mixing ratio (XCO2) against a large background (~ 400 ppm). Satellite measurements of XCO2 using passive spectrometers, such as those from the Japanese GOSAT (Greenhouse gas Observing Satellite) and the NASA OCO-2 (Orbiting Carbon Observatory-2) are limited to daytime sunlit portions of the Earth and are susceptible to biases from clouds and aerosols. For this reason, NASA commissioned the formulation study of ASCENDS a space-based lidar mission. NASA Goddard Space Flight Center's CO2 Sounder lidar is one candidate approach for the ASCENDS mission. The NASA GSFC CO2 Sounder measures the CO2 mixing ratio using a pulsed multi-wavelength integrated path differential absorption (IPDA) approach. The CO2 Sounder has flown in the 2011, 2013 and 2014 ASCENDS airborne campaigns over the continental US, and has produced measurements in close agreement with in situ measurements of the CO2 column. In 2014, the CO2 Sounder upgraded its laser with a precision step-locked diode laser source to improve the lidar wavelength position accuracy. It also improved its optical receiver with a low-noise, high efficiency, HgCdTe avalanche photo diode detector. The combination of these two technologies enabled lidar XCO2 measurements with unprecedented accuracy. In this presentation, we show analysis from the ASCENDS 2014 field campaign, exploring: (1) Horizontal XCO2 gradients measured by the lidar, (2) Comparisons of lidar XCO2 measurements against the Parameterized Chemistry Transport Model (PCTM), and (3) Lidar column water vapor measurements using a HDO absorption line that occurs next to the CO2 absorption line. This can reduce the uncertainty in the dry air column used in XCO2 retrievals.
NASA Technical Reports Server (NTRS)
Olsen, Mark A.; Douglass, Anne R.; Newman, Paul A.; Gille, John C.; Nardi, Bruno; Yudin, Valery A.; Kinnison, Douglas E.; Khosravi, Rashid
2008-01-01
On 26 January 2006, the High Resolution Dynamic Limb Sounder (HIRDLS) observed low mixing ratios of ozone and nitric acid in an approximately 2 km vertical layer near 100 hPa extending from the subtropics to 55 degrees N over North America. The subsequent evolution of the layer is simulated with the Global Modeling Initiative (GMI) model and substantiated with HIRDLS observations. Air with low mixing ratios of ozone is transported poleward to 80 degrees N. Although there is evidence of mixing with extratropical air and diabatic descent, much of the tropical intrusion returns to the subtropics. This study demonstrates that HIRDLS and the GMI model are capable of resolving thin intrusion events. The observations combined with simulation are a first step towards development of a quantitative understanding of the lower stratospheric ozone budget.
Methods of quantitative and qualitative analysis of bird migration with a tracking radar
NASA Technical Reports Server (NTRS)
Bruderer, B.; Steidinger, P.
1972-01-01
Methods of analyzing bird migration by using tracking radar are discussed. The procedure for assessing the rate of bird passage is described. Three topics are presented concerning the grouping of nocturnal migrants, the velocity of migratory flight, and identification of species by radar echoes. The height and volume of migration under different weather conditions are examined. The methods for studying the directions of migration and the correlation between winds and the height and direction of migrating birds are presented.
NASA Technical Reports Server (NTRS)
Kozlowski, Danielle; Zavodsky, Bradley; Stano, Geoffrey; Jedlovec, Gary
2011-01-01
The Short-term Prediction Research and Transition (SPoRT) is a project to transition those NASA observations and research capabilities to the weather forecasting community to improve the short-term regional forecasts. This poster reviews the work to demonstrate the value to these forecasts of profiles from the Atmospheric Infrared Sounder (AIRS) instrument on board the Aqua satellite with particular assistance in predicting thunderstorm forecasts by the profiles of the pre-convective environment.
NPP After Launch: Characterizing ATMS Performance
NASA Technical Reports Server (NTRS)
Lambrigtsen, Bjorn
2011-01-01
The NPOESS Preparatory Project (NPP) mission is scheduled to launch in the fall of 2011. Although several teams from the government and the instrument contractor will be assessing and characterizing the performance of the Advanced Technology Microwave Sounder (ATMS) and the Cross-track Infrared Sounder (CrIS) sounding suite, the NASA NPP Science Team will be paying particular attention to the aspects of these sensors that affect their utility for atmospheric and climate research. In this talk we discuss relevant aspects of ATMS and our post launch analysis approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crewell, S.; Fabian, R.; Kuenzi, K.
In February 1993 measurements of chlorine monoxide ClO, one of the key substances in catalytic ozone destruction, were performed over Scandinavia by two microwave receivers, the Submillimeter Atmospheric Sounder (SUMAS) on board the German research aircraft FALCON and the Microwave Limb Sounder (MLS) on board the Upper Atmospheric Research Satellite (UARS). High ClO concentrations (>1 ppb) inside the polar vortex at approximately 20km altitude were detected by both experiments. A comparison shows good agreement of both sensors in the location of enhanced ClO. 11 refs., 5 figs.
Independence of Echo-Threshold and Echo-Delay in the Barn Owl
Nelson, Brian S.; Takahashi, Terry T.
2008-01-01
Despite their prevalence in nature, echoes are not perceived as events separate from the sounds arriving directly from an active source, until the echo's delay is long. We measured the head-saccades of barn owls and the responses of neurons in their auditory space-maps while presenting a long duration noise-burst and a simulated echo. Under this paradigm, there were two possible stimulus segments that could potentially signal the location of the echo. One was at the onset of the echo; the other, after the offset of the direct (leading) sound, when only the echo was present. By lengthening the echo's duration, independently of its delay, spikes and saccades were evoked by the source of the echo even at delays that normally evoked saccades to only the direct source. An echo's location thus appears to be signaled by the neural response evoked after the offset of the direct sound. PMID:18974886
On the reliability of hook echoes as tornado indicators
NASA Technical Reports Server (NTRS)
Forbes, G. S.
1981-01-01
A study of radar echoes associated with the tornadoes of the 3 April 1974 outbreak was performed to evaluate the usefulness of echo shape as an indicator of tornadic thunderstorms. The hook shape was usually successful in characterizing an echo as tornadic, with a false alarm rate of 16%. Because hook echoes were relatively rare, however, a less restrictive shape called distinctive was more successful at detecting tornadic thunderstorms, identifying 65% of the tornadic echoes. An echo had a distinctive shape if it possessed a marked appendage on its right rear flank or was in the shape of a spiral, comma or line echo wave pattern (LEWP). Characteristics of the distinctive echo are given.
Satellite and airborne IR sensor validation by an airborne interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gumley, L.E.; Delst, P.F. van; Moeller, C.C.
1996-11-01
The validation of in-orbit longwave IR radiances from the GOES-8 Sounder and inflight longwave IR radiances from the MODIS Airborne Simulator (MAS) is described. The reference used is the airborne University of Wisconsin High Resolution Interferometer Sounder (HIS). The calibration of each sensor is described. Data collected during the Ocean Temperature Interferometric Survey (OTIS) experiment in January 1995 is used in the comparison between sensors. Detailed forward calculations of at-sensor radiance are used to account for the difference in GOES-8 and HIS altitude and viewing geometry. MAS radiances and spectrally averaged HIS radiances are compared directly. Differences between GOES-8 andmore » HIS brightness temperatures, and GOES-8 and MAS brightness temperatures, are found to be with 1.0 K for the majority of longwave channels examined. The same validation approach will be used for future sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). 11 refs., 2 figs., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Dickerson, R. R.; Fish, C. S.; Brent, L. C.; Burrows, J. P.; Fuentes, J. D.; Gordley, L. L.; Jacob, D. J.; Schoeberl, M. R.; Salawitch, R. J.; Ren, X.; Thompson, A. M.
2013-12-01
Gas filter radiometry is a powerful tool for measuring infrared active trace gases. Methane (CH4) is the second most important greenhouse gas and is more potent molecule for molecule than carbon dioxide (CO2). Unconventional natural gas recovery has the potential to show great environmental benefits relative to coal, but only if fugitive leakage is held below 3% and leak rates remain highly uncertain. We present design specifications and initial field/aircraft test results for an imaging remote sensing device to measure column content of methane. The instrument is compared to in situ altitude profiles measured with cavity ring-down. This device is an airborne prototype for the Geostationary Remote Infrared Pollution Sounder, GRIPS, a satellite instrument designed to monitor CH4, CO2, CO, N2O and AOD from geostationary orbit, with capabilities for great advances in air quality and climate research. GRIPS: The Geostationary Remote Infrared Pollution Sounder
A Robust Automatic Ionospheric O/X Mode Separation Technique for Vertical Incidence Sounders
NASA Astrophysics Data System (ADS)
Harris, T. J.; Pederick, L. H.
2017-12-01
The sounding of the ionosphere by a vertical incidence sounder (VIS) is the oldest and most common technique for determining the state of the ionosphere. The automatic extraction of relevant ionospheric parameters from the ionogram image, referred to as scaling, is important for the effective utilization of data from large ionospheric sounder networks. Due to the Earth's magnetic field, the ionosphere is birefringent at radio frequencies, so a VIS will typically see two distinct returns for each frequency. For the automatic scaling of ionograms, it is highly desirable to be able to separate the two modes. Defence Science and Technology Group has developed a new VIS solution which is based on direct digital receiver technology and includes an algorithm to separate the O and X modes. This algorithm can provide high-quality separation even in difficult ionospheric conditions. In this paper we describe the algorithm and demonstrate its consistency and reliability in successfully separating 99.4% of the ionograms during a 27 day experimental campaign under sometimes demanding ionospheric conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nalli, Nicholas R.; Barnet, Christopher D.; Reale, Tony
This paper examines the performance of satellite sounder atmospheric vertical moisture proles (AVMP) under tropospheric conditions encompassing moisture contrasts driven by convection and advection transport mechanisms, specifically Atlantic Ocean Saharan air layers (SALs) and Pacific Ocean moisture conveyer belts (MCBs) commonly referred to as atmospheric rivers (ARs), both of these being mesoscale to synoptic meteorological phenomena within the vicinity of subtropical Hadley subsidence zones. Operational AVMP environmental data records retrieved from the Suomi National Polar-orbiting Partnership (SNPP) NOAA-Unique Combined Atmospheric Processing System (NUCAPS) are collocated with dedicated radiosonde observations (RAOBs) obtained from ocean-based intensive field campaigns; these RAOBs provide uniquelymore » independent correlative truth data not assimilated into numerical weather prediction models for satellite sounder validation over open ocean. Using these marine-based data, we empirically assess the performance of the operational NUCAPS AVMP product for detecting and resolving these tropospheric moisture features over otherwise RAOB-sparse regions.« less
LAWS (Laser Atmospheric Wind Sounder) earth observing system
NASA Technical Reports Server (NTRS)
1988-01-01
Wind profiles can be measured from space using current technology. These wind profiles are essential for answering many of the interdisciplinary scientific questions to be addressed by EOS, the Earth Observing System. This report provides guidance for the development of a spaceborne wind sounder, the Laser Atmospheric Wind Sounder (LAWS), discussing the current state of the technology and reviewing the scientific rationale for the instrument. Whether obtained globally from the EOS polar platform or in the tropics and subtropics from the Space Station, wind profiles from space will provide essential information for advancing the skill of numerical weather prediction, furthering knowledge of large-scale atmospheric circulation and climate dynamics, and improving understanding of the global biogeochemical and hydrologic cycles. The LAWS Instrument Panel recommends that it be given high priority for new instrument development because of the pressing scientific need and the availability of the necessary technology. LAWS is to measure wind profiles with an accuracy of a few meters per second and to sample at intervals of 100 km horizontally for layers km thick.
Premier's imaging IR limb sounder
NASA Astrophysics Data System (ADS)
Kraft, Stefan; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi
2017-11-01
The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetre-wave Emitted Radiation. PREMIER went recently through the process of a feasibility study (Phase A) within the Earth Observation Envelope Program. Emerging from recent advanced instrument technologies IRLS shall, next to a millimetre-wave limb sounder (called STEAMR), explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3D imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with high vertical and horizontal resolution. PREMIER shall fly in a tandem formation looking backwards to METOP's swath and thereby improve meteorological and environmental analyses.
Forming maps of targets having multiple reflectors with a biomimetic audible sonar.
Kuc, Roman
2018-05-01
A biomimetic audible sonar mimics human echolocation by emitting clicks and sensing echoes binaurally to investigate the limitations in acoustic mapping of 2.5 dimensional targets. A monaural sonar that provides only echo time-of-flight values produces biased maps that lie outside the target surfaces. Reflector bearing estimates derived from the first echoes detected by a binaural sonar are employed to form unbiased maps. Multiple echoes from a target introduce phantom-reflector artifacts into its map because later echoes are produced by reflectors at bearings different from those determined from the first echoes. In addition, overlapping echoes interfere to produce bearing errors. Addressing the causes of these bearing errors motivates a processing approach that employs template matching to extract valid echoes. Interfering echoes can mimic a valid echo and also form PR artifacts. These artifacts are eliminated by recognizing the bearing fluctuations that characterize echo interference. Removing PR artifacts produces a map that resembles the physical target shape to within the resolution capabilities of the sonar. The remaining differences between the target shape and the final map are void artifacts caused by invalid or missing echoes.
A controlled ac Stark echo for quantum memories.
Ham, Byoung S
2017-08-09
A quantum memory protocol of controlled ac Stark echoes (CASE) based on a double rephasing photon echo scheme via controlled Rabi flopping is proposed. The double rephasing scheme of photon echoes inherently satisfies the no-population inversion requirement for quantum memories, but the resultant absorptive echo remains a fundamental problem. Herein, it is reported that the first echo in the double rephasing scheme can be dynamically controlled so that it does not affect the second echo, which is accomplished by using unbalanced ac Stark shifts. Then, the second echo is coherently controlled to be emissive via controlled coherence conversion. Finally a near perfect ultralong CASE is presented using a backward echo scheme. Compared with other methods such as dc Stark echoes, the present protocol is all-optical with advantages of wavelength-selective dynamic control of quantum processing for erasing, buffering, and channel multiplexing.
NASA Astrophysics Data System (ADS)
Zhang, Kun; Zhu, Xiao-Hua; Zhao, Ruixiang
2018-02-01
Ocean bottom pressures, observed by five pressure-recording inverted echo sounders (PIESs) from October 2012 to July 2014, exhibit strong near 7-day variability in the northern South China Sea (SCS) where long-term in situ bottom pressure observations are quite sparse. This variability was strongest in October 2013 during the near two years observation period. By joint analysis with European Center for Medium-Range Weather Forecasts (ECMWF) data, it is shown that the near 7-day ocean bottom pressure variability is closely related to the local atmospheric surface pressure and winds. Within a period band near 7 days, there are high coherences, exceeding 95% significance level, of observed ocean bottom pressure with local atmospheric surface pressure and with both zonal and meridional components of the wind. Ekman pumping/suction caused by the meridional component of the wind in particular, is suggested as one driving mechanism. A Kelvin wave response to the near 7-day oscillation would propagate down along the continental slope, observed at the Qui Nhon in the Vietnam. By multiple and partial coherence analyses, we find that local atmospheric surface pressure and Ekman pumping/suction show nearly equal influence on ocean bottom pressure variability at near 7-day periods. A schematic diagram representing an idealized model gives us a possible mechanism to explain the relationship between ocean bottom pressure and local atmospheric forcing at near 7-day periods in the northern SCS.
NASA Astrophysics Data System (ADS)
Scherwath, Martin; Dewey, Richard; Heesemann, Martin; Thomsen, Laurenz; Purser, Autun; Roemer, Miriam; Xu, Guangyu
2015-04-01
Ocean Networks Canada operates ocean observatories and hosts data from the Canadian Pacific, Arctic and recently the Atlantic Ocean. The two prominent observatories are VENUS (Victoria Experimental Network Under the Sea), online since 2006, inshore from Vancouver Island in the Salish Sea, and NEPTUNE (North East Pacific Time-series Underwater Networked Experiments), offshore at the northern Cascadia margin across the Juan de Fuca Plate, online since 2009. Over 250 Terabytes of data have been collected and are openly and freely accessible. Geoscientific research has made use of these high-resolution permanent time series and started to quantify ocean and seafloor dynamics. For example, upward-looking echo-sounders quantify vertical migration of euphausiids (e.g. krill) in the water column, showing additional environment- and growth-related influence to the expected light intensity-related diel migration pattern; or camera observations quantify in-situ the speed of bacterial mat withering, clam movements and local anoxic region distribution changes; or rotating sonars show unprecedented long-term stability observations of a hydrothermal vent system and the sudden changes after a local earthquake, or at a gas hydrate field sonar data detect gas venting that has an amazingly specific tidal pressure correlation which hints at internal sediment processes in relation to gas hydrate dissociation; or a regional array of bottom pressure recorders has detected five major tsunami events which help fine-tune tsunami models for better hazard preparedness.
NASA Astrophysics Data System (ADS)
LiBassi, Nick; Özener, Haluk; Otay, Emre; Doğru, Aslı
2018-06-01
Coastal zones are in a state of continual flux worldwide, due in part to seasonal factors and in part to influences operating over longer periods of time. Discerning changes on different timescales remains a challenge. This study compares shoreline position and nearshore bathymetry over a time interval of 16 years in order to determine the extent of medium-term changes in comparison with short-term changes along the southwestern Black Sea coast of Turkey near Kilyos. For this purpose the results of surveys completed in 2001 and 2002 are compared with data collected in December 2015, September 2016, and March 2017 at the same location using a differential global positioning system (DGPS) in real-time kinematic (RTK) configuration combined with echo-sounder profiling. Average shoreline recession over the 16-year period (medium term) has been estimated at 3-4 cm/year as opposed to an average of 9.5 m in the 12-month period from June 2001 to June 2002 (short term). The medium-term nearshore sediment loss has been approx. 100-125 m3/m shoreline since the early 2000s. Over the same period a prominent offshore bar has moved seaward at a maximum rate of 1 m/year since 2002. Considering the large discrepancy in the shoreline recession rates recorded in the short and medium term, this aspect must be taken into account in any integrated coastal zone management strategy.
NASA Astrophysics Data System (ADS)
LiBassi, Nick; Özener, Haluk; Otay, Emre; Doğru, Aslı
2017-12-01
Coastal zones are in a state of continual flux worldwide, due in part to seasonal factors and in part to influences operating over longer periods of time. Discerning changes on different timescales remains a challenge. This study compares shoreline position and nearshore bathymetry over a time interval of 16 years in order to determine the extent of medium-term changes in comparison with short-term changes along the southwestern Black Sea coast of Turkey near Kilyos. For this purpose the results of surveys completed in 2001 and 2002 are compared with data collected in December 2015, September 2016, and March 2017 at the same location using a differential global positioning system (DGPS) in real-time kinematic (RTK) configuration combined with echo-sounder profiling. Average shoreline recession over the 16-year period (medium term) has been estimated at 3-4 cm/year as opposed to an average of 9.5 m in the 12-month period from June 2001 to June 2002 (short term). The medium-term nearshore sediment loss has been approx. 100-125 m3/m shoreline since the early 2000s. Over the same period a prominent offshore bar has moved seaward at a maximum rate of 1 m/year since 2002. Considering the large discrepancy in the shoreline recession rates recorded in the short and medium term, this aspect must be taken into account in any integrated coastal zone management strategy.
Vertical deformation through a complete seismic cycle at Isla Santa María, Chile
Wesson, Robert L.; Melnick, Daniel; Cisternas, Marco; Moreno, Marcos; Ely, Lisa
2014-01-01
Individual great earthquakes are posited to release the elastic strain energy that has accumulated over centuries by the gradual movement of tectonic plates1, 2. However, knowledge of plate deformation during a complete seismic cycle—two successive great earthquakes and the intervening interseismic period—remains incomplete3. A complete seismic cycle began in south-central Chile in 1835 with an earthquake of about magnitude 8.5 (refs 4, 5) and ended in 2010 with a magnitude 8.8 earthquake6. During the first earthquake, an uplift of Isla Santa María by 2.4 to 3 m was documented4, 5. In the second earthquake, the island was uplifted7 by 1.8 m. Here we use nautical surveys made in 1804, after the earthquake in 1835 and in 1886, together with modern echo sounder surveys and GPS measurements made immediately before and after the 2010 earthquake, to quantify vertical deformation through the complete seismic cycle. We find that in the period between the two earthquakes, Isla Santa María subsided by about 1.4 m. We simulate the patterns of vertical deformation with a finite-element model and find that they agree broadly with predictions from elastic rebound theory2. However, comparison with geomorphic and geologic records of millennial coastline emergence8, 9 reveal that 10–20% of the vertical uplift could be permanent.
NASA Astrophysics Data System (ADS)
Bohlander, J. A.; Ross, R.; Scambos, T.; Haran, T. M.; Bauer, R. J.
2012-12-01
The Automated Meteorology - Ice/Indigenous species - Geophysics Observation System (AMIGOS) consists of a set of measurement instruments and camera(s) controlled by a single-board computer with a simplified Linux operating system and an Iridium satellite modem supporting two-way communication. Primary features of the system relevant to polar operations are low power requirements, daily data uploading, reprogramming, tolerance for low temperatures, and various approaches for automatic resets and recovery from low power or cold shut-down. Instruments include a compact weather station, C/A or dual-frequency GPS, solar flux and reflectivity sensors, sonic snow gages, simplified radio-echo-sounder, and resistance thermometer string in the firn column. In the current state of development, there are two basic designs. One is intended for in situ observations of glacier conditions. The other design supports a high-resolution camera for monitoring biological or geophysical systems from short distances (100 m to 20 km). The stations have been successfully used in several locations for operational support, monitoring rapid ice changes in response to climate change or iceberg drift, and monitoring penguin colony activity. As of June, 2012, there are 9 AMIGOS systems installed, all on the Antarctic continent. The stations are a working prototype for a planned series of upgraded stations, currently termed 'Sentinels'. These stations would carry further instrumentation, communications, and processing capability to investigate ice - ocean interaction from ice tongue, ice shelf, or fjord coastline areas.
Results of pre-drilling potential field measurements at the Bosumtwi crater
NASA Astrophysics Data System (ADS)
Danuor, S. K.; Menyeh, A.
Gravity and magnetic measurements were carried out at the Bosumtwi crater to determine the geophysical signature of the crater. Land gravity data was acquired at 163 locations around the structure and on the shore of the lake. The separation between the gravity stations was 500 m for radial profiles, but 700-1000 m along roads and footpaths that ran parallel to the lake's shore. Additionally, a marine gravity survey was carried out along 14 north-south and 15 east-west profiles on the lake. Magnetic data was also acquired along 14 north-south profiles on the lake. In all marine surveys, the line spacing was 800 m, and navigation was provided by a Garmin 235 Echo Sounder/GPS. The gravity signature of the crater is characterized by a negative Bouguer anomaly with an amplitude of about -18 mgal. Using the seismic results as constraints, the gravity model obtained indicates the central uplift at a depth of 250 m. The negative anomaly is the contribution of the gravity deficiencies due to fractured and brecciated rocks in the rim area and below the crater floor, the impact breccias within the crater, and the sedimentary and water infilling of the lake. Magnetic modeling yielded a model for the causative body, which is located north of the central uplift: the model has a magnetic susceptibility of 0.03 S.I. and extends from a depth of 250 to 610 m. The causative bodies have been interpreted as impactites.
Contamination of the GOES-K filter wheel cooler
NASA Astrophysics Data System (ADS)
Sanders, Jack T., Jr.; Rosecrans, Glenn P.
1998-10-01
The Geostationary Operational Environmental Satellite (GOES) Sounder instrument uses radiant coolers to reduce the operating temperature of the detectors and filter wheel. GOES resides in an equatorial orbit 36,000 kilometers above the earth, and is stationary with respect to it. During the year, all sides of the spacecraft are exposed to the sun; the filter wheel emitter and detector radiators must be shielded form it to adequately cooled these components for nominal operations.Mirror Optical Solar Reflectors are used too reject sunlight before it can strike the radiators. Molecular outgassing from the Sounder instrument cavity, the filter wheel module, and the Sounder vacuum cooler housing have been demonstrated through mass transport modeling to contaminate the filter wheel sunshield panels during the in- orbit Radiant Cooler bakeout. Excessive molecular and particulate contamination can increase solar energy scatter, increase thermal emittance, and increase solar absorptance; all of which can increase the temperature of the components they serve, thus degrading nominal operations. After the GOES-K spacecraft thermal vacuum test, a haze was observed on and around the entrance aperture, and on the inside faces the filter wheel cooler sunshield. This paper documents the inspections, testing, and analysis used to: a) locate the likely sources for the contaminants, b) predict molecular contaminant accumulation on the filter wheel sunshields during the in-orbit bakeout, c) estimate the thermal effects from molecular build-up, and d) assess proposed hardware modifications and show the selection rationale used to maintain functionality for the GOES-K Sounder instrument.
GEO/SAMS - The Geostationary Synthetic Aperture Microwave Sounder
NASA Technical Reports Server (NTRS)
Lambrigtsen, Bjorn H.
2008-01-01
The National Oceanic and Atmospheric Administration (NOAA) has for many years operated two weather satellite systems, the Polar-orbiting Operational Environmental Satellite system (POES), using low-earth orbiting (LEO) satellites, and the Geostationary Operational Environmental Satellite system (GOES), using geostationary earth orbiting (GEO) satellites. (Similar systems are also operated by other nations.) The POES satellites have been equipped with both infrared (IR) and microwave (MW) atmospheric sounders, which makes it possible to determine the vertical distribution of temperature and humidity in the troposphere even under cloudy conditions. Such satellite observations have had a significant impact on weather forecasting accuracy, especially in regions where in situ observations are sparse. In contrast, the GOES satellites have only been equipped with IR sounders, since it has not been feasible to build a large enough antenna to achieve sufficient spatial resolution for a MW sounder in GEO. As a result, GOES soundings can only be obtained in cloud free areas and in the less important upper atmosphere, above the cloud tops. This has hindered the effective use of GOES data in numerical weather prediction. Full sounding capabilities with the GOES system is highly desirable because of the advantageous spatial and temporal coverage that is possible from GEO. While POES satellites provide coverage in relatively narrow swaths, and with a revisit time of 12-24 hours or more, GOES satellites can provide continuous hemispheric coverage, making it possible to monitor highly dynamic phenomena such as hurricanes.
NASA Astrophysics Data System (ADS)
Schreier, M. M.
2017-12-01
The launch of CYGNSS (Cyclone Global Navigation Satellite System) has added an interesting component to satellite observations: it can provide wind speeds in the tropical area with a high repetition rate. Passive microwave sounders that are overpassing the same region can benefit from this information, when it comes to the retrieval of temperature or water profiles: the uncertainty about wind speeds has a strong impact on emissivity and reflectivity calculations with respect to surface temperature. This has strong influences on the uncertainty of retrieval of temperature and water content, especially under extreme weather conditions. Adding CYGNSS information to the retrieval can help to reduce errors and provide a significantly better sounder retrieval. Based on observations during Hurricane Harvey, we want to show the impact of CYGNSS data on the retrieval of passive microwave sensors. We will show examples on the impact on the retrieval from polar orbiting instruments, like the Advanced Technology Microwave Sounder (ATMS) and AMSU-A/B on NOAA-18 and 19. In addition we will also show the impact on retrievals from HAMSR (High Altitude MMIC Sounding Radiometer), which was flying on the Global Hawk during the EPOCH campaign. We will compare the results with other observations and estimate the impact of additional CYGNSS information on the microwave retrieval, especially on the impact in error and uncertainty reduction. We think, that a synergetic use of these different data sources could significantly help to produce better assimilation products for forecast assimilation.
The Upper Atmosphere Research Satellite: From Coffee Table Art to Quantitative Science
NASA Technical Reports Server (NTRS)
Douglass, Anne R.
1999-01-01
The Upper Atmosphere Research Satellite (UARS) has provided an unprecedented set of observations of constituents of the stratosphere. When used in combination with data from other sources and appropriate modeling tools, these observations are useful for quantitative evaluation of stratospheric photochemical processes. This is illustrated by comparing ozone observations from airborne Differential Absorption Lidar (DIAL), from the Polar Ozone and Aerosol Measurement (POAM), from the Microwave Limb Sounder (MLS), and from the Halogen occultation Experiment (HALOE) with ozone fields generated with a three dimensional model. For 1995-96, at polar latitudes, observations from DIAL flights on December 9 and January 30, and POAM and MLS between late December and late January are compared with ozone fields from the GSFC 3D chemistry and transport model. Data from the three platforms consistently show that the observed ozone has a negative trend relative to the modeled ozone, and that the trend is uniform in time between early and mid winter, with no obvious dependence on proximity to the vortex edge. The importance of chlorine catalyzed photochemistry to this ozone loss is explored by comparing observations from MLS and HALOE with simulations for other northern winters, particularly 1997-98.
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.
2008-01-01
Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error less than 1 km). Retrievals of atmospheric soundings, surface properties, and cloud microphysical properties with the AIRS and IASI observations are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed? Interferometer (NAST I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the AIRS and IASI are investigated. These advanced satellite ultraspectral infrared instruments are now playing an important role in satellite meteorological observation for numerical weather prediction.
NASA Astrophysics Data System (ADS)
Kim, Eng-Chan; Cho, Jae-Hwan; Kim, Min-Hye; Kim, Ki-Hong; Choi, Cheon-Woong; Seok, Jong-min; Na, Kil-Ju; Han, Man-Seok
2013-03-01
This study was conducted on 20 patients who had undergone pedicle screw fixation between March and December 2010 to quantitatively compare a conventional fat suppression technique, CHESS (chemical shift selection suppression), and a new technique, IDEAL (iterative decomposition of water and fat with echo asymmetry and least squares estimation). The general efficacy and usefulness of the IDEAL technique was also evaluated. Fat-suppressed transverse-relaxation-weighed images and longitudinal-relaxation-weighted images were obtained before and after contrast injection by using these two techniques with a 1.5T MR (magnetic resonance) scanner. The obtained images were analyzed for image distortion, susceptibility artifacts and homogenous fat removal in the target region. The results showed that the image distortion due to the susceptibility artifacts caused by implanted metal was lower in the images obtained using the IDEAL technique compared to those obtained using the CHESS technique. The results of a qualitative analysis also showed that compared to the CHESS technique, fewer susceptibility artifacts and more homogenous fat removal were found in the images obtained using the IDEAL technique in a comparative image evaluation of the axial plane images before and after contrast injection. In summary, compared to the CHESS technique, the IDEAL technique showed a lower occurrence of susceptibility artifacts caused by metal and lower image distortion. In addition, more homogenous fat removal was shown in the IDEAL technique.
Jang, Jinhee; Kim, Tae-Won; Hwang, Eo-Jin; Choi, Hyun Seok; Koo, Jaseong; Shin, Yong Sam; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-Soo
2017-01-01
The purpose of this study was to compare the histogram analysis and visual scores in 3T MRI assessment of middle cerebral arterial wall enhancement in patients with acute stroke, for the differentiation of parent artery disease (PAD) from small artery disease (SAD). Among the 82 consecutive patients in a tertiary hospital for one year, 25 patients with acute infarcts in middle cerebral artery (MCA) territory were included in this study including 15 patients with PAD and 10 patients with SAD. Three-dimensional contrast-enhanced T1-weighted turbo spin echo MR images with black-blood preparation at 3T were analyzed both qualitatively and quantitatively. The degree of MCA stenosis, and visual and histogram assessments on MCA wall enhancement were evaluated. A statistical analysis was performed to compare diagnostic accuracy between qualitative and quantitative metrics. The degree of stenosis, visual enhancement score, geometric mean (GM), and the 90th percentile (90P) value from the histogram analysis were significantly higher in PAD than in SAD ( p = 0.006 for stenosis, < 0.001 for others). The receiver operating characteristic curve area of GM and 90P were 1 (95% confidence interval [CI], 0.86-1.00). A histogram analysis of a relevant arterial wall enhancement allows differentiation between PAD and SAD in patients with acute stroke within the MCA territory.
Use of earth field spin echo NMR to search for liquid minerals
Stoeffl, Wolfgang
2001-01-01
An instrument for measuring the spatial, qualitative and quantitative parameters of an underground nuclear magnetic resonance (NMR) active liquid mineral deposit, including oil and water. A phased array of excitation and receiver antennas on the surface and/or in a borehole excites the NMR active nuclei in the deposit, and using known techniques from magnetic resonance imaging (MRI), the spatial and quantitative distribution of the deposit can be measured. A surface array may utilize, for example, four large (50-500 diameter) diameter wire loops laid on the ground surface, and a weak (1.5-2.5 kHz) alternating current (AC) field applied, matching the NMR frequency of hydrogen in the rather flat and uniform earth magnetic field. For a short duration (a few seconds) an additional gradient field can be generated, superimposed to the earth field, by applying direct current (DC) to the grid (wire loops), enhancing the position sensitivity of the spin-echo and also suppressing large surface water signals by shifting them to a different frequency. The surface coil excitation can be combined with downhole receivers, which are much more radio-quiet compared to surface receivers, and this combination also enhances the position resolution of the MRI significantly. A downhole receiver module, for example, may have a 5.5 inch diameter and fit in a standard six inch borehole having a one-quarter inch thick stainless steel casing. The receiver module may include more than one receiver units for improved penetration and better position resolution.
Lee, Seung Hyun; Lee, Young Han; Song, Ho-Taek; Suh, Jin-Suck
2017-10-01
To evaluate the feasibility of 3D fast spin-echo (FSE) imaging with compressed sensing (CS) for the assessment of shoulder. Twenty-nine patients who underwent shoulder MRI including image sets of axial 3D-FSE sequence without CS and with CS, using an acceleration factor of 1.5, were included. Quantitative assessment was performed by calculating the root mean square error (RMSE) and structural similarity index (SSIM). Two musculoskeletal radiologists compared image quality of 3D-FSE sequences without CS and with CS, and scored the qualitative agreement between sequences, using a five-point scale. Diagnostic agreement for pathologic shoulder lesions between the two sequences was evaluated. The acquisition time of 3D-FSE MRI was reduced using CS (3min 23s vs. 2min 22s). Quantitative evaluations showed a significant correlation between the two sequences (r=0.872-0.993, p<0.05) and SSIM was in an acceptable range (0.940-0.993; mean±standard deviation, 0.968±0.018). Qualitative image quality showed good to excellent agreement between 3D-FSE images without CS and with CS. Diagnostic agreement for pathologic shoulder lesions between the two sequences was very good (κ=0.915-1). The 3D-FSE sequence with CS is feasible in evaluating the shoulder joint with reduced scan time compared to 3D-FSE without CS. Copyright © 2017 Elsevier Inc. All rights reserved.
Characteristics of C-band meteorological radar echoes at Petrolina, Northeast Brazil
NASA Astrophysics Data System (ADS)
da Silva Aragão, Maria Regina; Correia, Magaly De Fatima; Alves de Araújo, Heráclio
2000-03-01
A unique set of C-band meteorological radar echoes is analyzed. The data were obtained in Petrolina (9°24S, 40°30W), located in the semi-arid region of Northeast Brazil, from January to June 1985. The characteristics analyzed are echo areas, types and patterns.As in other tropical areas of the world, echoes with an area100 km2 dominated, making up 53% of the total number of echoes while echoes with 100 km2
NASA Technical Reports Server (NTRS)
McMillan, W. W.; McCourt, M. L.; Revercomb, H. E.; Knuteson, R. O.; Christian, T. J.; Doddridge, B. G.; Hobbs, P. V.; Lukovich, P. C.; Novelli, P. C.; Piketh, S. J.
2003-01-01
Retrieved tropospheric carbon monoxide (CO) column densities are presented for more than 9000 spectra obtained by the University of Wisconsin-Madison (UWis) Scanning High-Resolution Interferometer Sounder (SHIS) during a flight on the NASA ER-2 on 7 September 2000 as part of the Southern African Regional Science Initiative (SAFARI 2000) dry season field campaign. Enhancements in tropospheric column CO were detected in the vicinity of a controlled biomass burn in the Timbavati Game Reserve in northeastern South Africa and over the edge of the river of smoke in south central Mozambique. Relatively clean air was observed over the far southern coast of Mozambique. Quantitative comparisons are presented with in situ measurements from five different instruments flying on two other aircraft: the University of Washington Convair-580 (CV) and the South African Aerocommander JRB in the vicinity of the Timbavati fire. Measured tropospheric CO columns (extrapolated from 337 to 100 mb) of 2.1 x 10(exp 18) per square centimeter in background air and up to 1.5 x 10(exp 19) per square centimeter in the smoke plume agree well with SHIS retrieved tropospheric CO columns of (2.3 plus or minus 0.25) x 10(exp 18) per square centimeter over background air near the fire and (1.5 plus or minus 0.35) x 10(exp 19) per square centimeter over the smoke plume. Qualitative comparisons are presented with three other in situ CO profiles obtained by the South African JRA aircraft over Mozambique and northern South Africa showing the influence of the river of smoke.
Detection of Ice Polar Stratospheric Clouds from Assimilation of Atmospheric Infrared Sounder Data
NASA Technical Reports Server (NTRS)
Stajner, Ivanka; Benson, Craig; Liu, Hui-Chun; Pawson, Steven; Chang, Ping; Riishojgaard, Lars Peter
2006-01-01
A novel technique is presented for detection of ice polar stratospheric clouds (PSCs) that form at extremely low temperatures in the lower polar stratosphere during winter. Temperature is a major factor in determining abundance of PSCs, which in turn provide surfaces for heterogeneous chemical reactions leading to ozone loss and radiative cooling. The technique infers the presence of ice PSCs using radiances from the Atmospheric Infrared Sounder (AIRS) in the Goddard Earth Observing System version 5 (GEOS-5) data assimilation system. Brightness temperatures are computed from short-term GEOS-5 forecasts for several hundred AIRS channels, using a radiation transfer module. The differences between collocated AIRS observations and these computed values are the observed-minus-forecast (O-F) residuals in the assimilation system. Because the radiation model assumes clear-sky conditions, we hypothesize that these O-F residuals contain quantitative information about PSCs. This is confirmed using sparse data from the Polar Ozone and Aerosol Measurement (POAM) III occultation instrument. The analysis focuses on 0-F residuals for the 6.79pm AIRS moisture channel. At coincident locations, when POAM III detects ice clouds, the AIRS O-F residuals for this channel are lower than -2K. When no ice PSCs are evident in POAM III data, the AIRS 0-F residuals are larger. Given this relationship, the high spatial density of AIRS data is used to construct maps of regions where 0-F residuals are lower than -2K, as a proxy for ice PSCs. The spatial scales and spatio-temporal variations of these PSCs in the Antarctic and Arctic are discussed on the basis of these maps.
Relationship between tornadoes and hook echoes on April 3, 1974
NASA Technical Reports Server (NTRS)
Forbes, G. S.
1975-01-01
Radar observations of tornado families occurring on April 3, 1974 are discussed. Of the 93 tornadoes included in the sample, 81% were associated with hook-like echoes with appendages at least 40 deg to the south of the echo movement. At least one tornado was associated with 62% of the hook-like echoes observed. All of the tornadoes with intensities of F 4 and F 5 were produced by hook-like echoes; the mean intensity of all tornadoes associated with this type of echo was F 3, while the mean intensity of the remaining tornadoes was F1. The tornadic hook-like echoes moved to the right of the non-tornadic echoes forming a tornado line in advance of the squall line. Some tornadoes were associated with 'spiral' echoes.
Iterative optimization method for design of quantitative magnetization transfer imaging experiments.
Levesque, Ives R; Sled, John G; Pike, G Bruce
2011-09-01
Quantitative magnetization transfer imaging (QMTI) using spoiled gradient echo sequences with pulsed off-resonance saturation can be a time-consuming technique. A method is presented for selection of an optimum experimental design for quantitative magnetization transfer imaging based on the iterative reduction of a discrete sampling of the Z-spectrum. The applicability of the technique is demonstrated for human brain white matter imaging at 1.5 T and 3 T, and optimal designs are produced to target specific model parameters. The optimal number of measurements and the signal-to-noise ratio required for stable parameter estimation are also investigated. In vivo imaging results demonstrate that this optimal design approach substantially improves parameter map quality. The iterative method presented here provides an advantage over free form optimal design methods, in that pragmatic design constraints are readily incorporated. In particular, the presented method avoids clustering and repeated measures in the final experimental design, an attractive feature for the purpose of magnetization transfer model validation. The iterative optimal design technique is general and can be applied to any method of quantitative magnetization transfer imaging. Copyright © 2011 Wiley-Liss, Inc.
Estimation of the Scatterer Distribution of the Cirrhotic Liver using Ultrasonic Image
NASA Astrophysics Data System (ADS)
Yamaguchi, Tadashi; Hachiya, Hiroyuki
1998-05-01
In the B-mode image of the liver obtained by an ultrasonic imaging system, the speckled pattern changes with the progression of the disease such as liver cirrhosis.In this paper we present the statistical characteristics of the echo envelope of the liver, and the technique to extract information of the scatterer distribution from the normal and cirrhotic liver images using constant false alarm rate (CFAR) processing.We analyze the relationship between the extracted scatterer distribution and the stage of liver cirrhosis. The ratio of the area in which the amplitude of the processing signal is more than the threshold to the entire processed image area is related quantitatively to the stage of liver cirrhosis.It is found that the proposed technique is valid for the quantitative diagnosis of liver cirrhosis.
Quantitative Muscle Ultrasonography in Carpal Tunnel Syndrome.
Lee, Hyewon; Jee, Sungju; Park, Soo Ho; Ahn, Seung-Chan; Im, Juneho; Sohn, Min Kyun
2016-12-01
To assess the reliability of quantitative muscle ultrasonography (US) in healthy subjects and to evaluate the correlation between quantitative muscle US findings and electrodiagnostic study results in patients with carpal tunnel syndrome (CTS). The clinical significance of quantitative muscle US in CTS was also assessed. Twenty patients with CTS and 20 age-matched healthy volunteers were recruited. All control and CTS subjects underwent a bilateral median and ulnar nerve conduction study (NCS) and quantitative muscle US. Transverse US images of the abductor pollicis brevis (APB) and abductor digiti minimi (ADM) were obtained to measure muscle cross-sectional area (CSA), thickness, and echo intensity (EI). EI was determined using computer-assisted, grayscale analysis. Inter-rater and intra-rater reliability for quantitative muscle US in control subjects, and differences in muscle thickness, CSA, and EI between the CTS patient and control groups were analyzed. Relationships between quantitative US parameters and electrodiagnostic study results were evaluated. Quantitative muscle US had high inter-rater and intra-rater reliability in the control group. Muscle thickness and CSA were significantly decreased, and EI was significantly increased in the APB of the CTS group (all p<0.05). EI demonstrated a significant positive correlation with latency of the median motor and sensory NCS in CTS patients (p<0.05). These findings suggest that quantitative muscle US parameters may be useful for detecting muscle changes in CTS. Further study involving patients with other neuromuscular diseases is needed to evaluate peripheral muscle change using quantitative muscle US.
Rieger, Benedikt; Akçakaya, Mehmet; Pariente, José C; Llufriu, Sara; Martinez-Heras, Eloy; Weingärtner, Sebastian; Schad, Lothar R
2018-04-27
Magnetic resonance fingerprinting (MRF) is a promising method for fast simultaneous quantification of multiple tissue parameters. The objective of this study is to improve the coverage of MRF based on echo-planar imaging (MRF-EPI) by using a slice-interleaved acquisition scheme. For this, the MRF-EPI is modified to acquire several slices in a randomized interleaved manner, increasing the effective repetition time of the spoiled gradient echo readout acquisition in each slice. Per-slice matching of the signal-trace to a precomputed dictionary allows the generation of T 1 and T 2 * maps with integrated B 1 + correction. Subsequent compensation for the coil sensitivity profile and normalization to the cerebrospinal fluid additionally allows for quantitative proton density (PD) mapping. Numerical simulations are performed to optimize the number of interleaved slices. Quantification accuracy is validated in phantom scans and feasibility is demonstrated in-vivo. Numerical simulations suggest the acquisition of four slices as a trade-off between quantification precision and scan-time. Phantom results indicate good agreement with reference measurements (Difference T 1 : -2.4 ± 1.1%, T 2 *: -0.5 ± 2.5%, PD: -0.5 ± 7.2%). In-vivo whole-brain coverage of T 1 , T 2 * and PD with 32 slices was acquired within 3:36 minutes, resulting in parameter maps of high visual quality and comparable performance with single-slice MRF-EPI at 4-fold scan-time reduction.
Hallac, Rami R; Ding, Yao; Yuan, Qing; McColl, Roderick W; Lea, Jayanthi; Sims, Robert D; Weatherall, Paul T; Mason, Ralph P
2012-12-01
Hypoxia is reported to be a biomarker for poor prognosis in cervical cancer. However, a practical noninvasive method is needed for the routine clinical evaluation of tumor hypoxia. This study examined the potential use of blood oxygenation level-dependent (BOLD) contrast MRI as a noninvasive technique to assess tumor vascular oxygenation at 3T. Following Institutional Review Board-approved informed consent and in compliance with the Health Insurance Portability and Accountability Act, successful results were achieved in nine patients with locally advanced cervical cancer [International Federation of Gynecology and Obstetrics (FIGO) stage IIA to IVA] and three normal volunteers. In the first four patients, dynamic T₂*-weighted MRI was performed in the transaxial plane using a multi-shot echo planar imaging sequence whilst patients breathed room air followed by oxygen (15 dm³/min). Later, a multi-echo gradient echo examination was added to provide quantitative R₂* measurements. The baseline T₂*-weighted signal intensity was quite stable, but increased to various extents in tumors on initiation of oxygen breathing. The signal in normal uterus increased significantly, whereas that in the iliacus muscle did not change. R₂* responded significantly in healthy uterus, cervix and eight cervical tumors. This preliminary study demonstrates that BOLD MRI of cervical cancer at 3T is feasible. However, more patients must be evaluated and followed clinically before any prognostic value can be determined. Copyright © 2012 John Wiley & Sons, Ltd.
Matsuo, Masayuki; Kanematsu, Masayuki; Itoh, Kyo; Murakami, Takamichi; Maetani, Yoji; Kondo, Hiroshi; Goshima, Satoshi; Kako, Nobuo; Hoshi, Hiroaki; Konishi, Junji; Moriyama, Noriyuki; Nakamura, Hironobu
2004-01-01
The purpose of our study was to compare the detectability of malignant hepatic tumors on ferumoxides-enhanced MRI using five gradient-recalled echo sequences at different TEs. Ferumoxides-enhanced MRIs obtained in 31 patients with 50 malignant hepatic tumors (33 hepatocellular carcinomas, 17 metastases) were reviewed retrospectively by three independent offsite radiologists. T1-weighted gradient-recalled echo images with TEs of 1.4 and 4.2 msec; T2*-weighted gradient-recalled echo images with TEs of 6, 8, and 10 msec; and T2-weighted fast spin-echo images of livers were randomly reviewed on a segment-by-segment basis. Observer performance was tested using the McNemar test and receiver operating characteristic analysis for the clustered data. Lesion-to-liver contrast-to-noise ratio was also assessed. Mean lesion-to-liver contrast-to-noise ratios were negative and lower with gradient-recalled echo at 1.4 msec than with the other sequences. Sensitivity was higher (p < 0.05) with gradient-recalled echo at 6, 8, and 10 msec and fast spin-echo sequences (75-83%) than with gradient-recalled echo sequences at 1.4 and 4.2 msec (46-48%), and was higher (p < 0.05) with gradient-recalled echo sequence at 8 msec (83%) than with gradient-recalled echo at 6 msec and fast spin-echo sequences (75-78%). Specificity was comparably high with all sequences (95-98%). The area under the receiver operating characteristic curve (A(z)) was greater (p < 0.05) with gradient-recalled echo at 6, 8, and 10 msec and fast spin-echo sequences (A(z) = 0.91-0.93) than with gradient-recalled echo sequences at 1.4 and 4.2 msec (A(z) = 0.82-0.85). In the detection of malignant hepatic tumors, gradient-recalled echo sequences at 8 msec showed the highest sensitivity and had an A(z) value and lesion-to-liver contrast-to-noise ratio comparable with values from gradient-recalled echo sequences at 6 and 10 msec and fast spin-echo sequences.
Observation of severe weather activities by Doppler sounder array
NASA Technical Reports Server (NTRS)
Smith, R. E.; Hung, R. J.
1975-01-01
A three-dimensional, nine-element, high-frequency CW Doppler sounder array has been used to detect ionospheric disturbances during periods of severe weather, particularly during periods with severe thunderstorms and tornadoes. One typical disturbance recorded during a period of severe thunderstorm activity and one during a period of tornado activity have been chosen for analysis in this note. The observations indicate that wave-like disturbances possibly generated by the severe weather have wave periods in the range 2-8 min which place them in the infrasonic wave category.
Broadband infrared beam splitter for spaceborne interferometric infrared sounder.
Yu, Tianyan; Liu, Dingquan; Qin, Yang
2014-10-01
A broadband infrared beam splitter (BS) on ZnSe substrate used for the spaceborne interferometric infrared sounder (SIIRS) is studied in the spectral range of 4.44-15 μm. Both broadband antireflection coating and broadband beam-splitter coating in this BS are designed and tested. To optimize the optical properties and the stability of the BS, suitable infrared materials were selected, and improved deposition techniques were applied. The designed structures matched experimental data well, and the properties of the BS met the application specification of SIIRS.
Performance of a 1-micron, 1-joule Coherent Launch Site Atmospheric Wind Sounder
NASA Technical Reports Server (NTRS)
Hawley, James G.; Targ, Russell; Bruner, Richard; Henderson, Sammy W.; Hale, Charles P.; Vetorino, Steven; Lee, R. W.; Harper, Scott; Khan, Tayyab
1992-01-01
The paper describes the design and performance of the Coherent Launch Site Atmospheric Wind Sounder (CLAWS), which is a test and demonstration program designed for monitoring winds with a solid-state lidar in real time for the launch site vehicle guidance and control application. Analyses were conducted to trade off CO2 (9.11- and 10.6-microns), Ho:YAG (2.09 microns), and Nd:YAG (1.06-micron) laser-based lidars. The measurements set a new altitude record (26 km) for coherent wind measurements in the stratosphere.
[Reporting echocardiography exams with the G8-Cardio ANMCO software].
Badano, L P; Marchesini, A; Pizzuti, A; Mantero, A; Cianflone, D; Neri, E; Caira, P; Tubaro, M
2001-03-01
The availability of a common computerized program for echocardiographic study archiving and reporting at national and/or international level could make it possible to standardize the echo reports of different echocardiographic laboratories, and to use the wealth of data thus obtainable with echocardiography, and to exploit its capillary territorial distribution, with the aim of collecting echocardiographic data in a standard format for epidemiological, scientific and administrative purposes. To develop such a software, an ad hoc joint National Association of Hospital Cardiologists and Italian Society of Echocardiography task force worked in conjunction with the Italian Branch of Agilent Technologies to standardize the phraseology of accepted echocardiographic terms and of the quantitative parameters derived from transthoracic and transesophageal echocardiographic examination at rest as well as during exercise and pharmacological stress, and to develop an ad hoc software. This echocardiographic study archiving and reporting program is part of the whole G8-Cardio ANMCO software developed to computerize the whole cardiological chart. The software has been developed by Agilent Technologies to provide a fast, easy-access and easy to use report generator for the non-computer specialist using DBMS Oracle 7.3 database and Power Builder 5.0 to develop a user-friendly interface. The number of qualitative and quantitative variables contained in the program is 733 for echocardiography at rest, while it depends on the stressor and on the length of the examination for the stress echo (dipyridamole 214-384, dobutamine 236-406, exercise 198-392). The program was tested and refined in our laboratory between November 1999 and May 2000. During this time period, 291 resting and 56 stress echocardiographic studies were reported and recorded in a database. On average, each resting echocardiographic study lasting 10 +/- 4 (range 5-17) min was recorded using 50 +/- 11 (range 33-67) variables and 41,566 bytes of hard-disk memory space. Stress echocardiographic studies, each lasting 7 +/- 5 (range 5-21) min, were recorded using 143 +/- 74 (range 38-194) variables and 38,531 bytes of hard-disk memory space. To our knowledge this software represents the first experience of a common computerized program for echo archiving and reporting carried out at national level.
Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework
NASA Technical Reports Server (NTRS)
Hou, Arthur
2012-01-01
The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha- Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), and (7) ATMS instruments on the NOAA-NASA Joint Polar Satellite System (JPSS) satellites. Data from Chinese and Russian microwave radiometers may also become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide next-generation precipitation products characterized by: (1) more accurate instantaneous precipitation estimate (especially for light rain and cold-season solid precipitation), (2) intercalibrated microwave brightness temperatures from constellation radiometers within a consistent framework, and (3) unified precipitation retrievals from constellation radiometers using a common a priori hydrometeor database constrained by combined radar/radiometer measurements provided by the GPM Core Observatory.
A simple method for MR elastography: a gradient-echo type multi-echo sequence.
Numano, Tomokazu; Mizuhara, Kazuyuki; Hata, Junichi; Washio, Toshikatsu; Homma, Kazuhiro
2015-01-01
To demonstrate the feasibility of a novel MR elastography (MRE) technique based on a conventional gradient-echo type multi-echo MR sequence which does not need additional bipolar magnetic field gradients (motion encoding gradient: MEG), yet is sensitive to vibration. In a gradient-echo type multi-echo MR sequence, several images are produced from each echo of the train with different echo times (TEs). If these echoes are synchronized with the vibration, each readout's gradient lobes achieve a MEG-like effect, and the later generated echo causes a greater MEG-like effect. The sequence was tested for the tissue-mimicking agarose gel phantoms and the psoas major muscles of healthy volunteers. It was confirmed that the readout gradient lobes caused an MEG-like effect and the later TE images had higher sensitivity to vibrations. The magnitude image of later generated echo suffered the T2 decay and the susceptibility artifacts, but the wave image and elastogram of later generated echo were unaffected by these effects. In in vivo experiments, this method was able to measure the mean shear modulus of the psoas major muscle. From the results of phantom experiments and volunteer studies, it was shown that this method has clinical application potential. Copyright © 2014 Elsevier Inc. All rights reserved.
Relating Fresh Concrete Viscosity Measurements from Different Rheometers
Ferraris, Chiara F.; Martys, Nicos S.
2003-01-01
Concrete rheological properties need to be properly measured and predicted in order to characterize the workability of fresh concrete, including special concretes such as self-consolidating concrete (SCC). It was shown by a round-robin test held in 2000 [1,2] that different rheometer designs gave different values of viscosity for the same concrete. While empirical correlation between different rheometers was possible, for a procedure that is supposed to “scientifically” improve on the empirical slump tests, this situation is unsatisfactory. To remedy this situation, a new interpretation of the data was developed. In this paper, it is shown that all instruments tested could be directly and quantitatively compared in terms of relative plastic viscosity instead of the plastic viscosity alone. This should eventually allow the measurements from various rheometer designs to be directly calibrated against known standards of plastic viscosity, putting concrete rheometry and concrete workability on a sounder materials science basis. PMID:27413607
Retrieval of the Nitrous Oxide Profiles using the AIRS Data in China
NASA Astrophysics Data System (ADS)
Chen, L.; Ma, P.; Tao, J.; Li, X.; Zhang, Y.; Wang, Z.; Li, S.; Xiong, X.
2014-12-01
As an important greenhouse gas and ozone-depleting substance, the 100-year global warming potential of Nitrous Oxide (N2O) is almost 300 times higher than that of carbon dioxide. However, there are still large uncertainties about the quantitative N2O emission and its feedback to climate change due to the coarse ground-based network. This approach attempts to retrieve the N2O profiles from the Atmospheric InfraRed Sounder (AIRS) data. First, the sensitivity of atmospheric temperature and humidity profiles and surface parameters between two spectral absorption bands were simulated by using the radiative transfer model. Second, the eigenvector regression algorithm is used to construct a priori state. Third, an optimal estimate method was developed based on the band selection of N2O. Finally, we compared our retrieved AIRS profiles with HIPPO data, and analyzed the seasonal and annual N2O distribution in China from 2004 to 2013.
MTR and In-vivo 1H-MRS studies on mouse brain with parkinson's disease
NASA Astrophysics Data System (ADS)
Yoon, Moon-Hyun; Kim, Hyeon-Jin; Chung, Jin-Yeung; Doo, Ah-Reum; Park, Hi-Joon; Kim, Seung-Nam; Choe, Bo-Young
2012-12-01
The aim of this study was to investigate whether the changes in the magnetization transfer ratio (MTR) histogram are related to specific characteristics of Parkinson's disease (PD) and to investigate whether the MTR histogram parameters are associated with neurochemical dysfunction by performing in vivo proton magnetic resonance spectroscopy (1H-MRS). MTR and in vivo 1H-MRS studies were performed on control mice (n = 10) and 1-methyl-1,2,3,6-tetrahydropyridine intoxicated mice (n = 10). All the MTR and in vivo 1H-MRS experiments were performed on a 9.4 T MRI/MRS system (Bruker Biospin, Germany) using a standard head coil. The protondensity fast spin echo (FSE) images and the T2-weighted spin echo (SE) images were acquired with no gap. Outer volume suppression (OVS), combined with the ultra-short echo-time stimulated echo acquisition mode (STEAM), was used for the localized in-vivo 1H-MRS. The quantitative analysis of metabolites was performed from the 1H spectra obtained in vivo on the striatum (ST) by using jMRUI (Lyon, France). The peak height of the MTR histograms in the PD model group was significantly lower than that in the control group (p < 0.05). The midbrain MTR values for volume were lower in the PD group than the control group(p < 0.05). The complex peak (Glx: glutamine+glutamate+ GABA)/creatine (Cr) ratio of the right ST in the PD group was significantly increased as compared to that of the control group. The present study revealed that the peak height of the MTR histogram was significantly decreased in the ST and substantia nigra, and a significant increase in the Gl x /Cr ratio was found in the ST of the PD group, as compared with that of the control group. These findings could reflect the early phase of neuronal dysfunction of neurotransmitters.
Kim, Tae-Hyung; Baek, Moon-Young; Park, Ji Eun; Ryu, Young Jin; Cheon, Jung-Eun; Kim, In-One; Choi, Young Hun
2018-06-01
The purpose of this study is to compare DWI for pediatric brain evaluation using single-shot echo-planar imaging (EPI), periodically rotated overlapping parallel lines with enhanced reconstruction (Blade), and readout-segmented EPI (Resolve). Blade, Resolve, and single-shot EPI were performed for 27 pediatric patients (median age, 9 years), and three datasets were independently reviewed by two radiologists. Qualitative analyses were performed for perceptive coarseness, image distortion, susceptibility-related changes, motion artifacts, and lesion conspicuity using a 5-point Likert scale. Quantitative analyses were conducted for spatial distortion and signal uniformity of each sequence. Mean scores were 2.13, 3.17, and 3.76 for perceptive coarseness; 4.85, 3.96, and 2.19 for image distortion; 4.76, 3.96, and 2.30 for susceptibility-related change; 4.96, 3.83, and 4.69 for motion artifacts; and 2.71, 3.75, and 1.92 for lesion conspicuity, for Blade, Resolve, and single-shot EPI, respectively. Blade and Resolve showed better quality than did single-shot EPI for image distortion, susceptibility-related changes, and lesion conspicuity. Blade showed less image distortion, fewer susceptibility-related changes, and fewer motion artifacts than did Resolve, whereas lesion conspicuity was better with Resolve. Blade showed increased signal variation compared with Resolve and single-shot EPI (coefficients of variation were 0.10, 0.08, and 0.05 for lateral ventricle; 0.13, 0.09, and 0.05 for centrum semiovale; and 0.16, 0.09, and 0.06 for pons in Blade, Resolve, and single-shot EPI, respectively). DWI with Resolve or Blade yields better quality regarding distortion, susceptibility-related changes, and lesion conspicuity, compared with single-shot EPI. Blade is less susceptible to motion artifacts than is Resolve, whereas Resolve yields less noise and better lesion conspicuity than does Blade.
Aliotta, Eric; Moulin, Kévin; Zhang, Zhaohuan; Ennis, Daniel B.
2018-01-01
Purpose To evaluate a technique for simultaneous quantitative T2 and apparent diffusion coefficient (ADC) mapping in the heart (T2+ADC) using spin echo (SE) diffusion-weighted imaging (DWI). Theory and Methods T2 maps from T2+ADC were compared with single-echo SE in phantoms and with T2-prepared (T2-prep) balanced steady-state free precession (bSSFP) in healthy volunteers. ADC maps from T2+ADC were compared with conventional DWI in phantoms and in vivo. T2+ADC was also demonstrated in a patient with acute myocardial infarction (MI). Results Phantom T2 values from T2+ADC were closer to a single-echo SE reference than T2-prep bSSFP (−2.3 ± 6.0% vs 22.2 ± 16.3%; P < 0.01), and ADC values were in excellent agreement with DWI (0.28 ± 0.4%). In volunteers, myocardial T2 values from T2+ADC were significantly shorter than T2-prep bSSFP (35.8 ± 3.1 vs 46.8 ± 3.8 ms; P < 0.01); myocardial ADC was not significantly (N.S.) different between T2+ADC and conventional motion-compensated DWI (1.39 ± 0.18 vs 1.38 ± 0.18 mm2/ms; P = N.S.). In the patient, T2 and ADC were both significantly elevated in the infarct compared with remote myocardium (T2: 40.4 ± 7.6 vs 56.8 ± 22.0; P < 0.01; ADC: 1.47 ± 0.59 vs 1.65 ± 0.65 mm2/ms; P < 0.01). Conclusion T2+ADC generated coregistered, free-breathing T2 and ADC maps in healthy volunteers and a patient with acute MI with no cost in accuracy, precision, or scan time compared with DWI. PMID:28516485
Leynes, Andrew P; Yang, Jaewon; Wiesinger, Florian; Kaushik, Sandeep S; Shanbhag, Dattesh D; Seo, Youngho; Hope, Thomas A; Larson, Peder E Z
2018-05-01
Accurate quantification of uptake on PET images depends on accurate attenuation correction in reconstruction. Current MR-based attenuation correction methods for body PET use a fat and water map derived from a 2-echo Dixon MRI sequence in which bone is neglected. Ultrashort-echo-time or zero-echo-time (ZTE) pulse sequences can capture bone information. We propose the use of patient-specific multiparametric MRI consisting of Dixon MRI and proton-density-weighted ZTE MRI to directly synthesize pseudo-CT images with a deep learning model: we call this method ZTE and Dixon deep pseudo-CT (ZeDD CT). Methods: Twenty-six patients were scanned using an integrated 3-T time-of-flight PET/MRI system. Helical CT images of the patients were acquired separately. A deep convolutional neural network was trained to transform ZTE and Dixon MR images into pseudo-CT images. Ten patients were used for model training, and 16 patients were used for evaluation. Bone and soft-tissue lesions were identified, and the SUV max was measured. The root-mean-squared error (RMSE) was used to compare the MR-based attenuation correction with the ground-truth CT attenuation correction. Results: In total, 30 bone lesions and 60 soft-tissue lesions were evaluated. The RMSE in PET quantification was reduced by a factor of 4 for bone lesions (10.24% for Dixon PET and 2.68% for ZeDD PET) and by a factor of 1.5 for soft-tissue lesions (6.24% for Dixon PET and 4.07% for ZeDD PET). Conclusion: ZeDD CT produces natural-looking and quantitatively accurate pseudo-CT images and reduces error in pelvic PET/MRI attenuation correction compared with standard methods. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
NASA Astrophysics Data System (ADS)
Rangin, C.; Sibuet, J. C.; Lin, J. Y.; Le Pichon, X.
2009-04-01
Detailed swath-bathymetry, coupled with echo-sounder data were collected offshore the northern tip of Sumatra over the rupture area of the 26th December 2004 Mw=9.2 earthquake during the Sumatra aftershock cruise. 20 ocean bottom seismometers were also deployed in the northern Sumatra area., and more than 1000 events were identified during the 12 days recording period. We mapped recently active steeply dipping thrust fault zone within the western termination of the Sunda accreted wedge. Main N10°W trending out of sequence thrust fault zones with a discrete westward vergency and some component of dextral strike-slip motion were continuously mapped within the wedge, on the basis of bathymetry and low frequency sounder profiles. The interplate boundary does not appear to extend into the frontal part of the wedge but most probably merges in its central part along these major faults, the Lower and Upper Splay Faults. After relocation, the seismicity shows different pattern in each side of this Upper Splay Fault. East of this boundary, beneath the Aceh basin, the earthquake depths ranged from 30 to 60 km allow us to illustrate the subducted plate. In the western part, the aftershock distribution is strongly influenced by the N-S orientated oceanic fracture zones. Two clusters of earthquakes between 10 and 50 km in depth trending along N-S direction are observed in the lower wedge that we interpret to be reactive fracture zones. The lower wedge is interpreted as the northern prolongation below the wedge of the lower plate NS oceanic fracture zone ridges affected by NS trending left lateral strike-slip faults. This wedge outer ridge is in the process of being transferred to the upper plate. On the other hand the central ridge is interpreted as possible stacked volcanic ridge slivers already incorporated into the upper plate along the subduction buttress (the inner ridge of the wedge). We propose that the tectonic interaction of the volcanic Indian Ocean fracture ridges of the subducted plate with the leading edge of the upper Sunda plate subduction zone is an active tectonic transfer process of oceanic material to the upper plate. The proposed emergence of the interplate boundary into the middle part of the wedge along the Lower Splay Fault, could have favoured the formation of the giant Sumatra tsunami at moderate water depth. This docking and temporary stacking of these volcanic ridges before their subduction at depth, is favoured by the strong oblique convergence that prevails up to the Bengal basin into the north.
The Environmental Protection Agency's Enforcement and Compliance History Online (ECHO) website provides customizable and downloadable information about environmental inspections, violations, and enforcement actions for EPA-regulated facilities, like power plants and factories. ECHO advances public information by sharing data related to facility compliance with and regulatory agency activity related to air, hazardous waste, clean water, and drinking water regulations. ECHO offers many user-friendly options to explore data, including:1. Facility Search (http://echo.epa.gov/facilities/facility-search?mediaSelected=all): ECHO information is searchable by varied criteria, including location, facility type, and compliance status related to the Clean Air Act, Clean Water Act, Resource Conservation and Recovery Act, and Safe Drinking Water Act. Search results are customizable and downloadable.2. Comparative Maps (http://echo.epa.gov/maps/state-comparative-maps) and State Dashboards (http://echo.epa.gov/trends/comparative-maps-dashboards/state-air-dashboard): These tools offer aggregated information about facility compliance status and regulatory agency compliance monitoring and enforcement activity at the national and state level.3. Bulk Data Downloads (http://echo.epa.gov/resources/echo-data/data-downloads): One of ECHO's most popular features is the ability to work offline by downloading large data sets. Users can take advantage of the ECHO Exporter, which provides su
Echo characteristics of two salmon species
NASA Astrophysics Data System (ADS)
Nealson, Patrick A.; Horne, John K.; Burwen, Debby L.
2005-04-01
The Alaska Department of Fish and Game relies on split-beam hydroacoustic techniques to estimate Chinook salmon (Oncorhynchus tshawytscha) returns to the Kenai River. Chinook counts are periodically confounded by large numbers of smaller sockeye salmon (O. nerka). Echo target-strength has been used to distinguish fish length classes, but was too variable to separate Kenai River chinook and sockeye distributions. To evaluate the efficacy of alternate echo metrics, controlled acoustic measurements of tethered chinook and sockeye salmon were collected at 200 kHz. Echo returns were digitally sampled at 48 kHz. A suite of descriptive metrics were collected from a series of 1,000 echoes per fish. Measurements of echo width were least variable at the -3 dB power point. Initial results show echo elongation and ping-to-ping variability in echo envelope width were significantly greater for chinook than for sockeye salmon. Chinook were also observed to return multiple discrete peaks from a single broadcast echo. These characteristics were attributed to the physical width of chinook exceeding half of the broadcast echo pulse width at certain orientations. Echo phase variability, correlation coefficient and fractal dimension distributions did not demonstrate significant discriminatory power between the two species. [Work supported by ADF&G, ONR.
NASA Astrophysics Data System (ADS)
Tobin, David C.; Revercomb, Henry E.; Knuteson, Robert O.; Best, Fred A.; Smith, William L.; Ciganovich, Nick N.; Dedecker, Ralph G.; Dutcher, Steven; Ellington, Scott D.; Garcia, Raymond K.; Howell, H. Benjamin; Laporte, Daniel D.; Mango, Stephen A.; Pagano, Thomas S.; Taylor, Joe K.; van Delst, Paul; Vinson, Kenneth H.; Werner, Mark W.
2006-05-01
The ability to accurately validate high-spectral resolution infrared radiance measurements from space using comparisons with a high-altitude aircraft spectrometer has been successfully demonstrated. The demonstration is based on a 21 November 2002 underflight of the AIRS on the NASA Aqua spacecraft by the Scanning-HIS on the NASA ER-2 high-altitude aircraft. A comparison technique which accounts for the different viewing geometries and spectral characteristics of the two sensors is introduced, and accurate comparisons are made for AIRS channels throughout the infrared spectrum. Resulting brightness temperature differences are found to be 0.2 K or less for most channels. Both the AIRS and the Scanning-HIS calibrations are expected to be very accurate (formal 3-sigma estimates are better than 1 K absolute brightness temperature for a wide range of scene temperatures), because high spectral resolution offers inherent advantages for absolute calibration and because they make use of high-emissivity cavity blackbodies as onboard radiometric references. AIRS also has the added advantage of a cold space view, and the Scanning-HIS calibration has recently benefited from the availability of a zenith view from high-altitude flights. Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations, including those from the NASA EOS spacecraft (Terra, Aqua and Aura) and the new complement of NPOESS operational instruments. The validation role for accurately calibrated aircraft spectrometers also includes application to broadband instruments and linking the calibrations of similar instruments on different spacecraft. It is expected that aircraft flights of the Scanning-HIS and its close cousin the NPOESS Airborne Sounder Test Bed (NAST) will be used to check the long-term stability of AIRS and the NPOESS operational follow-on sounder, the Cross-track Infrared Sounder (CrIS), over the life of the missions.
Note on the Effect of Horizontal Gradients for Nadir-Viewing Microwave and Infrared Sounders
NASA Technical Reports Server (NTRS)
Joiner, J.; Poli, P.
2004-01-01
Passive microwave and infrared nadir sounders such as the Advanced Microwave Sounding Unit A (AMSU-A) and the Atmospheric InfraRed Sounder (AIRS), both flying on NASA s EOS Aqua satellite, provide information about vertical temperature and humidity structure that is used in data assimilation systems for numerical weather prediction and climate applications. These instruments scan cross track so that at the satellite swath edges, the satellite zenith angles can reach approx. 60 deg. The emission path through the atmosphere as observed by the satellite is therefore slanted with respect to the satellite footprint s zenith. Although radiative transfer codes currently in use at operational centers use the appropriate satellite zenith angle to compute brightness temperature, the input atmospheric fields are those from the vertical profile above the center of the satellite footprint. If horizontal gradients are present in the atmospheric fields, the use of a vertical atmospheric profile may produce an error. This note attempts to quantify the effects of horizontal gradients on AIRS and AMSU-A channels by computing brightness temperatures with accurate slanted atmospheric profiles. We use slanted temperature, water vapor, and ozone fields from data assimilation systems. We compare the calculated slanted and vertical brightness temperatures with AIRS and AMSU-A observations. We show that the effects of horizontal gradients on these sounders are generally small and below instrument noise. However, there are cases where the effects are greater than the instrument noise and may produce erroneous increments in an assimilation system. The majority of the affected channels have weighting functions that peak in the upper troposphere (water vapor sensitive channels) and above (temperature sensitive channels) and are unlikely t o significantly impact tropospheric numerical weather prediction. However, the errors could be significant for other applications such as stratospheric analysis. Gradients in ozone and tropospheric temperature appear to be well captured by the analyses. In contrast, gradients in upper stratospheric and mesospheric temperature as well as upper tropospheric humidity are less well captured. This is likely due in part to a lack of data to specify these fields accurately in the analyses. Advanced new sounders, like AIRS, may help to better specify these fields in the future.
Energy shadowing correction of ultrasonic pulse-echo records by digital signal processing
NASA Technical Reports Server (NTRS)
Kishoni, D.; Heyman, J. S.
1986-01-01
Attention is given to a numerical algorithm that, via signal processing, enables the dynamic correction of the shadowing effect of reflections on ultrasonic displays. The algorithm was applied to experimental data from graphite-epoxy composite material immersed in a water bath. It is concluded that images of material defects with the shadowing corrections allow for a more quantitative interpretation of the material state. It is noted that the proposed algorithm is fast and simple enough to be adopted for real time applications in industry.
Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation.
Chandran, Arjun S; Bynevelt, Michael; Lind, Christopher R P
2016-01-01
The subthalamic nucleus (STN) is one of the most important stereotactic targets in neurosurgery, and its accurate imaging is crucial. With improving MRI sequences there is impetus for direct targeting of the STN. High-quality, distortion-free images are paramount. Image reconstruction techniques appear to show the greatest promise in balancing the issue of geometrical distortion and STN edge detection. Existing spin echo- and susceptibility-based MRI sequences are compared with new image reconstruction methods. Quantitative susceptibility mapping is the most promising technique for stereotactic imaging of the STN.
Ma, Ya-Jun; Tadros, Anthony; Du, Jiang; Chang, Eric Y
2018-04-01
To investigate quantitative 2D ultrashort echo time magnetization transfer (UTE-MT) imaging in ex vivo bovine cortical bone and in vivo human tibial cortical bone. Data were acquired from five fresh bovine cortical bone samples and five healthy volunteer tibial cortical bones using a 2D UTE-MT sequence on a clinical 3T scanner. The 2D UTE-MT sequence used four or five MT powers with five frequency offsets. Results were analyzed with a two-pool quantitative MT model, providing measurements of macromolecular fraction (f), macromolecular proton transverse relaxation times (T 2m ), proton exchange rates from water/macromolecular to the macromolecular/water pool (RM 0m /RM 0w ), and spin-lattice relaxation rate of water pool (R 1w ). A sequential air-drying study for a small bovine cortical bone chip was used to investigate whether above MT modeling parameters were sensitive to the water loss. Mean fresh bovine cortical bone values for f, T 2m , R 1w , RM 0m , and RM 0w were 59.9 ± 7.3%, 14.6 ± 0.3 μs, 9.9 ± 2.4 s -1 , 17.9 ± 3.6 s -1 , and 11.8 ± 2.0 s -1 , respectively. Mean in vivo human cortical bone values for f, T 2m , R 1w , RM 0m and RM 0w were 54.5 ± 4.9%, 15.4 ± 0.6 μs, 8.9 ± 1.1 s -1 , 11.5 ± 3.5 s -1 , and 9.5 ± 1.9 s -1 , respectively. The sequential air-drying study shows that f, RM 0m , and R 1w were increased with longer drying time. UTE-MT two-pool modeling provides novel and useful quantitative information for cortical bone. Magn Reson Med 79:1941-1949, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Internal stratigraphy of the South Polar Layered Deposits, Mars from SHARAD data
NASA Astrophysics Data System (ADS)
Whitten, J. L.; Campbell, B. A.
2017-12-01
The South Polar Layered Deposits (SPLD) are one of the largest deposits of water ice on Mars, composed of alternating layers of ice and dust. The accumulation of the layers is driven by orbital forcings (e.g., obliquity) and both the cadence and structure of these layers preserve a record of the past martian climate. Image of very limited exposed layering suggest several distinct sequences, demarcated by erosional hiatuses, with a gently domical shape. Here we use the Shallow Radar (SHARAD) sounder dataset to investigate the internal stratigraphy of the SPLD in order to further constrain the south polar climate record. We identify four distinct units based in part on their degree of vertical sharpness (focus) in the SHARAD data: (1) upper focused layer packets, (2) focused layer packets, (3) blurred layer packets, and (4) reflection free zones (RFZs). A diffuse echo pattern related to uncertain aspects of composition or layer roughness is termed fog. The upper focused layer packets are concentrated in the area between 270° to 90°E, close to the residual polar cap. The focused and blurred layer packets cover a large portion of the SPLD and are subdivided into two different units, those with an average reflecting-interface brightness and those with substantially brighter reflectors. The brighter radar reflectors have a coherent spatial distribution and only comprise a small portion of the entire unit. The diffuse echoes are separated into a fog that is present throughout the entire vertical column of the SPLD and a fog that begins at the surface and traverses only the uppermost layers. Depending on the geometry of individual SHARAD tracks, reflectors can be traced for hundreds of kilometers, but the fog obscures much of the internal layering, and is related to the focusing distortion that prevents individual reflectors from being traced across the entire SPLD. We identify a major deviation from a gently domical SPLD shape in a 200 km dome. Its presence suggests that the depositional history of the SPLD was more complicated than previously proposed. Differences in the distribution of the identified units further supports the dynamic and changing nature of the south polar climate. We also explore the distribution and radar characteristics of other ice-rich deposits in the south polar region of Mars.
Trend of Narratives in the Age of Misinformation.
Bessi, Alessandro; Zollo, Fabiana; Del Vicario, Michela; Scala, Antonio; Caldarelli, Guido; Quattrociocchi, Walter
2015-01-01
Social media enabled a direct path from producer to consumer of contents changing the way users get informed, debate, and shape their worldviews. Such a disintermediation might weaken consensus on social relevant issues in favor of rumors, mistrust, or conspiracy thinking-e.g., chem-trails inducing global warming, the link between vaccines and autism, or the New World Order conspiracy. Previous studies pointed out that consumers of conspiracy-like content are likely to aggregate in homophile clusters-i.e., echo-chambers. Along this path we study, by means of a thorough quantitative analysis, how different topics are consumed inside the conspiracy echo-chamber in the Italian Facebook. Through a semi-automatic topic extraction strategy, we show that the most consumed contents semantically refer to four specific categories: environment, diet, health, and geopolitics. We find similar consumption patterns by comparing users activity (likes and comments) on posts belonging to these different semantic categories. Finally, we model users mobility across the distinct topics finding that the more a user is active, the more he is likely to span on all categories. Once inside a conspiracy narrative users tend to embrace the overall corpus.
Diffusion-weighted MR imaging findings of kidneys in patients with early phase of obstruction.
Bozgeyik, Zulkif; Kocakoc, Ercan; Sonmezgoz, Fitnet
2009-04-01
Diffusion-weighted (DW) magnetic resonance (MR) imaging is an MR technique used to show molecular diffusion. The apparent diffusion coefficient (ADC), as a quantitative parameter calculated from the DW MR images. The purpose of this study is to evaluate the ability of DW MR imaging in early phase of obstruction due to urolithiasis. Twenty-six patients with acute dilatation of the pelvicalyceal system detected by intravenous urography were included in this study. MR imaging was performed using a 1.5 T whole-body superconducting MR scanner. DW imaging can be performed using single-shot spin-echo, echo-planar imaging (EPI) sequences with the following diffusion gradient b values: 100, 600, 1000 s/mm(2). Circular region of interest (ROI) was placed in the renal parenchyma for the measurement of ADC values in the normal and obstructed kidney. For statistical analyses, Paired t test were used. In spite of obstructed kidneys had the lower ADC values compared to normal kidneys, these alterations were statistically insignificant. We did not observe significantly different ADC values of early phase of obstructed kidneys compared to normal kidneys.
Swirls of Smoke and Dust Blow Out to Sea
NASA Technical Reports Server (NTRS)
2007-01-01
Smoke from multiple wildfires burning in Southern California, together with dust in Southern California, Baja California and mainland Mexico, swirl out into the Pacific and Gulf of California, respectively, in this false-color visible image from the Atmospheric Infrared Sounder on NASA's Aqua satellite, acquired at about 7 p.m. Eastern Time on October 22. Strong Santa Ana winds are fanning the wildfires, among the most destructive in recent memory. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.Assimilation of Feng-Yun-3B satellite microwave humidity sounder data over land
NASA Astrophysics Data System (ADS)
Chen, Keyi; Bormann, Niels; English, Stephen; Zhu, Jiang
2018-03-01
The ECMWF has been assimilating Feng-Yun-3B (FY-3B) satellite microwave humidity sounder (MWHS) data over ocean in an operational forecasting system since 24 September 2014. It is more difficult, however, to assimilate microwave observations over land and sea ice than over the open ocean due to higher uncertainties in land surface temperature, surface emissivity and less effective cloud screening. We compare approaches in which the emissivity is retrieved dynamically from MWHS channel 1 [150 GHz (vertical polarization)] with the use of an evolving emissivity atlas from 89 GHz observations from the MWHS onboard NOAA and EUMETSAT satellites. The assimilation of the additional data over land improves the fit of short-range forecasts to other observations, notably ATMS (Advanced Technology Microwave Sounder) humidity channels, and the forecast impacts are mainly neutral to slightly positive over the first five days. The forecast impacts are better in boreal summer and the Southern Hemisphere. These results suggest that the techniques tested allow for effective assimilation of MWHS/FY-3B data over land.
NPOESS Preparatory Project Validation Program for the Cross-track Infrared Sounder
NASA Astrophysics Data System (ADS)
Barnet, C.; Gu, D.; Nalli, N. R.
2009-12-01
The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Program, in partnership with National Aeronautical Space Administration (NASA), will launch the NPOESS Preparatory Project (NPP), a risk reduction and data continuity mission, prior to the first operational NPOESS launch. The NPOESS Program, in partnership with Northrop Grumman Aerospace Systems, will execute the NPP Calibration and Validation (Cal/Val) program to ensure the data products comply with the requirements of the sponsoring agencies. The Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are two of the instruments that make up the suite of sensors on NPP. Together, CrIS and ATMS will produce three Environmental Data Records (EDRs) including the Atmospheric Vertical Temperature Profile (AVTP), Atmospheric Vertical Moisture Profile (AVMP), and the Atmospheric Vertical Pressure Profile (AVPP). The AVTP and the AVMP are both NPOESS Key Performance Parameters (KPPs). The validation plans establish science and user community leadership and participation, and demonstrated, cost-effective Cal/Val approaches. This presentation will provide an overview of the collaborative data, techniques, and schedule for the validation of the NPP CrIS and ATMS environmental data products.
NASA Astrophysics Data System (ADS)
Lipton, A.; Moncet, J. L.; Payne, V.; Lynch, R.; Polonsky, I. N.
2017-12-01
We will present recent results from an algorithm for producing climate-quality atmospheric profiling earth system data records (ESDRs) for application to data from hyperspectral sounding instruments, including the Atmospheric InfraRed Sounder (AIRS) on EOS Aqua and the Cross-track Infrared Sounder (CrIS) on Suomi-NPP, along with their companion microwave sounders, AMSU and ATMS, respectively. The ESDR algorithm uses an optimal estimation approach and the implementation has a flexible, modular software structure to support experimentation and collaboration. Data record continuity benefits from the fact that the same algorithm can be applied to different sensors, simply by providing suitable configuration and data files. Developments to be presented include the impact of a radiance-based pre-classification method for the atmospheric background. In addition to improving retrieval performance, pre-classification has the potential to reduce the sensitivity of the retrievals to the climatological data from which the background estimate and its error covariance are derived. We will also discuss evaluation of a method for mitigating the effect of clouds on the radiances, and enhancements of the radiative transfer forward model.
Assessment of Infrared Sounder Radiometric Noise from Analysis of Spectral Residuals
NASA Astrophysics Data System (ADS)
Dufour, E.; Klonecki, A.; Standfuss, C.; Tournier, B.; Serio, C.; Masiello, G.; Tjemkes, S.; Stuhlmann, R.
2016-08-01
For the preparation and performance monitoring of the future generation of hyperspectral InfraRed sounders dedicated to the precise vertical profiling of the atmospheric state, such as the Meteosat Third Generation hyperspectral InfraRed Sounder, a reliable assessment of the instrument radiometric error covariance matrix is needed.Ideally, an inflight estimation of the radiometrric noise is recommended as certain sources of noise can be driven by the spectral signature of the observed Earth/ atmosphere radiance. Also, unknown correlated noise sources, generally related to incomplete knowledge of the instrument state, can be present, so a caracterisation of the noise spectral correlation is also neeed.A methodology, relying on the analysis of post-retreival spectral residuals, is designed and implemented to derive in-flight the covariance matrix on the basis of Earth scenes measurements. This methodology is successfully demonstrated using IASI observations as MTG-IRS proxy data and made it possible to highlight anticipated correlation structures explained by apodization and micro-vibration effects (ghost). This analysis is corroborated by a parallel estimation based on an IASI black body measurement dataset and the results of an independent micro-vibration model.
On the application of magic echo cycles for quadrupolar echo spectroscopy of spin-1 nuclei.
Mananga, E S; Roopchand, R; Rumala, Y S; Boutis, G S
2007-03-01
Magic echo cycles are introduced for performing quadrupolar echo spectroscopy of spin-1 nuclei. An analysis is performed via average Hamiltonian theory showing that the evolution under chemical shift or static field inhomogeneity can be refocused simultaneously with the quadrupolar interaction using these cycles. Due to the higher convergence in the Magnus expansion, with sufficient RF power, magic echo based quadrupolar echo spectroscopy outperforms the conventional two pulse quadrupolar echo in signal to noise. Experiments highlighting a signal to noise enhancement over the entire bandwidth of the quadrupolar pattern of a powdered sample of deuterated polyethelene are shown.
NASA Astrophysics Data System (ADS)
MacGibbon, J.; Whitehead, J. D.; From, W. R.
1989-03-01
Angle-of-arrival measurements were obtained for first echoes (those directly reflected from the ionosphere) and second echoes (those twice reflected from the ionosphere with an intermediate reflection from the ground). Unexpectedly, the off-vertical angle-of-arrival of the second echo was found to be consistently less than that of the first echo for much of the time. It is suggested that rapid phase variations caused by the change in the tilt of the ionosphere prevented recognition of the second echo by the present radar system for echoes reflected from rough terrain.