Liu, Gang; Su, Yingying; Jiang, Mengdi; Chen, Weibi; Zhang, Yan; Zhang, Yunzhou; Gao, Daiquan
2016-07-28
Electroencephalogram reactivity (EEG-R) is a positive predictive factor for assessing outcomes in comatose patients. Most studies assess the prognostic value of EEG-R utilizing visual analysis; however, this method is prone to subjectivity. We sought to categorize EEG-R with a quantitative approach. We retrospectively studied consecutive comatose patients who had an EEG-R recording performed 1-3 days after cardiopulmonary resuscitation (CPR) or during normothermia after therapeutic hypothermia. EEG-R was assessed via visual analysis and quantitative analysis separately. Clinical outcomes were followed-up at 3-month and dichotomized as recovery of awareness or no recovery of awareness. A total of 96 patients met the inclusion criteria, and 38 (40%) patients recovered awareness at 3-month followed-up. Of 27 patients with EEG-R measured with visual analysis, 22 patients recovered awareness; and of the 69 patients who did not demonstrated EEG-R, 16 patients recovered awareness. The sensitivity and specificity of visually measured EEG-R were 58% and 91%, respectively. The area under the receiver operating characteristic curve for the quantitative analysis was 0.92 (95% confidence interval, 0.87-0.97), with the best cut-off value of 0.10. EEG-R through quantitative analysis might be a good method in predicting the recovery of awareness in patients with post-anoxic coma after CPR. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Predictive value of EEG in postanoxic encephalopathy: A quantitative model-based approach.
Efthymiou, Evdokia; Renzel, Roland; Baumann, Christian R; Poryazova, Rositsa; Imbach, Lukas L
2017-10-01
The majority of comatose patients after cardiac arrest do not regain consciousness due to severe postanoxic encephalopathy. Early and accurate outcome prediction is therefore essential in determining further therapeutic interventions. The electroencephalogram is a standardized and commonly available tool used to estimate prognosis in postanoxic patients. The identification of pathological EEG patterns with poor prognosis relies however primarily on visual EEG scoring by experts. We introduced a model-based approach of EEG analysis (state space model) that allows for an objective and quantitative description of spectral EEG variability. We retrospectively analyzed standard EEG recordings in 83 comatose patients after cardiac arrest between 2005 and 2013 in the intensive care unit of the University Hospital Zürich. Neurological outcome was assessed one month after cardiac arrest using the Cerebral Performance Category. For a dynamic and quantitative EEG analysis, we implemented a model-based approach (state space analysis) to quantify EEG background variability independent from visual scoring of EEG epochs. Spectral variability was compared between groups and correlated with clinical outcome parameters and visual EEG patterns. Quantitative assessment of spectral EEG variability (state space velocity) revealed significant differences between patients with poor and good outcome after cardiac arrest: Lower mean velocity in temporal electrodes (T4 and T5) was significantly associated with poor prognostic outcome (p<0.005) and correlated with independently identified visual EEG patterns such as generalized periodic discharges (p<0.02). Receiver operating characteristic (ROC) analysis confirmed the predictive value of lower state space velocity for poor clinical outcome after cardiac arrest (AUC 80.8, 70% sensitivity, 15% false positive rate). Model-based quantitative EEG analysis (state space analysis) provides a novel, complementary marker for prognosis in postanoxic encephalopathy. Copyright © 2017 Elsevier B.V. All rights reserved.
EEG in children with spelling disabilities.
Byring, R F; Salmi, T K; Sainio, K O; Orn, H P
1991-10-01
A total of 23 13-year-old boys with spelling disabilities and 21 matched controls were studied. EEG was recorded for visual and quantitative analysis, including FFT band powers and normalized slope descriptors (NSD). Visual analysis showed general excess of slow activity, as well as an excess of temporal slow wave activity in the index group. Quantitative analysis showed low alpha and beta powers, and low "activity" and high "complexity" (NSD) in parieto-occipital derivations in the index group. Quantitative EEG (qEEG) parameter ratios between temporal and parieto-occipital derivations were increased in the index group, implying a lack of spatial differentiation in these EEGs. In covariance analysis the qEEG parameter differences between the index group and controls were partly explained by the neurotic traits made evident in psychological tests. This implies that psychopathological artifacts should be considered in qEEG examinations of children with cognitive handicaps. Differences in anterior/posterior qEEG ratios were, however, little affected by any confounding factors. Thus these qEEG ratios seem potentially useful in clinical assessments of children with learning disabilities.
Chen, Bihua; Chen, Gang; Dai, Chenxi; Wang, Pei; Zhang, Lei; Huang, Yuanyuan; Li, Yongqin
2018-04-01
Quantitative electroencephalogram (EEG) analysis has shown promising results in studying brain injury and functional recovery after cardiac arrest (CA). However, whether the quantitative characteristics of EEG, as potential indicators of neurological prognosis, are influenced by CA causes is unknown. The purpose of this study was designed to compare the quantitative characteristics of early post-resuscitation EEG between asphyxial CA (ACA) and ventricular fibrillation CA (VFCA) in rats. Thirty-two Sprague-Dawley rats of both sexes were randomized into either ACA or VFCA group. Cardiopulmonary resuscitation was initiated after 5-min untreated CA. Characteristics of early post-resuscitation EEG were compared, and the relationships between quantitative EEG features and neurological outcomes were investigated. Compared with VFCA, serum level of S100B, neurological deficit score and brain histopathologic damage score were dramatically higher in the ACA group. Quantitative measures of EEG, including onset time of EEG burst, time to normal trace, burst suppression ratio, and information quantity, were significantly lower for CA caused by asphyxia and correlated with the 96-h neurological outcome and survival. Characteristics of earlier post-resuscitation EEG differed between cardiac and respiratory causes. Quantitative measures of EEG not only predicted neurological outcome and survival, but also have the potential to stratify CA with different causes.
Computerized EEG analysis for studying the effect of drugs on the central nervous system.
Rosadini, G; Cavazza, B; Rodriguez, G; Sannita, W G; Siccardi, A
1977-11-01
Samples of our experience in quantitative pharmaco-EEG are reviewed to discuss and define its applicability and limits. Simple processing systems, such as the computation of Hjorth's descriptors, are useful for on-line monitoring of drug-induced EEG modifications which are evident also at the visual visual analysis. Power spectral analysis is suitable to identify and quantify EEG effects not evident at the visual inspection. It demonstrated how the EEG effects of compounds in a long-acting formulation vary according to the sampling time and the explored cerebral area. EEG modifications not detected by power spectral analysis can be defined by comparing statistically (F test) the spectral values of the EEG from a single lead at the different samples (longitudinal comparison), or the spectral values from different leads at any sample (intrahemispheric comparison). The presently available procedures of quantitative pharmaco-EEG are effective when applied to the study of mutltilead EEG recordings in a statistically significant sample of population. They do not seem reliable in the monitoring of directing of neuropyschiatric therapies in single patients, due to individual variability of drug effects.
Quantification of EEG reactivity in comatose patients
Hermans, Mathilde C.; Westover, M. Brandon; van Putten, Michel J.A.M.; Hirsch, Lawrence J.; Gaspard, Nicolas
2016-01-01
Objective EEG reactivity is an important predictor of outcome in comatose patients. However, visual analysis of reactivity is prone to subjectivity and may benefit from quantitative approaches. Methods In EEG segments recorded during reactivity testing in 59 comatose patients, 13 quantitative EEG parameters were used to compare the spectral characteristics of 1-minute segments before and after the onset of stimulation (spectral temporal symmetry). Reactivity was quantified with probability values estimated using combinations of these parameters. The accuracy of probability values as a reactivity classifier was evaluated against the consensus assessment of three expert clinical electroencephalographers using visual analysis. Results The binary classifier assessing spectral temporal symmetry in four frequency bands (delta, theta, alpha and beta) showed best accuracy (Median AUC: 0.95) and was accompanied by substantial agreement with the individual opinion of experts (Gwet’s AC1: 65–70%), at least as good as inter-expert agreement (AC1: 55%). Probability values also reflected the degree of reactivity, as measured by the inter-experts’ agreement regarding reactivity for each individual case. Conclusion Automated quantitative EEG approaches based on probabilistic description of spectral temporal symmetry reliably quantify EEG reactivity. Significance Quantitative EEG may be useful for evaluating reactivity in comatose patients, offering increased objectivity. PMID:26183757
ERIC Educational Resources Information Center
Ozge, Aynur; Toros, Fevziye; Comelekoglu, Ulku
2004-01-01
We investigated the role of delayed cerebral maturation, hemisphere asymmetry and regional differences in children with stuttering and healthy controls during resting state and hyperventilation, using conventional EEG techniques and quantitative EEG (QEEG) analysis. This cross-sectional case control study included 26 children with stuttering and…
Sarrigiannis, Ptolemaios G; Zhao, Yifan; Wei, Hua-Liang; Billings, Stephen A; Fotheringham, Jayne; Hadjivassiliou, Marios
2014-01-01
To introduce a new method of quantitative EEG analysis in the time domain, the error reduction ratio (ERR)-causality test. To compare performance against cross-correlation and coherence with phase measures. A simulation example was used as a gold standard to assess the performance of ERR-causality, against cross-correlation and coherence. The methods were then applied to real EEG data. Analysis of both simulated and real EEG data demonstrates that ERR-causality successfully detects dynamically evolving changes between two signals, with very high time resolution, dependent on the sampling rate of the data. Our method can properly detect both linear and non-linear effects, encountered during analysis of focal and generalised seizures. We introduce a new quantitative EEG method of analysis. It detects real time levels of synchronisation in the linear and non-linear domains. It computes directionality of information flow with corresponding time lags. This novel dynamic real time EEG signal analysis unveils hidden neural network interactions with a very high time resolution. These interactions cannot be adequately resolved by the traditional methods of coherence and cross-correlation, which provide limited results in the presence of non-linear effects and lack fidelity for changes appearing over small periods of time. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Quantification of EEG reactivity in comatose patients.
Hermans, Mathilde C; Westover, M Brandon; van Putten, Michel J A M; Hirsch, Lawrence J; Gaspard, Nicolas
2016-01-01
EEG reactivity is an important predictor of outcome in comatose patients. However, visual analysis of reactivity is prone to subjectivity and may benefit from quantitative approaches. In EEG segments recorded during reactivity testing in 59 comatose patients, 13 quantitative EEG parameters were used to compare the spectral characteristics of 1-minute segments before and after the onset of stimulation (spectral temporal symmetry). Reactivity was quantified with probability values estimated using combinations of these parameters. The accuracy of probability values as a reactivity classifier was evaluated against the consensus assessment of three expert clinical electroencephalographers using visual analysis. The binary classifier assessing spectral temporal symmetry in four frequency bands (delta, theta, alpha and beta) showed best accuracy (Median AUC: 0.95) and was accompanied by substantial agreement with the individual opinion of experts (Gwet's AC1: 65-70%), at least as good as inter-expert agreement (AC1: 55%). Probability values also reflected the degree of reactivity, as measured by the inter-experts' agreement regarding reactivity for each individual case. Automated quantitative EEG approaches based on probabilistic description of spectral temporal symmetry reliably quantify EEG reactivity. Quantitative EEG may be useful for evaluating reactivity in comatose patients, offering increased objectivity. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Andrzejak, Ralph G.; Hauf, Martinus; Pollo, Claudio; Müller, Markus; Weisstanner, Christian; Wiest, Roland; Schindler, Kaspar
2015-01-01
Background Epilepsy surgery is a potentially curative treatment option for pharmacoresistent patients. If non-invasive methods alone do not allow to delineate the epileptogenic brain areas the surgical candidates undergo long-term monitoring with intracranial EEG. Visual EEG analysis is then used to identify the seizure onset zone for targeted resection as a standard procedure. Methods Despite of its great potential to assess the epileptogenicty of brain tissue, quantitative EEG analysis has not yet found its way into routine clinical practice. To demonstrate that quantitative EEG may yield clinically highly relevant information we retrospectively investigated how post-operative seizure control is associated with four selected EEG measures evaluated in the resected brain tissue and the seizure onset zone. Importantly, the exact spatial location of the intracranial electrodes was determined by coregistration of pre-operative MRI and post-implantation CT and coregistration with post-resection MRI was used to delineate the extent of tissue resection. Using data-driven thresholding, quantitative EEG results were separated into normally contributing and salient channels. Results In patients with favorable post-surgical seizure control a significantly larger fraction of salient channels in three of the four quantitative EEG measures was resected than in patients with unfavorable outcome in terms of seizure control (median over the whole peri-ictal recordings). The same statistics revealed no association with post-operative seizure control when EEG channels contributing to the seizure onset zone were studied. Conclusions We conclude that quantitative EEG measures provide clinically relevant and objective markers of target tissue, which may be used to optimize epilepsy surgery. The finding that differentiation between favorable and unfavorable outcome was better for the fraction of salient values in the resected brain tissue than in the seizure onset zone is consistent with growing evidence that spatially extended networks might be more relevant for seizure generation, evolution and termination than a single highly localized brain region (i.e. a “focus”) where seizures start. PMID:26513359
Fernandes, Magda L; Oliveira, Welser Machado de; Santos, Maria do Carmo Vasconcellos; Gomez, Renato S
2015-01-01
Sedation for electroencephalography in uncooperative patients is a controversial issue because majority of sedatives, hypnotics, and general anesthetics interfere with the brain's electrical activity. Chloral hydrate (CH) is typically used for this sedation, and dexmedetomidine (DEX) was recently tested because preliminary data suggest that this drug does not affect the electroencephalogram (EEG). The aim of the present study was to compare the EEG pattern during DEX or CH sedation to test the hypothesis that both drugs exert similar effects on the EEG. A total of 17 patients underwent 2 EEGs on 2 separate occasions, one with DEX and the other with CH. The EEG qualitative variables included the phases of sleep and the background activity. The EEG quantitative analysis was performed during the first 2 minutes of the second stage of sleep. The EEG quantitative variables included density, duration, and amplitude of the sleep spindles and absolute spectral power. The results showed that the qualitative analysis, density, duration, and amplitude of sleep spindles did not differ between DEX and CH sedation. The power of the slow-frequency bands (δ and θ) was higher with DEX, but the power of the faster-frequency bands (α and β) was higher with CH. The total power was lower with DEX than with CH. The differences of DEX and CH in EEG power did not change the EEG qualitative interpretation, which was similar with the 2 drugs. Other studies comparing natural sleep and sleep induced by these drugs are needed to clarify the clinical relevance of the observed EEG quantitative differences.
Quantitative electroencephalography in a swine model of blast-induced brain injury.
Chen, Chaoyang; Zhou, Chengpeng; Cavanaugh, John M; Kallakuri, Srinivasu; Desai, Alok; Zhang, Liying; King, Albert I
2017-01-01
Electroencephalography (EEG) was used to examine brain activity abnormalities earlier after blast exposure using a swine model to develop a qEEG data analysis protocol. Anaesthetized swine were exposed to 420-450 Kpa blast overpressure and survived for 3 days after blast. EEG recordings were performed at 15 minutes before the blast and 15 minutes, 30 minutes, 2 hours and 1, 2 and 3 days post-blast using surface recording electrodes and a Biopac 4-channel data acquisition system. Off-line quantitative EEG (qEEG) data analysis was performed to determine qEEG changes. Blast induced qEEG changes earlier after blast exposure, including a decrease of mean amplitude (MAMP), an increase of delta band power, a decrease of alpha band root mean square (RMS) and a decrease of 90% spectral edge frequency (SEF90). This study demonstrated that qEEG is sensitive for cerebral injury. The changes of qEEG earlier after the blast indicate the potential of utilization of multiple parameters of qEEG for diagnosis of blast-induced brain injury. Early detection of blast induced brain injury will allow early screening and assessment of brain abnormalities in soldiers to enable timely therapeutic intervention.
Comparison of quantitative EEG characteristics of quiet and active sleep in newborns.
Paul, Karel; Krajca, Vladimír; Roth, Zdenek; Melichar, Jan; Petránek, Svojmil
2003-11-01
The aim of the present study was to verify whether the proposed method of computer-supported EEG analysis is able to differentiate the EEG activity in quiet sleep (QS) from that in active sleep (AS) in newborns. A quantitative description of the neonatal EEG may contribute to a more exact evaluation of the functional state of the brain, as well as to a refinement of diagnostics of brain dysfunction manifesting itself frequently as 'dysrhythmia' or 'dysmaturity'. Twenty-one healthy newborns (10 full-term and 11 pre-term) were examined polygraphically (EEG-eight channels, respiration, ECG, EOG and EMG) in the course of sleep. From each EEG record, two 5-min samples (one from QS and one from AS) were subject to an off-line computerized analysis. The obtained data were averaged with respect to the sleep state and to the conceptional age. The number of variables was reduced by means of factor analysis. All factors identified by factor analysis were highly significantly influenced by sleep states in both developmental periods. Likewise, a comparison of the measured variables between QS and AS revealed many statistically significant differences. The variables describing (a) the number and length of quasi-stationary segments, (b) voltage and (c) power in delta and theta bands contributed to the greatest degree to the differentiation of EEGs between both sleep states. The presented method of the computerized EEG analysis which has good discriminative potential is adequately sensitive and describes the neonatal EEG with convenient accuracy.
Murri, L; Gori, S; Massetani, R; Bonanni, E; Marcella, F; Milani, S
1998-06-01
The sensitivity of quantitative electroencephalogram (EEG) was compared with that of conventional EEG in patients with acute ischaemic stroke. In addition, a correlation between quantitative EEG data and computerized tomography (CT) scan findings was carried out for all the areas of lesion in order to reassess the actual role of EEG in the evaluation of stroke. Sixty-five patients were tested with conventional and quantitative EEG within 24 h from the onset of neurological symptoms, whereas CT scan was performed within 4 days from the onset of stroke. EEG was recorded from 19 electrodes placed upon the scalp according to the International 10-20 System. Spectral analysis was carried out on 30 artefact-free 4-sec epochs. For each channel absolute and relative power were calculated for the delta, theta, alpha and beta frequency bands and such data were successively represented in colour-coded maps. Ten patients with extensive lesions documented by CT scan were excluded. The results indicated that conventional EEG revealed abnormalities in 40 of 55 cases, while EEG mapping showed abnormalities in 46 of 55 cases: it showed focal abnormalities in five cases and nonfocal abnormalities in one of six cases which had appeared to be normal according to visual inspection of EEG. In a further 11 cases, where the conventional EEG revealed abnormalities in one hemisphere, the quantitative EEG and maps allowed to further localize abnormal activity in a more localized way. The sensitivity of both methods was higher for frontocentral, temporal and parieto-occipital cortical-subcortical infarctions than for basal ganglia and internal capsule lesions; however, quantitative EEG was more efficient for all areas of lesion in detecting cases that had appeared normal by visual inspection and was clearly superior in revealing focal abnormalities. When we considered the electrode related to which the maximum power of the delta frequency band is recorded, a fairly close correlation was found between the localization of the maximum delta power and the position of lesions documented by CT scan for all areas of lesion excepting those located in the striatocapsular area.
Quantitative EEG analysis in minimally conscious state patients during postural changes.
Greco, A; Carboncini, M C; Virgillito, A; Lanata, A; Valenza, G; Scilingo, E P
2013-01-01
Mobilization and postural changes of patients with cognitive impairment are standard clinical practices useful for both psychic and physical rehabilitation process. During this process, several physiological signals, such as Electroen-cephalogram (EEG), Electrocardiogram (ECG), Photopletysmography (PPG), Respiration activity (RESP), Electrodermal activity (EDA), are monitored and processed. In this paper we investigated how quantitative EEG (qEEG) changes with postural modifications in minimally conscious state patients. This study is quite novel and no similar experimental data can be found in the current literature, therefore, although results are very encouraging, a quantitative analysis of the cortical area activated in such postural changes still needs to be deeply investigated. More specifically, this paper shows EEG power spectra and brain symmetry index modifications during a verticalization procedure, from 0 to 60 degrees, of three patients in Minimally Consciousness State (MCS) with focused region of impairment. Experimental results show a significant increase of the power in β band (12 - 30 Hz), commonly associated to human alertness process, thus suggesting that mobilization and postural changes can have beneficial effects in MCS patients.
Demonstration of brain noise on human EEG signals in perception of bistable images
NASA Astrophysics Data System (ADS)
Grubov, Vadim V.; Runnova, Anastasiya E.; Kurovskaya, Maria K.; Pavlov, Alexey N.; Koronovskii, Alexey A.; Hramov, Alexander E.
2016-03-01
In this report we studied human brain activity in the case of bistable visual perception. We proposed a new approach for quantitative characterization of this activity based on analysis of EEG oscillatory patterns and evoked potentials. Accordingly to theoretical background, obtained experimental EEG data and results of its analysis we studied a characteristics of brain activity during decision-making. Also we have shown that decisionmaking process has the special patterns on the EEG data.
Quantitative topographic differentiation of the neonatal EEG.
Paul, Karel; Krajca, Vladimír; Roth, Zdenek; Melichar, Jan; Petránek, Svojmil
2006-09-01
To test the discriminatory topographic potential of a new method of the automatic EEG analysis in neonates. A quantitative description of the neonatal EEG can contribute to the objective assessment of the functional state of the brain, and may improve the precision of diagnosing cerebral dysfunctions manifested by 'disorganization', 'dysrhythmia' or 'dysmaturity'. 21 healthy, full-term newborns were examined polygraphically during sleep (EEG-8 referential derivations, respiration, ECG, EOG, EMG). From each EEG record, two 5-min samples (one from the middle of quiet sleep, the other from the middle of active sleep) were subject to subsequent automatic analysis and were described by 13 variables: spectral features and features describing shape and variability of the signal. The data from individual infants were averaged and the number of variables was reduced by factor analysis. All factors identified by factor analysis were statistically significantly influenced by the location of derivation. A large number of statistically significant differences were also established when comparing the effects of individual derivations on each of the 13 measured variables. Both spectral features and features describing shape and variability of the signal are largely accountable for the topographic differentiation of the neonatal EEG. The presented method of the automatic EEG analysis is capable to assess the topographic characteristics of the neonatal EEG, and it is adequately sensitive and describes the neonatal electroencephalogram with sufficient precision. The discriminatory capability of the used method represents a promise for their application in the clinical practice.
Continuous EEG monitoring in the intensive care unit.
Scheuer, Mark L
2002-01-01
Continuous EEG (CEEG) monitoring allows uninterrupted assessment of cerebral cortical activity with good spatial resolution and excellent temporal resolution. Thus, this procedure provides a means of constantly assessing brain function in critically ill obtunded and comatose patients. Recent advances in digital EEG acquisition, storage, quantitative analysis, and transmission have made CEEG monitoring in the intensive care unit (ICU) technically feasible and useful. This article summarizes the indications and methodology of CEEG monitoring in the ICU, and discusses the role of some quantitative EEG analysis techniques in near real-time remote observation of CEEG recordings. Clinical examples of CEEG use, including monitoring of status epilepticus, assessment of ongoing therapy for treatment of seizures in critically ill patients, and monitoring for cerebral ischemia, are presented. Areas requiring further development of CEEG monitoring techniques and indications are discussed.
Heunis, Tosca-Marie; Aldrich, Chris; de Vries, Petrus J
2016-08-01
Electroencephalography (EEG) has been used for almost a century to identify seizure-related disorders in humans, typically through expert interpretation of multichannel recordings. Attempts have been made to quantify EEG through frequency analyses and graphic representations. These "traditional" quantitative EEG analysis methods were limited in their ability to analyze complex and multivariate data and have not been generally accepted in clinical settings. There has been growing interest in identification of novel EEG biomarkers to detect early risk of autism spectrum disorder, to identify clinically meaningful subgroups, and to monitor targeted intervention strategies. Most studies to date have, however, used quantitative EEG approaches, and little is known about the emerging multivariate analytical methods or the robustness of candidate biomarkers in the context of the variability of autism spectrum disorder. Here, we present a targeted review of methodological and clinical challenges in the search for novel resting-state EEG biomarkers for autism spectrum disorder. Three primary novel methodologies are discussed: (1) modified multiscale entropy, (2) coherence analysis, and (3) recurrence quantification analysis. Results suggest that these methods may be able to classify resting-state EEG as "autism spectrum disorder" or "typically developing", but many signal processing questions remain unanswered. We suggest that the move to novel EEG analysis methods is akin to the progress in neuroimaging from visual inspection, through region-of-interest analysis, to whole-brain computational analysis. Novel resting-state EEG biomarkers will have to evaluate a range of potential demographic, clinical, and technical confounders including age, gender, intellectual ability, comorbidity, and medication, before these approaches can be translated into the clinical setting. Copyright © 2016 Elsevier Inc. All rights reserved.
Sharma, Niraj K; Pedreira, Carlos; Centeno, Maria; Chaudhary, Umair J; Wehner, Tim; França, Lucas G S; Yadee, Tinonkorn; Murta, Teresa; Leite, Marco; Vos, Sjoerd B; Ourselin, Sebastien; Diehl, Beate; Lemieux, Louis
2017-07-01
To validate the application of an automated neuronal spike classification algorithm, Wave_clus (WC), on interictal epileptiform discharges (IED) obtained from human intracranial EEG (icEEG) data. Five 10-min segments of icEEG recorded in 5 patients were used. WC and three expert EEG reviewers independently classified one hundred IED events into IED classes or non-IEDs. First, we determined whether WC-human agreement variability falls within inter-reviewer agreement variability by calculating the variation of information for each classifier pair and quantifying the overlap between all WC-reviewer and all reviewer-reviewer pairs. Second, we compared WC and EEG reviewers' spike identification and individual spike class labels visually and quantitatively. The overlap between all WC-human pairs and all human pairs was >80% for 3/5 patients and >58% for the other 2 patients demonstrating WC falling within inter-human variation. The average sensitivity of spike marking for WC was 91% and >87% for all three EEG reviewers. Finally, there was a strong visual and quantitative similarity between WC and EEG reviewers. WC performance is indistinguishable to that of EEG reviewers' suggesting it could be a valid clinical tool for the assessment of IEDs. WC can be used to provide quantitative analysis of epileptic spikes. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Levitt, Joshua; Nitenson, Adam; Koyama, Suguru; Heijmans, Lonne; Curry, James; Ross, Jason T; Kamerling, Steven; Saab, Carl Y
2018-06-23
Electroencephalography (EEG) invariably contains extra-cranial artifacts that are commonly dealt with based on qualitative and subjective criteria. Failure to account for EEG artifacts compromises data interpretation. We have developed a quantitative and automated support vector machine (SVM)-based algorithm to accurately classify artifactual EEG epochs in awake rodent, canine and humans subjects. An embodiment of this method also enables the determination of 'eyes open/closed' states in human subjects. The levels of SVM accuracy for artifact classification in humans, Sprague Dawley rats and beagle dogs were 94.17%, 83.68%, and 85.37%, respectively, whereas 'eyes open/closed' states in humans were labeled with 88.60% accuracy. Each of these results was significantly higher than chance. Comparison with Existing Methods: Other existing methods, like those dependent on Independent Component Analysis, have not been tested in non-human subjects, and require full EEG montages, instead of only single channels, as this method does. We conclude that our EEG artifact detection algorithm provides a valid and practical solution to a common problem in the quantitative analysis and assessment of EEG in pre-clinical research settings across evolutionary spectra. Copyright © 2018. Published by Elsevier B.V.
Birca, Ala; Lortie, Anne; Birca, Veronica; Decarie, Jean-Claude; Veilleux, Annie; Gallagher, Anne; Dehaes, Mathieu; Lodygensky, Gregory A; Carmant, Lionel
2016-04-01
To investigate how rewarming impacts the evolution of EEG background in neonates with hypoxic-ischemic encephalopathy (HIE) undergoing therapeutic hypothermia (TH). We recruited a retrospective cohort of 15 consecutive newborns with moderate (9) and severe (6) HIE monitored with a continuous EEG during TH and at least 12h after its end. EEG background was analyzed using conventional visual and quantitative EEG analysis methods including EEG discontinuity, absolute and relative spectral magnitudes. One patient with seizures on rewarming was excluded from analyses. Visual and quantitative analyses demonstrated significant changes in EEG background from pre- to post-rewarming, characterized by an increased EEG discontinuity, more pronounced in newborns with severe compared to moderate HIE. Neonates with moderate HIE also had an increase in the relative magnitude of slower delta and a decrease in higher frequency theta and alpha waves with rewarming. Rewarming affects EEG background in HIE newborns undergoing TH, which may represent a transient adaptive response or reflect an evolving brain injury. EEG background impairment induced by rewarming may represent a biomarker of evolving encephalopathy in HIE newborns undergoing TH and underscores the importance of continuously monitoring the brain health in critically ill neonates. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Jianyuan; Hu, Bin; Chen, Wenjuan; Moore, Philip; Xu, Tingting; Dong, Qunxi; Liu, Zhenyu; Luo, Yuejia; Chen, Shanguang
2014-12-01
The focus of the study is the estimation of the effects of microgravity on the central nervous activity and its underlying influencing mechanisms. To validate the microgravity-induced physiological and psychological effects on EEG, quantitative EEG features, cardiovascular indicators, mood state, and cognitive performances data collection was achieved during a 45 day period using a -6°head-down bed rest (HDBR) integrated approach. The results demonstrated significant differences in EEG data, as an increased Theta wave, a decreased Beta wave and a reduced complexity of brain, accompanied with an increased heart rate and pulse rate, decreased positive emotion, and degraded emotion conflict monitoring performance. The canonical correlation analysis (CCA) based cardiovascular and cognitive related EEG model showed the cardiovascular effect on EEG mainly affected bilateral temporal region and the cognitive effect impacted parietal-occipital and frontal regions. The results obtained in the study support the use of an approach which combines a multi-factor influential mechanism hypothesis. The changes in the EEG data may be influenced by both cardiovascular and cognitive effects.
Wiley, Sara Leingang; Razavi, Babak; Krishnamohan, Prashanth; Mlynash, Michael; Eyngorn, Irina; Meador, Kimford J; Hirsch, Karen G
2018-02-01
Forty to sixty-six percent of patients resuscitated from cardiac arrest remain comatose, and historic outcome predictors are unreliable. Quantitative spectral analysis of continuous electroencephalography (cEEG) may differ between patients with good and poor outcomes. Consecutive patients with post-cardiac arrest hypoxic-ischemic coma undergoing cEEG were enrolled. Spectral analysis was conducted on artifact-free contiguous 5-min cEEG epochs from each hour. Whole band (1-30 Hz), delta (δ, 1-4 Hz), theta (θ, 4-8 Hz), alpha (α, 8-13 Hz), beta (β, 13-30 Hz), α/δ power ratio, percent suppression, and variability were calculated and correlated with outcome. Graphical patterns of quantitative EEG (qEEG) were described and categorized as correlating with outcome. Clinical outcome was dichotomized, with good neurologic outcome being consciousness recovery. Ten subjects with a mean age = 50 yrs (range = 18-65) were analyzed. There were significant differences in total power (3.50 [3.30-4.06] vs. 0.68 [0.52-1.02], p = 0.01), alpha power (1.39 [0.66-1.79] vs 0.27 [0.17-0.48], p < 0.05), delta power (2.78 [2.21-3.01] vs 0.55 [0.38-0.83], p = 0.01), percent suppression (0.66 [0.02-2.42] vs 73.4 [48.0-97.5], p = 0.01), and multiple measures of variability between good and poor outcome patients (all values median [IQR], good vs. poor). qEEG patterns with high or increasing power or large power variability were associated with good outcome (n = 6). Patterns with consistently low or decreasing power or minimal power variability were associated with poor outcome (n = 4). These preliminary results suggest qEEG metrics correlate with outcome. In some patients, qEEG patterns change over the first three days post-arrest.
Seo, Jong-Geun; Kang, Kyunghun; Jung, Ji-Young; Park, Sung-Pa; Lee, Maan-Gee; Lee, Ho-Won
2014-12-01
In this pilot study, we analyzed relationships between quantitative EEG measurements and clinical parameters in idiopathic normal pressure hydrocephalus patients, along with differences in these quantitative EEG markers between cerebrospinal fluid tap test responders and nonresponders. Twenty-six idiopathic normal pressure hydrocephalus patients (9 cerebrospinal fluid tap test responders and 17 cerebrospinal fluid tap test nonresponders) constituted the final group for analysis. The resting EEG was recorded and relative powers were computed for seven frequency bands. Cerebrospinal fluid tap test nonresponders, when compared with responders, showed a statistically significant increase in alpha2 band power at the right frontal and centrotemporal regions. Higher delta2 band powers in the frontal, central, parietal, and occipital regions and lower alpha1 band powers in the right temporal region significantly correlated with poorer cognitive performance. Higher theta1 band powers in the left parietal and occipital regions significantly correlated with gait dysfunction. And higher delta1 band powers in the right frontal regions significantly correlated with urinary disturbance. Our findings may encourage further research using quantitative EEG in patients with ventriculomegaly as a potential electrophysiological marker for predicting cerebrospinal fluid tap test responders. This study additionally suggests that the delta, theta, and alpha bands are statistically correlated with the severity of symptoms in idiopathic normal pressure hydrocephalus patients.
FFT transformed quantitative EEG analysis of short term memory load.
Singh, Yogesh; Singh, Jayvardhan; Sharma, Ratna; Talwar, Anjana
2015-07-01
The EEG is considered as building block of functional signaling in the brain. The role of EEG oscillations in human information processing has been intensively investigated. To study the quantitative EEG correlates of short term memory load as assessed through Sternberg memory test. The study was conducted on 34 healthy male student volunteers. The intervention consisted of Sternberg memory test, which runs on a version of the Sternberg memory scanning paradigm software on a computer. Electroencephalography (EEG) was recorded from 19 scalp locations according to 10-20 international system of electrode placement. EEG signals were analyzed offline. To overcome the problems of fixed band system, individual alpha frequency (IAF) based frequency band selection method was adopted. The outcome measures were FFT transformed absolute powers in the six bands at 19 electrode positions. Sternberg memory test served as model of short term memory load. Correlation analysis of EEG during memory task was reflected as decreased absolute power in Upper alpha band in nearly all the electrode positions; increased power in Theta band at Fronto-Temporal region and Lower 1 alpha band at Fronto-Central region. Lower 2 alpha, Beta and Gamma band power remained unchanged. Short term memory load has distinct electroencephalographic correlates resembling the mentally stressed state. This is evident from decreased power in Upper alpha band (corresponding to Alpha band of traditional EEG system) which is representative band of relaxed mental state. Fronto-temporal Theta power changes may reflect the encoding and execution of memory task.
Use Case Analysis: The Ambulatory EEG in Navy Medicine for Traumatic Brain Injuries
2016-12-01
best uses of the device for naval medicine. 14. SUBJECT TERMS traumatic brain injuries, electroencephalography, EEG, use case study 15. NUMBER OF...Traumatic Brain Injury NCS Non-Convulsive Seizures PD Parkinson’s Disease QEEG Quantitative EEG SPECT Single-Photon Emission Computerized Tomography...INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION This study examines the diagnosis of traumatic brain injuries (TBI). Early detection and diagnosis is
Zelinsky, Deborah; Feinberg, Corey
2017-01-01
Abstract. The brain is equipped with a complex system for processing sensory information, including retinal circuitry comprising part of the central nervous system. Retinal stimulation can influence brain function via customized eyeglasses at both subcortical and cortical levels. We investigated cortical effects from wearing therapeutic eyeglasses, hypothesizing that they can create measureable changes in electroencephalogram (EEG) tracings. A Z-BellSM test was performed on a participant to select optimal lenses. An EEG measurement was recorded before and after the participant wore the eyeglasses. Equivalent quantitative electroencephalography (QEEG) analyses (statistical analysis on raw EEG recordings) were performed and compared with baseline findings. With glasses on, the participant’s readings were found to be closer to the normed database. The original objective of our investigation was met, and additional findings were revealed. The Z-bellSM test identified lenses to influence neurotypical brain activity, supporting the paradigm that eyeglasses can be utilized as a therapeutic intervention. Also, EEG analysis demonstrated that encephalographic techniques can be used to identify channels through which neuro-optomertric treatments work. This case study’s preliminary exploration illustrates the potential role of QEEG analysis and EEG-derived brain imaging in neuro-optometric research endeavors to affect brain function. PMID:28386574
Hatz, F; Hardmeier, M; Bousleiman, H; Rüegg, S; Schindler, C; Fuhr, P
2015-02-01
To compare the reliability of a newly developed Matlab® toolbox for the fully automated, pre- and post-processing of resting state EEG (automated analysis, AA) with the reliability of analysis involving visually controlled pre- and post-processing (VA). 34 healthy volunteers (age: median 38.2 (20-49), 82% female) had three consecutive 256-channel resting-state EEG at one year intervals. Results of frequency analysis of AA and VA were compared with Pearson correlation coefficients, and reliability over time was assessed with intraclass correlation coefficients (ICC). Mean correlation coefficient between AA and VA was 0.94±0.07, mean ICC for AA 0.83±0.05 and for VA 0.84±0.07. AA and VA yield very similar results for spectral EEG analysis and are equally reliable. AA is less time-consuming, completely standardized, and independent of raters and their training. Automated processing of EEG facilitates workflow in quantitative EEG analysis. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
El Ters, N M; Vesoulis, Z A; Liao, S M; Smyser, C D; Mathur, A M
2017-08-01
To evaluate the association between qualitative and quantitative amplitude-integrated EEG (aEEG) measures at term equivalent age (TEA) and brain injury on magnetic resonance imaging (MRI) in preterm infants. A cohort of premature infants born at <30 weeks of gestation and with moderate-to-severe MRI injury on a TEA MRI scan was identified. A contemporaneous group of gestational age-matched control infants also born at <30 weeks of gestation with none/mild injury on MRI was also recruited. Quantitative aEEG measures, including maximum and minimum amplitudes, bandwidth span and spectral edge frequency (SEF 90 ), were calculated using an offline software package. The aEEG recordings were qualitatively scored using the Burdjalov system. MRI scans, performed on the same day as aEEG, occurred at a mean postmenstrual age of 38.0 (range 37 to 42) weeks and were scored for abnormality in a blinded manner using an established MRI scoring system. Twenty-eight (46.7%) infants had a normal MRI or mild brain abnormality, while 32 (53.3%) infants had moderate-to-severe brain abnormality. Univariate regression analysis demonstrated an association between severity of brain abnormality and quantitative measures of left and right SEF 90 and bandwidth span (β=-0.38, -0.40 and 0.30, respectively) and qualitative measures of cyclicity, continuity and total Burdjalov score (β=-0.10, -0.14 and -0.12, respectively). After correcting for confounding variables, the relationship between MRI abnormality score and aEEG measures of SEF 90 , bandwidth span and Burdjalov score remained significant. Brain abnormalities on MRI at TEA in premature infants are associated with abnormalities on term aEEG measures, suggesting that anatomical brain injury may contribute to delay in functional brain maturation as assessed using aEEG.
Govindan, R B; Kota, Srinivas; Al-Shargabi, Tareq; Massaro, An N; Chang, Taeun; du Plessis, Adre
2016-09-01
Electroencephalogram (EEG) signals are often contaminated by the electrocardiogram (ECG) interference, which affects quantitative characterization of EEG. We propose null-coherence, a frequency-based approach, to attenuate the ECG interference in EEG using simultaneously recorded ECG as a reference signal. After validating the proposed approach using numerically simulated data, we apply this approach to EEG recorded from six newborns receiving therapeutic hypothermia for neonatal encephalopathy. We compare our approach with an independent component analysis (ICA), a previously proposed approach to attenuate ECG artifacts in the EEG signal. The power spectrum and the cortico-cortical connectivity of the ECG attenuated EEG was compared against the power spectrum and the cortico-cortical connectivity of the raw EEG. The null-coherence approach attenuated the ECG contamination without leaving any residual of the ECG in the EEG. We show that the null-coherence approach performs better than ICA in attenuating the ECG contamination without enhancing cortico-cortical connectivity. Our analysis suggests that using ICA to remove ECG contamination from the EEG suffers from redistribution problems, whereas the null-coherence approach does not. We show that both the null-coherence and ICA approaches attenuate the ECG contamination. However, the EEG obtained after ICA cleaning displayed higher cortico-cortical connectivity compared with that obtained using the null-coherence approach. This suggests that null-coherence is superior to ICA in attenuating the ECG interference in EEG for cortico-cortical connectivity analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Subspace techniques to remove artifacts from EEG: a quantitative analysis.
Teixeira, A R; Tome, A M; Lang, E W; Martins da Silva, A
2008-01-01
In this work we discuss and apply projective subspace techniques to both multichannel as well as single channel recordings. The single-channel approach is based on singular spectrum analysis(SSA) and the multichannel approach uses the extended infomax algorithm which is implemented in the opensource toolbox EEGLAB. Both approaches will be evaluated using artificial mixtures of a set of selected EEG signals. The latter were selected visually to contain as the dominant activity one of the characteristic bands of an electroencephalogram (EEG). The evaluation is performed both in the time and frequency domain by using correlation coefficients and coherence function, respectively.
EEG analysis using wavelet-based information tools.
Rosso, O A; Martin, M T; Figliola, A; Keller, K; Plastino, A
2006-06-15
Wavelet-based informational tools for quantitative electroencephalogram (EEG) record analysis are reviewed. Relative wavelet energies, wavelet entropies and wavelet statistical complexities are used in the characterization of scalp EEG records corresponding to secondary generalized tonic-clonic epileptic seizures. In particular, we show that the epileptic recruitment rhythm observed during seizure development is well described in terms of the relative wavelet energies. In addition, during the concomitant time-period the entropy diminishes while complexity grows. This is construed as evidence supporting the conjecture that an epileptic focus, for this kind of seizures, triggers a self-organized brain state characterized by both order and maximal complexity.
Electroencephalography and quantitative electroencephalography in mild traumatic brain injury.
Haneef, Zulfi; Levin, Harvey S; Frost, James D; Mizrahi, Eli M
2013-04-15
Mild traumatic brain injury (mTBI) causes brain injury resulting in electrophysiologic abnormalities visible in electroencephalography (EEG) recordings. Quantitative EEG (qEEG) makes use of quantitative techniques to analyze EEG characteristics such as frequency, amplitude, coherence, power, phase, and symmetry over time independently or in combination. QEEG has been evaluated for its use in making a diagnosis of mTBI and assessing prognosis, including the likelihood of progressing to the postconcussive syndrome (PCS) phase. We review the EEG and qEEG changes of mTBI described in the literature. An attempt is made to separate the findings seen during the acute, subacute, and chronic phases after mTBI. Brief mention is also made of the neurobiological correlates of qEEG using neuroimaging techniques or in histopathology. Although the literature indicates the promise of qEEG in making a diagnosis and indicating prognosis of mTBI, further study is needed to corroborate and refine these methods.
Electroencephalography and Quantitative Electroencephalography in Mild Traumatic Brain Injury
Levin, Harvey S.; Frost, James D.; Mizrahi, Eli M.
2013-01-01
Abstract Mild traumatic brain injury (mTBI) causes brain injury resulting in electrophysiologic abnormalities visible in electroencephalography (EEG) recordings. Quantitative EEG (qEEG) makes use of quantitative techniques to analyze EEG characteristics such as frequency, amplitude, coherence, power, phase, and symmetry over time independently or in combination. QEEG has been evaluated for its use in making a diagnosis of mTBI and assessing prognosis, including the likelihood of progressing to the postconcussive syndrome (PCS) phase. We review the EEG and qEEG changes of mTBI described in the literature. An attempt is made to separate the findings seen during the acute, subacute, and chronic phases after mTBI. Brief mention is also made of the neurobiological correlates of qEEG using neuroimaging techniques or in histopathology. Although the literature indicates the promise of qEEG in making a diagnosis and indicating prognosis of mTBI, further study is needed to corroborate and refine these methods. PMID:23249295
Hallioğlu, O; Ozge, A; Comelekoglu, U; Topaloglu, A K; Kanik, A; Duzovali, O; Yilgor, E
2001-10-01
This study was undertaken to evaluate resting electroencephalographic (EEG) changes and their relations to cerebral maturation in children with primary nocturnal enuresis. Cerebral maturation is known to be important in the pathogenesis of this disorder. Twenty-five right-handed patients with primary nocturnal enuresis, aged 6 to 14 years, and 23 age- and sex-matched healthy children were included in this cross-sectional case-control study. The abnormalities detected using such techniques as hemispheral asymmetry, regional differences, and hyperventilation response in addition to visual and quantitative EEG analysis were examined statistically by multivariate analysis. A decrease in alpha activity in the left (dominant hemisphere) temporal lobe and in the frontal lobes bilaterally and an increase in delta activity in the right temporal region were observed. We concluded that insufficient cerebral maturation is an important factor in the pathogenesis of primary nocturnal enuresis, and EEG, as a noninvasive and inexpensive method, could be used in evaluating cerebral maturation.
Epstein, Charles M; Adhikari, Bhim M; Gross, Robert; Willie, Jon; Dhamala, Mukesh
2014-12-01
In recent decades intracranial EEG (iEEG) recordings using increasing numbers of electrodes, higher sampling rates, and a variety of visual and quantitative analyses have indicated the presence of widespread, high frequency ictal and preictal oscillations (HFOs) associated with regions of seizure onset. Seizure freedom has been correlated with removal of brain regions generating pathologic HFOs. However, quantitative analysis of preictal HFOs has seldom been applied to the clinical problem of planning the surgical resection. We performed Granger causality (GC) analysis of iEEG recordings to analyze features of preictal seizure networks and to aid in surgical decision making. Ten retrospective and two prospective patients were chosen on the basis of individually stereotyped seizure patterns by visual criteria. Prospective patients were selected, additionally, for failure of those criteria to resolve apparent multilobar ictal onsets. iEEG was recorded at 500 or 1,000 Hz, using up to 128 surface and depth electrodes. Preictal and early ictal GC from individual electrodes was characterized by the strength of causal outflow, spatial distribution, and hierarchical causal relationships. In all patients we found significant, widespread preictal GC network activity at peak frequencies from 80 to 250 Hz, beginning 2-42 s before visible electrographic onset. In the two prospective patients, GC source/sink comparisons supported the exclusion of early ictal regions that were not the dominant causal sources, and contributed to planning of more limited surgical resections. Both patients have a class 1 outcome at 1 year. GC analysis of iEEG has the potential to increase understanding of preictal network activity, and to help improve surgical outcomes in cases of otherwise ambiguous iEEG onset. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI
Chaudhary, Umair J.; Centeno, Maria; Thornton, Rachel C.; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W.; Diehl, Beate; Walker, Matthew C.; Duncan, John S.; Carmichael, David W.; Lemieux, Louis
2016-01-01
Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as ‘ON’ blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial and lateral right temporal lobe. For the late ictal phase, the BOLD changes were remote from the SOZ and in deep brain areas (precuneus, posterior cingulate and others). The two quantitative models revealed BOLD changes involving the right hippocampus, amygdala and fusiform gyrus and in remote deep brain structures and the default mode network-related areas. In conclusion, icEEG-fMRI allowed us to reveal BOLD changes within and beyond the SOZ linked to very localised ictal fluctuations in beta and gamma activity measured in the amygdala and hippocampus. Furthermore, the BOLD changes within the SOZ structures were better captured by the quantitative models, highlighting the interest in considering seizure-related EEG fluctuations across the entire spectrum. PMID:27114897
Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI.
Chaudhary, Umair J; Centeno, Maria; Thornton, Rachel C; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W; Diehl, Beate; Walker, Matthew C; Duncan, John S; Carmichael, David W; Lemieux, Louis
2016-01-01
Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as 'ON' blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial and lateral right temporal lobe. For the late ictal phase, the BOLD changes were remote from the SOZ and in deep brain areas (precuneus, posterior cingulate and others). The two quantitative models revealed BOLD changes involving the right hippocampus, amygdala and fusiform gyrus and in remote deep brain structures and the default mode network-related areas. In conclusion, icEEG-fMRI allowed us to reveal BOLD changes within and beyond the SOZ linked to very localised ictal fluctuations in beta and gamma activity measured in the amygdala and hippocampus. Furthermore, the BOLD changes within the SOZ structures were better captured by the quantitative models, highlighting the interest in considering seizure-related EEG fluctuations across the entire spectrum.
QEEG and LORETA in Teenagers With Conduct Disorder and Psychopathic Traits.
Calzada-Reyes, Ana; Alvarez-Amador, Alfredo; Galán-García, Lídice; Valdés-Sosa, Mitchell
2017-05-01
Few studies have investigated the impact of the psychopathic traits on the EEG of teenagers with conduct disorder (CD). To date, there is no other research studying low-resolution brain electromagnetic tomography (LORETA) technique using quantitative EEG (QEEG) analysis in adolescents with CD and psychopathic traits. To find electrophysiological differences specifically related to the psychopathic traits. The current investigation compares the QEEG and the current source density measures between adolescents with CD and psychopathic traits and adolescents with CD without psychopathic traits. The resting EEG activity and LORETA for the EEG fast spectral bands were evaluated in 42 teenagers with CD, 25 with and 17 without psychopathic traits according to the Antisocial Process Screening Device. All adolescents were assessed using the DSM-IV-TR criteria. The EEG visual inspection characteristics and the use of frequency domain quantitative analysis techniques (narrow band spectral parameters) are described. QEEG analysis showed a pattern of beta activity excess on the bilateral frontal-temporal regions and decreases of alpha band power on the left central-temporal and right frontal-central-temporal regions in the psychopathic traits group. Current source density calculated at 17.18 Hz showed an increase within fronto-temporo-striatal regions in the psychopathic relative to the nonpsychopathic traits group. These findings indicate that QEEG analysis and techniques of source localization may reveal differences in brain electrical activity among teenagers with CD and psychopathic traits, which was not obvious to visual inspection. Taken together, these results suggest that abnormalities in a fronto-temporo-striatal network play a relevant role in the neurobiological basis of psychopathic behavior.
Jähnig, P; Jobert, M
1995-01-01
Quantitative EEG is a sensitive method for measuring pharmacological effects on the central nervous system. Nowadays, computers enable EEG data to be stored and spectral parameters to be computed for signals obtained from a large number of electrode locations. However, the statistical analysis of such vast amounts of EEG data is complicated due to the limited number of subjects usually involved in pharmacological studies. In the present study, data from a trial aimed at comparing diazepam and placebo were used to investigate different properties of EEG mapping data and to compare different methods of data analysis. Both the topography and the temporal changes of EEG activity were investigated using descriptive data analysis, which is based on an inspection of patterns of pd values (descriptive p values) assessed for all pair-wise tests for differences in time or treatment. An empirical measure (tri-mean) for the computation of group maps is suggested, allowing a better description of group effects with skewed data of small samples size. Finally, both the investigation of maps based on principal component analysis and the notion of distance between maps are discussed and applied to the analysis of the data collected under diazepam treatment, exemplifying the evaluation of pharmacodynamic drug effects.
Hsu, Chia-Fen; Sonuga-Barke, Edmund J S
2016-08-01
fMRI studies have implicated the medial prefrontal cortex and medial temporal lobe, components of the default mode network (DMN), in episodic prospection. This study compared quantitative EEG localized to these DMN regions during prospection and during resting and while waiting for rewards. EEG was recorded in twenty-two adults while they were asked to (i) envision future monetary episodes; (ii) wait for rewards and (iii) rest. Activation sources were localized to core DMN regions. EEG power and phase coherence were compared across conditions. Prospection, compared to resting and waiting, was associated with reduced power in the medial prefrontal gyrus and increased power in the bilateral medial temporal gyrus across frequency bands as well as greater phase synchrony between these regions in the delta band. The current quantitative EEG analysis confirms prior fMRI research suggesting that medial prefrontal and medial temporal gyrus interactions are central to the capacity for episodic prospection. Copyright © 2016 Elsevier B.V. All rights reserved.
Emory, Hamlin; Wells, Christopher; Mizrahi, Neptune
2015-07-01
Two adolescent females with absence epilepsy were classified, one as attention deficit and the other as bipolar disorder. Physical and cognitive exams identified hypotension, bradycardia, and cognitive dysfunction. Their initial electroencephalograms (EEGs) were considered slightly slow, but within normal limits. Quantitative EEG (QEEG) data included relative theta excess and low alpha mean frequencies. A combined treatment of antiepileptic drugs with a catecholamine agonist/reuptake inhibitor was sequentially used. Both patients' physical and cognitive functions improved and they have remained seizure free. The clinical outcomes were correlated with statistically significant changes in QEEG measures toward normal Z-scores in both anterior and posterior regions. In addition, low resolution electromagnetic tomography (LORETA) Z-scored source correlation analyses of the initial and treated QEEG data showed normalized patterns, supporting a neuroanatomic resolution. This study presents preliminary evidence for a neurophysiologic approach to patients with absence epilepsy and comorbid disorders and may provide a method for further research. © EEG and Clinical Neuroscience Society (ECNS) 2014.
Moyanova, S; Kortenska, L; Kirov, R; Iliev, I
1998-12-01
The powerful vasoconstrictor peptide endothelin-1 (ET1) has been shown to reduce local cerebral blood flow in brain areas supplied by the middle cerebral artery (MCA) to a pathologically low level upon intracerebral injection adjacent to the MCA. This reduction manifests itself as an ischemic infarct, that is fully developed within 3 days after ET1 injection. The aim of the present study is to examine the effect of ET1 on electroencephalographic (EEG) activity. ET1 was microinjected unilaterally at a dose of 60 pmol in 3 microl of saline to the MCA in conscious rats. EEG signals were recorded from the frontoparietal cortical area, supplied by MCA, from the first up to the fourteenth day after ET1 injection. EEG activity was analyzed by the fast Fourier transformation. A significant shift to a lower EEG frequency, i.e., augmentation of slow waves and a reduction of alpha-like and faster EEG waves was found post-ET1. This effect was maximal after 3-7 days when the most severe destruction of neurons in this cortical area occurs, as has been previously demonstrated. The results suggest that the quantitative EEG analysis may provide useful additional information about the functional disturbances associated with focal cerebral ischemia.
Wavelet entropy: a new tool for analysis of short duration brain electrical signals.
Rosso, O A; Blanco, S; Yordanova, J; Kolev, V; Figliola, A; Schürmann, M; Başar, E
2001-01-30
Since traditional electrical brain signal analysis is mostly qualitative, the development of new quantitative methods is crucial for restricting the subjectivity in the study of brain signals. These methods are particularly fruitful when they are strongly correlated with intuitive physical concepts that allow a better understanding of brain dynamics. Here, new method based on orthogonal discrete wavelet transform (ODWT) is applied. It takes as a basic element the ODWT of the EEG signal, and defines the relative wavelet energy, the wavelet entropy (WE) and the relative wavelet entropy (RWE). The relative wavelet energy provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The WE carries information about the degree of order/disorder associated with a multi-frequency signal response, and the RWE measures the degree of similarity between different segments of the signal. In addition, the time evolution of the WE is calculated to give information about the dynamics in the EEG records. Within this framework, the major objective of the present work was to characterize in a quantitative way functional dynamics of order/disorder microstates in short duration EEG signals. For that aim, spontaneous EEG signals under different physiological conditions were analyzed. Further, specific quantifiers were derived to characterize how stimulus affects electrical events in terms of frequency synchronization (tuning) in the event related potentials.
Cuspineda, E R; Machado, C; Virues, T; Martínez-Montes, E; Ojeda, A; Valdés, P A; Bosch, J; Valdes, L
2009-07-01
Conventional EEG and quantitative EEG visual stimuli (close-open eyes) reactivity analysis have shown their usefulness in clinical practice; however studies at the level of EEG generators are limited. The focus of the study was visual reactivity of cortical resources in healthy subjects and in a stroke patient. The 64 channel EEG and T1 magnetic resonance imaging (MRI) studies were obtained from 32 healthy subjects and a middle cerebral artery stroke patient. Low Resolution Electromagnetic Tomography (LORETA) was used to estimate EEG sources for both close eyes (CE) vs. open eyes (OE) conditions using individual MRI. The t-test was performed between source spectra of the two conditions. Thresholds for statistically significant t values were estimated by the local false discovery rate (lfdr) method. The Z transform was used to quantify the differences in cortical reactivity between the patient and healthy subjects. Closed-open eyes alpha reactivity sources were found mainly in posterior regions (occipito-parietal zones), extended in some cases to anterior and thalamic regions. Significant cortical reactivity sources were found in frequencies different from alpha (lower t-values). Significant changes at EEG reactivity sources were evident in the damaged brain hemisphere. Reactivity changes were also found in the "healthy" hemisphere when compared with the normal population. In conclusion, our study of brain sources of EEG alpha reactivity provides information that is not evident in the usual topographic analysis.
Quantitative change of EEG and respiration signals during mindfulness meditation.
Ahani, Asieh; Wahbeh, Helane; Nezamfar, Hooman; Miller, Meghan; Erdogmus, Deniz; Oken, Barry
2014-05-14
This study investigates measures of mindfulness meditation (MM) as a mental practice, in which a resting but alert state of mind is maintained. A population of older people with high stress level participated in this study, while electroencephalographic (EEG) and respiration signals were recorded during a MM intervention. The physiological signals during meditation and control conditions were analyzed with signal processing. EEG and respiration data were collected and analyzed on 34 novice meditators after a 6-week meditation intervention. Collected data were analyzed with spectral analysis, phase analysis and classification to evaluate an objective marker for meditation. Different frequency bands showed differences in meditation and control conditions. Furthermore, we established a classifier using EEG and respiration signals with a higher accuracy (85%) at discriminating between meditation and control conditions than a classifier using the EEG signal only (78%). Support vector machine (SVM) classifier with EEG and respiration feature vector is a viable objective marker for meditation ability. This classifier should be able to quantify different levels of meditation depth and meditation experience in future studies.
Quantitative change of EEG and respiration signals during mindfulness meditation
2014-01-01
Background This study investigates measures of mindfulness meditation (MM) as a mental practice, in which a resting but alert state of mind is maintained. A population of older people with high stress level participated in this study, while electroencephalographic (EEG) and respiration signals were recorded during a MM intervention. The physiological signals during meditation and control conditions were analyzed with signal processing. Methods EEG and respiration data were collected and analyzed on 34 novice meditators after a 6-week meditation intervention. Collected data were analyzed with spectral analysis, phase analysis and classification to evaluate an objective marker for meditation. Results Different frequency bands showed differences in meditation and control conditions. Furthermore, we established a classifier using EEG and respiration signals with a higher accuracy (85%) at discriminating between meditation and control conditions than a classifier using the EEG signal only (78%). Conclusion Support vector machine (SVM) classifier with EEG and respiration feature vector is a viable objective marker for meditation ability. This classifier should be able to quantify different levels of meditation depth and meditation experience in future studies. PMID:24939519
Autoregressive model in the Lp norm space for EEG analysis.
Li, Peiyang; Wang, Xurui; Li, Fali; Zhang, Rui; Ma, Teng; Peng, Yueheng; Lei, Xu; Tian, Yin; Guo, Daqing; Liu, Tiejun; Yao, Dezhong; Xu, Peng
2015-01-30
The autoregressive (AR) model is widely used in electroencephalogram (EEG) analyses such as waveform fitting, spectrum estimation, and system identification. In real applications, EEGs are inevitably contaminated with unexpected outlier artifacts, and this must be overcome. However, most of the current AR models are based on the L2 norm structure, which exaggerates the outlier effect due to the square property of the L2 norm. In this paper, a novel AR object function is constructed in the Lp (p≤1) norm space with the aim to compress the outlier effects on EEG analysis, and a fast iteration procedure is developed to solve this new AR model. The quantitative evaluation using simulated EEGs with outliers proves that the proposed Lp (p≤1) AR can estimate the AR parameters more robustly than the Yule-Walker, Burg and LS methods, under various simulated outlier conditions. The actual application to the resting EEG recording with ocular artifacts also demonstrates that Lp (p≤1) AR can effectively address the outliers and recover a resting EEG power spectrum that is more consistent with its physiological basis. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Timashev, Serge F.; Panischev, Oleg Yu.; Polyakov, Yuriy S.; Demin, Sergey A.; Kaplan, Alexander Ya.
2012-02-01
We apply flicker-noise spectroscopy (FNS), a time series analysis method operating on structure functions and power spectrum estimates, to study the clinical electroencephalogram (EEG) signals recorded in children/adolescents (11 to 14 years of age) with diagnosed schizophrenia-spectrum symptoms at the National Center for Psychiatric Health (NCPH) of the Russian Academy of Medical Sciences. The EEG signals for these subjects were compared with the signals for a control sample of chronically depressed children/adolescents. The purpose of the study is to look for diagnostic signs of subjects' susceptibility to schizophrenia in the FNS parameters for specific electrodes and cross-correlations between the signals simultaneously measured at different points on the scalp. Our analysis of EEG signals from scalp-mounted electrodes at locations F3 and F4, which are symmetrically positioned in the left and right frontal areas of cerebral cortex, respectively, demonstrates an essential role of frequency-phase synchronization, a phenomenon representing specific correlations between the characteristic frequencies and phases of excitations in the brain. We introduce quantitative measures of frequency-phase synchronization and systematize the values of FNS parameters for the EEG data. The comparison of our results with the medical diagnoses for 84 subjects performed at NCPH makes it possible to group the EEG signals into 4 categories corresponding to different risk levels of subjects' susceptibility to schizophrenia. We suggest that the introduced quantitative characteristics and classification of cross-correlations may be used for the diagnosis of schizophrenia at the early stages of its development.
Dataset of quantitative spectral EEG of different stages of kindling acquisition in rats.
Jalilifar, Mostafa; Yadollahpour, Ali
2018-02-01
The data represented here are in relation with the manuscript "Quantitative assessments of extracellular EEG to classify specific features of main phases of seizure acquisition based on kindling model in Rat" (Jalilifar et al., 2017) [1] which quantitatively classified different main stages of the kindling process based on their electrophysiological characteristics using EEG signal processing. The data in the graphical form reported the contribution of different sub bands of EEG in different stages of kindling- induced epileptogenesis. Only EEG signals related to stages 1-2 (initial seizure stages (ISSs)), 3 (localized seizure stage (LSS)), and 4-5 (generalized seizure stages (GSSs) were transferred into frequency function by Fast Fourier Transform (FFT) and their power spectrum and power of each sub bands including delta (1-4 Hz), Theta (4-8 Hz), alpha (8-12 Hz), beta (12-28 Hz), gamma (28-40 Hz) were calculated with MATLAB 2013b. Accordingly, all results were obtained quantitatively which can contribute to reduce the errors in the behavioral assessments.
Quantitative EEG patterns of differential in-flight workload
NASA Technical Reports Server (NTRS)
Sterman, M. B.; Mann, C. A.; Kaiser, D. A.
1993-01-01
Four test pilots were instrumented for in-flight EEG recordings using a custom portable recording system. Each flew six, two minute tracking tasks in the Calspan NT-33 experimental trainer at Edwards AFB. With the canopy blacked out, pilots used a HUD display to chase a simulated aircraft through a random flight course. Three configurations of flight controls altered the flight characteristics to achieve low, moderate, and high workload, as determined by normative Cooper-Harper ratings. The test protocol was administered by a command pilot in the back seat. Corresponding EEG and tracking data were compared off-line. Tracking performance was measured as deviation from the target aircraft and combined with control difficulty to achieve an estimate of 'cognitive workload'. Trended patterns of parietal EEG activity at 8-12 Hz were sorted according to this classification. In all cases, high workload produced a significantly greater suppression of 8-12 Hz activity than low workload. Further, a clear differentiation of EEG trend patterns was obtained in 80 percent of the cases. High workload produced a sustained suppression of 8-12 Hz activity, while moderate workload resulted in an initial suppression followed by a gradual increment. Low workload was associated with a modulated pattern lacking any periods of marked or sustained suppression. These findings suggest that quantitative analysis of appropriate EEG measures may provide an objective and reliable in-flight index of cognitive effort that could facilitate workload assessment.
Directed differential connectivity graph of interictal epileptiform discharges
Amini, Ladan; Jutten, Christian; Achard, Sophie; David, Olivier; Soltanian-Zadeh, Hamid; Hossein-Zadeh, Gh. Ali; Kahane, Philippe; Minotti, Lorella; Vercueil, Laurent
2011-01-01
In this paper, we study temporal couplings between interictal events of spatially remote regions in order to localize the leading epileptic regions from intracerebral electroencephalogram (iEEG). We aim to assess whether quantitative epileptic graph analysis during interictal period may be helpful to predict the seizure onset zone of ictal iEEG. Using wavelet transform, cross-correlation coefficient, and multiple hypothesis test, we propose a differential connectivity graph (DCG) to represent the connections that change significantly between epileptic and non-epileptic states as defined by the interictal events. Post-processings based on mutual information and multi-objective optimization are proposed to localize the leading epileptic regions through DCG. The suggested approach is applied on iEEG recordings of five patients suffering from focal epilepsy. Quantitative comparisons of the proposed epileptic regions within ictal onset zones detected by visual inspection and using electrically stimulated seizures, reveal good performance of the present method. PMID:21156385
Williams, D C; Brosnan, R J; Fletcher, D J; Aleman, M; Holliday, T A; Tharp, B; Kass, P H; LeCouteur, R A; Steffey, E P
2016-01-01
The effects of anesthesia on the equine electroencephalogram (EEG) after administration of various drugs for sedation, induction, and maintenance are known, but not that the effect of inhaled anesthetics alone for EEG recording. To determine the effects of isoflurane and halothane, administered as single agents at multiple levels, on the EEG and quantitative EEG (qEEG) of normal horses. Six healthy horses. Prospective study. Digital EEG with video and quantitative EEG (qEEG) were recorded after the administration of one of the 2 anesthetics, isoflurane or halothane, at 3 alveolar doses (1.2, 1.4 and 1.6 MAC). Segments of EEG during controlled ventilation (CV), spontaneous ventilation (SV), and with peroneal nerve stimulation (ST) at each MAC multiple for each anesthetic were selected, analyzed, and compared. Multiple non-EEG measurements were also recorded. Specific raw EEG findings were indicative of changes in the depth of anesthesia. However, there was considerable variability in EEG between horses at identical MAC multiples/conditions and within individual horses over segments of a given epoch. Statistical significance for qEEG variables differed between anesthetics with bispectral index (BIS) CV MAC and 95% spectral edge frequency (SEF95) SV MAC differences in isoflurane only and median frequency (MED) differences in SV MAC with halothane only. Unprocessed EEG features (background and transients) appear to be beneficial for monitoring the depth of a particular anesthetic, but offer little advantage over the use of changes in mean arterial pressure for this purpose. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Martins, Cassio Henrique Taques; Assunção, Catarina De Marchi
2018-01-01
It is a fundamental element in both research and clinical applications of electroencephalography to know the frequency composition of brain electrical activity. The quantitative analysis of brain electrical activity uses computer resources to evaluate the electroencephalography and allows quantification of the data. The contribution of the quantitative perspective is unique, since conventional electroencephalography based on the visual examination of the tracing is not as objective. A systematic review was performed on the MEDLINE database in October 2017. The authors independently analyzed the studies, by title and abstract, and selected articles that met the inclusion criteria: comparative studies, not older than 30 years, that compared the use of conventional electroencephalogram (EEG) with the use of quantitative electroencephalogram (QEEG) in the English language. One hundred twelve articles were automatically selected by the MEDLINE search engine, but only six met the above criteria. The review found that given a 95% confidence interval, QEEG had no statistically higher sensitivity than EEG in four of the six studies reviewed. However, these results must be viewed with appropriate caution, particularly as groups in between studies were not matched on important variables such as gender, age, type of illness, recovery stage, and treatment. The authors' findings in this systematic review are suggestive of the importance of QEEG as an auxiliary tool to traditional EEG, and as such, justifying further refinement, standardization, and eventually the future execution of a head-to-head prospective study on comparing the two methods.
Brain Oscillations in Sport: Toward EEG Biomarkers of Performance.
Cheron, Guy; Petit, Géraldine; Cheron, Julian; Leroy, Axelle; Cebolla, Anita; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Zarka, David; Clarinval, Anne-Marie; Dan, Bernard
2016-01-01
Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators.
Brain Oscillations in Sport: Toward EEG Biomarkers of Performance
Cheron, Guy; Petit, Géraldine; Cheron, Julian; Leroy, Axelle; Cebolla, Anita; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Zarka, David; Clarinval, Anne-Marie; Dan, Bernard
2016-01-01
Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators. PMID:26955362
Erla, Silvia; Faes, Luca; Tranquillini, Enzo; Orrico, Daniele; Nollo, Giandomenico
2011-05-01
The characterization of the EEG response to photic stimulation (PS) is an important issue with significant clinical relevance. This study aims to quantify and map the complexity of the EEG during PS, where complexity is measured as the degree of unpredictability resulting from local linear prediction. EEG activity was recorded with eyes closed (EC) and eyes open (EO) during resting and PS at 5, 10, and 15 Hz in a group of 30 healthy subjects and in a case-report of a patient suffering from cerebral ischemia. The mean squared prediction error (MSPE) resulting from k-nearest neighbour local linear prediction was calculated in each condition as an index of EEG unpredictability. The linear or nonlinear nature of the system underlying EEG activity was evaluated quantifying MSPE as a function of the neighbourhood size during local linear prediction, and by surrogate data analysis as well. Unpredictability maps were obtained for each subject interpolating MSPE values over a schematic head representation. Results on healthy subjects evidenced: (i) the prevalence of linear mechanisms in the generation of EEG dynamics, (ii) the lower predictability of EO EEG, (iii) the desynchronization of oscillatory mechanisms during PS leading to increased EEG complexity, (iv) the entrainment of alpha rhythm during EC obtained by 10 Hz PS, and (v) differences of EEG predictability among different scalp regions. Ischemic patient showed different MSPE values in healthy and damaged regions. The EEG predictability decreased moving from the early acute stage to a stage of partial recovery. These results suggest that nonlinear prediction can be a useful tool to characterize EEG dynamics during PS protocols, and may consequently constitute a complement of quantitative EEG analysis in clinical applications. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
Pharmaco-EEG: A Study of Individualized Medicine in Clinical Practice.
Swatzyna, Ronald J; Kozlowski, Gerald P; Tarnow, Jay D
2015-07-01
Pharmaco-electroencephalography (Pharmaco-EEG) studies using clinical EEG and quantitative EEG (qEEG) technologies have existed for more than 4 decades. This is a promising area that could improve psychotropic intervention using neurological data. One of the objectives in our clinical practice has been to collect EEG and quantitative EEG (qEEG) data. In the past 5 years, we have identified a subset of refractory cases (n = 386) found to contain commonalities of a small number of electrophysiological features in the following diagnostic categories: mood, anxiety, autistic spectrum, and attention deficit disorders, Four abnormalities were noted in the majority of medication failure cases and these abnormalities did not appear to significantly align with their diagnoses. Those were the following: encephalopathy, focal slowing, beta spindles, and transient discharges. To analyze the relationship noted, they were tested for association with the assigned diagnoses. Fisher's exact test and binary logistics regression found very little (6%) association between particular EEG/qEEG abnormalities and diagnoses. Findings from studies of this type suggest that EEG/qEEG provides individualized understanding of pharmacotherapy failures and has the potential to improve medication selection. © EEG and Clinical Neuroscience Society (ECNS) 2014.
Effects of Drawing on Alpha Activity: A Quantitative EEG Study with Implications for Art Therapy
ERIC Educational Resources Information Center
Belkofer, Christopher M.; Van Hecke, Amy Vaughan; Konopka, Lukasz M.
2014-01-01
Little empirical evidence exists as to how materials used in art therapy affect the brain and its neurobiological functioning. This pre/post within-groups study utilized the quantitative electroencephalogram (qEEG) to measure residual effects in the brain after 20 minutes of drawing. EEG recordings were conducted before and after participants (N =…
Wang, Yao; Sokhadze, Estate M.; El-Baz, Ayman S.; Li, Xiaoli; Sears, Lonnie; Casanova, Manuel F.; Tasman, Allan
2016-01-01
Neurofeedback is a mode of treatment that is potentially useful for improving self-regulation skills in persons with autism spectrum disorder. We proposed that operant conditioning of EEG in neurofeedback mode can be accompanied by changes in the relative power of EEG bands. However, the details on the change of the relative power of EEG bands during neurofeedback training course in autism are not yet well explored. In this study, we analyzed the EEG recordings of children diagnosed with autism and enrolled in a prefrontal neurofeedback treatment course. The protocol used in this training was aimed at increasing the ability to focus attention, and the procedure represented the wide band EEG amplitude suppression training along with upregulation of the relative power of gamma activity. Quantitative EEG analysis was completed for each session of neurofeedback using wavelet transform to determine the relative power of gamma and theta/beta ratio, and further to detect the statistical changes within and between sessions. We found a linear decrease of theta/beta ratio and a liner increase of relative power of gamma activity over 18 weekly sessions of neurofeedback in 18 high functioning children with autism. The study indicates that neurofeedback is an effective method for altering EEG characteristics associated with the autism spectrum disorder. Also, it provides information about specific changes of EEG activities and details the correlation between changes of EEG and neurofeedback indexes during the course of neurofeedback. This pilot study contributes to the development of more effective approaches to EEG data analysis during prefrontal neurofeedback training in autism. PMID:26834615
Farabi, Sarah S.; Prasad, Bharati; Quinn, Lauretta; Carley, David W.
2014-01-01
Study Objectives: To determine the effects of dronabinol on quantitative electroencephalogram (EEG) markers of the sleep process, including power distribution and ultradian cycling in 15 patients with obstructive sleep apnea (OSA). Methods: EEG (C4-A1) relative power (% total) in the delta, theta, alpha, and sigma bands was quantified by fast Fourier transformation (FFT) over 28-second intervals. An activation ratio (AR = [alpha + sigma] / [delta + theta]) also was computed for each interval. To assess ultradian rhythms, the best-fitting cosine wave was determined for AR and each frequency band in each polysomnogram (PSG). Results: Fifteen subjects were included in the analysis. Dronabinol was associated with significantly increased theta power (p = 0.002). During the first half of the night, dronabinol decreased sigma power (p = 0.03) and AR (p = 0.03), and increased theta power (p = 0.0006). At increasing dronabinol doses, ultradian rhythms accounted for a greater fraction of EEG power variance in the delta band (p = 0.04) and AR (p = 0.03). Females had higher amplitude ultradian rhythms than males (theta: p = 0.01; sigma: p = 0.01). Decreasing AHI was associated with increasing ultradian rhythm amplitudes (sigma: p < 0.001; AR: p = 0.02). At the end of treatment, lower relative power in the theta band (p = 0.02) and lower AHI (p = 0.05) correlated with a greater decrease in sleepiness from baseline. Conclusions: This exploratory study demonstrates that in individuals with OSA, dronabinol treatment may yield a shift in EEG power toward delta and theta frequencies and a strengthening of ultradian rhythms in the sleep EEG. Citation: Farabi SS; Prasad B; Quinn L; Carley DW. Impact of dronabinol on quantitative electroencephalogram (qEEG) measures of sleep in obstructive sleep apnea syndrome. J Clin Sleep Med 2014;10(1):49-56. PMID:24426820
Batres-Mendoza, Patricia; Montoro-Sanjose, Carlos R; Guerra-Hernandez, Erick I; Almanza-Ojeda, Dora L; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene J; Ibarra-Manzano, Mario A
2016-03-05
Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states.
Batres-Mendoza, Patricia; Montoro-Sanjose, Carlos R.; Guerra-Hernandez, Erick I.; Almanza-Ojeda, Dora L.; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene J.; Ibarra-Manzano, Mario A.
2016-01-01
Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states. PMID:26959029
Miller, Christopher B.; Bartlett, Delwyn J.; Mullins, Anna E.; Dodds, Kirsty L.; Gordon, Christopher J.; Kyle, Simon D.; Kim, Jong Won; D'Rozario, Angela L.; Lee, Rico S.C.; Comas, Maria; Marshall, Nathaniel S.; Yee, Brendon J.; Espie, Colin A.; Grunstein, Ronald R.
2016-01-01
Study Objectives: To empirically derive and evaluate potential clusters of Insomnia Disorder through cluster analysis from polysomnography (PSG). We hypothesized that clusters would differ on neurocognitive performance, sleep-onset measures of quantitative (q)-EEG and heart rate variability (HRV). Methods: Research volunteers with Insomnia Disorder (DSM-5) completed a neurocognitive assessment and overnight PSG measures of total sleep time (TST), wake time after sleep onset (WASO), and sleep onset latency (SOL) were used to determine clusters. Results: From 96 volunteers with Insomnia Disorder, cluster analysis derived at least two clusters from objective sleep parameters: Insomnia with normal objective sleep duration (I-NSD: n = 53) and Insomnia with short sleep duration (I-SSD: n = 43). At sleep onset, differences in HRV between I-NSD and I-SSD clusters suggest attenuated parasympathetic activity in I-SSD (P < 0.05). Preliminary work suggested three clusters by retaining the I-NSD and splitting the I-SSD cluster into two: I-SSD A (n = 29): defined by high WASO and I-SSD B (n = 14): a second I-SSD cluster with high SOL and medium WASO. The I-SSD B cluster performed worse than I-SSD A and I-NSD for sustained attention (P ≤ 0.05). In an exploratory analysis, q-EEG revealed reduced spectral power also in I-SSD B before (Delta, Alpha, Beta-1) and after sleep-onset (Beta-2) compared to I-SSD A and I-NSD (P ≤ 0.05). Conclusions: Two insomnia clusters derived from cluster analysis differ in sleep onset HRV. Preliminary data suggest evidence for three clusters in insomnia with differences for sustained attention and sleep-onset q-EEG. Clinical Trial Registration: Insomnia 100 sleep study: Australia New Zealand Clinical Trials Registry (ANZCTR) identification number 12612000049875. URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=347742. Citation: Miller CB, Bartlett DJ, Mullins AE, Dodds KL, Gordon CJ, Kyle SD, Kim JW, D'Rozario AL, Lee RS, Comas M, Marshall NS, Yee BJ, Espie CA, Grunstein RR. Clusters of Insomnia Disorder: an exploratory cluster analysis of objective sleep parameters reveals differences in neurocognitive functioning, quantitative EEG, and heart rate variability. SLEEP 2016;39(11):1993–2004. PMID:27568796
[Use of quantitative electroencephalogram in patients with septic shock].
Ma, Yujie; Ouyang, Bin; Guan, Xiangdong
2016-01-19
To observe the quantitative electroencephalogram (qEEG) characteristics of the patients with septic shock in intensive care unit (ICU), and to find the early presence and severity of septic-associated encephalopathy (SAE) in these patients. During November 2014 to August 2015, 26 cases with septic shock were included from the ICU of the First Affiliated Hospital, Sun Yat-sen University.During the same period, 14 healthy volunteers were included as control. The brain function instrument was used to monitor the patients by the bed, placing leads as the internationally used 10-20 system, bipolar longitudinal F3-P3, F4-P4 four channels, and then consecutive clips of 5 minutes was chosen, using the average value of the clips, the amplitude integrated electroencephalogram (aEEG), relative frequency band energy, spectrum entropy, relative alpha ariability to carry out statistical analysis.And the qEEG features of septic shock patients with different Glasgow coma scale (GCS) levels were also analyzed. (1) 96% of the patients with septic shock had EEG abnormalities.Alpha frequency band energy, alpha ariability, aEEG amplitude, spectrum entropy decreased significantly (P<0.05=, while the delta frequency band energy significantly increased (P<0.05=. (2) aEEG amplitude decline appeared in 34% of patients with septic shock, and within the septic shock groups, amplitude decreased significantly (P<0.05= in patients with GCS under five. Patients with septic shock tends to have diffuse inhibition in EEG, and the inhibition degree can reflect cerebral lesion degree; changes of EEG frequency as early warning indicators of brain damage are sensitive, and the decline of amplitude often indicates critical injury.
Sensitivity of quantitative EEG for seizure identification in the intensive care unit.
Haider, Hiba A; Esteller, Rosana; Hahn, Cecil D; Westover, M Brandon; Halford, Jonathan J; Lee, Jong W; Shafi, Mouhsin M; Gaspard, Nicolas; Herman, Susan T; Gerard, Elizabeth E; Hirsch, Lawrence J; Ehrenberg, Joshua A; LaRoche, Suzette M
2016-08-30
To evaluate the sensitivity of quantitative EEG (QEEG) for electrographic seizure identification in the intensive care unit (ICU). Six-hour EEG epochs chosen from 15 patients underwent transformation into QEEG displays. Each epoch was reviewed in 3 formats: raw EEG, QEEG + raw, and QEEG-only. Epochs were also analyzed by a proprietary seizure detection algorithm. Nine neurophysiologists reviewed raw EEGs to identify seizures to serve as the gold standard. Nine other neurophysiologists with experience in QEEG evaluated the epochs in QEEG formats, with and without concomitant raw EEG. Sensitivity and false-positive rates (FPRs) for seizure identification were calculated and median review time assessed. Mean sensitivity for seizure identification ranged from 51% to 67% for QEEG-only and 63%-68% for QEEG + raw. FPRs averaged 1/h for QEEG-only and 0.5/h for QEEG + raw. Mean sensitivity of seizure probability software was 26.2%-26.7%, with FPR of 0.07/h. Epochs with the highest sensitivities contained frequent, intermittent seizures. Lower sensitivities were seen with slow-frequency, low-amplitude seizures and epochs with rhythmic or periodic patterns. Median review times were shorter for QEEG (6 minutes) and QEEG + raw analysis (14.5 minutes) vs raw EEG (19 minutes; p = 0.00003). A panel of QEEG trends can be used by experts to shorten EEG review time for seizure identification with reasonable sensitivity and low FPRs. The prevalence of false detections confirms that raw EEG review must be used in conjunction with QEEG. Studies are needed to identify optimal QEEG trend configurations and the utility of QEEG as a screening tool for non-EEG personnel. This study provides Class II evidence that QEEG + raw interpreted by experts identifies seizures in patients in the ICU with a sensitivity of 63%-68% and FPR of 0.5 seizures per hour. © 2016 American Academy of Neurology.
Quantitative EEG analysis of the maturational changes associated with childhood absence epilepsy
NASA Astrophysics Data System (ADS)
Rosso, O. A.; Hyslop, W.; Gerlach, R.; Smith, R. L. L.; Rostas, J. A. P.; Hunter, M.
2005-10-01
This study aimed to examine the background electroencephalography (EEG) in children with childhood absence epilepsy, a condition whose presentation has strong developmental links. EEG hallmarks of absence seizure activity are widely accepted and there is recognition that the bulk of inter-ictal EEG in this group is normal to the naked eye. This multidisciplinary study aimed to use the normalized total wavelet entropy (NTWS) (Signal Processing 83 (2003) 1275) to examine the background EEG of those patients demonstrating absence seizure activity, and compare it with children without absence epilepsy. This calculation can be used to define the degree of order in a system, with higher levels of entropy indicating a more disordered (chaotic) system. Results were subjected to further statistical analyses of significance. Entropy values were calculated for patients versus controls. For all channels combined, patients with absence epilepsy showed (statistically significant) lower entropy values than controls. The size of the difference in entropy values was not uniform, with certain EEG electrodes consistently showing greater differences than others.
Ge, Jing; Zhang, Guoping
2015-01-01
Advanced intelligent methodologies could help detect and predict diseases from the EEG signals in cases the manual analysis is inefficient available, for instance, the epileptic seizures detection and prediction. This is because the diversity and the evolution of the epileptic seizures make it very difficult in detecting and identifying the undergoing disease. Fortunately, the determinism and nonlinearity in a time series could characterize the state changes. Literature review indicates that the Delay Vector Variance (DVV) could examine the nonlinearity to gain insight into the EEG signals but very limited work has been done to address the quantitative DVV approach. Hence, the outcomes of the quantitative DVV should be evaluated to detect the epileptic seizures. To develop a new epileptic seizure detection method based on quantitative DVV. This new epileptic seizure detection method employed an improved delay vector variance (IDVV) to extract the nonlinearity value as a distinct feature. Then a multi-kernel functions strategy was proposed in the extreme learning machine (ELM) network to provide precise disease detection and prediction. The nonlinearity is more sensitive than the energy and entropy. 87.5% overall accuracy of recognition and 75.0% overall accuracy of forecasting were achieved. The proposed IDVV and multi-kernel ELM based method was feasible and effective for epileptic EEG detection. Hence, the newly proposed method has importance for practical applications.
Kuznetsova, G D; Gabova, A V; Lazarev, I E; Obukhov, Iu V; Obukhov, K Iu; Morozov, A A; Kulikov, M A; Shchatskova, A B; Vasil'eva, O N; Tomilovskaia, E S
2015-01-01
Frequency-temporal electroencephalogram (EEG) reactions to hypogravity were studied in 7 male subjects at the age of 20 to 27 years. The experiment was conducted using dry immersion (DI) as the best known method of simulating the space microgravity effects on the Earth. This hypogravity model reproduces hypokinesia, i.e. the weight-bearing and mechanic load removal, which is typical of microgravity. EEG was recorded by Neuroscan-2 (Compumedics) before the experiment (baseline data) and at the end of day 2 in DI. Comparative analysis of the EEG frequency-temporal structure was performed with the use of 2 techniques: Fourier transform and modified wavelet analysis. The Fourier transform elicited that after 2 days in DI the main shifts occurring to the EEG spectral composition are a decline in the alpha power and a slight though reliable growth of theta power. Similar frequency shifts were detected in the same records analyzed using the wavelet transform. According to wavelet analysis, during DI shifts in EEG frequency spectrum are accompanied by frequency desorganization of the EEG dominant rhythm and gross impairment of total stability of the electrical activity with time. Wavelet transform provides an opportunity to quantify changes in the frequency-temporal structure of the electrical activity of the brain. Quantitative evidence of frequency desorganization and temporal instability of EEG wavelet spectrograms may be the key to the understanding of mechanisms that drive functional disorders in the brain cortex in the conditions of hypogravity.
Separation and reconstruction of BCG and EEG signals during continuous EEG and fMRI recordings
Xia, Hongjing; Ruan, Dan; Cohen, Mark S.
2014-01-01
Despite considerable effort to remove it, the ballistocardiogram (BCG) remains a major artifact in electroencephalographic data (EEG) acquired inside magnetic resonance imaging (MRI) scanners, particularly in continuous (as opposed to event-related) recordings. In this study, we have developed a new Direct Recording Prior Encoding (DRPE) method to extract and separate the BCG and EEG components from contaminated signals, and have demonstrated its performance by comparing it quantitatively to the popular Optimal Basis Set (OBS) method. Our modified recording configuration allows us to obtain representative bases of the BCG- and EEG-only signals. Further, we have developed an optimization-based reconstruction approach to maximally incorporate prior knowledge of the BCG/EEG subspaces, and of the signal characteristics within them. Both OBS and DRPE methods were tested with experimental data, and compared quantitatively using cross-validation. In the challenging continuous EEG studies, DRPE outperforms the OBS method by nearly sevenfold in separating the continuous BCG and EEG signals. PMID:25002836
Cosandier-Rimélé, D; Ramantani, G; Zentner, J; Schulze-Bonhage, A; Dümpelmann, M
2017-10-01
Electrical source localization (ESL) deriving from scalp EEG and, in recent years, from intracranial EEG (iEEG), is an established method in epilepsy surgery workup. We aimed to validate the distributed ESL derived from scalp EEG and iEEG, particularly regarding the spatial extent of the source, using a realistic epileptic spike activity simulator. ESL was applied to the averaged scalp EEG and iEEG spikes of two patients with drug-resistant structural epilepsy. The ESL results for both patients were used to outline the location and extent of epileptic cortical patches, which served as the basis for designing a spatiotemporal source model. EEG signals for both modalities were then generated for different anatomic locations and spatial extents. ESL was subsequently performed on simulated signals with sLORETA, a commonly used distributed algorithm. ESL accuracy was quantitatively assessed for iEEG and scalp EEG. The source volume was overestimated by sLORETA at both EEG scales, with the error increasing with source size, particularly for iEEG. For larger sources, ESL accuracy drastically decreased, and reconstruction volumes shifted to the center of the head for iEEG, while remaining stable for scalp EEG. Overall, the mislocalization of the reconstructed source was more pronounced for iEEG. We present a novel multiscale framework for the evaluation of distributed ESL, based on realistic multiscale EEG simulations. Our findings support that reconstruction results for scalp EEG are often more accurate than for iEEG, owing to the superior 3D coverage of the head. Particularly the iEEG-derived reconstruction results for larger, widespread generators should be treated with caution.
NASA Astrophysics Data System (ADS)
Cosandier-Rimélé, D.; Ramantani, G.; Zentner, J.; Schulze-Bonhage, A.; Dümpelmann, M.
2017-10-01
Objective. Electrical source localization (ESL) deriving from scalp EEG and, in recent years, from intracranial EEG (iEEG), is an established method in epilepsy surgery workup. We aimed to validate the distributed ESL derived from scalp EEG and iEEG, particularly regarding the spatial extent of the source, using a realistic epileptic spike activity simulator. Approach. ESL was applied to the averaged scalp EEG and iEEG spikes of two patients with drug-resistant structural epilepsy. The ESL results for both patients were used to outline the location and extent of epileptic cortical patches, which served as the basis for designing a spatiotemporal source model. EEG signals for both modalities were then generated for different anatomic locations and spatial extents. ESL was subsequently performed on simulated signals with sLORETA, a commonly used distributed algorithm. ESL accuracy was quantitatively assessed for iEEG and scalp EEG. Main results. The source volume was overestimated by sLORETA at both EEG scales, with the error increasing with source size, particularly for iEEG. For larger sources, ESL accuracy drastically decreased, and reconstruction volumes shifted to the center of the head for iEEG, while remaining stable for scalp EEG. Overall, the mislocalization of the reconstructed source was more pronounced for iEEG. Significance. We present a novel multiscale framework for the evaluation of distributed ESL, based on realistic multiscale EEG simulations. Our findings support that reconstruction results for scalp EEG are often more accurate than for iEEG, owing to the superior 3D coverage of the head. Particularly the iEEG-derived reconstruction results for larger, widespread generators should be treated with caution.
Struve, F A; Straumanis, J J; Patrick, G
1994-04-01
In a previous pilot study using psychiatric patients we reported that daily marihuana users had significant elevations of (1) Absolute Alpha Power, (2) Relative Alpha Power, and (3) Interhemispheric Alpha Coherence over both frontal and frontal-central areas when contrasted with subjects who did not use marihuana. We referred to this phenomenon as Hyperfrontality of Alpha. The study presented here is a successful replication of our previous findings using new samples of subjects and identical methods. Post hoc analyses based on the combined sample from both studies suggest that variables of psychiatric diagnoses and medication did not bias our results. In addition, a discriminant function analysis using quantitative EEG variables as candidate predictors generated a 95% correct THC user versus nonuser classification accuracy which received a successful jackknife replication.
Estimating Driving Performance Based on EEG Spectrum Analysis
NASA Astrophysics Data System (ADS)
Lin, Chin-Teng; Wu, Ruei-Cheng; Jung, Tzyy-Ping; Liang, Sheng-Fu; Huang, Teng-Yi
2005-12-01
The growing number of traffic accidents in recent years has become a serious concern to society. Accidents caused by driver's drowsiness behind the steering wheel have a high fatality rate because of the marked decline in the driver's abilities of perception, recognition, and vehicle control abilities while sleepy. Preventing such accidents caused by drowsiness is highly desirable but requires techniques for continuously detecting, estimating, and predicting the level of alertness of drivers and delivering effective feedbacks to maintain their maximum performance. This paper proposes an EEG-based drowsiness estimation system that combines electroencephalogram (EEG) log subband power spectrum, correlation analysis, principal component analysis, and linear regression models to indirectly estimate driver's drowsiness level in a virtual-reality-based driving simulator. Our results demonstrated that it is feasible to accurately estimate quantitatively driving performance, expressed as deviation between the center of the vehicle and the center of the cruising lane, in a realistic driving simulator.
Effect of ethanol on human sleep EEG using correlation dimension analysis.
Kobayashi, Toshio; Madokoro, Shigeki; Wada, Yuji; Misaki, Kiwamu; Nakagawa, Hiroki
2002-01-01
Our study was designed to investigate the influence of alcohol on sleep using the correlation dimension (D2) analysis. Polysomnography (PSG) was performed in 10 adult human males during a baseline night (BL-N) and an ethanol (0.8 g/kg body weight) night (Et-N). The mean D2 values during the Et-N and BL-N decreased significantly from wakefulness to stages 1, 2, and 3+4 of nonrapid eye movement (non-REM) sleep, and increased during REM sleep. The mean D2 of the sleep electroencephalogram (EEG) during stage 2 during the Et-N was significantly higher than during BL-N. In addition, the mean D2 values of the sleep EEG for the second, third and fourth sleep cycles during the Et-N were significantly higher than during the BL-N. These significant differences between BL-N and Et-N were not recognized by spectral and visual analyses. Our results suggest that D2 is a potentially useful parameter for quantitative analysis of the effect of ethanol on sleep EEGs throughout the entire night. Copyright 2002 S. Karger AG, Basel
Herrera-Díaz, Adianes; Mendoza-Quiñones, Raúl; Melie-Garcia, Lester; Martínez-Montes, Eduardo; Sanabria-Diaz, Gretel; Romero-Quintana, Yuniel; Salazar-Guerra, Iraklys; Carballoso-Acosta, Mario; Caballero-Moreno, Antonio
2016-05-01
This study was aimed at exploring the electroencephalographic features associated with alcohol use disorders (AUD) during a resting-state condition, by using quantitative EEG and Functional Connectivity analyses. In addition, we explored whether EEG functional connectivity is associated with trait impulsivity. Absolute and relative powers and Synchronization Likelihood (SL) as a measure of functional connectivity were analyzed in 15 AUD women and fifteen controls matched in age, gender and education. Correlation analysis between self-report impulsivity as measured by the Barratt impulsiveness Scale (BIS-11) and SL values of AUD patients were performed. Our results showed increased absolute and relative beta power in AUD patients compared to matched controls, and reduced functional connectivity in AUD patients predominantly in the beta and alpha bands. Impaired connectivity was distributed at fronto-central and occipito-parietal regions in the alpha band, and over the entire scalp in the beta band. We also found that impaired functional connectivity particularly in alpha band at fronto-central areas was negative correlated with non-planning dimension of impulsivity. These findings suggest that functional brain abnormalities are present in AUD patients and a disruption of resting-state EEG functional connectivity is associated with psychopathological traits of addictive behavior.
Kaya, Yılmaz
2015-09-01
This paper proposes a novel approach to detect epilepsy seizures by using Electroencephalography (EEG), which is one of the most common methods for the diagnosis of epilepsy, based on 1-Dimension Local Binary Pattern (1D-LBP) and grey relational analysis (GRA) methods. The main aim of this paper is to evaluate and validate a novel approach, which is a computer-based quantitative EEG analyzing method and based on grey systems, aimed to help decision-maker. In this study, 1D-LBP, which utilizes all data points, was employed for extracting features in raw EEG signals, Fisher score (FS) was employed to select the representative features, which can also be determined as hidden patterns. Additionally, GRA is performed to classify EEG signals through these Fisher scored features. The experimental results of the proposed approach, which was employed in a public dataset for validation, showed that it has a high accuracy in identifying epileptic EEG signals. For various combinations of epileptic EEG, such as A-E, B-E, C-E, D-E, and A-D clusters, 100, 96, 100, 99.00 and 100% were achieved, respectively. Also, this work presents an attempt to develop a new general-purpose hidden pattern determination scheme, which can be utilized for different categories of time-varying signals.
Developmental Quantitative EEG Differences during Psychomotor Response to Music.
ERIC Educational Resources Information Center
Flohr, John W.; Miller, Daniel C.
This study examined the electrophysiological differences between baseline EEG frequencies and EEG frequencies obtained during a psychomotor response to musical stimuli. Subjects were 9 children, with mean age of 5.2 years old. Electrophysiological differences between two different musical conditions were also compared. EEG was recorded during 3…
A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring.
Su, Cui; Liang, Zhenhu; Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro
2016-01-01
Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Six MSPE algorithms-derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis-were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect changes. CG-based multiscale permutation entropies may fail to describe the characteristics of EEG at high decomposition scales.
Wix-Ramos, Richard; Moreno, Xiomara; Capote, Eduardo; González, Gilbert; Uribe, Ezequiel; Eblen-Zajjur, Antonio
2014-04-01
Research of electroencephalograph (EEG) power spectrum and mean frequency has shown inconsistent results in patients with schizophrenic, schizoaffective and bipolar disorders during medication when compared to normal subjects thus; the characterization of these parameters is an important task. We applied quantitative EEG (qEEG) to investigate 38 control, 15 schizophrenic, 7 schizoaffective and 11 bipolar disorder subjects which remaine under the administration of psychotropic drugs (except control group). Absolute spectral power (ASP), mean frequency and hemispheric electrical asymmetry were measured by 19 derivation qEEG. Group mean values were compared with non parametrical Mann-Whitney test and spectral EEG maps with z-score method at p < 0.05. Most frequent drug treatments for schizophrenic patients were neuroleptic+antiepileptic (40% of cases) or 2 neuroleptics (33.3%). Schizoaffective patients received neuroleptic+benzodiazepine (71.4%) and for bipolar disorder patients neuroleptic+antiepileptic (81.8%). Schizophrenic (at all derivations except for Fp1, Fp2, F8 and T6) and schizoaffective (only at C3) show higher values of ASP (+57.7% and +86.1% respectively) compared to control group. ASP of bipolar disorder patients did not show differences against control group. The mean frequency was higher at Fp1 (+14.2%) and Fp2 (+17.4%) in bipolar disorder patients than control group, but no differences were found in frequencies between schizophrenic or schizoaffective patients against the control group. Majority of spectral differences were found at the left hemisphere in schizophrenic and schizoaffective but not in bipolar disorder subjects. The present report contributes to characterize quantitatively the qEEG in drug treated schizophrenic, schizoaffective or bipolar disorder patients.
The influence of low frequency sound on the changes of EEG signal morphology
NASA Astrophysics Data System (ADS)
Damijan, Z.; Wiciak, J.
2006-11-01
The effects of low frequency sound on the changes of morphology of the spectral power density function of EEG signals were studied as a part of the research program f = 40 Hz, Lp = 110 dB HP. The research program involved 33 experiments. A quantitative analysis was conducted of the driving response effect for the fundamental frequency and its harmonics to find the frequency of the driving response effect occurrence depending on the sex of participants.
2011-08-01
EEG ; neurofeedback ; autism spectrum disorders 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF...Since PIRT or neurofeedback training is to be guided by a quantitative analysis of the EEG , it was...software for the neurofeedback training at UCSD and SLDC have been acquired, piloted, and are working • Training of Research Assistants has
Lin, Lung-Chang; Chen, Sharon Chia-Ju; Chiang, Ching-Tai; Wu, Hui-Chuan; Yang, Rei-Cheng; Ouyang, Chen-Sen
2017-03-01
The life quality of patients with refractory epilepsy is extremely affected by abrupt and unpredictable seizures. A reliable method for predicting seizures is important in the management of refractory epilepsy. A critical factor in seizure prediction involves the classification of the preictal and interictal stages. This study aimed to develop an efficient, automatic, quantitative, and individualized approach for preictal/interictal stage identification. Five epileptic children, who had experienced at least 2 episodes of seizures during a 24-hour video EEG recording, were included. Artifact-free preictal and interictal EEG epochs were acquired, respectively, and characterized with 216 global feature descriptors. The best subset of 5 discriminative descriptors was identified. The best subsets showed differences among the patients. Statistical analysis revealed most of the 5 descriptors in each subset were significantly different between the preictal and interictal stages for each patient. The proposed approach yielded weighted averages of 97.50% correctness, 96.92% sensitivity, 97.78% specificity, and 95.45% precision on classifying test epochs. Although the case number was limited, this study successfully integrated a new EEG analytical method to classify preictal and interictal EEG segments and might be used further in predicting the occurrence of seizures.
NASA Astrophysics Data System (ADS)
Yu, Haitao; Liu, Jing; Cai, Lihui; Wang, Jiang; Cao, Yibin; Hao, Chongqing
2017-02-01
Electroencephalogram (EEG) signal evoked by acupuncture stimulation at "Zusanli" acupoint is analyzed to investigate the modulatory effect of manual acupuncture on the functional brain activity. Power spectral density of EEG signal is first calculated based on the autoregressive Burg method. It is shown that the EEG power is significantly increased during and after acupuncture in delta and theta bands, but decreased in alpha band. Furthermore, synchronization likelihood is used to estimate the nonlinear correlation between each pairwise EEG signals. By applying a threshold to resulting synchronization matrices, functional networks for each band are reconstructed and further quantitatively analyzed to study the impact of acupuncture on network structure. Graph theoretical analysis demonstrates that the functional connectivity of the brain undergoes obvious change under different conditions: pre-acupuncture, acupuncture, and post-acupuncture. The minimum path length is largely decreased and the clustering coefficient keeps increasing during and after acupuncture in delta and theta bands. It is indicated that acupuncture can significantly modulate the functional activity of the brain, and facilitate the information transmission within different brain areas. The obtained results may facilitate our understanding of the long-lasting effect of acupuncture on the brain function.
Analysis of brain activity and response to colour stimuli during learning tasks: an EEG study
NASA Astrophysics Data System (ADS)
Folgieri, Raffaella; Lucchiari, Claudio; Marini, Daniele
2013-02-01
The research project intends to demonstrate how EEG detection through BCI device can improve the analysis and the interpretation of colours-driven cognitive processes through the combined approach of cognitive science and information technology methods. To this end, firstly it was decided to design an experiment based on comparing the results of the traditional (qualitative and quantitative) cognitive analysis approach with the EEG signal analysis of the evoked potentials. In our case, the sensorial stimulus is represented by the colours, while the cognitive task consists in remembering the words appearing on the screen, with different combination of foreground (words) and background colours. In this work we analysed data collected from a sample of students involved in a learning process during which they received visual stimuli based on colour variation. The stimuli concerned both the background of the text to learn and the colour of the characters. The experiment indicated some interesting results concerning the use of primary (RGB) and complementary (CMY) colours.
Soroko, S I; Bekshaev, S S; Rozhkov, V P
2012-01-01
Traditional and original methods of EEG analysis were used to study the brain electrical activity maturation in 156 children and adolescents from 7 to 17 years old who represented the native (Koryaks and Evenks) and newcomers' populations living in severe climatic and geographic conditions of the Russian North-East. New data revealing age-, sex- and ethnic-related features in quantitative EEG parameters are presented. Markers are obtained that characterize alterations in the structure of interaction between different EEG rhythms. The results demonstrate age-dependent transformation of this structure separated in time for both different cortical areas and different EEG frequency bands. These alterations show time lag from 2 to 3 years in children of native population compared to the newcomers. The revealed differences are assumed to reflect geno-phenotypical features of morpho-functional CNS development in children of the native and newcomers' population that depend on strong adaptation tension for extreme environmental conditions.
Farabi, Sarah S; Prasad, Bharati; Quinn, Lauretta; Carley, David W
2014-01-15
To determine the effects of dronabinol on quantitative electroencephalogram (EEG) markers of the sleep process, including power distribution and ultradian cycling in 15 patients with obstructive sleep apnea (OSA). EEG (C4-A1) relative power (% total) in the delta, theta, alpha, and sigma bands was quantified by fast Fourier transformation (FFT) over 28-second intervals. An activation ratio (AR = [alpha + sigma] / [delta + theta]) also was computed for each interval. To assess ultradian rhythms, the best-fitting cosine wave was determined for AR and each frequency band in each polysomnogram (PSG). Fifteen subjects were included in the analysis. Dronabinol was associated with significantly increased theta power (p = 0.002). During the first half of the night, dronabinol decreased sigma power (p = 0.03) and AR (p = 0.03), and increased theta power (p = 0.0006). At increasing dronabinol doses, ultradian rhythms accounted for a greater fraction of EEG power variance in the delta band (p = 0.04) and AR (p = 0.03). Females had higher amplitude ultradian rhythms than males (theta: p = 0.01; sigma: p = 0.01). Decreasing AHI was associated with increasing ultradian rhythm amplitudes (sigma: p < 0.001; AR: p = 0.02). At the end of treatment, lower relative power in the theta band (p = 0.02) and lower AHI (p = 0.05) correlated with a greater decrease in sleepiness from baseline. This exploratory study demonstrates that in individuals with OSA, dronabinol treatment may yield a shift in EEG power toward delta and theta frequencies and a strengthening of ultradian rhythms in the sleep EEG.
Comparison of Medical and Consumer Wireless EEG Systems for Use in Clinical Trials.
Ratti, Elena; Waninger, Shani; Berka, Chris; Ruffini, Giulio; Verma, Ajay
2017-01-01
Objectives: To compare quantitative EEG signal and test-retest reliability of medical grade and consumer EEG systems. Methods: Resting state EEG was acquired by two medical grade (B-Alert, Enobio) and two consumer (Muse, Mindwave) EEG systems in five healthy subjects during two study visits. EEG patterns, power spectral densities (PSDs) and test/retest reliability in eyes closed and eyes open conditions were compared across the four systems, focusing on Fp1, the only common electrode. Fp1 PSDs were obtained using Welch's modified periodogram method and averaged for the five subjects for each visit. The test/retest results were calculated as a ratio of Visit 1/Visit 2 Fp1 channel PSD at each 1 s epoch. Results: B-Alert, Enobio, and Mindwave Fp1 power spectra were similar. Muse showed a broadband increase in power spectra and the highest relative variation across test-retest acquisitions. Consumer systems were more prone to artifact due to eye blinks and muscle movement in the frontal region. Conclusions: EEG data can be successfully collected from all four systems tested. Although there was slightly more time required for application, medical systems offer clear advantages in data quality, reliability, and depth of analysis over the consumer systems. Significance: This evaluation provides evidence for informed selection of EEG systemsappropriate for clinical trials.
Monitoring alert and drowsy states by modeling EEG source nonstationarity
NASA Astrophysics Data System (ADS)
Hsu, Sheng-Hsiou; Jung, Tzyy-Ping
2017-10-01
Objective. As a human brain performs various cognitive functions within ever-changing environments, states of the brain characterized by recorded brain activities such as electroencephalogram (EEG) are inevitably nonstationary. The challenges of analyzing the nonstationary EEG signals include finding neurocognitive sources that underlie different brain states and using EEG data to quantitatively assess the state changes. Approach. This study hypothesizes that brain activities under different states, e.g. levels of alertness, can be modeled as distinct compositions of statistically independent sources using independent component analysis (ICA). This study presents a framework to quantitatively assess the EEG source nonstationarity and estimate levels of alertness. The framework was tested against EEG data collected from 10 subjects performing a sustained-attention task in a driving simulator. Main results. Empirical results illustrate that EEG signals under alert versus drowsy states, indexed by reaction speeds to driving challenges, can be characterized by distinct ICA models. By quantifying the goodness-of-fit of each ICA model to the EEG data using the model deviation index (MDI), we found that MDIs were significantly correlated with the reaction speeds (r = -0.390 with alertness models and r = 0.449 with drowsiness models) and the opposite correlations indicated that the two models accounted for sources in the alert and drowsy states, respectively. Based on the observed source nonstationarity, this study also proposes an online framework using a subject-specific ICA model trained with an initial (alert) state to track the level of alertness. For classification of alert against drowsy states, the proposed online framework achieved an averaged area-under-curve of 0.745 and compared favorably with a classic power-based approach. Significance. This ICA-based framework provides a new way to study changes of brain states and can be applied to monitoring cognitive or mental states of human operators in attention-critical settings or in passive brain-computer interfaces.
Kaneda, T; Ochiai, R; Takeda, J; Fukushima, K
1995-11-01
We have investigated the influence of nitrous oxide (N2O) on central nervous system (CNS) during sevoflurane anesthesia by using zero-crossing method of EEG in 31 patients. The study was divided into three parts: Study 1 (n = 18), Study 2 (n = 6) and Study 3 (n = 7). (Study 1) After induction of anesthesia, sevoflurane 1.0 % in oxygen (O2), and sevoflurane 1.0 % with 67 % N2O in O2 were given to the patients sequentially in a random fashion, and EEG was recorded. (Study 2) Sevoflurane 1.7 % in O2, and sevoflurane 0.7 % with 67 % N2O in O2, which were considered to be the same anesthetic depth (= sevoflurane 1 MAC), were inhaled, and EEG was recorded in the same manner as in the study 1. (Study 3) We compared the effects of N2O on EEG during intravenous administration of fentanyl and midazolam with 67 % N2O, and without N2O, and EEG was recorded in the same manner. In all studies, percentage of each frequency range (delta, theta, alpha, beta) and average frequency were calculated by zero-crossing method. During sevoflurane anesthesia, the EEG activity was decelerated with N2O, depending on minimum alveolar concentration (MAC). But there were no significant changes in EEG activity of the patient with and those without N2O during intravenous anesthesia. We concluded that the influences of N2O on CNS can be evaluated by quantitative analysis of EEG.
Hypoglycemia-Associated EEG Changes in Prepubertal Children With Type 1 Diabetes.
Hansen, Grith Lærkholm; Foli-Andersen, Pia; Fredheim, Siri; Juhl, Claus; Remvig, Line Sofie; Rose, Martin H; Rosenzweig, Ivana; Beniczky, Sándor; Olsen, Birthe; Pilgaard, Kasper; Johannesen, Jesper
2016-11-01
The purpose of this study was to explore the possible difference in the electroencephalogram (EEG) pattern between euglycemia and hypoglycemia in children with type 1 diabetes (T1D) during daytime and during sleep. The aim is to develop a hypoglycemia alarm based on continuous EEG measurement and real-time signal processing. Eight T1D patients aged 6-12 years were included. A hyperinsulinemic hypoglycemic clamp was performed to induce hypoglycemia both during daytime and during sleep. Continuous EEG monitoring was performed. For each patient, quantitative EEG (qEEG) measures were calculated. A within-patient analysis was conducted comparing hypoglycemia versus euglycemia changes in the qEEG. The nonparametric Wilcoxon signed rank test was performed. A real-time analyzing algorithm developed for adults was applied. The qEEG showed significant differences in specific bands comparing hypoglycemia to euglycemia both during daytime and during sleep. In daytime the EEG-based algorithm identified hypoglycemia in all children on average at a blood glucose (BG) level of 2.5 ± 0.5 mmol/l and 18.4 (ranging from 0 to 55) minutes prior to blood glucose nadir. During sleep the nighttime algorithm did not perform. We found significant differences in the qEEG in euglycemia and hypoglycemia both during daytime and during sleep. The algorithm developed for adults detected hypoglycemia in all children during daytime. The algorithm had too many false alarms during the night because it was more sensitive to deep sleep EEG patterns than hypoglycemia-related EEG changes. An algorithm for nighttime EEG is needed for accurate detection of nocturnal hypoglycemic episodes in children. This study indicates that a hypoglycemia alarm may be developed using real-time continuous EEG monitoring. © 2016 Diabetes Technology Society.
A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring
Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro
2016-01-01
Objective Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Methods Six MSPE algorithms—derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis—were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. Results CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. Conclusions MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect changes. CG-based multiscale permutation entropies may fail to describe the characteristics of EEG at high decomposition scales. PMID:27723803
Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism.
Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio
2010-11-01
STUDY OBJECTIVIES: several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. the specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined.
Neurophysiological correlates of depressive symptoms in young adults: A quantitative EEG study.
Lee, Poh Foong; Kan, Donica Pei Xin; Croarkin, Paul; Phang, Cheng Kar; Doruk, Deniz
2018-01-01
There is an unmet need for practical and reliable biomarkers for mood disorders in young adults. Identifying the brain activity associated with the early signs of depressive disorders could have important diagnostic and therapeutic implications. In this study we sought to investigate the EEG characteristics in young adults with newly identified depressive symptoms. Based on the initial screening, a total of 100 participants (n = 50 euthymic, n = 50 depressive) underwent 32-channel EEG acquisition. Simple logistic regression and C-statistic were used to explore if EEG power could be used to discriminate between the groups. The strongest EEG predictors of mood using multivariate logistic regression models. Simple logistic regression analysis with subsequent C-statistics revealed that only high-alpha and beta power originating from the left central cortex (C3) have a reliable discriminative value (ROC curve >0.7 (70%)) for differentiating the depressive group from the euthymic group. Multivariate regression analysis showed that the single most significant predictor of group (depressive vs. euthymic) is the high-alpha power over C3 (p = 0.03). The present findings suggest that EEG is a useful tool in the identification of neurophysiological correlates of depressive symptoms in young adults with no previous psychiatric history. Our results could guide future studies investigating the early neurophysiological changes and surrogate outcomes in depression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantitative EEG After Brain Stimulation and Cognitive Training in Alzheimer Disease.
Gandelman-Marton, Revital; Aichenbaum, Sergio; Dobronevsky, Evgenya; Khaigrekht, Michael; Rabey, Jose M
2017-01-01
Medications are the currently accepted symptomatic treatment of Alzheimer disease (AD), but their impact on delaying the progression of cognitive deficits and functional impairment is limited. The authors aimed to explore long-term electrophysiological effects of repetitive transcranial magnetic stimulation interlaced with cognitive training on quantitative electroencephalography (EEG) in patients with AD. Quantitative EEG was assessed on non-repetitive transcranial magnetic stimulation interlaced with cognitive training treatment days before treatment and after each treatment phase in seven patients with mild AD. After 4.5 months (54 sessions) of treatment, a significant increase of delta activity over the temporal region was found compared with pretreatment values. Nonsignificant increases of the log EEG power were found for alpha band over the frontal and temporal regions, beta band over the frontal region, theta band over the frontal, temporal, and parieto-occipital regions, and delta band over the frontal and parieto-occipital regions. Nonsignificant decreases were found for alpha over the parieto-occipital region, and for beta over the temporal and parieto-occipital regions. A positive correlation was found between log alpha power over the frontal and temporal regions at 6 weeks and Mini-Mental State Examination (MMSE) scores at 6 weeks and 4.5 months, and between log alpha power over the parieto-occipital regions and MMSE scores at 6 weeks. A negative correlation was found between log alpha power over the frontal and temporal regions at 6 weeks and baseline Alzheimer's Disease Assessment Scale-cognitive subscale scores. Repetitive transcranial magnetic stimulation interlaced with cognitive training has long-term effects on quantitative EEG in patients with mild AD. Further research on the quantitative EEG long-term effects of transcranial magnetic stimulation interlaced with cognitive training is required to confirm the authors' data.
Estimation of the EEG power spectrum using MRI T(2) relaxation time in traumatic brain injury.
Thatcher, R W; Biver, C; Gomez, J F; North, D; Curtin, R; Walker, R A; Salazar, A
2001-09-01
To study the relationship between magnetic resonance imaging (MRI) T(2) relaxation time and the power spectrum of the electroencephalogram (EEG) in long-term follow up of traumatic brain injury. Nineteen channel quantitative electroencephalograms or qEEG, tests of cognitive function and quantitative MRI T(2) relaxation times (qMRI) were measured in 18 mild to severe closed head injured outpatients 2 months to 4.6 years after injury and 11 normal controls. MRI T(2) and the Laplacian of T(2) were then correlated with the power spectrum of the scalp electrical potentials and current source densities of the qEEG. qEEG and qMRI T(2) were related by a frequency tuning with maxima in the alpha (8-12Hz) and the lower EEG frequencies (0.5-5Hz), which varied as a function of spatial location. The Laplacian of T(2) acted like a spatial-temporal "lens" by increasing the spatial-temporal resolution of correlation between 3-dimensional T(2) and the ear referenced alert but resting spontaneous qEEG. The severity of traumatic brain injury can be modeled by a linear transfer function that relates the molecular qMRI to qEEG resonant frequencies.
Quantitative EEG of Rapid-Eye-Movement Sleep: A Marker of Amnestic Mild Cognitive Impairment.
Brayet, Pauline; Petit, Dominique; Frauscher, Birgit; Gagnon, Jean-François; Gosselin, Nadia; Gagnon, Katia; Rouleau, Isabelle; Montplaisir, Jacques
2016-04-01
The basal forebrain cholinergic system, which is impaired in early Alzheimer's disease, is more crucial for the activation of rapid-eye-movement (REM) sleep electroencephalogram (EEG) than it is for wakefulness. Quantitative EEG from REM sleep might thus provide an earlier and more accurate marker of the development of Alzheimer's disease in subjects with mild cognitive impairment (MCI) subjects than that from wakefulness. To assess the superiority of the REM sleep EEG as a screening tool for preclinical Alzheimer's disease, 22 subjects with amnestic MCI (a-MCI; 63.9±7.7 years), 10 subjects with nonamnestic MCI (na-MCI; 64.1±4.5 years) and 32 controls (63.7±6.6 years) participated in the study. Spectral analyses of the waking EEG and REM sleep EEG were performed and the [(delta+theta)/(alpha+beta)] ratio was used to assess between-group differences in EEG slowing. The a-MCI subgroup showed EEG slowing in frontal lateral regions compared to both na-MCI and control groups. This EEG slowing was present in wakefulness (compared to controls) but was much more prominent in REM sleep. Moreover, the comparison between amnestic and nonamnestic subjects was found significant only for the REM sleep EEG. There was no difference in EEG power ratio between na-MCI and controls for any of the 7 cortical regions studied. These findings demonstrate the superiority of the REM sleep EEG in the discrimination between a-MCI and both na-MCI and control subjects. © EEG and Clinical Neuroscience Society (ECNS) 2015.
EEG dynamical correlates of focal and diffuse causes of coma.
Kafashan, MohammadMehdi; Ryu, Shoko; Hargis, Mitchell J; Laurido-Soto, Osvaldo; Roberts, Debra E; Thontakudi, Akshay; Eisenman, Lawrence; Kummer, Terrance T; Ching, ShiNung
2017-11-15
Rapidly determining the causes of a depressed level of consciousness (DLOC) including coma is a common clinical challenge. Quantitative analysis of the electroencephalogram (EEG) has the potential to improve DLOC assessment by providing readily deployable, temporally detailed characterization of brain activity in such patients. While used commonly for seizure detection, EEG-based assessment of DLOC etiology is less well-established. As a first step towards etiological diagnosis, we sought to distinguish focal and diffuse causes of DLOC through assessment of temporal dynamics within EEG signals. We retrospectively analyzed EEG recordings from 40 patients with DLOC with consensus focal or diffuse culprit pathology. For each recording, we performed a suite of time-series analyses, then used a statistical framework to identify which analyses (features) could be used to distinguish between focal and diffuse cases. Using cross-validation approaches, we identified several spectral and non-spectral EEG features that were significantly different between DLOC patients with focal vs. diffuse etiologies, enabling EEG-based classification with an accuracy of 76%. Our findings suggest that DLOC due to focal vs. diffuse injuries differ along several electrophysiological parameters. These results may form the basis of future classification strategies for DLOC and coma that are more etiologically-specific and therefore therapeutically-relevant.
EEG Markers for Attention Deficit Disorder: Pharmacological and Neurofeedback Applications.
ERIC Educational Resources Information Center
Sterman, M. Barry
2000-01-01
Examined contribution of EEG findings in the classification and treatment of attention deficit and related behavioral problems in children. Found that quantitative EEG methods disclosed patterns of abnormality in children with ADD, suggested improved guidelines for pharmacological treatment, and introduced neurofeedback, a behavioral treatment for…
NASA Astrophysics Data System (ADS)
Chiarucci, Riccardo; Madeo, Dario; Loffredo, Maria I.; Castellani, Eleonora; Santarcangelo, Enrica L.; Mocenni, Chiara
2014-07-01
Assessment of hypnotic susceptibility is usually obtained through the application of psychological instruments. A satisfying classification obtained through quantitative measures is still missing, although it would be very useful for both diagnostic and clinical purposes. Aiming at investigating the relationship between the cortical brain activity and the hypnotic susceptibility level, we propose the combined use of two methodologies - Recurrence Quantification Analysis and Detrended Fluctuation Analysis - both inherited from nonlinear dynamics. Indicators obtained through the application of these techniques to EEG signals of individuals in their ordinary state of consciousness allowed us to obtain a clear discrimination between subjects with high and low susceptibility to hypnosis. Finally a neural network approach was used to perform classification analysis.
Miller, Christopher B; Bartlett, Delwyn J; Mullins, Anna E; Dodds, Kirsty L; Gordon, Christopher J; Kyle, Simon D; Kim, Jong Won; D'Rozario, Angela L; Lee, Rico S C; Comas, Maria; Marshall, Nathaniel S; Yee, Brendon J; Espie, Colin A; Grunstein, Ronald R
2016-11-01
To empirically derive and evaluate potential clusters of Insomnia Disorder through cluster analysis from polysomnography (PSG). We hypothesized that clusters would differ on neurocognitive performance, sleep-onset measures of quantitative ( q )-EEG and heart rate variability (HRV). Research volunteers with Insomnia Disorder (DSM-5) completed a neurocognitive assessment and overnight PSG measures of total sleep time (TST), wake time after sleep onset (WASO), and sleep onset latency (SOL) were used to determine clusters. From 96 volunteers with Insomnia Disorder, cluster analysis derived at least two clusters from objective sleep parameters: Insomnia with normal objective sleep duration (I-NSD: n = 53) and Insomnia with short sleep duration (I-SSD: n = 43). At sleep onset, differences in HRV between I-NSD and I-SSD clusters suggest attenuated parasympathetic activity in I-SSD (P < 0.05). Preliminary work suggested three clusters by retaining the I-NSD and splitting the I-SSD cluster into two: I-SSD A (n = 29): defined by high WASO and I-SSD B (n = 14): a second I-SSD cluster with high SOL and medium WASO. The I-SSD B cluster performed worse than I-SSD A and I-NSD for sustained attention (P ≤ 0.05). In an exploratory analysis, q -EEG revealed reduced spectral power also in I-SSD B before (Delta, Alpha, Beta-1) and after sleep-onset (Beta-2) compared to I-SSD A and I-NSD (P ≤ 0.05). Two insomnia clusters derived from cluster analysis differ in sleep onset HRV. Preliminary data suggest evidence for three clusters in insomnia with differences for sustained attention and sleep-onset q -EEG. Insomnia 100 sleep study: Australia New Zealand Clinical Trials Registry (ANZCTR) identification number 12612000049875. URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=347742. © 2016 Associated Professional Sleep Societies, LLC.
Insomnia and sleep misperception.
Bastien, C H; Ceklic, T; St-Hilaire, P; Desmarais, F; Pérusse, A D; Lefrançois, J; Pedneault-Drolet, M
2014-10-01
Sleep misperception is often observed in insomnia individuals (INS). The extent of misperception varies between different types of INS. The following paper comprised sections which will be aimed at studying the sleep EEG and compares it to subjective reports of sleep in individuals suffering from either psychophysiological insomnia or paradoxical insomnia and good sleeper controls. The EEG can be studied without any intervention (thus using the raw data) via either PSG or fine quantitative EEG analyses (power spectral analysis [PSA]), identifying EEG patterns as in the case of cyclic alternating patterns (CAPs) or by decorticating the EEG while scoring the different transient or phasic events (K-Complexes or sleep spindles). One can also act on the on-going EEG by delivering stimuli so to study their impact on cortical measures as in the case of event-related potential studies (ERPs). From the paucity of studies available using these different techniques, a general conclusion can be reached: sleep misperception is not an easy phenomenon to quantify and its clinical value is not well recognized. Still, while none of the techniques or EEG measures defined in the paper is available and/or recommended to diagnose insomnia, ERPs might be the most indicated technique to study hyperarousal and sleep quality in different types of INS. More research shall also be dedicated to EEG patterns and transient phasic events as these EEG scoring techniques can offer a unique insight of sleep misperception. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Thomas, C; Hestermann, U; Walther, S; Pfueller, U; Hack, M; Oster, P; Mundt, C; Weisbrod, M
2008-02-01
Delirium in the elderly results in increased morbidity, mortality and functional decline. Delirium is underdiagnosed, particularly in dementia. To increase diagnostic accuracy, we investigated whether maintenance of activation assessed by EEG discriminates delirium in association with dementia (D+D) from dementia without delirium (DP) and cognitively unimpaired elderly subjects (CU). Routine and quantitative EEG (rEEG/qEEG) with additional prolonged activation (3 min eyes open period) were evaluated in hospitalised elderly patients with acute geriatric disease. Patients were assigned post hoc to three comparable groups (D+D/DP/CU) by expert consensus based on DSM-IV criteria. Dementia diagnosis was confirmed using cognitive and functional tests and caregiver rating (IQCODE, Informed Questionnaire of Cognitive Decline in the Elderly). While rEEG at rest showed low accuracy for a diagnosis of delirium, qEEG in DP and CU revealed a specific activation pattern of high significance found to be absent in the D+D group. Stepwise logistic regression confirmed that differentiation of D+D from DP was best resolved using activated upper alpha and delta power density which, compared with rEEG, enabled an 11% increase in diagnostic correctness to 83%, resulting in 67% sensitivity and 91% specificity. Among frail CU and D+D subjects, almost 90% were correctly classified. Dementia associated with delirium can be discriminated reliably from dementia alone in a meaningful clinical setting. Thus EEG evaluation in chronic encephalopathy should be optimised by a simple activation task and spectral analysis, particularly in the elderly with dementia.
Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep.
Huupponen, E; Maksimow, A; Lapinlampi, P; Särkelä, M; Saastamoinen, A; Snapir, A; Scheinin, H; Scheinin, M; Meriläinen, P; Himanen, S-L; Jääskeläinen, S
2008-02-01
Dexmedetomidine, a selective alpha(2)-adrenoceptor agonist, induces a unique, sleep-like state of sedation. The objective of the present work was to study human electroencephalogram (EEG) sleep spindles during dexmedetomidine sedation and compare them with spindles during normal physiological sleep, to test the hypothesis that dexmedetomidine exerts its effects via normal sleep-promoting pathways. EEG was continuously recorded from a bipolar frontopolar-laterofrontal derivation with Entropy Module (GE Healthcare) during light and deep dexmedetomidine sedation (target-controlled infusions set at 0.5 and 3.2 ng/ml) in 11 healthy subjects, and during physiological sleep in 10 healthy control subjects. Sleep spindles were visually scored and quantitatively analyzed for density, duration, amplitude (band-pass filtering) and frequency content (matching pursuit approach), and compared between the two groups. In visual analysis, EEG activity during dexmedetomidine sedation was similar to physiological stage 2 (S2) sleep with slight to moderate amount of slow-wave activity and abundant sleep spindle activity. In quantitative EEG analyses, sleep spindles were similar during dexmedetomidine sedation and normal sleep. No statistically significant differences were found in spindle density, amplitude or frequency content, but the spindles during dexmedetomidine sedation had longer duration (mean 1.11 s, SD 0.14 s) than spindles in normal sleep (mean 0.88 s, SD 0.14 s; P=0.0014). Analysis of sleep spindles shows that dexmedetomidine produces a state closely resembling physiological S2 sleep in humans, which gives further support to earlier experimental evidence for activation of normal non-rapid eye movement sleep-promoting pathways by this sedative agent.
A novel unsupervised spike sorting algorithm for intracranial EEG.
Yadav, R; Shah, A K; Loeb, J A; Swamy, M N S; Agarwal, R
2011-01-01
This paper presents a novel, unsupervised spike classification algorithm for intracranial EEG. The method combines template matching and principal component analysis (PCA) for building a dynamic patient-specific codebook without a priori knowledge of the spike waveforms. The problem of misclassification due to overlapping classes is resolved by identifying similar classes in the codebook using hierarchical clustering. Cluster quality is visually assessed by projecting inter- and intra-clusters onto a 3D plot. Intracranial EEG from 5 patients was utilized to optimize the algorithm. The resulting codebook retains 82.1% of the detected spikes in non-overlapping and disjoint clusters. Initial results suggest a definite role of this method for both rapid review and quantitation of interictal spikes that could enhance both clinical treatment and research studies on epileptic patients.
Kim, Kyungsoo; Punte, Andrea Kleine; Mertens, Griet; Van de Heyning, Paul; Park, Kyung-Joon; Choi, Hongsoo; Choi, Ji-Woong; Song, Jae-Jin
2015-11-30
Quantitative electroencephalography (qEEG) is effective when used to analyze ongoing cortical oscillations in cochlear implant (CI) users. However, localization of cortical activity in such users via qEEG is confounded by the presence of artifacts produced by the device itself. Typically, independent component analysis (ICA) is used to remove CI artifacts in auditory evoked EEG signals collected upon brief stimulation and it is effective for auditory evoked potentials (AEPs). However, AEPs do not reflect the daily environments of patients, and thus, continuous EEG data that are closer to such environments are desirable. In this case, device-related artifacts in EEG data are difficult to remove selectively via ICA due to over-completion of EEG data removal in the absence of preprocessing. EEGs were recorded for a long time under conditions of continuous auditory stimulation. To obviate the over-completion problem, we limited the frequency of CI artifacts to a significant characteristic peak and apply ICA artifact removal. Topographic brain mapping results analyzed via band-limited (BL)-ICA exhibited a better energy distribution, matched to the CI location, than data obtained using conventional ICA. Also, source localization data verified that BL-ICA effectively removed CI artifacts. The proposed method selectively removes CI artifacts from continuous EEG recordings, while ICA removal method shows residual peak and removes important brain activity signals. CI artifacts in EEG data obtained during continuous passive listening can be effectively removed with the aid of BL-ICA, opening up new EEG research possibilities in subjects with CIs. Copyright © 2015 Elsevier B.V. All rights reserved.
EEG spectral analysis in primary insomnia: NREM period effects and sex differences.
Buysse, Daniel J; Germain, Anne; Hall, Martica L; Moul, Douglas E; Nofzinger, Eric A; Begley, Amy; Ehlers, Cindy L; Thompson, Wesley; Kupfer, David J
2008-12-01
To compare NREM EEG power in primary insomnia (PI) and good sleeper controls (GSC), examining both sex and NREM period effects; to examine relationships between EEG power, clinical characteristics, and self-reports of sleep. Overnight polysomnographic study. Sleep laboratory. PI (n=48; 29 women) and GSC (n=25; 15 women). None. EEG power from 1-50 Hz was computed for artifact-free sleep epochs across four NREM periods. Repeated measures mixed effect models contrasted differences between groups, EEG frequency bands, and NREM periods. EEG power-frequency curves were modeled using regressions with fixed knot splines. Mixed models showed no significant group (PI vs. GSC) differences; marginal sex differences (delta and theta bands); significant differences across NREM periods; and group*sex and group*NREM period interactions, particularly in beta and gamma bands. Modeled power-frequency curves showed no group difference in whole-night NREM, but PI had higher power than GSC from 18-40 Hz in the first NREM period. Among women, PI had higher 16 to 44-Hz power than GSC in the first 3 NREM periods, and higher 3 to 5-Hz power across all NREM periods. PI and GSC men showed no consistent differences in EEG power. High-frequency EEG power was not related to clinical or subjective sleep ratings in PI. Women with PI, but not men, showed increased high-frequency and low-frequency EEG activity during NREM sleep compared to GSC, particularly in early NREM periods. Sex and NREM period may moderate quantitative EEG differences between PI and GSC.
Hillard, Brent; El-Baz, Ayman S; Sears, Lonnie; Tasman, Allan; Sokhadze, Estate M
2013-07-01
Neurofeedback is a nonpharmacological treatment for attention-deficit hyperactivity disorder (ADHD). We propose that operant conditioning of electroencephalogram (EEG) in neurofeedback training aimed to mitigate inattention and low arousal in ADHD, will be accompanied by changes in EEG bands' relative power. Patients were 18 children diagnosed with ADHD. The neurofeedback protocol ("Focus/Alertness" by Peak Achievement Trainer) has a focused attention and alertness training mode. The neurofeedback protocol provides one for Focus and one for Alertness. This does not allow for collecting information regarding changes in specific EEG bands (delta, theta, alpha, low and high beta, and gamma) power within the 2 to 45 Hz range. Quantitative EEG analysis was completed on each of twelve 25-minute-long sessions using a custom-made MatLab application to determine the relative power of each of the aforementioned EEG bands throughout each session, and from the first session to the last session. Additional statistical analysis determined significant changes in relative power within sessions (from minute 1 to minute 25) and between sessions (from session 1 to session 12). Analysis was of relative power of theta, alpha, low and high beta, theta/alpha, theta/beta, and theta/low beta and theta/high beta ratios. Additional secondary measures of patients' post-neurofeedback outcomes were assessed, using an audiovisual selective attention test (IVA + Plus) and behavioral evaluation scores from the Aberrant Behavior Checklist. Analysis of data computed in the MatLab application, determined that theta/low beta and theta/alpha ratios decreased significantly from session 1 to session 12, and from minute 1 to minute 25 within sessions. The findings regarding EEG changes resulting from brain wave self-regulation training, along with behavioral evaluations, will help elucidate neural mechanisms of neurofeedback aimed to improve focused attention and alertness in ADHD.
Surmeli, Tanju; Eralp, Emin; Mustafazade, Ilham; Kos, Ismet Hadi; Özer, Gül Elif; Surmeli, Orkun H
2017-05-01
Postconcussion syndrome (PCS) has been used to describe a range of residual symptoms that persist 12 months or more after the injury, often despite a lack of evidence of brain abnormalities on magnetic resonance imaging and computed tomography scans. In this clinical case series, the efficacy of quantitative EEG-guided neurofeedback in 40 subjects diagnosed with PCS was investigated. Overall improvement was seen in all the primary (Symptom Assessment-45 Questionnaire, Clinical Global Impressions Scale, Hamilton Depression Scale) and secondary measures (Minnesota Multiphasic Personality Inventory, Test of Variables for Attention). The Neuroguide Traumatic Brain Index for the group also showed a decrease. Thirty-nine subjects were followed up long term with an average follow-up length of 3.1 years (CI = 2.7-3.3). All but 2 subjects were stable and were off medication. Overall neurofeedback treatment was shown to be effective in this group of subjects studied.
Traumatic Brain Injury Detection Using Electrophysiological Methods
Rapp, Paul E.; Keyser, David O.; Albano, Alfonso; Hernandez, Rene; Gibson, Douglas B.; Zambon, Robert A.; Hairston, W. David; Hughes, John D.; Krystal, Andrew; Nichols, Andrew S.
2015-01-01
Measuring neuronal activity with electrophysiological methods may be useful in detecting neurological dysfunctions, such as mild traumatic brain injury (mTBI). This approach may be particularly valuable for rapid detection in at-risk populations including military service members and athletes. Electrophysiological methods, such as quantitative electroencephalography (qEEG) and recording event-related potentials (ERPs) may be promising; however, the field is nascent and significant controversy exists on the efficacy and accuracy of the approaches as diagnostic tools. For example, the specific measures derived from an electroencephalogram (EEG) that are most suitable as markers of dysfunction have not been clearly established. A study was conducted to summarize and evaluate the statistical rigor of evidence on the overall utility of qEEG as an mTBI detection tool. The analysis evaluated qEEG measures/parameters that may be most suitable as fieldable diagnostic tools, identified other types of EEG measures and analysis methods of promise, recommended specific measures and analysis methods for further development as mTBI detection tools, identified research gaps in the field, and recommended future research and development thrust areas. The qEEG study group formed the following conclusions: (1) Individual qEEG measures provide limited diagnostic utility for mTBI. However, many measures can be important features of qEEG discriminant functions, which do show significant promise as mTBI detection tools. (2) ERPs offer utility in mTBI detection. In fact, evidence indicates that ERPs can identify abnormalities in cases where EEGs alone are non-disclosing. (3) The standard mathematical procedures used in the characterization of mTBI EEGs should be expanded to incorporate newer methods of analysis including non-linear dynamical analysis, complexity measures, analysis of causal interactions, graph theory, and information dynamics. (4) Reports of high specificity in qEEG evaluations of TBI must be interpreted with care. High specificities have been reported in carefully constructed clinical studies in which healthy controls were compared against a carefully selected TBI population. The published literature indicates, however, that similar abnormalities in qEEG measures are observed in other neuropsychiatric disorders. While it may be possible to distinguish a clinical patient from a healthy control participant with this technology, these measures are unlikely to discriminate between, for example, major depressive disorder, bipolar disorder, or TBI. The specificities observed in these clinical studies may well be lost in real world clinical practice. (5) The absence of specificity does not preclude clinical utility. The possibility of use as a longitudinal measure of treatment response remains. However, efficacy as a longitudinal clinical measure does require acceptable test–retest reliability. To date, very few test–retest reliability studies have been published with qEEG data obtained from TBI patients or from healthy controls. This is a particular concern because high variability is a known characteristic of the injured central nervous system. PMID:25698950
Traumatic brain injury detection using electrophysiological methods.
Rapp, Paul E; Keyser, David O; Albano, Alfonso; Hernandez, Rene; Gibson, Douglas B; Zambon, Robert A; Hairston, W David; Hughes, John D; Krystal, Andrew; Nichols, Andrew S
2015-01-01
Measuring neuronal activity with electrophysiological methods may be useful in detecting neurological dysfunctions, such as mild traumatic brain injury (mTBI). This approach may be particularly valuable for rapid detection in at-risk populations including military service members and athletes. Electrophysiological methods, such as quantitative electroencephalography (qEEG) and recording event-related potentials (ERPs) may be promising; however, the field is nascent and significant controversy exists on the efficacy and accuracy of the approaches as diagnostic tools. For example, the specific measures derived from an electroencephalogram (EEG) that are most suitable as markers of dysfunction have not been clearly established. A study was conducted to summarize and evaluate the statistical rigor of evidence on the overall utility of qEEG as an mTBI detection tool. The analysis evaluated qEEG measures/parameters that may be most suitable as fieldable diagnostic tools, identified other types of EEG measures and analysis methods of promise, recommended specific measures and analysis methods for further development as mTBI detection tools, identified research gaps in the field, and recommended future research and development thrust areas. The qEEG study group formed the following conclusions: (1) Individual qEEG measures provide limited diagnostic utility for mTBI. However, many measures can be important features of qEEG discriminant functions, which do show significant promise as mTBI detection tools. (2) ERPs offer utility in mTBI detection. In fact, evidence indicates that ERPs can identify abnormalities in cases where EEGs alone are non-disclosing. (3) The standard mathematical procedures used in the characterization of mTBI EEGs should be expanded to incorporate newer methods of analysis including non-linear dynamical analysis, complexity measures, analysis of causal interactions, graph theory, and information dynamics. (4) Reports of high specificity in qEEG evaluations of TBI must be interpreted with care. High specificities have been reported in carefully constructed clinical studies in which healthy controls were compared against a carefully selected TBI population. The published literature indicates, however, that similar abnormalities in qEEG measures are observed in other neuropsychiatric disorders. While it may be possible to distinguish a clinical patient from a healthy control participant with this technology, these measures are unlikely to discriminate between, for example, major depressive disorder, bipolar disorder, or TBI. The specificities observed in these clinical studies may well be lost in real world clinical practice. (5) The absence of specificity does not preclude clinical utility. The possibility of use as a longitudinal measure of treatment response remains. However, efficacy as a longitudinal clinical measure does require acceptable test-retest reliability. To date, very few test-retest reliability studies have been published with qEEG data obtained from TBI patients or from healthy controls. This is a particular concern because high variability is a known characteristic of the injured central nervous system.
Electroencephalogram–Electromyography Coupling Analysis in Stroke Based on Symbolic Transfer Entropy
Gao, Yunyuan; Ren, Leilei; Li, Rihui; Zhang, Yingchun
2018-01-01
The coupling strength between electroencephalogram (EEG) and electromyography (EMG) signals during motion control reflects the interaction between the cerebral motor cortex and muscles. Therefore, neuromuscular coupling characterization is instructive in assessing motor function. In this study, to overcome the limitation of losing the characteristics of signals in conventional time series symbolization methods, a variable scale symbolic transfer entropy (VS-STE) analysis approach was proposed for corticomuscular coupling evaluation. Post-stroke patients (n = 5) and healthy volunteers (n = 7) were recruited and participated in various tasks (left and right hand gripping, elbow bending). The proposed VS-STE was employed to evaluate the corticomuscular coupling strength between the EEG signal measured from the motor cortex and EMG signal measured from the upper limb in both the time-domain and frequency-domain. Results showed a greater strength of the bi-directional (EEG-to-EMG and EMG-to-EEG) VS-STE in post-stroke patients compared to healthy controls. In addition, the strongest EEG–EMG coupling strength was observed in the beta frequency band (15–35 Hz) during the upper limb movement. The predefined coupling strength of EMG-to-EEG in the affected side of the patient was larger than that of EEG-to-EMG. In conclusion, the results suggested that the corticomuscular coupling is bi-directional, and the proposed VS-STE can be used to quantitatively characterize the non-linear synchronization characteristics and information interaction between the primary motor cortex and muscles. PMID:29354091
Quantitative complexity analysis in multi-channel intracranial EEG recordings form epilepsy brains
Liu, Chang-Chia; Pardalos, Panos M.; Chaovalitwongse, W. Art; Shiau, Deng-Shan; Ghacibeh, Georges; Suharitdamrong, Wichai; Sackellares, J. Chris
2008-01-01
Epilepsy is a brain disorder characterized clinically by temporary but recurrent disturbances of brain function that may or may not be associated with destruction or loss of consciousness and abnormal behavior. Human brain is composed of more than 10 to the power 10 neurons, each of which receives electrical impulses known as action potentials from others neurons via synapses and sends electrical impulses via a sing output line to a similar (the axon) number of neurons. When neuronal networks are active, they produced a change in voltage potential, which can be captured by an electroencephalogram (EEG). The EEG recordings represent the time series that match up to neurological activity as a function of time. By analyzing the EEG recordings, we sought to evaluate the degree of underlining dynamical complexity prior to progression of seizure onset. Through the utilization of the dynamical measurements, it is possible to classify the state of the brain according to the underlying dynamical properties of EEG recordings. The results from two patients with temporal lobe epilepsy (TLE), the degree of complexity start converging to lower value prior to the epileptic seizures was observed from epileptic regions as well as non-epileptic regions. The dynamical measurements appear to reflect the changes of EEG’s dynamical structure. We suggest that the nonlinear dynamical analysis can provide a useful information for detecting relative changes in brain dynamics, which cannot be detected by conventional linear analysis. PMID:19079790
Swisher, Christa B; Sinha, Saurabh R
2016-12-01
Quantitative EEG (QEEG) can be used to assist with review of large amounts of data generated by critical care continuous EEG monitoring. This study aimed to identify current practices regarding the use of QEEG in critical care continuous EEG monitoring of critical care patients. An online survey was sent to 796 members of the American Clinical Neurophysiology Society (ACNS), instructing only neurophysiologists to participate. The survey was completed by 75 neurophysiologists that use QEEG in their practice. Survey respondents reported that neurophysiologists and neurophysiology fellows are most likely to serve as QEEG readers (97% and 52%, respectively). However, 21% of respondents reported nonneurophysiologists are also involved with QEEG interpretation. The majority of nonneurophysiologist QEEG data review is aimed to alert neurophysiologists to periods of concern, but 22% reported that nonneurophysiologists use QEEG to directly guide clinical care. Quantitative EEG was used most frequently for seizure detection (92%) and burst suppression monitoring (59%). A smaller number of respondents use QEEG for monitoring the depth of sedation (29%), ischemia detection (28%), vasospasm detection (28%) and prognosis after cardiac arrest (21%). About half of the respondents do not review every page of the raw critical care continuous EEG record when using QEEG. Respondents prefer a panel of QEEG trends displayed as hemispheric data, when applicable. There is substantial variability regarding QEEG trend preferences for seizure detection and ischemia detection. QEEG is being used by neurophysiologists and nonneurophysiologists for applications beyond seizure detection, but practice patterns vary widely. There is a need for standardization of QEEG methods and practices.
EEG power and coherence while male adults watch emotional video films.
Schellberg, D; Besthorn, C; Klos, T; Gasser, T
1990-10-01
Quantitative EEG analysis recorded at F3, F4, T3, T4, P3, P4 was performed for a group of healthy right-handed male adults (n = 9) viewing video films varying in their inductiveness on the affective valence dimension. Digital EOG-correction permitted the inclusion of trials with eye movements. Muscle artifacts were statistically treated by means of analysis of covariance (ANCOVA). The configuration of topographically motivated EEG parameters corresponded to the subjective valence rating of different video films. Low broad band coherences (COHs) ranked films along the subjective ratings within each hemisphere by the fronto-temporal COHs and interhemispherically by the T4-T3 COH, as did, restricted to the right hemisphere, similarity of beta 2 band power topography over time. High frequencies may be involved in the processing and low frequencies in the transmission of differential affective information, which to integrate seemed to utilize resources of both hemispheres. Alpha 2 and beta 1 COHs were sensitive to variations in an integrality/disassociation dimension with regard to the arrangement of verbal-visual affective cues. Power fluctuations at frontal leads pointed to difficulties in interpreting interhemispheric EEG asymmetries in emotion research, if information on time dynamics is discarded.
NASA Astrophysics Data System (ADS)
Safieddine, Doha; Kachenoura, Amar; Albera, Laurent; Birot, Gwénaël; Karfoul, Ahmad; Pasnicu, Anca; Biraben, Arnaud; Wendling, Fabrice; Senhadji, Lotfi; Merlet, Isabelle
2012-12-01
Electroencephalographic (EEG) recordings are often contaminated with muscle artifacts. This disturbing myogenic activity not only strongly affects the visual analysis of EEG, but also most surely impairs the results of EEG signal processing tools such as source localization. This article focuses on the particular context of the contamination epileptic signals (interictal spikes) by muscle artifact, as EEG is a key diagnosis tool for this pathology. In this context, our aim was to compare the ability of two stochastic approaches of blind source separation, namely independent component analysis (ICA) and canonical correlation analysis (CCA), and of two deterministic approaches namely empirical mode decomposition (EMD) and wavelet transform (WT) to remove muscle artifacts from EEG signals. To quantitatively compare the performance of these four algorithms, epileptic spike-like EEG signals were simulated from two different source configurations and artificially contaminated with different levels of real EEG-recorded myogenic activity. The efficiency of CCA, ICA, EMD, and WT to correct the muscular artifact was evaluated both by calculating the normalized mean-squared error between denoised and original signals and by comparing the results of source localization obtained from artifact-free as well as noisy signals, before and after artifact correction. Tests on real data recorded in an epileptic patient are also presented. The results obtained in the context of simulations and real data show that EMD outperformed the three other algorithms for the denoising of data highly contaminated by muscular activity. For less noisy data, and when spikes arose from a single cortical source, the myogenic artifact was best corrected with CCA and ICA. Otherwise when spikes originated from two distinct sources, either EMD or ICA offered the most reliable denoising result for highly noisy data, while WT offered the better denoising result for less noisy data. These results suggest that the performance of muscle artifact correction methods strongly depend on the level of data contamination, and of the source configuration underlying EEG signals. Eventually, some insights into the numerical complexity of these four algorithms are given.
NeuroKinect: A Novel Low-Cost 3Dvideo-EEG System for Epileptic Seizure Motion Quantification
Cunha, João Paulo Silva; Choupina, Hugo Miguel Pereira; Rocha, Ana Patrícia; Fernandes, José Maria; Achilles, Felix; Loesch, Anna Mira; Vollmar, Christian; Hartl, Elisabeth; Noachtar, Soheyl
2016-01-01
Epilepsy is a common neurological disorder which affects 0.5–1% of the world population. Its diagnosis relies both on Electroencephalogram (EEG) findings and characteristic seizure−induced body movements − called seizure semiology. Thus, synchronous EEG and (2D)video recording systems (known as Video−EEG) are the most accurate tools for epilepsy diagnosis. Despite the establishment of several quantitative methods for EEG analysis, seizure semiology is still analyzed by visual inspection, based on epileptologists’ subjective interpretation of the movements of interest (MOIs) that occur during recorded seizures. In this contribution, we present NeuroKinect, a low-cost, easy to setup and operate solution for a novel 3Dvideo-EEG system. It is based on a RGB-D sensor (Microsoft Kinect camera) and performs 24/7 monitoring of an Epilepsy Monitoring Unit (EMU) bed. It does not require the attachment of any reflectors or sensors to the patient’s body and has a very low maintenance load. To evaluate its performance and usability, we mounted a state-of-the-art 6-camera motion-capture system and our low-cost solution over the same EMU bed. A comparative study of seizure-simulated MOIs showed an average correlation of the resulting 3D motion trajectories of 84.2%. Then, we used our system on the routine of an EMU and collected 9 different seizures where we could perform 3D kinematic analysis of 42 MOIs arising from the temporal (TLE) (n = 19) and extratemporal (ETE) brain regions (n = 23). The obtained results showed that movement displacement and movement extent discriminated both seizure MOI groups with statistically significant levels (mean = 0.15 m vs. 0.44 m, p<0.001; mean = 0.068 m3 vs. 0.14 m3, p<0.05, respectively). Furthermore, TLE MOIs were significantly shorter than ETE (mean = 23 seconds vs 35 seconds, p<0.01) and presented higher jerking levels (mean = 345 ms−3 vs 172 ms−3, p<0.05). Our newly implemented 3D approach is faster by 87.5% in extracting body motion trajectories when compared to a 2D frame by frame tracking procedure. We conclude that this new approach provides a more comfortable (both for patients and clinical professionals), simpler, faster and lower-cost procedure than previous approaches, therefore providing a reliable tool to quantitatively analyze MOI patterns of epileptic seizures in the routine of EMUs around the world. We hope this study encourages other EMUs to adopt similar approaches so that more quantitative information is used to improve epilepsy diagnosis. PMID:26799795
Analysis of Slow-Wave Activity and Slow-Wave Oscillations Prior to Somnambulism
Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio
2010-01-01
Study Objectivies: Several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. Participants: Twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. Results: Analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. Conclusions: The specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined. Citation: Jaar O; Pilon M; Carrier J; Montplaisir J; Zadra A. Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism. SLEEP 2010;33(11):1511-1516. PMID:21102993
Papadelis, Christos; Chen, Zhe; Kourtidou-Papadeli, Chrysoula; Bamidis, Panagiotis D; Chouvarda, Ioanna; Bekiaris, Evangelos; Maglaveras, Nikos
2007-09-01
The objective of this study is the development and evaluation of efficient neurophysiological signal statistics, which may assess the driver's alertness level and serve as potential indicators of sleepiness in the design of an on-board countermeasure system. Multichannel EEG, EOG, EMG, and ECG were recorded from sleep-deprived subjects exposed to real field driving conditions. A number of severe driving errors occurred during the experiments. The analysis was performed in two main dimensions: the macroscopic analysis that estimates the on-going temporal evolution of physiological measurements during the driving task, and the microscopic event analysis that focuses on the physiological measurements' alterations just before, during, and after the driving errors. Two independent neurophysiologists visually interpreted the measurements. The EEG data were analyzed by using both linear and non-linear analysis tools. We observed the occurrence of brief paroxysmal bursts of alpha activity and an increased synchrony among EEG channels before the driving errors. The alpha relative band ratio (RBR) significantly increased, and the Cross Approximate Entropy that quantifies the synchrony among channels also significantly decreased before the driving errors. Quantitative EEG analysis revealed significant variations of RBR by driving time in the frequency bands of delta, alpha, beta, and gamma. Most of the estimated EEG statistics, such as the Shannon Entropy, Kullback-Leibler Entropy, Coherence, and Cross-Approximate Entropy, were significantly affected by driving time. We also observed an alteration of eyes blinking duration by increased driving time and a significant increase of eye blinks' number and duration before driving errors. EEG and EOG are promising neurophysiological indicators of driver sleepiness and have the potential of monitoring sleepiness in occupational settings incorporated in a sleepiness countermeasure device. The occurrence of brief paroxysmal bursts of alpha activity before severe driving errors is described in detail for the first time. Clear evidence is presented that eye-blinking statistics are sensitive to the driver's sleepiness and should be considered in the design of an efficient and driver-friendly sleepiness detection countermeasure device.
EEG amplitude modulation analysis for semi-automated diagnosis of Alzheimer's disease
NASA Astrophysics Data System (ADS)
Falk, Tiago H.; Fraga, Francisco J.; Trambaiolli, Lucas; Anghinah, Renato
2012-12-01
Recent experimental evidence has suggested a neuromodulatory deficit in Alzheimer's disease (AD). In this paper, we present a new electroencephalogram (EEG) based metric to quantitatively characterize neuromodulatory activity. More specifically, the short-term EEG amplitude modulation rate-of-change (i.e., modulation frequency) is computed for five EEG subband signals. To test the performance of the proposed metric, a classification task was performed on a database of 32 participants partitioned into three groups of approximately equal size: healthy controls, patients diagnosed with mild AD, and those with moderate-to-severe AD. To gauge the benefits of the proposed metric, performance results were compared with those obtained using EEG spectral peak parameters which were recently shown to outperform other conventional EEG measures. Using a simple feature selection algorithm based on area-under-the-curve maximization and a support vector machine classifier, the proposed parameters resulted in accuracy gains, relative to spectral peak parameters, of 21.3% when discriminating between the three groups and by 50% when mild and moderate-to-severe groups were merged into one. The preliminary findings reported herein provide promising insights that automated tools may be developed to assist physicians in very early diagnosis of AD as well as provide researchers with a tool to automatically characterize cross-frequency interactions and their changes with disease.
Sleep EEG Fingerprints Reveal Accelerated Thalamocortical Oscillatory Dynamics in Williams Syndrome
ERIC Educational Resources Information Center
Bodizs, Robert; Gombos, Ferenc; Kovacs, Ilona
2012-01-01
Sleep EEG alterations are emerging features of several developmental disabilities, but detailed quantitative EEG data on the sleep phenotype of patients with Williams syndrome (WS, 7q11.23 microdeletion) is still lacking. Based on laboratory (Study I) and home sleep records (Study II) here we report WS-related features of the patterns of…
Abnormal EEG Power Spectra in Acute Transient Global Amnesia: A Quantitative EEG Study.
Imperatori, Claudio; Farina, Benedetto; Todini, Federico; Di Blasi, Chiara; Mazzucchi, Edoardo; Brunetti, Valerio; Della Marca, Giacomo
2018-06-01
Transient global amnesia (TGA) is a clinical syndrome characterized by retrograde and anterograde amnesia without other neurological deficits. Although electroencephalography (EEG) methods are commonly used in both clinical and research setting with TGA patients, few studies have investigated neurophysiological pattern in TGA using quantitative EEG (qEEG). The main aim of the present study was to extend these previous findings by exploring EEG power spectra differences between patients with acute TGA and healthy controls using the exact low-resolution brain electromagnetic tomography software (eLORETA). EEG was recorded during 5 minutes of resting state. Sixteen patients (mean age: 66.81 ± 7.94 years) during acute TGA and 16 healthy subjects were enrolled. All patients showed hippocampal or parahippocampal signal abnormalities in diffusion-weighted magnetic resonance imaging performed from 2 to 5 days after the onset of TGA. Compared with healthy controls, TGA patients showed a decrease of theta power localized in the temporal lobe (Brodmann areas, BAs 21-22-38) and frontal lobe (BAs 8-9-44-45). A decrease of EEG beta power in the bilateral precuneus (BA 7) and in the bilateral postcentral gyrus (BAs 3-4-5) was also observed in TGA individuals. Taken together, our results could reflect the neurophysiological substrate of the severe impairment of both episodic memory and autobiographical memory which affect TGA patients during the acute phase.
Cohen, Daniel J.; Begley, Amy; Alman, Jennie J.; Cashmere, J. David; Pietrone, Regina N.; Seres, Robert J.; Germain, Anne
2012-01-01
Summary Sleep disturbances are a hallmark feature of posttraumatic stress disorder (PTSD), and associated with poor clinical outcomes. Few studies have examined sleep quantitative electroencephalography (qEEG), a technique able to detect subtle differences polysomnography does not capture. We hypothesized greater high-frequency qEEG would reflect “hyperarousal” in in combat veterans with PTSD (n=16) compared to veterans without PTSD (n=13). EEG power in traditional EEG frequency bands was computed for artifact-free sleep epochs across an entire night. Correlations were performed between qEEG and ratings of PTSD symptoms and combat exposure. The groups did not differ significantly in whole night qEEG measures for either REM or NREM. Non-significant medium effect sizes suggest less REM beta (opposite to our hypothesis), less REM and NREM sigma, and more NREM gamma in combat veterans with PTSD. Positive correlations were found between combat exposure and NREM beta (PTSD group only), and REM and NREM sigma (non-PTSD group only). Results did not support global hyperarousal in PTSD as indexed by increased beta qEEG activity. The correlation of sigma activity with combat exposure in those without PTSD, and the non-significant trend towards less sigma activity during both REM and NREM sleep in combat veterans with PTSD suggests that differential information processing during sleep may characterize combat-exposed military veterans with and without PTSD. PMID:22845675
Musical Cognition at Birth: A Qualitative Study
ERIC Educational Resources Information Center
Hefer, Michal; Weintraub, Zalman; Cohen, Veronika
2009-01-01
This paper describes research on newborns' responses to music. Video observation and electroencephalogram (EEG) were collected to see whether newborns' responses to random sounds differed from their responses to music. The data collected were subjected to both qualitative and quantitative analysis. This paper will focus on the qualitative study,…
Lee, Seung-Hwan; Wynn, Jonathan K; Green, Michael F; Kim, Hyun; Lee, Kang-Joon; Nam, Min; Park, Joong-Kyu; Chung, Young-Cho
2006-04-01
Electrophysiological studies have demonstrated gamma and beta frequency oscillations in response to auditory stimuli. The purpose of this study was to test whether auditory hallucinations (AH) in schizophrenia patients reflect abnormalities in gamma and beta frequency oscillations and to investigate source generators of these abnormalities. This theory was tested using quantitative electroencephalography (qEEG) and low-resolution electromagnetic tomography (LORETA) source imaging. Twenty-five schizophrenia patients with treatment refractory AH, lasting for at least 2 years, and 23 schizophrenia patients with non-AH (N-AH) in the past 2 years were recruited for the study. Spectral analysis of the qEEG and source imaging of frequency bands of artifact-free 30 s epochs were examined during rest. AH patients showed significantly increased beta 1 and beta 2 frequency amplitude compared with N-AH patients. Gamma and beta (2 and 3) frequencies were significantly correlated in AH but not in N-AH patients. Source imaging revealed significantly increased beta (1 and 2) activity in the left inferior parietal lobule and the left medial frontal gyrus in AH versus N-AH patients. These results imply that AH is reflecting increased beta frequency oscillations with neural generators localized in speech-related areas.
Music therapy for coma patients: preliminary results.
Sun, J; Chen, W
2015-04-01
The application of quantitative EEG (δ+θ/α+β value) and GCS value to evaluate the role of music therapy for traumatic brain injury coma patients. Forty patients of traumatic brain injury coma were selected to meet the inclusion criteria. Twenty cases were selected for the rehabilitation, neurology and neurosurgery ward, whose families could actively cooperate with, and the patients could receive a long-term fixed nursing staff with formal music therapy (music group). Twenty cases were in the intensive care unit of the rehabilitation, neurology and neurosurgery ward. Their families members cooperated poorly, had often changing nursing staff, and without a formal music therapy (control group). After a one monthe follow up, the GCS value and quantitative EEG (δ+θ/α+β value) were compared between the two groups. Between the two groups, except for the presence or absence of formal music therapy, the rest of treatment had no significant difference and was matched by age, gender, and injury types. In 40 cases of traumatic brain injury patients, the GCS value increased in the music group after treatment when compared to the control group. The difference between the two groups was significant (p < 0.05). The quantitative EEG value (δ+θ/α+β value) of music group values were decreased after treatment, and the difference was significant compared with the control group (p < 0.05). Through the quantitative EEG (δ+θ/α+β value) and the GCS observation score, music therapy in patients with craniocerebral trauma coma has obviously an effect on promoting to regain consciousness. The quantitative EEG (δ+θ/α+β value) can be used as an objective index to evaluate the state of brain function.
Study of interhemispheric asymmetries in electroencephalographic signals by frequency analysis
NASA Astrophysics Data System (ADS)
Zapata, J. F.; Garzón, J.
2011-01-01
This study provides a new method for the detection of interhemispheric asymmetries in patients with continuous video-electroencephalography (EEG) monitoring at Intensive Care Unit (ICU), using wavelet energy. We obtained the registration of EEG signals in 42 patients with different pathologies, and then we proceeded to perform signal processing using the Matlab program, we compared the abnormalities recorded in the report by the neurophysiologist, the images of each patient and the result of signals analysis with the Discrete Wavelet Transform (DWT). Conclusions: there exists correspondence between the abnormalities found in the processing of the signal with the clinical reports of findings in patients; according to previous conclusion, the methodology used can be a useful tool for diagnosis and early quantitative detection of interhemispheric asymmetries.
Simkin, Deborah R; Thatcher, Robert W; Lubar, Joel
2014-07-01
This article explores the science surrounding neurofeedback. Both surface neurofeedback (using 2-4 electrodes) and newer interventions, such as real-time z-score neurofeedback (electroencephalogram [EEG] biofeedback) and low-resolution electromagnetic tomography neurofeedback, are reviewed. The limited literature on neurofeedback research in children and adolescents is discussed regarding treatment of anxiety, mood, addiction (with comorbid attention-deficit/hyperactivity disorder), and traumatic brain injury. Future potential applications, the use of quantitative EEG for determining which patients will be responsive to medications, the role of randomized controlled studies in neurofeedback research, and sensible clinical guidelines are considered. Copyright © 2014 Elsevier Inc. All rights reserved.
Reliability of quantitative EEG (qEEG) measures and LORETA current source density at 30 days.
Cannon, Rex L; Baldwin, Debora R; Shaw, Tiffany L; Diloreto, Dominic J; Phillips, Sherman M; Scruggs, Annie M; Riehl, Timothy C
2012-06-14
There is a growing interest for using quantitative EEG and LORETA current source density in clinical and research settings. Importantly, if these indices are to be employed in clinical settings then the reliability of these measures is of great concern. Neuroguide (Applied Neurosciences) is sophisticated software developed for the analyses of power, and connectivity measures of the EEG as well as LORETA current source density. To date there are relatively few data evaluating topographical EEG reliability contrasts for all 19 channels and no studies have evaluated reliability for LORETA calculations. We obtained 4 min eyes-closed and eyes-opened EEG recordings at 30-day intervals. The EEG was analyzed in Neuroguide and FFT power, coherence and phase was computed for traditional frequency bands (delta, theta, alpha and beta) and LORETA current source density was calculated in 1 Hz increments and summed for total power in eight regions of interest (ROI). In order to obtain a robust measure of reliability we utilized a random effects model with an absolute agreement definition. The results show very good reproducibility for total absolute power and coherence. Phase shows lower reliability coefficients. LORETA current source density shows very good reliability with an average 0.81 for ECB and 0.82 for EOB. Similarly, the eight regions of interest show good to very good agreement across time. Implications for future directions and use of qEEG and LORETA in clinical populations are discussed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Complexity of EEG-signal in Time Domain - Possible Biomedical Application
NASA Astrophysics Data System (ADS)
Klonowski, Wlodzimierz; Olejarczyk, Elzbieta; Stepien, Robert
2002-07-01
Human brain is a highly complex nonlinear system. So it is not surprising that in analysis of EEG-signal, which represents overall activity of the brain, the methods of Nonlinear Dynamics (or Chaos Theory as it is commonly called) can be used. Even if the signal is not chaotic these methods are a motivating tool to explore changes in brain activity due to different functional activation states, e.g. different sleep stages, or to applied therapy, e.g. exposure to chemical agents (drugs) and physical factors (light, magnetic field). The methods supplied by Nonlinear Dynamics reveal signal characteristics that are not revealed by linear methods like FFT. Better understanding of principles that govern dynamics and complexity of EEG-signal can help to find `the signatures' of different physiological and pathological states of human brain, quantitative characteristics that may find applications in medical diagnostics.
Brain computer interface for operating a robot
NASA Astrophysics Data System (ADS)
Nisar, Humaira; Balasubramaniam, Hari Chand; Malik, Aamir Saeed
2013-10-01
A Brain-Computer Interface (BCI) is a hardware/software based system that translates the Electroencephalogram (EEG) signals produced by the brain activity to control computers and other external devices. In this paper, we will present a non-invasive BCI system that reads the EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates it into computer readable form; to control the motion of a robot. The robot performs the actions that are instructed to it in real time. We have used the cognitive states like Push, Pull to control the motion of the robot. The sensitivity and specificity of the system is above 90 percent. Subjective results show a mixed trend of the difficulty level of the training activities. The quantitative EEG data analysis complements the subjective results. This technology may become very useful for the rehabilitation of disabled and elderly people.
Different quantitative EEG alterations induced by TBI among patients with different APOE genotypes.
Jiang, Li; Yin, Xiaohong; Yin, Cheng; Zhou, Shuai; Dan, Wei; Sun, Xiaochuan
2011-11-14
Although several studies have revealed the EEG alterations in AD and TBI patients, the influence of APOE (apolipoprotein E) genotype in EEG at the early stage of TBI has not been reported yet. We have previously studied EEG alterations caused by TBI among different APOE genotype carriers. In this study, we firstly investigated the relationship between APOE polymorphisms and quantitative EEG (QEEG) changes after TBI. A total of 118 consecutive TBI patients with a Glasgow Coma Scale (GCS) of 9 or higher were recruited, and 40 normal adults were also included as a control group. APOE genotype was determined by PCR-RFLP for each subject, and QEEG recordings were performed in rest, relaxed, awake and with eyes closed in normal subjects and TBI patients during 1-3 days after TBI. In the normal control group, both APOEɛ4 carriers and non-carriers had normal EEG, and no significant difference of QEEG data was found between APOEɛ4 carriers and non-carriers. But in the TBI group, APOEɛ4 carriers had more focal or global irregular slow wave activities than APOEɛ4 non-carriers. APOE gene did not influence brain electrical activity under normal conditions, but TBI can induce different alterations among different APOE gene carriers, and APOEɛ4 allele enhances the EEG abnormalities at the early stage of TBI. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Prognostic and diagnostic value of EEG signal coupling measures in coma.
Zubler, Frederic; Koenig, Christa; Steimer, Andreas; Jakob, Stephan M; Schindler, Kaspar A; Gast, Heidemarie
2016-08-01
Our aim was to assess the diagnostic and predictive value of several quantitative EEG (qEEG) analysis methods in comatose patients. In 79 patients, coupling between EEG signals on the left-right (inter-hemispheric) axis and on the anterior-posterior (intra-hemispheric) axis was measured with four synchronization measures: relative delta power asymmetry, cross-correlation, symbolic mutual information and transfer entropy directionality. Results were compared with etiology of coma and clinical outcome. Using cross-validation, the predictive value of measure combinations was assessed with a Bayes classifier with mixture of Gaussians. Five of eight measures showed a statistically significant difference between patients grouped according to outcome; one measure revealed differences in patients grouped according to the etiology. Interestingly, a high level of synchrony between the left and right hemisphere was associated with mortality on intensive care unit, whereas higher synchrony between anterior and posterior brain regions was associated with survival. The combination with the best predictive value reached an area-under the curve of 0.875 (for patients with post anoxic encephalopathy: 0.946). EEG synchronization measures can contribute to clinical assessment, and provide new approaches for understanding the pathophysiology of coma. Prognostication in coma remains a challenging task. qEEG could improve current multi-modal approaches. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Cross-conditional entropy and coherence analysis of pharmaco-EEG changes induced by alprazolam.
Alonso, J F; Mañanas, M A; Romero, S; Rojas-Martínez, M; Riba, J
2012-06-01
Quantitative analysis of electroencephalographic signals (EEG) and their interpretation constitute a helpful tool in the assessment of the bioavailability of psychoactive drugs in the brain. Furthermore, psychotropic drug groups have typical signatures which relate biochemical mechanisms with specific EEG changes. To analyze the pharmacological effect of a dose of alprazolam on the connectivity of the brain during wakefulness by means of linear and nonlinear approaches. EEG signals were recorded after alprazolam administration in a placebo-controlled crossover clinical trial. Nonlinear couplings assessed by means of corrected cross-conditional entropy were compared to linear couplings measured with the classical magnitude squared coherence. Linear variables evidenced a statistically significant drug-induced decrease, whereas nonlinear variables showed significant increases. All changes were highly correlated to drug plasma concentrations. The spatial distribution of the observed connectivity changes clearly differed from a previous study: changes before and after the maximum drug effect were mainly observed over the anterior half of the scalp. Additionally, a new variable with very low computational cost was defined to evaluate nonlinear coupling. This is particularly interesting when all pairs of EEG channels are assessed as in this study. Results showed that alprazolam induced changes in terms of uncoupling between regions of the scalp, with opposite trends depending on the variables: decrease in linear ones and increase in nonlinear features. Maps provided consistent information about the way brain changed in terms of connectivity being definitely necessary to evaluate separately linear and nonlinear interactions.
NASA Technical Reports Server (NTRS)
Freeman, Frederick G.
1993-01-01
The increased use of automation in the cockpits of commercial planes has dramatically decreased the workload requirements of pilots, enabling them to function more efficiently and with a higher degree of safety. Unfortunately, advances in technology have led to an unexpected problem: the decreased demands on pilots have increased the probability of inducing 'hazardous states of awareness.' A hazardous state of awareness is defined as a decreased level of alertness or arousal which makes an individual less capable of reacting to unique or emergency types of situations. These states tend to be induced when an individual is not actively processing information. Under such conditions a person is likely to let his/her mind wander, either to internal states or to irrelevant external conditions. As a result, they are less capable of reacting quickly to emergency situations. Since emergencies are relatively rare, and since the high automated cockpit requires progressively decreasing levels of engagement, the probability of being seduced into a lowered state of awareness is increasing. This further decreases the readiness of the pilot to react to unique circumstances such as system failures. The HEM Lab at NASA-Langley Research Center has been studying how these states of awareness are induced and what the physiological correlates of these different states are. Specifically, they have been interested in studying electroencephalographic (EEG) measures of different states of alertness to determine if such states can be identified and, hopefully, avoided. The project worked on this summer involved analyzing the EEG and the event related potentials (ERP) data collected while subjects performed under two conditions. Each condition required subjects to perform a relatively boring vigilance task. The purpose of using these tasks was to induce a decreased state of awareness while still requiring the subject to process information. Each task involved identifying an infrequently presented target stimulus. In addition to the task requirements, irrelevant tones were presented in the background. Research has shown that even though these stimuli are not attended, ERP's to them can still be elicited. The amplitude of the ERP waves has been shown to change as a function of a person's level of alertness. ERP's were also collected and analyzed for the target stimuli for each task. Brain maps were produced based on the ERP voltages for the different stimuli. In addition to the ERP's, a quantitative EEG (QEEG) was performed on the data using a fast Fourier technique to produce a power spectral analysis of the EEG. This analysis was conducted on the continuous EEG while the subjects were performing the tasks. Finally, a QEEG was performed on periods during the task when subjects indicated that they were in an altered state of awareness. During the tasks, subjects were asked to indicate by pressing a button when they realized their level of task awareness had changed. EEG epochs were collected for times just before and just after subjects made this reponse. The purpose of this final analysis was to determine whether or not subjective indices of level of awareness could be correlated with different patterns of EEG.
Early Oxygen-Utilization and Brain Activity in Preterm Infants
de Vries, Linda S.; Groenendaal, Floris; Toet, Mona C.; Lemmers, Petra M. A.; Vosse van de, Renè E.; van Bel, Frank; Benders, Manon J. N. L.
2015-01-01
The combined monitoring of oxygen supply and delivery using Near-InfraRed spectroscopy (NIRS) and cerebral activity using amplitude-integrated EEG (aEEG) could yield new insights into brain metabolism and detect potentially vulnerable conditions soon after birth. The relationship between NIRS and quantitative aEEG/EEG parameters has not yet been investigated. Our aim was to study the association between oxygen utilization during the first 6 h after birth and simultaneously continuously monitored brain activity measured by aEEG/EEG. Forty-four hemodynamically stable babies with a GA < 28 weeks, with good quality NIRS and aEEG/EEG data available and who did not receive morphine were included in the study. aEEG and NIRS monitoring started at NICU admission. The relation between regional cerebral oxygen saturation (rScO2) and cerebral fractional tissue oxygen extraction (cFTOE), and quantitative measurements of brain activity such as number of spontaneous activity transients (SAT) per minute (SAT rate), the interval in seconds (i.e. time) between SATs (ISI) and the minimum amplitude of the EEG in μV (min aEEG) were evaluated. rScO2 was negatively associated with SAT rate (β=-3.45 [CI=-5.76- -1.15], p=0.004) and positively associated with ISI (β=1.45 [CI=0.44-2.45], p=0.006). cFTOE was positively associated with SAT rate (β=0.034 [CI=0.009-0.059], p=0.008) and negatively associated with ISI (β=-0.015 [CI=-0.026- -0.004], p=0.007). Oxygen delivery and utilization, as indicated by rScO2 and cFTOE, are directly related to functional brain activity, expressed by SAT rate and ISI during the first hours after birth, showing an increase in oxygen extraction in preterm infants with increased early electro-cerebral activity. NIRS monitored oxygenation may be a useful biomarker of brain vulnerability in high-risk infants. PMID:25965343
EEG and MEG: sensitivity to epileptic spike activity as function of source orientation and depth.
Hunold, A; Funke, M E; Eichardt, R; Stenroos, M; Haueisen, J
2016-07-01
Simultaneous electroencephalography (EEG) and magnetoencephalography (MEG) recordings of neuronal activity from epileptic patients reveal situations in which either EEG or MEG or both modalities show visible interictal spikes. While different signal-to-noise ratios (SNRs) of the spikes in EEG and MEG have been reported, a quantitative relation of spike source orientation and depth as well as the background brain activity to the SNR has not been established. We investigated this quantitative relationship for both dipole and patch sources in an anatomically realistic cortex model. Altogether, 5600 dipole and 3300 patch sources were distributed on the segmented cortical surfaces of two volunteers. The sources were classified according to their quantified depths and orientations, ranging from 20 mm to 60 mm below the skin surface and radial and tangential, respectively. The source time-courses mimicked an interictal spike, and the simulated background activity emulated resting activity. Simulations were conducted with individual three-compartment boundary element models. The SNR was evaluated for 128 EEG, 102 MEG magnetometer, and 204 MEG gradiometer channels. For superficial dipole and superficial patch sources, EEG showed higher SNRs for dominantly radial orientations, and MEG showed higher values for dominantly tangential orientations. Gradiometers provided higher SNR than magnetometers for superficial sources, particularly for those with dominantly tangential orientations. The orientation dependent difference in SNR in EEG and MEG gradually changed as the sources were located deeper, where the interictal spikes generated higher SNRs in EEG compared to those in MEG for all source orientations. With deep sources, the SNRs in gradiometers and magnetometers were of the same order. To better detect spikes, both EEG and MEG should be used.
Functional connectivity among multi-channel EEGs when working memory load reaches the capacity.
Zhang, Dan; Zhao, Huipo; Bai, Wenwen; Tian, Xin
2016-01-15
Evidence from behavioral studies has suggested a capacity existed in working memory. As the concept of functional connectivity has been introduced into neuroscience research in the recent years, the aim of this study is to investigate the functional connectivity in the brain when working memory load reaches the capacity. 32-channel electroencephalographs (EEGs) were recorded for 16 healthy subjects, while they performed a visual working memory task with load 1-6. Individual working memory capacity was calculated according to behavioral results. Short-time Fourier transform was used to determine the principal frequency band (theta band) related to working memory. The functional connectivity among EEGs was measured by the directed transform function (DTF) via spectral Granger causal analysis. The capacity was 4 calculated from the behavioral results. The power was focused in the frontal midline region. The strongest connectivity strengths of EEG theta components from load 1 to 6 distributed in the frontal midline region. The curve of DTF values vs load numbers showed that DTF increased from load 1 to 4, peaked at load 4, then decreased after load 4. This study finds that the functional connectivity between EEGs, described quantitatively by DTF, became less strong when working memory load exceeded the capacity. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Chunfang; Chen, Yuanyuan; Zhang, Ying; Chen, Jin; Ding, Xiaojing; Ming, Dong; Du, Jingang
2017-06-01
This study aimed to examine the aberrant EEG oscillation in major depressive subjects with basal ganglia stroke with lesions in different hemispheres. Resting EEG of 16 electrodes in 58 stroke subjects, 26 of whom had poststroke depression (13 with left-hemisphere lesion and 13 with right) and 32 of whom did not (18 with left lesion and 14 with right), was recorded to obtain spectral power analysis for several frequency bands. Multiple analysis of variance and receiver operating characteristic (ROC) curves were used to identify differences between poststroke depression (PSD) and poststroke non-depression (PSND), treating the different lesion hemispheres separately. Moreover, Pearson linear correlation analysis was conducted to test the severity of depressive symptoms and EEG indices. PSD with left-hemisphere lesion showed increased beta2 power in frontal and central areas, but PSD with right-hemisphere lesion showed increased theta and alpha power mainly in occipital and temporal regions. Additionally, for left-hemisphere lesions, beta2 power in central and right parietal regions provided high discrimination between PSD and PSND, and for right-hemisphere lesions, theta power was similarly discriminative in most regions, especially temporal regions. We also explored the association between symptoms of depression and the power of abnormal bands, but we found no such relationship. The sample size was relatively small and included subjects with different lesions of the basal ganglia. The aberrant EEG oscillation in subjects with PSD differs between subjects with lesions of the left and right hemispheres, suggesting a complex association between depression and lesion location in stroke patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Feng, Guibo; Jiang, Guohui; Li, Zhiwei; Wang, Xuefeng
2016-06-01
Cardiac arrest (CA) patients can experience neurological sequelae or even death after successful cardiopulmonary resuscitation (CPR) due to cerebral hypoxia- and ischemia-reperfusion-mediated brain injury. Thus, it is important to perform early prognostic evaluations in CA patients. Electroencephalography (EEG) is an important tool for determining the prognosis of hypoxic-ischemic encephalopathy due to its real-time measurement of brain function. Based on EEG, burst suppression, a burst suppression ratio >0.239, periodic discharges, status epilepticus, stimulus-induced rhythmic, periodic or ictal discharges, non-reactive EEG, and the BIS value based on quantitative EEG may be associated with the prognosis of CA after successful CPR. As measures of neural network integrity, the values of small-world characteristics of the neural network derived from EEG patterns have potential applications.
NASA Technical Reports Server (NTRS)
Frost, J. D., Jr.
1977-01-01
Comparative data for further assessments of the EEG alterations seen during Skylab are elaborated. The variability of alpha, beta, theta, and delta EEG characteristics was analyzed with quantitative computer techniques in a group of six normal individuals over a period of two months, and the EEG effects of a prolonged period of bed rest were evaluated in two subjects. The results confirm that the inflight EEG changes seen during Skylab are statistically significant, but the absolute values obtained for the various parameters do not exceed the maximal range expected in a normal population. Further, the EEG manifestations of extended bed rest do not appear similar to those of space flight.
Shul'ts, E V; Baburin, I N; Karavaeva, T A; Karvasarskiĭ, B D; Slezin, V B
2011-01-01
Fifty-five patients with neurotic and neurosis-like disorders and 20 healthy controls, aged 17-64 years, have been examined. The basic research method was electroencephalography (EEG) with the fractal analysis of alpha power fluctuations. In patients, the changes in the fractal structure were of the same direction: the decrease of fractal indexes of low-frequency fluctuations and the increase of fractal indexes of mid-frequency fluctuations. Patients with neurosis-like disorders, in comparison to those with neurotic disorders, were characterized by more expressed (quantitative) changes in fractal structures of more extended character. It suggests the presence of deeper pathological changes in patients with neurosis-like disorders.
Evaluating resective surgery targets in epilepsy patients: A comparison of quantitative EEG methods.
Müller, Michael; Schindler, Kaspar; Goodfellow, Marc; Pollo, Claudio; Rummel, Christian; Steimer, Andreas
2018-07-15
Quantitative analysis of intracranial EEG is a promising tool to assist clinicians in the planning of resective brain surgery in patients suffering from pharmacoresistant epilepsies. Quantifying the accuracy of such tools, however, is nontrivial as a ground truth to verify predictions about hypothetical resections is missing. As one possibility to address this, we use customized hypotheses tests to examine the agreement of the methods on a common set of patients. One method uses machine learning techniques to enable the predictive modeling of EEG time series. The other estimates nonlinear interrelation between EEG channels. Both methods were independently shown to distinguish patients with excellent post-surgical outcome (Engel class I) from those without improvement (Engel class IV) when assessing the electrodes associated with the tissue that was actually resected during brain surgery. Using the AND and OR conjunction of both methods we evaluate the performance gain that can be expected when combining them. Both methods' assessments correlate strongly positively with the similarity between a hypothetical resection and the corresponding actual resection in class I patients. Moreover, the Spearman rank correlation between the methods' patient rankings is significantly positive. To our best knowledge, this is the first study comparing surgery target assessments from fundamentally differing techniques. Although conceptually completely independent, there is a relation between the predictions obtained from both methods. Their broad consensus supports their application in clinical practice to provide physicians additional information in the process of presurgical evaluation. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
EEG low-resolution brain electromagnetic tomography (LORETA) in Huntington's disease.
Painold, Annamaria; Anderer, Peter; Holl, Anna K; Letmaier, Martin; Saletu-Zyhlarz, Gerda M; Saletu, Bernd; Bonelli, Raphael M
2011-05-01
Previous studies have shown abnormal electroencephalography (EEG) in Huntington's disease (HD). The aim of the present investigation was to compare quantitatively analyzed EEGs of HD patients and controls by means of low-resolution brain electromagnetic tomography (LORETA). Further aims were to delineate the sensitivity and utility of EEG LORETA in the progression of HD, and to correlate parameters of cognitive and motor impairment with neurophysiological variables. In 55 HD patients and 55 controls a 3-min vigilance-controlled EEG (V-EEG) was recorded during midmorning hours. Power spectra and intracortical tomography were computed by LORETA in seven frequency bands and compared between groups. Spearman rank correlations were based on V-EEG and psychometric data. Statistical overall analysis by means of the omnibus significance test demonstrated significant (p < 0.01) differences between HD patients and controls. LORETA theta, alpha and beta power were decreased from early to late stages of the disease. Only advanced disease stages showed a significant increase in delta power, mainly in the right orbitofrontal cortex. Correlation analyses revealed that a decrease of alpha and theta power correlated significantly with increasing cognitive and motor decline. LORETA proved to be a sensitive instrument for detecting progressive electrophysiological changes in HD. Reduced alpha power seems to be a trait marker of HD, whereas increased prefrontal delta power seems to reflect worsening of the disease. Motor function and cognitive function deteriorate together with a decrease in alpha and theta power. This data set, so far the largest in HD research, helps to elucidate remaining uncertainties about electrophysiological abnormalities in HD.
Saletu, B; Anderer, P; Saletu-Zyhlarz, G M; Arnold, O; Pascual-Marqui, R D
2002-01-01
Utilizing computer-assisted quantitative analyses of human scalp-recorded electroencephalogram (EEG) in combination with certain statistical procedures (quantitative pharmaco-EEG) and mapping techniques (pharmaco-EEG mapping), it is possible to classify psychotropic substances and objectively evaluate their bioavailability at the target organ: the human brain. Specifically, one may determine at an early stage of drug development whether a drug is effective on the central nervous system (CNS) compared with placebo, what its clinical efficacy will be like, at which dosage it acts, when it acts and the equipotent dosages of different galenic formulations. Pharmaco-EEG profiles and maps of neuroleptics, antidepressants, tranquilizers, hypnotics, psychostimulants and nootropics/cognition-enhancing drugs will be described in this paper. Methodological problems, as well as the relationships between acute and chronic drug effects, alterations in normal subjects and patients, CNS effects, therapeutic efficacy and pharmacokinetic and pharmacodynamic data will be discussed. In recent times, imaging of drug effects on the regional brain electrical activity of healthy subjects by means of EEG tomography such as low-resolution electromagnetic tomography (LORETA) has been used for identifying brain areas predominantly involved in psychopharmacological action. This will be demonstrated for the representative drugs of the four main psychopharmacological classes, such as 3 mg haloperidol for neuroleptics, 20 mg citalopram for antidepressants, 2 mg lorazepam for tranquilizers and 20 mg methylphenidate for psychostimulants. LORETA demonstrates that these psychopharmacological classes affect brain structures differently.
Cohen, Daniel J; Begley, Amy; Alman, Jennie J; Cashmere, David J; Pietrone, Regina N; Seres, Robert J; Germain, Anne
2013-02-01
Sleep disturbances are a hallmark feature of post-traumatic stress disorder (PTSD), and associated with poor clinical outcomes. Few studies have examined sleep quantitative electroencephalography (qEEG), a technique able to detect subtle differences that polysomnography does not capture. We hypothesized that greater high-frequency qEEG would reflect 'hyperarousal' in combat veterans with PTSD (n = 16) compared to veterans without PTSD (n = 13). EEG power in traditional EEG frequency bands was computed for artifact-free sleep epochs across an entire night. Correlations were performed between qEEG and ratings of PTSD symptoms and combat exposure. The groups did not differ significantly in whole-night qEEG measures for either rapid eye movement (REM) or non-REM (NREM) sleep. Non-significant medium effect sizes suggest less REM beta (opposite to our hypothesis), less REM and NREM sigma and more NREM gamma in combat veterans with PTSD. Positive correlations were found between combat exposure and NREM beta (PTSD group only), and REM and NREM sigma (non-PTSD group only). Results did not support global hyperarousal in PTSD as indexed by increased beta qEEG activity. The correlation of sigma activity with combat exposure in those without PTSD and the non-significant trend towards less sigma activity during both REM and NREM sleep in combat veterans with PTSD suggests that differential information processing during sleep may characterize combat-exposed military veterans with and without PTSD. © 2012 European Sleep Research Society.
Quantitative EEG and functional outcome following acute ischemic stroke.
Bentes, Carla; Peralta, Ana Rita; Viana, Pedro; Martins, Hugo; Morgado, Carlos; Casimiro, Carlos; Franco, Ana Catarina; Fonseca, Ana Catarina; Geraldes, Ruth; Canhão, Patrícia; Pinho E Melo, Teresa; Paiva, Teresa; Ferro, José M
2018-06-18
To identify the most accurate quantitative electroencephalographic (qEEG) predictor(s) of unfavorable post-ischemic stroke outcome, and its discriminative capacity compared to already known demographic, clinical and imaging prognostic markers. Prospective cohort of 151 consecutive anterior circulation ischemic stroke patients followed for 12 months. EEG was recorded within 72 h and at discharge or 7 days post-stroke. QEEG (global band power, symmetry, affected/unaffected hemisphere and time changes) indices were calculated from mean Fast Fourier Transform and analyzed as predictors of unfavorable outcome (mRS ≥ 3), at discharge and 12 months poststroke, before and after adjustment for age, admission NIHSS and ASPECTS. Higher delta, lower alpha and beta relative powers (RP) predicted outcome. Indices with higher discriminative capacity were delta-theta to alpha-beta ratio (DTABR) and alpha RP. Outcome models including either of these and other clinical/imaging stroke outcome predictors were superior to models without qEEG data. In models with qEEG indices, infarct size was not a significant outcome predictor. DTAABR and alpha RP are the best qEEG indices and superior to ASPECTS in post-stroke outcome prediction. They improve the discriminative capacity of already known clinical and imaging stroke outcome predictors, both at discharge and 12 months after stroke. qEEG indices are independent predictors of stroke outcome. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Reategui, Camille; Costa, Bruna Karen de Sousa; da Fonseca, Caio Queiroz; da Silva, Luana; Morya, Edgard
2017-01-01
Autism spectrum disorder (ASD) is a neuropsychiatric disorder characterized by the impairment in the social reciprocity, interaction/language, and behavior, with stereotypes and signs of sensory function deficits. Electroencephalography (EEG) is a well-established and noninvasive tool for neurophysiological characterization and monitoring of the brain electrical activity, able to identify abnormalities related to frequency range, connectivity, and lateralization of brain functions. This research aims to evidence quantitative differences in the frequency spectrum pattern between EEG signals of children with and without ASD during visualization of human faces in three different expressions: neutral, happy, and angry. Quantitative clinical evaluations, neuropsychological evaluation, and EEG of children with and without ASD were analyzed paired by age and gender. The results showed stronger activation in higher frequencies (above 30 Hz) in frontal, central, parietal, and occipital regions in the ASD group. This pattern of activation may correlate with developmental characteristics in the children with ASD. PMID:29018811
Wang, Bei; Wang, Xingyu; Ikeda, Akio; Nagamine, Takashi; Shibasaki, Hiroshi; Nakamura, Masatoshi
2014-01-01
EEG (Electroencephalograph) interpretation is important for the diagnosis of neurological disorders. The proper adjustment of the montage can highlight the EEG rhythm of interest and avoid false interpretation. The aim of this study was to develop an automatic reference selection method to identify a suitable reference. The results may contribute to the accurate inspection of the distribution of EEG rhythms for quantitative EEG interpretation. The method includes two pre-judgements and one iterative detection module. The diffuse case is initially identified by pre-judgement 1 when intermittent rhythmic waveforms occur over large areas along the scalp. The earlobe reference or averaged reference is adopted for the diffuse case due to the effect of the earlobe reference depending on pre-judgement 2. An iterative detection algorithm is developed for the localised case when the signal is distributed in a small area of the brain. The suitable averaged reference is finally determined based on the detected focal and distributed electrodes. The presented technique was applied to the pathological EEG recordings of nine patients. One example of the diffuse case is introduced by illustrating the results of the pre-judgements. The diffusely intermittent rhythmic slow wave is identified. The effect of active earlobe reference is analysed. Two examples of the localised case are presented, indicating the results of the iterative detection module. The focal and distributed electrodes are detected automatically during the repeating algorithm. The identification of diffuse and localised activity was satisfactory compared with the visual inspection. The EEG rhythm of interest can be highlighted using a suitable selected reference. The implementation of an automatic reference selection method is helpful to detect the distribution of an EEG rhythm, which can improve the accuracy of EEG interpretation during both visual inspection and automatic interpretation. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Removal of BCG artefact from concurrent fMRI-EEG recordings based on EMD and PCA.
Javed, Ehtasham; Faye, Ibrahima; Malik, Aamir Saeed; Abdullah, Jafri Malin
2017-11-01
Simultaneous electroencephalography (EEG) and functional magnetic resonance image (fMRI) acquisitions provide better insight into brain dynamics. Some artefacts due to simultaneous acquisition pose a threat to the quality of the data. One such problematic artefact is the ballistocardiogram (BCG) artefact. We developed a hybrid algorithm that combines features of empirical mode decomposition (EMD) with principal component analysis (PCA) to reduce the BCG artefact. The algorithm does not require extra electrocardiogram (ECG) or electrooculogram (EOG) recordings to extract the BCG artefact. The method was tested with both simulated and real EEG data of 11 participants. From the simulated data, the similarity index between the extracted BCG and the simulated BCG showed the effectiveness of the proposed method in BCG removal. On the other hand, real data were recorded with two conditions, i.e. resting state (eyes closed dataset) and task influenced (event-related potentials (ERPs) dataset). Using qualitative (visual inspection) and quantitative (similarity index, improved normalized power spectrum (INPS) ratio, power spectrum, sample entropy (SE)) evaluation parameters, the assessment results showed that the proposed method can efficiently reduce the BCG artefact while preserving the neuronal signals. Compared with conventional methods, namely, average artefact subtraction (AAS), optimal basis set (OBS) and combined independent component analysis and principal component analysis (ICA-PCA), the statistical analyses of the results showed that the proposed method has better performance, and the differences were significant for all quantitative parameters except for the power and sample entropy. The proposed method does not require any reference signal, prior information or assumption to extract the BCG artefact. It will be very useful in circumstances where the reference signal is not available. Copyright © 2017 Elsevier B.V. All rights reserved.
Isley, Michael R; Edmonds, Harvey L; Stecker, Mark
2009-12-01
Electroencephalography (EEG) is one of the oldest and most commonly utilized modalities for intraoperative neuromonitoring. Historically, interest in the EEG patterns associated with anesthesia is as old as the discovery of the EEG itself. The evolution of its intraoperative use was also expanded to include monitoring for assessing cortical perfusion and oxygenation during a variety of vascular, cardiac, and neurosurgical procedures. Furthermore, a number of quantitative or computer-processed algorithms have also been developed to aid in its visual representation and interpretation. The primary clinical outcomes for which modern EEG technology has made significant intraoperative contributions include: (1) recognizing and/or preventing perioperative ischemic insults, and (2) monitoring of brain function for anesthetic drug administration in order to determine depth of anesthesia (and level of consciousness), including the tailoring of drug levels to achieve a predefined neural effect (e.g., burst suppression). While the accelerated development of microprocessor technologies has fostered an extraordinarily rapid growth in the use of intraoperative EEG, there is still no universal adoption of a monitoring technique(s) or of criteria for its neural end-point(s) by anesthesiologists, surgeons, neurologists, and neurophysiologists. One of the most important limitations to routine intraoperative use of EEG may be the lack of standardization of methods, alarm criteria, and recommendations related to its application. Lastly, refinements in technology and signal processing can be expected to advance the usefulness of the intraoperative EEG for both anesthetic and surgical management of patients. This paper is the position statement of the American Society of Neurophysiological Monitoring. It is the practice guidelines for the intraoperative use of raw (analog and digital) and quantitative EEG. The following recommendations are based on trends in the current scientific and clinical literature and meetings, guidelines published by other organizations, expert opinion, and public review by the members of the American Society of Neurophysiological Monitoring. This document may not include all possible methodologies and interpretative criteria, nor do the authors and their sponsor intentionally exclude any new alternatives. The use of the techniques reviewed in these guidelines may reduce perioperative neurological morbidity and mortality. This position paper summarizes commonly used protocols for recording and interpreting the intraoperative use of EEG. Furthermore, the American Society of Neurophysiological Monitoring recognizes this as primarily an educational service.
Autoreject: Automated artifact rejection for MEG and EEG data.
Jas, Mainak; Engemann, Denis A; Bekhti, Yousra; Raimondo, Federico; Gramfort, Alexandre
2017-10-01
We present an automated algorithm for unified rejection and repair of bad trials in magnetoencephalography (MEG) and electroencephalography (EEG) signals. Our method capitalizes on cross-validation in conjunction with a robust evaluation metric to estimate the optimal peak-to-peak threshold - a quantity commonly used for identifying bad trials in M/EEG. This approach is then extended to a more sophisticated algorithm which estimates this threshold for each sensor yielding trial-wise bad sensors. Depending on the number of bad sensors, the trial is then repaired by interpolation or by excluding it from subsequent analysis. All steps of the algorithm are fully automated thus lending itself to the name Autoreject. In order to assess the practical significance of the algorithm, we conducted extensive validation and comparisons with state-of-the-art methods on four public datasets containing MEG and EEG recordings from more than 200 subjects. The comparisons include purely qualitative efforts as well as quantitatively benchmarking against human supervised and semi-automated preprocessing pipelines. The algorithm allowed us to automate the preprocessing of MEG data from the Human Connectome Project (HCP) going up to the computation of the evoked responses. The automated nature of our method minimizes the burden of human inspection, hence supporting scalability and reliability demanded by data analysis in modern neuroscience. Copyright © 2017 Elsevier Inc. All rights reserved.
Jin, Min Jin; Kim, Ji Sun; Kim, Sungkean; Hyun, Myoung Ho; Lee, Seung-Hwan
2017-01-01
Childhood trauma is known to be related to emotional problems, quantitative electroencephalography (EEG) indices, and heart rate variability (HRV) indices in adulthood, whereas directions among these factors have not been reported yet. This study aimed to evaluate pathway models in young and healthy adults: (1) one with physiological factors first and emotional problems later in adulthood as results of childhood trauma and (2) one with emotional problems first and physiological factors later. A total of 103 non-clinical volunteers were included. Self-reported psychological scales, including the Childhood Trauma Questionnaire (CTQ), State-Trait Anxiety Inventory, Beck Depression Inventory, and Affective Lability Scale were administered. For physiological evaluation, EEG record was performed during resting eyes closed condition in addition to the resting-state HRV, and the quantitative power analyses of eight EEG bands and three HRV components were calculated in the frequency domain. After a normality test, Pearson's correlation analysis to make path models and path analyses to examine them were conducted. The CTQ score was significantly correlated with depression, state and trait anxiety, affective lability, and HRV low-frequency (LF) power. LF power was associated with beta2 (18-22 Hz) power that was related to affective lability. Affective lability was associated with state anxiety, trait anxiety, and depression. Based on the correlation and the hypothesis, two models were composed: a model with pathways from CTQ score to affective lability, and a model with pathways from CTQ score to LF power. The second model showed significantly better fit than the first model (AIC model1 = 63.403 > AIC model2 = 46.003), which revealed that child trauma could affect emotion, and then physiology. The specific directions of relationships among emotions, the EEG, and HRV in adulthood after childhood trauma was discussed.
Jin, Min Jin; Kim, Ji Sun; Kim, Sungkean; Hyun, Myoung Ho; Lee, Seung-Hwan
2018-01-01
Childhood trauma is known to be related to emotional problems, quantitative electroencephalography (EEG) indices, and heart rate variability (HRV) indices in adulthood, whereas directions among these factors have not been reported yet. This study aimed to evaluate pathway models in young and healthy adults: (1) one with physiological factors first and emotional problems later in adulthood as results of childhood trauma and (2) one with emotional problems first and physiological factors later. A total of 103 non-clinical volunteers were included. Self-reported psychological scales, including the Childhood Trauma Questionnaire (CTQ), State–Trait Anxiety Inventory, Beck Depression Inventory, and Affective Lability Scale were administered. For physiological evaluation, EEG record was performed during resting eyes closed condition in addition to the resting-state HRV, and the quantitative power analyses of eight EEG bands and three HRV components were calculated in the frequency domain. After a normality test, Pearson’s correlation analysis to make path models and path analyses to examine them were conducted. The CTQ score was significantly correlated with depression, state and trait anxiety, affective lability, and HRV low-frequency (LF) power. LF power was associated with beta2 (18–22 Hz) power that was related to affective lability. Affective lability was associated with state anxiety, trait anxiety, and depression. Based on the correlation and the hypothesis, two models were composed: a model with pathways from CTQ score to affective lability, and a model with pathways from CTQ score to LF power. The second model showed significantly better fit than the first model (AICmodel1 = 63.403 > AICmodel2 = 46.003), which revealed that child trauma could affect emotion, and then physiology. The specific directions of relationships among emotions, the EEG, and HRV in adulthood after childhood trauma was discussed. PMID:29403401
ERIC Educational Resources Information Center
Machado, Calixto; Estévez, Mario; Leisman, Gerry; Melillo, Robert; Rodríguez, Rafael; DeFina, Phillip; Hernández, Adrián; Pérez-Nellar, Jesús; Naranjo, Rolando; Chinchilla, Mauricio; Garófalo, Nicolás; Vargas, José; Beltrán, Carlos
2015-01-01
We studied autistics by quantitative EEG spectral and coherence analysis during three experimental conditions: basal, watching a cartoon with audio (V-A), and with muted audio band (VwA). Significant reductions were found for the absolute power spectral density (PSD) in the central region for delta and theta, and in the posterior region for sigma…
NASA Astrophysics Data System (ADS)
Yi, Guo-Sheng; Wang, Jiang; Deng, Bin; Wei, Xi-Le; Han, Chun-Xiao
2013-02-01
To investigate whether and how manual acupuncture (MA) modulates brain activities, we design an experiment where acupuncture at acupoint ST36 of the right leg is used to obtain electroencephalograph (EEG) signals in healthy subjects. We adopt the autoregressive (AR) Burg method to estimate the power spectrum of EEG signals and analyze the relative powers in delta (0 Hz-4 Hz), theta (4 Hz-8 Hz), alpha (8 Hz-13 Hz), and beta (13 Hz-30 Hz) bands. Our results show that MA at ST36 can significantly increase the EEG slow wave relative power (delta band) and reduce the fast wave relative powers (alpha and beta bands), while there are no statistical differences in theta band relative power between different acupuncture states. In order to quantify the ratio of slow to fast wave EEG activity, we compute the power ratio index. It is found that the MA can significantly increase the power ratio index, especially in frontal and central lobes. All the results highlight the modulation of brain activities with MA and may provide potential help for the clinical use of acupuncture. The proposed quantitative method of acupuncture signals may be further used to make MA more standardized.
Lu, Yueli; Jiang, Dineng; Jia, Xiaofeng; Qiu, Yihong; Zhu, Yisheng; Thakor, Nitish; Tong, Shanbao
2008-01-01
Clinical trials have proven the efficacy of therapeutic hypothermia in improving the functional outcome after cardiac arrest (CA) compared with the normothermic controls. Experimental researches also demonstrated quantitative electroencephalogram (qEEG) analysis was associated with the long-term outcome of the therapeutic hypothermia in brain injury. Nevertheless, qEEG has not been able to provide a prediction earlier than 6h after the return of spontaneous circulation (ROSC). In this study, we use C0 complexity to analyze the nonlinear characteristic of EEG, which could predict the neurological recovery under therapeutic hypothermia during the early phase after asphyxial cardiac arrest in rats. Twelve Wistar rats were randomly assigned to 9-min asphyxia injury under hypothermia (33 degrees C, n=6) or normothermia (37 degrees C, n=6). Significantly greater C0 complexity was found in hypothermic group than that in normothermic group as early as 4h after the ROSC (P0.05). C0 complexity at 4h correlated well with the 72h neurodeficit score (NDS) (Pearson's correlation = 0.882). The results showed that the C0 complexity could be an early predictor of the long-term neurological recovery from cardiac arrest.
Radicevic, Zoran; Jelicic Dobrijevic, Ljiljana; Sovilj, Mirjana; Barlov, Ivana
2009-06-01
Aim of the research was to examine similarities and differences between the periods of experiencing visually stimulated directed speech-language information and periods of undirected attention. The examined group comprised N = 64 children, aged 4-5, with different speech-language disorders (developmental dysphasia, hyperactive syndrome with attention disorder, children with borderline intellectual abilities, autistic complex). Theta EEG was registered in children in the period of watching and describing the picture ("task"), and in the period of undirected attention ("passive period"). The children were recorded in standard EEG conditions, at 19 points of EEG registration and in longitudinal bipolar montage. Results in the observed age-operative theta rhythm indicated significant similarities and differences in the prevalence of spatial engagement of certain regions between the two hemispheres at the input and output of processing, which opens the possibility for more detailed analysis of conscious control of speech-language processing and its disorders.
Analysis of wavelet-filtered tonic-clonic electroencephalogram recordings.
Rosso, O A; Figliola, A; Creso, J; Serrano, E
2004-07-01
EEG signals obtained during tonic-clonic epileptic seizures can be severely contaminated by muscle and physiological noise. Heavily contaminated EEG signals are hard to analyse quantitatively and also are usually rejected for visual inspection by physicians, resulting in a considerable loss of collected information. The aim of this work was to develop a computer-based method of time series analysis for such EEGs. A method is presented for filtering those frequencies associated with muscle activity using a wavelet transform. One of the advantages of this method over traditional filtering is that wavelet filtering of some frequency bands does not modify the pattern of the remaining ones. In consequence, the dynamics associated with them do not change. After generation of a 'noise free' signal by removal of the muscle artifacts using wavelets, a dynamic analysis was performed using non-linear dynamics metric tools. The characteristic parameters evaluated (correlation dimension D2 and largest Lyapunov exponent lambda1) were compatible with those obtained in previous works. The average values obtained were: D2=4.25 and lambda1=3.27 for the pre-ictal stage; D2=4.03 and lambda1=2.68 for the tonic seizure stage; D2=4.11 and lambda1=2.46 for the clonic seizure stage.
Classification of EEG Signals Based on Pattern Recognition Approach.
Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed
2017-01-01
Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90-7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11-89.63% and 91.60-81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy.
Classification of EEG Signals Based on Pattern Recognition Approach
Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed
2017-01-01
Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a “pattern recognition” approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90–7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11–89.63% and 91.60–81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy. PMID:29209190
Schmidt, Stefan; Naranjo, José Raúl; Brenneisen, Christina; Gundlach, Julian; Schultz, Claudia; Kaube, Holger; Hinterberger, Thilo; Jeanmonod, Daniel
2012-01-01
Objectives Several recent studies report the presence of a specific EEG pattern named Thalamocortical Dysrhythmia (TCD) in patients with severe chronic neurogenic pain. This is of major interest since so far no neuroscientific indicator of chronic pain could be identified. We investigated whether a TCD-like pattern could be found in patients with moderate chronic back pain, and we compared patients with neuropathic and non-neuropathic pain components. We furthermore assessed the presence of psychopathology and the degree of psychological functioning and examined whether the strength of the TCD-related EEG markers is correlated with psychological symptoms and pain ratings. Design Controlled clinical trial with age and sex matched healthy controls. Methods Spontaneous EEG was recorded in 37 back pain patients and 37 healthy controls. Results We were not able to observe a statistically significant TCD effect in the EEG data of the whole patient group, but a subsample of patients with evidence for root damage showed a trend in this direction. Pain patients showed markedly increased psychopathology. In addition, patients' ratings of pain intensity within the last 1 to 12 months showed strong correlations with EEG power, while psychopathology was correlated to the peak frequency. Conclusion Out of several possible interpretations the most likely conclusion is that only patients with severe pain as well as root lesions with consecutive thalamic deafferentation develop the typical TCD pattern. Our primary method of defining ‘neuropathic pain’ could not reliably determine if such a deafferentation was present. Nevertheless the analysis of a specific subsample as well as correlations between pain ratings, psychopathology and EEG power and peak frequency give some support to the TCD concept. Trial Registration ClinicalTrials.gov NCT00744575 PMID:22431961
Multivariate and multiorgan analysis of cardiorespiratory variability signals: the CAP sleep case.
Bianchi, Anna M; Ferini-Strambi, Luigi; Castronovo, Vincenza; Cerutti, Sergio
2006-10-01
Signals from different systems are analyzed during sleep on a beat-to-beat basis to provide a quantitative measure of synchronization with the heart rate variability (HRV) signal, oscillations of which reflect the action of the autonomic nervous system. Beat-to-beat variability signals synchronized to QRS occurrence on ECG signals were extracted from respiration, electroencephalogram (EEG) and electromyogram (EMG) traces. The analysis was restricted to sleep stage 2. Cyclic alternating pattern (CAP) periods were detected from EEG signals and the following conditions were identified: stage 2 non-CAP (2 NCAP), stage 2 CAP (2 CAP) and stage 2 CAP with myoclonus (2 CAP MC). The coupling relationships between pairs of variability signals were studied in both the time and frequency domains. Passing from 2 NCAP to 2 CAP, sympathetic activation is indicated by tachycardia and reduced respiratory arrhythmia in the heart rate signal. At the same time, we observed a marked link between EEG and HRV at the CAP frequency. During 2 CAP MC, the increased synchronization involved myoclonus and respiration. The underlying mechanism seems to be related to a global control system at the central level that involves the different systems.
Correlates of a single cortical action potential in the epidural EEG
Teleńczuk, Bartosz; Baker, Stuart N; Kempter, Richard; Curio, Gabriel
2015-01-01
To identify the correlates of a single cortical action potential in surface EEG, we recorded simultaneously epidural EEG and single-unit activity in the primary somatosensory cortex of awake macaque monkeys. By averaging over EEG segments coincident with more than hundred thousand single spikes, we found short-lived (≈ 0.5 ms) triphasic EEG deflections dominated by high-frequency components > 800 Hz. The peak-to-peak amplitude of the grand-averaged spike correlate was 80 nV, which matched theoretical predictions, while single-neuron amplitudes ranged from 12 to 966 nV. Combining these estimates with post-stimulus-time histograms of single-unit responses to median-nerve stimulation allowed us to predict the shape of the evoked epidural EEG response and to estimate the number of contributing neurons. These findings establish spiking activity of cortical neurons as a primary building block of high-frequency epidural EEG, which thus can serve as a quantitative macroscopic marker of neuronal spikes. PMID:25554430
Electroencephalography in Normotensive and Hypertensive Pregnancies and Subsequent Quality of Life.
Brussé, Ingrid A; Duvekot, Johannes J; Meester, Ivette; Jansen, Gerard; Rizopoulos, Dimitris; Steegers, Eric A P; Visser, Gerhard H
2016-01-01
To compare electroencephalography (EEG) findings during pregnancy and postpartum in women with normotensive pregnancies and pregnancies complicated by hypertensive disorders. Also the health related quality of life postpartum was related to these EEG findings. An observational case-control study in a university hospital in the Netherlands. Twenty-nine normotensive and 58 hypertensive pregnant women were included. EEG's were recorded on several occasions during pregnancy and 6-8 weeks postpartum. Postpartum, the women filled out health related quality of life questionnaires. Main outcome measures were qualitative and quantitative assessments on EEG, multidimensional fatigue inventory, Short Form (36) Health Survey and EuroQoL visual analogue scale. In women with severe preeclampsia significantly lower alpha peak frequency, more delta and theta activity bilaterally and a higher EEG Sum Score were seen. Postpartum, these women showed impaired mental health, mental fatigue and social functioning, which could not be related to the EEG findings. Severe preeclamptic patients show more EEG abnormalities and have impaired mental wellbeing postpartum, but these findings are not correlated.
Haghighi, Mohammad; Ludyga, Sebastian; Rahimi, Boshra; Jahangard, Leila; Ahmadpanah, Mohammad; Torabian, Saadat; Esnaashari, Farzaneh; Nazaribadie, Marzieh; Bajoghli, Hafez; Sadeghi Bahmani, Dena; Holsboer-Trachsler, Edith; Brand, Serge
2017-05-01
Patients suffering from major depressive disorders (MDD) report anhedonia, low concentration and lack of goal-oriented behavior. Data from imaging and quantitative EEG (QEEG) studies show an asymmetry in the prefrontal cortex (PFC), with lower left as compared to right PFC-activity, associated with specific depression-related behavior. Cordance is a QEEG measurement, which combines absolute and relative power of EEG-spectra with strong correlations with regional perfusion. The aim of the present study was to investigate to what extent a four weeks lasting treatment with a standard SSRI had an influence on neuronal activation and MDD-related symptoms. Twenty patients suffering from severe MDD were treated with citalopram (40mg) for four consecutive weeks. At baseline and at the end of the treatment, patients underwent QEEG. Experts rated the degree of depression with the Hamilton Depression Rating Scale (HDRS). Over time, theta cordance increased over right ventromedial and left dorsolateral PFC, whereas alpha cordance decreased over dorsolateral PFC. Improvement in MDD-related symptoms was higher in patients showing decreased EEG theta cordance over right dorsal PFC and increased EEG alpha cordance over left dorsolateral PFC. In patients suffering from MDD, treatment response was associated with favorable changes in neuronal activity. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Petrovic, Jelena; Milosevic, Vuk; Zivkovic, Miroslava; Stojanov, Dragan; Milojkovic, Olga; Kalauzi, Aleksandar; Saponjic, Jasna
2017-01-01
We investigated EEG rhythms, particularly alpha activity, and their relationship to post-stroke neuropathology and cognitive functions in the subacute and chronic stages of minor strokes. We included 10 patients with right middle cerebral artery (MCA) ischemic strokes and 11 healthy controls. All the assessments of stroke patients were done both in the subacute and chronic stages. Neurological impairment was measured using the National Institute of Health Stroke Scale (NIHSS), whereas cognitive functions were assessed using the Montreal Cognitive Assessment (MoCA) and MoCA memory index (MoCA-MIS). The EEG was recorded using a 19 channel EEG system with standard EEG electrode placement. In particular, we analyzed the EEGs derived from the four lateral frontal (F3, F7, F4, F8), and corresponding lateral posterior (P3, P4, T5, T6) electrodes. Quantitative EEG analysis included: the group FFT spectra, the weighted average of alpha frequency (αAVG), the group probability density distributions of all conventional EEG frequency band relative amplitudes (EEG microstructure), the inter- and intra-hemispheric coherences, and the topographic distribution of alpha carrier frequency phase potentials (PPs). Statistical analysis was done using a Kruskal-Wallis ANOVA with a post-hoc Mann-Whitney U two-tailed test, and Spearman's correlation. We demonstrated transient cognitive impairment alongside a slower alpha frequency ( α AVG) in the subacute right MCA stroke patients vs. the controls. This slower alpha frequency showed no amplitude change, but was highly synchronized intra-hemispherically, overlying the ipsi-lesional hemisphere, and inter-hemispherically, overlying the frontal cortex. In addition, the disturbances in EEG alpha activity in subacute stroke patients were expressed as a decrease in alpha PPs over the frontal cortex and an altered "alpha flow", indicating the sustained augmentation of inter-hemispheric interactions. Although the stroke induced slower alpha was a transient phenomenon, the increased alpha intra-hemispheric synchronization, overlying the ipsi-lesional hemisphere, the increased alpha F3-F4 inter-hemispheric synchronization, the delayed alpha waves, and the newly established inter-hemispheric "alpha flow" within the frontal cortex, remained as a permanent consequence of the minor stroke. This newly established frontal inter-hemispheric "alpha flow" represented a permanent consequence of the "hidden" stroke neuropathology, despite the fact that cognitive impairment has been returned to the control values. All the detected permanent changes at the EEG level with no cognitive impairment after a minor stroke could be a way for the brain to compensate for the lesion and restore the lost function. Our study indicates slower EEG alpha generation, synchronization and "flow" as potential biomarkers of cognitive impairment onset and/or compensatory post-stroke re-organizational processes.
Comparison of Brain Activity during Drawing and Clay Sculpting: A Preliminary qEEG Study
ERIC Educational Resources Information Center
Kruk, Kerry A.; Aravich, Paul F.; Deaver, Sarah P.; deBeus, Roger
2014-01-01
A preliminary experimental study examined brain wave frequency patterns of female participants (N = 14) engaged in two different art making conditions: clay sculpting and drawing. After controlling for nonspecific effects of movement, quantitative electroencephalographic (qEEG) recordings were made of the bilateral medial frontal cortex and…
Quantitative EEG reflects non-dopaminergic disease severity in Parkinson's disease.
Geraedts, Victor J; Marinus, Johan; Gouw, Alida A; Mosch, Arne; Stam, Cornelis J; van Hilten, Jacobus J; Contarino, Maria Fiorella; Tannemaat, Martijn R
2018-05-29
In Parkinson's Disease (PD), measures of non-dopaminergic systems involvement may reflect disease severity and therefore contribute to patient-selection for Deep Brain Stimulation (DBS). There is currently no determinant for non-dopaminergic disease severity. In this exploratory study, we investigated whether quantitative EEG reflects non-dopaminergic disease severity in PD. Sixty-three consecutive PD patients screened for DBS were included (mean age 62.4 ± 7.2 years, 32% females). Relative spectral powers and the Phase-Lag-Index (PLI) reflecting functional connectivity were analysed on routine EEGs. Non-dopaminergic disease severity was quantified using the SENS-PD score and its subdomains; motor-severity was quantified using the MDS-UPDRS III. The SENS-PD composite score correlated with a spectral ratio ((δ + θ)/(α1 + α2 + β) powers) (global spectral ratio Pearson's r = 0.4, 95% Confidence Interval (95%CI) 0.1-0.6), and PLI in the α2 band (10-13 Hz) (r = -0.3, 95%CI -0.5 to -0.1). These correlations seem driven by the subdomains cognition and psychotic symptoms. MDS-UPDRS III was not significantly correlated with EEG parameters. EEG slowing and reduced functional connectivity in the α2 band were associated with non-dopaminergic disease severity in PD. The described EEG parameters may have complementary utility as determinants of non-dopaminergic involvement in PD. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Singh, Jatinderpal; Sharma, Barjesh Chander; Maharshi, Sudhir; Puri, Vinod; Srivastava, Siddharth
2016-06-01
Minimal hepatic encephalopathy (MHE) represents the mildest form of hepatic encephalopathy. Spectral electroencephalogram (sEEG) analysis improves the recognition of MHE by decreasing inter-operator variability and providing quantitative parameters of brain dysfunction. We compared sEEG in patients with cirrhosis with and without MHE and the effects of lactulose on sEEG in patients with MHE. One hundred patients with cirrhosis (50 with and 50 without MHE) were enrolled. Diagnosis of MHE was based on psychometric hepatic encephalopathy score (PHES) of ≤ -5. Critical flicker frequency, model of end-stage liver disease score, and sEEG were performed at baseline in all patients. The spectral variables considered were the mean dominant frequency (MDF) and relative power in beta, alpha, theta, and delta bands. Patients with MHE were given 3 months of lactulose, and all parameters were repeated. Spectral electroencephalogram analysis showed lower MDF (7.8 ± 1.7 vs 8.7 ± 1.3 Hz, P < 0.05) and higher theta relative power (34.29 ± 4.8 vs 24 ± 6.7%, P = 001) while lower alpha relative power (28.6 ± 4.0 vs 33.5 ± 5.3%, P = .001) in patients with MHE than in patients without MHE. With theta relative power, sensitivity 96%, specificity 84%, and accuracy of 90% were obtained for diagnosis of MHE. After lactulose treatment, MHE improved in 21 patients, and significant changes were seen in MDF (7.8 ± 0.5 vs 8.5 ± 0.6), theta (34.2 ± 4.8 vs 23.3 ± 4.1%), alpha (28.6 ± 4.0 vs 35.5 ± 4.5%), and delta relative power (13.7 ± 3.5 vs 17.0 ± 3.3%) after treatment (P ≤ 0.05). Spectral EEG is a useful objective and quantitative tool for diagnosis and to assess the response to treatment in patients with cirrhosis with MHE. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Fleischmann, Robert; Tränkner, Steffi; Bathe-Peters, Rouven; Rönnefarth, Maria; Schmidt, Sein; Schreiber, Stephan J; Brandt, Stephan A
2018-03-01
The lack of objective disease markers is a major cause of misdiagnosis and nonstandardized approaches in delirium. Recent studies conducted in well-selected patients and confined study environments suggest that quantitative electroencephalography (qEEG) can provide such markers. We hypothesize that qEEG helps remedy diagnostic uncertainty not only in well-defined study cohorts but also in a heterogeneous hospital population. In this retrospective case-control study, EEG power spectra of delirious patients and age-/gender-matched controls (n = 31 and n = 345, respectively) were fitted in a linear model to test their performance as binary classifiers. We subsequently evaluated the diagnostic performance of the best classifiers in control samples with normal EEGs (n = 534) and real-world samples including pathologic findings (n = 4294). Test reliability was estimated through split-half analyses. We found that the combination of spectral power at F3-P4 at 2 Hz (area under the curve [AUC] = .994) and C3-O1 at 19 Hz (AUC = .993) provided a sensitivity of 100% and a specificity of 99% to identify delirious patients among normal controls. These classifiers also yielded a false positive rate as low as 5% and increased the pretest probability of being delirious by 57% in an unselected real-world sample. Split-half reliabilities were .98 and .99, respectively. This retrospective study yielded preliminary evidence that qEEG provides excellent diagnostic performance to identify delirious patients even outside confined study environments. It furthermore revealed reduced beta power as a novel specific finding in delirium and that a normal EEG excludes delirium. Prospective studies including parameters of pretest probability and delirium severity are required to elaborate on these promising findings.
Chiarenza, Giuseppe A; Villa, Stefania; Galan, Lidice; Valdes-Sosa, Pedro; Bosch-Bayard, Jorge
2018-05-19
Oppositional defiant disorder (ODD) is frequently associated with Attention Deficit Hyperactivity Disorder (ADHD) but no clear neurophysiological evidence exists that distinguishes the two groups. Our aim was to identify biomarkers that distinguish children with Attention Deficit Hyperactivity Disorder combined subtype (ADHD_C) from children with ADHD_C + ODD, by combining the results of quantitative EEG (qEEG) and the Junior Temperament Character Inventory (JTCI). 28 ADHD_C and 22 ADHD_C + ODD children who met the DSMV criteria participated in the study. JTCI and EEG were analyzed. Stability based Biomarkers identification methodology was applied to the JTCI and the qEEG separately and combined. The qEEG was tested at the scalp and the sources levels. The classification power of the selected biomarkers was tested with a robust ROC technique. The best discriminant power was obtained when TCI and qEEG were analyzed together. Novelty seeking, self-directedness and cooperativeness were selected as biomarkers together with F4 and Cz in Delta; Fz and F4 in Theta and F7 and F8 in Beta, with a robust AUC of 0.95 for the ROC. At sources level: the regions were the right lateral and medial orbito-frontal cortex, cingular region, angular gyrus, right inferior occipital gyrus, occipital pole and the left insula in Theta, Alpha and Beta. The robust estimate of the total AUC was 0.91. These structures are part of extensive networks of novelty seeking, self-directedness and cooperativeness systems that seem dysregulated in these children. These methods represent an original approach to associate differences of personality and behavior to specific neuronal systems and subsystems. Copyright © 2018 Elsevier B.V. All rights reserved.
EEG Correlates of Fluctuation in Cognitive Performance in an Air Traffic Control Task
2014-11-01
using non-parametric statistical analysis to identify neurophysiological patterns due to the time-on-task effect. Significant changes in EEG power...EEG, Cognitive Performance, Power Spectral Analysis , Non-Parametric Analysis Document is available to the public through the Internet...3 Performance Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 EEG
Combined process automation for large-scale EEG analysis.
Sfondouris, John L; Quebedeaux, Tabitha M; Holdgraf, Chris; Musto, Alberto E
2012-01-01
Epileptogenesis is a dynamic process producing increased seizure susceptibility. Electroencephalography (EEG) data provides information critical in understanding the evolution of epileptiform changes throughout epileptic foci. We designed an algorithm to facilitate efficient large-scale EEG analysis via linked automation of multiple data processing steps. Using EEG recordings obtained from electrical stimulation studies, the following steps of EEG analysis were automated: (1) alignment and isolation of pre- and post-stimulation intervals, (2) generation of user-defined band frequency waveforms, (3) spike-sorting, (4) quantification of spike and burst data and (5) power spectral density analysis. This algorithm allows for quicker, more efficient EEG analysis. Copyright © 2011 Elsevier Ltd. All rights reserved.
2012-01-01
Background Catching an object is a complex movement that involves not only programming but also effective motor coordination. Such behavior is related to the activation and recruitment of cortical regions that participates in the sensorimotor integration process. This study aimed to elucidate the cortical mechanisms involved in anticipatory actions when performing a task of catching an object in free fall. Methods Quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 20 healthy right-handed participants performed the catching ball task. We used the EEG coherence analysis to investigate subdivisions of alpha (8-12 Hz) and beta (12-30 Hz) bands, which are related to cognitive processing and sensory-motor integration. Results Notwithstanding, we found the main effects for the factor block; for alpha-1, coherence decreased from the first to sixth block, and the opposite effect occurred for alpha-2 and beta-2, with coherence increasing along the blocks. Conclusion It was concluded that to perform successfully our task, which involved anticipatory processes (i.e. feedback mechanisms), subjects exhibited a great involvement of sensory-motor and associative areas, possibly due to organization of information to process visuospatial parameters and further catch the falling object. PMID:22364485
Correlation of Visuospatial Ability and EEG Slowing in Patients with Parkinson's Disease
Meyer, Antonia; Chaturvedi, Menorca; Hatz, Florian; Gschwandtner, Ute
2017-01-01
Background. Visuospatial dysfunction is among the first cognitive symptoms in Parkinson's disease (PD) and is often predictive for PD-dementia. Furthermore, cognitive status in PD-patients correlates with quantitative EEG. This cross-sectional study aimed to investigate the correlation between EEG slowing and visuospatial ability in nondemented PD-patients. Methods. Fifty-seven nondemented PD-patients (17 females/40 males) were evaluated with a comprehensive neuropsychological test battery and a high-resolution 256-channel EEG was recorded. A median split was performed for each cognitive test dividing the patients sample into either a normal or lower performance group. The electrodes were split into five areas: frontal, central, temporal, parietal, and occipital. A linear mixed effects model (LME) was used for correlational analyses and to control for confounding factors. Results. Subsequently, for the lower performance, LME analysis showed a significant positive correlation between ROCF score and parietal alpha/theta ratio (b = .59, p = .012) and occipital alpha/theta ratio (b = 0.50, p = .030). No correlations were found in the group of patients with normal visuospatial abilities. Conclusion. We conclude that a reduction of the parietal alpha/theta ratio is related to visuospatial impairments in PD-patients. These findings indicate that visuospatial impairment in PD-patients could be influenced by parietal dysfunction. PMID:28348918
Javidi, Soroush; Mandic, Danilo P.; Took, Clive Cheong; Cichocki, Andrzej
2011-01-01
A new class of complex domain blind source extraction algorithms suitable for the extraction of both circular and non-circular complex signals is proposed. This is achieved through sequential extraction based on the degree of kurtosis and in the presence of non-circular measurement noise. The existence and uniqueness analysis of the solution is followed by a study of fast converging variants of the algorithm. The performance is first assessed through simulations on well understood benchmark signals, followed by a case study on real-time artifact removal from EEG signals, verified using both qualitative and quantitative metrics. The results illustrate the power of the proposed approach in real-time blind extraction of general complex-valued sources. PMID:22319461
Sejling, Anne-Sophie; Kjær, Troels W; Pedersen-Bjergaard, Ulrik; Diemar, Sarah S; Frandsen, Christian S S; Hilsted, Linda; Faber, Jens; Holst, Jens J; Tarnow, Lise; Nielsen, Martin N; Remvig, Line S; Thorsteinsson, Birger; Juhl, Claus B
2015-05-01
Hypoglycemia is associated with increased activity in the low-frequency bands in the electroencephalogram (EEG). We investigated whether hypoglycemia awareness and unawareness are associated with different hypoglycemia-associated EEG changes in patients with type 1 diabetes. Twenty-four patients participated in the study: 10 with normal hypoglycemia awareness and 14 with hypoglycemia unawareness. The patients were studied at normoglycemia (5-6 mmol/L) and hypoglycemia (2.0-2.5 mmol/L), and during recovery (5-6 mmol/L) by hyperinsulinemic glucose clamp. During each 1-h period, EEG, cognitive function, and hypoglycemia symptom scores were recorded, and the counterregulatory hormonal response was measured. Quantitative EEG analysis showed that the absolute amplitude of the θ band and α-θ band up to doubled during hypoglycemia with no difference between the two groups. In the recovery period, the θ amplitude remained increased. Cognitive function declined equally during hypoglycemia in both groups and during recovery reaction time was still prolonged in a subset of tests. The aware group reported higher hypoglycemia symptom scores and had higher epinephrine and cortisol responses compared with the unaware group. In patients with type 1 diabetes, EEG changes and cognitive performance during hypoglycemia are not affected by awareness status during a single insulin-induced episode with hypoglycemia. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
A Simulation Study on a Single-Unit Wireless EEG Sensor
Luan, Bo; Sun, Mingui
2015-01-01
Traditional EEG systems are limited when utilized in point-of-care applications due to its immobility and tedious preparation procedures. We are designing a novel device named single-unit wireless EEG sensor to solve these problems. The sensor has a size similar to a U.S. penny. Four electrodes are installed within a 20mm diameter cylinder. It can be applied to scalp in seconds to amplify, digitize and wirelessly transmit EEG. Before the design and construction of an actual sensor, in this paper, we perform a set of simulations to quantitatively study: 1) can the sensor acquire EEG reliably? 2) will the selection of sensor orientation be an important factor to influence signal strength? Our results demonstrate positive answers to these questions. Moreover, the signal sensor acquired appears to be comparable to the signal from the standard 10-20 system. These results warrant the further design and construction of a single-unit wireless EEG sensor. PMID:26207084
Pilot study of EEG in neonates born to mothers with gestational diabetes mellitus.
Léveillé-, Pauline; Hamel, Mathieu; Ardilouze, Jean-Luc; Pasquier, Jean-Charles; Deacon, Charles; Whittingstall, Kevin; Plourde, Mélanie
2018-05-01
The goal was to evaluate whether there was neurodevelopmental deficits in newborns born to mothers with gestational diabetes mellitus (GDM) compared to control newborns born to healthy mothers. Forty-six pregnant women (21 controls and 25 GDM) were recruited. Electroencephalogram (EEG) was recorded in the newborns within 48 h after birth. The EEG signal was quantitatively analyzed using power spectral density (PSD); coherence between hemispheres was calculated in paired channels of frontal, temporal, central and occipital regions. The left centro-occipital PSD in control newborns was 12% higher than in GDM newborns (p = 0.036) but was not significant after adjustment for gestational age. While coherence was higher in the frontal regions compared to the occipital regions (p < 0.001), there was no difference between the groups for the fronto-temporal, frontal-central, centro-occipital and tempo-occipital regions. Our results support that EEG differences between groups were mainly modified by gestational age and less by GDM status of the mothers. However, there is a need to confirm this result with a higher number of mother-newborns. Quantitative EEG in GDM newborns within 48 h after birth is feasible. This study emphasizes the importance of controlling blood glucose during GDM to protect infant brain development. Copyright © 2018 ISDN. Published by Elsevier Ltd. All rights reserved.
Recording EEG in immature rats with a novel miniature telemetry system
Zayachkivsky, A.; Lehmkuhle, M. J.; Fisher, J. H.; Ekstrand, J. J.
2013-01-01
Serial EEG recordings from immature rat pups are extremely difficult to obtain but important for analyzing animal models of neonatal seizures and other pediatric neurological conditions as well as normal physiology. In this report, we describe the features and applications of a novel miniature telemetry system designed to record EEG in rat pups as young as postnatal day 6 (P6). First, we have recorded electrographic seizure activity in two animal models of neonatal seizures, hypoxia- and kainate-induced seizures at P7. Second, we describe a viable approach for long-term continuous EEG monitoring of naturally reared rat pups implanted with EEG at P6. Third, we have used serial EEG recordings to record age-dependent changes in the background EEG signal as the animals matured from P7 to P11. The important advantages of using miniature wireless EEG technology are: 1) minimally invasive surgical implantation; 2) a device form-factor that is compatible with housing of rat pups with the dam and littermates; 3) serial recordings of EEG activity; and 4) low power consumption of the unit, theoretically allowing continuous monitoring for up to 2 yr without surgical reimplantation. The miniature EEG telemetry system provides a technical advance that allows researchers to record continuous and serial EEG recordings in neonatal rodent models of human neurological disorders, study the progression of the disease, and then assess possible therapies using quantitative EEG as an outcome measure. This new technical approach should improve animal models of human conditions that rely on EEG monitoring for diagnosis and therapy. PMID:23114207
Quantitative analysis of sleep EEG microstructure in the time-frequency domain.
De Carli, Fabrizio; Nobili, Lino; Beelke, Manolo; Watanabe, Tsuyoshi; Smerieri, Arianna; Parrino, Liborio; Terzano, Mario Giovanni; Ferrillo, Franco
2004-06-30
A number of phasic events influence sleep quality and sleep macrostructure. The detection of arousals and the analysis of cyclic alternating patterns (CAP) support the evaluation of sleep fragmentation and instability. Sixteen polygraphic overnight recordings were visually inspected for conventional Rechtscaffen and Kales scoring, while arousals were detected following the criteria of the American Sleep Disorders Association (ASDA). Three electroencephalograph (EEG) segments were associated to each event, corresponding to background activity, pre-arousal period and arousal. The study was supplemented by the analysis of time-frequency distribution of EEG within each subtype of phase A in the CAP. The arousals were characterized by the increase of alpha and beta power with regard to background. Within NREM sleep most of the arousals were preceded by a transient increase of delta power. The time-frequency evolution of the phase A of the CAP sequence showed a strong prevalence of delta activity during the whole A1, but high amplitude delta waves were found also in the first 2/3 s of A2 and A3, followed by desynchronization. Our results underline the strict relationship between the ASDA arousals, and the subtype A2 and A3 within the CAP: in both the association between a short sequence of transient slow waves and the successive increase of frequency and decrease of amplitude characterizes the arousal response.
Saletu, B; Grünberger, J; Linzmayer, L
1977-10-01
Utilizing computerized quantitative analysis of the human scalp recorded electroencephalogram (EEG), it is possible to classify psychotropic drugs. While neuroleptic compounds produce an increase of slow and decrease of fast activities, anxiolytic substances induce an augmentation of fast waves, decrease of alpha waves and--according to the sedative properties of the drug--an increase or decrease of slow waves. Antidepressants produce a concomitant augmentation of slow and fast activities as well as an attenuation of alpha waves. Nootropic substances attenuate slow activities, augment alpha and slow beta waves and decrease fast beta waves. The latter alterations are quite opposite to age-related changes. Since the main psychopharmacological classes seem to have characteristic pharmaco-EEG profiles, the method proved to be useful for determination of psychoactivity and cerebral bioavailability of newly developed substances as for instance AX-A411-BS, a new benzodiazepine. The latter substance was found to be CNS-active and was classified as anxiolytic. It induced dosedependent changes, which were barely visible in the 2nd hour post-drug, became quite obvious in the 4th hour and increased until the 8th hour after oral administration of one single dose. In the higher dosage range, slow activities came to the fore, indicating aoditional sedative properties. Psychometric tests measuring attention, psychomotor activity. mood, vigilance, extroversion, concentration aith a long-lasting effect. The implications of these methods are discussed.
Grova, Christophe; Aiguabella, Maria; Zelmann, Rina; Lina, Jean-Marc; Hall, Jeffery A; Kobayashi, Eliane
2016-05-01
Detection of epileptic spikes in MagnetoEncephaloGraphy (MEG) requires synchronized neuronal activity over a minimum of 4cm2. We previously validated the Maximum Entropy on the Mean (MEM) as a source localization able to recover the spatial extent of the epileptic spike generators. The purpose of this study was to evaluate quantitatively, using intracranial EEG (iEEG), the spatial extent recovered from MEG sources by estimating iEEG potentials generated by these MEG sources. We evaluated five patients with focal epilepsy who had a pre-operative MEG acquisition and iEEG with MRI-compatible electrodes. Individual MEG epileptic spikes were localized along the cortical surface segmented from a pre-operative MRI, which was co-registered with the MRI obtained with iEEG electrodes in place for identification of iEEG contacts. An iEEG forward model estimated the influence of every dipolar source of the cortical surface on each iEEG contact. This iEEG forward model was applied to MEG sources to estimate iEEG potentials that would have been generated by these sources. MEG-estimated iEEG potentials were compared with measured iEEG potentials using four source localization methods: two variants of MEM and two standard methods equivalent to minimum norm and LORETA estimates. Our results demonstrated an excellent MEG/iEEG correspondence in the presumed focus for four out of five patients. In one patient, the deep generator identified in iEEG could not be localized in MEG. MEG-estimated iEEG potentials is a promising method to evaluate which MEG sources could be retrieved and validated with iEEG data, providing accurate results especially when applied to MEM localizations. Hum Brain Mapp 37:1661-1683, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Simultaneous trimodal PET-MR-EEG imaging: Do EEG caps generate artefacts in PET images?
Rajkumar, Ravichandran; Rota Kops, Elena; Mauler, Jörg; Tellmann, Lutz; Lerche, Christoph; Herzog, Hans; Shah, N Jon; Neuner, Irene
2017-01-01
Trimodal simultaneous acquisition of positron emission tomography (PET), magnetic resonance imaging (MRI), and electroencephalography (EEG) has become feasible due to the development of hybrid PET-MR scanners. To capture the temporal dynamics of neuronal activation on a millisecond-by-millisecond basis, an EEG system is appended to the quantitative high resolution PET-MR imaging modality already established in our institute. One of the major difficulties associated with the development of simultaneous trimodal acquisition is that the components traditionally used in each modality can cause interferences in its counterpart. The mutual interferences of MRI components and PET components on PET and MR images, and the influence of EEG electrodes on functional MRI images have been studied and reported on. Building on this, this study aims to investigate the influence of the EEG cap on the quality and quantification of PET images acquired during simultaneous PET-MR measurements. A preliminary transmission scan study on the ECAT HR+ scanner, using an Iida phantom, showed visible attenuation effect due to the EEG cap. The BrainPET-MR emission images of the Iida phantom with [18F]Fluordeoxyglucose, as well as of human subjects with the EEG cap, did not show significant effects of the EEG cap, even though the applied attenuation correction did not take into account the attenuation of the EEG cap itself.
2009-04-18
intake and sophisticated signal processing of electroencephalographic (EEG), electrooculographic ( EOG ), electrocardiographic (ECG), and...electroencephalographic (EEG), electrooculographic ( EOG ), electrocardiographic (ECG), and electromyographic (EMG) physiological signals . It also has markedly...ambulatory physiological acquisition and quantitative signal processing; (2) Brain Amp MR Plus 32 and BrainVision Recorder Professional Software Package for
The state of everyday quantitative EEG use in Canada: A national technologist survey.
Ng, Marcus C; Gillis, Kara
2017-07-01
This study sought to determine the state of quantitative EEG (QEEG) use in Canada, as QEEG may provide a partial solution to the issue of escalating EEG demand against insufficient health care resources. A 10-item survey questionnaire was administered to participants at the annual meeting of the Canadian Association of Electroneurophysiology Technologists, which was held in parallel with the annual meeting of the Canadian Neurological Sciences Federation. At least 70% of the Canadian population has QEEG access through academic medical institutions with applicability to adults and children. QEEG was clinically used 50% in real-time and 50% retrospectively in the critical care and epilepsy monitoring units for long-term monitoring and automated seizure detection. QEEG trend use, montage use, and duration were variable. To cope with insufficient health care resources, QEEG is in surprisingly frequent clinical use across Canada. There is no consensus on optimal QEEG trends and montages. The relative ubiquity of QEEG affords an excellent opportunity for research as increasing EEG demand outpaces dwindling health care resources into the foreseeable future. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
EEG changes as heat stress reactions in rats irradiated by high intensity 35 GHz millimeter waves.
Xie, Taorong; Pei, Jian; Cui, Yibin; Zhang, Jie; Qi, Hongxing; Chen, Shude; Qiao, Dengjiang
2011-06-01
As the application of millimeter waves for civilian and military use increases, the possibility of overexposure to millimeter waves will also increase. This paper attempts to evaluate stress reactions evoked by 35 GHz millimeter waves. The stress reactions in Sprague-Dawley (SD) rats were quantitatively studied by analyzing electroencephalogram (EEG) changes induced by overexposure to 35 GHz millimeter waves. The relative changes in average energy of the EEG and its wavelet decompositions were used for extracting the stress reaction indicators. Incident average power densities (IAPDs) of 35 GHz millimeter waves from 0.5 W cm(-2) to 7.5 W cm(-2) were employed to investigate the relation between irradiation dose and the stress reactions in the rats. Different stress reaction periods evoked by irradiation were quantitatively evaluated by EEG results. The results illustrate that stress reactions are more intense during the first part of the irradiation than during the later part. The skin temperature increase produced by millimeter wave irradiation is the principle reason for stress reactions and skin injuries. As expected, at the higher levels of irradiation, the reaction time decreases and the reaction intensity increases.
On Quantitative Biomarkers of VNS Therapy Using EEG and ECG Signals.
Ravan, Maryam; Sabesan, Shivkumar; D'Cruz, O'Neill
2017-02-01
The goal of this work is to objectively evaluate the effectiveness of neuromodulation therapies, specifically, Vagus nerve stimulation (VNS) in reducing the severity of seizures in patients with medically refractory epilepsy. Using novel quantitative features obtained from combination of electroencephalographic (EEG) and electrocardiographic (ECG) signals around seizure events in 16 patients who underwent implantation of closed-loop VNS therapy system, namely AspireSR, we evaluated if automated delivery of VNS at the time of seizure onset reduces the severity of seizures by reducing EEG spatial synchronization as well as the duration and magnitude of heart rate increase. Unsupervised classification was subsequently applied to test the discriminative ability and validity of these features to measure responsiveness to VNS therapy. Results of application of this methodology to compare 105 pre-VNS treatment and 107 post-VNS treatment seizures revealed that seizures that were acutely stimulated using VNS had a reduced ictal spread as well as reduced impact on cardiovascular function compared to the ones that occurred prior to any treatment. Furthermore, application of an unsupervised fuzzy-c-mean classifier to evaluate the ability of the combined EEG-ECG based features to classify pre and post-treatment seizures achieved a classification accuracy of 85.85%. These results indicate the importance of timely delivery of VNS to reduce seizure severity and thus help achieve better seizure control for patients with epilepsy. The proposed set of quantitative features could be used as potential biomarkers for predicting long-term response to VNS therapy.
Resting-state qEEG predicts rate of second language learning in adults.
Prat, Chantel S; Yamasaki, Brianna L; Kluender, Reina A; Stocco, Andrea
2016-01-01
Understanding the neurobiological basis of individual differences in second language acquisition (SLA) is important for research on bilingualism, learning, and neural plasticity. The current study used quantitative electroencephalography (qEEG) to predict SLA in college-aged individuals. Baseline, eyes-closed resting-state qEEG was used to predict language learning rate during eight weeks of French exposure using an immersive, virtual scenario software. Individual qEEG indices predicted up to 60% of the variability in SLA, whereas behavioral indices of fluid intelligence, executive functioning, and working-memory capacity were not correlated with learning rate. Specifically, power in beta and low-gamma frequency ranges over right temporoparietal regions were strongly positively correlated with SLA. These results highlight the utility of resting-state EEG for studying the neurobiological basis of SLA in a relatively construct-free, paradigm-independent manner. Published by Elsevier Inc.
Study on bayes discriminant analysis of EEG data.
Shi, Yuan; He, DanDan; Qin, Fang
2014-01-01
In this paper, we have done Bayes Discriminant analysis to EEG data of experiment objects which are recorded impersonally come up with a relatively accurate method used in feature extraction and classification decisions. In accordance with the strength of α wave, the head electrodes are divided into four species. In use of part of 21 electrodes EEG data of 63 people, we have done Bayes Discriminant analysis to EEG data of six objects. Results In use of part of EEG data of 63 people, we have done Bayes Discriminant analysis, the electrode classification accuracy rates is 64.4%. Bayes Discriminant has higher prediction accuracy, EEG features (mainly αwave) extract more accurate. Bayes Discriminant would be better applied to the feature extraction and classification decisions of EEG data.
Functional connectivity analysis in EEG source space: The choice of method
Knyazeva, Maria G.
2017-01-01
Functional connectivity (FC) is among the most informative features derived from EEG. However, the most straightforward sensor-space analysis of FC is unreliable owing to volume conductance effects. An alternative—source-space analysis of FC—is optimal for high- and mid-density EEG (hdEEG, mdEEG); however, it is questionable for widely used low-density EEG (ldEEG) because of inadequate surface sampling. Here, using simulations, we investigate the performance of the two source FC methods, the inverse-based source FC (ISFC) and the cortical partial coherence (CPC). To examine the effects of localization errors of the inverse method on the FC estimation, we simulated an oscillatory source with varying locations and SNRs. To compare the FC estimations by the two methods, we simulated two synchronized sources with varying between-source distance and SNR. The simulations were implemented for hdEEG, mdEEG, and ldEEG. We showed that the performance of both methods deteriorates for deep sources owing to their inaccurate localization and smoothing. The accuracy of both methods improves with the increasing between-source distance. The best ISFC performance was achieved using hd/mdEEG, while the best CPC performance was observed with ldEEG. In conclusion, with hdEEG, ISFC outperforms CPC and therefore should be the preferred method. In the studies based on ldEEG, the CPC is a method of choice. PMID:28727750
Onojima, Takayuki; Kitajo, Keiichi; Mizuhara, Hiroaki
2017-01-01
Neural oscillation is attracting attention as an underlying mechanism for speech recognition. Speech intelligibility is enhanced by the synchronization of speech rhythms and slow neural oscillation, which is typically observed as human scalp electroencephalography (EEG). In addition to the effect of neural oscillation, it has been proposed that speech recognition is enhanced by the identification of a speaker's motor signals, which are used for speech production. To verify the relationship between the effect of neural oscillation and motor cortical activity, we measured scalp EEG, and simultaneous EEG and functional magnetic resonance imaging (fMRI) during a speech recognition task in which participants were required to recognize spoken words embedded in noise sound. We proposed an index to quantitatively evaluate the EEG phase effect on behavioral performance. The results showed that the delta and theta EEG phase before speech inputs modulated the participant's response time when conducting speech recognition tasks. The simultaneous EEG-fMRI experiment showed that slow EEG activity was correlated with motor cortical activity. These results suggested that the effect of the slow oscillatory phase was associated with the activity of the motor cortex during speech recognition.
Saletu, Bernd; Anderer, Peter; Saletu-Zyhlarz, Gerda M
2006-04-01
By multi-lead computer-assisted quantitative analyses of human scalp-recorded electroencephalogram (QEEG) in combination with certain statistical procedures (quantitative pharmaco-EEG) and mapping techniques (pharmaco-EEG mapping or topography), it is possible to classify psychotropic substances and objectively evaluate their bioavailability at the target organ, the human brain. Specifically, one may determine at an early stage of drug development whether a drug is effective on the central nervous system (CNS) compared with placebo, what its clinical efficacy will be like, at which dosage it acts, when it acts and the equipotent dosages of different galenic formulations. Pharmaco-EEG maps of neuroleptics, antidepressants, tranquilizers, hypnotics, psychostimulants and nootropics/cognition-enhancing drugs will be described. Methodological problems, as well as the relationships between acute and chronic drug effects, alterations in normal subjects and patients, CNS effects and therapeutic efficacy will be discussed. Imaging of drug effects on the regional brain electrical activity of healthy subjects by means of EEG tomography such as low-resolution electromagnetic tomography (LORETA) has been used for identifying brain areas predominantly involved in psychopharmacological action. This will be shown for the representative drugs of the four main psychopharmacological classes, such as 3 mg haloperidol for neuroleptics, 20 mg citalopram for antidepressants, 2 mg lorazepam for tranquilizers and 20 mg methylphenidate for psychostimulants. LORETA demonstrates that these psychopharmacological classes affect brain structures differently. By considering these differences between psychotropic drugs and placebo in normal subjects, as well as between mental disorder patients and normal controls, it may be possible to choose the optimum drug for a specific patient according to a key-lock principle, since the drug should normalize the deviant brain function. Thus, pharmaco-EEG topography and tomography are valuable methods in human neuropsychopharmacology, clinical psychiatry and neurology.
Tamura, Shinichi; Okada, Yasunori; Morimoto, Shigeru; Ohta, Mitsuaki; Uchida, Naoyuki
2010-01-01
In order to obtain information regarding the correlation between an electroencephalogram (EEG) and the state of a dolphin, we developed a noninvasive recording method of EEG of a bottlenose dolphin (Tursiops truncatus) and an extraction method of true-EEG (EEG) from recorded-EEG (R-EEG) based on a human EEG recording method, and then carried out frequency analysis during transportation by truck. The frequency detected in the EEG of dolphin during apparent awakening was divided conveniently into three bands (5–15, 15–25, and 25–40 Hz) based on spectrum profiles. Analyses of the relationship between power ratio and movement of the dolphin revealed that the power ratio of dolphin in a situation when it was being quiet was evenly distributed among the three bands. These results suggested that the EEG of a dolphin could be detected accurately by this method, and that the frequency analysis of the detected EEG seemed to provide useful information for understanding the central nerve activity of these animals. PMID:20429047
Fisher, Simon P; Schwartz, Michael D; Wurts-Black, Sarah; Thomas, Alexia M; Chen, Tsui-Ming; Miller, Michael A; Palmerston, Jeremiah B; Kilduff, Thomas S; Morairty, Stephen R
2016-02-01
Patients with Huntington's disease (HD) show a high prevalence of sleep disorders that typically occur prior to the onset of motoric symptoms and neurodegeneration. Our understanding of the pathophysiological alterations in premanifest HD is limited, hindering the ability to measure disease modification in response to treatment. We used a full-length knock-in HD model to determine early changes in the electroencephalogram (EEG) and sleep that may predict the onset and progression of the disease. A 10-month longitudinal study was designed to determine the effect of the HD mutation on the EEG and sleep/wake changes in heterozygous (HET) and homozygous (HOM) zQ175 mice and wild-type (WT) littermates from 8 to 48 w of age. Mice were instrumented with tethered headmounts to record EEG/electromyography signals. Telemeters were implanted to continuously measure locomotor activity (LMA) and body temperature (Tb). Sleep deprivation (SDep) was performed at 8, 12, 16, 24, 32, and 48 w of age. The HD mutation disrupted the EEG field potential from 8-12 w in an age- and mutant huntington dose-dependent manner, prior to changes in sleep/wake states, LMA, and Tb. Prominent effects of the HD mutation on the EEG included a progressive reduction in low frequency power, a slowing of rapid eye movement peak theta frequency, and the emergence of state-dependent beta/gamma oscillations. There was no effect of genotype on the relative increase in nonrapid eye movement delta power or sleep time in response to SDep. The expression of the Huntington's disease (HD) mutation results in complex EEG alterations that occur prior to deficits in behavioral measures and are one of the earliest phenotypes uncovered in this mouse model. Despite these EEG changes, homeostatic responses to sleep loss were preserved in HET and HOM zQ175 mice. Greater insight into the localization and response of these EEG alterations to novel therapies may enable early intervention and improve outcomes for patients with HD. © 2016 Associated Professional Sleep Societies, LLC.
Markovska-Simoska, Silvana; Pop-Jordanova, Nada
2017-01-01
In recent decades, resting state electroencephalographic (EEG) measures have been widely used to document underlying neurophysiological dysfunction in attention deficit hyperactivity disorder (ADHD). Although most EEG studies focus on children, there is a growing interest in adults with ADHD too. The aim of this study was to objectively assess and compare the absolute and relative EEG power as well as the theta/beta ratio in children and adults with ADHD. The evaluated sample comprised 30 male children and 30 male adults with ADHD diagnosed according to DSM-IV criteria. They were compared with 30 boys and 30 male adults matched by age. The mean age (±SD) of the children's group was 9 (±2.44) years and the adult group 35.8 (±8.65) years. EEG was recorded during an eyes-open condition. Spectral analysis of absolute (μV 2 ) and relative power (%) was carried out for 4 frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-21 Hz). The findings obtained for ADHD children are increased absolute power of slow waves (theta and delta), whereas adults exhibited no differences compared with normal subjects. For the relative power spectra there were no differences between the ADHD and control groups. Across groups, the children showed greater relative power than the adults in the delta and theta bands, but for the higher frequency bands (alpha and beta) the adults showed more relative power than children. Only ADHD children showed greater theta/beta ratio compared to the normal group. Classification analysis showed that ADHD children could be differentiated from the control group by the absolute theta values and theta/beta ratio at Cz, but this was not the case with ADHD adults. The question that should be further explored is if these differences are mainly due to maturation processes or if there is a core difference in cortical arousal between ADHD children and adults. © EEG and Clinical Neuroscience Society (ECNS) 2016.
Filtration of human EEG recordings from physiological artifacts with empirical mode method
NASA Astrophysics Data System (ADS)
Grubov, Vadim V.; Runnova, Anastasiya E.; Khramova, Marina V.
2017-03-01
In the paper we propose the new method for dealing with noise and physiological artifacts in experimental human EEG recordings. The method is based on analysis of EEG signals with empirical mode decomposition (Hilbert-Huang transform). We consider noises and physiological artifacts on EEG as specific oscillatory patterns that cause problems during EEG analysis and can be detected with additional signals recorded simultaneously with EEG (ECG, EMG, EOG, etc.) We introduce the algorithm of the method with following steps: empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing empirical modes with artifacts, reconstruction of the initial EEG signal. We test the method on filtration of experimental human EEG signals from eye-moving artifacts and show high efficiency of the method.
Going local: insights from EEG and stereo-EEG studies of the human sleep-wake cycle.
Ferrara, Michele; De Gennaro, Luigi
2011-01-01
In the present paper, we reviewed a large body of evidence, mainly from quantitative EEG studies of our laboratory, supporting the notion that sleep is a local and use-dependent process. Quantitative analyses of sleep EEG recorded from multiple cortical derivations clearly indicate that every sleep phenomenon, from sleep onset to the awakening, is strictly local in nature. Sleep onset first occurs in frontal areas, and a frontal predominance of low-frequency power persists in the first part of the night, when the homeostatic processes mainly occur, and then it vanishes. Upon awakening, we showed an asynchronous EEG activation of different cortical areas, the more anterior ones being the first to wake up. During extended periods of wakefulness, the increase of sleepiness-related low-EEG frequencies is again evident over the frontal derivations. Similarly, experimental manipulations of sleep length by total sleep deprivation, partial sleep curtailment or even selective slow-wave sleep deprivation lead to a slow-wave activity rebound localized especially on the anterior derivations. Thus, frontal areas are crucially involved in sleep homeostasis. According to the local use-dependent theory, this would derive from a higher sleep need of the frontal cortex, which in turn is due to its higher levels of activity during wakefulness. The fact that different brain regions can simultaneously exhibit different sleep intensities indicates that sleep is not a spatially global and uniform state, as hypothesized in the theory. We have also reviewed recent evidence of localized effects of learning and plasticity on EEG sleep measures. These studies provide crucial support to a key concept in the theory, the one claiming that local sleep characteristics should be use-dependent. Finally, we have reported data corroborating the notion that sleep is not necessarily present simultaneously in the entire brain. Our stereo-EEG recordings clearly indicate that sleep and wakefulness can co-exist in different areas, suggesting that vigilance states are not necessarily temporally discrete states. We conclude that understanding local variations in sleep propensity and depth, especially as a result of brain plasticity, may provide in the near future insightful hints into the fundamental functions of sleep.
Analysis of the Auditory Feedback and Phonation in Normal Voices.
Arbeiter, Mareike; Petermann, Simon; Hoppe, Ulrich; Bohr, Christopher; Doellinger, Michael; Ziethe, Anke
2018-02-01
The aim of this study was to investigate the auditory feedback mechanisms and voice quality during phonation in response to a spontaneous pitch change in the auditory feedback. Does the pitch shift reflex (PSR) change voice pitch and voice quality? Quantitative and qualitative voice characteristics were analyzed during the PSR. Twenty-eight healthy subjects underwent transnasal high-speed video endoscopy (HSV) at 8000 fps during sustained phonation [a]. While phonating, the subjects heard their sound pitched up for 700 cents (interval of a fifth), lasting 300 milliseconds in their auditory feedback. The electroencephalography (EEG), acoustic voice signal, electroglottography (EGG), and high-speed-videoendoscopy (HSV) were analyzed to compare feedback mechanisms for the pitched and unpitched condition of the phonation paradigm statistically. Furthermore, quantitative and qualitative voice characteristics were analyzed. The PSR was successfully detected within all signals of the experimental tools (EEG, EGG, acoustic voice signal, HSV). A significant increase of the perturbation measures and an increase of the values of the acoustic parameters during the PSR were observed, especially for the audio signal. The auditory feedback mechanism seems not only to control for voice pitch but also for voice quality aspects.
George, S Thomas; Balakrishnan, R; Johnson, J Stanly; Jayakumar, J
2017-07-01
EEG records the spontaneous electrical activity of the brain using multiple electrodes placed on the scalp, and it provides a wealth of information related to the functions of brain. Nevertheless, the signals from the electrodes cannot be directly applied to a diagnostic tool like brain mapping as they undergo a "mixing" process because of the volume conduction effect in the scalp. A pervasive problem in neuroscience is determining which regions of the brain are active, given voltage measurements at the scalp. Because of which, there has been a surge of interest among the biosignal processing community to investigate the process of mixing and unmixing to identify the underlying active sources. According to the assumptions of independent component analysis (ICA) algorithms, the resultant mixture obtained from the scalp can be closely approximated by a linear combination of the "actual" EEG signals emanating from the underlying sources of electrical activity in the brain. As a consequence, using these well-known ICA techniques in preprocessing of the EEG signals prior to clinical applications could result in development of diagnostic tool like quantitative EEG which in turn can assist the neurologists to gain noninvasive access to patient-specific cortical activity, which helps in treating neuropathologies like seizure disorders. The popular and proven ICA schemes mentioned in various literature and applications were selected (which includes Infomax, JADE, and SOBI) and applied on generalized seizure disorder samples using EEGLAB toolbox in MATLAB environment to see their usefulness in source separations; and they were validated by the expert neurologist for clinical relevance in terms of pathologies on brain functionalities. The performance of Infomax method was found to be superior when compared with other ICA schemes applied on EEG and it has been established based on the validations carried by expert neurologist for generalized seizure and its clinical correlation. The results are encouraging for furthering the studies in the direction of developing useful brain mapping tools using ICA methods.
Central Pain Mechanisms and Novel Therapeutic Strategies in a Model of Closed Head Injury
2015-10-01
chronic migraine 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT...headache Post-traumatic migraine Chronic migraine Traumatic brain injury Quantitative EEG (QEEG) Analgesia Endocannabinoid Cannabinoid receptors...underlying post-traumatic headache. In addition, the use of non-invasive EEG combined with light stimuli in patients with post-traumatic migraine is novel
Quantitative modeling of multiscale neural activity
NASA Astrophysics Data System (ADS)
Robinson, Peter A.; Rennie, Christopher J.
2007-01-01
The electrical activity of the brain has been observed for over a century and is widely used to probe brain function and disorders, chiefly through the electroencephalogram (EEG) recorded by electrodes on the scalp. However, the connections between physiology and EEGs have been chiefly qualitative until recently, and most uses of the EEG have been based on phenomenological correlations. A quantitative mean-field model of brain electrical activity is described that spans the range of physiological and anatomical scales from microscopic synapses to the whole brain. Its parameters measure quantities such as synaptic strengths, signal delays, cellular time constants, and neural ranges, and are all constrained by independent physiological measurements. Application of standard techniques from wave physics allows successful predictions to be made of a wide range of EEG phenomena, including time series and spectra, evoked responses to stimuli, dependence on arousal state, seizure dynamics, and relationships to functional magnetic resonance imaging (fMRI). Fitting to experimental data also enables physiological parameters to be infered, giving a new noninvasive window into brain function, especially when referenced to a standardized database of subjects. Modifications of the core model to treat mm-scale patchy interconnections in the visual cortex are also described, and it is shown that resulting waves obey the Schroedinger equation. This opens the possibility of classical cortical analogs of quantum phenomena.
Analysis of bioelectric records and fabrication of phototype sleep analysis equipment
NASA Technical Reports Server (NTRS)
Kellaway, P.
1972-01-01
A computer-analysis technique was used to evaluate the changes in the waking EEGs of 5 normal subjects which occurred during the oral administration of flurazepam hydrochloride (Dalmane). While the subjects were receiving the drug, there was an increase in the amount of beta (14-38 c/sec) activity in fronto-central EEG leads in all 5 subjects. This increase in beta activity was characterized by a highly consistent increase in the number of waves that occurred during an EEG recording interval of fixed duration and by a less consistent increase in average wave amplitude. There was no detectable change in mean EEG wavelength (frequency) within the beta frequency range. The EEG patterns reverted to their baseline condition during 2-3 weeks after withdrawal of the drug. Analysis of the alpha, theta and delta components of the EEG indicated no changes during or following administration of the drug. This study clearly illustrates the usefulness of specific computer-analysis techniques in the characterization and quantification of sleep-promoting drugs upon the EEG of the normal young adults in the waking state. Two preamplifiers and 150 EEG monitoring caps with electrodes were delivered to MSC.
Quantitative methods in electroencephalography to access therapeutic response.
Diniz, Roseane Costa; Fontenele, Andrea Martins Melo; Carmo, Luiza Helena Araújo do; Ribeiro, Aurea Celeste da Costa; Sales, Fábio Henrique Silva; Monteiro, Sally Cristina Moutinho; Sousa, Ana Karoline Ferreira de Castro
2016-07-01
Pharmacometrics or Quantitative Pharmacology aims to quantitatively analyze the interaction between drugs and patients whose tripod: pharmacokinetics, pharmacodynamics and disease monitoring to identify variability in drug response. Being the subject of central interest in the training of pharmacists, this work was out with a view to promoting this idea on methods to access the therapeutic response of drugs with central action. This paper discusses quantitative methods (Fast Fourier Transform, Magnitude Square Coherence, Conditional Entropy, Generalised Linear semi-canonical Correlation Analysis, Statistical Parametric Network and Mutual Information Function) used to evaluate the EEG signals obtained after administration regimen of drugs, the main findings and their clinical relevance, pointing it as a contribution to construction of different pharmaceutical practice. Peter Anderer et. al in 2000 showed the effect of 20mg of buspirone in 20 healthy subjects after 1, 2, 4, 6 and 8h after oral ingestion of the drug. The areas of increased power of the theta frequency occurred mainly in the temporo-occipital - parietal region. It has been shown by Sampaio et al., 2007 that the use of bromazepam, which allows the release of GABA (gamma amino butyric acid), an inhibitory neurotransmitter of the central nervous system could theoretically promote dissociation of cortical functional areas, a decrease of functional connectivity, a decrease of cognitive functions by means of smaller coherence (electrophysiological magnitude measured from the EEG by software) values. Ahmad Khodayari-Rostamabad et al. in 2015 talk that such a measure could be a useful clinical tool potentially to assess adverse effects of opioids and hence give rise to treatment guidelines. There was the relation between changes in pain intensity and brain sources (at maximum activity locations) during remifentanil infusion despite its potent analgesic effect. The statement of mathematical and computational aspects in the use of clinical data is frequent and elucidation of these aspects we use PhysioNet https://www.physionet.org/, Clinical Database online supported by the National Institutes of Health (National Institutes of Health of United States of America/NIH-USA) for the acquisition of EEG data and the Matlab program to do the simulations with the methods and thus create opportunities greater understanding. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Nishida, K; Yoshimura, M; Isotani, T; Yoshida, T; Kitaura, Y; Saito, A; Mii, H; Kato, M; Takekita, Y; Suwa, A; Morita, S; Kinoshita, T
2011-09-01
To determine the electrophysiological characteristics of frontotemporal dementia (FTD) and the distinction with Alzheimer's disease (AD). We performed analyses of global field power (GFP) which is a measure of whole brain electric field strength, and EEG neuroimaging analyses with sLORETA (standardized low resolution electromagnetic tomography), in the mild stages of FTD (n = 19; mean age = 68.11 ± 7.77) and AD (n = 19; mean age = 69.42 ± 9.57) patients, and normal control (NC) subjects (n = 22; mean age = 66.13 ± 6.02). In the GFP analysis, significant group effects were observed in the delta (1.5-6.0 Hz), alpha1 (8.5-10.0 Hz), and beta1 (12.5-18.0 Hz) bands. In sLORETA analysis, differences in activity were observed in the alpha1 band (NC > FTD) in the orbital frontal and temporal lobe, in the delta band (AD>NC) in widespread areas including the frontal lobe, and in the beta1 band (FTD > AD) in the parietal lobe and sensorimotor area. Differential patterns of brain regions and EEG frequency bands were observed between the FTD and AD groups in terms of pathological activity. FTD and AD patients in the early stages displayed different patterns in the cortical localization of oscillatory activity across different frequency bands. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Cichy, Radoslaw Martin; Pantazis, Dimitrios
2017-09-01
Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research. Copyright © 2017 Elsevier Inc. All rights reserved.
Chowdhury, Rasheda Arman; Zerouali, Younes; Hedrich, Tanguy; Heers, Marcel; Kobayashi, Eliane; Lina, Jean-Marc; Grova, Christophe
2015-11-01
The purpose of this study is to develop and quantitatively assess whether fusion of EEG and MEG (MEEG) data within the maximum entropy on the mean (MEM) framework increases the spatial accuracy of source localization, by yielding better recovery of the spatial extent and propagation pathway of the underlying generators of inter-ictal epileptic discharges (IEDs). The key element in this study is the integration of the complementary information from EEG and MEG data within the MEM framework. MEEG was compared with EEG and MEG when localizing single transient IEDs. The fusion approach was evaluated using realistic simulation models involving one or two spatially extended sources mimicking propagation patterns of IEDs. We also assessed the impact of the number of EEG electrodes required for an efficient EEG-MEG fusion. MEM was compared with minimum norm estimate, dynamic statistical parametric mapping, and standardized low-resolution electromagnetic tomography. The fusion approach was finally assessed on real epileptic data recorded from two patients showing IEDs simultaneously in EEG and MEG. Overall the localization of MEEG data using MEM provided better recovery of the source spatial extent, more sensitivity to the source depth and more accurate detection of the onset and propagation of IEDs than EEG or MEG alone. MEM was more accurate than the other methods. MEEG proved more robust than EEG and MEG for single IED localization in low signal-to-noise ratio conditions. We also showed that only few EEG electrodes are required to bring additional relevant information to MEG during MEM fusion.
Bashiri, Azadeh; Shahmoradi, Leila; Beigy, Hamid; Savareh, Behrouz A; Nosratabadi, Masood; N Kalhori, Sharareh R; Ghazisaeedi, Marjan
2018-06-01
Quantitative EEG gives valuable information in the clinical evaluation of psychological disorders. The purpose of the present study is to identify the most prominent features of quantitative electroencephalography (QEEG) that affect attention and response control parameters in children with attention deficit hyperactivity disorder. The QEEG features and the Integrated Visual and Auditory-Continuous Performance Test ( IVA-CPT) of 95 attention deficit hyperactivity disorder subjects were preprocessed by Independent Evaluation Criterion for Binary Classification. Then, the importance of selected features in the classification of desired outputs was evaluated using the artificial neural network. Findings uncovered the highest rank of QEEG features in each IVA-CPT parameters related to attention and response control. Using the designed model could help therapists to determine the existence or absence of defects in attention and response control relying on QEEG.
Incorporating an ERP Project into Undergraduate Instruction
Nyhus, Erika; Curtis, Nancy
2016-01-01
Electroencephalogram (EEG) is a relatively non-invasive, simple technique, and recent advances in open source analysis tools make it feasible to implement EEG as a component in undergraduate neuroscience curriculum. We have successfully led students to design novel experiments, record EEG data, and analyze event-related potentials (ERPs) during a one-semester laboratory course for undergraduates in cognitive neuroscience. First, students learned how to set up an EEG recording and completed an analysis tutorial. Students then learned how to set up a novel EEG experiment; briefly, they formed groups of four and designed an EEG experiment on a topic of their choice. Over the course of two weeks students collected behavioral and EEG data. Each group then analyzed their behavioral and ERP data and presented their results both as a presentation and as a final paper. Upon completion of the group project students reported a deeper understanding of cognitive neuroscience methods and a greater appreciation for the strengths and weaknesses of the EEG technique. Although recent advances in open source software made this project possible, it also required access to EEG recording equipment and proprietary software. Future efforts should be directed at making publicly available datasets to learn ERP analysis techniques and making publicly available EEG recording and analysis software to increase the accessibility of hands-on research experience in undergraduate cognitive neuroscience laboratory courses. PMID:27385925
Integrating EEG and fMRI in epilepsy.
Formaggio, Emanuela; Storti, Silvia Francesca; Bertoldo, Alessandra; Manganotti, Paolo; Fiaschi, Antonio; Toffolo, Gianna Maria
2011-02-14
Integrating electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) studies enables to non-invasively investigate human brain function and to find the direct correlation of these two important measures of brain activity. Presurgical evaluation of patients with epilepsy is one of the areas where EEG and fMRI integration has considerable clinical relevance for localizing the brain regions generating interictal epileptiform activity. The conventional analysis of EEG-fMRI data is based on the visual identification of the interictal epileptiform discharges (IEDs) on scalp EEG. The convolution of these EEG events, represented as stick functions, with a model of the fMRI response, i.e. the hemodynamic response function, provides the regressor for general linear model (GLM) analysis of fMRI data. However, the conventional analysis is not automatic and suffers of some subjectivity in IEDs classification. Here, we present an easy-to-use and automatic approach for combined EEG-fMRI analysis able to improve IEDs identification based on Independent Component Analysis and wavelet analysis. EEG signal due to IED is reconstructed and its wavelet power is used as a regressor in GLM. The method was validated on simulated data and then applied on real data set consisting of 2 normal subjects and 5 patients with partial epilepsy. In all continuous EEG-fMRI recording sessions a good quality EEG was obtained allowing the detection of spontaneous IEDs and the analysis of the related BOLD activation. The main clinical finding in EEG-fMRI studies of patients with partial epilepsy is that focal interictal slow-wave activity was invariably associated with increased focal BOLD responses in a spatially related brain area. Our study extends current knowledge on epileptic foci localization and confirms previous reports suggesting that BOLD activation associated with slow activity might have a role in localizing the epileptogenic region even in the absence of clear interictal spikes. Copyright © 2010 Elsevier Inc. All rights reserved.
Adamaszek, Michael; Khaw, Alexander V.; Buck, Ulrike; Andresen, Burghard; Thomasius, Rainer
2010-01-01
Objective According to previous EEG reports of indicative disturbances in Alpha and Beta activities, a systematic search for distinct EEG abnormalities in a broader population of Ecstasy users may especially corroborate the presumed specific neurotoxicity of Ecstasy in humans. Methods 105 poly-drug consumers with former Ecstasy use and 41 persons with comparable drug history without Ecstasy use, and 11 drug naives were investigated for EEG features. Conventional EEG derivations of 19 electrodes according to the 10-20-system were conducted. Besides standard EEG bands, quantitative EEG analyses of 1-Hz-subdivided power ranges of Alpha, Theta and Beta bands have been considered. Results Ecstasy users with medium and high cumulative Ecstasy doses revealed an increase in Theta and lower Alpha activities, significant increases in Beta activities, and a reduction of background activity. Ecstasy users with low cumulative Ecstasy doses showed a significant Alpha activity at 11 Hz. Interestingly, the spectral power of low frequencies in medium and high Ecstasy users was already significantly increased in the early phase of EEG recording. Statistical analyses suggested the main effect of Ecstasy to EEG results. Conclusions Our data from a major sample of Ecstasy users support previous data revealing alterations of EEG frequency spectrum due rather to neurotoxic effects of Ecstasy on serotonergic systems in more detail. Accordingly, our data may be in line with the observation of attentional and memory impairments in Ecstasy users with moderate to high misuse. Despite the methodological problem of polydrug use also in our approach, our EEG results may be indicative of the neuropathophysiological background of the reported memory and attentional deficits in Ecstasy abusers. Overall, our findings may suggest the usefulness of EEG in diagnostic approaches in assessing neurotoxic sequela of this common drug abuse. PMID:21124854
Single Channel EEG Artifact Identification Using Two-Dimensional Multi-Resolution Analysis.
Taherisadr, Mojtaba; Dehzangi, Omid; Parsaei, Hossein
2017-12-13
As a diagnostic monitoring approach, electroencephalogram (EEG) signals can be decoded by signal processing methodologies for various health monitoring purposes. However, EEG recordings are contaminated by other interferences, particularly facial and ocular artifacts generated by the user. This is specifically an issue during continuous EEG recording sessions, and is therefore a key step in using EEG signals for either physiological monitoring and diagnosis or brain-computer interface to identify such artifacts from useful EEG components. In this study, we aim to design a new generic framework in order to process and characterize EEG recording as a multi-component and non-stationary signal with the aim of localizing and identifying its component (e.g., artifact). In the proposed method, we gather three complementary algorithms together to enhance the efficiency of the system. Algorithms include time-frequency (TF) analysis and representation, two-dimensional multi-resolution analysis (2D MRA), and feature extraction and classification. Then, a combination of spectro-temporal and geometric features are extracted by combining key instantaneous TF space descriptors, which enables the system to characterize the non-stationarities in the EEG dynamics. We fit a curvelet transform (as a MRA method) to 2D TF representation of EEG segments to decompose the given space to various levels of resolution. Such a decomposition efficiently improves the analysis of the TF spaces with different characteristics (e.g., resolution). Our experimental results demonstrate that the combination of expansion to TF space, analysis using MRA, and extracting a set of suitable features and applying a proper predictive model is effective in enhancing the EEG artifact identification performance. We also compare the performance of the designed system with another common EEG signal processing technique-namely, 1D wavelet transform. Our experimental results reveal that the proposed method outperforms 1D wavelet.
2012-01-01
Background We describe and characterize the performance of microEEG compared to that of a commercially available and widely used clinical EEG machine. microEEG is a portable, battery-operated, wireless EEG device, developed by Bio-Signal Group to overcome the obstacles to routine use of EEG in emergency departments (EDs). Methods The microEEG was used to obtain EEGs from healthy volunteers in the EEG laboratory and ED. The standard system was used to obtain EEGs from healthy volunteers in the EEG laboratory, and studies recorded from patients in the ED or ICU were also used for comparison. In one experiment, a signal splitter was used to record simultaneous microEEG and standard EEG from the same electrodes. Results EEG signal analysis techniques indicated good agreement between microEEG and the standard system in 66 EEGs recorded in the EEG laboratory and the ED. In the simultaneous recording the microEEG and standard system signals differed only in a smaller amount of 60 Hz noise in the microEEG signal. In a blinded review by a board-certified clinical neurophysiologist, differences in technical quality or interpretability were insignificant between standard recordings in the EEG laboratory and microEEG recordings from standard or electrode cap electrodes in the ED or EEG laboratory. The microEEG data recording characteristics such as analog-to-digital conversion resolution (16 bits), input impedance (>100MΩ), and common-mode rejection ratio (85 dB) are similar to those of commercially available systems, although the microEEG is many times smaller (88 g and 9.4 × 4.4 × 3.8 cm). Conclusions Our results suggest that the technical qualities of microEEG are non-inferior to a standard commercially available EEG recording device. EEG in the ED is an unmet medical need due to space and time constraints, high levels of ambient electrical noise, and the cost of 24/7 EEG technologist availability. This study suggests that using microEEG with an electrode cap that can be applied easily and quickly can surmount these obstacles without compromising technical quality. PMID:23006616
Saletu, B; Grünberger, J; Saletu, M; Mader, R; Volavka, J
1978-01-01
The efficacy of EMD 21657--a derivative of a pyritinolmetabolite--with regard to the improvement of the organic brain syndrome (OBS) of chronic alcoholics was investigated in a double-blind study utilizing clinical, psychometric and quantitative EEG evaluation. Nineteen patients received 3 x 300 mg EMD and 21 patients 3 x 1 dragee placebo for 6 weeks. The groups did not differ in regard to age, sex, weight, height, alcohol anamnesis or IQ. The hospitalized patients were examined before as well as at the end of the second, fourth and sixth week of drug treatment. While the overall evaluation by the psychiatrist and patients at the end of the period of treatment did not show marked intergroup differences, the clinical global impression scale and the OBS rating scale demonstrated that both groups showed a significant reduction in their OBS and that improvement with EMD 21657 therapy was significantly superior to the one with placebo. Psychometric analysis also exhibited a significant superiority of EMD in regard to the general, associative, numeric and total verbal memory, concentration and attention variability. Psychovisual memory and the quantative aspects of attention showed opposite findings. Flickerlight fusion frequency, reaction time and after-image did not change significantly. The psychomotor activity improved significantly more with EMD than placebo; this was especially pronounced in the left hand. Affect and mood improved also more with EMD than placebo. Side effects were observed more frequently under active treatment and were characterized by temporary headaches. Power spectral density analysis of the EEG revealed in both groups a decrease of delta, fast alpha and beta activities and an increase in theta and slow alpha activity, but changes during EMD treatment more frequently reached the level of statistical significance than with placebo. The most consistant finding was the theta augmentation under EMD treatment. It was concluded that EMD 21657 is a CNS-effective drug with pronounced nootropic and slight thymotropic properties.
Mannan, Malik M Naeem; Kim, Shinjung; Jeong, Myung Yung; Kamran, M Ahmad
2016-02-19
Contamination of eye movement and blink artifacts in Electroencephalogram (EEG) recording makes the analysis of EEG data more difficult and could result in mislead findings. Efficient removal of these artifacts from EEG data is an essential step in improving classification accuracy to develop the brain-computer interface (BCI). In this paper, we proposed an automatic framework based on independent component analysis (ICA) and system identification to identify and remove ocular artifacts from EEG data by using hybrid EEG and eye tracker system. The performance of the proposed algorithm is illustrated using experimental and standard EEG datasets. The proposed algorithm not only removes the ocular artifacts from artifactual zone but also preserves the neuronal activity related EEG signals in non-artifactual zone. The comparison with the two state-of-the-art techniques namely ADJUST based ICA and REGICA reveals the significant improved performance of the proposed algorithm for removing eye movement and blink artifacts from EEG data. Additionally, results demonstrate that the proposed algorithm can achieve lower relative error and higher mutual information values between corrected EEG and artifact-free EEG data.
Correlates of sleep quality in midlife and beyond: a machine learning analysis.
Kaplan, Katherine A; Hardas, Prajesh P; Redline, Susan; Zeitzer, Jamie M
2017-06-01
In older adults, traditional metrics derived from polysomnography (PSG) are not well correlated with subjective sleep quality. Little is known about whether the association between PSG and subjective sleep quality changes with age, or whether quantitative electroencephalography (qEEG) is associated with sleep quality. Therefore, we examined the relationship between subjective sleep quality and objective sleep characteristics (standard PSG and qEEG) across middle to older adulthood. Using cross-sectional analyses of 3173 community-dwelling men and women aged between 39 and 90 participating in the Sleep Heart Health Study, we examined the relationship between a morning rating of the prior night's sleep quality (sleep depth and restfulness) and polysomnographic, and qEEG descriptors of that single night of sleep, along with clinical and demographic measures. Multivariable models were constructed using two machine learning methods, namely lasso penalized regressions and random forests. Little variance was explained across models. Greater objective sleep efficiency, reduced wake after sleep onset, and fewer sleep-to-wake stage transitions were each associated with higher sleep quality; qEEG variables contributed little explanatory power. The oldest adults reported the highest sleep quality even as objective sleep deteriorated such that they would rate their sleep better, given the same level of sleep efficiency. Despite this, there were no major differences in the predictors of subjective sleep across the age span. Standard metrics derived from PSG, including qEEG, contribute little to explaining subjective sleep quality in middle-aged to older adults. The objective correlates of subjective sleep quality do not appear to systematically change with age despite a change in the relationship between subjective sleep quality and objective sleep efficiency. Published by Elsevier B.V.
Somers, Ben; Bertrand, Alexander
2016-12-01
Chronic, 24/7 EEG monitoring requires the use of highly miniaturized EEG modules, which only measure a few EEG channels over a small area. For improved spatial coverage, a wireless EEG sensor network (WESN) can be deployed, consisting of multiple EEG modules, which interact through short-distance wireless communication. In this paper, we aim to remove eye blink artifacts in each EEG channel of a WESN by optimally exploiting the correlation between EEG signals from different modules, under stringent communication bandwidth constraints. We apply a distributed canonical correlation analysis (CCA-)based algorithm, in which each module only transmits an optimal linear combination of its local EEG channels to the other modules. The method is validated on both synthetic and real EEG data sets, with emulated wireless transmissions. While strongly reducing the amount of data that is shared between nodes, we demonstrate that the algorithm achieves the same eye blink artifact removal performance as the equivalent centralized CCA algorithm, which is at least as good as other state-of-the-art multi-channel algorithms that require a transmission of all channels. Due to their potential for extreme miniaturization, WESNs are viewed as an enabling technology for chronic EEG monitoring. However, multi-channel analysis is hampered in WESNs due to the high energy cost for wireless communication. This paper shows that multi-channel eye blink artifact removal is possible with a significantly reduced wireless communication between EEG modules.
NASA Astrophysics Data System (ADS)
Somers, Ben; Bertrand, Alexander
2016-12-01
Objective. Chronic, 24/7 EEG monitoring requires the use of highly miniaturized EEG modules, which only measure a few EEG channels over a small area. For improved spatial coverage, a wireless EEG sensor network (WESN) can be deployed, consisting of multiple EEG modules, which interact through short-distance wireless communication. In this paper, we aim to remove eye blink artifacts in each EEG channel of a WESN by optimally exploiting the correlation between EEG signals from different modules, under stringent communication bandwidth constraints. Approach. We apply a distributed canonical correlation analysis (CCA-)based algorithm, in which each module only transmits an optimal linear combination of its local EEG channels to the other modules. The method is validated on both synthetic and real EEG data sets, with emulated wireless transmissions. Main results. While strongly reducing the amount of data that is shared between nodes, we demonstrate that the algorithm achieves the same eye blink artifact removal performance as the equivalent centralized CCA algorithm, which is at least as good as other state-of-the-art multi-channel algorithms that require a transmission of all channels. Significance. Due to their potential for extreme miniaturization, WESNs are viewed as an enabling technology for chronic EEG monitoring. However, multi-channel analysis is hampered in WESNs due to the high energy cost for wireless communication. This paper shows that multi-channel eye blink artifact removal is possible with a significantly reduced wireless communication between EEG modules.
EEG-Informed fMRI: A Review of Data Analysis Methods
Abreu, Rodolfo; Leal, Alberto; Figueiredo, Patrícia
2018-01-01
The simultaneous acquisition of electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD) fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest. PMID:29467634
[Time-organization of EEG patterns' structure in anxiety and phobic disorders].
Sviatogor, I A; Mokhovikova, I A
2005-01-01
Thirty-five patients, aged 19-48 years (mean age 38 years) with anxiety and phobic disorders were examined. According to ICD-10 criteria--social phobia (F40.1), panic disorder (F41.0), somatoform autonomic dysfunction (F45.3) were diagnosed. Using electroencephalography data, qualitative and quantitative characteristics of the time- and spatial-organization of brain EEG activity in anxiety and phobic disorders of different severity were established. It were determined 4 types of wave interactions between EEG components, which reflected a different extent of the regulatory mechanisms lesions: 2 structures with one core component (alpha or beta), a structure with two core components and a non-organized structure.
Kremer, Heidemarie; Lutz, Franz P C; McIntosh, Roger C; Dévieux, Jessy G; Ironson, Gail
2016-04-01
Resting EEGs of 40 people living with HIV (PLWH) on long-term antiretroviral treatment were examined for z-scored deviations from a healthy control (normative database) to examine the main and interaction effects of depression and gender. Regions of interest were frontal (alpha) and central (all bands) for interhemispheric asymmetries in quantitative EEGs and theta in the rostral anterior cingulate cortex (rACC) in low-resolution electromagnetic tomography (LORETA). Z-scored normed deviations of depressed PLWH, compared with nondepressed, showed right-dominant interhemispheric asymmetries in all regions. However, after adjusting for multiple testing, significance remained only central for theta, alpha, and beta. Reversed (left-dominant) frontal alpha asymmetry is a potential EEG marker of depression in the HIV negative population that was not reversed in depressive PLWH; however, corresponding with extant literature, gender had an effect on the size of frontal alpha asymmetry. The LORETA analysis revealed a trending interactional effect of depression and gender on theta activity in the rACC in Brodmann area 32. We found that compared to men, women had greater right-dominant frontal alpha-asymmetry and elevated theta activity in voxels of the rACC, which may indicate less likelihood of depression and a higher likelihood of response to antidepressants. In conclusion, subtle EEG deviations, such as right-dominant central theta, alpha, and beta asymmetries and theta activity in the rACC may mark HIV-related depressive symptoms and may predict the likelihood of response to antidepressants but gender effects need to be taken into account. Although this study introduced the use of LORETA to examine the neurophysiological correlates of negative affect in PLWH, further research is needed to assess the utility of this tool in diagnostics and treatment monitoring of depression in PLWH. © EEG and Clinical Neuroscience Society (ECNS) 2015.
EEG-guided meditation: A personalized approach.
Fingelkurts, Andrew A; Fingelkurts, Alexander A; Kallio-Tamminen, Tarja
2015-12-01
The therapeutic potential of meditation for physical and mental well-being is well documented, however the possibility of adverse effects warrants further discussion of the suitability of any particular meditation practice for every given participant. This concern highlights the need for a personalized approach in the meditation practice adjusted for a concrete individual. This can be done by using an objective screening procedure that detects the weak and strong cognitive skills in brain function, thus helping design a tailored meditation training protocol. Quantitative electroencephalogram (qEEG) is a suitable tool that allows identification of individual neurophysiological types. Using qEEG screening can aid developing a meditation training program that maximizes results and minimizes risk of potential negative effects. This brief theoretical-conceptual review provides a discussion of the problem and presents some illustrative results on the usage of qEEG screening for the guidance of mediation personalization. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spectral F-test power evaluation in the EEG during intermittent photic stimulation.
de Sá, Antonio Mauricio F L Miranda; Cagy, Mauricio; Lazarev, Vladimir V; Infantosi, Antonio Fernando C
2006-06-01
Intermittent photic stimulation (IPS) is an important functional test, which can induce the photic driving in the electroencephalogram (EEG). It is capable of enhancing latent oscillations manifestations not present in the resting EEG. However, for adequate quantitative evaluation of the photic driving, these changes should be assessed on a statistical basis. With this aim, the sampling distribution of spectral F test was investigated. On this basis, confidence limits of the SFT-estimate could be obtained for different practical situations, in which the signal-to-noise ratio and the number of epochs used in the estimation may vary. The technique was applied to the EEG of 10 normal subjects during IPS, and allowed detecting responses not only at the fundamental IPS frequency but also at higher harmonics. It also permitted to assess the strength of the photic driving responses and to compare them in different derivations and in different subjects.
Duffy, Frank H; D'Angelo, Eugene; Rotenberg, Alexander; Gonzalez-Heydrich, Joseph
2015-11-02
Schizophrenia is a severe, disabling and prevalent mental disorder without cure and with a variable, incomplete pharmacotherapeutic response. Prior to onset in adolescence or young adulthood a prodromal period of abnormal symptoms lasting weeks to years has been identified and operationalized as clinically high risk (CHR) for schizophrenia. However, only a minority of subjects prospectively identified with CHR convert to schizophrenia, thereby limiting enthusiasm for early intervention(s). This study utilized objective resting electroencephalogram (EEG) quantification to determine whether CHR constitutes a cohesive entity and an evoked potential to assess CHR cortical auditory processing. This study constitutes an EEG-based quantitative neurophysiological comparison between two unmedicated subject groups: 35 neurotypical controls (CON) and 22 CHR patients. After artifact management, principal component analysis (PCA) identified EEG spectral and spectral coherence factors described by associated loading patterns. Discriminant function analysis (DFA) determined factors' discrimination success between subjects in the CON and CHR groups. Loading patterns on DFA-selected factors described CHR-specific spectral and coherence differences when compared to controls. The frequency modulated auditory evoked response (FMAER) explored functional CON-CHR differences within the superior temporal gyri. Variable reduction by PCA identified 40 coherence-based factors explaining 77.8% of the total variance and 40 spectral factors explaining 95.9% of the variance. DFA demonstrated significant CON-CHR group difference (P <0.00001) and successful jackknifed subject classification (CON, 85.7%; CHR, 86.4% correct). The population distribution plotted along the canonical discriminant variable was clearly bimodal. Coherence factors delineated loading patterns of altered connectivity primarily involving the bilateral posterior temporal electrodes. However, FMAER analysis showed no CON-CHR group differences. CHR subjects form a cohesive group, significantly separable from CON subjects by EEG-derived indices. Symptoms of CHR may relate to altered connectivity with the posterior temporal regions but not to primary auditory processing abnormalities within these regions.
Assessing a novel polymer-wick based electrode for EEG neurophysiological research.
Pasion, Rita; Paiva, Tiago O; Pedrosa, Paulo; Gaspar, Hugo; Vasconcelos, Beatriz; Martins, Ana C; Amaral, Maria H; Nóbrega, João M; Páscoa, Ricardo; Fonseca, Carlos; Barbosa, Fernando
2016-07-15
The EEG technique has decades of valid applications in clinical and experimental neurophysiology. EEG equipment and data analysis methods have been characterized by remarkable developments, but the skin-to-electrode signal transfer remains a challenge for EEG recording. A novel quasi-dry system - the polymer wick-based electrode - was developed to overcome the limitations of conventional dry and wet silver/silver-chloride (Ag/AgCl) electrodes for EEG recording. Nine participants completed an auditory oddball protocol with simultaneous EEG acquisition using both the conventional Ag/AgCl and the wick electrodes. Wick system successfully recorded the expected P300 modulation. Standard ERP analysis, residual random noise analysis, and single-trial analysis of the P300 wave were performed in order to compare signal acquired by both electrodes. It was found that the novel wick electrode performed similarly to the conventional Ag/AgCl electrodes. The developed wick electrode appears to be a reliable alternative for EEG research, representing a promising halfway alternative between wet and dry electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.
Preparing Laboratory and Real-World EEG Data for Large-Scale Analysis: A Containerized Approach
Bigdely-Shamlo, Nima; Makeig, Scott; Robbins, Kay A.
2016-01-01
Large-scale analysis of EEG and other physiological measures promises new insights into brain processes and more accurate and robust brain–computer interface models. However, the absence of standardized vocabularies for annotating events in a machine understandable manner, the welter of collection-specific data organizations, the difficulty in moving data across processing platforms, and the unavailability of agreed-upon standards for preprocessing have prevented large-scale analyses of EEG. Here we describe a “containerized” approach and freely available tools we have developed to facilitate the process of annotating, packaging, and preprocessing EEG data collections to enable data sharing, archiving, large-scale machine learning/data mining and (meta-)analysis. The EEG Study Schema (ESS) comprises three data “Levels,” each with its own XML-document schema and file/folder convention, plus a standardized (PREP) pipeline to move raw (Data Level 1) data to a basic preprocessed state (Data Level 2) suitable for application of a large class of EEG analysis methods. Researchers can ship a study as a single unit and operate on its data using a standardized interface. ESS does not require a central database and provides all the metadata data necessary to execute a wide variety of EEG processing pipelines. The primary focus of ESS is automated in-depth analysis and meta-analysis EEG studies. However, ESS can also encapsulate meta-information for the other modalities such as eye tracking, that are increasingly used in both laboratory and real-world neuroimaging. ESS schema and tools are freely available at www.eegstudy.org and a central catalog of over 850 GB of existing data in ESS format is available at studycatalog.org. These tools and resources are part of a larger effort to enable data sharing at sufficient scale for researchers to engage in truly large-scale EEG analysis and data mining (BigEEG.org). PMID:27014048
Periictal activity in cooled asphyxiated neonates with seizures.
Major, Philippe; Lortie, Anne; Dehaes, Mathieu; Lodygensky, Gregory Anton; Gallagher, Anne; Carmant, Lionel; Birca, Ala
2017-04-01
Seizures are common in critically ill neonates. Both seizures and antiepileptic treatments may lead to short term complications and worsen the outcomes. Predicting the risks of seizure reoccurrence could enable individual treatment regimens and better outcomes. We aimed to identify EEG signatures of seizure reoccurrence by investigating periictal electrographic features and spectral power characteristics in hypothermic neonates with hypoxic-ischemic encephalopathy (HIE) with or without reoccurrence of seizures on rewarming. We recruited five consecutive HIE neonates, submitted to continuous EEG monitoring, with high seizure burden (>20% per hour) while undergoing therapeutic hypothermia. Two of them had reoccurrence of seizures on rewarming. We performed quantitative analysis of fifteen artifact-free consecutive seizures to appreciate spectral power changes between the interictal, preictal and ictal periods, separately for each patient. Visual analysis allowed description of electrographic features associated with ictal events. Every patient demonstrated a significant increase in overall spectral power from the interictal to preictal and ictal periods (p<0.01). Alpha power increase was more pronounced in the two patients with reoccurrence of seizures on rewarming and significant when comparing both interictal-to-preictal and interictal-to-ictal periods. This alpha activity increase could be also appreciated using visual analysis and distinguished neonates with and without seizure reoccurrence. This distinct alpha activity preceding ictal onset could represent a biomarker of propensity for seizure reoccurrence in neonates. Future studies should be performed to confirm whether quantitative periictal characteristics and electrographic features allow predicting the risks of seizure reoccurrence in HIE neonates and other critically ill patients. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Klamer, Silke; Rona, Sabine; Elshahabi, Adham; Lerche, Holger; Braun, Christoph; Honegger, Jürgen; Erb, Michael; Focke, Niels K
2015-06-01
Dynamic causal modeling (DCM) is a method to non-invasively assess effective connectivity between brain regions. 'Musicogenic epilepsy' is a rare reflex epilepsy syndrome in which seizures can be elicited by musical stimuli and thus represents a unique possibility to investigate complex human brain networks and test connectivity analysis tools. We investigated effective connectivity in a case of musicogenic epilepsy using DCM for fMRI, high-density (hd-) EEG and MEG and validated results with intracranial EEG recordings. A patient with musicogenic seizures was examined using hd-EEG/fMRI and simultaneous '256-channel hd-EEG'/'whole head MEG' to characterize the epileptogenic focus and propagation effects using source analysis techniques and DCM. Results were validated with invasive EEG recordings. We recorded one seizure with hd-EEG/fMRI and four auras with hd-EEG/MEG. During the seizures, increases of activity could be observed in the right mesial temporal region as well as bilateral mesial frontal regions. Effective connectivity analysis of fMRI and hd-EEG/MEG indicated that right mesial temporal neuronal activity drives changes in the frontal areas consistently in all three modalities, which was confirmed by the results of invasive EEG recordings. Seizures thus seem to originate in the right mesial temporal lobe and propagate to mesial frontal regions. Using DCM for fMRI, hd-EEG and MEG we were able to correctly localize focus and propagation of epileptic activity and thereby characterize the underlying epileptic network in a patient with musicogenic epilepsy. The concordance between all three functional modalities validated by invasive monitoring is noteworthy, both for epileptic activity spread as well as for effective connectivity analysis in general. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Dijk, Derk-Jan
1999-01-01
Shuttle astronauts typically sleep only 6 to 6.5 hours per day while in orbit. This sleep loss is related to recurrent sleep cycle shifting--due to mission-dependent orbital mechanics and mission duration requirements-- and associated circadian displacement of sleep, the operational demands of space flight, noise and space motion sickness. Such sleep schedules are known to produce poor subjective sleep quality, daytime sleepiness, reduced attention, negative mood, slower reaction times, and impaired daytime alertness. Countermeasures to allow crew members to obtain an adequate amount of sleep and maintain adequate levels of neurobehavioral performance are being developed and investigated. However, it is necessary to develop methods that allow effective and attainable in-flight monitoring of vigilance to evaluate the effectiveness of these countermeasures and to detect and predict online critical decrements in alertness/performance. There is growing evidence to indicate that sleep loss and associated decrements in neurobehavioral function are reflected in the spectral composition of the electroencephalogram (EEG) during wakefulness as well as in the incidence of slow eye movements recorded by the electro-oculogram (EOG). Further-more, our preliminary data indicated that these changes in the EEG during wakefulness are more pronounced when subjects are in a supine posture, which mimics some of the physiologic effects of microgravity. Therefore, we evaluate the following hypotheses: (1) that during a 40-hour period of wakefulness (i.e., one night of total sleep deprivation) neurobehavioral function deteriorates, the incidence of slow eye-movements and EEG power density in the theta frequencies increases especially in frontal areas of the brain; (2) that the sleep deprivation induced deterioration of neurobehavioral function and changes in the incidence of slow eye movements and the spectral composition of the EEG are more pronounced when subjects are in a supine position; and (3) that based on assessment of slow-eye movements and quantitative on-line topographical analyses of EEG during wakefulness an EEG and or EOG parameter can be derived/constructed which accurately predicts changes in neurobehavioral function.
Bennett, Cambell; Voss, Logan J; Barnard, John P M; Sleigh, James W
2009-08-01
Quantitative electroencephalogram (qEEG) monitors are often used to estimate depth of anesthesia and intraoperative recall during general anesthesia. As with any monitor, the processed numerical output is often misleading and has to be interpreted within a clinical context. For the safe clinical use of these monitors, a clear mental picture of the expected raw electroencephalogram (EEG) patterns, as well as a knowledge of the common EEG artifacts, is absolutely necessary. This has provided the motivation to write this tutorial. We describe, and give examples of, the typical EEG features of adequate general anesthesia, effects of noxious stimulation, and adjunctive drugs. Artifacts are commonly encountered and may be classified as arising from outside the head, from the head but outside the brain (commonly frontal electromyogram), or from within the brain (atypical or pathologic). We include real examples of clinical problem-solving processes. In particular, it is important to realize that an artifactually high qEEG index is relatively common and may result in dangerous anesthetic drug overdose. The anesthesiologist must be certain that the qEEG number is consistent with the apparent state of the patient, the doses of various anesthetic drugs, and the degree of surgical stimulation, and that the qEEG number is consistent with the appearance of the raw EEG signal. Any discrepancy must be a stimulus for the immediate critical examination of the patient's state using all the available information rather than reactive therapy to "treat" a number.
Ordinal patterns in epileptic brains: Analysis of intracranial EEG and simultaneous EEG-fMRI
NASA Astrophysics Data System (ADS)
Rummel, C.; Abela, E.; Hauf, M.; Wiest, R.; Schindler, K.
2013-06-01
Epileptic seizures are associated with high behavioral stereotypy of the patients. In the EEG of epilepsy patients characteristic signal patterns can be found during and between seizures. Here we use ordinal patterns to analyze EEGs of epilepsy patients and quantify the degree of signal determinism. Besides relative signal redundancy and the fraction of forbidden patterns we introduce the fraction of under-represented patterns as a new measure. Using the logistic map, parameter scans are performed to explore the sensitivity of the measures to signal determinism. Thereafter, application is made to two types of EEGs recorded in two epilepsy patients. Intracranial EEG shows pronounced determinism peaks during seizures. Finally, we demonstrate that ordinal patterns may be useful for improving analysis of non-invasive simultaneous EEG-fMRI.
Usefulness of a simple sleep-deprived EEG protocol for epilepsy diagnosis in de novo subjects.
Giorgi, Filippo S; Perini, Daria; Maestri, Michelangelo; Guida, Melania; Pizzanelli, Chiara; Caserta, Anna; Iudice, Alfonso; Bonanni, Enrica
2013-11-01
In case series concerning the role of EEG after sleep deprivation (SD-EEG) in epilepsy, patients' features and protocols vary dramatically from one report to another. In this study, we assessed the usefulness of a simple SD-EEG method in well characterized patients. Among the 963 adult subjects submitted to SD-EEG at our Center, in the period 2003-2010, we retrospectively selected for analysis only those: (1) evaluated for suspected epileptic seizures; (2) with a normal/non-specific baseline EEG; (3) still drug-free at the time of SD-EEG; (4) with an MRI analysis; (5) with at least 1 year follow-up. SD-EEG consisted in SD from 2:00 AM and laboratory EEG from 8:00 AM to 10:30 AM. We analyzed epileptic interictal abnormalities (IIAs) and their correlations with patients' features. Epilepsy was confirmed in 131 patients. SD-EEG showed IIAs in 41.2% of all patients with epilepsy, and a 91.1% specificity for epilepsy diagnosis; IIAs types observed during SD-EEG are different in generalized versus focal epilepsies; for focal epilepsies, the IIAs yield in SD-EEG is higher than in second routine EEG. This simple SD-EEG protocol is very useful in de novo patients with suspected seizures. This study sheds new light on the role of SD-EEG in specific epilepsy populations. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
2013-01-01
There has been a dramatic change in hospital care of cardiac arrest survivors in recent years, including the use of target temperature management (hypothermia). Clinical signs of recovery or deterioration, which previously could be observed, are now concealed by sedation, analgesia, and muscle paralysis. Seizures are common after cardiac arrest, but few centers can offer high-quality electroencephalography (EEG) monitoring around the clock. This is due primarily to its complexity and lack of resources but also to uncertainty regarding the clinical value of monitoring EEG and of treating post-ischemic electrographic seizures. Thanks to technical advances in recent years, EEG monitoring has become more available. Large amounts of EEG data can be linked within a hospital or between neighboring hospitals for expert opinion. Continuous EEG (cEEG) monitoring provides dynamic information and can be used to assess the evolution of EEG patterns and to detect seizures. cEEG can be made more simple by reducing the number of electrodes and by adding trend analysis to the original EEG curves. In our version of simplified cEEG, we combine a reduced montage, displaying two channels of the original EEG, with amplitude-integrated EEG trend curves (aEEG). This is a convenient method to monitor cerebral function in comatose patients after cardiac arrest but has yet to be validated against the gold standard, a multichannel cEEG. We recently proposed a simplified system for interpreting EEG rhythms after cardiac arrest, defining four major EEG patterns. In this topical review, we will discuss cEEG to monitor brain function after cardiac arrest in general and how a simplified cEEG, with a reduced number of electrodes and trend analysis, may facilitate and improve care. PMID:23876221
Quantitative EEG and LORETA: valuable tools in discerning FTD from AD?
Caso, Francesca; Cursi, Marco; Magnani, Giuseppe; Fanelli, Giovanna; Falautano, Monica; Comi, Giancarlo; Leocani, Letizia; Minicucci, Fabio
2012-10-01
Drawing a clinical distinction between frontotemporal dementia (FTD) and Alzheimer's disease (AD) is tricky, particularly at the early stages of disease. This study evaluates the possibility in differentiating 39 FTD, 39 AD, and 39 controls (CTR) by means of power spectral analysis and standardized low resolution brain electromagnetic tomography (sLORETA) within delta, theta, alpha 1 and 2, beta 1, 2, and 3 frequency bands. Both analyses revealed in AD patients, relative to CTR, higher expression of diffuse delta/theta and lower central/posterior fast frequency (from alpha1 to beta2) bands. FTD patients showed diffuse increased theta power compared with CTR and lower delta relative to AD patients. Compared with FTD, AD patients showed diffuse higher theta power at spectral analysis and, at sLORETA, decreased alpha2 and beta1 values in central/temporal regions. Spectral analysis and sLORETA provided complementary information that might help characterizing different patterns of electroencephalogram (EEG) oscillatory activity in AD and FTD. Nevertheless, this differentiation was possible only at the group level because single patients could not be discerned with sufficient accuracy. Copyright © 2012 Elsevier Inc. All rights reserved.
Cozac, Vitalii V.; Chaturvedi, Menorca; Hatz, Florian; Meyer, Antonia; Fuhr, Peter; Gschwandtner, Ute
2016-01-01
Objective: We investigated quantitative electroencephalography (qEEG) and clinical parameters as potential risk factors of severe cognitive decline in Parkinson’s disease. Methods: We prospectively investigated 37 patients with Parkinson’s disease at baseline and follow-up (after 3 years). Patients had no severe cognitive impairment at baseline. We used a summary score of cognitive tests as the outcome at follow-up. At baseline we assessed motor, cognitive, and psychiatric factors; qEEG variables [global relative median power (GRMP) spectra] were obtained by a fully automated processing of high-resolution EEG (256-channels). We used linear regression models with calculation of the explained variance to evaluate the relation of baseline parameters with cognitive deterioration. Results: The following baseline parameters significantly predicted severe cognitive decline: GRMP theta (4–8 Hz), cognitive task performance in executive functions and working memory. Conclusions: Combination of neurocognitive tests and qEEG improves identification of patients with higher risk of cognitive decline in PD. PMID:27965571
Siddiqui, Mohd Maroof; Srivastava, Geetika; Saeed, Syed Hasan
2016-01-01
Insomnia is a sleep disorder in which the subject encounters problems in sleeping. The aim of this study is to identify insomnia events from normal or effected person using time frequency analysis of PSD approach applied on EEG signals using channel ROC-LOC. In this research article, attributes and waveform of EEG signals of Human being are examined. The aim of this study is to draw the result in the form of signal spectral analysis of the changes in the domain of different stages of sleep. The analysis and calculation is performed in all stages of sleep of PSD of each EEG segment. Results indicate the possibility of recognizing insomnia events based on delta, theta, alpha and beta segments of EEG signals.
The multiple complex exponential model and its application to EEG analysis
NASA Astrophysics Data System (ADS)
Chen, Dao-Mu; Petzold, J.
The paper presents a novel approach to the analysis of the EEG signal, which is based on a multiple complex exponential (MCE) model. Parameters of the model are estimated using a nonharmonic Fourier expansion algorithm. The central idea of the algorithm is outlined, and the results, estimated on the basis of simulated data, are presented and compared with those obtained by the conventional methods of signal analysis. Preliminary work on various application possibilities of the MCE model in EEG data analysis is described. It is shown that the parameters of the MCE model reflect the essential information contained in an EEG segment. These parameters characterize the EEG signal in a more objective way because they are closer to the recent supposition of the nonlinear character of the brain's dynamic behavior.
Farzan, Faranak; Boutros, Nash N; Blumberger, Daniel M; Daskalakis, Zafiris J
2014-06-01
Electroconvulsive therapy (ECT) remains to be one of the most effective treatment options in treatment-resistant major depressive disorder (MDD). From the early days, researchers have embarked on extracting information from electroencephalography (EEG) recordings before, during, and after ECT to identify neurophysiological targets of ECT and discover EEG predictors of response to ECT in patients with MDD. In this article, we provide an overview of visually detected and quantitative EEG features that could help in furthering our understanding of the mechanisms of action of ECT in MDD. We further discuss the EEG findings in the context of postulated hypotheses of ECT therapeutic pathways. We introduce an alternative and unifying hypothesis suggesting that ECT may exert its therapeutic efficacy through resetting the aberrant functional connectivity and promoting the generation of new and healthy connections in brain regions implicated in MDD pathophysiology, a mechanism that may be in part mediated by the ECT-induced activation of inhibitory and neuroplasticity mechanisms. We further discuss the added value of EEG markers in the larger context of ECT research and as complementary to neuroimaging and genetic markers. We conclude by drawing attention to the need for longitudinal studies in large cohort of patients and the need for standardization and validation of EEG algorithms of functional connectivity across studies to facilitate the translation of EEG correlates of ECT response in routine clinical practice.
Cerquera, Alexander; Vollebregt, Madelon A; Arns, Martijn
2018-03-01
Nonlinear analysis of EEG recordings allows detection of characteristics that would probably be neglected by linear methods. This study aimed to determine a suitable epoch length for nonlinear analysis of EEG data based on its recurrence rate in EEG alpha activity (electrodes Fz, Oz, and Pz) from 28 healthy and 64 major depressive disorder subjects. Two nonlinear metrics, Lempel-Ziv complexity and scaling index, were applied in sliding windows of 20 seconds shifted every 1 second and in nonoverlapping windows of 1 minute. In addition, linear spectral analysis was carried out for comparison with the nonlinear results. The analysis with sliding windows showed that the cortical dynamics underlying alpha activity had a recurrence period of around 40 seconds in both groups. In the analysis with nonoverlapping windows, long-term nonstationarities entailed changes over time in the nonlinear dynamics that became significantly different between epochs across time, which was not detected with the linear spectral analysis. Findings suggest that epoch lengths shorter than 40 seconds neglect information in EEG nonlinear studies. In turn, linear analysis did not detect characteristics from long-term nonstationarities in EEG alpha waves of control subjects and patients with major depressive disorder patients. We recommend that application of nonlinear metrics in EEG time series, particularly of alpha activity, should be carried out with epochs around 60 seconds. In addition, this study aimed to demonstrate that long-term nonlinearities are inherent to the cortical brain dynamics regardless of the presence or absence of a mental disorder.
Duru, Adil Deniz; Duru, Dilek Göksel; Yumerhodzha, Sami; Bebek, Nerses
2016-06-01
Diffusion tensor imaging (DTI) allows in vivo structural brain mapping and detection of microstructural disruption of white matter (WM). One of the commonly used parameters for grading the anisotropic diffusivity in WM is fractional anisotropy (FA). FA value helps to quantify the directionality of the local tract bundle. Therefore, FA images are being used in voxelwise statistical analyses (VSA). The present study used Tract-Based Spatial Statistics (TBSS) of FA images across subjects, and computes the mean skeleton map to detect voxelwise knowledge of the tracts yielding to groupwise comparison. The skeleton image illustrates WM structure and shows any changes caused by brain damage. The microstructure of WM in thalamic stroke is investigated, and the VSA results of healthy control and thalamic stroke patients are reported. It has been shown that several skeleton regions were affected subject to the presence of thalamic stroke (FWE, p < 0.05). Furthermore the correlation of quantitative EEG (qEEG) scores and neurophysiological tests with the FA skeleton for the entire test group is also investigated. We compared measurements that are related to the same fibers across subjects, and discussed implications for VSA of WM in thalamic stroke cases, for the relationship between behavioral tests and FA skeletons, and for the correlation between the FA maps and qEEG scores.Results obtained through the regression analyses did not exceed the corrected statistical threshold values for multiple comparisons (uncorrected, p < 0.05). However, in the regression analysis of FA values and the theta band activity of EEG, cingulum bundle and corpus callosum were found to be related. These areas are parts of the Default Mode Network (DMN) where DMN is known to be involved in resting state EEG theta activity. The relation between the EEG alpha band power values and FA values of the skeleton was found to support the cortico-thalamocortical cycles for both subject groups. Further, the neurophysiological tests including Benton Face Recognition (BFR), Digit Span test (DST), Warrington Topographic Memory test (WTMT), California Verbal Learning test (CVLT) has been regressed with the FA skeleton maps for both subject groups. Our results corresponding to DST task were found to be similar with previously reported findings for working memory and episodic memory tasks. For the WTMT, FA values of the cingulum (right) that plays a role in memory process was found to be related with the behavioral responses. Splenium of corpus callosum was found to be correlated for both subject groups for the BFR.
NASA Astrophysics Data System (ADS)
Jamal, Wasifa; Das, Saptarshi; Maharatna, Koushik; Pan, Indranil; Kuyucu, Doga
2015-09-01
Degree of phase synchronization between different Electroencephalogram (EEG) channels is known to be the manifestation of the underlying mechanism of information coupling between different brain regions. In this paper, we apply a continuous wavelet transform (CWT) based analysis technique on EEG data, captured during face perception tasks, to explore the temporal evolution of phase synchronization, from the onset of a stimulus. Our explorations show that there exists a small set (typically 3-5) of unique synchronized patterns or synchrostates, each of which are stable of the order of milliseconds. Particularly, in the beta (β) band, which has been reported to be associated with visual processing task, the number of such stable states has been found to be three consistently. During processing of the stimulus, the switching between these states occurs abruptly but the switching characteristic follows a well-behaved and repeatable sequence. This is observed in a single subject analysis as well as a multiple-subject group-analysis in adults during face perception. We also show that although these patterns remain topographically similar for the general category of face perception task, the sequence of their occurrence and their temporal stability varies markedly between different face perception scenarios (stimuli) indicating toward different dynamical characteristics for information processing, which is stimulus-specific in nature. Subsequently, we translated these stable states into brain complex networks and derived informative network measures for characterizing the degree of segregated processing and information integration in those synchrostates, leading to a new methodology for characterizing information processing in human brain. The proposed methodology of modeling the functional brain connectivity through the synchrostates may be viewed as a new way of quantitative characterization of the cognitive ability of the subject, stimuli and information integration/segregation capability.
Zibrandtsen, I C; Kidmose, P; Christensen, C B; Kjaer, T W
2017-12-01
Ear-EEG is recording of electroencephalography from a small device in the ear. This is the first study to compare ictal and interictal abnormalities recorded with ear-EEG and simultaneous scalp-EEG in an epilepsy monitoring unit. We recorded and compared simultaneous ear-EEG and scalp-EEG from 15 patients with suspected temporal lobe epilepsy. EEGs were compared visually by independent neurophysiologists. Correlation and time-frequency analysis was used to quantify the similarity between ear and scalp electrodes. Spike-averages were used to assess similarity of interictal spikes. There were no differences in sensitivity or specificity for seizure detection. Mean correlation coefficient between ear-EEG and nearest scalp electrode was above 0.6 with a statistically significant decreasing trend with increasing distance away from the ear. Ictal morphology and frequency dynamics can be observed from visual inspection and time-frequency analysis. Spike averages derived from ear-EEG electrodes yield a recognizable spike appearance. Our results suggest that ear-EEG can reliably detect electroencephalographic patterns associated with focal temporal lobe seizures. Interictal spike morphology from sufficiently large temporal spike sources can be sampled using ear-EEG. Ear-EEG is likely to become an important tool in clinical epilepsy monitoring and diagnosis. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Lee, Jong-Hwan; Oh, Sungsuk; Jolesz, Ferenc A.; Park, Hyunwook; Yoo, Seung-Schik
2010-01-01
The simultaneous acquisition of electroencephalogram (EEG) and functional MRI (fMRI) signals is potentially advantageous because of the superior resolution that is achieved in both the temporal and spatial domains, respectively. However, ballistocardiographic artifacts along with the ocular artifacts are a major obstacle for the detection of the EEG signatures of interest. Since the sources corresponding to these artifacts are independent from those producing the EEG signatures, we applied the Infomax-based independent component analysis (ICA) technique to separate the EEG signatures from the artifacts. The isolated EEG signatures were further utilized to model the canonical hemodynamic response functions (HRFs). Subsequently, the brain areas from which these EEG signatures originated were identified as locales of activation patterns from the analysis of fMRI data. Upon the identification and subsequent evaluation of brain areas generating interictal epileptic discharge (IED) spikes from an epileptic subject, the presented method was successfully applied to detect the theta- and alpha-rhythms that are sleep onset related EEG signatures along with the subsequent neural circuitries from a sleep deprived volunteer. These results suggest that the ICA technique may be useful for the preprocessing of simultaneous EEG-fMRI acquisitions, especially when a reference paradigm is unavailable. PMID:19922343
Lee, Jong-Hwan; Oh, Sungsuk; Jolesz, Ferenc A; Park, Hyunwook; Yoo, Seung-Schik
2009-01-01
The simultaneous acquisition of electroencephalogram (EEG) and functional MRI (fMRI) signals is potentially advantageous because of the superior resolution that is achieved in both the temporal and spatial domains, respectively. However, ballistocardiographic artifacts along with ocular artifacts are a major obstacle for the detection of the EEG signatures of interest. Since the sources corresponding to these artifacts are independent from those producing the EEG signatures, we applied the Infomax-based independent component analysis (ICA) technique to separate the EEG signatures from the artifacts. The isolated EEG signatures were further utilized to model the canonical hemodynamic response functions (HRFs). Subsequently, the brain areas from which these EEG signatures originated were identified as locales of activation patterns from the analysis of fMRI data. Upon the identification and subsequent evaluation of brain areas generating interictal epileptic discharge (IED) spikes from an epileptic subject, the presented method was successfully applied to detect the theta and alpha rhythms that are sleep onset-related EEG signatures along with the subsequent neural circuitries from a sleep-deprived volunteer. These results suggest that the ICA technique may be useful for the preprocessing of simultaneous EEG-fMRI acquisitions, especially when a reference paradigm is unavailable.
An EEG should not be obtained routinely after first unprovoked seizure in childhood.
Gilbert, D L; Buncher, C R
2000-02-08
To quantify and analyze the value of expected information from an EEG after first unprovoked seizure in childhood. An EEG is often recommended as part of the standard diagnostic evaluation after first seizure. A MEDLINE search from 1980 to 1998 was performed. From eligible studies, data on EEG results and seizure recurrence risk in children were abstracted, and sensitivity, specificity, and positive and negative predictive values of EEG in predicting recurrence were calculated. Linear information theory was used to quantify and compare the expected information from the EEG in all studies. Standard test-treat decision analysis with a treatment threshold at 80% recurrence risk was used to determine the range of pretest recurrence probabilities over which testing affects treatment decisions. Four studies involving 831 children were eligible for analysis. At best, the EEG had a sensitivity of 61%, a specificity of 71%, and an expected information of 0.16 out of a possible 0.50. The pretest probability of recurrence was less than the lower limit of the range for rational testing in all studies. In this analysis, the quantity of expected information from the EEG was too low to affect treatment recommendations in most patients. EEG should be ordered selectively, not routinely, after first unprovoked seizure in childhood.
Gu, Ying; Cleeren, Evy; Dan, Jonathan; Claes, Kasper; Hunyadi, Borbála
2017-01-01
A wearable electroencephalogram (EEG) device for continuous monitoring of patients suffering from epilepsy would provide valuable information for the management of the disease. Currently no EEG setup is small and unobtrusive enough to be used in daily life. Recording behind the ear could prove to be a solution to a wearable EEG setup. This article examines the feasibility of recording epileptic EEG from behind the ear. It is achieved by comparison with scalp EEG recordings. Traditional scalp EEG and behind-the-ear EEG were simultaneously acquired from 12 patients with temporal, parietal, or occipital lobe epilepsy. Behind-the-ear EEG consisted of cross-head channels and unilateral channels. The analysis on Electrooculography (EOG) artifacts resulting from eye blinking showed that EOG artifacts were absent on cross-head channels and had significantly small amplitudes on unilateral channels. Temporal waveform and frequency content during seizures from behind-the-ear EEG visually resembled that from scalp EEG. Further, coherence analysis confirmed that behind-the-ear EEG acquired meaningful epileptic discharges similarly to scalp EEG. Moreover, automatic seizure detection based on support vector machine (SVM) showed that comparable seizure detection performance can be achieved using these two recordings. With scalp EEG, detection had a median sensitivity of 100% and a false detection rate of 1.14 per hour, while, with behind-the-ear EEG, it had a median sensitivity of 94.5% and a false detection rate of 0.52 per hour. These findings demonstrate the feasibility of detecting seizures from EEG recordings behind the ear for patients with focal epilepsy. PMID:29295522
Lin, Lung-Chang; Ouyang, Chen-Sen; Chiang, Ching-Tai; Wu, Hui-Chuan; Yang, Rei-Cheng
2014-10-01
There are many treatments being developed for patients with epilepsy, including anti-epileptic drugs, ketogenic diet and vagus nerve stimulation. To date, there is a lack of valid methods to predict at an early stage the therapeutic effects on patients with epilepsy who receive one of these treatments. Our previous studies revealed that epileptiform discharges which were observed in patients with epilepsy were significantly decreased while listening to Mozart K.448. In this study, we attempted to develop a useful marker by utilizing a quantitative electroencephalogram (qEEG) method in analyzing the features of EEG to early evaluate the effect of the music on children with epilepsy, even without epileptiform discharges. EEG segments from 19 Taiwanese children who were selected from a large screen study of music effect (eight boys and 11 girls) diagnosed with epilepsy were analyzed. EEG examinations were performed in two parallel periods in each patient; before, and while listening to Mozart K.448's first movement (8 min 22s) and EEG data were compared by qEEG. EEG segments were classified into music effective/ineffective group. The term "effective" was defined as patient exposure to music resulting in over a 25% reduction in epileptiform discharges. On the contrary, the term "ineffective" was defined as patient exposure to music resulting in less than a 5% reduction in epileptiform discharges. There were four global feature descriptors selected for the music effective/ineffective classification. Two descriptors, DecorrTime_avg_AVG and DecorrTime_std_AVG, were related to the EEG feature "decorrelation" whereas the other two descriptors, RelPowGamma_avg_SNR and RelPowGamma_std_SNR, were related to "relative power of gamma." There were significantly higher RelPowGamma_std_SNR (0.190±0.133 vs. -0.026±0.119, p=0.0029), DecorrTime_std_AVG (0.005±0.004 vs. 0.0003±0.0016, p=0.0055), DecorrTime_avg_AVG (0.005±0.005 vs. -0.002±0.008, p=0.0179), and RelPowGamma_avg_SNR (0.176±0.219 vs. -0.078±0.244, p=0.0222) in the effective group than in the ineffective group. The precision rate of classification was 0.953. Using qEEG, we have developed a useful model for predicting therapeutic effectiveness of music in patients with epilepsy. Among the limited number of patients, the tool is of potential to predict the effectiveness in patients even without epileptiform discharges. It is worthwhile in the application of other therapeutic model. Copyright © 2014 Elsevier B.V. All rights reserved.
Wen, Dong; Jia, Peilei; Lian, Qiusheng; Zhou, Yanhong; Lu, Chengbiao
2016-01-01
At present, the sparse representation-based classification (SRC) has become an important approach in electroencephalograph (EEG) signal analysis, by which the data is sparsely represented on the basis of a fixed dictionary or learned dictionary and classified based on the reconstruction criteria. SRC methods have been used to analyze the EEG signals of epilepsy, cognitive impairment and brain computer interface (BCI), which made rapid progress including the improvement in computational accuracy, efficiency and robustness. However, these methods have deficiencies in real-time performance, generalization ability and the dependence of labeled sample in the analysis of the EEG signals. This mini review described the advantages and disadvantages of the SRC methods in the EEG signal analysis with the expectation that these methods can provide the better tools for analyzing EEG signals. PMID:27458376
Munia, Tamanna T K; Haider, Ali; Schneider, Charles; Romanick, Mark; Fazel-Rezai, Reza
2017-12-08
The neurocognitive sequelae of a sport-related concussion and its management are poorly defined. Detecting deficits are vital in making a decision about the treatment plan as it can persist one year or more following a brain injury. The reliability of traditional cognitive assessment tools is debatable, and thus attention has turned to assessments based on electroencephalogram (EEG) to evaluate subtle post-concussive alterations. In this study, we calculated neurocognitive deficits combining EEG analysis with three standard post-concussive assessment tools. Data were collected for all testing modalities from 21 adolescent athletes (seven concussive and fourteen healthy) in three different trials. For EEG assessment, along with linear frequency-based features, we introduced a set of time-frequency (Hjorth Parameters) and nonlinear features (approximate entropy and Hurst exponent) for the first time to explore post-concussive deficits. Besides traditional frequency-band analysis, we also presented a new individual frequency-based approach for EEG assessment. While EEG analysis exhibited significant discrepancies between the groups, none of the cognitive assessment resulted in significant deficits. Therefore, the evidence from the study highlights that our proposed EEG analysis and markers are more efficient at deciphering post-concussion residual neurocognitive deficits and thus has a potential clinical utility of proper concussion assessment and management.
Determination of awareness in patients with severe brain injury using EEG power spectral analysis
Goldfine, Andrew M.; Victor, Jonathan D.; Conte, Mary M.; Bardin, Jonathan C.; Schiff, Nicholas D.
2011-01-01
Objective To determine whether EEG spectral analysis could be used to demonstrate awareness in patients with severe brain injury. Methods We recorded EEG from healthy controls and three patients with severe brain injury, ranging from minimally conscious state (MCS) to locked-in-state (LIS), while they were asked to imagine motor and spatial navigation tasks. We assessed EEG spectral differences from 4 to 24 Hz with univariate comparisons (individual frequencies) and multivariate comparisons (patterns across the frequency range). Results In controls, EEG spectral power differed at multiple frequency bands and channels during performance of both tasks compared to a resting baseline. As patterns of signal change were inconsistent between controls, we defined a positive response in patient subjects as consistent spectral changes across task performances. One patient in MCS and one in LIS showed evidence of motor imagery task performance, though with patterns of spectral change different from the controls. Conclusion EEG power spectral analysis demonstrates evidence for performance of mental imagery tasks in healthy controls and patients with severe brain injury. Significance EEG power spectral analysis can be used as a flexible bedside tool to demonstrate awareness in brain-injured patients who are otherwise unable to communicate. PMID:21514214
Continuous electroencephalogram monitoring in the intensive care unit.
Friedman, Daniel; Claassen, Jan; Hirsch, Lawrence J
2009-08-01
Because of recent technical advances, it is now possible to record and monitor the continuous digital electroencephalogram (EEG) of many critically ill patients simultaneously. Continuous EEG monitoring (cEEG) provides dynamic information about brain function that permits early detection of changes in neurologic status, which is especially useful when the clinical examination is limited. Nonconvulsive seizures are common in comatose critically ill patients and can have multiple negative effects on the injured brain. The majority of seizures in these patients cannot be detected without cEEG. cEEG monitoring is most commonly used to detect and guide treatment of nonconvulsive seizures, including after convulsive status epilepticus. In addition, cEEG is used to guide management of pharmacological coma for treatment of increased intracranial pressure. An emerging application for cEEG is to detect new or worsening brain ischemia in patients at high risk, especially those with subarachnoid hemorrhage. Improving quantitative EEG software is helping to make it feasible for cEEG (using full scalp coverage) to provide continuous information about changes in brain function in real time at the bedside and to alert clinicians to any acute brain event, including seizures, ischemia, increasing intracranial pressure, hemorrhage, and even systemic abnormalities affecting the brain, such as hypoxia, hypotension, acidosis, and others. Monitoring using only a few electrodes or using full scalp coverage, but without expert review of the raw EEG, must be done with extreme caution as false positives and false negatives are common. Intracranial EEG recording is being performed in a few centers to better detect seizures, ischemia, and peri-injury depolarizations, all of which may contribute to secondary injury. When cEEG is combined with individualized, physiologically driven decision making via multimodality brain monitoring, intensivists can identify when the brain is at risk for injury or when neuronal injury is already occurring and intervene before there is permanent damage. The exact role and cost-effectiveness of cEEG at the current time remains unclear, but we believe it has significant potential to improve neurologic outcomes in a variety of settings.
Rogasch, Nigel C; Sullivan, Caley; Thomson, Richard H; Rose, Nathan S; Bailey, Neil W; Fitzgerald, Paul B; Farzan, Faranak; Hernandez-Pavon, Julio C
2017-02-15
The concurrent use of transcranial magnetic stimulation with electroencephalography (TMS-EEG) is growing in popularity as a method for assessing various cortical properties such as excitability, oscillations and connectivity. However, this combination of methods is technically challenging, resulting in artifacts both during recording and following typical EEG analysis methods, which can distort the underlying neural signal. In this article, we review the causes of artifacts in EEG recordings resulting from TMS, as well as artifacts introduced during analysis (e.g. as the result of filtering over high-frequency, large amplitude artifacts). We then discuss methods for removing artifacts, and ways of designing pipelines to minimise analysis-related artifacts. Finally, we introduce the TMS-EEG signal analyser (TESA), an open-source extension for EEGLAB, which includes functions that are specific for TMS-EEG analysis, such as removing and interpolating the TMS pulse artifact, removing and minimising TMS-evoked muscle activity, and analysing TMS-evoked potentials. The aims of TESA are to provide users with easy access to current TMS-EEG analysis methods and to encourage direct comparisons of these methods and pipelines. It is hoped that providing open-source functions will aid in both improving and standardising analysis across the field of TMS-EEG research. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Presurgical EEG-fMRI in a complex clinical case with seizure recurrence after epilepsy surgery
Zhang, Jing; Liu, Qingzhu; Mei, Shanshan; Zhang, Xiaoming; Wang, Xiaofei; Liu, Weifang; Chen, Hui; Xia, Hong; Zhou, Zhen; Li, Yunlin
2013-01-01
Epilepsy surgery has improved over the last decade, but non-seizure-free outcome remains at 10%–40% in temporal lobe epilepsy (TLE) and 40%–60% in extratemporal lobe epilepsy (ETLE). This paper reports a complex multifocal case. With a normal magnetic resonance imaging (MRI) result and nonlocalizing electroencephalography (EEG) findings (bilateral TLE and ETLE, with more interictal epileptiform discharges [IEDs] in the right frontal and temporal regions), a presurgical EEG-functional MRI (fMRI) was performed before the intraoperative intracranial EEG (icEEG) monitoring (icEEG with right hemispheric coverage). Our previous EEG-fMRI analysis results (IEDs in the left hemisphere alone) were contradictory to the EEG and icEEG findings (IEDs in the right frontal and temporal regions). Thus, the EEG-fMRI data were reanalyzed with newly identified IED onsets and different fMRI model options. The reanalyzed EEG-fMRI findings were largely concordant with those of EEG and icEEG, and the failure of our previous EEG-fMRI analysis may lie in the inaccurate identification of IEDs and wrong usage of model options. The right frontal and temporal regions were resected in surgery, and dual pathology (hippocampus sclerosis and focal cortical dysplasia in the extrahippocampal region) was found. The patient became seizure-free for 3 months, but his seizures restarted after antiepileptic drugs (AEDs) were stopped. The seizures were not well controlled after resuming AEDs. Postsurgical EEGs indicated that ictal spikes in the right frontal and temporal regions reduced, while those in the left hemisphere became prominent. This case suggested that (1) EEG-fMRI is valuable in presurgical evaluation, but requires caution; and (2) the intact seizure focus in the remaining brain may cause the non-seizure-free outcome. PMID:23926432
Puskás, S; Bessenyei, M; Fekete, I; Hollódy, K; Clemens, B
2010-09-01
Epileptic predisposition means genetically determined, increased seizure susceptibility. Neurophysiological evaluation of this condition is still lacking. In order to investigate "pure epileptic predisposition" (without epilepsy) in this pilot study the authors prospectively recruited ten persons who displayed generalized tonic-clonic seizures precipitated by 24 or more hours of sleep deprivation but were healthy in any other respects. 21-channel EEGs were recorded in the morning, in the waking state, after a night of sufficient sleep in the interictal period. For each person, a total of 120s artifact-free EEG was processed to low resolution electromagnetic tomography (LORETA) analysis. LORETA activity (Ampers/meters squared) was computed for 2394 voxels, 19 active electrodes and 1Hz very narrow bands from 1 to 25Hz. The data were compressed into four frequency bands (delta: 0.5-4.0Hz, theta: 4.5-8.0Hz, alpha: 8.5-12.0Hz, beta: 12.5-25.0Hz) and projected onto the MRI figures of a digitized standard brain atlas. The band-related LORETA results were compared to those of ten, age- and sex-matched healthy persons using independent t-tests. p<0.01 differences were accepted as statistically significant. Statistically significant decrease of alpha activity was found in widespread, medial and lateral parts of the cortex above the level of the basal ganglia. Maximum alpha decrease and statistically significant beta decrease were found in the left precuneus. Statistically not significant differences were delta increase in the medial-basal frontal area and theta increase in the same area and in the basal temporal area. The significance of alpha decrease in the patient group remains enigmatic. beta decrease presumably reflects non-specific dysfunction of the cortex. Prefrontal delta and theta increase might have biological meaning despite the lack of statistical significance: these findings are topographically similar to those reported in idiopathic generalized epilepsy in previous investigations. Quantitative EEG characteristics of the genetically determined epilepsy predisposition were given in terms of frequency bands and anatomical distribution. Copyright 2010 Elsevier B.V. All rights reserved.
Mannan, Malik M. Naeem; Kim, Shinjung; Jeong, Myung Yung; Kamran, M. Ahmad
2016-01-01
Contamination of eye movement and blink artifacts in Electroencephalogram (EEG) recording makes the analysis of EEG data more difficult and could result in mislead findings. Efficient removal of these artifacts from EEG data is an essential step in improving classification accuracy to develop the brain-computer interface (BCI). In this paper, we proposed an automatic framework based on independent component analysis (ICA) and system identification to identify and remove ocular artifacts from EEG data by using hybrid EEG and eye tracker system. The performance of the proposed algorithm is illustrated using experimental and standard EEG datasets. The proposed algorithm not only removes the ocular artifacts from artifactual zone but also preserves the neuronal activity related EEG signals in non-artifactual zone. The comparison with the two state-of-the-art techniques namely ADJUST based ICA and REGICA reveals the significant improved performance of the proposed algorithm for removing eye movement and blink artifacts from EEG data. Additionally, results demonstrate that the proposed algorithm can achieve lower relative error and higher mutual information values between corrected EEG and artifact-free EEG data. PMID:26907276
Nonlinear analysis of EEG in major depression with fractal dimensions.
Akar, Saime A; Kara, Sadik; Agambayev, Sumeyra; Bilgic, Vedat
2015-01-01
Major depressive disorder (MDD) is a psychiatric mood disorder characterized by cognitive and functional impairments in attention, concentration, learning and memory. In order to investigate and understand its underlying neural activities and pathophysiology, EEG methodologies can be used. In this study, we estimated the nonlinearity features of EEG in MDD patients to assess the dynamical properties underlying the frontal and parietal brain activity. EEG data were obtained from 16 patients and 15 matched healthy controls. A wavelet-chaos methodology was used for data analysis. First, EEGs of subjects were decomposed into 5 EEG sub-bands by discrete wavelet transform. Then, both the Katz's and Higuchi's fractal dimensions (KFD and HFD) were calculated as complexity measures for full-band and sub-bands EEGs. Last, two-way analyses of variances were used to test EEG complexity differences on each fractality measures. As a result, a significantly increased complexity was found in both parietal and frontal regions of MDD patients. This significantly increased complexity was observed not only in full-band activity but also in beta and gamma sub-bands of EEG. The findings of the present study indicate the possibility of using the wavelet-chaos methodology to discriminate the EEGs of MDD patients from healthy controls.
A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies.
Puce, Aina; Hämäläinen, Matti S
2017-05-31
Electroencephalography (EEG) and magnetoencephalography (MEG) are non-invasive electrophysiological methods, which record electric potentials and magnetic fields due to electric currents in synchronously-active neurons. With MEG being more sensitive to neural activity from tangential currents and EEG being able to detect both radial and tangential sources, the two methods are complementary. Over the years, neurophysiological studies have changed considerably: high-density recordings are becoming de rigueur; there is interest in both spontaneous and evoked activity; and sophisticated artifact detection and removal methods are available. Improved head models for source estimation have also increased the precision of the current estimates, particularly for EEG and combined EEG/MEG. Because of their complementarity, more investigators are beginning to perform simultaneous EEG/MEG studies to gain more complete information about neural activity. Given the increase in methodological complexity in EEG/MEG, it is important to gather data that are of high quality and that are as artifact free as possible. Here, we discuss some issues in data acquisition and analysis of EEG and MEG data. Practical considerations for different types of EEG and MEG studies are also discussed.
Dai, Chenxi; Wang, Zhi; Wei, Liang; Chen, Gang; Chen, Bihua; Zuo, Feng; Li, Yongqin
2018-04-09
Early and reliable prediction of neurological outcome remains a challenge for comatose survivors of cardiac arrest (CA). The purpose of this study was to evaluate the predictive ability of EEG, heart rate variability (HRV) features and the combination of them for outcome prognostication in CA model of rats. Forty-eight male Sprague-Dawley rats were randomized into 6 groups (n=8 each) with different cause and duration of untreated arrest. Cardiopulmonary resuscitation was initiated after 5, 6 and 7min of ventricular fibrillation or 4, 6 and 8min of asphyxia. EEG and ECG were continuously recorded for 4h under normothermia after resuscitation. The relationships between features of early post-resuscitation EEG, HRV and 96-hour outcome were investigated. Prognostic performances were evaluated using the area under receiver operating characteristic curve (AUC). All of the animals were successfully resuscitated and 27 of them survived to 96h. Weighted-permutation entropy (WPE) and normalized high frequency (nHF) outperformed other EEG and HRV features for the prediction of survival. The AUC of WPE was markedly higher than that of nHF (0.892 vs. 0.759, p<0.001). The AUC was 0.954 when WPE and nHF were combined using a logistic regression model, which was significantly higher than the individual EEG (p=0.018) and HRV (p<0.001) features. Earlier post-resuscitation HRV provided prognostic information complementary to quantitative EEG in the CA model of rats. The combination of EEG and HRV features leads to improving performance of outcome prognostication compared to either EEG or HRV based features alone. Copyright © 2018. Published by Elsevier Inc.
Recording human cortical population spikes non-invasively--An EEG tutorial.
Waterstraat, Gunnar; Fedele, Tommaso; Burghoff, Martin; Scheer, Hans-Jürgen; Curio, Gabriel
2015-07-30
Non-invasively recorded somatosensory high-frequency oscillations (sHFOs) evoked by electric nerve stimulation are markers of human cortical population spikes. Previously, their analysis was based on massive averaging of EEG responses. Advanced neurotechnology and optimized off-line analysis can enhance the signal-to-noise ratio of sHFOs, eventually enabling single-trial analysis. The rationale for developing dedicated low-noise EEG technology for sHFOs is unfolded. Detailed recording procedures and tailored analysis principles are explained step-by-step. Source codes in Matlab and Python are provided as supplementary material online. Combining synergistic hardware and analysis improvements, evoked sHFOs at around 600 Hz ('σ-bursts') can be studied in single-trials. Additionally, optimized spatial filters increase the signal-to-noise ratio of components at about 1 kHz ('κ-bursts') enabling their detection in non-invasive surface EEG. sHFOs offer a unique possibility to record evoked human cortical population spikes non-invasively. The experimental approaches and algorithms presented here enable also non-specialized EEG laboratories to combine measurements of conventional low-frequency EEG with the analysis of concomitant cortical population spike responses. Copyright © 2014 Elsevier B.V. All rights reserved.
Performance and brain electrical activity during prolonged confinement.
Lorenz, B; Lorenz, J; Manzey, D
1996-01-01
A subset of the AGARD-STRES battery including memory search, unstable tracking, and a combination of both tasks (dual-task), was applied repeatedly to the four chamber crew members before, during, and after the 60-day isolation period of EXEMSI. Five ground control group members served as a control group. A subjective state questionnaire was also included. The results were subjected to a quantitative single-subject analysis. Electroencephalograms (EEG) were recorded to permit correlation of changes in task performance with changes in the physiological state. Evaluation of the EEG focused on spectral parameters of spontaneous EEG waves. No physiological data were collected from the control group. Significant decrements in tracking ability were observed in the chamber crew. The time course of these effects followed a triphasic pattern with initial deterioration, intermediate recovery to pre-isolation baseline scores after the first half of the isolation period, and a second deterioration towards the end. None of the control group subjects displayed such an effect. Memory search (speed and accuracy) was only occasionally impaired during isolation, but the control group displayed a similar pattern of changes. It is suggested that a state of decreased alertness causes tracking deterioration, which leads to a reduced efficiency of sustained cue utilization. The assumption of low alertness was further substantiated by higher fatigue ratings by the chamber crew compared to those of the control group. Analysis of the continuous EEG recordings revealed that only two subjects produced reliable alpha wave activity (8-12 Hz) over Pz and, to a much smaller extent, Fz-theta wave activity (5-7 Hz) during task performance. In both subjects Pz-alpha power decreased consistently under task conditions involving single-task and dual-task tracking. Fz-theta activity was increased more by single-task and dual-task memory search than by single-task tracking. The alpha attenuation appears to be associated with an increasing demand on perceptual cue utilization required by the tracking performance. In one subject marked attenuation of alpha power occurred during the first half of the confinement period, where he also scored the highest fatigue ratings. A striking increase in fronto-central theta activity was observed in the same subject after six weeks of isolation. The change was associated with an efficient rather than a degraded task performance, and a high rating of the item "concentrated" and a low rating of the item "fatigued." This finding supports the hypothesis that the activation state associated with increased fronto-central theta activity accompanies efficient performance of demanding mental tasks. The usefulness of standardized laboratory tasks as monitoring instruments is demonstrated by the direct comparability with results of studies obtained from other relevant research applications using the same tasks. The feasibility of a self-administered integrated psychophysiological assessment of the individual state was illustrated by the nearly complete collection of data. The large number of individual data collected over the entire period permitted application of quantitative single-subject analysis, allowing reliable determination of changes in the individual state in the course of time. It thus appears that this assessment technique can be adapted for in-flight monitoring of astronauts during prolonged spaceflights. Parallel EEG recording can provide relevant supplementary information for diagnosing the individual activation state associated with task performance. The existence of large individual differences in the generation of task-sensitive EEG rhythms forms an important issue for further studies.
Towards the utilization of EEG as a brain imaging tool.
Michel, Christoph M; Murray, Micah M
2012-06-01
Recent advances in signal analysis have engendered EEG with the status of a true brain mapping and brain imaging method capable of providing spatio-temporal information regarding brain (dys)function. Because of the increasing interest in the temporal dynamics of brain networks, and because of the straightforward compatibility of the EEG with other brain imaging techniques, EEG is increasingly used in the neuroimaging community. However, the full capability of EEG is highly underestimated. Many combined EEG-fMRI studies use the EEG only as a spike-counter or an oscilloscope. Many cognitive and clinical EEG studies use the EEG still in its traditional way and analyze grapho-elements at certain electrodes and latencies. We here show that this way of using the EEG is not only dangerous because it leads to misinterpretations, but it is also largely ignoring the spatial aspects of the signals. In fact, EEG primarily measures the electric potential field at the scalp surface in the same way as MEG measures the magnetic field. By properly sampling and correctly analyzing this electric field, EEG can provide reliable information about the neuronal activity in the brain and the temporal dynamics of this activity in the millisecond range. This review explains some of these analysis methods and illustrates their potential in clinical and experimental applications. Copyright © 2011 Elsevier Inc. All rights reserved.
Comparison of Amplitude-Integrated EEG and Conventional EEG in a Cohort of Premature Infants.
Meledin, Irina; Abu Tailakh, Muhammad; Gilat, Shlomo; Yogev, Hagai; Golan, Agneta; Novack, Victor; Shany, Eilon
2017-03-01
To compare amplitude-integrated EEG (aEEG) and conventional EEG (EEG) activity in premature neonates. Biweekly aEEG and EEG were simultaneously recorded in a cohort of infants born less than 34 weeks gestation. aEEG recordings were visually assessed for lower and upper border amplitude and bandwidth. EEG recordings were compressed for visual evaluation of continuity and assessed using a signal processing software for interburst intervals (IBI) and frequencies' amplitude. Ten-minute segments of aEEG and EEG indices were compared using regression analysis. A total of 189 recordings from 67 infants were made, from which 1697 aEEG/EEG pairs of 10-minute segments were assessed. Good concordance was found for visual assessment of continuity between the 2 methods. EEG IBI, alpha and theta frequencies' amplitudes were negatively correlated to the aEEG lower border while conceptional age (CA) was positively correlated to aEEG lower border ( P < .001). IBI and all frequencies' amplitude were positively correlated to the upper aEEG border ( P ≤ .001). CA was negatively correlated to aEEG span while IBI, alpha, beta, and theta frequencies' amplitude were positively correlated to the aEEG span. Important information is retained and integrated in the transformation of premature neonatal EEG to aEEG. aEEG recordings in high-risk premature neonates reflect reliably EEG background information related to continuity and amplitude.
Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function.
Guo, Qian; Zhou, Tiantong; Li, Wenjie; Dong, Li; Wang, Suhong; Zou, Ling
2017-07-01
Executive function refers to conscious control in psychological process which relates to thinking and action. Emotional decision is a part of hot executive function and contains emotion and logic elements. As a kind of important social adaptation ability, more and more attention has been paid in recent years. Gambling task can be well performed in the study of emotional decision. As fMRI researches focused on gambling task show not completely consistent brain activation regions, this study adopted EEG-fMRI fusion technology to reveal brain neural activity related with feedback stimuli. In this study, an EEG-informed fMRI analysis was applied to process simultaneous EEG-fMRI data. First, relative power-spectrum analysis and K-means clustering method were performed separately to extract EEG-fMRI features. Then, Generalized linear models were structured using fMRI data and using different EEG features as regressors. The results showed that in the win versus loss stimuli, the activated regions almost covered the caudate, the ventral striatum (VS), the orbital frontal cortex (OFC), and the cingulate. Wide activation areas associated with reward and punishment were revealed by the EEG-fMRI integration analysis than the conventional fMRI results, such as the posterior cingulate and the OFC. The VS and the medial prefrontal cortex (mPFC) were found when EEG power features were performed as regressors of GLM compared with results entering the amplitudes of feedback-related negativity (FRN) as regressors. Furthermore, the brain region activation intensity was the strongest when theta-band power was used as a regressor compared with the other two fusion results. The EEG-based fMRI analysis can more accurately depict the whole-brain activation map and analyze emotional decision problems.
Ping-Keng Jao; Yuan-Pin Lin; Yi-Hsuan Yang; Tzyy-Ping Jung
2015-08-01
An emerging challenge for emotion classification using electroencephalography (EEG) is how to effectively alleviate day-to-day variability in raw data. This study employed the robust principal component analysis (RPCA) to address the problem with a posed hypothesis that background or emotion-irrelevant EEG perturbations lead to certain variability across days and somehow submerge emotion-related EEG dynamics. The empirical results of this study evidently validated our hypothesis and demonstrated the RPCA's feasibility through the analysis of a five-day dataset of 12 subjects. The RPCA allowed tackling the sparse emotion-relevant EEG dynamics from the accompanied background perturbations across days. Sequentially, leveraging the RPCA-purified EEG trials from more days appeared to improve the emotion-classification performance steadily, which was not found in the case using the raw EEG features. Therefore, incorporating the RPCA with existing emotion-aware machine-learning frameworks on a longitudinal dataset of each individual may shed light on the development of a robust affective brain-computer interface (ABCI) that can alleviate ecological inter-day variability.
Reproducibility of EEG-fMRI results in a patient with fixation-off sensitivity.
Formaggio, Emanuela; Storti, Silvia Francesca; Galazzo, Ilaria Boscolo; Bongiovanni, Luigi Giuseppe; Cerini, Roberto; Fiaschi, Antonio; Manganotti, Paolo
2014-07-01
Blood oxygenation level-dependent (BOLD) activation associated with interictal epileptiform discharges in a patient with fixation-off sensitivity (FOS) was studied using a combined electroencephalography-functional magnetic resonance imaging (EEG-fMRI) technique. An automatic approach for combined EEG-fMRI analysis and a subject-specific hemodynamic response function was used to improve general linear model analysis of the fMRI data. The EEG showed the typical features of FOS, with continuous epileptiform discharges during elimination of central vision by eye opening and closing and fixation; modification of this pattern was clearly visible and recognizable. During all 3 recording sessions EEG-fMRI activations indicated a BOLD signal decrease related to epileptiform activity in the parietal areas. This study can further our understanding of this EEG phenomenon and can provide some insight into the reliability of the EEG-fMRI technique in localizing the irritative zone.
Auto-correlation in the motor/imaginary human EEG signals: A vision about the FDFA fluctuations.
Zebende, Gilney Figueira; Oliveira Filho, Florêncio Mendes; Leyva Cruz, Juan Alberto
2017-01-01
In this paper we analyzed, by the FDFA root mean square fluctuation (rms) function, the motor/imaginary human activity produced by a 64-channel electroencephalography (EEG). We utilized the Physionet on-line databank, a publicly available database of human EEG signals, as a standardized reference database for this study. Herein, we report the use of detrended fluctuation analysis (DFA) method for EEG analysis. We show that the complex time series of the EEG exhibits characteristic fluctuations depending on the analyzed channel in the scalp-recorded EEG. In order to demonstrate the effectiveness of the proposed technique, we analyzed four distinct channels represented here by F332, F637 (frontal region of the head) and P349, P654 (parietal region of the head). We verified that the amplitude of the FDFA rms function is greater for the frontal channels than for the parietal. To tabulate this information in a better way, we define and calculate the difference between FDFA (in log scale) for the channels, thus defining a new path for analysis of EEG signals. Finally, related to the studied EEG signals, we obtain the auto-correlation exponent, αDFA by DFA method, that reveals self-affinity at specific time scale. Our results shows that this strategy can be applied to study the human brain activity in EEG processing.
Non-linear Analysis of Scalp EEG by Using Bispectra: The Effect of the Reference Choice
Chella, Federico; D'Andrea, Antea; Basti, Alessio; Pizzella, Vittorio; Marzetti, Laura
2017-01-01
Bispectral analysis is a signal processing technique that makes it possible to capture the non-linear and non-Gaussian properties of the EEG signals. It has found various applications in EEG research and clinical practice, including the assessment of anesthetic depth, the identification of epileptic seizures, and more recently, the evaluation of non-linear cross-frequency brain functional connectivity. However, the validity and reliability of the indices drawn from bispectral analysis of EEG signals are potentially biased by the use of a non-neutral EEG reference. The present study aims at investigating the effects of the reference choice on the analysis of the non-linear features of EEG signals through bicoherence, as well as on the estimation of cross-frequency EEG connectivity through two different non-linear measures, i.e., the cross-bicoherence and the antisymmetric cross-bicoherence. To this end, four commonly used reference schemes were considered: the vertex electrode (Cz), the digitally linked mastoids, the average reference, and the Reference Electrode Standardization Technique (REST). The reference effects were assessed both in simulations and in a real EEG experiment. The simulations allowed to investigated: (i) the effects of the electrode density on the performance of the above references in the estimation of bispectral measures; and (ii) the effects of the head model accuracy in the performance of the REST. For real data, the EEG signals recorded from 10 subjects during eyes open resting state were examined, and the distortions induced by the reference choice in the patterns of alpha-beta bicoherence, cross-bicoherence, and antisymmetric cross-bicoherence were assessed. The results showed significant differences in the findings depending on the chosen reference, with the REST providing superior performance than all the other references in approximating the ideal neutral reference. In conclusion, this study highlights the importance of considering the effects of the reference choice in the interpretation and comparison of the results of bispectral analysis of scalp EEG. PMID:28559790
Distinctive time-lagged resting-state networks revealed by simultaneous EEG-fMRI.
Feige, Bernd; Spiegelhalder, Kai; Kiemen, Andrea; Bosch, Oliver G; Tebartz van Elst, Ludger; Hennig, Jürgen; Seifritz, Erich; Riemann, Dieter
2017-01-15
Functional activation as evidenced by blood oxygen level-dependent (BOLD) functional MRI changes or event-related EEG is known to closely follow patterns of stimulation or self-paced action. Any lags are compatible with axonal conduction velocities and neural integration times. The important analysis of resting state networks is generally based on the assumption that these principles also hold for spontaneous fluctuations in brain activity. Previous observations using simultaneous EEG and fMRI indicate that slower processes, with delays in the seconds range, determine at least part of the relationship between spontaneous EEG and fMRI. To assess this relationship systematically, we used deconvolution analysis of EEG-fMRI during the resting state, assessing the relationship between EEG frequency bands and fMRI BOLD across the whole brain while allowing for time lags of up to 10.5s. Cluster analysis, identifying similar BOLD time courses in relation to EEG band power peaks, showed a clear segregation of functional subsystems of the brain. Our analysis shows that fMRI BOLD increases commonly precede EEG power increases by seconds. Most zero-lag correlations, on the other hand, were negative. This indicates two main distinct neuromodulatory mechanisms: an "idling" mechanism of simultaneous electric and metabolic network anticorrelation and a "regulatory" mechanism in which metabolic network activity precedes increased EEG power by some seconds. This has to be taken into consideration in further studies which address the causal and functional relationship of metabolic and electric brain activity patterns. Copyright © 2016 Elsevier Inc. All rights reserved.
EEG source analysis of data from paralysed subjects
NASA Astrophysics Data System (ADS)
Carabali, Carmen A.; Willoughby, John O.; Fitzgibbon, Sean P.; Grummett, Tyler; Lewis, Trent; DeLosAngeles, Dylan; Pope, Kenneth J.
2015-12-01
One of the limitations of Encephalography (EEG) data is its quality, as it is usually contaminated with electric signal from muscle. This research intends to study results of two EEG source analysis methods applied to scalp recordings taken in paralysis and in normal conditions during the performance of a cognitive task. The aim is to determinate which types of analysis are appropriate for dealing with EEG data containing myogenic components. The data used are the scalp recordings of six subjects in normal conditions and during paralysis while performing different cognitive tasks including the oddball task which is the object of this research. The data were pre-processed by filtering it and correcting artefact, then, epochs of one second long for targets and distractors were extracted. Distributed source analysis was performed in BESA Research 6.0, using its results and information from the literature, 9 ideal locations for source dipoles were identified. The nine dipoles were used to perform discrete source analysis, fitting them to the averaged epochs for obtaining source waveforms. The results were statistically analysed comparing the outcomes before and after the subjects were paralysed. Finally, frequency analysis was performed for better explain the results. The findings were that distributed source analysis could produce confounded results for EEG contaminated with myogenic signals, conversely, statistical analysis of the results from discrete source analysis showed that this method could help for dealing with EEG data contaminated with muscle electrical signal.
Rakshasbhuvankar, Abhijeet; Rao, Shripada; Palumbo, Linda; Ghosh, Soumya; Nagarajan, Lakshmi
2017-08-01
This diagnostic accuracy study compared the accuracy of seizure detection by amplitude-integrated electroencephalography with the criterion standard conventional video EEG in term and near-term infants at risk of seizures. Simultaneous recording of amplitude-integrated EEG (2-channel amplitude-integrated EEG with raw trace) and video EEG was done for 24 hours for each infant. Amplitude-integrated EEG was interpreted by a neonatologist; video EEG was interpreted by a neurologist independently. Thirty-five infants were included in the analysis. In the 7 infants with seizures on video EEG, there were 169 seizure episodes on video EEG, of which only 57 were identified by amplitude-integrated EEG. Amplitude-integrated EEG had a sensitivity of 33.7% for individual seizure detection. Amplitude-integrated EEG had an 86% sensitivity for detection of babies with seizures; however, it was nonspecific, in that 50% of infants with seizures detected by amplitude-integrated EEG did not have true seizures by video EEG. In conclusion, our study suggests that amplitude-integrated EEG is a poor screening tool for neonatal seizures.
Topographic EEG activations during timbre and pitch discrimination tasks using musical sounds.
Auzou, P; Eustache, F; Etevenon, P; Platel, H; Rioux, P; Lambert, J; Lechevalier, B; Zarifian, E; Baron, J C
1995-01-01
Successive auditory stimulation sequences were presented binaurally to 18 young normal volunteers. Five conditions were investigated: two reference tasks, assumed to involve passive listening to couples of musical sounds, and three discrimination tasks, one dealing with pitch, and two with timbre (either with or without the attack). A symmetrical montage of 16 EEG channels was recorded for each subject across the different conditions. Two quantitative parameters of EEG activity were compared among the different sequences within five distinct frequency bands. As compared to a rest (no stimulation) condition, both passive listening conditions led to changes in primary auditory cortex areas. Both discrimination tasks for pitch and timbre led to right hemisphere EEG changes, organized in two poles: an anterior one and a posterior one. After discussing the electrophysiological aspects of this work, these results are interpreted in terms of a network including the right temporal neocortex and the right frontal lobe to maintain the acoustical information in an auditory working memory necessary to carry out the discrimination task.
Ma, Junshui; Bayram, Sevinç; Tao, Peining; Svetnik, Vladimir
2011-03-15
After a review of the ocular artifact reduction literature, a high-throughput method designed to reduce the ocular artifacts in multichannel continuous EEG recordings acquired at clinical EEG laboratories worldwide is proposed. The proposed method belongs to the category of component-based methods, and does not rely on any electrooculography (EOG) signals. Based on a concept that all ocular artifact components exist in a signal component subspace, the method can uniformly handle all types of ocular artifacts, including eye-blinks, saccades, and other eye movements, by automatically identifying ocular components from decomposed signal components. This study also proposes an improved strategy to objectively and quantitatively evaluate artifact reduction methods. The evaluation strategy uses real EEG signals to synthesize realistic simulated datasets with different amounts of ocular artifacts. The simulated datasets enable us to objectively demonstrate that the proposed method outperforms some existing methods when no high-quality EOG signals are available. Moreover, the results of the simulated datasets improve our understanding of the involved signal decomposition algorithms, and provide us with insights into the inconsistency regarding the performance of different methods in the literature. The proposed method was also applied to two independent clinical EEG datasets involving 28 volunteers and over 1000 EEG recordings. This effort further confirms that the proposed method can effectively reduce ocular artifacts in large clinical EEG datasets in a high-throughput fashion. Copyright © 2011 Elsevier B.V. All rights reserved.
Multifractal and wavelet analysis of epileptic seizures
NASA Astrophysics Data System (ADS)
Dick, Olga E.; Mochovikova, Irina A.
The aim of the study is to develop quantitative parameters of human electroencephalographic (EEG) recordings with epileptic seizures. We used long-lasting recordings from subjects with epilepsy obtained as part of their clinical investigation. The continuous wavelet transform of the EEG segments and the wavelet-transform modulus maxima method enable us to evaluate the energy spectra of the segments, to fin lines of local maximums, to gain the scaling exponents and to construct the singularity spectra. We have shown that the significant increase of the global energy with respect to background and the redistribution of the energy over the frequency range are observed in the patterns involving the epileptic activity. The singularity spectra expand so that the degree of inhomogenety and multifractality of the patterns enhances. Comparing the results gained for the patterns during different functional probes such as open and closed eyes or hyperventilation we demonstrate the high sensitivity of the analyzed parameters (the maximal global energy, the width and asymmetry of the singularity spectrum) for detecting the epileptic patterns.
Esposito, Fabrizio; Singer, Neomi; Podlipsky, Ilana; Fried, Itzhak; Hendler, Talma; Goebel, Rainer
2013-02-01
Linking regional metabolic changes with fluctuations in the local electromagnetic fields directly on the surface of the human cerebral cortex is of tremendous importance for a better understanding of detailed brain processes. Functional magnetic resonance imaging (fMRI) and intra-cranial electro-encephalography (iEEG) measure two technically unrelated but spatially and temporally complementary sets of functional descriptions of human brain activity. In order to allow fine-grained spatio-temporal human brain mapping at the population-level, an effective comparative framework for the cortex-based inter-subject analysis of iEEG and fMRI data sets is needed. We combined fMRI and iEEG recordings of the same patients with epilepsy during alternated intervals of passive movie viewing and music listening to explore the degree of local spatial correspondence and temporal coupling between blood oxygen level dependent (BOLD) fMRI changes and iEEG spectral power modulations across the cortical surface after cortex-based inter-subject alignment. To this purpose, we applied a simple model of the iEEG activity spread around each electrode location and the cortex-based inter-subject alignment procedure to transform discrete iEEG measurements into cortically distributed group patterns by establishing a fine anatomic correspondence of many iEEG cortical sites across multiple subjects. Our results demonstrate the feasibility of a multi-modal inter-subject cortex-based distributed analysis for combining iEEG and fMRI data sets acquired from multiple subjects with the same experimental paradigm but with different iEEG electrode coverage. The proposed iEEG-fMRI framework allows for improved group statistics in a common anatomical space and preserves the dynamic link between the temporal features of the two modalities. Copyright © 2012 Elsevier Inc. All rights reserved.
Using recurrence plot for determinism analysis of EEG recordings in genetic absence epilepsy rats.
Ouyang, Gaoxiang; Li, Xiaoli; Dang, Chuangyin; Richards, Douglas A
2008-08-01
Understanding the transition of brain activity towards an absence seizure is a challenging task. In this paper, we use recurrence quantification analysis to indicate the deterministic dynamics of EEG series at the seizure-free, pre-seizure and seizure states in genetic absence epilepsy rats. The determinism measure, DET, based on recurrence plot, was applied to analyse these three EEG datasets, each dataset containing 300 single-channel EEG epochs of 5-s duration. Then, statistical analysis of the DET values in each dataset was carried out to determine whether their distributions over the three groups were significantly different. Furthermore, a surrogate technique was applied to calculate the significance level of determinism measures in EEG recordings. The mean (+/-SD) DET of EEG was 0.177+/-0.045 in pre-seizure intervals. The DET values of pre-seizure EEG data are significantly higher than those of seizure-free intervals, 0.123+/-0.023, (P<0.01), but lower than those of seizure intervals, 0.392+/-0.110, (P<0.01). Using surrogate data methods, the significance of determinism in EEG epochs was present in 25 of 300 (8.3%), 181 of 300 (60.3%) and 289 of 300 (96.3%) in seizure-free, pre-seizure and seizure intervals, respectively. Results provide some first indications that EEG epochs during pre-seizure intervals exhibit a higher degree of determinism than seizure-free EEG epochs, but lower than those in seizure EEG epochs in absence epilepsy. The proposed methods have the potential of detecting the transition between normal brain activity and the absence seizure state, thus opening up the possibility of intervention, whether electrical or pharmacological, to prevent the oncoming seizure.
Analysis of the influence of memory content of auditory stimuli on the memory content of EEG signal
Namazi, Hamidreza; Kulish, Vladimir V.
2016-01-01
One of the major challenges in brain research is to relate the structural features of the auditory stimulus to structural features of Electroencephalogram (EEG) signal. Memory content is an important feature of EEG signal and accordingly the brain. On the other hand, the memory content can also be considered in case of stimulus. Beside all works done on analysis of the effect of stimuli on human EEG and brain memory, no work discussed about the stimulus memory and also the relationship that may exist between the memory content of stimulus and the memory content of EEG signal. For this purpose we consider the Hurst exponent as the measure of memory. This study reveals the plasticity of human EEG signals in relation to the auditory stimuli. For the first time we demonstrated that the memory content of an EEG signal shifts towards the memory content of the auditory stimulus used. The results of this analysis showed that an auditory stimulus with higher memory content causes a larger increment in the memory content of an EEG signal. For the verification of this result, we benefit from approximate entropy as indicator of time series randomness. The capability, observed in this research, can be further investigated in relation to human memory. PMID:27528219
Analysis of the influence of memory content of auditory stimuli on the memory content of EEG signal.
Namazi, Hamidreza; Khosrowabadi, Reza; Hussaini, Jamal; Habibi, Shaghayegh; Farid, Ali Akhavan; Kulish, Vladimir V
2016-08-30
One of the major challenges in brain research is to relate the structural features of the auditory stimulus to structural features of Electroencephalogram (EEG) signal. Memory content is an important feature of EEG signal and accordingly the brain. On the other hand, the memory content can also be considered in case of stimulus. Beside all works done on analysis of the effect of stimuli on human EEG and brain memory, no work discussed about the stimulus memory and also the relationship that may exist between the memory content of stimulus and the memory content of EEG signal. For this purpose we consider the Hurst exponent as the measure of memory. This study reveals the plasticity of human EEG signals in relation to the auditory stimuli. For the first time we demonstrated that the memory content of an EEG signal shifts towards the memory content of the auditory stimulus used. The results of this analysis showed that an auditory stimulus with higher memory content causes a larger increment in the memory content of an EEG signal. For the verification of this result, we benefit from approximate entropy as indicator of time series randomness. The capability, observed in this research, can be further investigated in relation to human memory.
[11C]Flumazenil PET in patients with epilepsy with dual pathology.
Juhász, C; Nagy, F; Muzik, O; Watson, C; Shah, J; Chugani, H T
1999-05-01
Coexistence of hippocampal sclerosis and a potentially epileptogenic cortical lesion is referred to as dual pathology and can be responsible for poor surgical outcome in patients with medically intractable partial epilepsy. [11C]Flumazenil (FMZ) positron emission tomography (PET) is a sensitive method for visualizing epileptogenic foci. In this study of 12 patients with dual pathology, we addressed the sensitivity of FMZ PET to detect hippocampal abnormalities and compared magnetic resonance imaging (MRI) with visual as well as quantitative FMZ PET findings. All patients underwent volumetric MRI, prolonged video-EEG monitoring, and glucose metabolism PET before the FMZ PET. MRI-coregistered partial volume-corrected PET images were used to measure FMZ-binding asymmetries by using asymmetry indices (AIs) in the whole hippocampus and in three (anterior, middle, and posterior) hippocampal subregions. Cortical sites of decreased FMZ binding also were evaluated by using AIs for regions with MRI-verified cortical lesions as well as for non-lesional areas with visually detected asymmetry. Abnormally decreased FMZ binding could be detected by quantitative analysis in the atrophic hippocampus of all 12 patients, including three patients with discordant or inconclusive EEG findings. Decreased FMZ binding was restricted to only one subregion of the hippocampus in three patients. Areas of decreased cortical FMZ binding were obvious visually in all patients. Decreased FMZ binding was detected visually in nonlesional cortical areas in four patients. The AIs for these nonlesional regions with visual asymmetry were significantly lower than those for regions showing MRI lesions (paired t test, p = 0.0075). Visual as well as quantitative analyses of FMZ-binding asymmetry are sensitive methods to detect decreased benzodiazepine-receptor binding in the hippocampus and neocortex of patients with dual pathology. MRI-defined hippocampal atrophy is always associated with decreased FMZ binding, although the latter may be localized to only one sub-region within the hippocampus. FMZ PET abnormalities can occur in areas with normal appearance on MRI, but FMZ-binding asymmetry of these regions is lower when compared with that of lesional areas. FMZ PET can be especially helpful when MRI and EEG findings of patients with intractable epilepsy are discordant.
A Removal of Eye Movement and Blink Artifacts from EEG Data Using Morphological Component Analysis
Wagatsuma, Hiroaki
2017-01-01
EEG signals contain a large amount of ocular artifacts with different time-frequency properties mixing together in EEGs of interest. The artifact removal has been substantially dealt with by existing decomposition methods known as PCA and ICA based on the orthogonality of signal vectors or statistical independence of signal components. We focused on the signal morphology and proposed a systematic decomposition method to identify the type of signal components on the basis of sparsity in the time-frequency domain based on Morphological Component Analysis (MCA), which provides a way of reconstruction that guarantees accuracy in reconstruction by using multiple bases in accordance with the concept of “dictionary.” MCA was applied to decompose the real EEG signal and clarified the best combination of dictionaries for this purpose. In our proposed semirealistic biological signal analysis with iEEGs recorded from the brain intracranially, those signals were successfully decomposed into original types by a linear expansion of waveforms, such as redundant transforms: UDWT, DCT, LDCT, DST, and DIRAC. Our result demonstrated that the most suitable combination for EEG data analysis was UDWT, DST, and DIRAC to represent the baseline envelope, multifrequency wave-forms, and spiking activities individually as representative types of EEG morphologies. PMID:28194221
Liu, Quanying; Ganzetti, Marco; Wenderoth, Nicole; Mantini, Dante
2018-01-01
Resting state networks (RSNs) in the human brain were recently detected using high-density electroencephalography (hdEEG). This was done by using an advanced analysis workflow to estimate neural signals in the cortex and to assess functional connectivity (FC) between distant cortical regions. FC analyses were conducted either using temporal (tICA) or spatial independent component analysis (sICA). Notably, EEG-RSNs obtained with sICA were very similar to RSNs retrieved with sICA from functional magnetic resonance imaging data. It still remains to be clarified, however, what technological aspects of hdEEG acquisition and analysis primarily influence this correspondence. Here we examined to what extent the detection of EEG-RSN maps by sICA depends on the electrode density, the accuracy of the head model, and the source localization algorithm employed. Our analyses revealed that the collection of EEG data using a high-density montage is crucial for RSN detection by sICA, but also the use of appropriate methods for head modeling and source localization have a substantial effect on RSN reconstruction. Overall, our results confirm the potential of hdEEG for mapping the functional architecture of the human brain, and highlight at the same time the interplay between acquisition technology and innovative solutions in data analysis. PMID:29551969
Dynamics of large-scale brain activity in normal arousal states and epileptic seizures
NASA Astrophysics Data System (ADS)
Robinson, P. A.; Rennie, C. J.; Rowe, D. L.
2002-04-01
Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms-mainly slow wave, delta, theta, alpha, and sleep spindle-with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.
Imperatori, Claudio; Farina, Benedetto; Quintiliani, Maria Isabella; Onofri, Antonio; Castelli Gattinara, Paola; Lepore, Marta; Gnoni, Valentina; Mazzucchi, Edoardo; Contardi, Anna; Della Marca, Giacomo
2014-10-01
The aim of the present study was to explore the modifications of EEG power spectra and EEG connectivity of resting state (RS) condition in patients with post-traumatic stress disorder (PTSD). Seventeen patients and seventeen healthy subjects matched for age and gender were enrolled. EEG was recorded during 5min of RS. EEG analysis was conducted by means of the standardized Low Resolution Electric Tomography software (sLORETA). In power spectra analysis PTSD patients showed a widespread increase of theta activity (4.5-7.5Hz) in parietal lobes (Brodmann Area, BA 7, 4, 5, 40) and in frontal lobes (BA 6). In the connectivity analysis PTSD patients also showed increase of alpha connectivity (8-12.5Hz) between the cortical areas explored by Pz-P4 electrode. Our results could reflect the alteration of memory systems and emotional processing consistently altered in PTSD patients. Copyright © 2014 Elsevier B.V. All rights reserved.
PyEEG: an open source Python module for EEG/MEG feature extraction.
Bao, Forrest Sheng; Liu, Xin; Zhang, Christina
2011-01-01
Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction.
PyEEG: An Open Source Python Module for EEG/MEG Feature Extraction
Bao, Forrest Sheng; Liu, Xin; Zhang, Christina
2011-01-01
Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction. PMID:21512582
A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies
Puce, Aina; Hämäläinen, Matti S.
2017-01-01
Electroencephalography (EEG) and magnetoencephalography (MEG) are non-invasive electrophysiological methods, which record electric potentials and magnetic fields due to electric currents in synchronously-active neurons. With MEG being more sensitive to neural activity from tangential currents and EEG being able to detect both radial and tangential sources, the two methods are complementary. Over the years, neurophysiological studies have changed considerably: high-density recordings are becoming de rigueur; there is interest in both spontaneous and evoked activity; and sophisticated artifact detection and removal methods are available. Improved head models for source estimation have also increased the precision of the current estimates, particularly for EEG and combined EEG/MEG. Because of their complementarity, more investigators are beginning to perform simultaneous EEG/MEG studies to gain more complete information about neural activity. Given the increase in methodological complexity in EEG/MEG, it is important to gather data that are of high quality and that are as artifact free as possible. Here, we discuss some issues in data acquisition and analysis of EEG and MEG data. Practical considerations for different types of EEG and MEG studies are also discussed. PMID:28561761
Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis
Gajic, Dragoljub; Djurovic, Zeljko; Gligorijevic, Jovan; Di Gennaro, Stefano; Savic-Gajic, Ivana
2015-01-01
We present a new technique for detection of epileptiform activity in EEG signals. After preprocessing of EEG signals we extract representative features in time, frequency and time-frequency domain as well as using non-linear analysis. The features are extracted in a few frequency sub-bands of clinical interest since these sub-bands showed much better discriminatory characteristics compared with the whole frequency band. Then we optimally reduce the dimension of feature space to two using scatter matrices. A decision about the presence of epileptiform activity in EEG signals is made by quadratic classifiers designed in the reduced two-dimensional feature space. The accuracy of the technique was tested on three sets of electroencephalographic (EEG) signals recorded at the University Hospital Bonn: surface EEG signals from healthy volunteers, intracranial EEG signals from the epilepsy patients during the seizure free interval from within the seizure focus and intracranial EEG signals of epileptic seizures also from within the seizure focus. An overall detection accuracy of 98.7% was achieved. PMID:25852534
ERIC Educational Resources Information Center
Gow, David W., Jr.; Keller, Corey J.; Eskandar, Emad; Meng, Nate; Cash, Sydney S.
2009-01-01
In this work, we apply Granger causality analysis to high spatiotemporal resolution intracranial EEG (iEEG) data to examine how different components of the left perisylvian language network interact during spoken language perception. The specific focus is on the characterization of serial versus parallel processing dependencies in the dominant…
Pilge, Stefanie; Kreuzer, Matthias; Karatchiviev, Veliko; Kochs, Eberhard F; Malcharek, Michael; Schneider, Gerhard
2015-05-01
It is claimed that bispectral index (BIS) and state entropy reflect an identical clinical spectrum, the hypnotic component of anaesthesia. So far, it is not known to what extent different devices display similar index values while processing identical electroencephalogram (EEG) signals. To compare BIS and state entropy during analysis of identical EEG data. Inspection of raw EEG input to detect potential causes of erroneous index calculation. Offline re-analysis of EEG data from a randomised, single-centre controlled trial using the Entropy Module and an Aspect A-2000 monitor. Klinikum rechts der Isar, Technische Universität München, Munich. Forty adult patients undergoing elective surgery under general anaesthesia. Blocked randomisation of 20 patients per anaesthetic group (sevoflurane/remifentanil or propofol/remifentanil). Isolated forearm technique for differentiation between consciousness and unconsciousness. Prediction probability (PK) of state entropy to discriminate consciousness from unconsciousness. Correlation and agreement between state entropy and BIS from deep to light hypnosis. Analysis of raw EEG compared with index values that are in conflict with clinical examination, with frequency measures (frequency bands/Spectral Edge Frequency 95) and visual inspection for physiological EEG patterns (e.g. beta or delta arousal), pathophysiological features such as high-frequency signals (electromyogram/high-frequency EEG or eye fluttering/saccades), different types of electro-oculogram or epileptiform EEG and technical artefacts. PK of state entropy was 0.80 and of BIS 0.84; correlation coefficient of state entropy with BIS 0.78. Nine percent BIS and 14% state entropy values disagreed with clinical examination. Highest incidence of disagreement occurred after state transitions, in particular for state entropy after loss of consciousness during sevoflurane anaesthesia. EEG sequences which led to false 'conscious' index values often showed high-frequency signals and eye blinks. High-frequency EEG/electromyogram signals were pooled because a separation into EEG and fast electro-oculogram, for example eye fluttering or saccades, on the basis of a single EEG channel may not be very reliable. These signals led to higher Spectral Edge Frequency 95 and ratio of relative beta and gamma band power than EEG signals, indicating adequate unconscious classification. The frequency of other artefacts that were assignable, for example technical artefacts, movement artefacts, was negligible and they were excluded from analysis. High-frequency signals and eye blinks may account for index values that falsely indicate consciousness. Compared with BIS, state entropy showed more false classifications of the clinical state at transition between consciousness and unconsciousness.
[EEG-correlates of pilots' functional condition in simulated flight dynamics].
Kiroy, V N; Aslanyan, E V; Bakhtin, O M; Minyaeva, N R; Lazurenko, D M
2015-01-01
The spectral characteristics of the EEG recorded on two professional pilots in the simulator TU-154 aircraft in flight dynamics, including takeoff, landing and horizontal flight (in particular during difficult conditions) were analyzed. EEG recording was made with frequency band 0.1-70 Hz continuously from 15 electrodes. The EEG recordings were evaluated using analysis of variance and discriminant analysis. Statistical significant of the identified differences and the influence of the main factors and their interactions were evaluated using Greenhouse - Gaiser corrections. It was shown that the spectral characteristics of the EEG are highly informative features of the state of the pilots, reflecting the different flight phases. High validity ofthe differences including individual characteristic, indicates their non-random nature and the possibility of constructing a system of pilots' state control during all phases of flight, based on EEG features.
Geometric subspace methods and time-delay embedding for EEG artifact removal and classification.
Anderson, Charles W; Knight, James N; O'Connor, Tim; Kirby, Michael J; Sokolov, Artem
2006-06-01
Generalized singular-value decomposition is used to separate multichannel electroencephalogram (EEG) into components found by optimizing a signal-to-noise quotient. These components are used to filter out artifacts. Short-time principal components analysis of time-delay embedded EEG is used to represent windowed EEG data to classify EEG according to which mental task is being performed. Examples are presented of the filtering of various artifacts and results are shown of classification of EEG from five mental tasks using committees of decision trees.
NASA Astrophysics Data System (ADS)
Grubov, V. V.; Runnova, A. E.; Hramov, A. E.
2018-05-01
A new method for adaptive filtration of experimental EEG signals in humans and for removal of different physiological artifacts has been proposed. The algorithm of the method includes empirical mode decomposition of EEG, determination of the number of empirical modes that are considered, analysis of the empirical modes and search for modes that contains artifacts, removal of these modes, and reconstruction of the EEG signal. The method was tested on experimental human EEG signals and demonstrated high efficiency in the removal of different types of physiological EEG artifacts.
Nanavati, Tania; Seemaladinne, Nirupama; Regier, Michael; Yossuck, Panitan; Pergami, Paola
2015-01-01
Background Neonatal hypoxic ischemic encephalopathy (HIE) is a major cause of mortality, morbidity, and long-term neurological deficits. Despite the availability of neuroimaging and neurophysiological testing, tools for accurate early diagnosis and prediction of developmental outcome are still lacking. The goal of this study was to determine if combined use of magnetic resonance imaging (MRI) and electroencephalography (EEG) findings could support outcome prediction. Methods We retrospectively reviewed records of 17 HIE neonates, classified brain MRI and EEG findings based on severity, and assessed clinical outcome up to 48 months. We determined the relation between MRI/EEG findings and clinical outcome. Results We demonstrated a significant relationship between MRI findings and clinical outcome (Fisher’s exact test, p = 0.017). EEG provided no additional information about the outcome beyond that contained in the MRI score. The statistical model for outcome prediction based on random forests suggested that EEG readings at 24 hours and 72 hours could be important variables for outcome prediction, but this needs to be investigated further. Conclusion Caution should be used when discussing prognosis for neonates with mild-to-moderate HIE based on early MR imaging and EEG findings. A robust, quantitative marker of HIE severity that allows for accurate prediction of long-term outcome, particularly for mild-to-moderate cases, is still needed. PMID:25862075
[The changes of EEG correlation synchrony at depressive disorder of psychogenic type].
Kulaichev, A P; Iznak, A F; Iznak, E V; Kornilov, V V; Sorokin, S A
2014-01-01
In this work we use the alternative method of assessing the EEG-synchrony which previously has proved its high sensitivity to the differentiation of psychopathological and functional states. The original recording of EEG had been performed in the state of quiet wakefulness with eyes closed for two groups of examinees/patients at the age of 49-82 years: a group of normal subjects (n = 29) and the group of subjects with depressive deviations of F43.21 category according to ICD-10 (n = 51). As a result of research it is received the comprehensive picture of significant topographical, interhemispheric and regional differences between groups of norm and depression. One of basic features of the obtained integrated picture is existence at a depression of the extended zones of reduced EEG-synchrony covering the entire premedial region in the frontal-occiptal direction, including intrahemispheric connections as well as lateral frontal-temporal connections in both hemispheres. It testifies to the deep deprivation with depression frontal-occipital and interhemispheric interaction. As a compensatory reaction during depression the increase of synchrony in axial aimed intrahemispheric pairs of derivations. It is noted the similarity of changes in EEG-synchrony topography of depression to those observed in schizophrenia. The used method has provided close to 100% reliability of the classification of the EEG norms and depressive deviations, which makes possible and promising its use as an auxiliary quantitative differential indicator.
Real-time segmentation of burst suppression patterns in critical care EEG monitoring
Westover, M. Brandon; Shafi, Mouhsin M.; Ching, ShiNung; Chemali, Jessica J.; Purdon, Patrick L.; Cash, Sydney S.; Brown, Emery N.
2014-01-01
Objective Develop a real-time algorithm to automatically discriminate suppressions from non-suppressions (bursts) in electroencephalograms of critically ill adult patients. Methods A real-time method for segmenting adult ICU EEG data into bursts and suppressions is presented based on thresholding local voltage variance. Results are validated against manual segmentations by two experienced human electroencephalographers. We compare inter-rater agreement between manual EEG segmentations by experts with inter-rater agreement between human vs automatic segmentations, and investigate the robustness of segmentation quality to variations in algorithm parameter settings. We further compare the results of using these segmentations as input for calculating the burst suppression probability (BSP), a continuous measure of depth-of-suppression. Results Automated segmentation was comparable to manual segmentation, i.e. algorithm-vs-human agreement was comparable to human-vs-human agreement, as judged by comparing raw EEG segmentations or the derived BSP signals. Results were robust to modest variations in algorithm parameter settings. Conclusions Our automated method satisfactorily segments burst suppression data across a wide range adult ICU EEG patterns. Performance is comparable to or exceeds that of manual segmentation by human electroencephalographers. Significance Automated segmentation of burst suppression EEG patterns is an essential component of quantitative brain activity monitoring in critically ill and anesthetized adults. The segmentations produced by our algorithm provide a basis for accurate tracking of suppression depth. PMID:23891828
Real-time segmentation of burst suppression patterns in critical care EEG monitoring.
Brandon Westover, M; Shafi, Mouhsin M; Ching, Shinung; Chemali, Jessica J; Purdon, Patrick L; Cash, Sydney S; Brown, Emery N
2013-09-30
Develop a real-time algorithm to automatically discriminate suppressions from non-suppressions (bursts) in electroencephalograms of critically ill adult patients. A real-time method for segmenting adult ICU EEG data into bursts and suppressions is presented based on thresholding local voltage variance. Results are validated against manual segmentations by two experienced human electroencephalographers. We compare inter-rater agreement between manual EEG segmentations by experts with inter-rater agreement between human vs automatic segmentations, and investigate the robustness of segmentation quality to variations in algorithm parameter settings. We further compare the results of using these segmentations as input for calculating the burst suppression probability (BSP), a continuous measure of depth-of-suppression. Automated segmentation was comparable to manual segmentation, i.e. algorithm-vs-human agreement was comparable to human-vs-human agreement, as judged by comparing raw EEG segmentations or the derived BSP signals. Results were robust to modest variations in algorithm parameter settings. Our automated method satisfactorily segments burst suppression data across a wide range adult ICU EEG patterns. Performance is comparable to or exceeds that of manual segmentation by human electroencephalographers. Automated segmentation of burst suppression EEG patterns is an essential component of quantitative brain activity monitoring in critically ill and anesthetized adults. The segmentations produced by our algorithm provide a basis for accurate tracking of suppression depth. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Gang; Teng, Chaolin; Li, Kuo; Zhang, Zhonglin; Yan, Xiangguo
2016-09-01
The recorded electroencephalography (EEG) signals are usually contaminated by electrooculography (EOG) artifacts. In this paper, by using independent component analysis (ICA) and multivariate empirical mode decomposition (MEMD), the ICA-based MEMD method was proposed to remove EOG artifacts (EOAs) from multichannel EEG signals. First, the EEG signals were decomposed by the MEMD into multiple multivariate intrinsic mode functions (MIMFs). The EOG-related components were then extracted by reconstructing the MIMFs corresponding to EOAs. After performing the ICA of EOG-related signals, the EOG-linked independent components were distinguished and rejected. Finally, the clean EEG signals were reconstructed by implementing the inverse transform of ICA and MEMD. The results of simulated and real data suggested that the proposed method could successfully eliminate EOAs from EEG signals and preserve useful EEG information with little loss. By comparing with other existing techniques, the proposed method achieved much improvement in terms of the increase of signal-to-noise and the decrease of mean square error after removing EOAs.
Local and Widely Distributed EEG Activity in Schizophrenia With Prevalence of Negative Symptoms.
Grin-Yatsenko, Vera A; Ponomarev, Valery A; Pronina, Marina V; Poliakov, Yury I; Plotnikova, Irina V; Kropotov, Juri D
2017-09-01
We evaluated EEG frequency abnormalities in resting state (eyes closed and eyes open) EEG in a group of chronic schizophrenia patients as compared with healthy subjects. The study included 3 methods of analysis of deviation of EEG characteristics: genuine EEG, current source density (CSD), and group independent component (gIC). All 3 methods have shown that the EEG in schizophrenia patients is characterized by enhanced low-frequency (delta and theta) and high-frequency (beta) activity in comparison with the control group. However, the spatial pattern of differences was dependent on the type of method used. Comparative analysis has shown that increased EEG power in schizophrenia patients apparently concerns both widely spatially distributed components and local components of signal. Furthermore, the observed differences in the delta and theta range can be described mainly by the local components, and those in the beta range mostly by spatially widely distributed ones. The possible nature of the widely distributed activity is discussed.
Embedding Dimension Selection for Adaptive Singular Spectrum Analysis of EEG Signal.
Xu, Shanzhi; Hu, Hai; Ji, Linhong; Wang, Peng
2018-02-26
The recorded electroencephalography (EEG) signal is often contaminated with different kinds of artifacts and noise. Singular spectrum analysis (SSA) is a powerful tool for extracting the brain rhythm from a noisy EEG signal. By analyzing the frequency characteristics of the reconstructed component (RC) and the change rate in the trace of the Toeplitz matrix, it is demonstrated that the embedding dimension is related to the frequency bandwidth of each reconstructed component, in consistence with the component mixing in the singular value decomposition step. A method for selecting the embedding dimension is thereby proposed and verified by simulated EEG signal based on the Markov Process Amplitude (MPA) EEG Model. Real EEG signal is also collected from the experimental subjects under both eyes-open and eyes-closed conditions. The experimental results show that based on the embedding dimension selection method, the alpha rhythm can be extracted from the real EEG signal by the adaptive SSA, which can be effectively utilized to distinguish between the eyes-open and eyes-closed states.
A quantitative evaluation of dry-sensor electroencephalography
NASA Astrophysics Data System (ADS)
Uy, E. Timothy
Neurologists, neuroscientists, and experimental psychologists study electrical activity within the brain by recording voltage fluctuations at the scalp. This is electroencephalography (EEG). In conventional or "wet" EEG, scalp abrasion and use of electrolytic paste are required to insure good electrical connection between sensor and skin. Repeated abrasion quickly becomes irritating to subjects, severely limiting the number and frequency of sessions. Several groups have produced "dry" EEG sensors that do not require abrasion or conductive paste. These, in addition to sidestepping the issue of abrasion, promise to reduce setup time from about 30 minutes with a technician to less than 30 seconds without one. The availability of such an instrument would (1) reduce the cost of brain-related medical care, (2) lower the barrier of entry on brain experimentation, and (3) allow individual subjects to contribute substantially more data without fear of abrasion or fatigue. Accuracy of the EEG is paramount in the medical diagnosis of epilepsy, in experimental psychology and in the burgeoning field of brain-computer interface. Without a sufficiently accurate measurement, the advantages of dry sensors remain a moot point. However, even after nearly a decade, demonstrations of dry EEG accuracy with respect to wet have been limited to visual comparison of short snippets of spontaneous EEG, averaged event-related potentials or plots of power spectrum. In this dissertation, I propose a detailed methodology based on single-trial EEG classification for comparing dry EEG sensors to their wet counterparts. Applied to a set of commercially fabricated dry sensors, this work reveals that dry sensors can perform as well their wet counterparts with careful screening and attention to the bandwidth of interest.
Yang, Qinglin; Su, Yingying; Hussain, Mohammed; Chen, Weibi; Ye, Hong; Gao, Daiquan; Tian, Fei
2014-05-01
Burst suppression ratio (BSR) is a quantitative electroencephalography (qEEG) parameter. The purpose of our study was to compare the accuracy of BSR when compared to other EEG parameters in predicting poor outcomes in adults who sustained post-anoxic coma while not being subjected to therapeutic hypothermia. EEG was registered and recorded at least once within 7 days of post-anoxic coma onset. Electrodes were placed according to the international 10-20 system, using a 16-channel layout. Each EEG expert scored raw EEG using a grading scale adapted from Young and scored amplitude-integrated electroencephalography tracings, in addition to obtaining qEEG parameters defined as BSR with a defined threshold. Glasgow outcome scales of 1 and 2 at 3 months, determined by two blinded neurologists, were defined as poor outcome. Sixty patients with Glasgow coma scale score of 8 or less after anoxic accident were included. The sensitivity (97.1%), specificity (73.3%), positive predictive value (82.5%), and negative prediction value (95.0%) of BSR in predicting poor outcome were higher than other EEG variables. BSR1 and BSR2 were reliable in predicting death (area under the curve > 0.8, P < 0.05), with the respective cutoff points being 39.8% and 61.6%. BSR1 was reliable in predicting poor outcome (area under the curve = 0.820, P < 0.05) with a cutoff point of 23.9%. BSR1 was also an independent predictor of increased risk of death (odds ratio = 1.042, 95% confidence intervals: 1.012-1.073, P = 0.006). BSR may be a better predictor in prognosticating poor outcomes in patients with post-anoxic coma who do not undergo therapeutic hypothermia when compared to other qEEG parameters.
NASA Astrophysics Data System (ADS)
Pavlov, Alexey N.; Runnova, Anastasiya E.; Maksimenko, Vladimir A.; Grishina, Daria S.; Hramov, Alexander E.
2018-02-01
Authentic recognition of specific patterns of electroencephalograms (EEGs) associated with real and imagi- nary movements is an important stage for the development of brain-computer interfaces. In experiments with untrained participants, the ability to detect the motor-related brain activity based on the multichannel EEG processing is demonstrated. Using the detrended fluctuation analysis, changes in the EEG patterns during the imagination of hand movements are reported. It is discussed how the ability to recognize brain activity related to motor executions depends on the electrode position.
Muthuraman, Muthuraman; Hellriegel, Helge; Hoogenboom, Nienke; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Krause, Holger; Schnitzler, Alfons; Deuschl, Günther; Raethjen, Jan
2014-01-01
Electroencephalography (EEG) and magnetoencephalography (MEG) are the two modalities for measuring neuronal dynamics at a millisecond temporal resolution. Different source analysis methods, to locate the dipoles in the brain from which these dynamics originate, have been readily applied to both modalities alone. However, direct comparisons and possible advantages of combining both modalities have rarely been assessed during voluntary movements using coherent source analysis. In the present study, the cortical and sub-cortical network of coherent sources at the finger tapping task frequency (2-4 Hz) and the modes of interaction within this network were analysed in 15 healthy subjects using a beamformer approach called the dynamic imaging of coherent sources (DICS) with subsequent source signal reconstruction and renormalized partial directed coherence analysis (RPDC). MEG and EEG data were recorded simultaneously allowing the comparison of each of the modalities separately to that of the combined approach. We found the identified network of coherent sources for the finger tapping task as described in earlier studies when using only the MEG or combined MEG+EEG whereas the EEG data alone failed to detect single sub-cortical sources. The signal-to-noise ratio (SNR) level of the coherent rhythmic activity at the tapping frequency in MEG and combined MEG+EEG data was significantly higher than EEG alone. The functional connectivity analysis revealed that the combined approach had more active connections compared to either of the modalities during the finger tapping (FT) task. These results indicate that MEG is superior in the detection of deep coherent sources and that the SNR seems to be more vital than the sensitivity to theoretical dipole orientation and the volume conduction effect in the case of EEG.
Muthuraman, Muthuraman; Hellriegel, Helge; Hoogenboom, Nienke; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Krause, Holger; Schnitzler, Alfons; Deuschl, Günther; Raethjen, Jan
2014-01-01
Electroencephalography (EEG) and magnetoencephalography (MEG) are the two modalities for measuring neuronal dynamics at a millisecond temporal resolution. Different source analysis methods, to locate the dipoles in the brain from which these dynamics originate, have been readily applied to both modalities alone. However, direct comparisons and possible advantages of combining both modalities have rarely been assessed during voluntary movements using coherent source analysis. In the present study, the cortical and sub-cortical network of coherent sources at the finger tapping task frequency (2–4 Hz) and the modes of interaction within this network were analysed in 15 healthy subjects using a beamformer approach called the dynamic imaging of coherent sources (DICS) with subsequent source signal reconstruction and renormalized partial directed coherence analysis (RPDC). MEG and EEG data were recorded simultaneously allowing the comparison of each of the modalities separately to that of the combined approach. We found the identified network of coherent sources for the finger tapping task as described in earlier studies when using only the MEG or combined MEG+EEG whereas the EEG data alone failed to detect single sub-cortical sources. The signal-to-noise ratio (SNR) level of the coherent rhythmic activity at the tapping frequency in MEG and combined MEG+EEG data was significantly higher than EEG alone. The functional connectivity analysis revealed that the combined approach had more active connections compared to either of the modalities during the finger tapping (FT) task. These results indicate that MEG is superior in the detection of deep coherent sources and that the SNR seems to be more vital than the sensitivity to theoretical dipole orientation and the volume conduction effect in the case of EEG. PMID:24618596
Aydin, Ümit; Vorwerk, Johannes; Küpper, Philipp; Heers, Marcel; Kugel, Harald; Galka, Andreas; Hamid, Laith; Wellmer, Jörg; Kellinghaus, Christoph; Rampp, Stefan; Wolters, Carsten Hermann
2014-01-01
To increase the reliability for the non-invasive determination of the irritative zone in presurgical epilepsy diagnosis, we introduce here a new experimental and methodological source analysis pipeline that combines the complementary information in EEG and MEG, and apply it to data from a patient, suffering from refractory focal epilepsy. Skull conductivity parameters in a six compartment finite element head model with brain anisotropy, constructed from individual MRI data, are estimated in a calibration procedure using somatosensory evoked potential (SEP) and field (SEF) data. These data are measured in a single run before acquisition of further runs of spontaneous epileptic activity. Our results show that even for single interictal spikes, volume conduction effects dominate over noise and need to be taken into account for accurate source analysis. While cerebrospinal fluid and brain anisotropy influence both modalities, only EEG is sensitive to skull conductivity and conductivity calibration significantly reduces the difference in especially depth localization of both modalities, emphasizing its importance for combining EEG and MEG source analysis. On the other hand, localization differences which are due to the distinct sensitivity profiles of EEG and MEG persist. In case of a moderate error in skull conductivity, combined source analysis results can still profit from the different sensitivity profiles of EEG and MEG to accurately determine location, orientation and strength of the underlying sources. On the other side, significant errors in skull modeling are reflected in EEG reconstruction errors and could reduce the goodness of fit to combined datasets. For combined EEG and MEG source analysis, we therefore recommend calibrating skull conductivity using additionally acquired SEP/SEF data. PMID:24671208
Gjoneska, Biljana; Markovska-Simoska, Simona; Hinrikus, Hiie; Pop-Jordanova, Nada; Pop-Jordanov, Jordan
2015-01-01
Covering a handful of decades but spanning across two centuries, mobile phones announced the dawn of the technological revolution, standing at the forefront as its' most prominent symbol. Over the course of their sovereign dominance, human generations born with the birth of the mobile phone reached the age of maturity, while scientific community started reaching for experience-based perceptivity. The following review serves as a short-cut across a half-decade old research gap, and a clear-cut analysis on the cutting-edge knowledge of the EMF induced EEG changes. The selection covers 28 articles about mobile phone effects on resting wakeful EEG in humans conducted over the last two decades, across three continents and 12 countries, of which 75% had positive findings. At present, the general protocol of a typical study includes investigations on adults (20-60 yrs) grouped in smaller samples and exposed to shorter intervals of GSM-like pulse-modulated signal (10-30 subjects/minutes). The assessment usually involves linear methods for quantitative analysis, while the results mostly revolve around posterior increase in alpha and beta frequency range. The qualitative variations, however, remain open to interpretation. Future research may benefit from multiplication of sub-specific studies leading to replication of more consistent results. The long-term and large-size epidemiologic studies, stratified by age and gender, may also improve the expected outcomes. Regarding the interpretation, non-linear methods could be employed for assessment of individual variations. The emphasis should be placed on theories/measures for better understanding of the subtle interplay between the spectral individualities and mobile phone radiation specifics.
EEG analysis of seizure patterns using visibility graphs for detection of generalized seizures.
Wang, Lei; Long, Xi; Arends, Johan B A M; Aarts, Ronald M
2017-10-01
The traditional EEG features in the time and frequency domain show limited seizure detection performance in the epileptic population with intellectual disability (ID). In addition, the influence of EEG seizure patterns on detection performance was less studied. A single-channel EEG signal can be mapped into visibility graphs (VGS), including basic visibility graph (VG), horizontal VG (HVG), and difference VG (DVG). These graphs were used to characterize different EEG seizure patterns. To demonstrate its effectiveness in identifying EEG seizure patterns and detecting generalized seizures, EEG recordings of 615h on one EEG channel from 29 epileptic patients with ID were analyzed. A novel feature set with discriminative power for seizure detection was obtained by using the VGS method. The degree distributions (DDs) of DVG can clearly distinguish EEG of each seizure pattern. The degree entropy and power-law degree power in DVG were proposed here for the first time, and they show significant difference between seizure and non-seizure EEG. The connecting structure measured by HVG can better distinguish seizure EEG from background than those by VG and DVG. A traditional EEG feature set based on frequency analysis was used here as a benchmark feature set. With a support vector machine (SVM) classifier, the seizure detection performance of the benchmark feature set (sensitivity of 24%, FD t /h of 1.8s) can be improved by combining our proposed VGS features extracted from one EEG channel (sensitivity of 38%, FD t /h of 1.4s). The proposed VGS-based features can help improve seizure detection for ID patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Mannan, Malik M Naeem; Jeong, Myung Y; Kamran, Muhammad A
2016-01-01
Electroencephalography (EEG) is a portable brain-imaging technique with the advantage of high-temporal resolution that can be used to record electrical activity of the brain. However, it is difficult to analyze EEG signals due to the contamination of ocular artifacts, and which potentially results in misleading conclusions. Also, it is a proven fact that the contamination of ocular artifacts cause to reduce the classification accuracy of a brain-computer interface (BCI). It is therefore very important to remove/reduce these artifacts before the analysis of EEG signals for applications like BCI. In this paper, a hybrid framework that combines independent component analysis (ICA), regression and high-order statistics has been proposed to identify and eliminate artifactual activities from EEG data. We used simulated, experimental and standard EEG signals to evaluate and analyze the effectiveness of the proposed method. Results demonstrate that the proposed method can effectively remove ocular artifacts as well as it can preserve the neuronal signals present in EEG data. A comparison with four methods from literature namely ICA, regression analysis, wavelet-ICA (wICA), and regression-ICA (REGICA) confirms the significantly enhanced performance and effectiveness of the proposed method for removal of ocular activities from EEG, in terms of lower mean square error and mean absolute error values and higher mutual information between reconstructed and original EEG.
Mannan, Malik M. Naeem; Jeong, Myung Y.; Kamran, Muhammad A.
2016-01-01
Electroencephalography (EEG) is a portable brain-imaging technique with the advantage of high-temporal resolution that can be used to record electrical activity of the brain. However, it is difficult to analyze EEG signals due to the contamination of ocular artifacts, and which potentially results in misleading conclusions. Also, it is a proven fact that the contamination of ocular artifacts cause to reduce the classification accuracy of a brain-computer interface (BCI). It is therefore very important to remove/reduce these artifacts before the analysis of EEG signals for applications like BCI. In this paper, a hybrid framework that combines independent component analysis (ICA), regression and high-order statistics has been proposed to identify and eliminate artifactual activities from EEG data. We used simulated, experimental and standard EEG signals to evaluate and analyze the effectiveness of the proposed method. Results demonstrate that the proposed method can effectively remove ocular artifacts as well as it can preserve the neuronal signals present in EEG data. A comparison with four methods from literature namely ICA, regression analysis, wavelet-ICA (wICA), and regression-ICA (REGICA) confirms the significantly enhanced performance and effectiveness of the proposed method for removal of ocular activities from EEG, in terms of lower mean square error and mean absolute error values and higher mutual information between reconstructed and original EEG. PMID:27199714
Rossetti, Franco; Rodrigues, Marcelo Cairrão Araújo; Marroni, Simone S; Fernandes, Artur; Foresti, Maira Licia; Romcy-Pereira, Rodrigo N; de Araújo, Dráulio Barros; Garcia-Cairasco, Norberto
2012-08-01
The role of the substantia nigra pars reticulata (SNPr) and superior colliculus (SC) network in rat strains susceptible to audiogenic seizures still remain underexplored in epileptology. In a previous study from our laboratory, the GABAergic drugs bicuculline (BIC) and muscimol (MUS) were microinjected into the deep layers of either the anterior SC (aSC) or the posterior SC (pSC) in animals of the Wistar audiogenic rat (WAR) strain submitted to acoustic stimulation, in which simultaneous electroencephalographic (EEG) recording of the aSC, pSC, SNPr and striatum was performed. Only MUS microinjected into the pSC blocked audiogenic seizures. In the present study, we expanded upon these previous results using the retrograde tracer Fluorogold (FG) microinjected into the aSC and pSC in conjunction with quantitative EEG analysis (wavelet transform), in the search for mechanisms associated with the susceptibility of this inbred strain to acoustic stimulation. Our hypothesis was that the WAR strain would have different connectivity between specific subareas of the superior colliculus and the SNPr when compared with resistant Wistar animals and that these connections would lead to altered behavior of this network during audiogenic seizures. Wavelet analysis showed that the only treatment with an anticonvulsant effect was MUS microinjected into the pSC region, and this treatment induced a sustained oscillation in the theta band only in the SNPr and in the pSC. These data suggest that in WAR animals, there are at least two subcortical loops and that the one involved in audiogenic seizure susceptibility appears to be the pSC-SNPr circuit. We also found that WARs presented an increase in the number of FG+ projections from the posterior SNPr to both the aSC and pSC (primarily to the pSC), with both acting as proconvulsant nuclei when compared with Wistar rats. We concluded that these two different subcortical loops within the basal ganglia are probably a consequence of the WAR genetic background. Copyright © 2012 Elsevier Inc. All rights reserved.
What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study
NASA Astrophysics Data System (ADS)
Marecek, R.; Lamos, M.; Mikl, M.; Barton, M.; Fajkus, J.; I, Rektor; Brazdil, M.
2016-08-01
Objective. The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. Approach. We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial-temporal-spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. Main results. Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. Significance. These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the relationships between EEG activity and brain hemodynamics.
Source-Modeling Auditory Processes of EEG Data Using EEGLAB and Brainstorm.
Stropahl, Maren; Bauer, Anna-Katharina R; Debener, Stefan; Bleichner, Martin G
2018-01-01
Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization.
NASA Astrophysics Data System (ADS)
Shenoy Handiru, Vikram; Vinod, A. P.; Guan, Cuntai
2017-08-01
Objective. In electroencephalography (EEG)-based brain-computer interface (BCI) systems for motor control tasks the conventional practice is to decode motor intentions by using scalp EEG. However, scalp EEG only reveals certain limited information about the complex tasks of movement with a higher degree of freedom. Therefore, our objective is to investigate the effectiveness of source-space EEG in extracting relevant features that discriminate arm movement in multiple directions. Approach. We have proposed a novel feature extraction algorithm based on supervised factor analysis that models the data from source-space EEG. To this end, we computed the features from the source dipoles confined to Brodmann areas of interest (BA4a, BA4p and BA6). Further, we embedded class-wise labels of multi-direction (multi-class) source-space EEG to an unsupervised factor analysis to make it into a supervised learning method. Main Results. Our approach provided an average decoding accuracy of 71% for the classification of hand movement in four orthogonal directions, that is significantly higher (>10%) than the classification accuracy obtained using state-of-the-art spatial pattern features in sensor space. Also, the group analysis on the spectral characteristics of source-space EEG indicates that the slow cortical potentials from a set of cortical source dipoles reveal discriminative information regarding the movement parameter, direction. Significance. This study presents evidence that low-frequency components in the source space play an important role in movement kinematics, and thus it may lead to new strategies for BCI-based neurorehabilitation.
Bharath, Rose D; Panda, Rajanikant; Reddam, Venkateswara Reddy; Bhaskar, M V; Gohel, Suril; Bhardwaj, Sujas; Prajapati, Arvind; Pal, Pramod Kumar
2017-01-01
Background and Purpose : Repetitive transcranial magnetic stimulation (rTMS) induces widespread changes in brain connectivity. As the network topology differences induced by a single session of rTMS are less known we undertook this study to ascertain whether the network alterations had a small-world morphology using multi-modal graph theory analysis of simultaneous EEG-fMRI. Method : Simultaneous EEG-fMRI was acquired in duplicate before (R1) and after (R2) a single session of rTMS in 14 patients with Writer's Cramp (WC). Whole brain neuronal and hemodynamic network connectivity were explored using the graph theory measures and clustering coefficient, path length and small-world index were calculated for EEG and resting state fMRI (rsfMRI). Multi-modal graph theory analysis was used to evaluate the correlation of EEG and fMRI clustering coefficients. Result : A single session of rTMS was found to increase the clustering coefficient and small-worldness significantly in both EEG and fMRI ( p < 0.05). Multi-modal graph theory analysis revealed significant modulations in the fronto-parietal regions immediately after rTMS. The rsfMRI revealed additional modulations in several deep brain regions including cerebellum, insula and medial frontal lobe. Conclusion : Multi-modal graph theory analysis of simultaneous EEG-fMRI can supplement motor physiology methods in understanding the neurobiology of rTMS in vivo . Coinciding evidence from EEG and rsfMRI reports small-world morphology for the acute phase network hyper-connectivity indicating changes ensuing low-frequency rTMS is probably not "noise".
Quantitative electroencephalographic studies of cue-induced cocaine craving.
Reid, Malcolm S; Prichep, Leslie S; Ciplet, Debra; O'Leary, Siobhan; Tom, MeeLee; Howard, Bryant; Rotrosen, John; John, E Roy
2003-07-01
Quantitative electroencephalographic (qEEG) profiles were studied in cocaine dependent patients in response to cocaine cue exposure. Using neurometric analytical methods, the spectral power of each primary bandwidth was computed and topographically mapped. Additional measures of cue-reactivity included cocaine craving, anxiety and related subjective ratings, and physiological measures of skin conductance, skin temperature, heart rate, and plasma cortisol and HVA levels. Twenty-four crack cocaine-dependent subjects were tested for their response to tactile, visual and audio cues related to crack cocaine or neutral items. All measures were analyzed for significant difference by comparing cocaine versus neutral cue conditions. An increase in cocaine craving, anxiety and related subjective ratings, elevated plasma cortisol levels, and a decrease in skin temperature, were induced by cocaine cue exposure. Distinct qEEG profiles were found during the paraphernalia handling and video viewing (eyes-open), and guided imagery (eyes-closed), phases of cocaine cue exposure. During paraphernalia handling and video viewing, there was an increase in beta activity accompanied by a drop in delta power in the frontal cortex, and an increase in beta mean frequency in the occipital cortex. In contrast, during guided imagery there was an increase in theta and delta power in the frontal cortex, and an increase in beta power in the occipital cortex. Correlation analyses revealed that cue-induced anxiety during paraphernalia handling and video viewing was associated with reduced high frequency and enhanced low frequency EEG activity. These findings demonstrated that EEG activation during cue-induced cocaine craving may be topographically mapped and subsequently analyzed for functional relevance.
Qiu, Shuang; Yi, Weibo; Xu, Jiapeng; Qi, Hongzhi; Du, Jingang; Wang, Chunfang; He, Feng; Ming, Dong
2016-02-01
A number of electroencephalographic (EEG) studies have reported on event-related desynchronization/synchronization (ERD/ERS) during active movements, passive movements, and the movements induced by functional electrical stimulation (FES). However, the quantitative differences in ERD values and affected frequency bands associated with the lower limb have not been discussed. The goal of this paper was to quantitatively compare the ERD patterns during active movement, passive movement and FES-induced movement of the lower limb. 64-channel EEG signals were recorded to investigate the brain oscillatory patterns during active movement, passive movement and FES-induced movement of the lower limb in twelve healthy subjects. And passive movement and FES-induced movement were also performed in a hemiplegic stroke patient. For healthy subjects, FES-induced movement presented significantly higher characteristic frequency of central beta ERD while there was no significant difference in ERD values compared with active or passive movement. Meanwhile, beta ERD values of FES-induced movement were significantly correlated with those of active movement, and spatial distribution of beta ERD pattern for FES-induced movement was more correlated with that for active movement. In addition, the stroke patient presented central ERD patterns during FES-induced movement, while no ERD with similar frequencies could be found during passive movement. This work implies that the EEG oscillatory pattern under FES-induced movement tends more towards active movement instead of passive movement. The quantification of ERD patterns could be expected as a potential technique to evaluate the brain response during FES-induced movement.
Evaluation of driver fatigue on two channels of EEG data.
Li, Wei; He, Qi-chang; Fan, Xiu-min; Fei, Zhi-min
2012-01-11
Electroencephalogram (EEG) data is an effective indicator to evaluate driver fatigue. The 16 channels of EEG data are collected and transformed into three bands (θ, α, and β) in the current paper. First, 12 types of energy parameters are computed based on the EEG data. Then, Grey Relational Analysis (GRA) is introduced to identify the optimal indicator of driver fatigue, after which, the number of significant electrodes is reduced using Kernel Principle Component Analysis (KPCA). Finally, the evaluation model for driver fatigue is established with the regression equation based on the EEG data from two significant electrodes (Fp1 and O1). The experimental results verify that the model is effective in evaluating driver fatigue. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Fatoorechi, M; Parkinson, J; Prance, R J; Prance, H; Seth, A K; Schwartzman, D J
2015-08-15
Electroencephalography (EEG) is still a widely used imaging tool that combines high temporal resolution with a relatively low cost. Ag/AgCl metal electrodes have been the gold standard for non-invasively monitoring electrical brain activity. Although reliable, these electrodes have multiple drawbacks: they suffer from noise, such as offset potential drift, and usability issues, for example, difficult skin preparation and cross-coupling of adjacent electrodes. In order to tackle these issues a prototype Electric Potential Sensor (EPS) device based on an auto-zero operational amplifier was developed and evaluated. The EPS is a novel active ultrahigh impedance capacitively coupled sensor. The absence of 1/f noise makes the EPS ideal for use with signal frequencies of ∼10Hz or less. A comprehensive study was undertaken to compare neural signals recorded by the EPS with a standard commercial EEG system. Quantitatively, highly similar signals were observed between the EPS and EEG sensors for both free running and evoked brain activity with cross correlations of higher than 0.9 between the EPS and a standard benchmark EEG system. These studies comprised measurements of both free running EEG and Event Related Potentials (ERPs) from a commercial EEG system and EPS. The EPS provides a promising alternative with many added benefits compared to standard EEG sensors, including reduced setup time and elimination of sensor cross-coupling. In the future the scalability of the EPS will allow the implementation of a whole head ultra-dense EPS array. Copyright © 2015 Elsevier B.V. All rights reserved.
Koren, J; Herta, J; Draschtak, S; Pötzl, G; Pirker, S; Fürbass, F; Hartmann, M; Kluge, T; Baumgartner, C
2015-08-01
Continuous EEG (cEEG) is necessary to document nonconvulsive seizures (NCS), nonconvulsive status epilepticus (NCSE), as well as rhythmic and periodic EEG patterns of 'ictal-interictal uncertainty' (RPPIIU) including periodic discharges, rhythmic delta activity, and spike-and-wave complexes in neurological intensive care patients. However, cEEG is associated with significant recording and analysis efforts. Therefore, predictors from short-term routine EEG with a reasonably high yield are urgently needed in order to select patients for evaluation with cEEG. The aim of this study was to assess the prognostic significance of early epileptiform discharges (i.e., within the first 30 min of EEG recording) on the following: (1) incidence of ictal EEG patterns and RPPIIU on subsequent cEEG, (2) occurrence of acute convulsive seizures during the ICU stay, and (3) functional outcome after 6 months of follow-up. We conducted a separate analysis of the first 30 min and the remaining segments of prospective cEEG recordings according to the ACNS Standardized Critical Care EEG Terminology as well as NCS criteria and review of clinical data of 32 neurological critical care patients. In 17 patients with epileptiform discharges within the first 30 min of EEG (group 1), electrographic seizures were observed in 23.5% (n = 4), rhythmic or periodic EEG patterns of 'ictal-interictal uncertainty' in 64.7% (n = 11), and neither electrographic seizures nor RPPIIU in 11.8% (n = 2). In 15 patients with no epileptiform discharges in the first 30 min of EEG (group 2), no electrographic seizures were recorded on subsequent cEEG, RPPIIU were seen in 26.7% (n = 4), and neither electrographic seizures nor RPPIIU in 73.3% (n = 11). The incidence of EEG patterns on cEEG was significantly different between the two groups (p = 0.008). Patients with early epileptiform discharges developed acute seizures more frequently than patients without early epileptiform discharges (p = 0.009). Finally, functional outcome six months after discharge was significantly worse in patients with early epileptiform discharges (p=0.01). Epileptiform discharges within the first 30 min of EEG recording are predictive for the occurrence of ictal EEG patterns and for RPPIIU on subsequent cEEG, for acute convulsive seizures during the ICU stay, and for a worse functional outcome after 6 months of follow-up. This article is part of a Special Issue entitled Status Epilepticus. Copyright © 2015 Elsevier Inc. All rights reserved.
Artifact removal from EEG data with empirical mode decomposition
NASA Astrophysics Data System (ADS)
Grubov, Vadim V.; Runnova, Anastasiya E.; Efremova, Tatyana Yu.; Hramov, Alexander E.
2017-03-01
In the paper we propose the novel method for dealing with the physiological artifacts caused by intensive activity of facial and neck muscles and other movements in experimental human EEG recordings. The method is based on analysis of EEG signals with empirical mode decomposition (Hilbert-Huang transform). We introduce the mathematical algorithm of the method with following steps: empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing empirical modes with artifacts, reconstruction of the initial EEG signal. We test the method on filtration of experimental human EEG signals from movement artifacts and show high efficiency of the method.
Dealing with noise and physiological artifacts in human EEG recordings: empirical mode methods
NASA Astrophysics Data System (ADS)
Runnova, Anastasiya E.; Grubov, Vadim V.; Khramova, Marina V.; Hramov, Alexander E.
2017-04-01
In the paper we propose the new method for removing noise and physiological artifacts in human EEG recordings based on empirical mode decomposition (Hilbert-Huang transform). As physiological artifacts we consider specific oscillatory patterns that cause problems during EEG analysis and can be detected with additional signals recorded simultaneously with EEG (ECG, EMG, EOG, etc.) We introduce the algorithm of the proposed method with steps including empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing these empirical modes and reconstructing of initial EEG signal. We show the efficiency of the method on the example of filtration of human EEG signal from eye-moving artifacts.
Askovic, Mirjana; Watters, Anna J; Aroche, Jorge; Harris, Anthony W F
2017-08-01
The objective of this study was to describe the use of neurofeedback for refugee-related chronic posttraumatic stress disorder (PTSD) in two case studies. We describe the assessment and application of neurofeedback integrated into the treatment of two clients with chronic PTSD. We include details of our treatment schedule, symptoms and quantitative electrophysiological data for each case. Results All clients achieved significant reduction in symptoms of PTSD and improvement in daily functioning post-neurofeedback therapy. Quantitative electroencephalogric (EEG) measures indicate a normalisation of EEG markers relating to trauma, including overarousal at rest and working memory function. Conclusions Neurofeedback as an adjunct to trauma-informed therapy may help to remediate chronic PTSD relating to refugee experiences. If replicated then improvements demonstrated in this population would be generalisable to all chronic PTSD.
EEG and MEG data analysis in SPM8.
Litvak, Vladimir; Mattout, Jérémie; Kiebel, Stefan; Phillips, Christophe; Henson, Richard; Kilner, James; Barnes, Gareth; Oostenveld, Robert; Daunizeau, Jean; Flandin, Guillaume; Penny, Will; Friston, Karl
2011-01-01
SPM is a free and open source software written in MATLAB (The MathWorks, Inc.). In addition to standard M/EEG preprocessing, we presently offer three main analysis tools: (i) statistical analysis of scalp-maps, time-frequency images, and volumetric 3D source reconstruction images based on the general linear model, with correction for multiple comparisons using random field theory; (ii) Bayesian M/EEG source reconstruction, including support for group studies, simultaneous EEG and MEG, and fMRI priors; (iii) dynamic causal modelling (DCM), an approach combining neural modelling with data analysis for which there are several variants dealing with evoked responses, steady state responses (power spectra and cross-spectra), induced responses, and phase coupling. SPM8 is integrated with the FieldTrip toolbox , making it possible for users to combine a variety of standard analysis methods with new schemes implemented in SPM and build custom analysis tools using powerful graphical user interface (GUI) and batching tools.
EEG and MEG Data Analysis in SPM8
Litvak, Vladimir; Mattout, Jérémie; Kiebel, Stefan; Phillips, Christophe; Henson, Richard; Kilner, James; Barnes, Gareth; Oostenveld, Robert; Daunizeau, Jean; Flandin, Guillaume; Penny, Will; Friston, Karl
2011-01-01
SPM is a free and open source software written in MATLAB (The MathWorks, Inc.). In addition to standard M/EEG preprocessing, we presently offer three main analysis tools: (i) statistical analysis of scalp-maps, time-frequency images, and volumetric 3D source reconstruction images based on the general linear model, with correction for multiple comparisons using random field theory; (ii) Bayesian M/EEG source reconstruction, including support for group studies, simultaneous EEG and MEG, and fMRI priors; (iii) dynamic causal modelling (DCM), an approach combining neural modelling with data analysis for which there are several variants dealing with evoked responses, steady state responses (power spectra and cross-spectra), induced responses, and phase coupling. SPM8 is integrated with the FieldTrip toolbox , making it possible for users to combine a variety of standard analysis methods with new schemes implemented in SPM and build custom analysis tools using powerful graphical user interface (GUI) and batching tools. PMID:21437221
The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity.
Franken, P; Lopez-Molina, L; Marcacci, L; Schibler, U; Tafti, M
2000-01-15
Albumin D-binding protein (DBP) is a PAR leucine zipper transcription factor that is expressed according to a robust circadian rhythm in the suprachiasmatic nuclei, harboring the circadian master clock, and in most peripheral tissues. Mice lacking DBP display a shorter circadian period in locomotor activity and are less active. Thus, although DBP is not essential for circadian rhythm generation, it does modulate important clock outputs. We studied the role of DBP in the circadian and homeostatic aspects of sleep regulation by comparing DBP deficient mice (dbp-/-) with their isogenic controls (dbp+/+) under light-dark (LD) and constant-dark (DD) baseline conditions, as well as after sleep loss. Whereas total sleep duration was similar in both genotypes, the amplitude of the circadian modulation of sleep time, as well as the consolidation of sleep episodes, was reduced in dbp-/- under both LD and DD conditions. Quantitative EEG analysis demonstrated a marked reduction in the amplitude of the sleep-wake-dependent changes in slow-wave sleep delta power and an increase in hippocampal theta peak frequency in dbp-/- mice. The sleep deprivation-induced compensatory rebound of EEG delta power was similar in both genotypes. In contrast, the rebound in paradoxical sleep was significant in dbp+/+ mice only. It is concluded that the transcriptional regulatory protein DBP modulates circadian and homeostatic aspects of sleep regulation.
Real-time Adaptive EEG Source Separation using Online Recursive Independent Component Analysis
Hsu, Sheng-Hsiou; Mullen, Tim; Jung, Tzyy-Ping; Cauwenberghs, Gert
2016-01-01
Independent Component Analysis (ICA) has been widely applied to electroencephalographic (EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is limited by its computational complexity, data requirements for convergence, and assumption of data stationarity, especially for high-density data. Here we study and validate an optimized online recursive ICA algorithm (ORICA) with online recursive least squares (RLS) whitening for blind source separation of high-density EEG data, which offers instantaneous incremental convergence upon presentation of new data. Empirical results of this study demonstrate the algorithm's: (a) suitability for accurate and efficient source identification in high-density (64-channel) realistically-simulated EEG data; (b) capability to detect and adapt to non-stationarity in 64-ch simulated EEG data; and (c) utility for rapidly extracting principal brain and artifact sources in real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was implemented as functions in BCILAB and EEGLAB and was integrated in an open-source Real-time EEG Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact rejection, feature extraction for real-time biosignal monitoring in clinical environments, and adaptable classifications in brain-computer interfaces. PMID:26685257
Distribution entropy analysis of epileptic EEG signals.
Li, Peng; Yan, Chang; Karmakar, Chandan; Liu, Changchun
2015-01-01
It is an open-ended challenge to accurately detect the epileptic seizures through electroencephalogram (EEG) signals. Recently published studies have made elaborate attempts to distinguish between the normal and epileptic EEG signals by advanced nonlinear entropy methods, such as the approximate entropy, sample entropy, fuzzy entropy, and permutation entropy, etc. Most recently, a novel distribution entropy (DistEn) has been reported to have superior performance compared with the conventional entropy methods for especially short length data. We thus aimed, in the present study, to show the potential of DistEn in the analysis of epileptic EEG signals. The publicly-accessible Bonn database which consisted of normal, interictal, and ictal EEG signals was used in this study. Three different measurement protocols were set for better understanding the performance of DistEn, which are: i) calculate the DistEn of a specific EEG signal using the full recording; ii) calculate the DistEn by averaging the results for all its possible non-overlapped 5 second segments; and iii) calculate it by averaging the DistEn values for all the possible non-overlapped segments of 1 second length, respectively. Results for all three protocols indicated a statistically significantly increased DistEn for the ictal class compared with both the normal and interictal classes. Besides, the results obtained under the third protocol, which only used very short segments (1 s) of EEG recordings showed a significantly (p <; 0.05) increased DistEn for the interictal class in compassion with the normal class, whereas both analyses using relatively long EEG signals failed in tracking this difference between them, which may be due to a nonstationarity effect on entropy algorithm. The capability of discriminating between the normal and interictal EEG signals is of great clinical relevance since it may provide helpful tools for the detection of a seizure onset. Therefore, our study suggests that the DistEn analysis of EEG signals is very promising for clinical and even portable EEG monitoring.
Discriminative Ocular Artifact Correction for Feature Learning in EEG Analysis.
Xinyang Li; Cuntai Guan; Haihong Zhang; Kai Keng Ang
2017-08-01
Electrooculogram (EOG) artifact contamination is a common critical issue in general electroencephalogram (EEG) studies as well as in brain-computer interface (BCI) research. It is especially challenging when dedicated EOG channels are unavailable or when there are very few EEG channels available for independent component analysis based ocular artifact removal. It is even more challenging to avoid loss of the signal of interest during the artifact correction process, where the signal of interest can be multiple magnitudes weaker than the artifact. To address these issues, we propose a novel discriminative ocular artifact correction approach for feature learning in EEG analysis. Without extra ocular movement measurements, the artifact is extracted from raw EEG data, which is totally automatic and requires no visual inspection of artifacts. Then, artifact correction is optimized jointly with feature extraction by maximizing oscillatory correlations between trials from the same class and minimizing them between trials from different classes. We evaluate this approach on a real-world EEG dataset comprising 68 subjects performing cognitive tasks. The results showed that the approach is capable of not only suppressing the artifact components but also improving the discriminative power of a classifier with statistical significance. We also demonstrate that the proposed method addresses the confounding issues induced by ocular movements in cognitive EEG study.
The effects of moclobemide on autonomic and cognitive functions in healthy volunteers.
Siepmann, M; Handel, J; Mueck-Weymann, M; Kirch, W
2004-03-01
Moclobemide, a reversible and selective inhibitor of the MAO-A isoenzyme, is marketed as an antidepressant that lacks autonomic and cognitive side effects. However, only few and inconclusive quantitative data on the effects of moclobemide on autonomic and cognitive functions have been reported in the literature. Therefore, a double-blind, randomized, placebo-controlled crossover trial was performed. Twelve healthy male volunteers (age 22-29 years) received orally 150 mg moclobemide b.i.d. and placebo for 14 days each. Heart rate variability (HRV) and skin conductance response (SCR) following sudden deep breath were employed as parameters for autonomic function. Quantitative EEG (qEEG) and psychometric tests served as parameters for cognitive function. Measurements were performed before the start of drug administration and repeatedly on the last treatment day. Parameters of HRV and SCR were not changed by multiple dosing with moclobemide (P > 0.05). Neither cognitive functions such as flicker fusion frequency, memory, choice reaction time, and psychomotor performance nor qEEG was significantly influenced, but subjective tiredness was decreased at all time points of measurement after multiple dosing with moclobemide (P < 0.05). In conclusion, moclobemide does not appear to influence autonomic functions or cognitive functions when given subchronically to healthy humans. In contrast, changes in subjective mood hint at a subtle activating effect.
Automatic sleep scoring: a search for an optimal combination of measures.
Krakovská, Anna; Mezeiová, Kristína
2011-09-01
The objective of this study is to find the best set of characteristics of polysomnographic signals for the automatic classification of sleep stages. A selection was made from 74 measures, including linear spectral measures, interdependency measures, and nonlinear measures of complexity that were computed for the all-night polysomnographic recordings of 20 healthy subjects. The adopted multidimensional analysis involved quadratic discriminant analysis, forward selection procedure, and selection by the best subset procedure. Two situations were considered: the use of four polysomnographic signals (EEG, EMG, EOG, and ECG) and the use of the EEG alone. For the given database, the best automatic sleep classifier achieved approximately an 81% agreement with the hypnograms of experts. The classifier was based on the next 14 features of polysomnographic signals: the ratio of powers in the beta and delta frequency range (EEG, channel C3), the fractal exponent (EMG), the variance (EOG), the absolute power in the sigma 1 band (EEG, C3), the relative power in the delta 2 band (EEG, O2), theta/gamma (EEG, C3), theta/alpha (EEG, O1), sigma/gamma (EEG, C4), the coherence in the delta 1 band (EEG, O1-O2), the entropy (EMG), the absolute theta 2 (EEG, Fp1), theta/alpha (EEG, Fp1), the sigma 2 coherence (EEG, O1-C3), and the zero-crossing rate (ECG); however, even with only four features, we could perform sleep scoring with a 74% accuracy, which is comparable to the inter-rater agreement between two independent specialists. We have shown that 4-14 carefully selected polysomnographic features were sufficient for successful sleep scoring. The efficiency of the corresponding automatic classifiers was verified and conclusively demonstrated on all-night recordings from healthy adults. Copyright © 2011 Elsevier B.V. All rights reserved.
Continuous EEG source imaging enhances analysis of EEG-fMRI in focal epilepsy.
Vulliemoz, S; Rodionov, R; Carmichael, D W; Thornton, R; Guye, M; Lhatoo, S D; Michel, C M; Duncan, J S; Lemieux, L
2010-02-15
EEG-correlated fMRI (EEG-fMRI) studies can reveal haemodynamic changes associated with Interictal Epileptic Discharges (IED). Methodological improvements are needed to increase sensitivity and specificity for localising the epileptogenic zone. We investigated whether the estimated EEG source activity improved models of the BOLD changes in EEG-fMRI data, compared to conventional < event-related > designs based solely on the visual identification of IED. Ten patients with pharmaco-resistant focal epilepsy underwent EEG-fMRI. EEG Source Imaging (ESI) was performed on intra-fMRI averaged IED to identify the irritative zone. The continuous activity of this estimated IED source (cESI) over the entire recording was used for fMRI analysis (cESI model). The maps of BOLD signal changes explained by cESI were compared to results of the conventional IED-related model. ESI was concordant with non-invasive data in 13/15 different types of IED. The cESI model explained significant additional BOLD variance in regions concordant with video-EEG, structural MRI or, when available, intracranial EEG in 10/15 IED. The cESI model allowed better detection of the BOLD cluster, concordant with intracranial EEG in 4/7 IED, compared to the IED model. In 4 IED types, cESI-related BOLD signal changes were diffuse with a pattern suggestive of contamination of the source signal by artefacts, notably incompletely corrected motion and pulse artefact. In one IED type, there was no significant BOLD change with either model. Continuous EEG source imaging can improve the modelling of BOLD changes related to interictal epileptic activity and this may enhance the localisation of the irritative zone. Copyright 2009 Elsevier Inc. All rights reserved.
An electrophysiological validation of stochastic DCM for fMRI
Daunizeau, J.; Lemieux, L.; Vaudano, A. E.; Friston, K. J.; Stephan, K. E.
2013-01-01
In this note, we assess the predictive validity of stochastic dynamic causal modeling (sDCM) of functional magnetic resonance imaging (fMRI) data, in terms of its ability to explain changes in the frequency spectrum of concurrently acquired electroencephalography (EEG) signal. We first revisit the heuristic model proposed in Kilner et al. (2005), which suggests that fMRI activation is associated with a frequency modulation of the EEG signal (rather than an amplitude modulation within frequency bands). We propose a quantitative derivation of the underlying idea, based upon a neural field formulation of cortical activity. In brief, dense lateral connections induce a separation of time scales, whereby fast (and high spatial frequency) modes are enslaved by slow (low spatial frequency) modes. This slaving effect is such that the frequency spectrum of fast modes (which dominate EEG signals) is controlled by the amplitude of slow modes (which dominate fMRI signals). We then use conjoint empirical EEG-fMRI data—acquired in epilepsy patients—to demonstrate the electrophysiological underpinning of neural fluctuations inferred from sDCM for fMRI. PMID:23346055
Removal of EOG Artifacts from EEG Recordings Using Stationary Subspace Analysis
Zeng, Hong; Song, Aiguo
2014-01-01
An effective approach is proposed in this paper to remove ocular artifacts from the raw EEG recording. The proposed approach first conducts the blind source separation on the raw EEG recording by the stationary subspace analysis (SSA) algorithm. Unlike the classic blind source separation algorithms, SSA is explicitly tailored to the understanding of distribution changes, where both the mean and the covariance matrix are taken into account. In addition, neither independency nor uncorrelation is required among the sources by SSA. Thereby, it can concentrate artifacts in fewer components than the representative blind source separation methods. Next, the components that are determined to be related to the ocular artifacts are projected back to be subtracted from EEG signals, producing the clean EEG data eventually. The experimental results on both the artificially contaminated EEG data and real EEG data have demonstrated the effectiveness of the proposed method, in particular for the cases where limited number of electrodes are used for the recording, as well as when the artifact contaminated signal is highly nonstationary and the underlying sources cannot be assumed to be independent or uncorrelated. PMID:24550696
TMS combined with EEG in genetic generalized epilepsy: A phase II diagnostic accuracy study.
Kimiskidis, Vasilios K; Tsimpiris, Alkiviadis; Ryvlin, Philippe; Kalviainen, Reetta; Koutroumanidis, Michalis; Valentin, Antonio; Laskaris, Nikolaos; Kugiumtzis, Dimitris
2017-02-01
(A) To develop a TMS-EEG stimulation and data analysis protocol in genetic generalized epilepsy (GGE). (B) To investigate the diagnostic accuracy of TMS-EEG in GGE. Pilot experiments resulted in the development and optimization of a paired-pulse TMS-EEG protocol at rest, during hyperventilation (HV), and post-HV combined with multi-level data analysis. This protocol was applied in 11 controls (C) and 25 GGE patients (P), further dichotomized into responders to antiepileptic drugs (R, n=13) and non-responders (n-R, n=12).Features (n=57) extracted from TMS-EEG responses after multi-level analysis were given to a feature selection scheme and a Bayesian classifier, and the accuracy of assigning participants into the classes P-C and R-nR was computed. On the basis of the optimal feature subset, the cross-validated accuracy of TMS-EEG for the classification P-C was 0.86 at rest, 0.81 during HV and 0.92 at post-HV, whereas for R-nR the corresponding figures are 0.80, 0.78 and 0.65, respectively. Applying a fusion approach on all conditions resulted in an accuracy of 0.84 for the classification P-C and 0.76 for the classification R-nR. TMS-EEG can be used for diagnostic purposes and for assessing the response to antiepileptic drugs. TMS-EEG holds significant diagnostic potential in GGE. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Deep Neural Architectures for Mapping Scalp to Intracranial EEG.
Antoniades, Andreas; Spyrou, Loukianos; Martin-Lopez, David; Valentin, Antonio; Alarcon, Gonzalo; Sanei, Saeid; Took, Clive Cheong
2018-03-19
Data is often plagued by noise which encumbers machine learning of clinically useful biomarkers and electroencephalogram (EEG) data is no exemption. Intracranial EEG (iEEG) data enhances the training of deep learning models of the human brain, yet is often prohibitive due to the invasive recording process. A more convenient alternative is to record brain activity using scalp electrodes. However, the inherent noise associated with scalp EEG data often impedes the learning process of neural models, achieving substandard performance. Here, an ensemble deep learning architecture for nonlinearly mapping scalp to iEEG data is proposed. The proposed architecture exploits the information from a limited number of joint scalp-intracranial recording to establish a novel methodology for detecting the epileptic discharges from the sEEG of a general population of subjects. Statistical tests and qualitative analysis have revealed that the generated pseudo-intracranial data are highly correlated with the true intracranial data. This facilitated the detection of IEDs from the scalp recordings where such waveforms are not often visible. As a real-world clinical application, these pseudo-iEEGs are then used by a convolutional neural network for the automated classification of intracranial epileptic discharges (IEDs) and non-IED of trials in the context of epilepsy analysis. Although the aim of this work was to circumvent the unavailability of iEEG and the limitations of sEEG, we have achieved a classification accuracy of 68% an increase of 6% over the previously proposed linear regression mapping.
A case study on Discrete Wavelet Transform based Hurst exponent for epilepsy detection.
Madan, Saiby; Srivastava, Kajri; Sharmila, A; Mahalakshmi, P
2018-01-01
Epileptic seizures are manifestations of epilepsy. Careful analysis of EEG records can provide valuable insight and improved understanding of the mechanism causing epileptic disorders. The detection of epileptic form discharges in EEG is an important component in the diagnosis of epilepsy. As EEG signals are non-stationary, the conventional frequency and time domain analysis does not provide better accuracy. So, in this work an attempt has been made to provide an overview of the determination of epilepsy by implementation of Hurst exponent (HE)-based discrete wavelet transform techniques for feature extraction from EEG data sets obtained during ictal and pre ictal stages of affected person and finally classifying EEG signals using SVM and KNN Classifiers. The The highest accuracy of 99% is obtained using SVM.
Classifying Different Emotional States by Means of EEG-Based Functional Connectivity Patterns
Lee, You-Yun; Hsieh, Shulan
2014-01-01
This study aimed to classify different emotional states by means of EEG-based functional connectivity patterns. Forty young participants viewed film clips that evoked the following emotional states: neutral, positive, or negative. Three connectivity indices, including correlation, coherence, and phase synchronization, were used to estimate brain functional connectivity in EEG signals. Following each film clip, participants were asked to report on their subjective affect. The results indicated that the EEG-based functional connectivity change was significantly different among emotional states. Furthermore, the connectivity pattern was detected by pattern classification analysis using Quadratic Discriminant Analysis. The results indicated that the classification rate was better than chance. We conclude that estimating EEG-based functional connectivity provides a useful tool for studying the relationship between brain activity and emotional states. PMID:24743695
Doborjeh, Maryam Gholami; Wang, Grace Y; Kasabov, Nikola K; Kydd, Robert; Russell, Bruce
2016-09-01
This paper introduces a method utilizing spiking neural networks (SNN) for learning, classification, and comparative analysis of brain data. As a case study, the method was applied to electroencephalography (EEG) data collected during a GO/NOGO cognitive task performed by untreated opiate addicts, those undergoing methadone maintenance treatment (MMT) for opiate dependence and a healthy control group. the method is based on an SNN architecture called NeuCube, trained on spatiotemporal EEG data. NeuCube was used to classify EEG data across subject groups and across GO versus NOGO trials, but also facilitated a deeper comparative analysis of the dynamic brain processes. This analysis results in a better understanding of human brain functioning across subject groups when performing a cognitive task. In terms of the EEG data classification, a NeuCube model obtained better results (the maximum obtained accuracy: 90.91%) when compared with traditional statistical and artificial intelligence methods (the maximum obtained accuracy: 50.55%). more importantly, new information about the effects of MMT on cognitive brain functions is revealed through the analysis of the SNN model connectivity and its dynamics. this paper presented a new method for EEG data modeling and revealed new knowledge on brain functions associated with mental activity which is different from the brain activity observed in a resting state of the same subjects.
Bigdely-Shamlo, Nima; Mullen, Tim; Kreutz-Delgado, Kenneth; Makeig, Scott
2013-01-01
A crucial question for the analysis of multi-subject and/or multi-session electroencephalographic (EEG) data is how to combine information across multiple recordings from different subjects and/or sessions, each associated with its own set of source processes and scalp projections. Here we introduce a novel statistical method for characterizing the spatial consistency of EEG dynamics across a set of data records. Measure Projection Analysis (MPA) first finds voxels in a common template brain space at which a given dynamic measure is consistent across nearby source locations, then computes local-mean EEG measure values for this voxel subspace using a statistical model of source localization error and between-subject anatomical variation. Finally, clustering the mean measure voxel values in this locally consistent brain subspace finds brain spatial domains exhibiting distinguishable measure features and provides 3-D maps plus statistical significance estimates for each EEG measure of interest. Applied to sufficient high-quality data, the scalp projections of many maximally independent component (IC) processes contributing to recorded high-density EEG data closely match the projection of a single equivalent dipole located in or near brain cortex. We demonstrate the application of MPA to a multi-subject EEG study decomposed using independent component analysis (ICA), compare the results to k-means IC clustering in EEGLAB (sccn.ucsd.edu/eeglab), and use surrogate data to test MPA robustness. A Measure Projection Toolbox (MPT) plug-in for EEGLAB is available for download (sccn.ucsd.edu/wiki/MPT). Together, MPA and ICA allow use of EEG as a 3-D cortical imaging modality with near-cm scale spatial resolution. PMID:23370059
Effects of Marijuana on Ictal and Interictal EEG Activities in Idiopathic Generalized Epilepsy.
Sivakumar, Sanjeev; Zutshi, Deepti; Seraji-Bozorgzad, Navid; Shah, Aashit K
2017-01-01
Marijuana-based treatment for refractory epilepsy shows promise in surveys, case series, and clinical trials. However, literature on their EEG effects is sparse. Our objective is to analyze the effect of marijuana on EEG in a 24-year-old patient with idiopathic generalized epilepsy treated with cannabis. We blindly reviewed 3 long-term EEGs-a 24-hour study while only on antiepileptic drugs, a 72-hour EEG with Cannabis indica smoked on days 1 and 3 in addition to antiepileptic drugs, and a 48-hour EEG with combination C indica/sativa smoked on day 1 plus antiepileptic drugs. Generalized spike-wave discharges and diffuse paroxysmal fast activity were categorized as interictal and ictal, based on duration of less than 10 seconds or greater, respectively. Data from three studies concatenated into contiguous time series, with usage of marijuana modeled as time-dependent discrete variable while interictal and ictal events constituted dependent variables. Analysis of variance as initial test for significance followed by time series analysis using Generalized Autoregressive Conditional Heteroscedasticity model was performed. Statistical significance for lower interictal events (analysis of variance P = 0.001) was seen during C indica use, but not for C indica/sativa mixture (P = 0.629) or ictal events (P = 0.087). However, time series analysis revealed a significant inverse correlation between marijuana use, with interictal (P < 0.0004) and ictal (P = 0.002) event rates. Using a novel approach to EEG data, we demonstrate a decrease in interictal and ictal electrographic events during marijuana use. Larger samples of patients and EEG, with standardized cannabinoid formulation and dosing, are needed to validate our findings.
Preictal dynamics of EEG complexity in intracranially recorded epileptic seizure: a case report.
Bob, Petr; Roman, Robert; Svetlak, Miroslav; Kukleta, Miloslav; Chladek, Jan; Brazdil, Milan
2014-11-01
Recent findings suggest that neural complexity reflecting a number of independent processes in the brain may characterize typical changes during epileptic seizures and may enable to describe preictal dynamics. With respect to previously reported findings suggesting specific changes in neural complexity during preictal period, we have used measure of pointwise correlation dimension (PD2) as a sensitive indicator of nonstationary changes in complexity of the electroencephalogram (EEG) signal. Although this measure of complexity in epileptic patients was previously reported by Feucht et al (Applications of correlation dimension and pointwise dimension for non-linear topographical analysis of focal onset seizures. Med Biol Comput. 1999;37:208-217), it was not used to study changes in preictal dynamics. With this aim to study preictal changes of EEG complexity, we have examined signals from 11 multicontact depth (intracerebral) EEG electrodes located in 108 cortical and subcortical brain sites, and from 3 scalp EEG electrodes in a patient with intractable epilepsy, who underwent preoperative evaluation before epilepsy surgery. From those 108 EEG contacts, records related to 44 electrode contacts implanted into lesional structures and white matter were not included into the experimental analysis.The results show that in comparison to interictal period (at about 8-6 minutes before seizure onset), there was a statistically significant decrease in PD2 complexity in the preictal period at about 2 minutes before seizure onset in all 64 intracranial channels localized in various brain sites that were included into the analysis and in 3 scalp EEG channels as well. Presented results suggest that using PD2 in EEG analysis may have significant implications for research of preictal dynamics and prediction of epileptic seizures.
2013-01-01
Background Matching pursuit algorithm (MP), especially with recent multivariate extensions, offers unique advantages in analysis of EEG and MEG. Methods We propose a novel construction of an optimal Gabor dictionary, based upon the metrics introduced in this paper. We implement this construction in a freely available software for MP decomposition of multivariate time series, with a user friendly interface via the Svarog package (Signal Viewer, Analyzer and Recorder On GPL, http://braintech.pl/svarog), and provide a hands-on introduction to its application to EEG. Finally, we describe numerical and mathematical optimizations used in this implementation. Results Optimal Gabor dictionaries, based on the metric introduced in this paper, for the first time allowed for a priori assessment of maximum one-step error of the MP algorithm. Variants of multivariate MP, implemented in the accompanying software, are organized according to the mathematical properties of the algorithms, relevant in the light of EEG/MEG analysis. Some of these variants have been successfully applied to both multichannel and multitrial EEG and MEG in previous studies, improving preprocessing for EEG/MEG inverse solutions and parameterization of evoked potentials in single trials; we mention also ongoing work and possible novel applications. Conclusions Mathematical results presented in this paper improve our understanding of the basics of the MP algorithm. Simple introduction of its properties and advantages, together with the accompanying stable and user-friendly Open Source software package, pave the way for a widespread and reproducible analysis of multivariate EEG and MEG time series and novel applications, while retaining a high degree of compatibility with the traditional, visual analysis of EEG. PMID:24059247
LeVan, P; Urrestarazu, E; Gotman, J
2006-04-01
To devise an automated system to remove artifacts from ictal scalp EEG, using independent component analysis (ICA). A Bayesian classifier was used to determine the probability that 2s epochs of seizure segments decomposed by ICA represented EEG activity, as opposed to artifact. The classifier was trained using numerous statistical, spectral, and spatial features. The system's performance was then assessed using separate validation data. The classifier identified epochs representing EEG activity in the validation dataset with a sensitivity of 82.4% and a specificity of 83.3%. An ICA component was considered to represent EEG activity if the sum of the probabilities that its epochs represented EEG exceeded a threshold predetermined using the training data. Otherwise, the component represented artifact. Using this threshold on the validation set, the identification of EEG components was performed with a sensitivity of 87.6% and a specificity of 70.2%. Most misclassified components were a mixture of EEG and artifactual activity. The automated system successfully rejected a good proportion of artifactual components extracted by ICA, while preserving almost all EEG components. The misclassification rate was comparable to the variability observed in human classification. Current ICA methods of artifact removal require a tedious visual classification of the components. The proposed system automates this process and removes simultaneously multiple types of artifacts.
Prevalence and etiology of false normal aEEG recordings in neonatal hypoxic-ischaemic encephalopathy
2013-01-01
Background Amplitude-integrated electroencephalography (aEEG) is a useful tool to determine the severity of neonatal hypoxic-ischemic encephalopathy (HIE). Our aim was to assess the prevalence and study the origin of false normal aEEG recordings based on 85 aEEG recordings registered before six hours of age. Methods Raw EEG recordings were reevaluated retrospectively with Fourier analysis to identify and describe the frequency patterns of the raw EEG signal, in cases with inconsistent aEEG recordings and clinical symptoms. Power spectral density curves, power (P) and median frequency (MF) were determined using the raw EEG. In 7 patients non-depolarizing muscle relaxant (NDMR) exposure was found. The EEG sections were analyzed and compared before and after NDMR administration. Results The reevaluation found that the aEEG was truly normal in 4 neonates. In 3 neonates, high voltage electrocardiographic (ECG) artifacts were found with flat trace on raw EEG. High frequency component (HFC) was found as a cause of normal appearing aEEG in 10 neonates. HFC disappeared while P and MF decreased significantly upon NDMR administration in each observed case. Conclusion Occurrence of false normal aEEG background pattern is relatively high in neonates with HIE and hypothermia. High frequency EEG artifacts suggestive of shivering were found to be the most common cause of false normal aEEG in hypothermic neonates while high voltage ECG artifacts are less common. PMID:24268061
Causality within the Epileptic Network: An EEG-fMRI Study Validated by Intracranial EEG.
Vaudano, Anna Elisabetta; Avanzini, Pietro; Tassi, Laura; Ruggieri, Andrea; Cantalupo, Gaetano; Benuzzi, Francesca; Nichelli, Paolo; Lemieux, Louis; Meletti, Stefano
2013-01-01
Accurate localization of the Seizure Onset Zone (SOZ) is crucial in patients with drug-resistance focal epilepsy. EEG with fMRI recording (EEG-fMRI) has been proposed as a complementary non-invasive tool, which can give useful additional information in the pre-surgical work-up. However, fMRI maps related to interictal epileptiform activities (IED) often show multiple regions of signal change, or "networks," rather than highly focal ones. Effective connectivity approaches like Dynamic Causal Modeling (DCM) applied to fMRI data potentially offers a framework to address which brain regions drives the generation of seizures and IED within an epileptic network. Here, we present a first attempt to validate DCM on EEG-fMRI data in one patient affected by frontal lobe epilepsy. Pre-surgical EEG-fMRI demonstrated two distinct clusters of blood oxygenation level dependent (BOLD) signal increases linked to IED, one located in the left frontal pole and the other in the ipsilateral dorso-lateral frontal cortex. DCM of the IED-related BOLD signal favored a model corresponding to the left dorso-lateral frontal cortex as driver of changes in the fronto-polar region. The validity of DCM was supported by: (a) the results of two different non-invasive analysis obtained on the same dataset: EEG source imaging (ESI), and "psycho-physiological interaction" analysis; (b) the failure of a first surgical intervention limited to the fronto-polar region; (c) the results of the intracranial EEG monitoring performed after the first surgical intervention confirming a SOZ located over the dorso-lateral frontal cortex. These results add evidence that EEG-fMRI together with advanced methods of BOLD signal analysis is a promising tool that can give relevant information within the epilepsy surgery diagnostic work-up.
Lie, Octavian V; van Mierlo, Pieter
2017-01-01
The visual interpretation of intracranial EEG (iEEG) is the standard method used in complex epilepsy surgery cases to map the regions of seizure onset targeted for resection. Still, visual iEEG analysis is labor-intensive and biased due to interpreter dependency. Multivariate parametric functional connectivity measures using adaptive autoregressive (AR) modeling of the iEEG signals based on the Kalman filter algorithm have been used successfully to localize the electrographic seizure onsets. Due to their high computational cost, these methods have been applied to a limited number of iEEG time-series (<60). The aim of this study was to test two Kalman filter implementations, a well-known multivariate adaptive AR model (Arnold et al. 1998) and a simplified, computationally efficient derivation of it, for their potential application to connectivity analysis of high-dimensional (up to 192 channels) iEEG data. When used on simulated seizures together with a multivariate connectivity estimator, the partial directed coherence, the two AR models were compared for their ability to reconstitute the designed seizure signal connections from noisy data. Next, focal seizures from iEEG recordings (73-113 channels) in three patients rendered seizure-free after surgery were mapped with the outdegree, a graph-theory index of outward directed connectivity. Simulation results indicated high levels of mapping accuracy for the two models in the presence of low-to-moderate noise cross-correlation. Accordingly, both AR models correctly mapped the real seizure onset to the resection volume. This study supports the possibility of conducting fully data-driven multivariate connectivity estimations on high-dimensional iEEG datasets using the Kalman filter approach.
DeepIED: An epileptic discharge detector for EEG-fMRI based on deep learning.
Hao, Yongfu; Khoo, Hui Ming; von Ellenrieder, Nicolas; Zazubovits, Natalja; Gotman, Jean
2018-01-01
Presurgical evaluation that can precisely delineate the epileptogenic zone (EZ) is one important step for successful surgical resection treatment of refractory epilepsy patients. The noninvasive EEG-fMRI recording technique combined with general linear model (GLM) analysis is considered an important tool for estimating the EZ. However, the manual marking of interictal epileptic discharges (IEDs) needed in this analysis is challenging and time-consuming because the quality of the EEG recorded inside the scanner is greatly deteriorated compared to the usual EEG obtained outside the scanner. This is one of main impediments to the widespread use of EEG-fMRI in epilepsy. We propose a deep learning based semi-automatic IED detector that can find the candidate IEDs in the EEG recorded inside the scanner which resemble sample IEDs marked in the EEG recorded outside the scanner. The manual marking burden is greatly reduced as the expert need only edit candidate IEDs. The model is trained on data from 30 patients. Validation of IEDs detection accuracy on another 37 consecutive patients shows our method can improve the median sensitivity from 50.0% for the previously proposed template-based method to 84.2%, with false positive rate as 5 events/min. Reproducibility validation on 15 patients is applied to evaluate if our method can produce similar hemodynamic response maps compared with the manual marking ground truth results. We explore the concordance between the maximum hemodynamic response and the intracerebral EEG defined EZ and find that both methods produce similar percentage of concordance (76.9%, 10 out of 13 patients, electrode was absent in the maximum hemodynamic response in two patients). This tool will make EEG-fMRI analysis more practical for clinical usage.
Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset.
Shin, Jaeyoung; von Lühmann, Alexander; Kim, Do-Won; Mehnert, Jan; Hwang, Han-Jeong; Müller, Klaus-Robert
2018-02-13
We provide an open access multimodal brain-imaging dataset of simultaneous electroencephalography (EEG) and near-infrared spectroscopy (NIRS) recordings. Twenty-six healthy participants performed three cognitive tasks: 1) n-back (0-, 2- and 3-back), 2) discrimination/selection response task (DSR) and 3) word generation (WG) tasks. The data provided includes: 1) measured data, 2) demographic data, and 3) basic analysis results. For n-back (dataset A) and DSR tasks (dataset B), event-related potential (ERP) analysis was performed, and spatiotemporal characteristics and classification results for 'target' versus 'non-target' (dataset A) and symbol 'O' versus symbol 'X' (dataset B) are provided. Time-frequency analysis was performed to show the EEG spectral power to differentiate the task-relevant activations. Spatiotemporal characteristics of hemodynamic responses are also shown. For the WG task (dataset C), the EEG spectral power and spatiotemporal characteristics of hemodynamic responses are analyzed, and the potential merit of hybrid EEG-NIRS BCIs was validated with respect to classification accuracy. We expect that the dataset provided will facilitate performance evaluation and comparison of many neuroimaging analysis techniques.
Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset
Shin, Jaeyoung; von Lühmann, Alexander; Kim, Do-Won; Mehnert, Jan; Hwang, Han-Jeong; Müller, Klaus-Robert
2018-01-01
We provide an open access multimodal brain-imaging dataset of simultaneous electroencephalography (EEG) and near-infrared spectroscopy (NIRS) recordings. Twenty-six healthy participants performed three cognitive tasks: 1) n-back (0-, 2- and 3-back), 2) discrimination/selection response task (DSR) and 3) word generation (WG) tasks. The data provided includes: 1) measured data, 2) demographic data, and 3) basic analysis results. For n-back (dataset A) and DSR tasks (dataset B), event-related potential (ERP) analysis was performed, and spatiotemporal characteristics and classification results for ‘target’ versus ‘non-target’ (dataset A) and symbol ‘O’ versus symbol ‘X’ (dataset B) are provided. Time-frequency analysis was performed to show the EEG spectral power to differentiate the task-relevant activations. Spatiotemporal characteristics of hemodynamic responses are also shown. For the WG task (dataset C), the EEG spectral power and spatiotemporal characteristics of hemodynamic responses are analyzed, and the potential merit of hybrid EEG-NIRS BCIs was validated with respect to classification accuracy. We expect that the dataset provided will facilitate performance evaluation and comparison of many neuroimaging analysis techniques. PMID:29437166
Short-Term EEG Spectral Pattern as a Single Event in EEG Phenomenology
Fingelkurts, Al. A; Fingelkurts, An. A
2010-01-01
Spectral decomposition, to this day, still remains the main analytical paradigm for the analysis of EEG oscillations. However, conventional spectral analysis assesses the mean characteristics of the EEG power spectra averaged out over extended periods of time and/or broad frequency bands, thus resulting in a “static” picture which cannot reflect adequately the underlying neurodynamic. A relatively new promising area in the study of EEG is based on reducing the signal to elementary short-term spectra of various types in accordance with the number of types of EEG stationary segments instead of using averaged power spectrum for the whole EEG. It is suggested that the various perceptual and cognitive operations associated with a mental or behavioural condition constitute a single distinguishable neurophysiological state with a distinct and reliable spectral pattern. In this case, one type of short-term spectral pattern may be considered as a single event in EEG phenomenology. To support this assumption the following issues are considered in detail: (a) the relations between local EEG short-term spectral pattern of particular type and the actual state of the neurons in underlying network and a volume conduction; (b) relationship between morphology of EEG short-term spectral pattern and the state of the underlying neurodynamical system i.e. neuronal assembly; (c) relation of different spectral pattern components to a distinct physiological mechanism; (d) relation of different spectral pattern components to different functional significance; (e) developmental changes of spectral pattern components; (f) heredity of the variance in the individual spectral pattern and its components; (g) intra-individual stability of the sets of EEG short-term spectral patterns and their percent ratio; (h) discrete dynamics of EEG short-term spectral patterns. Functional relevance (consistency) of EEG short-term spectral patterns in accordance with the changes of brain functional state, cognitive task and with different neuropsychopathologies is demonstrated. PMID:21379390
Nonlinear dimensionality reduction of electroencephalogram (EEG) for Brain Computer interfaces.
Teli, Mohammad Nayeem; Anderson, Charles
2009-01-01
Patterns in electroencephalogram (EEG) signals are analyzed for a Brain Computer Interface (BCI). An important aspect of this analysis is the work on transformations of high dimensional EEG data to low dimensional spaces in which we can classify the data according to mental tasks being performed. In this research we investigate how a Neural Network (NN) in an auto-encoder with bottleneck configuration can find such a transformation. We implemented two approximate second-order methods to optimize the weights of these networks, because the more common first-order methods are very slow to converge for networks like these with more than three layers of computational units. The resulting non-linear projections of time embedded EEG signals show interesting separations that are related to tasks. The bottleneck networks do indeed discover nonlinear transformations to low-dimensional spaces that capture much of the information present in EEG signals. However, the resulting low-dimensional representations do not improve classification rates beyond what is possible using Quadratic Discriminant Analysis (QDA) on the original time-lagged EEG.
Understanding perception of active noise control system through multichannel EEG analysis.
Bagha, Sangeeta; Tripathy, R K; Nanda, Pranati; Preetam, C; Das, Debi Prasad
2018-06-01
In this Letter, a method is proposed to investigate the effect of noise with and without active noise control (ANC) on multichannel electroencephalogram (EEG) signal. The multichannel EEG signal is recorded during different listening conditions such as silent, music, noise, ANC with background noise and ANC with both background noise and music. The multiscale analysis of EEG signal of each channel is performed using the discrete wavelet transform. The multivariate multiscale matrices are formulated based on the sub-band signals of each EEG channel. The singular value decomposition is applied to the multivariate matrices of multichannel EEG at significant scales. The singular value features at significant scales and the extreme learning machine classifier with three different activation functions are used for classification of multichannel EEG signal. The experimental results demonstrate that, for ANC with noise and ANC with noise and music classes, the proposed method has sensitivity values of 75.831% ( p < 0.001 ) and 99.31% ( p < 0.001 ), respectively. The method has an accuracy value of 83.22% for the classification of EEG signal with music and ANC with music as stimuli. The important finding of this study is that by the introduction of ANC, music can be better perceived by the human brain.
NASA Astrophysics Data System (ADS)
Szuflitowska, B.; Orlowski, P.
2017-08-01
Automated detection system consists of two key steps: extraction of features from EEG signals and classification for detection of pathology activity. The EEG sequences were analyzed using Short-Time Fourier Transform and the classification was performed using Linear Discriminant Analysis. The accuracy of the technique was tested on three sets of EEG signals: epilepsy, healthy and Alzheimer's Disease. The classification error below 10% has been considered a success. The higher accuracy are obtained for new data of unknown classes than testing data. The methodology can be helpful in differentiation epilepsy seizure and disturbances in the EEG signal in Alzheimer's Disease.
Huang, Chih-Sheng; Yang, Wen-Yu; Chuang, Chun-Hsiang; Wang, Yu-Kai
2018-01-01
Electroencephalogram (EEG) signals are usually contaminated with various artifacts, such as signal associated with muscle activity, eye movement, and body motion, which have a noncerebral origin. The amplitude of such artifacts is larger than that of the electrical activity of the brain, so they mask the cortical signals of interest, resulting in biased analysis and interpretation. Several blind source separation methods have been developed to remove artifacts from the EEG recordings. However, the iterative process for measuring separation within multichannel recordings is computationally intractable. Moreover, manually excluding the artifact components requires a time-consuming offline process. This work proposes a real-time artifact removal algorithm that is based on canonical correlation analysis (CCA), feature extraction, and the Gaussian mixture model (GMM) to improve the quality of EEG signals. The CCA was used to decompose EEG signals into components followed by feature extraction to extract representative features and GMM to cluster these features into groups to recognize and remove artifacts. The feasibility of the proposed algorithm was demonstrated by effectively removing artifacts caused by blinks, head/body movement, and chewing from EEG recordings while preserving the temporal and spectral characteristics of the signals that are important to cognitive research. PMID:29599950
Rifai Chai; Naik, Ganesh R; Sai Ho Ling; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T
2017-07-01
This paper presents a classification of driver fatigue with electroencephalography (EEG) channels selection analysis. The system employs independent component analysis (ICA) with scalp map back projection to select the dominant of EEG channels. After channel selection, the features of the selected EEG channels were extracted based on power spectral density (PSD), and then classified using a Bayesian neural network. The results of the ICA decomposition with the back-projected scalp map and a threshold showed that the EEG channels can be reduced from 32 channels into 16 dominants channels involved in fatigue assessment as chosen channels, which included AF3, F3, FC1, FC5, T7, CP5, P3, O1, P4, P8, CP6, T8, FC2, F8, AF4, FP2. The result of fatigue vs. alert classification of the selected 16 channels yielded a sensitivity of 76.8%, specificity of 74.3% and an accuracy of 75.5%. Also, the classification results of the selected 16 channels are comparable to those using the original 32 channels. So, the selected 16 channels is preferable for ergonomics improvement of EEG-based fatigue classification system.
An artificial intelligence approach to classify and analyse EEG traces.
Castellaro, C; Favaro, G; Castellaro, A; Casagrande, A; Castellaro, S; Puthenparampil, D V; Salimbeni, C Fattorello
2002-06-01
We present a fully automatic system for the classification and analysis of adult electroencephalograms (EEGs). The system is based on an artificial neural network which classifies the single epochs of trace, and on an Expert System (ES) which studies the time and space correlation among the outputs of the neural network; compiling a final report. On the last 2000 EEGs representing different kinds of alterations according to clinical occurrences, the system was able to produce 80% good or very good final comments and 18% sufficient comments, which represent the documents delivered to the patient. In the remaining 2% the automatic comment needed some modifications prior to be presented to the patient. No clinical false-negative classifications did arise, i.e. no altered traces were classified as 'normal' by the neural network. The analysis method we describe is based on the interpretation of objective measures performed on the trace. It can improve the quality and reliability of the EEG exam and appears useful for the EEG medical reports although it cannot totally substitute the medical doctor who should now read the automatic EEG analysis in light of the patient's history and age.
NASA Astrophysics Data System (ADS)
Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang
2015-08-01
The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress.
Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang
2015-01-01
The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress. PMID:26286628
On analysis of electroencephalogram by multiresolution-based energetic approach
NASA Astrophysics Data System (ADS)
Sevindir, Hulya Kodal; Yazici, Cuneyt; Siddiqi, A. H.; Aslan, Zafer
2013-10-01
Epilepsy is a common brain disorder where the normal neuronal activity gets affected. Electroencephalography (EEG) is the recording of electrical activity along the scalp produced by the firing of neurons within the brain. The main application of EEG is in the case of epilepsy. On a standard EEG some abnormalities indicate epileptic activity. EEG signals like many biomedical signals are highly non-stationary by their nature. For the investigation of biomedical signals, in particular EEG signals, wavelet analysis have found prominent position in the study for their ability to analyze such signals. Wavelet transform is capable of separating the signal energy among different frequency scales and a good compromise between temporal and frequency resolution is obtained. The present study is an attempt for better understanding of the mechanism causing the epileptic disorder and accurate prediction of occurrence of seizures. In the present paper following Magosso's work [12], we identify typical patterns of energy redistribution before and during the seizure using multiresolution wavelet analysis on Kocaeli University's Medical School's data.
NASA Technical Reports Server (NTRS)
Dijk, Derk-Jan
1999-01-01
Total sleep deprivation leads to decrements in neurobehavioral performance and changes in electroencephalographic (EEG) oscillations as well as the incidence of slow eye movements ad detected in the electro-oculogram (EOG) during wakefulness. Although total sleep deprivation is a powerful tool to investigate the association of EEG/EOG and neurobehavioral decrements, sleep loss during space flight is usual only partial. Furthermore exposure to the microgravity environment leads to changes in sodium and volume homeostasis and associated renal and cardio-endocrine responses. Some of these changes can be induced in head down tilt bedrest studies. We integrate research tools and research projects to enhance the fidelity of the simulated conditions of space flight which are characterized by complexity and mutual interactions. The effectiveness of countermeasures and physiologic mechanisms underlying neurobehavioral changes and renal-cardio endocrine changes are investigated in Project 3 of the Human Performance Team and Project 3 of the Cardiovascular Alterations Team respectively. Although the. specific aims of these two projects are very different, they employ very similar research protocols. Thus, both projects investigate the effects of posture/bedrest and sleep deprivation (total or partial) on outcome measures relevant to their specific aims. The main aim of this enhancement grant is to exploit the similarities in research protocols by including the assessment of outcome variables relevant to the Renal-Cardio project in the research protocol of Project 3 of the Human Performance Team and by including the assessment of outcome variables relevant to the Quantitative EEG and Sleep Deprivation Project in the research protocols of Project 3 of the Cardiovascular Alterations team. In particular we will assess Neurobehavioral Function and Waking EEG in the research protocols of the renal-cardio endocrine project and renin-angiotensin and cardiac function in the research protocol of the Quantitative EEG and Waking Neurobehavioral Function project. This will allow us to investigate two additional specific aims: 1) Test the hypothesis that chronic partial sleep deprivation during a 17 day bed rest experiment results in deterioration of neurobehavioral function during waking and increases in EEG power density in the theta frequencies, especially in frontal areas of the brain, as well as the nonREM- REM cycle dependent modulation of heart-rate variability. 2) Test the hypothesis that acute total sleep deprivation modifies the circadian rhythm of the renin-angiotensin system, changes the acute responsiveness of this system to posture beyond what a microgravity environment alone does and affects the nonREM-REM cycle dependent modulation of heart-rate variability.
Giacometti, Paolo; Perdue, Katherine L.; Diamond, Solomon G.
2014-01-01
Background Interpretation and analysis of electroencephalography (EEG) measurements relies on the correspondence of electrode scalp coordinates to structural and functional regions of the brain. New Method An algorithm is introduced for automatic calculation of the International 10–20, 10-10, and 10-5 scalp coordinates of EEG electrodes on a boundary element mesh of a human head. The EEG electrode positions are then used to generate parcellation regions of the cerebral cortex based on proximity to the EEG electrodes. Results The scalp electrode calculation method presented in this study effectively and efficiently identifies EEG locations without prior digitization of coordinates. The average of electrode proximity parcellations of the cortex were tabulated with respect to structural and functional regions of the brain in a population of 20 adult subjects. Comparison with Existing Methods Parcellations based on electrode proximity and EEG sensitivity were compared. The parcellation regions based on sensitivity and proximity were found to have 44.0 ± 11.3% agreement when demarcated by the International 10–20, 32.4 ± 12.6% by the 10-10, and 24.7 ± 16.3% by the 10-5 electrode positioning system. Conclusions The EEG positioning algorithm is a fast and easy method of locating EEG scalp coordinates without the need for digitized electrode positions. The parcellation method presented summarizes the EEG scalp locations with respect to brain regions without computation of a full EEG forward model solution. The reference table of electrode proximity versus cortical regions may be used by experimenters to select electrodes that correspond to anatomical and functional regions of interest. PMID:24769168
Giacometti, Paolo; Perdue, Katherine L; Diamond, Solomon G
2014-05-30
Interpretation and analysis of electroencephalography (EEG) measurements relies on the correspondence of electrode scalp coordinates to structural and functional regions of the brain. An algorithm is introduced for automatic calculation of the International 10-20, 10-10, and 10-5 scalp coordinates of EEG electrodes on a boundary element mesh of a human head. The EEG electrode positions are then used to generate parcellation regions of the cerebral cortex based on proximity to the EEG electrodes. The scalp electrode calculation method presented in this study effectively and efficiently identifies EEG locations without prior digitization of coordinates. The average of electrode proximity parcellations of the cortex were tabulated with respect to structural and functional regions of the brain in a population of 20 adult subjects. Parcellations based on electrode proximity and EEG sensitivity were compared. The parcellation regions based on sensitivity and proximity were found to have 44.0 ± 11.3% agreement when demarcated by the International 10-20, 32.4 ± 12.6% by the 10-10, and 24.7 ± 16.3% by the 10-5 electrode positioning system. The EEG positioning algorithm is a fast and easy method of locating EEG scalp coordinates without the need for digitized electrode positions. The parcellation method presented summarizes the EEG scalp locations with respect to brain regions without computation of a full EEG forward model solution. The reference table of electrode proximity versus cortical regions may be used by experimenters to select electrodes that correspond to anatomical and functional regions of interest. Copyright © 2014 Elsevier B.V. All rights reserved.
Dasari, Deepika; Shou, Guofa; Ding, Lei
2017-01-01
Electroencephalograph (EEG) has been increasingly studied to identify distinct mental factors when persons perform cognitively demanding tasks. However, most of these studies examined EEG correlates at channel domain, which suffers the limitation that EEG signals are the mixture of multiple underlying neuronal sources due to the volume conduction effect. Moreover, few studies have been conducted in real-world tasks. To precisely probe EEG correlates with specific neural substrates to mental factors in real-world tasks, the present study examined EEG correlates to three mental factors, i.e., mental fatigue [also known as time-on-task (TOT) effect], workload and effort, in EEG component signals, which were obtained using an independent component analysis (ICA) on high-density EEG data. EEG data were recorded when subjects performed a realistically simulated air traffic control (ATC) task for 2 h. Five EEG independent component (IC) signals that were associated with specific neural substrates (i.e., the frontal, central medial, motor, parietal, occipital areas) were identified. Their spectral powers at their corresponding dominant bands, i.e., the theta power of the frontal IC and the alpha power of the other four ICs, were detected to be correlated to mental workload and effort levels, measured by behavioral metrics. Meanwhile, a linear regression analysis indicated that spectral powers at five ICs significantly increased with TOT. These findings indicated that different levels of mental factors can be sensitively reflected in EEG signals associated with various brain functions, including visual perception, cognitive processing, and motor outputs, in real-world tasks. These results can potentially aid in the development of efficient operational interfaces to ensure productivity and safety in ATC and beyond.
Radiotelemetry recording of electroencephalogram in piglets during rest.
Saito, Toshiyuki; Watanabe, Yasuko; Nemoto, Tetsu; Kasuya, Etsuko; Sakumoto, Ryosuke
2005-04-13
A wireless recording system was developed to study the electroencephalogram (EEG) in unrestrained, male Landrace piglets. Under general anesthesia, ball-tipped silver/silver chloride electrodes for EEG recording were implanted onto the dura matter of the parietal and frontal cortex of the piglets. A pair of miniature preamplifiers and transmitters was then mounted on the surface of the skull. To examine whether other bioelectrical activities interfere with the EEG measurements, an electrocardiogram (ECG) or electromyogram (EMG) of the neck was simultaneously recorded with the EEG. Next, wire electrodes for recording movement of the eyelid were implanted with EEG electrodes, and EEG and eyelid movements were simultaneously measured. Power spectral analysis using a Fast Fourier Transformation (FFT) algorithm indicates that EEG was successfully recorded in unrestrained piglets, at rest, during the daytime in the absence of interference from ECG, EMG or eyelid movements. These data indicate the feasibility of using our radiotelemetry system for measurement of EEG under these conditions.
Namazi, Hamidreza; Akrami, Amin; Nazeri, Sina; Kulish, Vladimir V
2016-01-01
An important challenge in brain research is to make out the relation between the features of olfactory stimuli and the electroencephalogram (EEG) signal. Yet, no one has discovered any relation between the structures of olfactory stimuli and the EEG signal. This study investigates the relation between the structures of EEG signal and the olfactory stimulus (odorant). We show that the complexity of the EEG signal is coupled with the molecular complexity of the odorant, where more structurally complex odorant causes less fractal EEG signal. Also, odorant having higher entropy causes the EEG signal to have lower approximate entropy. The method discussed here can be applied and investigated in case of patients with brain diseases as the rehabilitation purpose.
Akrami, Amin; Nazeri, Sina
2016-01-01
An important challenge in brain research is to make out the relation between the features of olfactory stimuli and the electroencephalogram (EEG) signal. Yet, no one has discovered any relation between the structures of olfactory stimuli and the EEG signal. This study investigates the relation between the structures of EEG signal and the olfactory stimulus (odorant). We show that the complexity of the EEG signal is coupled with the molecular complexity of the odorant, where more structurally complex odorant causes less fractal EEG signal. Also, odorant having higher entropy causes the EEG signal to have lower approximate entropy. The method discussed here can be applied and investigated in case of patients with brain diseases as the rehabilitation purpose. PMID:27699169
Pellegrino, Giovanni; Machado, Alexis; von Ellenrieder, Nicolas; Watanabe, Satsuki; Hall, Jeffery A.; Lina, Jean-Marc; Kobayashi, Eliane; Grova, Christophe
2016-01-01
Objective: We aimed at studying the hemodynamic response (HR) to Interictal Epileptic Discharges (IEDs) using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG) and functional Near InfraRed Spectroscopy (fNIRS) recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF) and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (seven patients), followed by oxy-hemoglobin decreases (six patients). HR was lateralized in six patients and lasted from 8.5 to 30 s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result). The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30 s. Conclusions: (i) EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; (ii) cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function (iii) the HR is often bilateral and lasts up to 30 s. PMID:27047325
2010-01-01
Using phase space reconstruct technique from one-dimensional and multi-dimensional time series and the quantitative criterion rule of system chaos, and combining the neural network; analyses, computations and sort are conducted on electroencephalogram (EEG) signals of five kinds of human consciousness activities (relaxation, mental arithmetic of multiplication, mental composition of a letter, visualizing a 3-dimensional object being revolved about an axis, and visualizing numbers being written or erased on a blackboard). Through comparative studies on the determinacy, the phase graph, the power spectra, the approximate entropy, the correlation dimension and the Lyapunov exponent of EEG signals of 5 kinds of consciousness activities, the following conclusions are shown: (1) The statistic results of the deterministic computation indicate that chaos characteristic may lie in human consciousness activities, and central tendency measure (CTM) is consistent with phase graph, so it can be used as a division way of EEG attractor. (2) The analyses of power spectra show that ideology of single subject is almost identical but the frequency channels of different consciousness activities have slight difference. (3) The approximate entropy between different subjects exist discrepancy. Under the same conditions, the larger the approximate entropy of subject is, the better the subject's innovation is. (4) The results of the correlation dimension and the Lyapunov exponent indicate that activities of human brain exist in attractors with fractional dimensions. (5) Nonlinear quantitative criterion rule, which unites the neural network, can classify different kinds of consciousness activities well. In this paper, the results of classification indicate that the consciousness activity of arithmetic has better differentiation degree than that of abstract. PMID:20420714
Wang, Xingyuan; Meng, Juan; Tan, Guilin; Zou, Lixian
2010-04-27
Using phase space reconstruct technique from one-dimensional and multi-dimensional time series and the quantitative criterion rule of system chaos, and combining the neural network; analyses, computations and sort are conducted on electroencephalogram (EEG) signals of five kinds of human consciousness activities (relaxation, mental arithmetic of multiplication, mental composition of a letter, visualizing a 3-dimensional object being revolved about an axis, and visualizing numbers being written or erased on a blackboard). Through comparative studies on the determinacy, the phase graph, the power spectra, the approximate entropy, the correlation dimension and the Lyapunov exponent of EEG signals of 5 kinds of consciousness activities, the following conclusions are shown: (1) The statistic results of the deterministic computation indicate that chaos characteristic may lie in human consciousness activities, and central tendency measure (CTM) is consistent with phase graph, so it can be used as a division way of EEG attractor. (2) The analyses of power spectra show that ideology of single subject is almost identical but the frequency channels of different consciousness activities have slight difference. (3) The approximate entropy between different subjects exist discrepancy. Under the same conditions, the larger the approximate entropy of subject is, the better the subject's innovation is. (4) The results of the correlation dimension and the Lyapunov exponent indicate that activities of human brain exist in attractors with fractional dimensions. (5) Nonlinear quantitative criterion rule, which unites the neural network, can classify different kinds of consciousness activities well. In this paper, the results of classification indicate that the consciousness activity of arithmetic has better differentiation degree than that of abstract.
Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study
Yu, Qingbao; Wu, Lei; Bridwell, David A.; Erhardt, Erik B.; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.
2016-01-01
The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics. PMID:27733821
Clustering-Constrained ICA for Ballistocardiogram Artifacts Removal in Simultaneous EEG-fMRI
Wang, Kai; Li, Wenjie; Dong, Li; Zou, Ling; Wang, Changming
2018-01-01
Combination of electroencephalogram (EEG) recording and functional magnetic resonance imaging (fMRI) plays a potential role in neuroimaging due to its high spatial and temporal resolution. However, EEG is easily influenced by ballistocardiogram (BCG) artifacts and may cause false identification of the related EEG features, such as epileptic spikes. There are many related methods to remove them, however, they do not consider the time-varying features of BCG artifacts. In this paper, a novel method using clustering algorithm to catch the BCG artifacts' features and together with the constrained ICA (ccICA) is proposed to remove the BCG artifacts. We first applied this method to the simulated data, which was constructed by adding the BCG artifacts to the EEG signal obtained from the conventional environment. Then, our method was tested to demonstrate the effectiveness during EEG and fMRI experiments on 10 healthy subjects. In simulated data analysis, the value of error in signal amplitude (Er) computed by ccICA method was lower than those from other methods including AAS, OBS, and cICA (p < 0.005). In vivo data analysis, the Improvement of Normalized Power Spectrum (INPS) calculated by ccICA method in all electrodes was much higher than AAS, OBS, and cICA methods (p < 0.005). We also used other evaluation index (e.g., power analysis) to compare our method with other traditional methods. In conclusion, our novel method successfully and effectively removed BCG artifacts in both simulated and vivo EEG data tests, showing the potentials of removing artifacts in EEG-fMRI applications. PMID:29487499
Ji, Hong; Petro, Nathan M; Chen, Badong; Yuan, Zejian; Wang, Jianji; Zheng, Nanning; Keil, Andreas
2018-02-06
Over the past decade, the simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data has garnered growing interest because it may provide an avenue towards combining the strengths of both imaging modalities. Given their pronounced differences in temporal and spatial statistics, the combination of EEG and fMRI data is however methodologically challenging. Here, we propose a novel screening approach that relies on a Cross Multivariate Correlation Coefficient (xMCC) framework. This approach accomplishes three tasks: (1) It provides a measure for testing multivariate correlation and multivariate uncorrelation of the two modalities; (2) it provides criterion for the selection of EEG features; (3) it performs a screening of relevant EEG information by grouping the EEG channels into clusters to improve efficiency and to reduce computational load when searching for the best predictors of the BOLD signal. The present report applies this approach to a data set with concurrent recordings of steady-state-visual evoked potentials (ssVEPs) and fMRI, recorded while observers viewed phase-reversing Gabor patches. We test the hypothesis that fluctuations in visuo-cortical mass potentials systematically covary with BOLD fluctuations not only in visual cortical, but also in anterior temporal and prefrontal areas. Results supported the hypothesis and showed that the xMCC-based analysis provides straightforward identification of neurophysiological plausible brain regions with EEG-fMRI covariance. Furthermore xMCC converged with other extant methods for EEG-fMRI analysis. © 2018 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Kotchoubey, Boris; Pavlov, Yuri G.
2018-01-01
A systematic search revealed 68 empirical studies of neurophysiological [EEG, event-related brain potential (ERP), fMRI, PET] variables as potential outcome predictors in patients with Disorders of Consciousness (diagnoses Unresponsive Wakefulness Syndrome [UWS] and Minimally Conscious State [MCS]). Data of 47 publications could be presented in a quantitative manner and systematically reviewed. Insufficient power and the lack of an appropriate description of patient selection each characterized about a half of all publications. In more than 80% studies, neurologists who evaluated the patients’ outcomes were familiar with the results of neurophysiological tests conducted before, and may, therefore, have been influenced by this knowledge. In most subsamples of datasets, effect size significantly correlated with its standard error, indicating publication bias toward positive results. Neurophysiological data predicted the transition from UWS to MCS substantially better than they predicted the recovery of consciousness (i.e., the transition from UWS or MCS to exit-MCS). A meta-analysis was carried out for predictor groups including at least three independent studies with N > 10 per predictor per improvement criterion (i.e., transition to MCS versus recovery). Oscillatory EEG responses were the only predictor group whose effect attained significance for both improvement criteria. Other perspective variables, whose true prognostic value should be explored in future studies, are sleep spindles in the EEG and the somatosensory cortical response N20. Contrary to what could be expected on the basis of neuroscience theory, the poorest prognostic effects were shown for fMRI responses to stimulation and for the ERP component P300. The meta-analytic results should be regarded as preliminary given the presence of numerous biases in the data. PMID:29867725
Kotchoubey, Boris; Pavlov, Yuri G
2018-01-01
A systematic search revealed 68 empirical studies of neurophysiological [EEG, event-related brain potential (ERP), fMRI, PET] variables as potential outcome predictors in patients with Disorders of Consciousness (diagnoses Unresponsive Wakefulness Syndrome [UWS] and Minimally Conscious State [MCS]). Data of 47 publications could be presented in a quantitative manner and systematically reviewed. Insufficient power and the lack of an appropriate description of patient selection each characterized about a half of all publications. In more than 80% studies, neurologists who evaluated the patients' outcomes were familiar with the results of neurophysiological tests conducted before, and may, therefore, have been influenced by this knowledge. In most subsamples of datasets, effect size significantly correlated with its standard error, indicating publication bias toward positive results. Neurophysiological data predicted the transition from UWS to MCS substantially better than they predicted the recovery of consciousness (i.e., the transition from UWS or MCS to exit-MCS). A meta-analysis was carried out for predictor groups including at least three independent studies with N > 10 per predictor per improvement criterion (i.e., transition to MCS versus recovery). Oscillatory EEG responses were the only predictor group whose effect attained significance for both improvement criteria. Other perspective variables, whose true prognostic value should be explored in future studies, are sleep spindles in the EEG and the somatosensory cortical response N20. Contrary to what could be expected on the basis of neuroscience theory, the poorest prognostic effects were shown for fMRI responses to stimulation and for the ERP component P300. The meta-analytic results should be regarded as preliminary given the presence of numerous biases in the data.
Dimpfel, Wilfried
2013-09-16
Herbal extracts targeting at the brain remain a continuous challenge to pharmacology. Usually, a number of different animal tests have to be performed in order to find a potential clinical use. Due to manifold possibly active ingredients biochemical approaches are difficult. A more holistic approach using a neurophysiological technique has been developed earlier in order to characterise synthetic drugs. Stereotactic implantation of four semi-microelectrodes into frontal cortex, hippocampus, striatum and reticular formation of rats allowed continuous wireless monitoring of field potentials (EEG) before and after drug intake. After frequency analysis (Fast Fourier Transformation) electric power was calculated for 6 ranges (delta, theta, alpha1, alpha2, beta1 and beta2). Data from 14 synthetic drugs - tested earlier and representative for different clinical indications - were taken for construction of discriminant functions showing the projection of the frequency patterns in a six-dimensional graph. Quantitative analysis of the EEG frequency pattern from the depth of the brain succeeded in discrimination of drug effects according to their known clinical indication (Dimpfel and Schober, 2003). Extracts from Valerian root, Ginkgo leaves, Paullinia seed, Hop strobile, Rhodiola rosea root and Sideritis scardica herb were tested now under identical conditions. Classification of these extracts based on the matrix from synthetic drugs revealed that Valerian root and hop induced a pattern reminiscent of physiological sleep. Ginkgo and Paullinia appeared in close neighbourhood of stimulatory drugs like caffeine or to an analgesic profile (tramadol). Rhodiola and Sideritis developed similar frequency patterns comparable to a psychostimulant drug (methylphenidate) as well to an antidepressive drug (paroxetine). © 2013 The Author. Published by Elsevier Ireland Ltd. All rights reserved.
Interval analysis of interictal EEG: pathology of the alpha rhythm in focal epilepsy
NASA Astrophysics Data System (ADS)
Pyrzowski, Jan; Siemiński, Mariusz; Sarnowska, Anna; Jedrzejczak, Joanna; Nyka, Walenty M.
2015-11-01
The contemporary use of interictal scalp electroencephalography (EEG) in the context of focal epilepsy workup relies on the visual identification of interictal epileptiform discharges. The high-specificity performance of this marker comes, however, at a cost of only moderate sensitivity. Zero-crossing interval analysis is an alternative to Fourier analysis for the assessment of the rhythmic component of EEG signals. We applied this method to standard EEG recordings of 78 patients divided into 4 subgroups: temporal lobe epilepsy (TLE), frontal lobe epilepsy (FLE), psychogenic nonepileptic seizures (PNES) and nonepileptic patients with headache. Interval-analysis based markers were capable of effectively discriminating patients with epilepsy from those in control subgroups (AUC~0.8) with diagnostic sensitivity potentially exceeding that of visual analysis. The identified putative epilepsy-specific markers were sensitive to the properties of the alpha rhythm and displayed weak or non-significant dependences on the number of antiepileptic drugs (AEDs) taken by the patients. Significant AED-related effects were concentrated in the theta interval range and an associated marker allowed for identification of patients on AED polytherapy (AUC~0.9). Interval analysis may thus, in perspective, increase the diagnostic yield of interictal scalp EEG. Our findings point to the possible existence of alpha rhythm abnormalities in patients with epilepsy.
Huang, Kuan-Ju; Shih, Wei-Yeh; Chang, Jui Chung; Feng, Chih Wei; Fang, Wai-Chi
2013-01-01
This paper presents a pipeline VLSI design of fast singular value decomposition (SVD) processor for real-time electroencephalography (EEG) system based on on-line recursive independent component analysis (ORICA). Since SVD is used frequently in computations of the real-time EEG system, a low-latency and high-accuracy SVD processor is essential. During the EEG system process, the proposed SVD processor aims to solve the diagonal, inverse and inverse square root matrices of the target matrices in real time. Generally, SVD requires a huge amount of computation in hardware implementation. Therefore, this work proposes a novel design concept for data flow updating to assist the pipeline VLSI implementation. The SVD processor can greatly improve the feasibility of real-time EEG system applications such as brain computer interfaces (BCIs). The proposed architecture is implemented using TSMC 90 nm CMOS technology. The sample rate of EEG raw data adopts 128 Hz. The core size of the SVD processor is 580×580 um(2), and the speed of operation frequency is 20MHz. It consumes 0.774mW of power during the 8-channel EEG system per execution time.
Algorithm based on the short-term Rényi entropy and IF estimation for noisy EEG signals analysis.
Lerga, Jonatan; Saulig, Nicoletta; Mozetič, Vladimir
2017-01-01
Stochastic electroencephalogram (EEG) signals are known to be nonstationary and often multicomponential. Detecting and extracting their components may help clinicians to localize brain neurological dysfunctionalities for patients with motor control disorders due to the fact that movement-related cortical activities are reflected in spectral EEG changes. A new algorithm for EEG signal components detection from its time-frequency distribution (TFD) has been proposed in this paper. The algorithm utilizes the modification of the Rényi entropy-based technique for number of components estimation, called short-term Rényi entropy (STRE), and upgraded by an iterative algorithm which was shown to enhance existing approaches. Combined with instantaneous frequency (IF) estimation, the proposed method was applied to EEG signal analysis both in noise-free and noisy environments for limb movements EEG signals, and was shown to be an efficient technique providing spectral description of brain activities at each electrode location up to moderate additive noise levels. Furthermore, the obtained information concerning the number of EEG signal components and their IFs show potentials to enhance diagnostics and treatment of neurological disorders for patients with motor control illnesses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Automated Identification of Abnormal Adult EEGs
López, S.; Suarez, G.; Jungreis, D.; Obeid, I.; Picone, J.
2016-01-01
The interpretation of electroencephalograms (EEGs) is a process that is still dependent on the subjective analysis of the examiners. Though interrater agreement on critical events such as seizures is high, it is much lower on subtler events (e.g., when there are benign variants). The process used by an expert to interpret an EEG is quite subjective and hard to replicate by machine. The performance of machine learning technology is far from human performance. We have been developing an interpretation system, AutoEEG, with a goal of exceeding human performance on this task. In this work, we are focusing on one of the early decisions made in this process – whether an EEG is normal or abnormal. We explore two baseline classification algorithms: k-Nearest Neighbor (kNN) and Random Forest Ensemble Learning (RF). A subset of the TUH EEG Corpus was used to evaluate performance. Principal Components Analysis (PCA) was used to reduce the dimensionality of the data. kNN achieved a 41.8% detection error rate while RF achieved an error rate of 31.7%. These error rates are significantly lower than those obtained by random guessing based on priors (49.5%). The majority of the errors were related to misclassification of normal EEGs. PMID:27195311
A new approach for SSVEP detection using PARAFAC and canonical correlation analysis.
Tello, Richard; Pouryazdian, Saeed; Ferreira, Andre; Beheshti, Soosan; Krishnan, Sridhar; Bastos, Teodiano
2015-01-01
This paper presents a new way for automatic detection of SSVEPs through correlation analysis between tensor models. 3-way EEG tensor of channel × frequency × time is decomposed into constituting factor matrices using PARAFAC model. PARAFAC analysis of EEG tensor enables us to decompose multichannel EEG into constituting temporal, spectral and spatial signatures. SSVEPs characterized with localized spectral and spatial signatures are then detected exploiting a correlation analysis between extracted signatures of the EEG tensor and the corresponding simulated signatures of all target SSVEP signals. The SSVEP that has the highest correlation is selected as the intended target. Two flickers blinking at 8 and 13 Hz were used as visual stimuli and the detection was performed based on data packets of 1 second without overlapping. Five subjects participated in the experiments and the highest classification rate of 83.34% was achieved, leading to the Information Transfer Rate (ITR) of 21.01 bits/min.
Ogrim, Geir; Kropotov, Juri D
2018-06-01
The study aim was to develop 2 scales: predicting clinical gains and risk of acute side effects of stimulant medication in pediatric attention-deficit/hyperactivity disorder (ADHD), combining measures from EEG spectra, event-related potentials (ERPs), and a cued visual GO/NOGO task. Based on 4-week systematic medication trials, 87 ADHD patients aged 8 to 17 years were classified as responders (REs, n = 62) or non-REs (n = 25), and belonging to the side effects (SEs, n = 42) or no-SEs (n = 45) groups. Before starting the trial, a 19-channel EEG was registered twice: Test 1 (T1) without medication and T2 on a single dose of stimulant medication a few days before the trial. EEG was registered T1 and T2: 3 minutes eyes-closed, 3 minutes eyes-open, and 20 minutes cued GO/NOGO. EEG spectra, ERPs, omissions, commissions, reaction time (RT), and RT variability were computed. Groups were compared at T1 and T2 on quantitative EEG (qEEG), ERPs and behavioral parameters; effect sizes ( d) were estimated. Variables with d > 0.5 were converted to quartiles, multiplied by corresponding d, and summed to obtain 2 global scales. Six variables differed significantly between REs and non-REs (T1: theta/alpha ratio, P3NOGO amplitude. Differences T2-T1: Omissions, RT variability, P3NOGO, contingent negative variation [CNV]). The global scale d was 1.86. Accuracy (receiver operating characteristic) was 0.92. SEs and no-SEs differed significantly on 4 variables. (T1: RT, T2: novelty component and alpha peak frequency, and RT changes. Global scale d = 1.08 and accuracy = 0.78. Gains and side effects of stimulants in pediatric ADHD can be predicted with high accuracy by combining EEG spectra, ERPs, and behavior from baseline and single-dose tests. ClinicalTrials.gov identifier: NCT02695355.
Keavy, Deborah; Bristow, Linda J.; Sivarao, Digavalli V.; Batchelder, Margaret; King, Dalton; Thangathirupathy, Srinivasan; Macor, John E.; Weed, Michael R.
2016-01-01
The antidepressant activity of the N-methyl-D-aspartate (NMDA) receptor channel blocker, ketamine, has led to the investigation of negative allosteric modulators (NAMs) selective for the NR2B receptor subtype. The clinical development of NR2B NAMs would benefit from a translational pharmacodynamic biomarker that demonstrates brain penetration and functional inhibition of NR2B receptors in preclinical species and humans. Quantitative electroencephalography (qEEG) is a translational measure that can be used to demonstrate pharmacodynamic effects across species. NMDA receptor channel blockers, such as ketamine and phencyclidine, increase the EEG gamma power band, which has been used as a pharmacodynamic biomarker in the development of NMDA receptor antagonists. However, detailed qEEG studies with ketamine or NR2B NAMs are lacking in nonhuman primates. The aim of the present study was to determine the effects on the qEEG power spectra of the NR2B NAMs traxoprodil (CP-101,606) and BMT-108908 in nonhuman primates, and to compare them to the NMDA receptor channel blockers, ketamine and lanicemine. Cynomolgus monkeys were surgically implanted with EEG radio-telemetry transmitters, and qEEG was measured after vehicle or drug administration. The relative power for a number of frequency bands was determined. Ketamine and lanicemine increased relative gamma power, whereas the NR2B NAMs traxoprodil and BMT-108908 had no effect. Robust decreases in beta power were elicited by ketamine, traxoprodil and BMT-108908; and these agents also produced decreases in alpha power and increases in delta power at the doses tested. These results suggest that measurement of power spectra in the beta and delta bands may represent a translational pharmacodynamic biomarker to demonstrate functional effects of NR2B NAMs. The results of these studies may help guide the selection of qEEG measures that can be incorporated into early clinical evaluation of NR2B NAMs in healthy humans. PMID:27035340
Acharya, U Rajendra; Sree, S Vinitha; Chattopadhyay, Subhagata; Yu, Wenwei; Ang, Peng Chuan Alvin
2011-06-01
Epilepsy is a common neurological disorder that is characterized by the recurrence of seizures. Electroencephalogram (EEG) signals are widely used to diagnose seizures. Because of the non-linear and dynamic nature of the EEG signals, it is difficult to effectively decipher the subtle changes in these signals by visual inspection and by using linear techniques. Therefore, non-linear methods are being researched to analyze the EEG signals. In this work, we use the recorded EEG signals in Recurrence Plots (RP), and extract Recurrence Quantification Analysis (RQA) parameters from the RP in order to classify the EEG signals into normal, ictal, and interictal classes. Recurrence Plot (RP) is a graph that shows all the times at which a state of the dynamical system recurs. Studies have reported significantly different RQA parameters for the three classes. However, more studies are needed to develop classifiers that use these promising features and present good classification accuracy in differentiating the three types of EEG segments. Therefore, in this work, we have used ten RQA parameters to quantify the important features in the EEG signals.These features were fed to seven different classifiers: Support vector machine (SVM), Gaussian Mixture Model (GMM), Fuzzy Sugeno Classifier, K-Nearest Neighbor (KNN), Naive Bayes Classifier (NBC), Decision Tree (DT), and Radial Basis Probabilistic Neural Network (RBPNN). Our results show that the SVM classifier was able to identify the EEG class with an average efficiency of 95.6%, sensitivity and specificity of 98.9% and 97.8%, respectively.
Multifractal analysis of real and imaginary movements: EEG study
NASA Astrophysics Data System (ADS)
Pavlov, Alexey N.; Maksimenko, Vladimir A.; Runnova, Anastasiya E.; Khramova, Marina V.; Pisarchik, Alexander N.
2018-04-01
We study abilities of the wavelet-based multifractal analysis in recognition specific dynamics of electrical brain activity associated with real and imaginary movements. Based on the singularity spectra we analyze electroencephalograms (EEGs) acquired in untrained humans (operators) during imagination of hands movements, and show a possibility to distinguish between the related EEG patterns and the recordings performed during real movements or the background electrical brain activity. We discuss how such recognition depends on the selected brain region.
Reference-Free Removal of EEG-fMRI Ballistocardiogram Artifacts with Harmonic Regression
Krishnaswamy, Pavitra; Bonmassar, Giorgio; Poulsen, Catherine; Pierce, Eric T; Purdon, Patrick L.; Brown, Emery N.
2016-01-01
Combining electroencephalogram (EEG) recording and functional magnetic resonance imaging (fMRI) offers the potential for imaging brain activity with high spatial and temporal resolution. This potential remains limited by the significant ballistocardiogram (BCG) artifacts induced in the EEG by cardiac pulsation-related head movement within the magnetic field. We model the BCG artifact using a harmonic basis, pose the artifact removal problem as a local harmonic regression analysis, and develop an efficient maximum likelihood algorithm to estimate and remove BCG artifacts. Our analysis paradigm accounts for time-frequency overlap between the BCG artifacts and neurophysiologic EEG signals, and tracks the spatiotemporal variations in both the artifact and the signal. We evaluate performance on: simulated oscillatory and evoked responses constructed with realistic artifacts; actual anesthesia-induced oscillatory recordings; and actual visual evoked potential recordings. In each case, the local harmonic regression analysis effectively removes the BCG artifacts, and recovers the neurophysiologic EEG signals. We further show that our algorithm outperforms commonly used reference-based and component analysis techniques, particularly in low SNR conditions, the presence of significant time-frequency overlap between the artifact and the signal, and/or large spatiotemporal variations in the BCG. Because our algorithm does not require reference signals and has low computational complexity, it offers a practical tool for removing BCG artifacts from EEG data recorded in combination with fMRI. PMID:26151100
Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman
2016-09-01
Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a significantly greater forward than backward information flow between the ROIs. This simultaneous fMRI, fNIRS and EEG study has shown through independent GC analysis of the respective time series that a bi-directional effective connectivity occurs within a cortico-cortical sensorimotor network (SMC, PMC and DLPFC) during finger movement tasks.
2014-01-01
Background Up to a third of children with Autism Spectrum Disorder (ASD) manifest regressive autism (R-ASD).They show normal early development followed by loss of language and social skills. Absent evidence-based therapies, anecdotal evidence suggests improvement following use of corticosteroids. This study examined the effects of corticosteroids for R-ASD children upon the 4 Hz frequency modulated evoked response (FMAER) arising from language cortex of the superior temporal gyrus (STG) and upon EEG background activity, language, and behavior. An untreated clinical convenience sample of ASD children served as control sample. Methods Twenty steroid-treated R-ASD (STAR) and 24 not-treated ASD patients (NSA), aged 3 - 5 years, were retrospectively identified from a large database. All study participants had two sequential FMAER and EEG studies;Landau-Kleffner syndrome diagnosis was excluded. All subjects’ records contained clinical receptive and expressive language ratings based upon a priori developed metrics. The STAR group additionally was scored behaviorally regarding symptom severity as based on the Diagnostic and Statistical Manual IV (DSM-IV) ASD criteria list. EEGs were visually scored for abnormalities. FMAER responses were assessed quantitatively by spectral analysis. Treated and untreated group means and standard deviations for the FMAER, EEG, language, and behavior, were compared by paired t-test and Fisher’s exact tests. Results The STAR group showed a significant increase in the 4 Hz FMAER spectral response and a significant reduction in response distortion compared to the NSA group. Star group subjects’ language ratings were significantly improved and more STAR than NSA group subjects showed significant language improvement. Most STAR group children showed significant behavioral improvement after treatment. STAR group language and behavior improvement was retained one year after treatment. Groups did not differ in terms of minor EEG abnormalities. Steroid treatment produced no lasting morbidity. Conclusions Steroid treatment was associated with a significantly increased FMAER response magnitude, reduction of FMAER response distortion, and improvement in language and behavior scores. This was not observed in the non-treated group. These pilot findings warrant a prospective randomized validation trial of steroid treatment for R-ASD utilizing FMAER, EEG, and standardized ASD, language and behavior measures, and a longer follow-up period. Please see related article http://www.biomedcentral.com/1741-7015/12/79 PMID:24885033
Standardized Computer-based Organized Reporting of EEG: SCORE
Beniczky, Sándor; Aurlien, Harald; Brøgger, Jan C; Fuglsang-Frederiksen, Anders; Martins-da-Silva, António; Trinka, Eugen; Visser, Gerhard; Rubboli, Guido; Hjalgrim, Helle; Stefan, Hermann; Rosén, Ingmar; Zarubova, Jana; Dobesberger, Judith; Alving, Jørgen; Andersen, Kjeld V; Fabricius, Martin; Atkins, Mary D; Neufeld, Miri; Plouin, Perrine; Marusic, Petr; Pressler, Ronit; Mameniskiene, Ruta; Hopfengärtner, Rüdiger; Emde Boas, Walter; Wolf, Peter
2013-01-01
The electroencephalography (EEG) signal has a high complexity, and the process of extracting clinically relevant features is achieved by visual analysis of the recordings. The interobserver agreement in EEG interpretation is only moderate. This is partly due to the method of reporting the findings in free-text format. The purpose of our endeavor was to create a computer-based system for EEG assessment and reporting, where the physicians would construct the reports by choosing from predefined elements for each relevant EEG feature, as well as the clinical phenomena (for video-EEG recordings). A working group of EEG experts took part in consensus workshops in Dianalund, Denmark, in 2010 and 2011. The faculty was approved by the Commission on European Affairs of the International League Against Epilepsy (ILAE). The working group produced a consensus proposal that went through a pan-European review process, organized by the European Chapter of the International Federation of Clinical Neurophysiology. The Standardised Computer-based Organised Reporting of EEG (SCORE) software was constructed based on the terms and features of the consensus statement and it was tested in the clinical practice. The main elements of SCORE are the following: personal data of the patient, referral data, recording conditions, modulators, background activity, drowsiness and sleep, interictal findings, “episodes” (clinical or subclinical events), physiologic patterns, patterns of uncertain significance, artifacts, polygraphic channels, and diagnostic significance. The following specific aspects of the neonatal EEGs are scored: alertness, temporal organization, and spatial organization. For each EEG finding, relevant features are scored using predefined terms. Definitions are provided for all EEG terms and features. SCORE can potentially improve the quality of EEG assessment and reporting; it will help incorporate the results of computer-assisted analysis into the report, it will make possible the build-up of a multinational database, and it will help in training young neurophysiologists. PMID:23506075
Dimpfel, W; Spüler, M; Nickel, B; Tibes, U
1986-01-01
The new electrophysiological model earlier described as stereo-EEG is extended now to allow recording from the freely moving rat by means of a telemetric device. Chronic implantation of 4 electrodes into the brain allows simultaneous transmission of field potentials from frontal cortex, hippocampus, striatum and reticular formation. Frequency analysis of these potentials results in a drug-specific 'fingerprint' which cannot only be used to compare different chemicals with each other but also to detect onset and time dependence of drug actions. Application of the model to the question if fenetylline has its own intrinsic mode of action or merely develops its stimulatory effect after metabolic separation into its molecular moieties amphetamine and theophylline (prodrug hypothesis) revealed that fenetylline indeed displays its own stimulatory effect to the same extent and at a similar time course as amphetamine and theophylline. The 'fingerprint' as obtained by the analysis of the action of fenetylline in the rat resembles closely that obtained after the application of theophylline with respect to decreased alpha activity, but resembles amphetamine with respect to beta 1 activity. Thus the applied method allows studying structure function relationships as the action of fenetylline seems to reflect both its molecular moieties.
Memories of attachment hamper EEG cortical connectivity in dissociative patients.
Farina, Benedetto; Speranza, Anna Maria; Dittoni, Serena; Gnoni, Valentina; Trentini, Cristina; Vergano, Carola Maggiora; Liotti, Giovanni; Brunetti, Riccardo; Testani, Elisa; Della Marca, Giacomo
2014-08-01
In this study, we evaluated cortical connectivity modifications by electroencephalography (EEG) lagged coherence analysis, in subjects with dissociative disorders and in controls, after retrieval of attachment memories. We asked thirteen patients with dissociative disorders and thirteen age- and sex-matched healthy controls to retrieve personal attachment-related autobiographical memories through adult attachment interviews (AAI). EEG was recorded in the closed eyes resting state before and after the AAI. EEG lagged coherence before and after AAI was compared in all subjects. In the control group, memories of attachment promoted a widespread increase in EEG connectivity, in particular in the high-frequency EEG bands. Compared to controls, dissociative patients did not show an increase in EEG connectivity after the AAI. Conclusions: These results shed light on the neurophysiology of the disintegrative effect of retrieval of traumatic attachment memories in dissociative patients.
Gurau, Oana; Bosl, William J.; Newton, Charles R.
2017-01-01
Autism spectrum disorders (ASD) are thought to be associated with abnormal neural connectivity. Presently, neural connectivity is a theoretical construct that cannot be easily measured. Research in network science and time series analysis suggests that neural network structure, a marker of neural activity, can be measured with electroencephalography (EEG). EEG can be quantified by different methods of analysis to potentially detect brain abnormalities. The aim of this review is to examine evidence for the utility of three methods of EEG signal analysis in the ASD diagnosis and subtype delineation. We conducted a review of literature in which 40 studies were identified and classified according to the principal method of EEG analysis in three categories: functional connectivity analysis, spectral power analysis, and information dynamics. All studies identified significant differences between ASD patients and non-ASD subjects. However, due to high heterogeneity in the results, generalizations could not be inferred and none of the methods alone are currently useful as a new diagnostic tool. The lack of studies prevented the analysis of these methods as tools for ASD subtypes delineation. These results confirm EEG abnormalities in ASD, but as yet not sufficient to help in the diagnosis. Future research with larger samples and more robust study designs could allow for higher sensitivity and consistency in characterizing ASD, paving the way for developing new means of diagnosis. PMID:28747892
Bae, Youngoh; Yoo, Byeong Wook; Lee, Jung Chan; Kim, Hee Chan
2017-05-01
Detection and diagnosis based on extracting features and classification using electroencephalography (EEG) signals are being studied vigorously. A network analysis of time series EEG signal data is one of many techniques that could help study brain functions. In this study, we analyze EEG to diagnose alcoholism. We propose a novel methodology to estimate the differences in the status of the brain based on EEG data of normal subjects and data from alcoholics by computing many parameters stemming from effective network using Granger causality. Among many parameters, only ten parameters were chosen as final candidates. By the combination of ten graph-based parameters, our results demonstrate predictable differences between alcoholics and normal subjects. A support vector machine classifier with best performance had 90% accuracy with sensitivity of 95.3%, and specificity of 82.4% for differentiating between the two groups.
Ma, Junshui; Wang, Shubing; Raubertas, Richard; Svetnik, Vladimir
2010-07-15
With the increasing popularity of using electroencephalography (EEG) to reveal the treatment effect in drug development clinical trials, the vast volume and complex nature of EEG data compose an intriguing, but challenging, topic. In this paper the statistical analysis methods recommended by the EEG community, along with methods frequently used in the published literature, are first reviewed. A straightforward adjustment of the existing methods to handle multichannel EEG data is then introduced. In addition, based on the spatial smoothness property of EEG data, a new category of statistical methods is proposed. The new methods use a linear combination of low-degree spherical harmonic (SPHARM) basis functions to represent a spatially smoothed version of the EEG data on the scalp, which is close to a sphere in shape. In total, seven statistical methods, including both the existing and the newly proposed methods, are applied to two clinical datasets to compare their power to detect a drug effect. Contrary to the EEG community's recommendation, our results suggest that (1) the nonparametric method does not outperform its parametric counterpart; and (2) including baseline data in the analysis does not always improve the statistical power. In addition, our results recommend that (3) simple paired statistical tests should be avoided due to their poor power; and (4) the proposed spatially smoothed methods perform better than their unsmoothed versions. Copyright 2010 Elsevier B.V. All rights reserved.
Tedrus, Gloria M A S; Fonseca, Lineu C; Tonelotto, Josiane M F; Costa, Rebeca M; Chiodi, Marcelo G
2006-07-01
Benign childhood epilepsy with centro-temporal spikes (BECTS) is a form of focal idiopathic epilepsy, with seizure remission by the age of 18. Recent studies have suggested that some children with BECTS can suffer from deficits of memory, attention and learning ability and in auditory-verbal and performance sub-tests. On the other hand, alterations in the baseline brain electrical activity determined by using the quantitative electroencephalogram (qEEG) have been described. The objective of this study was to evaluate the absolute and relative powers in the delta, theta, alpha and beta bands of the qEEG in children with BECTS, and their relation to IQ measurements (WISC-III). Twenty-six 8 to 11-year-old children with BECTS were studied, paired with a control group of healthy children according to age and gender. It was shown that the absolute delta and theta powers were statistically greater in the children with BECTS than in the control group, at almost all the electrodes. In the children with BECTS, a negative correlation (Pearson's correlation test) was observed at various electrodes between the absolute delta and theta powers and the performance IQ. These data indicate a possible relationship between maturational disturbance in the brain electrical activity development and the tendency for inferior cognitive performance in children with BECTS.
Impact of playing American professional football on long-term brain function.
Amen, Daniel G; Newberg, Andrew; Thatcher, Robert; Jin, Yi; Wu, Joseph; Keator, David; Willeumier, Kristen
2011-01-01
The authors recruited 100 active and former National Football League players, representing 27 teams and all positions. Players underwent a clinical history, brain SPECT imaging, qEEG, and multiple neuropsychological measures, including MicroCog. Relative to a healthy-comparison group, players showed global decreased perfusion, especially in the prefrontal, temporal, parietal, and occipital lobes, and cerebellar regions. Quantitative EEG findings were consistent, showing elevated slow waves in the frontal and temporal regions. Significant decreases from normal values were found in most neuropsychological tests. This is the first large-scale brain-imaging study to demonstrate significant differences consistent with a chronic brain trauma pattern in professional football players.
Moshirvaziri, Hana; Ramezan-Arab, Nima; Asgari, Shadnaz
2016-08-01
Cardiac arrest (CA) is the leading cause of death in the United States. Induction of hypothermia has been found to improve the functional recovery of CA patients after resuscitation. However, there is no clear guideline for the clinicians yet to determine the prognosis of the CA when patients are treated with hypothermia. The present work aimed at the development of a prognostic marker for the CA patients undergoing hypothermia. A quantitative measure of the complexity of Electroencephalogram (EEG) signals, called wavelet sub-band entropy, was employed to predict the patients' outcomes. We hypothesized that the EEG signals of the patients who survived would demonstrate more complexity and consequently higher values of wavelet sub-band entropies. A dataset of 16-channel EEG signals collected from CA patients undergoing hypothermia at Long Beach Memorial Medical Center was used to test the hypothesis. Following preprocessing of the signals and implementation of the wavelet transform, the wavelet sub-band entropies were calculated for different frequency bands and EEG channels. Then the values of wavelet sub-band entropies were compared among two groups of patients: survived vs. non-survived. Our results revealed that the brain high frequency oscillations (between 64100 Hz) captured from the inferior frontal lobes are significantly more complex in the CA patients who survived (p-value <; 0.02). Given that the non-invasive measurement of EEG is part of the standard clinical assessment for CA patients, the results of this study can enhance the management of the CA patients treated with hypothermia.
Kim, Hyoungkyu; Hudetz, Anthony G.; Lee, Joseph; Mashour, George A.; Lee, UnCheol; Avidan, Michael S.
2018-01-01
The integrated information theory (IIT) proposes a quantitative measure, denoted as Φ, of the amount of integrated information in a physical system, which is postulated to have an identity relationship with consciousness. IIT predicts that the value of Φ estimated from brain activities represents the level of consciousness across phylogeny and functional states. Practical limitations, such as the explosive computational demands required to estimate Φ for real systems, have hindered its application to the brain and raised questions about the utility of IIT in general. To achieve practical relevance for studying the human brain, it will be beneficial to establish the reliable estimation of Φ from multichannel electroencephalogram (EEG) and define the relationship of Φ to EEG properties conventionally used to define states of consciousness. In this study, we introduce a practical method to estimate Φ from high-density (128-channel) EEG and determine the contribution of each channel to Φ. We examine the correlation of power, frequency, functional connectivity, and modularity of EEG with regional Φ in various states of consciousness as modulated by diverse anesthetics. We find that our approximation of Φ alone is insufficient to discriminate certain states of anesthesia. However, a multi-dimensional parameter space extended by four parameters related to Φ and EEG connectivity is able to differentiate all states of consciousness. The association of Φ with EEG connectivity during clinically defined anesthetic states represents a new practical approach to the application of IIT, which may be used to characterize various physiological (sleep), pharmacological (anesthesia), and pathological (coma) states of consciousness in the human brain. PMID:29503611
Kim, Hyoungkyu; Hudetz, Anthony G; Lee, Joseph; Mashour, George A; Lee, UnCheol
2018-01-01
The integrated information theory (IIT) proposes a quantitative measure, denoted as Φ, of the amount of integrated information in a physical system, which is postulated to have an identity relationship with consciousness. IIT predicts that the value of Φ estimated from brain activities represents the level of consciousness across phylogeny and functional states. Practical limitations, such as the explosive computational demands required to estimate Φ for real systems, have hindered its application to the brain and raised questions about the utility of IIT in general. To achieve practical relevance for studying the human brain, it will be beneficial to establish the reliable estimation of Φ from multichannel electroencephalogram (EEG) and define the relationship of Φ to EEG properties conventionally used to define states of consciousness. In this study, we introduce a practical method to estimate Φ from high-density (128-channel) EEG and determine the contribution of each channel to Φ. We examine the correlation of power, frequency, functional connectivity, and modularity of EEG with regional Φ in various states of consciousness as modulated by diverse anesthetics. We find that our approximation of Φ alone is insufficient to discriminate certain states of anesthesia. However, a multi-dimensional parameter space extended by four parameters related to Φ and EEG connectivity is able to differentiate all states of consciousness. The association of Φ with EEG connectivity during clinically defined anesthetic states represents a new practical approach to the application of IIT, which may be used to characterize various physiological (sleep), pharmacological (anesthesia), and pathological (coma) states of consciousness in the human brain.
Zanatta, Paolo; Toffolo, Gianna Maria; Sartori, Elisa; Bet, Anna; Baldanzi, Fabrizio; Agarwal, Nivedita; Golanov, Eugene
2013-05-15
In non-pulsatile cardiopulmonary bypass surgery, middle cerebral artery blood flow velocity (BFV) is characterized by infra-slow oscillations of approximately 0.06Hz, which are paralleled by changes in total EEG power variability (EEG-PV), measured in 2s intervals. Since the origin of these BFV oscillations is not known, we explored their possible causative relationships with oscillations in EEG-PV at around 0.06Hz. We monitored 28 patients undergoing non-pulsatile cardiopulmonary bypass using transcranial Doppler sonography and scalp electroencephalography at two levels of anesthesia, deep (prevalence of burst suppression rhythm) and moderate (prevalence of theta rhythm). Under deep anesthesia, the EEG bursts suppression pattern was highly correlative with BFV oscillations. Hence, a detailed quantitative picture of the coupling between electrical brain activity and BFV was derived, both in deep and moderate anesthesia, via linear and non linear processing of EEG-PV and BFV signals, resorting to widely used measures of signal coupling such as frequency of oscillations, coherence, Granger causality and cross-approximate entropy. Results strongly suggest the existence of coupling between EEG-PV and BFV. In moderate anesthesia EEG-PV mean dominant frequency is similar to frequency of BFV oscillations (0.065±0.010Hz vs 0.045±0.019Hz); coherence between the two signals was significant in about 55% of subjects, and the Granger causality suggested an EEG-PV→BFV causal effect direction. The strength of the coupling increased with deepening anesthesia, as EEG-PV oscillations mean dominant frequency virtually coincided with the BFV peak frequency (0.062±0.017Hz vs 0.060±0.024Hz), and coherence became significant in a larger number (65%) of subjects. Cross-approximate entropy decreased significantly from moderate to deep anesthesia, indicating a higher level of synchrony between the two signals. Presence of a subcortical brain pacemaker that drives vascular infra-slow oscillations in the brain is proposed. These findings allow to suggest an original hypothesis explaining the mechanism underlying infra-slow neurovascular coupling. Copyright © 2013 Elsevier Inc. All rights reserved.
Kim, Do-Won; Lee, Seung-Hwan; Shim, Miseon; Im, Chang-Hwan
2017-01-01
Precise diagnosis of psychiatric diseases and a comprehensive assessment of a patient's symptom severity are important in order to establish a successful treatment strategy for each patient. Although great efforts have been devoted to searching for diagnostic biomarkers of schizophrenia over the past several decades, no study has yet investigated how accurately these biomarkers are able to estimate an individual patient's symptom severity. In this study, we applied electrophysiological biomarkers obtained from electroencephalography (EEG) analyses to an estimation of symptom severity scores of patients with schizophrenia. EEG signals were recorded from 23 patients while they performed a facial affect discrimination task. Based on the source current density analysis results, we extracted voxels that showed a strong correlation between source activity and symptom scores. We then built a prediction model to estimate the symptom severity scores of each patient using the source activations of the selected voxels. The symptom scores of the Positive and Negative Syndrome Scale (PANSS) were estimated using the linear prediction model. The results of leave-one-out cross validation (LOOCV) showed that the mean errors of the estimated symptom scores were 3.34 ± 2.40 and 3.90 ± 3.01 for the Positive and Negative PANSS scores, respectively. The current pilot study is the first attempt to estimate symptom severity scores in schizophrenia using quantitative EEG features. It is expected that the present method can be extended to other cognitive paradigms or other psychological illnesses.
Billeci, Lucia; Tonacci, Alessandro; Tartarisco, Gennaro; Narzisi, Antonio; Di Palma, Simone; Corda, Daniele; Baldus, Giovanni; Cruciani, Federico; Anzalone, Salvatore M.; Calderoni, Sara; Pioggia, Giovanni; Muratori, Filippo
2016-01-01
Autism Spectrum Disorders (ASD) are associated with physiological abnormalities, which are likely to contribute to the core symptoms of the condition. Wearable technologies can provide data in a semi-naturalistic setting, overcoming the limitations given by the constrained situations in which physiological signals are usually acquired. In this study an integrated system based on wearable technologies for the acquisition and analysis of neurophysiological and autonomic parameters during treatment is proposed and an application on five children with ASD is presented. Signals were acquired during a therapeutic session based on an imitation protocol in ASD children. Data were analyzed with the aim of extracting quantitative EEG (QEEG) features from EEG signals as well as heart rate and heart rate variability (HRV) from ECG. The system allowed evidencing changes in neurophysiological and autonomic response from the state of disengagement to the state of engagement of the children, evidencing a cognitive involvement in the children in the tasks proposed. The high grade of acceptability of the monitoring platform is promising for further development and implementation of the tool. In particular if the results of this feasibility study would be confirmed in a larger sample of subjects, the system proposed could be adopted in more naturalistic paradigms that allow real world stimuli to be incorporated into EEG/psychophysiological studies for the monitoring of the effect of the treatment and for the implementation of more individualized therapeutic programs. PMID:27445652
Vecchio, Fabrizio; Miraglia, Francesca; Piludu, Francesca; Granata, Giuseppe; Romanello, Roberto; Caulo, Massimo; Onofrj, Valeria; Bramanti, Placido; Colosimo, Cesare; Rossini, Paolo Maria
2017-04-01
Brain imaging plays an important role in the study of Alzheimer's disease (AD), where atrophy has been found to occur in the hippocampal formation during the very early disease stages and to progress in parallel with the disease's evolution. The aim of the present study was to evaluate a possible correlation between "Small World" characteristics of the brain connectivity architecture-as extracted from EEG recordings-and hippocampal volume in AD patients. A dataset of 144 subjects, including 110 AD (MMSE 21.3) and 34 healthy Nold (MMSE 29.8) individuals, was evaluated. Weighted and undirected networks were built by the eLORETA solutions of the cortical sources' activities moving from EEG recordings. The evaluation of the hippocampal volume was carried out on a subgroup of 60 AD patients who received a high-resolution T1-weighted sequence and underwent processing for surface-based cortex reconstruction and volumetric segmentation using the Freesurfer image analysis software. Results showed that, quantitatively, more correlation was observed in the right hemisphere, but the same trend was seen in both hemispheres. Alpha band connectivity was negatively correlated, while slow (delta) and fast-frequency (beta, gamma) bands positively correlated with hippocampal volume. Namely, the larger the hippocampal volume, the lower the alpha and the higher the delta, beta, and gamma Small World characteristics of connectivity. Accordingly, the Small World connectivity pattern could represent a functional counterpart of structural hippocampal atrophying and related-network disconnection.
Abnormal sleep/wake dynamics in orexin knockout mice.
Diniz Behn, Cecilia G; Klerman, Elizabeth B; Mochizuki, Takatoshi; Lin, Shih-Chieh; Scammell, Thomas E
2010-03-01
Narcolepsy with cataplexy is caused by a loss of orexin (hypocretin) signaling, but the physiologic mechanisms that result in poor maintenance of wakefulness and fragmented sleep remain unknown. Conventional scoring of sleep cannot reveal much about the process of transitioning between states or the variations within states. We developed an EEG spectral analysis technique to determine whether the state instability in a mouse model of narcolepsy reflects abnormal sleep or wake states, faster movements between states, or abnormal transitions between states. We analyzed sleep recordings in orexin knockout (OXKO) mice and wild type (WT) littermates using a state space analysis technique. This non-categorical approach allows quantitative and unbiased examination of sleep/wake states and state transitions. OXKO mice spent less time in deep, delta-rich NREM sleep and in active, theta-rich wake and instead spent more time near the transition zones between states. In addition, while in the midst of what should be stable wake, OXKO mice initiated rapid changes into NREM sleep with high velocities normally seen only in transition regions. Consequently, state transitions were much more frequent and rapid even though the EEG progressions during state transitions were normal. State space analysis enables visualization of the boundaries between sleep and wake and shows that narcoleptic mice have less distinct and more labile states of sleep and wakefulness. These observations provide new perspectives on the abnormal state dynamics resulting from disrupted orexin signaling and highlight the usefulness of state space analysis in understanding narcolepsy and other sleep disorders.
Frøkjær, Jens B; Graversen, Carina; Brock, Christina; Khodayari-Rostamabad, Ahmad; Olesen, Søren S; Hansen, Tine M; Søfteland, Eirik; Simrén, Magnus; Drewes, Asbjørn M
2017-02-01
Diabetes mellitus (DM) is associated with structural and functional changes of the central nervous system. We used electroencephalography (EEG) to assess resting state cortical activity and explored associations to relevant clinical features. Multichannel resting state EEG was recorded in 27 healthy controls and 24 patients with longstanding DM and signs of autonomic dysfunction. The power distribution based on wavelet analysis was summarized into frequency bands with corresponding topographic mapping. Source localization analysis was applied to explore the electrical cortical sources underlying the EEG. Compared to controls, DM patients had an overall decreased EEG power in the delta (1-4Hz) and gamma (30-45Hz) bands. Topographic analysis revealed that these changes were confined to the frontal region for the delta band and to central cortical areas for the gamma band. Source localization analysis identified sources with reduced activity in the left postcentral gyrus for the gamma band and in right superior parietal lobule for the alpha1 (8-10Hz) band. DM patients with clinical signs of autonomic dysfunction and gastrointestinal symptoms had evidence of altered resting state cortical processing. This may reflect metabolic, vascular or neuronal changes associated with diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.
Xia, Xiaoyu; Liu, Yang; Bai, Yang; Liu, Ziyuan; Yang, Yi; Guo, Yongkun; Xu, Ruxiang; Gao, Xiaorong; Li, Xiaoli; He, Jianghong
2017-10-18
Repetitive transcranial magnetic stimulation (rTMS) has been applied for the treatment of patients with disorders of consciousness (DOC). Timely and accurate assessments of its modulation effects are very useful. This study evaluated rTMS modulation effects on electroencephalography (EEG) oscillation in patients with chronic DOC. Eighteen patients with a diagnosis of DOC lasting more than 3 months were recruited. All patients received one session of 10-Hz rTMS at the left dorsolateral prefrontal cortex and then 12 of them received consecutive rTMS treatment everyday for 20 consecutive days. Resting-state EEGs were recorded before the experiment (T0) after one session of rTMS (T1) and after the entire treatment (T2). The JFK Coma Recovery Scale-Revised scale scores were also recorded at the time points. Our data showed that application of 10-Hz rTMS to the left dorsolateral prefrontal cortex decreased low-frequency band power and increased high-frequency band power in DOC patients, especially in minimal conscious state patients. Considering the correlation of the EEG spectrum with the consciousness level of patients with DOC, quantitative EEG might be useful for assessment of the effect of rTMS in DOC patients.
Singular spectrum analysis of sleep EEG in insomnia.
Aydın, Serap; Saraoǧlu, Hamdi Melih; Kara, Sadık
2011-08-01
In the present study, the Singular Spectrum Analysis (SSA) is applied to sleep EEG segments collected from healthy volunteers and patients diagnosed by either psycho physiological insomnia or paradoxical insomnia. Then, the resulting singular spectra computed for both C3 and C4 recordings are assigned as the features to the Artificial Neural Network (ANN) architectures for EEG classification in diagnose. In tests, singular spectrum of particular sleep stages such as awake, REM, stage1 and stage2, are considered. Three clinical groups are successfully classified by using one hidden layer ANN architecture with respect to their singular spectra. The results show that the SSA can be applied to sleep EEG series to support the clinical findings in insomnia if ten trials are available for the specific sleep stages. In conclusion, the SSA can detect the oscillatory variations on sleep EEG. Therefore, different sleep stages meet different singular spectra. In addition, different healthy conditions generate different singular spectra for each sleep stage. In summary, the SSA can be proposed for EEG discrimination to support the clinical findings for psycho-psychological disorders.
Delessert, Alexandre; Espa, Fabrice; Rossetti, Andrea; Lavigne, Gilles; Tafti, Mehdi; Heinzer, Raphael
2010-01-01
Background: During sleep, sudden drops in pulse wave amplitude (PWA) measured by pulse oximetry are commonly associated with simultaneous arousals and are thought to result from autonomic vasoconstriction. In the present study, we determine whether PWA drops were associated with changes in cortical activity as determined by EEG spectral analysis. Methods: A 20% decrease in PWA was chosen as a minimum for a drop. A total of 1085 PWA drops from 10 consecutive sleep recordings were analyzed. EEG spectral analysis was performed over 5 consecutive epochs of 5 seconds: 2 before, 1 during, and 2 after the PWA drop. EEG spectral analysis was performed over delta, theta, alpha, sigma, and beta frequency bands. Within each frequency band, power density was compared across the five 5-sec epochs. Presence or absence of visually scored EEG arousals were adjudicated by an investigator blinded to the PWA signal and considered associated with PWA drop if concomitant. Results: A significant increase in EEG power density in all EEG frequency bands was found during PWA drops (P < 0.001) compared to before and after drop. Even in the absence of visually scored arousals, PWA drops were associated with a significant increase in EEG power density (P < 0.001) in most frequency bands. Conclusions: Drops in PWA are associated with a significant increase in EEG power density, suggesting that these events can be used as a surrogate for changes in cortical activity during sleep. This approach may prove of value in scoring respiratory events on limited-channel (type III) portable monitors. Citation: Delessert A; Espa F; Rossetti A; Lavigne G; Tafti M; Heinzer R. Pulse wave amplitude drops during sleep are reliable surrogate markers of changes in cortical activity. SLEEP 2010;33(12):1687-1692. PMID:21120131
Probabilistic Common Spatial Patterns for Multichannel EEG Analysis
Chen, Zhe; Gao, Xiaorong; Li, Yuanqing; Brown, Emery N.; Gao, Shangkai
2015-01-01
Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel electroencephalogram (EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic modeling setting. Specifically, probabilistic CSP (P-CSP) is proposed as a generic EEG spatio-temporal modeling framework that subsumes the CSP and regularized CSP algorithms. The proposed framework enables us to resolve the overfitting issue of CSP in a principled manner. We derive statistical inference algorithms that can alleviate the issue of local optima. In particular, an efficient algorithm based on eigendecomposition is developed for maximum a posteriori (MAP) estimation in the case of isotropic noise. For more general cases, a variational algorithm is developed for group-wise sparse Bayesian learning for the P-CSP model and for automatically determining the model size. The two proposed algorithms are validated on a simulated data set. Their practical efficacy is also demonstrated by successful applications to single-trial classifications of three motor imagery EEG data sets and by the spatio-temporal pattern analysis of one EEG data set recorded in a Stroop color naming task. PMID:26005228
Fingelkurts, Alexander A.; Fingelkurts, Andrew A.
2014-01-01
For the first time the dynamic repertoires and oscillatory types of local EEG states in 13 diverse conditions (examined over 9 studies) that covered healthy-normal, altered and pathological brain states were quantified within the same methodological and conceptual framework. EEG oscillatory states were assessed by the probability-classification analysis of short-term EEG spectral patterns. The results demonstrated that brain activity consists of a limited repertoire of local EEG states in any of the examined conditions. The size of the state repertoires was associated with changes in cognition and vigilance or neuropsychopathologic conditions. Additionally universal, optional and unique EEG states across 13 diverse conditions were observed. It was demonstrated also that EEG oscillations which constituted EEG states were characteristic for different groups of conditions in accordance to oscillations’ functional significance. The results suggested that (a) there is a limit in the number of local states available to the cortex and many ways in which these local states can rearrange themselves and still produce the same global state and (b) EEG individuality is determined by varying proportions of universal, optional and unique oscillatory states. The results enriched our understanding about dynamic microstructure of EEG-signal. PMID:24505292
EEG power during waking and NREM sleep in primary insomnia.
Wu, You Meme; Pietrone, Regina; Cashmere, J David; Begley, Amy; Miewald, Jean M; Germain, Anne; Buysse, Daniel J
2013-10-15
Pathophysiological models of insomnia invoke the concept of 24-hour hyperarousal, which could lead to symptoms and physiological findings during waking and sleep. We hypothesized that this arousal could be seen in the waking electroencephalogram (EEG) of individuals with primary insomnia (PI), and that waking EEG power would correlate with non-REM (NREM) EEG. Subjects included 50 PI and 32 good sleeper controls (GSC). Five minutes of eyes closed waking EEG were collected at subjects' usual bedtimes, followed by polysomnography (PSG) at habitual sleep times. An automated algorithm and visual editing were used to remove artifacts from waking and sleep EEGs, followed by power spectral analysis to estimate power from 0.5-32 Hz. We did not find significant differences in waking or NREM EEG spectral power of PI and GSC. Significant correlations between waking and NREM sleep power were observed across all frequency bands in the PI group and in most frequency bands in the GSC group. The absence of significant differences between groups in waking or NREM EEG power suggests that our sample was not characterized by a high degree of cortical arousal. The consistent correlations between waking and NREM EEG power suggest that, in samples with elevated NREM EEG beta activity, waking EEG power may show a similar pattern.
Analysis and visualization of single-trial event-related potentials
NASA Technical Reports Server (NTRS)
Jung, T. P.; Makeig, S.; Westerfield, M.; Townsend, J.; Courchesne, E.; Sejnowski, T. J.
2001-01-01
In this study, a linear decomposition technique, independent component analysis (ICA), is applied to single-trial multichannel EEG data from event-related potential (ERP) experiments. Spatial filters derived by ICA blindly separate the input data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. Both the data and their decomposition are displayed using a new visualization tool, the "ERP image," that can clearly characterize single-trial variations in the amplitudes and latencies of evoked responses, particularly when sorted by a relevant behavioral or physiological variable. These tools were used to analyze data from a visual selective attention experiment on 28 control subjects plus 22 neurological patients whose EEG records were heavily contaminated with blink and other eye-movement artifacts. Results show that ICA can separate artifactual, stimulus-locked, response-locked, and non-event-related background EEG activities into separate components, a taxonomy not obtained from conventional signal averaging approaches. This method allows: (1) removal of pervasive artifacts of all types from single-trial EEG records, (2) identification and segregation of stimulus- and response-locked EEG components, (3) examination of differences in single-trial responses, and (4) separation of temporally distinct but spatially overlapping EEG oscillatory activities with distinct relationships to task events. The proposed methods also allow the interaction between ERPs and the ongoing EEG to be investigated directly. We studied the between-subject component stability of ICA decomposition of single-trial EEG epochs by clustering components with similar scalp maps and activation power spectra. Components accounting for blinks, eye movements, temporal muscle activity, event-related potentials, and event-modulated alpha activities were largely replicated across subjects. Applying ICA and ERP image visualization to the analysis of sets of single trials from event-related EEG (or MEG) experiments can increase the information available from ERP (or ERF) data. Copyright 2001 Wiley-Liss, Inc.
Measurement and modification of the EEG and related behavior
NASA Technical Reports Server (NTRS)
Sterman, M. B.
1991-01-01
Electrophysiological changes in the sensorimotor pathways were found to accompany the effect of rhythmic EEG patterns in the sensorimotor cortex. Additionally, several striking behavioral changes were seen, including in particular an enhancement of sleep and an elevation of seizure threshold to epileptogenic agents. This raised the possibility that human seizure disorders might be influenced therapeutically by similar training. Our objective in human EEG feedback training became not only the facilitation of normal rhythmic patterns, but also the suppression of abnormal activity, thus requiring complex contingencies directed to the normalization of the sensorimotor EEG. To achieve this, a multicomponent frequency analysis was developed to extract and separate normal and abnormal elements of the EEG signal. Each of these elements was transduced to a specific component of a visual display system, and these were combined through logic circuits to present the subject with a symbolic display. Variable criteria provided for the gradual shaping of EEG elements towards the desired normal pattern. Some 50-70% of patients with poorly controlled seizure disorders experienced therapeutic benefits from this approach in our laboratory, and subsequently in many others. A more recent application of this approach to the modification of human brain function in our lab has been directed to the dichotomous problems of task overload and underload in the contemporary aviation environment. At least 70% of all aviation accidents have been attributed to the impact of these kinds of problems on crew performance. The use of EEG in this context has required many technical innovations and the application of the latest advances in EEG signal analysis. Our first goal has been the identification of relevant EEG characteristics. Additionally, we have developed a portable recording and analysis system for application in this context. Findings from laboratory and in-flight studies suggest that we will be able to detect appropriate changes in brain function, and feed this information to on-board computers for modification of mission requirements and/or crew status.
Fast fMRI provides high statistical power in the analysis of epileptic networks.
Jacobs, Julia; Stich, Julia; Zahneisen, Benjamin; Assländer, Jakob; Ramantani, Georgia; Schulze-Bonhage, Andreas; Korinthenberg, Rudolph; Hennig, Jürgen; LeVan, Pierre
2014-03-01
EEG-fMRI is a unique method to combine the high temporal resolution of EEG with the high spatial resolution of MRI to study generators of intrinsic brain signals such as sleep grapho-elements or epileptic spikes. While the standard EPI sequence in fMRI experiments has a temporal resolution of around 2.5-3s a newly established fast fMRI sequence called MREG (Magnetic-Resonance-Encephalography) provides a temporal resolution of around 100ms. This technical novelty promises to improve statistics, facilitate correction of physiological artifacts and improve the understanding of epileptic networks in fMRI. The present study compares simultaneous EEG-EPI and EEG-MREG analyzing epileptic spikes to determine the yield of fast MRI in the analysis of intrinsic brain signals. Patients with frequent interictal spikes (>3/20min) underwent EEG-MREG and EEG-EPI (3T, 20min each, voxel size 3×3×3mm, EPI TR=2.61s, MREG TR=0.1s). Timings of the spikes were used in an event-related analysis to generate activation maps of t-statistics. (FMRISTAT, |t|>3.5, cluster size: 7 voxels, p<0.05 corrected). For both sequences, the amplitude and location of significant BOLD activations were compared with the spike topography. 13 patients were recorded and 33 different spike types could be analyzed. Peak T-values were significantly higher in MREG than in EPI (p<0.0001). Positive BOLD effects correlating with the spike topography were found in 8/29 spike types using the EPI and in 22/33 spikes types using the MREG sequence. Negative BOLD responses in the default mode network could be observed in 3/29 spike types with the EPI and in 19/33 with the MREG sequence. With the latter method, BOLD changes were observed even when few spikes occurred during the investigation. Simultaneous EEG-MREG thus is possible with good EEG quality and shows higher sensitivity in regard to the localization of spike-related BOLD responses than EEG-EPI. The development of new methods of analysis for this sequence such as modeling of physiological noise, temporal analysis of the BOLD signal and defining appropriate thresholds is required to fully profit from its high temporal resolution. © 2013.
Predicting epileptic seizures from scalp EEG based on attractor state analysis.
Chu, Hyunho; Chung, Chun Kee; Jeong, Woorim; Cho, Kwang-Hyun
2017-05-01
Epilepsy is the second most common disease of the brain. Epilepsy makes it difficult for patients to live a normal life because it is difficult to predict when seizures will occur. In this regard, if seizures could be predicted a reasonable period of time before their occurrence, epilepsy patients could take precautions against them and improve their safety and quality of life. In this paper, we investigate a novel seizure precursor based on attractor state analysis for seizure prediction. We analyze the transition process from normal to seizure attractor state and investigate a precursor phenomenon seen before reaching the seizure attractor state. From the result of an analysis, we define a quantified spectral measure in scalp EEG for seizure prediction. From scalp EEG recordings, the Fourier coefficients of six EEG frequency bands are extracted, and the defined spectral measure is computed based on the coefficients for each half-overlapped 20-second-long window. The computed spectral measure is applied to seizure prediction using a low-complexity methodology. Within scalp EEG, we identified an early-warning indicator before an epileptic seizure occurs. Getting closer to the bifurcation point that triggers the transition from normal to seizure state, the power spectral density of low frequency bands of the perturbation of an attractor in the EEG, showed a relative increase. A low-complexity seizure prediction algorithm using this feature was evaluated, using ∼583h of scalp EEG in which 143 seizures in 16 patients were recorded. With the test dataset, the proposed method showed high sensitivity (86.67%) with a false prediction rate of 0.367h -1 and average prediction time of 45.3min. A novel seizure prediction method using scalp EEG, based on attractor state analysis, shows potential for application with real epilepsy patients. This is the first study in which the seizure-precursor phenomenon of an epileptic seizure is investigated based on attractor-based analysis of the macroscopic dynamics of the brain. With the scalp EEG, we first propose use of a spectral feature identified for seizure prediction, in which the dynamics of an attractor are excluded, and only the perturbation dynamics from the attractor are considered. Copyright © 2017 Elsevier B.V. All rights reserved.
Rational manipulation of digital EEG: pearls and pitfalls.
Seneviratne, Udaya
2014-12-01
The advent of digital EEG has provided greater flexibility and more opportunities in data analysis to optimize the diagnostic yield. Changing the filter settings, sensitivity, montages, and time-base are possible rational manipulations to achieve this goal. The options to use polygraphy, video, and quantification are additional useful features. Aliasing and loss of data are potential pitfalls in the use of digital EEG. This review illustrates some common clinical scenarios where rational manipulations can enhance the diagnostic EEG yield and potential pitfalls in the process.
Huart, C; Rombaux, Ph; Hummel, T; Mouraux, A
2013-09-01
The clinical usefulness of olfactory event-related brain potentials (OERPs) to assess olfactory function is limited by the relatively low signal-to-noise ratio of the responses identified using conventional time-domain averaging. Recently, it was shown that time-frequency analysis of the obtained EEG signals can markedly improve the signal-to-noise ratio of OERPs in healthy controls, because it enhances both phase-locked and non phase-locked EEG responses. The aim of the present study was to investigate the clinical usefulness of this approach and evaluate its feasibility in a clinical setting. We retrospectively analysed EEG recordings obtained from 45 patients (15 anosmic, 15 hyposmic and 15 normos- mic). The responses to olfactory stimulation were analysed using conventional time-domain analysis and joint time-frequency analysis. The ability of the two methods to discriminate between anosmic, hyposmic and normosmic patients was assessed using a Receiver Operating Characteristic analysis. The discrimination performance of OERPs identified using conventional time-domain averaging was poor. In contrast, the discrimination performance of the EEG response identified in the time-frequency domain was relatively high. Furthermore, we found a significant correlation between the magnitude of this response and the psychophysical olfactory score. Time-frequency analysis of the EEG responses to olfactory stimulation could be used as an effective and reliable diagnostic tool for the objective clinical evaluation of olfactory function in patients.
The Utility of EEG Band Power Analysis in the Study of Infancy and Early Childhood
Saby, Joni N.; Marshall, Peter J.
2012-01-01
Research employing electroencephalographic (EEG) techniques with infants and young children has flourished in recent years due to increased interest in understanding the neural processes involved in early social and cognitive development. This review focuses on the functional characteristics of the alpha, theta, and gamma frequency bands in the developing EEG. Examples of how analyses of EEG band power have been applied to specific lines of developmental research are also discussed. These examples include recent work on the infant mu rhythm and action processing, frontal alpha asymmetry and approach-withdrawal tendencies, and EEG power measures in the study of early psychosocial adversity. PMID:22545661
Synchronization of EEG activity in patients with bipolar disorder
NASA Astrophysics Data System (ADS)
Panischev, O. Yu; Demin, S. A.; Muhametshin, I. G.; Demina, N. Yu
2015-12-01
In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome.
Martynova, Olga V; Portnova, Galina V; Gladun, Ksenya V
2017-02-08
Clinical neurology is constantly searching for reliable indices of ischemic brain damage to prevent a possible development of stroke. We suggest that resting state electroencephalogram (rsEEG) with respect to other clinical data may provide important information about the severity of ischemia. We carried out correlation analysis of rsEEG, data of transcranial Doppler ultrasonography of head vessels, and clinical assessment scores collected from healthy volunteers and four groups of patients with mild chronic microvascular ischemia (CMI-1), moderate CMI (CMI-2), severe atrophy of the cerebral hemisphere, ischemic stroke in the left middle cerebral artery stroke, and ischemic stroke in the right middle cerebral artery stroke. Using independent component analysis and k-mean clustering of EEG data, we observed prominent changes in rsEEG reflected in specific distributions of spectral peaks in all groups of patients. We found a significant correlation of EEG spectral distribution and the blood flow velocity in coronal arteries, which was also affected by the severity of ischemia and the localization of stroke. Moreover, EEG spectral distribution was more indicative of early stages of ischemia than the blood flow velocity. Our data support the hypothesis that rsEEG may reflect altered neural activity caused by ischemic brain damage.
An adaptive singular spectrum analysis method for extracting brain rhythms of electroencephalography
Hu, Hai; Guo, Shengxin; Liu, Ran
2017-01-01
Artifacts removal and rhythms extraction from electroencephalography (EEG) signals are important for portable and wearable EEG recording devices. Incorporating a novel grouping rule, we proposed an adaptive singular spectrum analysis (SSA) method for artifacts removal and rhythms extraction. Based on the EEG signal amplitude, the grouping rule determines adaptively the first one or two SSA reconstructed components as artifacts and removes them. The remaining reconstructed components are then grouped based on their peak frequencies in the Fourier transform to extract the desired rhythms. The grouping rule thus enables SSA to be adaptive to EEG signals containing different levels of artifacts and rhythms. The simulated EEG data based on the Markov Process Amplitude (MPA) EEG model and the experimental EEG data in the eyes-open and eyes-closed states were used to verify the adaptive SSA method. Results showed a better performance in artifacts removal and rhythms extraction, compared with the wavelet decomposition (WDec) and another two recently reported SSA methods. Features of the extracted alpha rhythms using adaptive SSA were calculated to distinguish between the eyes-open and eyes-closed states. Results showed a higher accuracy (95.8%) than those of the WDec method (79.2%) and the infinite impulse response (IIR) filtering method (83.3%). PMID:28674650
Li, Yanjun; Tang, Xiaoying; Xu, Zhi; Liu, Weifeng; Li, Jing
2016-03-01
Whether the temporal correlation between inter-leads Electroencephalogram (EEG) that located on the boundary between left and right brain hemispheres is associated with sleep stages or not is still unknown. The purpose of this paper is to evaluate the role of correlation coefficients between EEG leads Fpz-Cz and Pz-Oz for automatic classification of sleep stages. A total number of 39 EEG recordings (about 20 h each) were selected from the expanded sleep database in European data format for temporal correlation analysis. Original waveform of EEG was decomposed into sub-bands δ (1-4 Hz), θ (4-8 Hz), α (8-13 Hz) and β (13-30 Hz). The correlation coefficient between original EEG leads Fpz-Cz and Pz-Oz within frequency band 0.5-30 Hz was defined as r(EEG) and was calculated every 30 s, while that between the two leads EEG in sub-bands δ, θ, α and β were defined as r(δ), r(θ), r(α) and r(β), respectively. Classification of wakefulness and sleep was processed by fixed threshold that derived from the probability density function of correlation coefficients. There was no correlation between EEG leads Fpz-Cz and Pz-Oz during wakefulness (|r| < 0.1 for r(θ), r(α) and r(β), while 0.3 > r > 0.1 for r(EEG) and r(δ)), while low correlation existed during sleep (r ≈ -0.4 for r(EEG), r(δ), r(θ), r(α) and r(β)). There were significant differences (analysis of variance, P < 0.001) for r(EEG), r(δ), r(θ), r(α) and r(β) during sleep when in comparison with that during wakefulness, respectively. The accuracy for distinguishing states between wakefulness and sleep was 94.2, 93.4, 89.4, 85.2 and 91.4% in terms of r(EEG), r(δ), r(θ), r(α) and r(β), respectively. However, no correlation index between EEG leads Fpz-Cz and Pz-Oz could distinguish all five types of wakefulness, rapid eye movement (REM) sleep, N1 sleep, N2 sleep and N3 sleep. In conclusion, the temporal correlation between EEG bipolar leads Fpz-Cz and Pz-Oz are highly associated with sleep-wake stages. Moreover, high accuracy of sleep-wake classification could be achieved by the temporal correlation within frequency band 0.5-30 Hz between EEG leads Fpz-Cz and Pz-Oz.
Mideksa, Kidist Gebremariam; Anwar, Abdul Rauf; Stephani, Ulrich; Deuschl, Günther; Freitag, Christine M.; Siniatchkin, Michael
2015-01-01
At the sensor level many aspects, such as spectral power, functional and effective connectivity as well as relative-power-ratio ratio (RPR) and spatial resolution have been comprehensively investigated through both electroencephalography (EEG) and magnetoencephalography (MEG). Despite this, differences between both modalities have not yet been systematically studied by direct comparison. It remains an open question as to whether the integration of EEG and MEG data would improve the information obtained from the above mentioned parameters. Here, EEG (64-channel system) and MEG (275 sensor system) were recorded simultaneously in conditions with eyes open (EO) and eyes closed (EC) in 29 healthy adults. Spectral power, functional and effective connectivity, RPR, and spatial resolution were analyzed at five different frequency bands (delta, theta, alpha, beta and gamma). Networks of functional and effective connectivity were described using a spatial filter approach called the dynamic imaging of coherent sources (DICS) followed by the renormalized partial directed coherence (RPDC). Absolute mean power at the sensor level was significantly higher in EEG than in MEG data in both EO and EC conditions. At the source level, there was a trend towards a better performance of the combined EEG+MEG analysis compared with separate EEG or MEG analyses for the source mean power, functional correlation, effective connectivity for both EO and EC. The network of coherent sources and the spatial resolution were similar for both the EEG and MEG data if they were analyzed separately. Results indicate that the combined approach has several advantages over the separate analyses of both EEG and MEG. Moreover, by a direct comparison of EEG and MEG, EEG was characterized by significantly higher values in all measured parameters in both sensor and source level. All the above conclusions are specific to the resting state task and the specific analysis used in this study to have general conclusion multi-center studies would be helpful. PMID:26509448
Kmeans-ICA based automatic method for ocular artifacts removal in a motorimagery classification.
Bou Assi, Elie; Rihana, Sandy; Sawan, Mohamad
2014-01-01
Electroencephalogram (EEG) recordings aroused as inputs of a motor imagery based BCI system. Eye blinks contaminate the spectral frequency of the EEG signals. Independent Component Analysis (ICA) has been already proved for removing these artifacts whose frequency band overlap with the EEG of interest. However, already ICA developed methods, use a reference lead such as the ElectroOculoGram (EOG) to identify the ocular artifact components. In this study, artifactual components were identified using an adaptive thresholding by means of Kmeans clustering. The denoised EEG signals have been fed into a feature extraction algorithm extracting the band power, the coherence and the phase locking value and inserted into a linear discriminant analysis classifier for a motor imagery classification.
EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome.
Hassan, Mahmoud; Shamas, Mohamad; Khalil, Mohamad; El Falou, Wassim; Wendling, Fabrice
2015-01-01
The brain is a large-scale complex network often referred to as the "connectome". Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/.
EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome
Hassan, Mahmoud; Shamas, Mohamad; Khalil, Mohamad; El Falou, Wassim; Wendling, Fabrice
2015-01-01
The brain is a large-scale complex network often referred to as the “connectome”. Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/. PMID:26379232
Liu, Jianliang; Sun, Juanjuan; Diao, Yumei; Deng, Aijun
2016-09-04
BACKGROUND In our clinical experience we discovered that EEG band power may be correlated with corneal nerve injury in retinoblastoma patients. This study aimed to investigate biomarkers obtained from electroencephalography (EEG) recordings to reflect corneal nerve injury in retinoblastoma patients. MATERIAL AND METHODS Our study included 20 retinoblastoma patients treated at the Department of Ophthalmology, Affiliated Hospital of Weifang Medical University between 2010 and 2014. Twenty normal individuals were included in the control group. EEG activity was recorded continuously with 32 electrodes using standard EEG electrode placement for detecting EEG power. A cornea confocal microscope was used to examine corneal nerve injury in retinoblastoma patients and normal individuals. Spearman rank correlation analysis was used to analyze the correlation between corneal nerve injury and EEG power changes. The sensitivity and specificity of changed EEG power in diagnosis of corneal nerve injury were also analyzed. RESULTS The predominantly slow EEG oscillations changed gradually into faster waves in retinoblastoma patients. The EEG pattern in retinoblastoma patients was characterized by a distinct increase of delta (P<0.01) and significant decrease of theta power P<0.05). Corneal nerves were damaged in corneas of retinoblastoma patients. Corneal nerve injury was positively correlated with delta EEG spectra power and negatively correlated with theta EEG spectra power. The diagnostic sensitivity and specificity by compounding in the series were 60% and 67%, respectively. CONCLUSIONS Changes in delta and theta of EEG appear to be associated with occurrence of corneal nerve injury. Useful information can be provided for evaluating corneal nerve damage in retinoblastoma patients through analyzing EEG power bands.
NASA Astrophysics Data System (ADS)
Hu, Jin; Tian, Jie; Pan, Xiaohong; Liu, Jiangang
2007-03-01
The purpose of this paper is to compare between EEG source localization and fMRI during emotional processing. 108 pictures for EEG (categorized as positive, negative and neutral) and 72 pictures for fMRI were presented to 24 healthy, right-handed subjects. The fMRI data were analyzed using statistical parametric mapping with SPM2. LORETA was applied to grand averaged ERP data to localize intracranial sources. Statistical analysis was implemented to compare spatiotemporal activation of fMRI and EEG. The fMRI results are in accordance with EEG source localization to some extent, while part of mismatch in localization between the two methods was also observed. In the future we should apply the method for simultaneous recording of EEG and fMRI to our study.
Arjunan, Sridhar P; Kumar, Dinesh K; Jung, Tzyy-Ping
2010-01-01
Changes in alertness levels can have dire consequences for people operating and controlling motorized equipment. Past research studies have shown the relationship of Electroencephalogram (EEG) with alertness of the person. This research reports the fractal analysis of EEG and estimation of the alertness levels of the individual based on the changes in the maximum fractal length (MFL) of EEG. The results indicate that MFL of only 2 channels of EEG can be used to identify the loss of alertness of the individual with mean (inverse) correlation coefficient = 0.82. This study has also reported that using the changes in MFL of EEG, the changes in alertness level of a person was estimated with a mean correlation coefficient = 0.69.
Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period.
Martinez, E I Rodríguez; Barriga-Paulino, C I; Zapata, M I; Chinchilla, C; López-Jiménez, A M; Gómez, C M
2012-08-24
The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.
Epileptic seizure onset detection based on EEG and ECG data fusion.
Qaraqe, Marwa; Ismail, Muhammad; Serpedin, Erchin; Zulfi, Haneef
2016-05-01
This paper presents a novel method for seizure onset detection using fused information extracted from multichannel electroencephalogram (EEG) and single-channel electrocardiogram (ECG). In existing seizure detectors, the analysis of the nonlinear and nonstationary ECG signal is limited to the time-domain or frequency-domain. In this work, heart rate variability (HRV) extracted from ECG is analyzed using a Matching-Pursuit (MP) and Wigner-Ville Distribution (WVD) algorithm in order to effectively extract meaningful HRV features representative of seizure and nonseizure states. The EEG analysis relies on a common spatial pattern (CSP) based feature enhancement stage that enables better discrimination between seizure and nonseizure features. The EEG-based detector uses logical operators to pool SVM seizure onset detections made independently across different EEG spectral bands. Two fusion systems are adopted. In the first system, EEG-based and ECG-based decisions are directly fused to obtain a final decision. The second fusion system adopts an override option that allows for the EEG-based decision to override the fusion-based decision in the event that the detector observes a string of EEG-based seizure decisions. The proposed detectors exhibit an improved performance, with respect to sensitivity and detection latency, compared with the state-of-the-art detectors. Experimental results demonstrate that the second detector achieves a sensitivity of 100%, detection latency of 2.6s, and a specificity of 99.91% for the MAJ fusion case. Copyright © 2016 Elsevier Inc. All rights reserved.
Kuo, Terry B J; Yang, Cheryl C H
2004-06-15
To explore interactions between cerebral cortical and autonomic functions in different sleep-wake states. Active waking (AW), quiet sleep (QS), and paradoxical sleep (PS) of adult male Wistar-Kyoto rats (WKY) on their daytime sleep were compared. Ten WKY. All rats had electrodes implanted for polygraphic recordings. One week later, a 6-hour daytime sleep-wakefulness recording session was performed. A scatterplot analysis of electroencephalogram (EEG) slow-wave magnitude (0.5-4 Hz) and heart rate variability (HRV) was applied in each rat. The EEG slow-wave-RR interval scatterplot from all of the recordings revealed a propeller-like pattern. If the scatterplot was divided into AW, PS, and QS according to the corresponding EEG mean power frequency and nuchal electromyogram, the EEG slow wave-RR interval relationship became nil, negative, and positive for AW, PS, and QS, respectively. A significant negative relationship was found for EEG slow-wave and high-frequency power of HRV (HF) coupling during PS and for EEG slow wave and low-frequency power of HRV to HF ratio (LF/HF) coupling during QS. The optimal time lags for the slow wave-LF/HF relationship were different between PS and QS. Bradycardia noted in QS and PS was related to sympathetic suppression and vagal excitation, respectively. The EEG slow wave-HRV scatterplot may provide unique insights into studies of sleep, and such a relationship may delineate the sleep-state-dependent fluctuations in autonomic nervous system activity.
Angelone, Leonardo M.; Bit-Babik, Giorgi; Chou, Chung-Kwang
2010-01-01
An electromagnetic analysis of a human head with EEG electrodes and leads exposed to RF-field sources was performed by means of Finite-Difference Time-Domain simulations on a 1-mm3 MRI-based human head model. RF-field source models included a half-wave dipole, a patch antenna, and a realistic CAD-based mobile phone at 915 MHz and 1748 MHz. EEG electrodes/leads models included two configurations of EEG leads, both a standard 10–20 montage with 19 electrodes and a 32-electrode cap, and metallic and high resistive leads. Whole-head and peak 10-g average SAR showed less than 20% changes with and without leads. Peak 1-g and 10-g average SARs were below the ICNIRP and IEEE guideline limits. Conversely, a comprehensive volumetric assessment of changes in the RF field with and without metallic EEG leads showed an increase of two orders of magnitude in single-voxel power absorption in the epidermis and a 40-fold increase in the brain during exposure to the 915 MHz mobile phone. Results varied with the geometry and conductivity of EEG electrodes/leads. This enhancement confirms the validity of the question whether any observed effects in studies involving EEG recordings during RF-field exposure are directly related to the RF fields generated by the source or indirectly to the RF-field-induced currents due to the presence of conductive EEG leads. PMID:20681803
EEG datasets for motor imagery brain-computer interface.
Cho, Hohyun; Ahn, Minkyu; Ahn, Sangtae; Kwon, Moonyoung; Jun, Sung Chan
2017-07-01
Most investigators of brain-computer interface (BCI) research believe that BCI can be achieved through induced neuronal activity from the cortex, but not by evoked neuronal activity. Motor imagery (MI)-based BCI is one of the standard concepts of BCI, in that the user can generate induced activity by imagining motor movements. However, variations in performance over sessions and subjects are too severe to overcome easily; therefore, a basic understanding and investigation of BCI performance variation is necessary to find critical evidence of performance variation. Here we present not only EEG datasets for MI BCI from 52 subjects, but also the results of a psychological and physiological questionnaire, EMG datasets, the locations of 3D EEG electrodes, and EEGs for non-task-related states. We validated our EEG datasets by using the percentage of bad trials, event-related desynchronization/synchronization (ERD/ERS) analysis, and classification analysis. After conventional rejection of bad trials, we showed contralateral ERD and ipsilateral ERS in the somatosensory area, which are well-known patterns of MI. Finally, we showed that 73.08% of datasets (38 subjects) included reasonably discriminative information. Our EEG datasets included the information necessary to determine statistical significance; they consisted of well-discriminated datasets (38 subjects) and less-discriminative datasets. These may provide researchers with opportunities to investigate human factors related to MI BCI performance variation, and may also achieve subject-to-subject transfer by using metadata, including a questionnaire, EEG coordinates, and EEGs for non-task-related states. © The Authors 2017. Published by Oxford University Press.
Wireless and wearable EEG system for evaluating driver vigilance.
Lin, Chin-Teng; Chuang, Chun-Hsiang; Huang, Chih-Sheng; Tsai, Shu-Fang; Lu, Shao-Wei; Chen, Yen-Hsuan; Ko, Li-Wei
2014-04-01
Brain activity associated with attention sustained on the task of safe driving has received considerable attention recently in many neurophysiological studies. Those investigations have also accurately estimated shifts in drivers' levels of arousal, fatigue, and vigilance, as evidenced by variations in their task performance, by evaluating electroencephalographic (EEG) changes. However, monitoring the neurophysiological activities of automobile drivers poses a major measurement challenge when using a laboratory-oriented biosensor technology. This work presents a novel dry EEG sensor based mobile wireless EEG system (referred to herein as Mindo) to monitor in real time a driver's vigilance status in order to link the fluctuation of driving performance with changes in brain activities. The proposed Mindo system incorporates the use of a wireless and wearable EEG device to record EEG signals from hairy regions of the driver conveniently. Additionally, the proposed system can process EEG recordings and translate them into the vigilance level. The study compares the system performance between different regression models. Moreover, the proposed system is implemented using JAVA programming language as a mobile application for online analysis. A case study involving 15 study participants assigned a 90 min sustained-attention driving task in an immersive virtual driving environment demonstrates the reliability of the proposed system. Consistent with previous studies, power spectral analysis results confirm that the EEG activities correlate well with the variations in vigilance. Furthermore, the proposed system demonstrated the feasibility of predicting the driver's vigilance in real time.
Diagnosis of multiple sclerosis from EEG signals using nonlinear methods.
Torabi, Ali; Daliri, Mohammad Reza; Sabzposhan, Seyyed Hojjat
2017-12-01
EEG signals have essential and important information about the brain and neural diseases. The main purpose of this study is classifying two groups of healthy volunteers and Multiple Sclerosis (MS) patients using nonlinear features of EEG signals while performing cognitive tasks. EEG signals were recorded when users were doing two different attentional tasks. One of the tasks was based on detecting a desired change in color luminance and the other task was based on detecting a desired change in direction of motion. EEG signals were analyzed in two ways: EEG signals analysis without rhythms decomposition and EEG sub-bands analysis. After recording and preprocessing, time delay embedding method was used for state space reconstruction; embedding parameters were determined for original signals and their sub-bands. Afterwards nonlinear methods were used in feature extraction phase. To reduce the feature dimension, scalar feature selections were done by using T-test and Bhattacharyya criteria. Then, the data were classified using linear support vector machines (SVM) and k-nearest neighbor (KNN) method. The best combination of the criteria and classifiers was determined for each task by comparing performances. For both tasks, the best results were achieved by using T-test criterion and SVM classifier. For the direction-based and the color-luminance-based tasks, maximum classification performances were 93.08 and 79.79% respectively which were reached by using optimal set of features. Our results show that the nonlinear dynamic features of EEG signals seem to be useful and effective in MS diseases diagnosis.
The probability of seizures during EEG monitoring in critically ill adults
Westover, M. Brandon; Shafi, Mouhsin M.; Bianchi, Matt T.; Moura, Lidia M.V.R.; O’Rourke, Deirdre; Rosenthal, Eric S.; Chu, Catherine J.; Donovan, Samantha; Hoch, Daniel B.; Kilbride, Ronan D.; Cole, Andrew J.; Cash, Sydney S.
2014-01-01
Objective To characterize the risk for seizures over time in relation to EEG findings in hospitalized adults undergoing continuous EEG monitoring (cEEG). Methods Retrospective analysis of cEEG data and medical records from 625 consecutive adult inpatients monitored at a tertiary medical center. Using survival analysis methods, we estimated the time-dependent probability that a seizure will occur within the next 72-h, if no seizure has occurred yet, as a function of EEG abnormalities detected so far. Results Seizures occurred in 27% (168/625). The first seizure occurred early (<30 min of monitoring) in 58% (98/168). In 527 patients without early seizures, 159 (30%) had early epileptiform abnormalities, versus 368 (70%) without. Seizures were eventually detected in 25% of patients with early epileptiform discharges, versus 8% without early discharges. The 72-h risk of seizures declined below 5% if no epileptiform abnormalities were present in the first two hours, whereas 16 h of monitoring were required when epileptiform discharges were present. 20% (74/388) of patients without early epileptiform abnormalities later developed them; 23% (17/74) of these ultimately had seizures. Only 4% (12/294) experienced a seizure without preceding epileptiform abnormalities. Conclusions Seizure risk in acute neurological illness decays rapidly, at a rate dependent on abnormalities detected early during monitoring. This study demonstrates that substantial risk stratification is possible based on early EEG abnormalities. Significance These findings have implications for patient-specific determination of the required duration of cEEG monitoring in hospitalized patients. PMID:25082090
Effects of Inaccurate Identification of Interictal Epileptiform Discharges in Concurrent EEG-fMRI
NASA Astrophysics Data System (ADS)
Gkiatis, K.; Bromis, K.; Kakkos, I.; Karanasiou, I. S.; Matsopoulos, G. K.; Garganis, K.
2017-11-01
Concurrent continuous EEG-fMRI is a novel multimodal technique that is finding its way into clinical practice in epilepsy. EEG timeseries are used to identify the timing of interictal epileptiform discharges (IEDs) which is then included in a GLM analysis in fMRI to localize the epileptic onset zone. Nevertheless, there are still some concerns about its reliability concerning BOLD changes correlated with IEDs. Even though IEDs are identified by an experienced neurologist-epiliptologist, the reliability and concordance of the mark-ups is depending on many factors including the level of fatigue, the amount of time that he spent or, in some cases, even the screen that is being used for the display of timeseries. This investigation is aiming to unravel the effect of misidentification or inaccuracy in the mark-ups of IEDs in the fMRI statistical parametric maps. Concurrent EEG-fMRI was conducted in six subjects with various types of epilepsy. IEDs were identified by an experienced neurologist-epiliptologist. Analysis of EEG was performed with EEGLAB and analysis of fMRI was conducted in FSL. Preliminary results revealed lower statistical significance for missing events or larger period of IEDs than the actual ones and the introduction of false positives and false negatives in statistical parametric maps when random events were included in the GLM on top of the IEDs. Our results suggest that mark-ups in EEG for simultaneous EEG-fMRI should be done with caution from an experienced and restful neurologist as it affects the fMRI results in various and unpredicted ways.
EEG phase reset due to auditory attention: an inverse time-scale approach.
Low, Yin Fen; Strauss, Daniel J
2009-08-01
We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6-10 Hz, termed as theta-alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta-alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis.
A wavelet-based technique to predict treatment outcome for Major Depressive Disorder.
Mumtaz, Wajid; Xia, Likun; Mohd Yasin, Mohd Azhar; Azhar Ali, Syed Saad; Malik, Aamir Saeed
2017-01-01
Treatment management for Major Depressive Disorder (MDD) has been challenging. However, electroencephalogram (EEG)-based predictions of antidepressant's treatment outcome may help during antidepressant's selection and ultimately improve the quality of life for MDD patients. In this study, a machine learning (ML) method involving pretreatment EEG data was proposed to perform such predictions for Selective Serotonin Reuptake Inhibitor (SSRIs). For this purpose, the acquisition of experimental data involved 34 MDD patients and 30 healthy controls. Consequently, a feature matrix was constructed involving time-frequency decomposition of EEG data based on wavelet transform (WT) analysis, termed as EEG data matrix. However, the resultant EEG data matrix had high dimensionality. Therefore, dimension reduction was performed based on a rank-based feature selection method according to a criterion, i.e., receiver operating characteristic (ROC). As a result, the most significant features were identified and further be utilized during the training and testing of a classification model, i.e., the logistic regression (LR) classifier. Finally, the LR model was validated with 100 iterations of 10-fold cross-validation (10-CV). The classification results were compared with short-time Fourier transform (STFT) analysis, and empirical mode decompositions (EMD). The wavelet features extracted from frontal and temporal EEG data were found statistically significant. In comparison with other time-frequency approaches such as the STFT and EMD, the WT analysis has shown highest classification accuracy, i.e., accuracy = 87.5%, sensitivity = 95%, and specificity = 80%. In conclusion, significant wavelet coefficients extracted from frontal and temporal pre-treatment EEG data involving delta and theta frequency bands may predict antidepressant's treatment outcome for the MDD patients.
de Munck, Jan C; van Houdt, Petra J; Gonçalves, Sónia I; van Wegen, Erwin; Ossenblok, Pauly P W
2013-01-01
Co-registered EEG and functional MRI (EEG/fMRI) is a potential clinical tool for planning invasive EEG in patients with epilepsy. In addition, the analysis of EEG/fMRI data provides a fundamental insight into the precise physiological meaning of both fMRI and EEG data. Routine application of EEG/fMRI for localization of epileptic sources is hampered by large artefacts in the EEG, caused by switching of scanner gradients and heartbeat effects. Residuals of the ballistocardiogram (BCG) artefacts are similarly shaped as epileptic spikes, and may therefore cause false identification of spikes. In this study, new ideas and methods are presented to remove gradient artefacts and to reduce BCG artefacts of different shapes that mutually overlap in time. Gradient artefacts can be removed efficiently by subtracting an average artefact template when the EEG sampling frequency and EEG low-pass filtering are sufficient in relation to MR gradient switching (Gonçalves et al., 2007). When this is not the case, the gradient artefacts repeat themselves at time intervals that depend on the remainder between the fMRI repetition time and the closest multiple of the EEG acquisition time. These repetitions are deterministic, but difficult to predict due to the limited precision by which these timings are known. Therefore, we propose to estimate gradient artefact repetitions using a clustering algorithm, combined with selective averaging. Clustering of the gradient artefacts yields cleaner EEG for data recorded during scanning of a 3T scanner when using a sampling frequency of 2048 Hz. It even gives clean EEG when the EEG is sampled with only 256 Hz. Current BCG artefacts-reduction algorithms based on average template subtraction have the intrinsic limitation that they fail to deal properly with artefacts that overlap in time. To eliminate this constraint, the precise timings of artefact overlaps were modelled and represented in a sparse matrix. Next, the artefacts were disentangled with a least squares procedure. The relevance of this approach is illustrated by determining the BCG artefacts in a data set consisting of 29 healthy subjects recorded in a 1.5 T scanner and 15 patients with epilepsy recorded in a 3 T scanner. Analysis of the relationship between artefact amplitude, duration and heartbeat interval shows that in 22% (1.5T data) to 30% (3T data) of the cases BCG artefacts show an overlap. The BCG artefacts of the EEG/fMRI data recorded on the 1.5T scanner show a small negative correlation between HBI and BCG amplitude. In conclusion, the proposed methodology provides a substantial improvement of the quality of the EEG signal without excessive computer power or additional hardware than standard EEG-compatible equipment. Copyright © 2012 Elsevier Inc. All rights reserved.
Microstates in resting-state EEG: current status and future directions.
Khanna, Arjun; Pascual-Leone, Alvaro; Michel, Christoph M; Farzan, Faranak
2015-02-01
Electroencephalography (EEG) is a powerful method of studying the electrophysiology of the brain with high temporal resolution. Several analytical approaches to extract information from the EEG signal have been proposed. One method, termed microstate analysis, considers the multichannel EEG recording as a series of quasi-stable "microstates" that are each characterized by a unique topography of electric potentials over the entire channel array. Because this technique simultaneously considers signals recorded from all areas of the cortex, it is capable of assessing the function of large-scale brain networks whose disruption is associated with several neuropsychiatric disorders. In this review, we first introduce the method of EEG microstate analysis. We then review studies that have discovered significant changes in the resting-state microstate series in a variety of neuropsychiatric disorders and behavioral states. We discuss the potential utility of this method in detecting neurophysiological impairments in disease and monitoring neurophysiological changes in response to an intervention. Finally, we discuss how the resting-state microstate series may reflect rapid switching among neural networks while the brain is at rest, which could represent activity of resting-state networks described by other neuroimaging modalities. We conclude by commenting on the current and future status of microstate analysis, and suggest that EEG microstates represent a promising neurophysiological tool for understanding and assessing brain network dynamics on a millisecond timescale in health and disease. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microstates in Resting-State EEG: Current Status and Future Directions
Khanna, Arjun; Pascual-Leone, Alvaro; Michel, Christoph M.; Farzan, Faranak
2015-01-01
Electroencephalography (EEG) is a powerful method of studying the electrophysiology of the brain with high temporal resolution. Several analytical approaches to extract information from the EEG signal have been proposed. One method, termed microstate analysis, considers the multichannel EEG recording as a series of quasi-stable “microstates” that are each characterized by a unique topography of electric potentials over the entire channel array. Because this technique simultaneously considers signals recorded from all areas of the cortex, it is capable of assessing the function of large-scale brain networks whose disruption is associated with several neuropsychiatric disorders. In this review, we first introduce the method of EEG microstate analysis. We then review studies that have discovered significant changes in the resting-state microstate series in a variety of neuropsychiatric disorders and behavioral states. We discuss the potential utility of this method in detecting neurophysiological impairments in disease and monitoring neurophysiological changes in response to an intervention. Finally, we discuss how the resting-state microstate series may reflect rapid switching among neural networks while the brain is at rest, which could represent activity of resting-state networks described by other neuroimaging modalities. We conclude by commenting on the current and future status of microstate analysis, and suggest that EEG microstates represent a promising neurophysiological tool for understanding and assessing brain network dynamics on a millisecond timescale in health and disease. PMID:25526823
Prediction of advertisement preference by fusing EEG response and sentiment analysis.
Gauba, Himaanshu; Kumar, Pradeep; Roy, Partha Pratim; Singh, Priyanka; Dogra, Debi Prosad; Raman, Balasubramanian
2017-08-01
This paper presents a novel approach to predict rating of video-advertisements based on a multimodal framework combining physiological analysis of the user and global sentiment-rating available on the internet. We have fused Electroencephalogram (EEG) waves of user and corresponding global textual comments of the video to understand the user's preference more precisely. In our framework, the users were asked to watch the video-advertisement and simultaneously EEG signals were recorded. Valence scores were obtained using self-report for each video. A higher valence corresponds to intrinsic attractiveness of the user. Furthermore, the multimedia data that comprised of the comments posted by global viewers, were retrieved and processed using Natural Language Processing (NLP) technique for sentiment analysis. Textual contents from review comments were analyzed to obtain a score to understand sentiment nature of the video. A regression technique based on Random forest was used to predict the rating of an advertisement using EEG data. Finally, EEG based rating is combined with NLP-based sentiment score to improve the overall prediction. The study was carried out using 15 video clips of advertisements available online. Twenty five participants were involved in our study to analyze our proposed system. The results are encouraging and these suggest that the proposed multimodal approach can achieve lower RMSE in rating prediction as compared to the prediction using only EEG data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ponomarev, Valery A; Mueller, Andreas; Candrian, Gian; Grin-Yatsenko, Vera A; Kropotov, Juri D
2014-01-01
To investigate the performance of the spectral analysis of resting EEG, Current Source Density (CSD) and group independent components (gIC) in diagnosing ADHD adults. Power spectra of resting EEG, CSD and gIC (19 channels, linked ears reference, eyes open/closed) from 96 ADHD and 376 healthy adults were compared between eyes open and eyes closed conditions, and between groups of subjects. Pattern of differences in gIC and CSD spectral power between conditions was approximately similar, whereas it was more widely spatially distributed for EEG. Size effect (Cohen's d) of differences in gIC and CSD spectral power between groups of subjects was considerably greater than in the case of EEG. Significant reduction of gIC and CSD spectral power depending on conditions was found in ADHD patients. Reducing power in a wide frequency range in the fronto-central areas is a common phenomenon regardless of whether the eyes were open or closed. Spectral power of local EEG activity isolated by gICA or CSD in the fronto-central areas may be a suitable marker for discrimination of ADHD and healthy adults. Spectral analysis of gIC and CSD provides better sensitivity to discriminate ADHD and healthy adults. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications
2013-01-01
Background Time-Frequency analysis of electroencephalogram (EEG) during different mental tasks received significant attention. As EEG is non-stationary, time-frequency analysis is essential to analyze brain states during different mental tasks. Further, the time-frequency information of EEG signal can be used as a feature for classification in brain-computer interface (BCI) applications. Methods To accurately model the EEG, band-limited multiple Fourier linear combiner (BMFLC), a linear combination of truncated multiple Fourier series models is employed. A state-space model for BMFLC in combination with Kalman filter/smoother is developed to obtain accurate adaptive estimation. By virtue of construction, BMFLC with Kalman filter/smoother provides accurate time-frequency decomposition of the bandlimited signal. Results The proposed method is computationally fast and is suitable for real-time BCI applications. To evaluate the proposed algorithm, a comparison with short-time Fourier transform (STFT) and continuous wavelet transform (CWT) for both synthesized and real EEG data is performed in this paper. The proposed method is applied to BCI Competition data IV for ERD detection in comparison with existing methods. Conclusions Results show that the proposed algorithm can provide optimal time-frequency resolution as compared to STFT and CWT. For ERD detection, BMFLC-KF outperforms STFT and BMFLC-KS in real-time applicability with low computational requirement. PMID:24274109
Chung, Chen-Chih; Kang, Jiunn-Horng; Yuan, Rey-Yue; Wu, Dean; Chen, Chih-Chung; Chi, Nai-Fang; Chen, Po-Chih; Hu, Chaur-Jong
2013-07-01
Sleep disorders are frequently seen in patients with Parkinson disease (PD), including rapid eye movement (REM) behavior disorder and periodic limb movement disorder. However, knowledge about changes in non-REM sleep in patients with PD is limited. This study explored the characteristics of electroencephalography (EEG) during sleep in patients with PD and non-PD controls. We further conducted multiscale entropy (MSE) analysis to evaluate and compare the complexity of sleep EEG for the 2 groups. There were 9 patients with PD (Hoehn-Yahr stage 1 or 2) and 11 non-PD controls. All participants underwent standard whole-night polysomnography (PSG), which included 23 channels, 6 of which were for EEG. The raw data of the EEG were extracted and subjected to MSE analysis. Patients with PD had a longer sleep onset time and a higher spontaneous EEG arousal index. Sleep stage-specific increased MSE was observed in patients with PD during non-REM sleep. The difference was more marked and significant at higher time scale factors (TSFs). In conclusion, increased biosignal complexity, as revealed by MSE analysis, was found in patients with PD during non-REM sleep at high TSFs. This finding might reflect a compensatory mechanism for early defects in neuronal network control machinery in PD.
Case, Michelle; Zhang, Huishi; Mundahl, John; Datta, Yvonne; Nelson, Stephen; Gupta, Kalpna; He, Bin
2017-01-01
Sickle cell disease (SCD) is a red blood cell disorder that causes many complications including life-long pain. Treatment of pain remains challenging due to a poor understanding of the mechanisms and limitations to characterize and quantify pain. In the present study, we examined simultaneously recording functional MRI (fMRI) and electroencephalogram (EEG) to better understand neural connectivity as a consequence of chronic pain in SCD patients. We performed independent component analysis and seed-based connectivity on fMRI data. Spontaneous power and microstate analysis was performed on EEG-fMRI data. ICA analysis showed that patients lacked activity in the default mode network (DMN) and executive control network compared to controls. EEG-fMRI data revealed that the insula cortex's role in salience increases with age in patients. EEG microstate analysis showed patients had increased activity in pain processing regions. The cerebellum in patients showed a stronger connection to the periaqueductal gray matter (involved in pain inhibition), and negative connections to pain processing areas. These results suggest that patients have reduced activity of DMN and increased activity in pain processing regions during rest. The present findings suggest resting state connectivity differences between patients and controls can be used as novel biomarkers of SCD pain.
Capecci, Elisa; Kasabov, Nikola; Wang, Grace Y
2015-08-01
The paper presents a methodology for the analysis of functional changes in brain activity across different conditions and different groups of subjects. This analysis is based on the recently proposed NeuCube spiking neural network (SNN) framework and more specifically on the analysis of the connectivity of a NeuCube model trained with electroencephalography (EEG) data. The case study data used to illustrate this method is EEG data collected from three groups-subjects with opiate addiction, patients undertaking methadone maintenance treatment, and non-drug users/healthy control group. The proposed method classifies more accurately the EEG data than traditional statistical and artificial intelligence (AI) methods and can be used to predict response to treatment and dose-related drug effect. But more importantly, the method can be used to compare functional brain activities of different subjects and the changes of these activities as a result of treatment, which is a step towards a better understanding of both the EEG data and the brain processes that generated it. The method can also be used for a wide range of applications, such as a better understanding of disease progression or aging. Copyright © 2015 Elsevier Ltd. All rights reserved.
A preliminary study of muscular artifact cancellation in single-channel EEG.
Chen, Xun; Liu, Aiping; Peng, Hu; Ward, Rabab K
2014-10-01
Electroencephalogram (EEG) recordings are often contaminated with muscular artifacts that strongly obscure the EEG signals and complicates their analysis. For the conventional case, where the EEG recordings are obtained simultaneously over many EEG channels, there exists a considerable range of methods for removing muscular artifacts. In recent years, there has been an increasing trend to use EEG information in ambulatory healthcare and related physiological signal monitoring systems. For practical reasons, a single EEG channel system must be used in these situations. Unfortunately, there exist few studies for muscular artifact cancellation in single-channel EEG recordings. To address this issue, in this preliminary study, we propose a simple, yet effective, method to achieve the muscular artifact cancellation for the single-channel EEG case. This method is a combination of the ensemble empirical mode decomposition (EEMD) and the joint blind source separation (JBSS) techniques. We also conduct a study that compares and investigates all possible single-channel solutions and demonstrate the performance of these methods using numerical simulations and real-life applications. The proposed method is shown to significantly outperform all other methods. It can successfully remove muscular artifacts without altering the underlying EEG activity. It is thus a promising tool for use in ambulatory healthcare systems.
Evaluation of cerebral function after carotid endarterectomy.
Uclés, P; Almárcegui, C; Lorente, S; Romero, F; Marco, M
1997-05-01
Neuroimaging methods have failed to disclose correlation between degree of cerebral atrophy and blood flow in carotid artery stenosis patients. Moreover, intellectual improvement after carotid endarterectomy does not correlate fully with neuroimaging data in such patients. We performed brain electrical activity mapping and psychological testing before and 4 weeks after operation in 28 patients with symptomatic, high-grade, carotid stenosis. Postoperatively, electroencephalographic (EEG) mean frequency and absolute theta power improved significantly (p < 0.01). Mean frequency increased >1 Hz in most areas while power decreased dramatically, mainly because of resolution of high-voltage foci in 8 patients. Differences were conspicuous in both frontal lobes irrespective of the operated side, which suggests changes in perfusion affecting the whole brain. This is a positive effect of endarterectomy. Mini-Mental test and Set Test for verbal fluency had a positive correlation with the qEEG changes. Quantitative EEG as a measure of cerebral function has disclosed discriminative improvement in the early postoperative period. Our results support the thesis of improvement subsequent to endarterectomy.
Evaluation of EEG based determination of unconsciousness vs. loss of posture in broilers.
Benson, E R; Alphin, R L; Rankin, M K; Caputo, M P; Kinney, C A; Johnson, A L
2012-10-01
Evaluation of the loss of consciousness in poultry is an essential component in evaluating bird welfare under a variety of situations and applications. Many current approaches to evaluating loss of consciousness are qualitative and require observation of the bird. This study outlines a quantitative method for determining the point at which a bird loses consciousness. In this study, commercial broilers were individually anesthetized and the brain activity recorded as the bird became unconscious. A wireless EEG transmitter was surgically implanted and the bird anesthetized after a 24-48 h recovery. Each bird was monitored during treatment with isoflurane anesthesia and EEG data was evaluated using a frequency based approach. The alpha/delta (A/D) ratio and loss of posture (LOP) were used to determine the point at which the birds went unconscious. There was no statistically significant difference between time to unconsciousness as measured by A/D ratio or LOP. Copyright © 2011 Elsevier Ltd. All rights reserved.
Linkage mapping of beta 2 EEG waves via non-parametric regression.
Ghosh, Saurabh; Begleiter, Henri; Porjesz, Bernice; Chorlian, David B; Edenberg, Howard J; Foroud, Tatiana; Goate, Alison; Reich, Theodore
2003-04-01
Parametric linkage methods for analyzing quantitative trait loci are sensitive to violations in trait distributional assumptions. Non-parametric methods are relatively more robust. In this article, we modify the non-parametric regression procedure proposed by Ghosh and Majumder [2000: Am J Hum Genet 66:1046-1061] to map Beta 2 EEG waves using genome-wide data generated in the COGA project. Significant linkage findings are obtained on chromosomes 1, 4, 5, and 15 with findings at multiple regions on chromosomes 4 and 15. We analyze the data both with and without incorporating alcoholism as a covariate. We also test for epistatic interactions between regions of the genome exhibiting significant linkage with the EEG phenotypes and find evidence of epistatic interactions between a region each on chromosome 1 and chromosome 4 with one region on chromosome 15. While regressing out the effect of alcoholism does not affect the linkage findings, the epistatic interactions become statistically insignificant. Copyright 2003 Wiley-Liss, Inc.
MRI with and without a high-density EEG cap--what makes the difference?
Klein, Carina; Hänggi, Jürgen; Luechinger, Roger; Jäncke, Lutz
2015-02-01
Besides the benefit of combining electroencephalography (EEG) and magnetic resonance imaging (MRI), much effort has been spent to develop algorithms aimed at successfully cleaning the EEG data from MRI-related gradient and ballistocardiological artifacts. However, there are also studies showing a negative influence of the EEG on MRI data quality. Therefore, in the present study, we focused for the first time on the influence of the EEG on morphometric measurements of T1-weighted MRI data (voxel- and surfaced-based morphometry). Here, we demonstrate a strong influence of the EEG on cortical thickness, surface area, and volume as well as subcortical volumes due to local EEG-related inhomogeneities of the static magnetic (B0) and the gradient field (B1). In a second step, we analyzed the signal-to-noise ratios for both the anatomical and the functional data when recorded simultaneously with EEG and MRI and compared them to the ratios of the MRI data without simultaneous EEG measurements. These analyses revealed consistently lower signal-to-noise ratios for anatomical as well as functional MRI data during simultaneous EEG registration. In contrast, further analyses of T2*-weighted images provided reliable results independent of whether including the individuals' T1-weighted image with or without the EEG cap in the fMRI preprocessing stream. Based on our findings, we strongly recommend against using the structural images obtained during simultaneous EEG-MRI recordings for further anatomical data analysis. Copyright © 2014 Elsevier Inc. All rights reserved.
Detection of burst suppression patterns in EEG using recurrence rate.
Liang, Zhenhu; Wang, Yinghua; Ren, Yongshao; Li, Duan; Voss, Logan; Sleigh, Jamie; Li, Xiaoli
2014-01-01
Burst suppression is a unique electroencephalogram (EEG) pattern commonly seen in cases of severely reduced brain activity such as overdose of general anesthesia. It is important to detect burst suppression reliably during the administration of anesthetic or sedative agents, especially for cerebral-protective treatments in various neurosurgical diseases. This study investigates recurrent plot (RP) analysis for the detection of the burst suppression pattern (BSP) in EEG. The RP analysis is applied to EEG data containing BSPs collected from 14 patients. Firstly we obtain the best selection of parameters for RP analysis. Then, the recurrence rate (RR), determinism (DET), and entropy (ENTR) are calculated. Then RR was selected as the best BSP index one-way analysis of variance (ANOVA) and multiple comparison tests. Finally, the performance of RR analysis is compared with spectral analysis, bispectral analysis, approximate entropy, and the nonlinear energy operator (NLEO). ANOVA and multiple comparison tests showed that the RR could detect BSP and that it was superior to other measures with the highest sensitivity of suppression detection (96.49%, P = 0.03). Tracking BSP patterns is essential for clinical monitoring in critically ill and anesthetized patients. The purposed RR may provide an effective burst suppression detector for developing new patient monitoring systems.
Hosseinifard, Behshad; Moradi, Mohammad Hassan; Rostami, Reza
2013-03-01
Diagnosing depression in the early curable stages is very important and may even save the life of a patient. In this paper, we study nonlinear analysis of EEG signal for discriminating depression patients and normal controls. Forty-five unmedicated depressed patients and 45 normal subjects were participated in this study. Power of four EEG bands and four nonlinear features including detrended fluctuation analysis (DFA), higuchi fractal, correlation dimension and lyapunov exponent were extracted from EEG signal. For discriminating the two groups, k-nearest neighbor, linear discriminant analysis and logistic regression as the classifiers are then used. Highest classification accuracy of 83.3% is obtained by correlation dimension and LR classifier among other nonlinear features. For further improvement, all nonlinear features are combined and applied to classifiers. A classification accuracy of 90% is achieved by all nonlinear features and LR classifier. In all experiments, genetic algorithm is employed to select the most important features. The proposed technique is compared and contrasted with the other reported methods and it is demonstrated that by combining nonlinear features, the performance is enhanced. This study shows that nonlinear analysis of EEG can be a useful method for discriminating depressed patients and normal subjects. It is suggested that this analysis may be a complementary tool to help psychiatrists for diagnosing depressed patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Analysis of EEG Related Saccadic Eye Movement
NASA Astrophysics Data System (ADS)
Funase, Arao; Kuno, Yoshiaki; Okuma, Shigeru; Yagi, Tohru
Our final goal is to establish the model for saccadic eye movement that connects the saccade and the electroencephalogram(EEG). As the first step toward this goal, we recorded and analyzed the saccade-related EEG. In the study recorded in this paper, we tried detecting a certain EEG that is peculiar to the eye movement. In these experiments, each subject was instructed to point their eyes toward visual targets (LEDs) or the direction of the sound sources (buzzers). In the control cases, the EEG was recorded in the case of no eye movemens. As results, in the visual experiments, we found that the potential of EEG changed sharply on the occipital lobe just before eye movement. Furthermore, in the case of the auditory experiments, similar results were observed. In the case of the visual experiments and auditory experiments without eye movement, we could not observed the EEG changed sharply. Moreover, when the subject moved his/her eyes toward a right-side target, a change in EEG potential was found on the right occipital lobe. On the contrary, when the subject moved his/her eyes toward a left-side target, a sharp change in EEG potential was found on the left occipital lobe.
Assessing severity of obstructive sleep apnea by fractal dimension sequence analysis of sleep EEG
NASA Astrophysics Data System (ADS)
Zhang, J.; Yang, X. C.; Luo, L.; Shao, J.; Zhang, C.; Ma, J.; Wang, G. F.; Liu, Y.; Peng, C.-K.; Fang, J.
2009-10-01
Different sleep stages are associated with distinct dynamical patterns in EEG signals. In this article, we explored the relationship between the sleep architecture and fractal dimension (FD) of sleep EEG. In particular, we applied the FD analysis to the sleep EEG of patients with obstructive sleep apnea-hypopnea syndrome (OSAHS), which is characterized by recurrent oxyhemoglobin desaturation and arousals from sleep, a disease which received increasing public attention due to its significant potential impact on health. We showed that the variation of FD reflects the macrostructure of sleep. Furthermore, the fast fluctuation of FD, as measured by the zero-crossing rate of detrended FD (zDFD), is a useful indicator of sleep disturbance, and therefore, correlates with apnea-hypopnea index (AHI), and hourly number of blood oxygen saturation (SpO 2) decreases greater than 4%, as obstructive apnea/hypopnea disturbs sleep architecture. For practical purpose, a modified index combining zDFD of EEG and body mass index (BMI) may be useful for evaluating the severity of OSAHS symptoms.
REM Sleep EEG Instability in REM Sleep Behavior Disorder and Clonazepam Effects.
Ferri, Raffaele; Rundo, Francesco; Silvani, Alessandro; Zucconi, Marco; Bruni, Oliviero; Ferini-Strambi, Luigi; Plazzi, Giuseppe; Manconi, Mauro
2017-08-01
We aimed to analyze quantitatively rapid eye movement (REM) sleep electroencephalogram (EEG) in controls, drug-naïve idiopathic REM sleep behavior disorder patients (iRBD), and iRBD patients treated with clonazepam. Twenty-nine drug-naïve iRBD patients (mean age 68.2 years), 14 iRBD patients under chronic clonazepam therapy (mean age 66.3 years), and 21 controls (mean age 66.8 years) were recruited. Power spectra were obtained from sleep EEG (central derivation), using a 2-second sliding window, with 1-second steps. The power values of each REM sleep EEG spectral band (one every second) were normalized with respect to the average power value obtained during sleep stage 2 in the same individual. In drug-naïve patients, the normalized power values showed a less pronounced REM-related decrease of power in all bands with frequency <15 Hz than controls and an increase in the beta band, negatively correlated with muscle atonia; in patients treated with clonazepam there was a partial return of all bands <15 Hz toward the control values. The standard deviation values of the normalized power were higher for untreated patients in all EEG bands and were almost completely normalized in patients treated with clonazepam. The REM sleep EEG structure changes found in this study disclose subtle but significant alterations in the cortical electrophysiology of RBD that might represent the early expression of the supposed neurodegenerative processes already taking place at this stage of the disease and might be the target of better and effective future therapeutic strategies for this condition. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Quantitative EEG correlations with brain glucose metabolic rate during anesthesia in volunteers.
Alkire, M T
1998-08-01
To help elucidate the relationship between anesthetic-induced changes in the electroencephalogram (EEG) and the concurrent cerebral metabolic changes caused by anesthesia, positron emission tomography data of cerebral metabolism obtained in volunteers during anesthesia were correlated retrospectively with various concurrently measured EEG descriptors. Volunteers underwent functional brain imaging using the 18fluorodeoxyglucose technique; one scan always assessed awake-baseline cerebral metabolism (n = 7), and the other scans assessed metabolism during propofol sedation (n = 4), propofol anesthesia (n = 4), or isoflurane anesthesia (n = 5). The EEG was recorded continuously during metabolism assessment using a frontal-mastoid montage. Power spectrum variables, median frequency, 95% spectral edge, and bispectral index (BIS) values subsequently were correlated with the percentage of absolute cerebral metabolic reduction (PACMR) of glucose utilization caused by anesthesia. The percentage of absolute cerebral metabolic reduction, evident during anesthesia, trended median frequency (r = -0.46, P = 0.11), and the spectral edge (r = -0.52, P = 0.07), and correlated with anesthetic type (r = -0.70, P < 0.05), relative beta power (r = -0.60, P < 0.05), total power (r = 0.71,P < 0.01), and bispectral index (r = -0.81,P < 0.001). After controlling for anesthetic type, only bispectral index (r = 0.40, P = 0.08) and alpha power (r = 0.37, P = 0.10) approached significance for explaining residual percentage of absolute cerebral metabolic reduction prediction error. Some EEG descriptors correlated linearly with the magnitude of the cerebral metabolic reduction caused by propofol and isoflurane anesthesia. These data suggest that a physiologic link exists between the EEG and cerebral metabolism during anesthesia that is mathematically quantifiable.
Saletu, M; Hauer, C; Anderer, P; Saletu-Zyhlarz, G; Gruber, G; Oberndorfer, S; Mandl, M; Popovic, R; Saletu, B
2000-03-24
There is evidence that daytime tiredness is caused by apnea/hypopnea with oxygen desaturation and/or by sleep fragmentation due to arousals. The aim of this study was to investigate objective and subjective sleep and awakening quality and daytime vigilance--objectified by midmorning mapping of vigilance-controlled EEG (V-EEG)--in sleep apnea patients (N: 18), as compared with age- and sex-matched normal controls (N: 18) as well as to correlate nocturnal respiratory distress and arousals to daytime brain function. Statistical analyses demonstrated a deterioration in subjective and objective sleep and awakening quality in apnea patients. Midmorning V-EEG mapping in apnea patients exhibited less total power, more delta and theta, less alpha and beta activity, as well as a slower dominant frequency and centroid of the total activity compared to controls, which suggests a vigilance decrement. The Spearman rank correlation between 6 polysomnographically registered respiratory variables and 36 diurnal quantitative EEG measures demonstrated the following: the higher the apnea, apnea-hypopnea, snoring and desaturation indices and the lower the minimum and average low oxygen saturation, the more pronounced was diurnal tiredness. Eleven arousal measures based on ASDA criteria showed the following significant correlations: the higher the nocturnal arousal index and the more arousals due to hypopneas, the greater was daytime tiredness. On the other hand, the greater the average frequency change during arousals and the more spontaneous arousals, the better was daytime vigilance. Our findings show that, in contrast to the lengthy Multiple Sleep Latency (MSLT) and Maintenance of Wakefulness (MWT) tests which evaluate sleep pressure under resting conditions conducive to sleep, V-EEG mapping provides a brief objective measure of a sleep apnea patient's daytime tiredness under conditions of wakefulness more appropriate to reflect the patient's everyday life.
Tolbert, Jeremy R; Kabali, Pratik; Brar, Simeranjit; Mukhopadhyay, Saibal
2009-01-01
We present a digital system for adaptive data compression for low power wireless transmission of Electroencephalography (EEG) data. The proposed system acts as a base-band processor between the EEG analog-to-digital front-end and RF transceiver. It performs a real-time accuracy energy trade-off for multi-channel EEG signal transmission by controlling the volume of transmitted data. We propose a multi-core digital signal processor for on-chip processing of EEG signals, to detect signal information of each channel and perform real-time adaptive compression. Our analysis shows that the proposed approach can provide significant savings in transmitter power with minimal impact on the overall signal accuracy.
NASA Astrophysics Data System (ADS)
Hramov, Alexander; Musatov, Vyacheslav Yu.; Runnova, Anastasija E.; Efremova, Tatiana Yu.; Koronovskii, Alexey A.; Pisarchik, Alexander N.
2018-04-01
In the paper we propose an approach based on artificial neural networks for recognition of different human brain states associated with distinct visual stimulus. Based on the developed numerical technique and the analysis of obtained experimental multichannel EEG data, we optimize the spatiotemporal representation of multichannel EEG to provide close to 97% accuracy in recognition of the EEG brain states during visual perception. Different interpretations of an ambiguous image produce different oscillatory patterns in the human EEG with similar features for every interpretation. Since these features are inherent to all subjects, a single artificial network can classify with high quality the associated brain states of other subjects.
Correlation of EEG with neuropsychological status in children with epilepsy.
Hsu, David A; Rayer, Katherine; Jackson, Daren C; Stafstrom, Carl E; Hsu, Murielle; Ferrazzano, Peter A; Dabbs, Kevin; Worrell, Gregory A; Jones, Jana E; Hermann, Bruce P
2016-02-01
To determine correlations of the EEG frequency spectrum with neuropsychological status in children with idiopathic epilepsy. Forty-six children ages 8-18 years old with idiopathic epilepsy were retrospectively identified and analyzed for correlations between EEG spectra and neuropsychological status using multivariate linear regression. In addition, the theta/beta ratio, which has been suggested as a clinically useful EEG marker of attention-deficit hyperactivity disorder (ADHD), and an EEG spike count were calculated for each subject. Neuropsychological status was highly correlated with posterior alpha (8-15 Hz) EEG activity in a complex way, with both positive and negative correlations at lower and higher alpha frequency sub-bands for each cognitive task in a pattern that depends on the specific cognitive task. In addition, the theta/beta ratio was a specific but insensitive indicator of ADHD status in children with epilepsy; most children both with and without epilepsy have normal theta/beta ratios. The spike count showed no correlations with neuropsychological status. (1) The alpha rhythm may have at least two sub-bands which serve different purposes. (2) The theta/beta ratio is not a sensitive indicator of ADHD status in children with epilepsy. (3) The EEG frequency spectrum correlates more robustly with neuropsychological status than spike count analysis in children with idiopathic epilepsy. (1) The role of posterior alpha rhythms in cognition is complex and can be overlooked if EEG spectral resolution is too coarse or if neuropsychological status is assessed too narrowly. (2) ADHD in children with idiopathic epilepsy may involve different mechanisms from those in children without epilepsy. (3) Reliable correlations with neuropsychological status require longer EEG samples when using spike count analysis than when using frequency spectra. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nozawa, Akio; Takei, Yuya
The aim of study was to quantitatively evaluate the effects of self-administered facial massage, which was done by hand or facial roller. In this study, the psychophysiological effects of facial massage were evaluated. The central nerves system and the autonomic nervous system were administered to evaluate physiological system. The central nerves system was assessed by Electroencephalogram (EEG). The autonomic nervous system were assessed by peripheral skin temperature(PST) and heart rate variability (HRV) with spectral analysis. In the spectral analysis of HRV, the high-frequency components (HF) were evaluated. State-Trait Anxiety Inventory (STAI), Profile of Mood Status (POMS) and subjective sensory amount with Visual Analog Scale (VAS) were administered to evaluate psychological status. These results suggest that kept brain activity and had strong effects on stress alleviation.
Barlow, Steven M; Jegatheesan, Priya; Weiss, Sunshine; Govindaswami, Balaji; Wang, Jingyan; Lee, Jaehoon; Oder, Austin; Song, Dongli
2013-01-01
Background Controlled somatosensory stimulation strategies have demonstrated merit in developing oral feeding skills in premature infants who lack a functional suck, however, the effects of orosensory entrainment stimulation on electrocortical dynamics is unknown. Objective To determine the effects of servo-controlled pneumatic orocutaneous stimulation presented during gavage feedings on the modulation of aEEG and rEEG activity. Methods Two-channel EEG recordings were collected during 180 sessions that included orocutaneous stimulation and non-stimulation epochs among 22 preterm infants (mean gestational age = 28.56 weeks) who were randomized to treatment and control ‘sham’ conditions. The study was initiated at around 32 weeks post-menstrual age (PMA). The raw EEG was transformed into amplitude-integrated EEG (aEEG) margins, and range-EEG (rEEG) amplitude bands measured at 1-minute intervals and subjected to a mixed models statistical analysis. Results Multiple significant effects were observed in the processed EEG during and immediately following 3-minute periods of orocutaneous stimulation, including modulation of the upper and lower margins of the aEEG, and a reorganization of rEEG with an apparent shift from amplitude bands D and E to band C throughout the 23-minute recording period that followed the first stimulus block when compared to the sham condition. Cortical asymmetry also was apparent in both EEG measures. Conclusions Orocutaneous stimulation represents a salient trigeminal input which has both short- and long-term effects in modulating electrocortical activity, and thus, is hypothesized to represent a form of neural adaptation or plasticity that may benefit the preterm infant during this critical period of brain maturation. PMID:24310443
Bashashati, Ali; Noureddin, Borna; Ward, Rabab K; Lawrence, Peter D; Birch, Gary E
2006-03-01
A power spectral analysis study was conducted to investigate the effects of using an electromagnetic motion tracking sensor on an electroencephalogram (EEG) recording system. The results showed that the sensors do not generate any consistent frequency component(s) in the power spectrum of the EEG in the frequencies of interest (0.1-55 Hz).
Independent component analysis separates spikes of different origin in the EEG.
Urrestarazu, Elena; Iriarte, Jorge; Artieda, Julio; Alegre, Manuel; Valencia, Miguel; Viteri, César
2006-02-01
Independent component analysis (ICA) is a novel system that finds independent sources in recorded signals. Its usefulness in separating epileptiform activity of different origin has not been determined. The goal of this study was to demonstrate that ICA is useful for separating different spikes using samples of EEG of patients with focal epilepsy. Digital EEG samples from four patients with focal epilepsy were included. The patients had temporal (n = 2), centrotemporal (n = 1) or frontal spikes (n = 1). Twenty-six samples with two (or more) spikes from two different patients were created. The selection of the two spikes for each mixed EEG was performed randomly, trying to have all the different combinations and rejecting the mixture of two spikes from the same patient. Two different examiners studied the EEGs using ICA with JADE paradigm in Matlab platform, trying to separate and to identify the spikes. They agreed in the correct separation of the spikes in 24 of the 26 samples, classifying the spikes as frontal, temporal or centrotemporal, left or right sided. The demonstration of the possibility of detecting different artificially mixed spikes confirms that ICA may be useful in separating spikes or other elements in real EEGs.
Unsupervised EEG analysis for automated epileptic seizure detection
NASA Astrophysics Data System (ADS)
Birjandtalab, Javad; Pouyan, Maziyar Baran; Nourani, Mehrdad
2016-07-01
Epilepsy is a neurological disorder which can, if not controlled, potentially cause unexpected death. It is extremely crucial to have accurate automatic pattern recognition and data mining techniques to detect the onset of seizures and inform care-givers to help the patients. EEG signals are the preferred biosignals for diagnosis of epileptic patients. Most of the existing pattern recognition techniques used in EEG analysis leverage the notion of supervised machine learning algorithms. Since seizure data are heavily under-represented, such techniques are not always practical particularly when the labeled data is not sufficiently available or when disease progression is rapid and the corresponding EEG footprint pattern will not be robust. Furthermore, EEG pattern change is highly individual dependent and requires experienced specialists to annotate the seizure and non-seizure events. In this work, we present an unsupervised technique to discriminate seizures and non-seizures events. We employ power spectral density of EEG signals in different frequency bands that are informative features to accurately cluster seizure and non-seizure events. The experimental results tried so far indicate achieving more than 90% accuracy in clustering seizure and non-seizure events without having any prior knowledge on patient's history.
Enabling computer decisions based on EEG input.
Culpepper, Benjamin J; Keller, Robert M
2003-12-01
Multilayer neural networks were successfully trained to classify segments of 12-channel electroencephalogram (EEG) data into one of five classes corresponding to five cognitive tasks performed by a subject. Independent component analysis (ICA) was used to segregate obvious artifact EEG components from other sources, and a frequency-band representation was used to represent the sources computed by ICA. Examples of results include an 85% accuracy rate on differentiation between two tasks, using a segment of EEG only 0.05 s long and a 95% accuracy rate using a 0.5-s-long segment.
Enabling computer decisions based on EEG input
NASA Technical Reports Server (NTRS)
Culpepper, Benjamin J.; Keller, Robert M.
2003-01-01
Multilayer neural networks were successfully trained to classify segments of 12-channel electroencephalogram (EEG) data into one of five classes corresponding to five cognitive tasks performed by a subject. Independent component analysis (ICA) was used to segregate obvious artifact EEG components from other sources, and a frequency-band representation was used to represent the sources computed by ICA. Examples of results include an 85% accuracy rate on differentiation between two tasks, using a segment of EEG only 0.05 s long and a 95% accuracy rate using a 0.5-s-long segment.
Hosseini, Seyyed Abed; Khalilzadeh, Mohammad Ali; Naghibi-Sistani, Mohammad Bagher; Homam, Seyyed Mehran
2015-01-01
Background: This paper proposes a new emotional stress assessment system using multi-modal bio-signals. Electroencephalogram (EEG) is the reflection of brain activity and is widely used in clinical diagnosis and biomedical research. Methods: We design an efficient acquisition protocol to acquire the EEG signals in five channels (FP1, FP2, T3, T4 and Pz) and peripheral signals such as blood volume pulse, skin conductance (SC) and respiration, under images induction (calm-neutral and negatively excited) for the participants. The visual stimuli images are selected from the subset International Affective Picture System database. The qualitative and quantitative evaluation of peripheral signals are used to select suitable segments of EEG signals for improving the accuracy of signal labeling according to emotional stress states. After pre-processing, wavelet coefficients, fractal dimension, and Lempel-Ziv complexity are used to extract the features of the EEG signals. The vast number of features leads to the problem of dimensionality, which is solved using the genetic algorithm as a feature selection method. Results: The results show that the average classification accuracy is 89.6% for two categories of emotional stress states using the support vector machine (SVM). Conclusion: This is a great improvement in results compared to other similar researches. We achieve a noticeable improvement of 11.3% in accuracy using SVM classifier, in compared to previous studies. Therefore, a new fusion between EEG and peripheral signals are more robust in comparison to the separate signals. PMID:26622979
Hosseini, Seyyed Abed; Khalilzadeh, Mohammad Ali; Naghibi-Sistani, Mohammad Bagher; Homam, Seyyed Mehran
2015-07-06
This paper proposes a new emotional stress assessment system using multi-modal bio-signals. Electroencephalogram (EEG) is the reflection of brain activity and is widely used in clinical diagnosis and biomedical research. We design an efficient acquisition protocol to acquire the EEG signals in five channels (FP1, FP2, T3, T4 and Pz) and peripheral signals such as blood volume pulse, skin conductance (SC) and respiration, under images induction (calm-neutral and negatively excited) for the participants. The visual stimuli images are selected from the subset International Affective Picture System database. The qualitative and quantitative evaluation of peripheral signals are used to select suitable segments of EEG signals for improving the accuracy of signal labeling according to emotional stress states. After pre-processing, wavelet coefficients, fractal dimension, and Lempel-Ziv complexity are used to extract the features of the EEG signals. The vast number of features leads to the problem of dimensionality, which is solved using the genetic algorithm as a feature selection method. The results show that the average classification accuracy is 89.6% for two categories of emotional stress states using the support vector machine (SVM). This is a great improvement in results compared to other similar researches. We achieve a noticeable improvement of 11.3% in accuracy using SVM classifier, in compared to previous studies. Therefore, a new fusion between EEG and peripheral signals are more robust in comparison to the separate signals.
EEG biometric identification: a thorough exploration of the time-frequency domain
NASA Astrophysics Data System (ADS)
DelPozo-Banos, Marcos; Travieso, Carlos M.; Weidemann, Christoph T.; Alonso, Jesús B.
2015-10-01
Objective. Although interest in using electroencephalogram (EEG) activity for subject identification has grown in recent years, the state of the art still lacks a comprehensive exploration of the discriminant information within it. This work aims to fill this gap, and in particular, it focuses on the time-frequency representation of the EEG. Approach. We executed qualitative and quantitative analyses of six publicly available data sets following a sequential experimentation approach. This approach was divided in three blocks analysing the configuration of the power spectrum density, the representation of the data and the properties of the discriminant information. A total of ten experiments were applied. Main results. Results show that EEG information below 40 Hz is unique enough to discriminate across subjects (a maximum of 100 subjects were evaluated here), regardless of the recorded cognitive task or the sensor location. Moreover, the discriminative power of rhythms follows a W-like shape between 1 and 40 Hz, with the central peak located at the posterior rhythm (around 10 Hz). This information is maximized with segments of around 2 s, and it proved to be moderately constant across montages and time. Significance. Therefore, we characterize how EEG activity differs across individuals and detail the optimal conditions to detect subject-specific information. This work helps to clarify the results of previous studies and to solve some unanswered questions. Ultimately, it will serve as guide for the design of future biometric systems.
TMS-EEG: From basic research to clinical applications
NASA Astrophysics Data System (ADS)
Hernandez-Pavon, Julio C.; Sarvas, Jukka; Ilmoniemi, Risto J.
2014-11-01
Transcranial magnetic stimulation (TMS) combined with electroencephalography (EEG) is a powerful technique for non-invasively studying cortical excitability and connectivity. The combination of TMS and EEG has widely been used to perform basic research and recently has gained importance in different clinical applications. In this paper, we will describe the physical and biological principles of TMS-EEG and different applications in basic research and clinical applications. We will present methods based on independent component analysis (ICA) for studying the TMS-evoked EEG responses. These methods have the capability to remove and suppress large artifacts, making it feasible, for instance, to study language areas with TMS-EEG. We will discuss the different applications and limitations of TMS and TMS-EEG in clinical applications. Potential applications of TMS are presented, for instance in neurosurgical planning, depression and other neurological disorders. Advantages and disadvantages of TMS-EEG and its variants such as repetitive TMS (rTMS) are discussed in comparison to other brain stimulation and neuroimaging techniques. Finally, challenges that researchers face when using this technique will be summarized.
The Utility of EEG in Attention Deficit Hyperactivity Disorder: A Replication Study.
Swatzyna, Ronald J; Tarnow, Jay D; Roark, Alexandra; Mardick, Jacob
2017-07-01
The routine use of stimulants in pediatrics has increased dramatically over the past 3 decades and the long-term consequences have yet to be fully studied. Since 1978 there have been 7 articles identifying electroencephalogram (EEG) abnormalities, particularly epileptiform discharges in children with attention deficit hyperactivity disorder (ADHD). Many have studied the prevalence of these discharges in this population with varying results. An article published in 2011 suggests that EEG technology should be considered prior to prescribing stimulants to children diagnosed with ADHD due to a high prevalence of epileptiform discharges. The 2011 study found a higher prevalence (26%) of epileptiform discharges when using 23-hour and sleep-deprived EEGs in comparison with other methods of activation (hyperventilation or photostimulation) and conventional EEG. We sought to replicate the 2011 results using conventional EEG with the added qEEG technologies of automatic spike detection and low-resolution electromagnetic tomography analysis (LORETA) brain mapping. Our results showed 32% prevalence of epileptiform discharges, which suggests that an EEG should be considered prior to prescribing stimulant medications.
Hardware enhance of brain computer interfaces
NASA Astrophysics Data System (ADS)
Wu, Jerry; Szu, Harold; Chen, Yuechen; Guo, Ran; Gu, Xixi
2015-05-01
The history of brain-computer interfaces (BCIs) starts with Hans Berger's discovery of the electrical activity of the human brain and the development of electroencephalography (EEG). Recent years, BCI researches are focused on Invasive, Partially invasive, and Non-invasive BCI. Furthermore, EEG can be also applied to telepathic communication which could provide the basis for brain-based communication using imagined speech. It is possible to use EEG signals to discriminate the vowels and consonants embedded in spoken and in imagined words and apply to military product. In this report, we begin with an example of using high density EEG with high electrode density and analysis the results by using BCIs. The BCIs in this work is enhanced by A field-programmable gate array (FPGA) board with optimized two dimension (2D) image Fast Fourier Transform (FFT) analysis.
Yargholi, Elahe'; Nasrabadi, Ali Motie
2015-01-01
The purpose of this study was to apply RQA (recurrence quantification analysis) on hypnotic electroencephalograph (EEG) signals recorded after hypnotic induction while subjects were doing standard tasks of the Waterloo-Stanford Group Scale (WSGS) of hypnotic susceptibility. Then recurrence quantifiers were used to analyse the influence of hypnotic depth on EEGs. By the application of this method, the capability of tasks to distinguish subjects of different hypnotizability levels was determined. Besides, medium hypnotizable subjects showed the highest disposition to be inducted by hypnotizer. Similarities between brain governing dynamics during tasks of the same type were also observed. The present study demonstrated two remarkable innovations; investigating the EEGs of the hypnotized as doing mental tasks of Waterloo-Stanford Group Scale (WSGS) and applying RQA on hypnotic EEGs.
Estimating the mutual information of an EEG-based Brain-Computer Interface.
Schlögl, A; Neuper, C; Pfurtscheller, G
2002-01-01
An EEG-based Brain-Computer Interface (BCI) could be used as an additional communication channel between human thoughts and the environment. The efficacy of such a BCI depends mainly on the transmitted information rate. Shannon's communication theory was used to quantify the information rate of BCI data. For this purpose, experimental EEG data from four BCI experiments was analyzed off-line. Subjects imaginated left and right hand movements during EEG recording from the sensorimotor area. Adaptive autoregressive (AAR) parameters were used as features of single trial EEG and classified with linear discriminant analysis. The intra-trial variation as well as the inter-trial variability, the signal-to-noise ratio, the entropy of information, and the information rate were estimated. The entropy difference was used as a measure of the separability of two classes of EEG patterns.
Wang, Ying; Cao, Liu; Hao, Dongmei; Rong, Yao; Yang, Lin; Zhang, Song; Chen, Fei; Zheng, Dingchang
2017-05-01
This study was to quantitatively investigate the effects of force load, muscle fatigue and extremely low frequency (ELF) magnetic stimulation on electroencephalography (EEG) signal features during side arm lateral raise task. EEG signals were recorded by a BIOSEMI Active Two system with Pin-Type active-electrodes from 18 healthy subjects when they performed the right arm side lateral raise task (90° away from the body) with three different loads (0 kg, 1 kg and 3 kg; their order was randomized among the subjects) on the forearm. The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as non-fatigue status and the last 10 s before the subject was exhausted as fatigue status. The subject was then given a 5 min resting between different loads. Two days later, the same experiment was performed on each subject except that ELF magnetic stimulation was applied to the subject's deltoid muscle during the 5 min resting period. EEG features from C3 and C4 electrodes including the power of alpha, beta and gamma and sample entropy were analyzed and compared between different loads, non-fatigue/fatigue status, and with/without ELF magnetic stimulation. The key results were associated with the change of the power of alpha band. From both C3-EEG and C4-EEG, with 1 kg and 3 kg force loads, the power of alpha band was significantly smaller than that from 0 kg for both non-fatigue and fatigue periods (all p < 0.05). However, no significant difference of the power in alpha between 1 kg and 3 kg was observed (p > 0.05 for all the force loads except C4-EEG with ELF simulation). The power of alpha band at fatigue status was significantly increased for both C3-EEG and C4-EEG when compared with the non-fatigue status (p < 0.01 for all the force loads except 3 kg force from C4-EEG). With magnetic stimulation, the powers of alpha from C3-EEG and C4-EEG were significantly decreased than without stimulation (all p < 0.05), and the difference in the power of alpha between fatigue and non-fatigue status disappeared with 1 kg and 3 kg force loads, The powers of beta and gamma bands and SampEn were not significantly different between different force loads, between fatigue and non-fatigue status, and between with and without ELF magnetic stimulation (all p > 0.05, except between non-fatigue and fatigue with magnetic stimulation in gamma band of C3-EEG at 1 kg, and in the SampEn at 1 kg and 3 kg force loads from C4-EEG). Our study comprehensively quantified the effects of force, fatigue and the ELF magnetic stimulation on EEG features with difference forces, fatigue status and ELF magnetic stimulation.
Early prediction of coma recovery after cardiac arrest with blinded pupillometry.
Solari, Daria; Rossetti, Andrea O; Carteron, Laurent; Miroz, John-Paul; Novy, Jan; Eckert, Philippe; Oddo, Mauro
2017-06-01
Prognostication studies on comatose cardiac arrest (CA) patients are limited by lack of blinding, potentially causing overestimation of outcome predictors and self-fulfilling prophecy. Using a blinded approach, we analyzed the value of quantitative automated pupillometry to predict neurological recovery after CA. We examined a prospective cohort of 103 comatose adult patients who were unconscious 48 hours after CA and underwent repeated measurements of quantitative pupillary light reflex (PLR) using the Neurolight-Algiscan device. Clinical examination, electroencephalography (EEG), somatosensory evoked potentials (SSEP), and serum neuron-specific enolase were performed in parallel, as part of standard multimodal assessment. Automated pupillometry results were blinded to clinicians involved in patient care. Cerebral Performance Categories (CPC) at 1 year was the outcome endpoint. Survivors (n = 50 patients; 32 CPC 1, 16 CPC 2, 2 CPC 3) had higher quantitative PLR (median = 20 [range = 13-41] vs 11 [0-55] %, p < 0.0001) and constriction velocity (1.46 [0.85-4.63] vs 0.94 [0.16-4.97] mm/s, p < 0.0001) than nonsurvivors. At 48 hours, a quantitative PLR < 13% had 100% specificity and positive predictive value to predict poor recovery (0% false-positive rate), and provided equal performance to that of EEG and SSEP. Reduced quantitative PLR correlated with higher serum neuron-specific enolase (Spearman r = -0.52, p < 0.0001). Reduced quantitative PLR correlates with postanoxic brain injury and, when compared to standard multimodal assessment, is highly accurate in predicting long-term prognosis after CA. This is the first prognostication study to show the value of automated pupillometry using a blinded approach to minimize self-fulfilling prophecy. Ann Neurol 2017;81:804-810. © 2017 American Neurological Association.
Zhao, Qinglin; Hu, Bin; Shi, Yujun; Li, Yang; Moore, Philip; Sun, Minghou; Peng, Hong
2014-06-01
Electroencephalogram (EEG) signals have a long history of use as a noninvasive approach to measure brain function. An essential component in EEG-based applications is the removal of Ocular Artifacts (OA) from the EEG signals. In this paper we propose a hybrid de-noising method combining Discrete Wavelet Transformation (DWT) and an Adaptive Predictor Filter (APF). A particularly novel feature of the proposed method is the use of the APF based on an adaptive autoregressive model for prediction of the waveform of signals in the ocular artifact zones. In our test, based on simulated data, the accuracy of noise removal in the proposed model was significantly increased when compared to existing methods including: Wavelet Packet Transform (WPT) and Independent Component Analysis (ICA), Discrete Wavelet Transform (DWT) and Adaptive Noise Cancellation (ANC). The results demonstrate that the proposed method achieved a lower mean square error and higher correlation between the original and corrected EEG. The proposed method has also been evaluated using data from calibration trials for the Online Predictive Tools for Intervention in Mental Illness (OPTIMI) project. The results of this evaluation indicate an improvement in performance in terms of the recovery of true EEG signals with EEG tracking and computational speed in the analysis. The proposed method is well suited to applications in portable environments where the constraints with respect to acceptable wearable sensor attachments usually dictate single channel devices.
EEG Sleep Stages Classification Based on Time Domain Features and Structural Graph Similarity.
Diykh, Mohammed; Li, Yan; Wen, Peng
2016-11-01
The electroencephalogram (EEG) signals are commonly used in diagnosing and treating sleep disorders. Many existing methods for sleep stages classification mainly depend on the analysis of EEG signals in time or frequency domain to obtain a high classification accuracy. In this paper, the statistical features in time domain, the structural graph similarity and the K-means (SGSKM) are combined to identify six sleep stages using single channel EEG signals. Firstly, each EEG segment is partitioned into sub-segments. The size of a sub-segment is determined empirically. Secondly, statistical features are extracted, sorted into different sets of features and forwarded to the SGSKM to classify EEG sleep stages. We have also investigated the relationships between sleep stages and the time domain features of the EEG data used in this paper. The experimental results show that the proposed method yields better classification results than other four existing methods and the support vector machine (SVM) classifier. A 95.93% average classification accuracy is achieved by using the proposed method.
Bochkarev, V K; Teleshova, E S; Siuniakov, S A; Davydova, D V; Neznamov, G G
2008-01-01
An effect of a new nootropic drug noopept on the dynamics of main EEG rhythms and narrow-band spectral EEG characteristics in patients with cerebral asthenic and cognitive disturbances caused by traumas or vascular brain diseases has been studied. Noopept caused the EEG changes characteristic of the action of nootropics: the increase of alpha- and beta-rhythms power and reduction of delta-rhythms power. The reaction of alpha-rhythm was provided mostly by the dynamics of its low and medium frequencies (6,7-10,2 Hz), the changes of beta-rhythm were augmented in frontal and attenuated in occipital areas. The analysis of frequency and spatial structure of EEG changes reveals that noopept exerts a nonspecific activation and anxyolytic effect. The differences in EEG changes depending on the brain pathology were found. The EEG indices of nootropic effect of the drug were most obvious in cerebral vascular diseases. The EEG changes in posttraumatic brain lesion were less typical.
Regional differences in trait-like characteristics of the waking EEG in early adolescence.
Benz, Dominik C; Tarokh, Leila; Achermann, Peter; Loughran, Sarah P
2013-10-09
The human waking EEG spectrum shows high heritability and stability and, despite maturational cortical changes, high test-retest reliability in children and teens. These phenomena have also been shown to be region specific. We examined the stability of the morphology of the wake EEG spectrum in children aged 11 to 13 years recorded over weekly intervals and assessed whether the waking EEG spectrum in children may also be trait-like. Three minutes of eyes open and three minutes of eyes closed waking EEG was recorded in 22 healthy children once a week for three consecutive weeks. Eyes open and closed EEG power density spectra were calculated for two central (C3LM and C4LM) and two occipital (O1LM and O2LM) derivations. A hierarchical cluster analysis was performed to determine whether the morphology of the waking EEG spectrum between 1 and 20 Hz is trait-like. We also examined the stability of the alpha peak using an ANOVA. The morphology of the EEG spectrum recorded from central derivations was highly stable and unique to an individual (correctly classified in 85% of participants), while the EEG recorded from occipital derivations, while stable, was much less unique across individuals (correctly classified in 42% of participants). Furthermore, our analysis revealed an increase in alpha peak height concurrent with a decline in the frequency of the alpha peak across weeks for occipital derivations. No changes in either measure were observed in the central derivations. Our results indicate that across weekly recordings, power spectra at central derivations exhibit more "trait-like" characteristics than occipital derivations. These results may be relevant for future studies searching for links between phenotypes, such as psychiatric diagnoses, and the underlying genes (i.e., endophenotypes) by suggesting that such studies should make use of more anterior rather than posterior EEG derivations.
Linear and Nonlinear Analysis of Brain Dynamics in Children with Cerebral Palsy
ERIC Educational Resources Information Center
Sajedi, Firoozeh; Ahmadlou, Mehran; Vameghi, Roshanak; Gharib, Masoud; Hemmati, Sahel
2013-01-01
This study was carried out to determine linear and nonlinear changes of brain dynamics and their relationships with the motor dysfunctions in CP children. For this purpose power of EEG frequency bands (as a linear analysis) and EEG fractality (as a nonlinear analysis) were computed in eyes-closed resting state and statistically compared between 26…
Lazar, Steven M; Evans, David W; Myers, Scott M; Moreno-De Luca, Andres; Moore, Gregory J
2014-04-15
Social cognition is an important aspect of social behavior in humans. Social cognitive deficits are associated with neurodevelopmental and neuropsychiatric disorders. In this study we examine the neural substrates of social cognition and face processing in a group of healthy young adults to examine the neural substrates of social cognition. Fifty-seven undergraduates completed a battery of social cognition tasks and were assessed with electroencephalography (EEG) during a face-perception task. A subset (N=22) were administered a face-perception task during functional magnetic resonance imaging. Variance in the N170 EEG was predicted by social attribution performance and by a quantitative measure of empathy. Neurally, face processing was more bilateral in females than in males. Variance in fMRI voxel count in the face-sensitive fusiform gyrus was predicted by quantitative measures of social behavior, including the Social Responsiveness Scale (SRS) and the Empathizing Quotient. When measured as a quantitative trait, social behaviors in typical and pathological populations share common neural pathways. The results highlight the importance of viewing neurodevelopmental and neuropsychiatric disorders as spectrum phenomena that may be informed by studies of the normal distribution of relevant traits in the general population. Copyright © 2014 Elsevier B.V. All rights reserved.
Minc, Daniel; Machado, Sergio; Bastos, Victor Hugo; Machado, Dionis; Cunha, Marlo; Cagy, Mauricio; Budde, Henning; Basile, Luis; Piedade, Roberto; Ribeiro, Pedro
2010-01-18
The goal of the present study was to explore the dynamics of the gamma band using the coherence of the quantitative electroencephalography (qEEG) in a sensorimotor integration task and the influence of the neuromodulator bromazepam on the band behavior. Our hypothesis is that the needs of the typewriting task will demand the coupling of different brain areas, and that the gamma band will promote the binding of information. It is also expected that the neuromodulator will modify this coupling. The sample was composed of 39 healthy subjects. We used a randomized double-blind design and divided subjects into three groups: placebo (n=13), bromazepam 3mg (n=13) and bromazepam 6 mg (n=13). The two-way ANOVA analysis demonstrated a main effect for the factors condition (i.e., C4-CZ electrode pair) and moment (i.e., C3-CZ, C3-C4 and C4-CZ pairs of electrodes). We propose that the gamma band plays an important role in the binding among several brain areas in complex motor tasks and that each hemisphere is influenced in a different manner by the neuromodulator. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Sanfim, Antonio; Velasques, Bruna; Machado, Sergio; Arias-Carrión, Oscar; Paes, Flávia; Teixeira, Silmar; Santos, Joana Luz; Bittencourt, Juliana; Basile, Luis F; Cagy, Mauricio; Piedade, Roberto; Sack, Alexander T; Nardi, Antonio Egídio; Ribeiro, Pedro
2012-01-15
This study aimed at analyzing the relationship between slow- and fast-alpha asymmetry within frontal cortex and the planning, execution and voluntary control of saccadic eye movements (SEM), and quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 12 healthy participants performing a fixed (i.e., memory-driven) and a random SEM (i.e., stimulus-driven) condition. We find main effects for SEM condition in slow- and fast-alpha asymmetry at electrodes F3-F4, which are located over premotor cortex, specifically a negative asymmetry between conditions. When analyzing electrodes F7-F8, which are located over prefrontal cortex, we found a main effect for condition in slow-alpha asymmetry, particularly a positive asymmetry between conditions. In conclusion, the present approach supports the association of slow- and fast-alpha bands with the planning and preparation of SEM, and the specific role of these sub-bands for both, the attention network and the coordination and integration of sensory information with a (oculo)-motor response. Copyright © 2011 Elsevier B.V. All rights reserved.
Driving behavior recognition using EEG data from a simulated car-following experiment.
Yang, Liu; Ma, Rui; Zhang, H Michael; Guan, Wei; Jiang, Shixiong
2018-07-01
Driving behavior recognition is the foundation of driver assistance systems, with potential applications in automated driving systems. Most prevailing studies have used subjective questionnaire data and objective driving data to classify driving behaviors, while few studies have used physiological signals such as electroencephalography (EEG) to gather data. To bridge this gap, this paper proposes a two-layer learning method for driving behavior recognition using EEG data. A simulated car-following driving experiment was designed and conducted to simultaneously collect data on the driving behaviors and EEG data of drivers. The proposed learning method consists of two layers. In Layer I, two-dimensional driving behavior features representing driving style and stability were selected and extracted from raw driving behavior data using K-means and support vector machine recursive feature elimination. Five groups of driving behaviors were classified based on these two-dimensional driving behavior features. In Layer II, the classification results from Layer I were utilized as inputs to generate a k-Nearest-Neighbor classifier identifying driving behavior groups using EEG data. Using independent component analysis, a fast Fourier transformation, and linear discriminant analysis sequentially, the raw EEG signals were processed to extract two core EEG features. Classifier performance was enhanced using the adaptive synthetic sampling approach. A leave-one-subject-out cross validation was conducted. The results showed that the average classification accuracy for all tested traffic states was 69.5% and the highest accuracy reached 83.5%, suggesting a significant correlation between EEG patterns and car-following behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
The probability of seizures during EEG monitoring in critically ill adults.
Westover, M Brandon; Shafi, Mouhsin M; Bianchi, Matt T; Moura, Lidia M V R; O'Rourke, Deirdre; Rosenthal, Eric S; Chu, Catherine J; Donovan, Samantha; Hoch, Daniel B; Kilbride, Ronan D; Cole, Andrew J; Cash, Sydney S
2015-03-01
To characterize the risk for seizures over time in relation to EEG findings in hospitalized adults undergoing continuous EEG monitoring (cEEG). Retrospective analysis of cEEG data and medical records from 625 consecutive adult inpatients monitored at a tertiary medical center. Using survival analysis methods, we estimated the time-dependent probability that a seizure will occur within the next 72-h, if no seizure has occurred yet, as a function of EEG abnormalities detected so far. Seizures occurred in 27% (168/625). The first seizure occurred early (<30min of monitoring) in 58% (98/168). In 527 patients without early seizures, 159 (30%) had early epileptiform abnormalities, versus 368 (70%) without. Seizures were eventually detected in 25% of patients with early epileptiform discharges, versus 8% without early discharges. The 72-h risk of seizures declined below 5% if no epileptiform abnormalities were present in the first two hours, whereas 16h of monitoring were required when epileptiform discharges were present. 20% (74/388) of patients without early epileptiform abnormalities later developed them; 23% (17/74) of these ultimately had seizures. Only 4% (12/294) experienced a seizure without preceding epileptiform abnormalities. Seizure risk in acute neurological illness decays rapidly, at a rate dependent on abnormalities detected early during monitoring. This study demonstrates that substantial risk stratification is possible based on early EEG abnormalities. These findings have implications for patient-specific determination of the required duration of cEEG monitoring in hospitalized patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Zhang, Shao-jie; Ke, Zheng; Li, Le; Yip, Shea-ping; Tong, Kai-yu
2013-04-01
Monitoring the neural activities from the ischemic penumbra provides critical information on neurological recovery after stroke. The purpose of this study is to evaluate the temporal alterations of neural activities using electroencephalography (EEG) from the acute phase to the chronic phase, and to compare EEG with the degree of post-stroke motor function recovery in a rat model of focal ischemic stroke. Male Sprague-Dawley rats were subjected to 90 min transient middle cerebral artery occlusion surgery followed by reperfusion for seven days (n = 58). The EEG signals were recorded at the pre-stroke phase (0 h), acute phase (3, 6 h), subacute phase (12, 24, 48, 72 h) and chronic phase (96, 120, 144, 168 h) (n = 8). This study analyzed post-stroke seizures and polymorphic delta activities (PDAs) and calculated quantitative EEG parameters such as the alpha-to-delta ratio (ADR). The ADR represented the ratio between alpha power and delta power, which indicated how fast the EEG activities were. Forelimb and hindlimb motor functions were measured by De Ryck's test and the beam walking test, respectively. In the acute phase, delta power increased fourfold with the occurrence of PDAs, and the histological staining showed that the infarct was limited to the striatum and secondary sensory cortex. In the subacute phase, the alpha power reduced to 50% of the baseline, and the infarct progressed to the forelimb cortical region. ADRs reduced from 0.23 ± 0.09 to 0.04 ± 0.01 at 3 h in the acute phase and gradually recovered to 0.22 ± 0.08 at 168 h in the chronic phase. In the comparison of correlations between the EEG parameters and the limb motor function from the acute phase to the chronic phase, ADRs were found to have the highest correlation coefficients with the beam walking test (r = 0.9524, p < 0.05) and De Ryck's test (r = 0.8077, p < 0.05). This study measured EEG activities after focal cerebral ischemia and showed that functional recovery was closely correlated with the neural activities in the penumbra. Longitudinal EEG monitoring at different phases after a stroke can provide information on the neural activities, which are well correlated with the motor function recovery.
McClelland, G R; Sutton, J A
1986-01-01
Eight healthy male volunteers participated in a single-blind, random allocation, crossover, comparison of intravenous metoclopramide (10 mg), the peripherally acting, gastrointestinal stimulant BRL 20627 (10 mg) and saline. The central nervous system effects were assessed by quantitative electroencephalography (EEG) and by visual analogue scales. Gastric motility and emptying were assessed by epigastric impedance. Metoclopramide increased the EEG amplitude by 10.4% (a statistically significant, P less than 0.05, effect) and increased frequencies above 22 Hz, whereas both BRL 20627 and placebo had only minor effect on the EEG frequencies and slightly decreased the EEG amplitude. Ratings on visual analogue scales showed that metoclopramide caused statistically significant (P less than 0.01 difference from placebo) restlessness and slight but significantly less (P less than 0.05 difference from placebo) feeling of happiness. Epigastic impedance changes indicated that both metoclopramide and BRL 20627 increased gastric contractile activity, but the rate of gastric emptying was not significantly altered by either drug although it tended to be shortened following metoclopramide but not BRL 20627 treatment. It is concluded that since the published animal data show that BRL 20627 has only weak dopamine antagonistic properties this study further implicates dopamine receptor blockade in the akathisia but not in the gastric effect of metoclopramide. PMID:3755051
Changes in Resting EEG in Colombian Ex-combatants ith Antisocial Personality Disorder.
Ramos, Claudia; Duque-Grajales, Jon; Rendón, Jorge; Montoya-Betancur, Alejandro; Baena, Ana; Pineda, David; Tobón, Carlos
Although the social and economic consequences of Colombian internal conflicts mainly affected the civilian population, they also had other implications. The ex-combatants, the other side of the conflict, have been the subject of many studies that question their personality structures and antisocial features. Results suggest that ex-combatants usually have characteristics of an antisocial personality disorder (ASPD) that is related with their behaviour. Quantitative EEG (qEEG) was used to evaluate differences in cortical activity patterns between an ex-combatants group and a control group. The Psychopathy Checklist-Revised (PCL-R) was used to assess the presence of ASPD in the ex-combatants group, as well as the Diagnostic Interview for Genetic Studies (DIGS) for other mental disorders classified in the DCI-10. There are significant differences in psychopathy levels between groups, as well as in alpha-2 and beta waves, especially in left temporal and frontal areas for alpha-2 waves and left temporal-central regions for beta waves. qEEG measurements allow spectral resting potential to be differentiated between groups that are related with features typically involved in antisocial personality disorder, and to correlate them with patterns in the questionnaires and clinical interview. Copyright © 2017 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Use of Multiscale Entropy to Facilitate Artifact Detection in Electroencephalographic Signals
Mariani, Sara; Borges, Ana F. T.; Henriques, Teresa; Goldberger, Ary L.; Costa, Madalena D.
2016-01-01
Electroencephalographic (EEG) signals present a myriad of challenges to analysis, beginning with the detection of artifacts. Prior approaches to noise detection have utilized multiple techniques, including visual methods, independent component analysis and wavelets. However, no single method is broadly accepted, inviting alternative ways to address this problem. Here, we introduce a novel approach based on a statistical physics method, multiscale entropy (MSE) analysis, which quantifies the complexity of a signal. We postulate that noise corrupted EEG signals have lower information content, and, therefore, reduced complexity compared with their noise free counterparts. We test the new method on an open-access database of EEG signals with and without added artifacts due to electrode motion. PMID:26738116
Oosugi, Naoya; Kitajo, Keiichi; Hasegawa, Naomi; Nagasaka, Yasuo; Okanoya, Kazuo; Fujii, Naotaka
2017-09-01
Blind source separation (BSS) algorithms extract neural signals from electroencephalography (EEG) data. However, it is difficult to quantify source separation performance because there is no criterion to dissociate neural signals and noise in EEG signals. This study develops a method for evaluating BSS performance. The idea is neural signals in EEG can be estimated by comparison with simultaneously measured electrocorticography (ECoG). Because the ECoG electrodes cover the majority of the lateral cortical surface and should capture most of the original neural sources in the EEG signals. We measured real EEG and ECoG data and developed an algorithm for evaluating BSS performance. First, EEG signals are separated into EEG components using the BSS algorithm. Second, the EEG components are ranked using the correlation coefficients of the ECoG regression and the components are grouped into subsets based on their ranks. Third, canonical correlation analysis estimates how much information is shared between the subsets of the EEG components and the ECoG signals. We used our algorithm to compare the performance of BSS algorithms (PCA, AMUSE, SOBI, JADE, fastICA) via the EEG and ECoG data of anesthetized nonhuman primates. The results (Best case >JADE = fastICA >AMUSE = SOBI ≥ PCA >random separation) were common to the two subjects. To encourage the further development of better BSS algorithms, our EEG and ECoG data are available on our Web site (http://neurotycho.org/) as a common testing platform. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Kim, Jin Young; Kang, Hye Lim; Kim, Dae-Keun; Kang, Seung Wan; Park, Yoo Kyoung
2017-07-01
Recent study suggests that psychological issues and eating habits are closely related. In this study, we aimed to find the association between eating habits and intakes of artificial sweeteners with emotional states of schoolchildren using quantitatively analyzing objective biosignals. The study was conducted at the National Standard Reference Data Center for Korean EEG as a cross-sectional study. Three hundred eighteen healthy children who have not been diagnosed with neurologic or psychiatric disorders were evaluated (168 girls and 150 boys; mean age of 11.8 ± 3.6 years). Analysis indicators were a dietary intake checklist for children's nutrition-related behavior score (NBS), consisting of 19 items; food frequency questionnaires (FFQs), consisting of 76 items; the Child Depression Inventory (CDI); State-Trait Anxiety Inventory-State (STAI-S); State-Trait Anxiety Inventory-Trait (STAI-T); electroencephalograph (EEG); and heart rate variability (HRV). Higher scores on the CDI, STAI-S, and STAI-T indicate negative emotions, and these scores were significantly decreased from the first to the fourth quartiles. The HRV results showed that the standard deviation of all normal-to-normal (SDNN) intervals was significantly higher in the first quartile than in the fourth quartile (p < 0.05). The intakes of artificial sweeteners and processed foods such as hamburgers correlate with higher theta/beta ratios, and intakes of natural foods such as legumes and fruits correlate with lower theta/beta ratios (p < 0.05). From this result we confirmed a link between overall nutritional behavior, food additive intakes, and emotion in apparently healthy children and adolescents.
Thomas, Alexia M; Schwartz, Michael D; Saxe, Michael D; Kilduff, Thomas S
2017-10-01
Neuroligin-3 (NLGN3) is one of the many genes associated with autism spectrum disorder (ASD). Sleep dysfunction is highly prevalent in ASD, but has not been rigorously examined in ASD models. Here, we evaluated sleep/wake physiology and behavioral phenotypes of rats with genetic ablation of Nlgn3. Male Nlgn3 knockout (KO) and wild-type (WT) rats were assessed using a test battery for ASD-related behaviors and also implanted with telemeters to record the electroencephalogram (EEG), electromyogram, body temperature, and locomotor activity. 24-h EEG recordings were analyzed for sleep/wake states and spectral composition. Nlgn3 KO rats were hyperactive, exhibited excessive chewing behavior, and had impaired prepulse inhibition to an auditory startle stimulus. KO rats also spent less time in non-rapid eye movement (NREM) sleep, more time in rapid eye movement (REM) sleep, exhibited elevated theta power (4-9 Hz) during wakefulness and REM, and elevated delta power (0.5-4 Hz) during NREM. Beta (12-30 Hz) power and gamma (30-50 Hz) power were suppressed across all vigilance states. The sleep disruptions in Nlgn3 KO rats are consistent with observations of sleep disturbances in ASD patients. The EEG provides objective measures of brain function to complement rodent behavioral analyses and therefore may be a useful tool to study ASD. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
A wavelet-based technique to predict treatment outcome for Major Depressive Disorder
Xia, Likun; Mohd Yasin, Mohd Azhar; Azhar Ali, Syed Saad
2017-01-01
Treatment management for Major Depressive Disorder (MDD) has been challenging. However, electroencephalogram (EEG)-based predictions of antidepressant’s treatment outcome may help during antidepressant’s selection and ultimately improve the quality of life for MDD patients. In this study, a machine learning (ML) method involving pretreatment EEG data was proposed to perform such predictions for Selective Serotonin Reuptake Inhibitor (SSRIs). For this purpose, the acquisition of experimental data involved 34 MDD patients and 30 healthy controls. Consequently, a feature matrix was constructed involving time-frequency decomposition of EEG data based on wavelet transform (WT) analysis, termed as EEG data matrix. However, the resultant EEG data matrix had high dimensionality. Therefore, dimension reduction was performed based on a rank-based feature selection method according to a criterion, i.e., receiver operating characteristic (ROC). As a result, the most significant features were identified and further be utilized during the training and testing of a classification model, i.e., the logistic regression (LR) classifier. Finally, the LR model was validated with 100 iterations of 10-fold cross-validation (10-CV). The classification results were compared with short-time Fourier transform (STFT) analysis, and empirical mode decompositions (EMD). The wavelet features extracted from frontal and temporal EEG data were found statistically significant. In comparison with other time-frequency approaches such as the STFT and EMD, the WT analysis has shown highest classification accuracy, i.e., accuracy = 87.5%, sensitivity = 95%, and specificity = 80%. In conclusion, significant wavelet coefficients extracted from frontal and temporal pre-treatment EEG data involving delta and theta frequency bands may predict antidepressant’s treatment outcome for the MDD patients. PMID:28152063
Wirsich, Jonathan; Bénar, Christian; Ranjeva, Jean-Philippe; Descoins, Médéric; Soulier, Elisabeth; Le Troter, Arnaud; Confort-Gouny, Sylviane; Liégeois-Chauvel, Catherine; Guye, Maxime
2014-10-15
Simultaneous EEG-fMRI has opened up new avenues for improving the spatio-temporal resolution of functional brain studies. However, this method usually suffers from poor EEG quality, especially for evoked potentials (ERPs), due to specific artifacts. As such, the use of EEG-informed fMRI analysis in the context of cognitive studies has particularly focused on optimizing narrow ERP time windows of interest, which ignores the rich diverse temporal information of the EEG signal. Here, we propose to use simultaneous EEG-fMRI to investigate the neural cascade occurring during face recognition in 14 healthy volunteers by using the successive ERP peaks recorded during the cognitive part of this process. N170, N400 and P600 peaks, commonly associated with face recognition, were successfully and reproducibly identified for each trial and each subject by using a group independent component analysis (ICA). For the first time we use this group ICA to extract several independent components (IC) corresponding to the sequence of activation and used single-trial peaks as modulation parameters in a general linear model (GLM) of fMRI data. We obtained an occipital-temporal-frontal stream of BOLD signal modulation, in accordance with the three successive IC-ERPs providing an unprecedented spatio-temporal characterization of the whole cognitive process as defined by BOLD signal modulation. By using this approach, the pattern of EEG-informed BOLD modulation provided improved characterization of the network involved than the fMRI-only analysis or the source reconstruction of the three ERPs; the latter techniques showing only two regions in common localized in the occipital lobe. Copyright © 2014 Elsevier Inc. All rights reserved.