Sample records for quantitative eftem mapping

  1. Achromatic elemental mapping beyond the nanoscale in the transmission electron microscope.

    PubMed

    Urban, K W; Mayer, J; Jinschek, J R; Neish, M J; Lugg, N R; Allen, L J

    2013-05-03

    Newly developed achromatic electron optics allows the use of wide energy windows and makes feasible energy-filtered transmission electron microscopy (EFTEM) at atomic resolution. In this Letter we present EFTEM images formed using electrons that have undergone a silicon L(2,3) core-shell energy loss, exhibiting a resolution in EFTEM of 1.35 Å. This permits elemental mapping beyond the nanoscale provided that quantum mechanical calculations from first principles are done in tandem with the experiment to understand the physical information encoded in the images.

  2. Quantitative Phase Fraction Detection in Organic Photovoltaic Materials through EELS Imaging

    DOE PAGES

    Dyck, Ondrej; Hu, Sheng; Das, Sanjib; ...

    2015-11-24

    Organic photovoltaic materials have recently seen intense interest from the research community. Improvements in device performance are occurring at an impressive rate; however, visualization of the active layer phase separation still remains a challenge. Our paper outlines the application of two electron energy-loss spectroscopic (EELS) imaging techniques that can complement and enhance current phase detection techniques. Specifically, the bulk plasmon peak position, often used to produce contrast between phases in energy filtered transmission electron microscopy (EFTEM), is quantitatively mapped across a sample cross section. One complementary spectrum image capturing the carbon and sulfur core loss edges is compared with themore » plasmon peak map and found to agree quite well, indicating that carbon and sulfur density differences between the two phases also allows phase discrimination. Additionally, an analytical technique for determining absolute atomic areal density is used to produce an absolute carbon and sulfur areal density map. We also show how these maps may be re-interpreted as a phase ratio map, giving quantitative information about the purity of the phases within the junction.« less

  3. Quantitative energy-filtered TEM imaging of interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentley, J.; Kenik, E.A.; Siangchaew, K.

    Quantitative elemental mapping by inner shell core-loss energy-filtered transmission electron microscopy (TEM) with a Gatan Imaging Filter (GIF) interfaced to a Philips CM30 TEM operated with a LaB{sub 6} filament at 300 kV has been applied to interfaces in a range of materials. In sensitized type 304L stainless steel aged 15 h at 600{degrees}C, grain-boundary Cr depletion occurs between Cr-rich intergranular M{sub 23}C{sub 6} particles. Images of net Cr L{sub 23} intensity show segregation profiles that agree quantitatively with focused-probe spectrum-line measurements recorded with a Gatan PEELS on a Philips EM400T/FEG (0.8 nA in 2-nm-diam probe) of the same regions.more » Rare-earth oxide additives that are used for the liquid-phase sintering of Si{sub 3}N{sub 4} generate second phases of complex composition at grain boundaries and edges. These grain boundary phases often control corrosion, crack growth and creep damage behavior. High resolution imaging has been widely and with focused probes can be compromised by beam damage, but elemental mapping by EFTEM appears not to cause appreciable beam damage.« less

  4. Obtaining 3D Chemical Maps by Energy Filtered Transmission Electron Microscopy Tomography.

    PubMed

    Roiban, Lucian; Sorbier, Loïc; Hirlimann, Charles; Ersen, Ovidiu

    2018-06-09

    Energy filtered transmission electron microscopy tomography (EFTEM tomography) can provide three-dimensional (3D) chemical maps of materials at a nanometric scale. EFTEM tomography can separate chemical elements that are very difficult to distinguish using other imaging techniques. The experimental protocol described here shows how to create 3D chemical maps to understand the chemical distribution and morphology of a material. Sample preparation steps for data segmentation are presented. This protocol permits the 3D distribution analysis of chemical elements in a nanometric sample. However, it should be noted that currently, the 3D chemical maps can only be generated for samples that are not beam sensitive, since the recording of filtered images requires long exposure times to an intense electron beam. The protocol was applied to quantify the chemical distribution of the components of two different heterogeneous catalyst supports. In the first study, the chemical distribution of aluminum and titanium in titania-alumina supports was analyzed. The samples were prepared using the swing-pH method. In the second, the chemical distribution of aluminum and silicon in silica-alumina supports that were prepared using the sol-powder and mechanical mixture methods was examined.

  5. Atomic resolution elemental mapping using energy-filtered imaging scanning transmission electron microscopy with chromatic aberration correction.

    PubMed

    Krause, F F; Rosenauer, A; Barthel, J; Mayer, J; Urban, K; Dunin-Borkowski, R E; Brown, H G; Forbes, B D; Allen, L J

    2017-10-01

    This paper addresses a novel approach to atomic resolution elemental mapping, demonstrating a method that produces elemental maps with a similar resolution to the established method of electron energy-loss spectroscopy in scanning transmission electron microscopy. Dubbed energy-filtered imaging scanning transmission electron microscopy (EFISTEM) this mode of imaging is, by the quantum mechanical principle of reciprocity, equivalent to tilting the probe in energy-filtered transmission electron microscopy (EFTEM) through a cone and incoherently averaging the results. In this paper we present a proof-of-principle EFISTEM experimental study on strontium titanate. The present approach, made possible by chromatic aberration correction, has the advantage that it provides elemental maps which are immune to spatial incoherence in the electron source, coherent aberrations in the probe-forming lens and probe jitter. The veracity of the experiment is supported by quantum mechanical image simulations, which provide an insight into the image-forming process. Elemental maps obtained in EFTEM suffer from the effect known as preservation of elastic contrast, which, for example, can lead to a given atomic species appearing to be in atomic columns where it is not to be found. EFISTEM very substantially reduces the preservation of elastic contrast and yields images which show stability of contrast with changing thickness. The experimental application is demonstrated in a proof-of-principle study on strontium titanate. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Comprehensive analysis of TEM methods for LiFePO4/FePO4 phase mapping: spectroscopic techniques (EFTEM, STEM-EELS) and STEM diffraction techniques (ACOM-TEM).

    PubMed

    Mu, X; Kobler, A; Wang, D; Chakravadhanula, V S K; Schlabach, S; Szabó, D V; Norby, P; Kübel, C

    2016-11-01

    Transmission electron microscopy (TEM) has been used intensively in investigating battery materials, e.g. to obtain phase maps of partially (dis)charged (lithium) iron phosphate (LFP/FP), which is one of the most promising cathode material for next generation lithium ion (Li-ion) batteries. Due to the weak interaction between Li atoms and fast electrons, mapping of the Li distribution is not straightforward. In this work, we revisited the issue of TEM measurements of Li distribution maps for LFP/FP. Different TEM techniques, including spectroscopic techniques (energy filtered (EF)TEM in the energy range from low-loss to core-loss) and a STEM diffraction technique (automated crystal orientation mapping (ACOM)), were applied to map the lithiation of the same location in the same sample. This enabled a direct comparison of the results. The maps obtained by all methods showed excellent agreement with each other. Because of the strong difference in the imaging mechanisms, it proves the reliability of both the spectroscopic and STEM diffraction phase mapping. A comprehensive comparison of all methods is given in terms of information content, dose level, acquisition time and signal quality. The latter three are crucial for the design of in-situ experiments with beam sensitive Li-ion battery materials. Furthermore, we demonstrated the power of STEM diffraction (ACOM-STEM) providing additional crystallographic information, which can be analyzed to gain a deeper understanding of the LFP/FP interface properties such as statistical information on phase boundary orientation and misorientation between domains. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Use of energy filtering transmission electron microscopy for image generation and element analysis in plant organisms.

    PubMed

    Lütz-Meindl, Ursula

    2007-01-01

    Energy filtering TEM (EFTEM) with modern spectrometers and software offers new possibilities for element analysis and image generation in plant cells. In the present review, applications of EFTEM in plant physiology, such as identification of light elements and ion transport, analyses of natural cell incrustations, determination of element exchange between fungi and rootlets during mycorrhiza development, heavy metal storage and detoxification, and employment in plant physiological experiments are summarized. In addition, it is demonstrated that EFTEM can be successfully used in more practical approaches, for example, in phytoremediation, food and wood industry, and agriculture. Preparation methods for plant material as prerequisites for EFTEM analysis are compared with respect to their suitability and technical problems are discussed.

  8. Sponge-like Si-SiO2 nanocomposite—Morphology studies of spinodally decomposed silicon-rich oxide

    NASA Astrophysics Data System (ADS)

    Friedrich, D.; Schmidt, B.; Heinig, K. H.; Liedke, B.; Mücklich, A.; Hübner, R.; Wolf, D.; Kölling, S.; Mikolajick, T.

    2013-09-01

    Sponge-like Si nanostructures embedded in SiO2 were fabricated by spinodal decomposition of sputter-deposited silicon-rich oxide with a stoichiometry close to that of silicon monoxide. After thermal treatment a mean feature size of about 3 nm was found in the phase-separated structure. The structure of the Si-SiO2 nanocomposite was investigated by energy-filtered transmission electron microscopy (EFTEM), EFTEM tomography, and atom probe tomography, which revealed a percolated Si morphology. It was shown that the percolation of the Si network in 3D can also be proven on the basis of 2D EFTEM images by comparison with 3D kinetic Monte Carlo simulations.

  9. Energy filtering transmission electron microscopy immunocytochemistry and antigen retrieval of surface layer proteins from Tannerella forsythensis using microwave or autoclave heating with citraconic anhydride

    PubMed Central

    2012-01-01

    Tannerella forsythensis (Bacteroides forsythus), an anaerobic Gram-negative species of bacteria that plays a role in the progression of periodontal disease, has a unique bacterial protein profile. It is characterized by two unique protein bands with molecular weights of more than 200 kDa. It also is known to have a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. We examined the relationship between high molecular weight proteins and the S-layer using electron microscopic immunolabeling with chemical fixation and an antigen retrieval procedure consisting of heating in a microwave oven or autoclave with citraconic anhydride. Immunogold particles were localized clearly at the outermost cell surface. We also used energy-filtering transmission electron microscopy (EFTEM) to visualize 3, 3′-diaminobenzidine tetrahydrochloride (DAB) reaction products after microwave antigen retrieval with 1% citraconic anhydride. The three-window method for electron spectroscopic images (ESI) of nitrogen by the EFTEM reflected the presence of moieties demonstrated by the DAB reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies instead of immunogold particles. The mapping patterns of net nitrogen were restricted to the outermost cell surface. PMID:22984898

  10. Energy filtering transmission electron microscopy immunocytochemistry and antigen retrieval of surface layer proteins from Tannerella forsythensis using microwave or autoclave heating with citraconic anhydride.

    PubMed

    Moriguchi, K; Mitamura, Y; Iwami, J; Hasegawa, Y; Higuchi, N; Murakami, Y; Maeda, H; Yoshimura, F; Nakamura, H; Ohno, N

    2012-11-01

    Tannerella forsythensis (Bacteroides forsythus), an anaerobic Gram-negative species of bacteria that plays a role in the progression of periodontal disease, has a unique bacterial protein profile. It is characterized by two unique protein bands with molecular weights of more than 200 kDa. It also is known to have a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. We examined the relationship between high molecular weight proteins and the S-layer using electron microscopic immunolabeling with chemical fixation and an antigen retrieval procedure consisting of heating in a microwave oven or autoclave with citraconic anhydride. Immunogold particles were localized clearly at the outermost cell surface. We also used energy-filtering transmission electron microscopy (EFTEM) to visualize 3, 3'-diaminobenzidine tetrahydrochloride (DAB) reaction products after microwave antigen retrieval with 1% citraconic anhydride. The three-window method for electron spectroscopic images (ESI) of nitrogen by the EFTEM reflected the presence of moieties demonstrated by the DAB reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies instead of immunogold particles. The mapping patterns of net nitrogen were restricted to the outermost cell surface.

  11. Automated Identification and Characterization of Secondary & Tertiary gamma’ Precipitates in Nickel-Based Superalloys (PREPRINT)

    DTIC Science & Technology

    2010-01-01

    and intensity information from the EFTEM images. The microstructural statistics obtained from the segmented γ’ precipitates agreed with those of the...is its ability to automate segmentation of precipitates in a reproducible manner for acquiring microstructural statistics that relate to both...were identified using a combination of visual inspection and intensity information from the EFTEM images. The microstructural statistics obtained

  12. Tomography of Bacteria-Mineral Associations Within the Deep sea Hydrothermal Vent Shrimp Rimicaris exoculata.

    NASA Astrophysics Data System (ADS)

    Anderson, L.; Lechaire, J.; Frebourg, G.; Boudier, T.; Zbinden, M.; Gaill, F.

    2005-12-01

    The chemical and temperature conditions around deep sea hydrothermal vents are both dynamic and extreme, yet the shrimp Rimicaris exoculata flourishes around these environments on the Mid-Atlantic Ridge (MAR) . The epibiotic bacteria and minerals found within the branchial chamber of the shrimp are of great interest in the search for a chemical model for the Rainbow MAR hydrothermal vent site. Here we examine the close three-dimensional (3D) relationship between bacteria (on inner surface of the branchial chamber wall), and the minerals that surround them. The morphology and chemistry of the minerals were analysed by Transmission Electron Microscopy (TEM) and Energy-filtering Transmission Electron Microscopy (EFTEM, LEO 912 Omega) respectively, and the 3D organisation (TOMO) was established using IMAGE-J (public-domain) tomographic reconstruction software. Samples of Rimicaris exoculata were collected from the Rainbow site (36° 13' N, 2320 m depth). The cuticle of the branchial chamber was cut into 2mm wide sub-samples, dehydrated and impregnated in resin for cutting. Consecutive thin and semi-thin sections of 80μm (for TEM, EFTEM) and 150μm-200μm (for TOMO) were cut and mounted on standard microscope grids. Thin-section grids were observed initially for morphology, to find broad relationships between bacteria and minerals, and also as a tool to find areas for EFTEM analysis and TOMO. The TOMO reconstruction was produced from a `Tilt Series', comprising a number of images taken at one degree increments between -55° and +55°. Tilt series were obtained using the ESIvision program (Version 3.0, Soft' Imaging Software, SIS GmbH, D-49153 Münster, Germany) with additional in-house scripts for automated acquisition. This same procedure was applied to consecutive semi-thin sections through the same sub-sample. The different series for each sub-sample were then overlain to obtain a 3D overview of the bacteria-mineral associations. In many cases the minerals exhibit a sharp boundary against the bacteria, often with a substantial void between bacterial membrane and mineral boundary. Mineral layering and areas of elemental zoning are also observed. Iron is the most prevalent element, with a close association to the bacteria. Future work will combine the elemental data obtained by EFTEM with tomography to produce a 3D elemental map of the minerals surrounding the bacteria, focussing particularly on the bacteria-mineral interface using recently developed EFTET-J software (http://www.snv.jussieu.fr/~wboudier/softs.html).

  13. Analytical SuperSTEM for extraterrestrial materials research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J P; Dai, Z R

    2009-09-08

    Electron-beam studies of extraterrestrial materials with significantly improved spatial resolution, energy resolution and sensitivity are enabled using a 300 keV SuperSTEM scanning transmission electron microscope with a monochromator and two spherical aberration correctors. The improved technical capabilities enable analyses previously not possible. Mineral structures can be directly imaged and analyzed with single-atomic-column resolution, liquids and implanted gases can be detected, and UV-VIS optical properties can be measured. Detection limits for minor/trace elements in thin (<100 nm thick) specimens are improved such that quantitative measurements of some extend to the sub-500 ppm level. Electron energy-loss spectroscopy (EELS) can be carried outmore » with 0.10-0.20 eV energy resolution and atomic-scale spatial resolution such that variations in oxidation state from one atomic column to another can be detected. Petrographic mapping is extended down to the atomic scale using energy-dispersive x-ray spectroscopy (EDS) and energy-filtered transmission electron microscopy (EFTEM) imaging. Technical capabilities and examples of the applications of SuperSTEM to extraterrestrial materials are presented, including the UV spectral properties and organic carbon K-edge fine structure of carbonaceous matter in interplanetary dust particles (IDPs), x-ray elemental maps showing the nanometer-scale distribution of carbon within GEMS (glass with embedded metal and sulfides), the first detection and quantification of trace Ti in GEMS using EDS, and detection of molecular H{sub 2}O in vesicles and implanted H{sub 2} and He in irradiated mineral and glass grains.« less

  14. Locating a silane coupling agent in silica-filled rubber composites by EFTEM.

    PubMed

    Dohi, Hidehiko; Horiuchi, Shin

    2007-11-20

    A silane coupling agent (SA) was added to silica/rubber composites at different mixing temperatures and the formation of a coupling layer at the silica/rubber interface was investigated by energy-filtering transmission electron microscopy. Bis(triethoxysilypropyl)tetrasulfane (TESPT), which was used as the SA, reacted with the silanol groups on the silica surface and with styrene-butadiene rubber to form an interfacial coupling layer. The silicon and sulfur elemental distributions were analyzed by electron energy loss spectroscopy (EELS) and elemental mapping. The amount of TESPT trapped in the rubber matrix could be qualitatively estimated by EELS, and the in situ formed coupling layer could be characterized by elemental mapping. The result indicated that the formation of the coupling layer was affected by the mixing temperature. The technique described here will contribute to the study of interface-property relationships and the evaluation of the role of SAs in polymeric composites.

  15. Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment.

    PubMed

    Utsunomiya, Satoshi; Ewing, Rodney C

    2003-02-15

    A major challenge to the development of a fundamental understanding of transport and retardation mechanisms of trace metal contaminants (<10 ppm) is their identification and characterization at the nanoscale. Atomic-scale techniques, such as conventional transmission electron microscopy, although powerful, are limited by the extremely small amounts of material that are examined. However, recent advances in electron microscopy provide a number of new analytical techniques that expand its application in environmental studies, particularly those concerning heavy metals on airborne particulates or water-borne colloids. High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM-energy-dispersive X-ray spectrometry (EDX), and energy-filtered TEM (EFTEM) can be effectively used to identify and characterize nanoparticles. The image contrast in HAADF-STEM is strongly correlated to the atomic mass: heavier elements contribute to brighter contrast. Gold nanocrystals in pyrite and uranium nanocrystals in atmospheric aerosols have been identified by HAADF-STEM and STEM-EDX mapping and subsequently characterized by high-resolution TEM (HRTEM). EFTEM was used to identify U and Fe nanocrystals embedded in an aluminosilicate. A rare, As-bearing nanophase, westerveldite (FeAs), was identified by STEM-EDX and HRTEM. The combined use of these techniques greatly expands the effective application of electron microscopy in environmental studies, especially when applied to metals of very low concentrations. This paper describes examples of how these electron microbeam techniques can be used in combination to characterize a low concentration of heavy metals (a few ppm) on nanoscale particles.

  16. Measurement of gamma' precipitates in a nickel-based superalloy using energy-filtered transmission electron microscopy coupled with automated segmenting techniques.

    PubMed

    Tiley, J S; Viswanathan, G B; Shiveley, A; Tschopp, M; Srinivasan, R; Banerjee, R; Fraser, H L

    2010-08-01

    Precipitates of the ordered L1(2) gamma' phase (dispersed in the face-centered cubic or FCC gamma matrix) were imaged in Rene 88 DT, a commercial multicomponent Ni-based superalloy, using energy-filtered transmission electron microscopy (EFTEM). Imaging was performed using the Cr, Co, Ni, Ti and Al elemental L-absorption edges in the energy loss spectrum. Manual and automated segmentation procedures were utilized for identification of precipitate boundaries and measurement of precipitate sizes. The automated region growing technique for precipitate identification in images was determined to measure accurately precipitate diameters. In addition, the region growing technique provided a repeatable method for optimizing segmentation techniques for varying EFTEM conditions. (c) 2010 Elsevier Ltd. All rights reserved.

  17. Novel method for measurement of transistor gate length using energy-filtered transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Sungho; Kim, Tae-Hoon; Kang, Jonghyuk; Yang, Cheol-Woong

    2016-12-01

    As the feature size of devices continues to decrease, transmission electron microscopy (TEM) is becoming indispensable for measuring the critical dimension (CD) of structures. Semiconductors consist primarily of silicon-based materials such as silicon, silicon dioxide, and silicon nitride, and the electrons transmitted through a plan-view TEM sample provide diverse information about various overlapped silicon-based materials. This information is exceedingly complex, which makes it difficult to clarify the boundary to be measured. Therefore, we propose a simple measurement method using energy-filtered TEM (EF-TEM). A precise and effective measurement condition was obtained by determining the maximum value of the integrated area ratio of the electron energy loss spectrum at the boundary to be measured. This method employs an adjustable slit allowing only electrons with a certain energy range to pass. EF-TEM imaging showed a sharp transition at the boundary when the energy-filter’s passband centre was set at 90 eV, with a slit width of 40 eV. This was the optimum condition for the CD measurement of silicon-based materials involving silicon nitride. Electron energy loss spectroscopy (EELS) and EF-TEM images were used to verify this method, which makes it possible to measure the transistor gate length in a dynamic random access memory manufactured using 35 nm process technology. This method can be adapted to measure the CD of other non-silicon-based materials using the EELS area ratio of the boundary materials.

  18. The behavior of silicon and boron in the surface of corroded nuclear waste glasses : an EFTEM study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, E. C.; Smith, K. L.; Blackford, M. G.

    1999-11-23

    Using electron energy-loss filtered transmission electron microscopy (EFTEM), we have observed the formation of silicon-rich zones on the corroded surface of a West Valley (WV6) glass. This layer is approximately 100-200 nm thick and is directly underneath a precipitated smectite clay layer. Under conventional (C)TEM illumination, this layer is invisible; indeed, more commonly used analytical techniques, such as x-ray energy dispersive spectroscopy (EDS), have failed to describe fully the localized changes in the boron and silicon contents across this region. Similar silicon-rich and boron-depleted zones were not found on corroded Savannah River Laboratory (SRL) borosilicate glasses, including SRL-EA and SRL-51,more » although they possessed similar-looking clay layers. This study demonstrates a new tool for examining the corroded surfaces of materials.« less

  19. Synthesis of nanocrystalline CdS thin film by SILAR and their characterization

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Satpati, B.; Bhattacharyya, S. R.; Ghosh, R.; Mitra, P.

    2015-01-01

    Cadmium sulphide (CdS) thin film was prepared by successive ion layer adsorption and reaction (SILAR) technique using ammonium sulphide as anionic precursor. Characterization techniques of XRD, SEM, TEM, FTIR and EDX were utilized to study the microstructure of the films. Structural characterization by x-ray diffraction reveals the polycrystalline nature of the films. Cubic structure is revealed from X-ray diffraction and selected area diffraction (SAD) patterns. The particle size estimated using X-ray line broadening method is approximately 7 nm. Instrumental broadening was taken into account while particle size estimation. TEM shows CdS nanoparticles in the range 5-15 nm. Elemental mapping using EFTEM reveals good stoichiometric composition of CdS. Characteristic stretching vibration mode of CdS was observed in the absorption band of FTIR spectrum. Optical absorption study exhibits a distinct blue shift in band gap energy value of about 2.56 eV which confirms the size quantization.

  20. Low temperature synthesis and sintering of d-UO2 nanoparticles.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nenoff, Tina Maria; Ferreira, Summer Rhodes; Robinson, David B.

    We report on the novel room temperature method of synthesizing advanced nuclear fuels; a method that virtually eliminates any volatility of components. This process uses radiolysis to form stable nanoparticle (NP) nuclear transuranic (TRU) fuel surrogates and in-situ heated stage TEM to sinter the NPs. The radiolysis is performed at Sandia's Gamma Irradiation Facility (GIF) 60Co source (3 x 10{sup 6} rad/hr). Using this method, sufficient quantities of fuels for research purposes can be produced for accelerated advanced nuclear fuel development. We are focused on both metallic and oxide alloy nanoparticles of varying compositions, in particular d-U, d-U/La alloys andmore » d-UO2 NPs. We present detailed descriptions of the synthesis procedures, the characterization of the NPs, the sintering of the NPs, and their stability with temperature. We have employed UV-vis, HRTEM, HAADF-STEM imaging, single particle EDX and EFTEM mapping characterization techniques to confirm the composition and alloying of these NPs.« less

  1. EEL spectroscopic tomography: towards a new dimension in nanomaterials analysis.

    PubMed

    Yedra, Lluís; Eljarrat, Alberto; Arenal, Raúl; Pellicer, Eva; Cabo, Moisés; López-Ortega, Alberto; Estrader, Marta; Sort, Jordi; Baró, Maria Dolors; Estradé, Sònia; Peiró, Francesca

    2012-11-01

    Electron tomography is a widely spread technique for recovering the three dimensional (3D) shape of nanostructured materials. Using a spectroscopic signal to achieve a reconstruction adds a fourth chemical dimension to the 3D structure. Up to date, energy filtering of the images in the transmission electron microscope (EFTEM) is the usual spectroscopic method even if most of the information in the spectrum is lost. Unlike EFTEM tomography, the use of electron energy-loss spectroscopy (EELS) spectrum images (SI) for tomographic reconstruction retains all chemical information, and the possibilities of this new approach still remain to be fully exploited. In this article we prove the feasibility of EEL spectroscopic tomography at low voltages (80 kV) and short acquisition times from data acquired using an aberration corrected instrument and data treatment by Multivariate Analysis (MVA), applied to Fe(x)Co((3-x))O(4)@Co(3)O(4) mesoporous materials. This approach provides a new scope into materials; the recovery of full EELS signal in 3D. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Alkaline modified oil shale fly ash: optimal synthesis conditions and preliminary tests on CO2 adsorption.

    PubMed

    Reinik, Janek; Heinmaa, Ivo; Kirso, Uuve; Kallaste, Toivo; Ritamäki, Johannes; Boström, Dan; Pongrácz, Eva; Huuhtanen, Mika; Larsson, William; Keiski, Riitta; Kordás, Krisztián; Mikkola, Jyri-Pekka

    2011-11-30

    Environmentally friendly product, calcium-silica-aluminum hydrate, was synthesized from oil shale fly ash, which is rendered so far partly as an industrial waste. Reaction conditions were: temperature 130 and 160°C, NaOH concentrations 1, 3, 5 and 8M and synthesis time 24h. Optimal conditions were found to be 5M at 130°C at given parameter range. Original and activated ash samples were characterized by XRD, XRF, SEM, EFTEM, (29)Si MAS-NMR, BET and TGA. Semi-quantitative XRD and MAS-NMR showed that mainly tobermorites and katoite are formed during alkaline hydrothermal treatment. Physical adsorption of CO(2) on the surface of the original and activated ash samples was measured with thermo-gravimetric analysis. TGA showed that the physical adsorption of CO(2) on the oil shale fly ash sample increases from 0.06 to 3-4 mass% after alkaline hydrothermal activation with NaOH. The activated product has a potential to be used in industrial processes for physical adsorption of CO(2) emissions. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Coupling EELS/EFTEM Imaging with Environmental Fluid Cell Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unocic, Raymond R; Baggetto, Loic; Veith, Gabriel M

    2012-01-01

    Insight into dynamically evolving electrochemical reactions and mechanisms encountered in electrical energy storage (EES) and conversion technologies (batteries, fuel cells, and supercapacitors), materials science (corrosion and oxidation), and materials synthesis (electrodeposition) remains limited due to the present lack of in situ high-resolution characterization methodologies. Electrochemical fluid cell microscopy is an emerging in-situ method that allows for the direct, real-time imaging of electrochemical processes within a fluid environment. This technique is facilitated by the use of MEMS-based biasing microchip platforms that serve the purpose of sealing the highly volatile electrolyte between two electron transparent SiNx membranes and interfacing electrodes to anmore » external potentiostat for controlled nanoscale electrochemislly experiments [!]. In order to elucidate both stmctural and chemical changes during such in situ electrochemical experiments, it is impmtant to first improve upon the spatial resolution by utilizing energy-filtered transmission electron microscopy (EFTEM) (to minimize chromatic aben ation), then to detennine the chemical changes via electron energy loss spectroscopy (EELS). This presents a formidable challenge since the overall thickness through which electrons are scattered through the multiple layers of the cell can be on the order of hundreds of nanometers to microns, scattering through which has the deleterious effect of degrading image resolution and decreasing signal-to noise for spectroscopy [2].« less

  4. Effect of growth time on Ti-doped ZnO nanorods prepared by low-temperature chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Bidier, Shaker A.; Hashim, M. R.; Al-Diabat, Ahmad M.; Bououdina, M.

    2017-04-01

    Ti-doped ZnO nanorod arrays were grown onto Si substrate using chemical bath deposition (CBD) method at 93 °C. To investigate the effect of time deposition on the morphological, and structural properties, four Ti-doped ZnO samples were prepared at various deposition periods of time (2, 3.5, 5, and 6.5 h). FESEM images displayed high-quality and uniform nanorods with a mean length strongly dependent upon deposition time; i.e. it increases for prolonged growth time. Additionally, EFTEM images reveal a strong erosion on the lateral side for the sample prepared for 6.5 h as compared to 5 h. This might be attributed to the dissolution reaction of ZnO with for prolonged growth time. XRD analysis confirms the formation of a hexagonal wurtzite-type structure for all samples with a preferred growth orientation along the c-axis direction. The (100) peak intensity was enhanced and then quenched, which might be the result of an erosion on the lateral side of nanorods as seen in EFTEM. This study confirms the important role of growth time on the morphological features of Ti-doped ZnO nanorods prepared using CBD. Increase the growth time causes an erosion in lateral side -(100) direction XRD- and enhances the axial direction -(002), XRD.

  5. Brain Injury Lesion Imaging Using Preconditioned Quantitative Susceptibility Mapping without Skull Stripping.

    PubMed

    Soman, S; Liu, Z; Kim, G; Nemec, U; Holdsworth, S J; Main, K; Lee, B; Kolakowsky-Hayner, S; Selim, M; Furst, A J; Massaband, P; Yesavage, J; Adamson, M M; Spincemallie, P; Moseley, M; Wang, Y

    2018-04-01

    Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE, require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology. Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition. Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All images were reviewed by a neuroradiologist and a radiology resident. Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative susceptibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantitative susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping; they were worse on preconditioned quantitative susceptibility mapping. Preconditioned quantitative susceptibility mapping MR imaging can bring the benefits of quantitative susceptibility mapping imaging to clinical practice without the limitations of mask-based quantitative susceptibility mapping, especially for evaluating cerebral microhemorrhage-associated pathologies, such as traumatic brain injury. © 2018 by American Journal of Neuroradiology.

  6. Analytical electron tomography mapping of the SiCporeoxidation at the nanoscale

    NASA Astrophysics Data System (ADS)

    Florea, Ileana; Ersen, Ovidiu; Hirlimann, Charles; Roiban, Lucian; Deneuve, Adrien; Houllé, Matthieu; Janowska, Izabela; Nguyen, Patrick; Pham, Charlotte; Pham-Huu, Cuong

    2010-12-01

    Silicon carbide is a ceramic material that has been widely studied because of its potential applications, ranging from electronics to heterogeneous catalysis. Recently, a new type of SiC materials with a medium specific surface area and thermal conductivity, called β-SiC, has attracted overgrowing interest as a new class of catalyst support in several catalytic reactions. A primary electron tomography study, performed in usual mode, has revealed a dual surface structure defined by two types of porosities made of networks of connected channels with sizes larger than 50 nm and ink-bottled pores with sizes spanning from 4 to 50 nm. Depending on the solvent nature, metal nanoparticles could be selectively deposited inside one of the two porosities, a fact that illustrates a selective wetting titration of the two types of surfaces by different liquids. The explaining hypothesis that has been put forward was that this selectivity against solvents is related to the pore surface oxidation degree of the two types of pores. A new technique of analytical electron tomography, where the series of projections used to reconstruct the volume of an object is recorded in energy filtered mode (EFTEM), has been implemented to map the poreoxidation state and to correlate it with the morphology and the accessibility of the porous network. Applied, for the first time, at a nanoscale resolution, this technique allowed us to obtain 3D elemental maps of different elements present in the analysed porous grains, in particular oxygen; we found thus that the interconnected channelpores are more rapidly oxidized than the ink-bottled ones. Alternatively, our study highlights the great interest of this method that opens the way for obtaining precise information on the chemical composition of a 3D surface at a nanometer scale.Silicon carbide is a ceramic material that has been widely studied because of its potential applications, ranging from electronics to heterogeneous catalysis. Recently, a new type of SiC materials with a medium specific surface area and thermal conductivity, called β-SiC, has attracted overgrowing interest as a new class of catalyst support in several catalytic reactions. A primary electron tomography study, performed in usual mode, has revealed a dual surface structure defined by two types of porosities made of networks of connected channels with sizes larger than 50 nm and ink-bottled pores with sizes spanning from 4 to 50 nm. Depending on the solvent nature, metal nanoparticles could be selectively deposited inside one of the two porosities, a fact that illustrates a selective wetting titration of the two types of surfaces by different liquids. The explaining hypothesis that has been put forward was that this selectivity against solvents is related to the pore surface oxidation degree of the two types of pores. A new technique of analytical electron tomography, where the series of projections used to reconstruct the volume of an object is recorded in energy filtered mode (EFTEM), has been implemented to map the poreoxidation state and to correlate it with the morphology and the accessibility of the porous network. Applied, for the first time, at a nanoscale resolution, this technique allowed us to obtain 3D elemental maps of different elements present in the analysed porous grains, in particular oxygen; we found thus that the interconnected channelpores are more rapidly oxidized than the ink-bottled ones. Alternatively, our study highlights the great interest of this method that opens the way for obtaining precise information on the chemical composition of a 3D surface at a nanometer scale. Electronic supplementary information (ESI) available: SI-1-SI-4. See DOI: 10.1039/c0nr00449a

  7. Bio-synthesis of triangular and hexagonal gold nanoparticles using palm oil fronds’ extracts at room temperature

    NASA Astrophysics Data System (ADS)

    Usman, Adamu Ibrahim; Aziz, Azlan Abdul; Abu Noqta, Osama

    2018-01-01

    Development of bio-reduction techniques for nanoparticles (NPs) synthesis in medical application remains a challenge to numerous researchers. This work reports a novel technique for the synthesis of triangular and hexagonal gold nanoparticles (AuNP) using palm oil fronds’ (POFs) extracts. The functional groups in the POFs’ extracts operate as a persuasive capping and reducing agent to growth AuNPs. The prepared AuNPs were characterized using UV-vis spectrophotometry, Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering, energy filtered transmission electron microscopy (EFTEM), and x-ray diffraction (XRD). The analysis of FTIR validates the coating of alkynes and phenolic composites on the AuNPs. This shows a feasible function of biomolecules for efficient stabilization of the AuNPs. EFTEM clearly show the triangular and hexagonal shapes of the prepared AuNPs. The XRD patterns display the peaks of fcc crystal structures at (111), (200), (220), (311) and (222), with average particle sizes of 66.7 and 79.02 nm for 1% and 5% POFs extracts concentrations respectively at room temperature. While at 120 °C the average particles size recorded for 1% and 5% of POFs extract concentrations were 32.17 nm and 45.66 nm respectively, and the reaction completed in less than 2 min. The prepared NPs could be potentially applied in biomedical application, due to their excellent stability and refine morphology without agglomeration.

  8. Quantitative susceptibility mapping of human brain at 3T: a multisite reproducibility study.

    PubMed

    Lin, P-Y; Chao, T-C; Wu, M-L

    2015-03-01

    Quantitative susceptibility mapping of the human brain has demonstrated strong potential in examining iron deposition, which may help in investigating possible brain pathology. This study assesses the reproducibility of quantitative susceptibility mapping across different imaging sites. In this study, the susceptibility values of 5 regions of interest in the human brain were measured on 9 healthy subjects following calibration by using phantom experiments. Each of the subjects was imaged 5 times on 1 scanner with the same procedure repeated on 3 different 3T systems so that both within-site and cross-site quantitative susceptibility mapping precision levels could be assessed. Two quantitative susceptibility mapping algorithms, similar in principle, one by using iterative regularization (iterative quantitative susceptibility mapping) and the other with analytic optimal solutions (deterministic quantitative susceptibility mapping), were implemented, and their performances were compared. Results show that while deterministic quantitative susceptibility mapping had nearly 700 times faster computation speed, residual streaking artifacts seem to be more prominent compared with iterative quantitative susceptibility mapping. With quantitative susceptibility mapping, the putamen, globus pallidus, and caudate nucleus showed smaller imprecision on the order of 0.005 ppm, whereas the red nucleus and substantia nigra, closer to the skull base, had a somewhat larger imprecision of approximately 0.01 ppm. Cross-site errors were not significantly larger than within-site errors. Possible sources of estimation errors are discussed. The reproducibility of quantitative susceptibility mapping in the human brain in vivo is regionally dependent, and the precision levels achieved with quantitative susceptibility mapping should allow longitudinal and multisite studies such as aging-related changes in brain tissue magnetic susceptibility. © 2015 by American Journal of Neuroradiology.

  9. Usefulness of quantitative susceptibility mapping for the diagnosis of Parkinson disease.

    PubMed

    Murakami, Y; Kakeda, S; Watanabe, K; Ueda, I; Ogasawara, A; Moriya, J; Ide, S; Futatsuya, K; Sato, T; Okada, K; Uozumi, T; Tsuji, S; Liu, T; Wang, Y; Korogi, Y

    2015-06-01

    Quantitative susceptibility mapping allows overcoming several nonlocal restrictions of susceptibility-weighted and phase imaging and enables quantification of magnetic susceptibility. We compared the diagnostic accuracy of quantitative susceptibility mapping and R2* (1/T2*) mapping to discriminate between patients with Parkinson disease and controls. For 21 patients with Parkinson disease and 21 age- and sex-matched controls, 2 radiologists measured the quantitative susceptibility mapping values and R2* values in 6 brain structures (the thalamus, putamen, caudate nucleus, pallidum, substantia nigra, and red nucleus). The quantitative susceptibility mapping values and R2* values of the substantia nigra were significantly higher in patients with Parkinson disease (P < .01); measurements in other brain regions did not differ significantly between patients and controls. For the discrimination of patients with Parkinson disease from controls, receiver operating characteristic analysis suggested that the optimal cutoff values for the substantia nigra, based on the Youden Index, were >0.210 for quantitative susceptibility mapping and >28.8 for R2*. The sensitivity, specificity, and accuracy of quantitative susceptibility mapping were 90% (19 of 21), 86% (18 of 21), and 88% (37 of 42), respectively; for R2* mapping, they were 81% (17 of 21), 52% (11 of 21), and 67% (28 of 42). Pair-wise comparisons showed that the areas under the receiver operating characteristic curves were significantly larger for quantitative susceptibility mapping than for R2* mapping (0.91 versus 0.69, P < .05). Quantitative susceptibility mapping showed higher diagnostic performance than R2* mapping for the discrimination between patients with Parkinson disease and controls. © 2015 by American Journal of Neuroradiology.

  10. Synergistic effect in carbon coated LiFePO4 for high yield spontaneous grafting of diazonium salt. Structural examination at the grain agglomerate scale.

    PubMed

    Madec, Lénaïc; Robert, Donatien; Moreau, Philippe; Bayle-Guillemaud, Pascale; Guyomard, Dominique; Gaubicher, Joël

    2013-08-07

    Molecular grafting of p-nitrobenzene diazonium salt at the surface of (Li)FePO4-based materials was thoroughly investigated. The grafting yields obtained by FTIR, XPS, and elemental analysis for core shell LiFePO4-C are found to be much higher than the sum of those associated with either the LiFePO4 core or the carbon shell alone, thereby revealing a synergistic effect. Electrochemical, XRD, and EELS experiments demonstrate that this effect stems from the strong participation of the LiFePO4 core that delivers large amounts of electrons to the carbon substrate at a constant energy, above the Fermi level of the diazonium salt. Correspondingly large multilayer anisotropic structures that are associated with outstanding grafting yields could be observed from TEM experiments. Results therefore constitute strong evidence of a grafting mechanism where homolytic cleavage of the N2(+) species occurs together with the formation and grafting of radical nitro-aryl intermediates. Although the oxidation and concomitant Li deintercalation of LiFePO4 grains constitute the main driving force of the functionalization reaction, EFTEM EELS mapping shows a striking lack of spatial correlation between grafted grains and oxidized ones.

  11. Transmission electron microscopy of polymer blends and block copolymers

    NASA Astrophysics Data System (ADS)

    Gomez, Enrique Daniel

    Transmission electron microscopy (TEM) of soft matter is a field that warrants further investigation. Developments in sample preparation, imaging and spectroscopic techniques could lead to novel experiments that may further our understanding of the structure and the role structure plays in the functionality of various organic materials. Unlike most hard materials, TEM of organic molecules is limited by the amount of radiation damage the material can withstand without changing its structure. Despite this limitation, TEM has been and will be a powerful tool to study polymeric materials and other soft matter. In this dissertation, an introduction of TEM for polymer scientists is presented. The fundamentals of interactions of electrons with matter are described using the Schrodinger wave equation and scattering cross-sections to fully encompass coherent and incoherent scattering. The intensity, which is the product of the wave function and its complex conjugate, shows no perceptible change due to the sample. Instead, contrast is generated through the optical system of the microscope by removing scattered electrons or by generating interference due to material-induced phase changes. Perhaps the most challenging aspect of taking TEM images, however, is sample preparation, because TEM experiments require materials with approximately 50 nm thickness. Although ultramicrotomy is a well-established powerful tool for preparing biological and polymeric sections for TEM, the development of cryogenic Focused Ion Beam may enable unprecedented cross-sectional TEM studies of polymer thin films on arbitrary substrates with nanometer precision. Two examples of TEM experiments of polymeric materials are presented. The first involves quantifying the composition profile across a lamellar phase obtained in a multicomponent blend of saturated poly(butadiene) and poly(isobutylene), stabilized by a saturated poly(butadiene) copolymer serving as a surfactant, using TEM and self-consistent field theory (SCFT). The liquid-like nature of this system at room temperature makes traditional staining methods for the enhancement of contrast ineffective. As an alternative, we take advantage of the large inelastic scattering cross-section of soft materials to generate contrast in zero-loss TEM images. Independent spatially resolved thickness measurements enable quantification of electron scattering. This enabled a comparison between the TEM data and predictions based on SCFT without any adjustable parameters. The second example involves the utilization of energy-filtered transmission electron microscopy (EFTEM) to compute elemental maps by taking advantage of ionization events. Elemental mapping of lithium is used to determine the distribution of salt in nanostructured poly(styrene-block-ethylene oxide) (SEO) copolymer/lithium salt electrolytes. Surprisingly, the concentration of lithium within a poly(ethylene oxide) (PEO) domain is found to be inhomogeneous; the salt is localized to the middle of the channels. Self-consistent field theory simulations suggest that localization of lithium is due to chain stretching at the interface, which increases with molecular weight. EFTEM and SCFT results show that the segregation of lithium salt to the middle of the PEO lamellae is greater for higher molecular weight polymers. This is correlated with the ionic conductivity of the copolymer electrolyte, which is found to show a higher conductivity for thinner lithium lamellae.

  12. PVP-Assisted Synthesis of Uniform Carbon Coated Li2S/CB for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Chen, Lin; Liu, Yuzi; Zhang, Fan; Liu, Caihong; Shaw, Leon L

    2015-11-25

    The lithium-sulfur (Li-S) battery is a great alternative to the state-of-the-art lithium ion batteries due to its high energy density. However, low utilization of active materials, the insulating nature of sulfur or lithium sulfide (Li2S), and polysulfide dissolution in organic liquid electrolyte lead to low initial capacity and fast performance degradation. Herein, we propose a facile and viable approach to address these issues. This new approach entails synthesis of Li2S/carbon black (Li2S/CB) cores encapsulated by a nitrogen-doped carbon shell with polyvinylpyrrolidone (PVP) assistance. Combining energy-filtered transmission electron microscopy (EFTEM) elemental mappings, XPS and FTIR measurements, it is confirmed that the as-synthesized material has a structure of a Li2S/CB core with a nitrogen-doped carbon shell (denoted as Li2S/CB@NC). The Li2S/CB@NC cathode yields an exceptionally high initial capacity of 1020 mAh/g based on Li2S mass at 0.1 C with stable Coulombic efficiency of 99.7% over 200 cycles. Also, cycling performance shows the capacity decay per cycle as small as 0.17%. Most importantly, to further understand the materials for battery applications, field emission transmission electron microscopy (FETEM) and elemental mapping tests without exposure to air for Li2S samples in cycled cells are reported. Along with the first ever FETEM and field emission scanning electron microscopy (FESEM) investigations of cycled batteries, Li2S/CB@NC cathode demonstrates the capability of robust core-shell nanostructures for different rates and improved capacity retention, revealing Li2S/CB@NC designed here as an outstanding system for high-performance lithium-sulfur batteries.

  13. Quantitative X-ray mapping, scatter diagrams and the generation of correction maps to obtain more information about your material

    NASA Astrophysics Data System (ADS)

    Wuhrer, R.; Moran, K.

    2014-03-01

    Quantitative X-ray mapping with silicon drift detectors and multi-EDS detector systems have become an invaluable analysis technique and one of the most useful methods of X-ray microanalysis today. The time to perform an X-ray map has reduced considerably with the ability to map minor and trace elements very accurately due to the larger detector area and higher count rate detectors. Live X-ray imaging can now be performed with a significant amount of data collected in a matter of minutes. A great deal of information can be obtained from X-ray maps. This includes; elemental relationship or scatter diagram creation, elemental ratio mapping, chemical phase mapping (CPM) and quantitative X-ray maps. In obtaining quantitative x-ray maps, we are able to easily generate atomic number (Z), absorption (A), fluorescence (F), theoretical back scatter coefficient (η), and quantitative total maps from each pixel in the image. This allows us to generate an image corresponding to each factor (for each element present). These images allow the user to predict and verify where they are likely to have problems in our images, and are especially helpful to look at possible interface artefacts. The post-processing techniques to improve the quantitation of X-ray map data and the development of post processing techniques for improved characterisation are covered in this paper.

  14. Mapcurves: a quantitative method for comparing categorical maps.

    Treesearch

    William W. Hargrove; M. Hoffman Forrest; Paul F. Hessburg

    2006-01-01

    We present Mapcurves, a quantitative goodness-of-fit (GOF) method that unambiguously shows the degree of spatial concordance between two or more categorical maps. Mapcurves graphically and quantitatively evaluate the degree of fit among any number of maps and quantify a GOF for each polygon, as well as the entire map. The Mapcurve method indicates a perfect fit even if...

  15. Developing and applying quantitative skills maps for STEM curricula, with a focus on different modes of learning

    NASA Astrophysics Data System (ADS)

    Reid, Jackie; Wilkes, Janelle

    2016-08-01

    Mapping quantitative skills across the science, technology, engineering and mathematics (STEM) curricula will help educators identify gaps and duplication in the teaching, practice and assessment of the necessary skills. This paper describes the development and implementation of quantitative skills mapping tools for courses in STEM at a regional university that offers both on-campus and distance modes of study. Key elements of the mapping project included the identification of key graduate quantitative skills, the development of curriculum mapping tools to record in which unit(s) and at what level of attainment each quantitative skill is taught, practised and assessed, and identification of differences in the way quantitative skills are developed for on-campus and distance students. Particular attention is given to the differences that are associated with intensive schools, which consist of concentrated periods of face-to-face learning over a three-four day period, and are available to distance education students enrolled in STEM units. The detailed quantitative skills mapping process has had an impact on the review of first-year mathematics units, resulted in crucial changes to the curriculum in a number of courses, and contributed to a more integrated approach, and a collective responsibility, to the development of students' quantitative skills for both face-to-face and online modes of learning.

  16. Quantitative Susceptibility Mapping and R2* Measured Changes during White Matter Lesion Development in Multiple Sclerosis: Myelin Breakdown, Myelin Debris Degradation and Removal, and Iron Accumulation.

    PubMed

    Zhang, Y; Gauthier, S A; Gupta, A; Chen, W; Comunale, J; Chiang, G C-Y; Zhou, D; Askin, G; Zhu, W; Pitt, D; Wang, Y

    2016-09-01

    Quantitative susceptibility mapping and R2* are sensitive to myelin and iron changes in multiple sclerosis lesions. This study was designed to characterize lesion changes on quantitative susceptibility mapping and R2* at various gadolinium-enhancement stages. This study included 64 patients with MS with different enhancing patterns in white matter lesions: nodular, shell-like, nonenhancing < 1 year old, and nonenhancing 1-3 years old. These represent acute, late acute, early chronic, and late chronic lesions, respectively. Susceptibility values measured on quantitative susceptibility mapping and R2* values were compared among the 4 lesion types. Their differences were assessed with a generalized estimating equation, controlling for Expanded Disability Status Scale score, age, and disease duration. We analyzed 203 lesions: 80 were nodular-enhancing, of which 77 (96.2%) were isointense on quantitative susceptibility mapping; 33 were shell-enhancing, of which 30 (90.9%) were hyperintense on quantitative susceptibility mapping; and 49 were nonenhancing lesions < 1 year old and 41 were nonenhancing lesions 1-3 years old, all of which were hyperintense on quantitative susceptibility mapping. Their relative susceptibility/R2* values were 0.5 ± 4.4 parts per billion/-5.6 ± 2.9 Hz, 10.2 ± 5.4 parts per billion/-8.0 ± 2.6 Hz, 20.2 ± 7.8 parts per billion/-3.1 ± 2.3 Hz, and 33.2 ± 8.2 parts per billion/-2.0 ± 2.6 Hz, respectively, and were significantly different (P < .005). Early active MS lesions with nodular enhancement show R2* decrease but no quantitative susceptibility mapping change, reflecting myelin breakdown; late active lesions with peripheral enhancement show R2* decrease and quantitative susceptibility mapping increase in the lesion center, reflecting further degradation and removal of myelin debris; and early or late chronic nonenhancing lesions show both quantitative susceptibility mapping and R2* increase, reflecting iron accumulation. © 2016 by American Journal of Neuroradiology.

  17. Preoperative Cerebral Oxygen Extraction Fraction Imaging Generated from 7T MR Quantitative Susceptibility Mapping Predicts Development of Cerebral Hyperperfusion following Carotid Endarterectomy.

    PubMed

    Nomura, J-I; Uwano, I; Sasaki, M; Kudo, K; Yamashita, F; Ito, K; Fujiwara, S; Kobayashi, M; Ogasawara, K

    2017-12-01

    Preoperative hemodynamic impairment in the affected cerebral hemisphere is associated with the development of cerebral hyperperfusion following carotid endarterectomy. Cerebral oxygen extraction fraction images generated from 7T MR quantitative susceptibility mapping correlate with oxygen extraction fraction images on positron-emission tomography. The present study aimed to determine whether preoperative oxygen extraction fraction imaging generated from 7T MR quantitative susceptibility mapping could identify patients at risk for cerebral hyperperfusion following carotid endarterectomy. Seventy-seven patients with unilateral internal carotid artery stenosis (≥70%) underwent preoperative 3D T2*-weighted imaging using a multiple dipole-inversion algorithm with a 7T MR imager. Quantitative susceptibility mapping images were then obtained, and oxygen extraction fraction maps were generated. Quantitative brain perfusion single-photon emission CT was also performed before and immediately after carotid endarterectomy. ROIs were automatically placed in the bilateral middle cerebral artery territories in all images using a 3D stereotactic ROI template, and affected-to-contralateral ratios in the ROIs were calculated on quantitative susceptibility mapping-oxygen extraction fraction images. Ten patients (13%) showed post-carotid endarterectomy hyperperfusion (cerebral blood flow increases of ≥100% compared with preoperative values in the ROIs on brain perfusion SPECT). Multivariate analysis showed that a high quantitative susceptibility mapping-oxygen extraction fraction ratio was significantly associated with the development of post-carotid endarterectomy hyperperfusion (95% confidence interval, 33.5-249.7; P = .002). Sensitivity, specificity, and positive- and negative-predictive values of the quantitative susceptibility mapping-oxygen extraction fraction ratio for the prediction of the development of post-carotid endarterectomy hyperperfusion were 90%, 84%, 45%, and 98%, respectively. Preoperative oxygen extraction fraction imaging generated from 7T MR quantitative susceptibility mapping identifies patients at risk for cerebral hyperperfusion following carotid endarterectomy. © 2017 by American Journal of Neuroradiology.

  18. Developing and Applying Quantitative Skills Maps for STEM Curricula, with a Focus on Different Modes of Learning

    ERIC Educational Resources Information Center

    Reid, Jackie; Wilkes, Janelle

    2016-01-01

    Mapping quantitative skills across the science, technology, engineering and mathematics (STEM) curricula will help educators identify gaps and duplication in the teaching, practice and assessment of the necessary skills. This paper describes the development and implementation of quantitative skills mapping tools for courses in STEM at a regional…

  19. Combining Quantitative Susceptibility Mapping with Automatic Zero Reference (QSM0) and Myelin Water Fraction Imaging to Quantify Iron-Related Myelin Damage in Chronic Active MS Lesions.

    PubMed

    Yao, Y; Nguyen, T D; Pandya, S; Zhang, Y; Hurtado Rúa, S; Kovanlikaya, I; Kuceyeski, A; Liu, Z; Wang, Y; Gauthier, S A

    2018-02-01

    A hyperintense rim on susceptibility in chronic MS lesions is consistent with iron deposition, and the purpose of this study was to quantify iron-related myelin damage within these lesions as compared with those without rim. Forty-six patients had 2 longitudinal quantitative susceptibility mapping with automatic zero reference scans with a mean interval of 28.9 ± 11.4 months. Myelin water fraction mapping by using fast acquisition with spiral trajectory and T2 prep was obtained at the second time point to measure myelin damage. Mixed-effects models were used to assess lesion quantitative susceptibility mapping and myelin water fraction values. Quantitative susceptibility mapping scans were on average 6.8 parts per billion higher in 116 rim-positive lesions compared with 441 rim-negative lesions ( P < .001). All rim-positive lesions retained a hyperintense rim over time, with increasing quantitative susceptibility mapping values of both the rim and core regions ( P < .001). Quantitative susceptibility mapping scans and myelin water fraction in rim-positive lesions decreased from rim to core, which is consistent with rim iron deposition. Whole lesion myelin water fractions for rim-positive and rim-negative lesions were 0.055 ± 0.07 and 0.066 ± 0.04, respectively. In the mixed-effects model, rim-positive lesions had on average 0.01 lower myelin water fraction compared with rim-negative lesions ( P < .001). The volume of the rim at the initial quantitative susceptibility mapping scan was negatively associated with follow-up myelin water fraction ( P < .01). Quantitative susceptibility mapping rim-positive lesions maintained a hyperintense rim, increased in susceptibility, and had more myelin damage compared with rim-negative lesions. Our results are consistent with the identification of chronic active MS lesions and may provide a target for therapeutic interventions to reduce myelin damage. © 2018 by American Journal of Neuroradiology.

  20. Hematocrit Measurement with R2* and Quantitative Susceptibility Mapping in Postmortem Brain.

    PubMed

    Walsh, A J; Sun, H; Emery, D J; Wilman, A H

    2018-05-24

    Noninvasive venous oxygenation quantification with MR imaging will improve the neurophysiologic investigation and the understanding of the pathophysiology in neurologic diseases. Available MR imaging methods are limited by sensitivity to flow and often require assumptions of the hematocrit level. In situ postmortem imaging enables evaluation of methods in a fully deoxygenated environment without flow artifacts, allowing direct calculation of hematocrit. This study compares 2 venous oxygenation quantification methods in in situ postmortem subjects. Transverse relaxation (R2*) mapping and quantitative susceptibility mapping were performed on a whole-body 4.7T MR imaging system. Intravenous measurements in major draining intracranial veins were compared between the 2 methods in 3 postmortem subjects. The quantitative susceptibility mapping technique was also applied in 10 healthy control subjects and compared with reference venous oxygenation values. In 2 early postmortem subjects, R2* mapping and quantitative susceptibility mapping measurements within intracranial veins had a significant and strong correlation ( R 2 = 0.805, P = .004 and R 2 = 0.836, P = .02). Higher R2* and susceptibility values were consistently demonstrated within gravitationally dependent venous segments during the early postmortem period. Hematocrit ranged from 0.102 to 0.580 in postmortem subjects, with R2* and susceptibility as large as 291 seconds -1 and 1.75 ppm, respectively. Measurements of R2* and quantitative susceptibility mapping within large intracranial draining veins have a high correlation in early postmortem subjects. This study supports the use of quantitative susceptibility mapping for evaluation of in vivo venous oxygenation and postmortem hematocrit concentrations. © 2018 by American Journal of Neuroradiology.

  1. The effects of AVIRIS atmospheric calibration methodology on identification and quantitative mapping of surface mineralogy, Drum Mountains, Utah

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Dwyer, John L.

    1993-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures reflected light in 224 contiguous spectra bands in the 0.4 to 2.45 micron region of the electromagnetic spectrum. Numerous studies have used these data for mineralogic identification and mapping based on the presence of diagnostic spectral features. Quantitative mapping requires conversion of the AVIRIS data to physical units (usually reflectance) so that analysis results can be compared and validated with field and laboratory measurements. This study evaluated two different AVIRIS calibration techniques to ground reflectance: an empirically-based method and an atmospheric model based method to determine their effects on quantitative scientific analyses. Expert system analysis and linear spectral unmixing were applied to both calibrated data sets to determine the effect of the calibration on the mineral identification and quantitative mapping results. Comparison of the image-map results and image reflectance spectra indicate that the model-based calibrated data can be used with automated mapping techniques to produce accurate maps showing the spatial distribution and abundance of surface mineralogy. This has positive implications for future operational mapping using AVIRIS or similar imaging spectrometer data sets without requiring a priori knowledge.

  2. Mapping quantitative trait loci for traits defined as ratios.

    PubMed

    Yang, Runqing; Li, Jiahan; Xu, Shizhong

    2008-03-01

    Many traits are defined as ratios of two quantitative traits. Methods of QTL mapping for regular quantitative traits are not optimal when applied to ratios due to lack of normality for traits defined as ratios. We develop a new method of QTL mapping for traits defined as ratios. The new method uses a special linear combination of the two component traits, and thus takes advantage of the normal property of the new variable. Simulation study shows that the new method can substantially increase the statistical power of QTL detection relative to the method which treats ratios as regular quantitative traits. The new method also outperforms the method that uses Box-Cox transformed ratio as the phenotype. A real example of QTL mapping for relative growth rate in soybean demonstrates that the new method can detect more QTL than existing methods of QTL mapping for traits defined as ratios.

  3. Synthesis of parallel and antiparallel core-shell triangular nanoparticles

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Gourab; Satpati, Biswarup

    2018-04-01

    Core-shell triangular nanoparticles were synthesized by seed mediated growth. Using triangular gold (Au) nanoparticle as template, we have grown silver (Ag) shellto get core-shell nanoparticle. Here by changing the chemistry we have grown two types of core-shell structures where core and shell is having same symmetry and also having opposite symmetry. Both core and core-shell nanoparticles were characterized using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) to know the crystal structure and composition of these synthesized core-shell nanoparticles. From diffraction pattern analysis and energy filtered TEM (EFTEM) we have confirmed the crystal facet in core is responsible for such two dimensional growth of core-shell nanostructures.

  4. Inorganic metal oxide/organic polymer nanocomposites and method thereof

    DOEpatents

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-03-30

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal inorganic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophillic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the composite material, providing superb mixing of the component phases in the energetic nanocomposite.

  5. Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof

    DOEpatents

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-11-16

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

  6. Quantitative use of multiincidence-angle SAR for geologic mapping

    NASA Technical Reports Server (NTRS)

    Farr, T. G.; Albee, A. L.; Evans, D. L.; Solomon, J. E.; Daily, M. I.; Labotka, T. C.; Smith, M. O.

    1984-01-01

    It is proposed that techniques be developed and used for quantitative interpretation of shuttle imaging radar-B (SIR-B) data for lithologic identification and mapping. The use of backscatter versus incidence angle signatures derived from SIR-B images is to be investigated. The use of SIR-B with other sensors for geologic mapping is also to be considered. Anticipated results are discussed in terms of geologic mapping.

  7. Development of a quantitative pachytene chromosome map and its unification with somatic chromosome and linkage maps of rice (Oryza sativa L.).

    PubMed

    Ohmido, Nobuko; Iwata, Aiko; Kato, Seiji; Wako, Toshiyuki; Fukui, Kiichi

    2018-01-01

    A quantitative pachytene chromosome map of rice (Oryza sativa L.) was developed using imaging methods. The map depicts not only distribution patterns of chromomeres specific to pachytene chromosomes, but also the higher order information of chromosomal structures, such as heterochromatin (condensed regions), euchromatin (decondensed regions), the primary constrictions (centromeres), and the secondary constriction (nucleolar organizing regions, NOR). These features were image analyzed and quantitatively mapped onto the map by Chromosome Image Analyzing System ver. 4.0 (CHIAS IV). Correlation between H3K9me2, an epigenetic marker and formation and/or maintenance of heterochromatin, thus was, clearly visualized. Then the pachytene chromosome map was unified with the existing somatic chromosome and linkage maps by physically mapping common DNA markers among them, such as a rice A genome specific tandem repeat sequence (TrsA), 5S and 45S ribosomal RNA genes, five bacterial artificial chromosome (BAC) clones, four P1 bacteriophage artificial chromosome (PAC) clones using multicolor fluorescence in situ hybridization (FISH). Detailed comparison between the locations of the DNA probes on the pachytene chromosomes using multicolor FISH, and the linkage map enabled determination of the chromosome number and short/long arms of individual pachytene chromosomes using the chromosome number and arm assignment designated for the linkage map. As a result, the quantitative pachytene chromosome map was unified with two other major rice chromosome maps representing somatic prometaphase chromosomes and genetic linkages. In conclusion, the unification of the three rice maps serves as an indispensable basic information, not only for an in-depth comparison between genetic and chromosomal data, but also for practical breeding programs.

  8. Critical role of domain crystallinity, domain purity and domain interface sharpness for reduced bimolecular recombination in polymer solar cells

    DOE PAGES

    Venkatesan, Swaminathan; Chen, Jihua; Ngo, Evan C.; ...

    2014-12-31

    In this study, inverted bulk heterojunction solar cells were fabricated using poly(3-hexylthiophene) (P3HT) blended with two different fullerene derivatives namely phenyl-C61-butyric acid methyl ester (PC 60BM) and indene-C 60 bis-adduct (IC 60BA). The effects of annealing temperatures on the morphology, optical and structural properties were studied and correlated to differences in photovoltaic device performance. It was observed that annealing temperature significantly improved the performance of P3HT:IC 60BA solar cells while P3HT:PC 60BM cells showed relatively less improvement. The performance improvement is attributed to the extent of fullerene mixing with polymer domains. Energy filtered transmission electron microscopy (EFTEM) and x-ray diffractionmore » (XRD) results showed that ICBA mixes with disordered P3HT much more readily than PC 60BM which leads to lower short circuit current density and fill factor for P3HT:IC 60BA cells annealed below 120°C. Annealing above 120°C improves the crystallinity of P3HT in case of P3HT:IC 60BA whereas in P3HT:PC 60BM films, annealing above 80°C leads to negligible change in crystallinity. Crystallization of P3HT also leads to higher domain purity as seen EFTEM. Further it is seen that cells processed with additive nitrobenzene (NB) showed enhanced short circuit current density and power conversion efficiency regardless of the fullerene derivative used. Addition of NB led to nanoscale phase separation between purer polymer and fullerene domains. Kelvin probe force microscopy (KPFM) images showed that enhanced domain purity in additive casted films led to a sharper interface between polymer and fullerene. Lastly, enhanced domain purity and interfacial sharpness led to lower bimolecular recombination and higher mobility and charge carrier lifetime in NB modified devices.« less

  9. Use of single nucleotide polymorphisms (SNP) to fine-map quantitative trait loci (QTL) in swine

    USDA-ARS?s Scientific Manuscript database

    Mapping quantitative trait loci (QTL) in swine at the US Meat Animal Research Center has relied heavily on linkage mapping in either F2 or Backcross families. QTL identified in the initial scans typically have very broad confidence intervals and further refinement of the QTL’s position is needed bef...

  10. Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster.

    PubMed Central

    Pasyukova, E G; Vieira, C; Mackay, T F

    2000-01-01

    In a previous study, sex-specific quantitative trait loci (QTL) affecting adult longevity were mapped by linkage to polymorphic roo transposable element markers, in a population of recombinant inbred lines derived from the Oregon and 2b strains of Drosophila melanogaster. Two life span QTL were each located on chromosomes 2 and 3, within sections 33E-46C and 65D-85F on the cytological map, respectively. We used quantitative deficiency complementation mapping to further resolve the locations of life span QTL within these regions. The Oregon and 2b strains were each crossed to 47 deficiencies spanning cytological regions 32F-44E and 64C-76B, and quantitative failure of the QTL alleles to complement the deficiencies was assessed. We initially detected a minimum of five and four QTL in the chromosome 2 and 3 regions, respectively, illustrating that multiple linked factors contribute to each QTL detected by recombination mapping. The QTL locations inferred from deficiency mapping did not generally correspond to those of candidate genes affecting oxidative and thermal stress or glucose metabolism. The chromosome 2 QTL in the 35B-E region was further resolved to a minimum of three tightly linked QTL, containing six genetically defined loci, 24 genes, and predicted genes that are positional candidates corresponding to life span QTL. This region was also associated with quantitative variation in life span in a sample of 10 genotypes collected from nature. Quantitative deficiency complementation is an efficient method for fine-scale QTL mapping in Drosophila and can be further improved by controlling the background genotype of the strains to be tested. PMID:11063689

  11. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.).

    PubMed

    Zhang, Zhen; Shang, Haihong; Shi, Yuzhen; Huang, Long; Li, Junwen; Ge, Qun; Gong, Juwu; Liu, Aiying; Chen, Tingting; Wang, Dan; Wang, Yanling; Palanga, Koffi Kibalou; Muhammad, Jamshed; Li, Weijie; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Song, Weiwu; Cai, Juan; Li, Pengtao; Rashid, Harun or; Gong, Wankui; Yuan, Youlu

    2016-04-11

    Upland Cotton (Gossypium hirsutum) is one of the most important worldwide crops it provides natural high-quality fiber for the industrial production and everyday use. Next-generation sequencing is a powerful method to identify single nucleotide polymorphism markers on a large scale for the construction of a high-density genetic map for quantitative trait loci mapping. In this research, a recombinant inbred lines population developed from two upland cotton cultivars 0-153 and sGK9708 was used to construct a high-density genetic map through the specific locus amplified fragment sequencing method. The high-density genetic map harbored 5521 single nucleotide polymorphism markers which covered a total distance of 3259.37 cM with an average marker interval of 0.78 cM without gaps larger than 10 cM. In total 18 quantitative trait loci of boll weight were identified as stable quantitative trait loci and were detected in at least three out of 11 environments and explained 4.15-16.70 % of the observed phenotypic variation. In total, 344 candidate genes were identified within the confidence intervals of these stable quantitative trait loci based on the cotton genome sequence. These genes were categorized based on their function through gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and eukaryotic orthologous groups analysis. This research reported the first high-density genetic map for Upland Cotton (Gossypium hirsutum) with a recombinant inbred line population using single nucleotide polymorphism markers developed by specific locus amplified fragment sequencing. We also identified quantitative trait loci of boll weight across 11 environments and identified candidate genes within the quantitative trait loci confidence intervals. The results of this research would provide useful information for the next-step work including fine mapping, gene functional analysis, pyramiding breeding of functional genes as well as marker-assisted selection.

  12. A quantitative analysis of IRAS maps of molecular clouds

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.; Adams, Fred C.

    1994-01-01

    We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.

  13. Quantitative Susceptibility Mapping after Sports-Related Concussion.

    PubMed

    Koch, K M; Meier, T B; Karr, R; Nencka, A S; Muftuler, L T; McCrea, M

    2018-06-07

    Quantitative susceptibility mapping using MR imaging can assess changes in brain tissue structure and composition. This report presents preliminary results demonstrating changes in tissue magnetic susceptibility after sports-related concussion. Longitudinal quantitative susceptibility mapping metrics were produced from imaging data acquired from cohorts of concussed and control football athletes. One hundred thirty-six quantitative susceptibility mapping datasets were analyzed across 3 separate visits (24 hours after injury, 8 days postinjury, and 6 months postinjury). Longitudinal quantitative susceptibility mapping group analyses were performed on stability-thresholded brain tissue compartments and selected subregions. Clinical concussion metrics were also measured longitudinally in both cohorts and compared with the measured quantitative susceptibility mapping. Statistically significant increases in white matter susceptibility were identified in the concussed athlete group during the acute (24 hour) and subacute (day 8) period. These effects were most prominent at the 8-day visit but recovered and showed no significant difference from controls at the 6-month visit. The subcortical gray matter showed no statistically significant group differences. Observed susceptibility changes after concussion appeared to outlast self-reported clinical recovery metrics at a group level. At an individual subject level, susceptibility increases within the white matter showed statistically significant correlations with return-to-play durations. The results of this preliminary investigation suggest that sports-related concussion can induce physiologic changes to brain tissue that can be detected using MR imaging-based magnetic susceptibility estimates. In group analyses, the observed tissue changes appear to persist beyond those detected on clinical outcome assessments and were associated with return-to-play duration after sports-related concussion. © 2018 by American Journal of Neuroradiology.

  14. Imaging Cerebral Microhemorrhages in Military Service Members with Chronic Traumatic Brain Injury.

    PubMed

    Liu, Wei; Soderlund, Karl; Senseney, Justin S; Joy, David; Yeh, Ping-Hong; Ollinger, John; Sham, Elyssa B; Liu, Tian; Wang, Yi; Oakes, Terrence R; Riedy, Gerard

    2016-02-01

    To detect cerebral microhemorrhages in military service members with chronic traumatic brain injury by using susceptibility-weighted magnetic resonance (MR) imaging. The longitudinal evolution of microhemorrhages was monitored in a subset of patients by using quantitative susceptibility mapping. The study was approved by the Walter Reed National Military Medical Center institutional review board and is compliant with HIPAA guidelines. All participants underwent two-dimensional conventional gradient-recalled-echo MR imaging and three-dimensional flow-compensated multiecho gradient-recalled-echo MR imaging (processed to generate susceptibility-weighted images and quantitative susceptibility maps), and a subset of patients underwent follow-up imaging. Microhemorrhages were identified by two radiologists independently. Comparisons of microhemorrhage number, size, and magnetic susceptibility derived from quantitative susceptibility maps between baseline and follow-up imaging examinations were performed by using the paired t test. Among the 603 patients, cerebral microhemorrhages were identified in 43 patients, with six excluded for further analysis owing to artifacts. Seventy-seven percent (451 of 585) of the microhemorrhages on susceptibility-weighted images had a more conspicuous appearance than on gradient-recalled-echo images. Thirteen of the 37 patients underwent follow-up imaging examinations. In these patients, a smaller number of microhemorrhages were identified at follow-up imaging compared with baseline on quantitative susceptibility maps (mean ± standard deviation, 9.8 microhemorrhages ± 12.8 vs 13.7 microhemorrhages ± 16.6; P = .019). Quantitative susceptibility mapping-derived quantitative measures of microhemorrhages also decreased over time: -0.85 mm(3) per day ± 1.59 for total volume (P = .039) and -0.10 parts per billion per day ± 0.14 for mean magnetic susceptibility (P = .016). The number of microhemorrhages and quantitative susceptibility mapping-derived quantitative measures of microhemorrhages all decreased over time, suggesting that hemosiderin products undergo continued, subtle evolution in the chronic stage. © RSNA, 2015.

  15. Mapping, fine mapping, and molecular dissection of quantitative trait Loci in domestic animals.

    PubMed

    Georges, Michel

    2007-01-01

    Artificial selection has created myriad breeds of domestic animals, each characterized by unique phenotypes pertaining to behavior, morphology, physiology, and disease. Most domestic animal populations share features with isolated founder populations, making them well suited for positional cloning. Genome sequences are now available for most domestic species, and with them a panoply of tools including high-density single-nucleotide polymorphism panels. As a result, domestic animal populations are becoming invaluable resources for studying the molecular architecture of complex traits and of adaptation. Here we review recent progress and issues in the positional identification of genes underlying complex traits in domestic animals. As many phenotypes studied in animals are quantitative, we focus on mapping, fine mapping, and cloning of quantitative trait loci.

  16. Deep Learning for Magnetic Resonance Fingerprinting: A New Approach for Predicting Quantitative Parameter Values from Time Series.

    PubMed

    Hoppe, Elisabeth; Körzdörfer, Gregor; Würfl, Tobias; Wetzl, Jens; Lugauer, Felix; Pfeuffer, Josef; Maier, Andreas

    2017-01-01

    The purpose of this work is to evaluate methods from deep learning for application to Magnetic Resonance Fingerprinting (MRF). MRF is a recently proposed measurement technique for generating quantitative parameter maps. In MRF a non-steady state signal is generated by a pseudo-random excitation pattern. A comparison of the measured signal in each voxel with the physical model yields quantitative parameter maps. Currently, the comparison is done by matching a dictionary of simulated signals to the acquired signals. To accelerate the computation of quantitative maps we train a Convolutional Neural Network (CNN) on simulated dictionary data. As a proof of principle we show that the neural network implicitly encodes the dictionary and can replace the matching process.

  17. EM Algorithm for Mapping Quantitative Trait Loci in Multivalent Tetraploids

    USDA-ARS?s Scientific Manuscript database

    Multivalent tetraploids that include many plant species, such as potato, sugarcane and rose, are of paramount importance to agricultural production and biological research. Quantitative trait locus (QTL) mapping in multivalent tetraploids is challenged by their unique cytogenetic properties, such ...

  18. A journey from a SSR-based low density map to a SNP-based high density map for identification of disease resistance quantitative trait loci in peanut

    USDA-ARS?s Scientific Manuscript database

    Mapping and identification of quantitative trait loci (QTLs) are important for efficient marker-assisted breeding. Diseases such as leaf spots and Tomato spotted wilt virus (TSWV) cause significant loses to peanut growers. The U.S. Peanut Genome Initiative (PGI) was launched in 2004, and expanded to...

  19. Global, quantitative and dynamic mapping of protein subcellular localization.

    PubMed

    Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg Hh

    2016-06-09

    Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology.

  20. Cerebral Metabolic Rate of Oxygen (CMRO2 ) Mapping by Combining Quantitative Susceptibility Mapping (QSM) and Quantitative Blood Oxygenation Level-Dependent Imaging (qBOLD).

    PubMed

    Cho, Junghun; Kee, Youngwook; Spincemaille, Pascal; Nguyen, Thanh D; Zhang, Jingwei; Gupta, Ajay; Zhang, Shun; Wang, Yi

    2018-03-07

    To map the cerebral metabolic rate of oxygen (CMRO 2 ) by estimating the oxygen extraction fraction (OEF) from gradient echo imaging (GRE) using phase and magnitude of the GRE data. 3D multi-echo gradient echo imaging and perfusion imaging with arterial spin labeling were performed in 11 healthy subjects. CMRO 2 and OEF maps were reconstructed by joint quantitative susceptibility mapping (QSM) to process GRE phases and quantitative blood oxygen level-dependent (qBOLD) modeling to process GRE magnitudes. Comparisons with QSM and qBOLD alone were performed using ROI analysis, paired t-tests, and Bland-Altman plot. The average CMRO 2 value in cortical gray matter across subjects were 140.4 ± 14.9, 134.1 ± 12.5, and 184.6 ± 17.9 μmol/100 g/min, with corresponding OEFs of 30.9 ± 3.4%, 30.0 ± 1.8%, and 40.9 ± 2.4% for methods based on QSM, qBOLD, and QSM+qBOLD, respectively. QSM+qBOLD provided the highest CMRO 2 contrast between gray and white matter, more uniform OEF than QSM, and less noisy OEF than qBOLD. Quantitative CMRO 2 mapping that fits the entire complex GRE data is feasible by combining QSM analysis of phase and qBOLD analysis of magnitude. © 2018 International Society for Magnetic Resonance in Medicine.

  1. Colorectal carcinoma: Ex vivo evaluation using 3-T high-spatial-resolution quantitative T2 mapping and its correlation with histopathologic findings.

    PubMed

    Yamada, Ichiro; Yoshino, Norio; Hikishima, Keigo; Miyasaka, Naoyuki; Yamauchi, Shinichi; Uetake, Hiroyuki; Yasuno, Masamichi; Saida, Yukihisa; Tateishi, Ukihide; Kobayashi, Daisuke; Eishi, Yoshinobu

    2017-05-01

    In this study, we aimed to evaluate the feasibility of determining the mural invasion depths of colorectal carcinomas using high-spatial-resolution (HSR) quantitative T2 mapping on a 3-T magnetic resonance (MR) scanner. Twenty colorectal specimens containing adenocarcinomas were imaged on a 3-T MR system equipped with a 4-channel phased-array surface coil. HSR quantitative T2 maps were acquired using a spin-echo sequence with a repetition time/echo time of 7650/22.6-361.6ms (16 echoes), 87×43.5-mm field of view, 2-mm section thickness, 448×224 matrix, and average of 1. HSR fast-spin-echo T2-weighted images were also acquired. Differences between the T2 values (ms) of the tumor tissue, colorectal wall layers, and fibrosis were measured, and the MR images and histopathologic findings were compared. In all specimens (20/20, 100%), the HSR quantitative T2 maps clearly depicted an 8-layer normal colorectal wall in which the T2 values of each layer differed from those of the adjacent layer(s) (P<0.001). Using this technique, fibrosis (73.6±9.4ms) and tumor tissue (104.2±6.4ms) could also be clearly differentiated (P<0.001). In 19 samples (95%), the HSR quantitative T2 maps and histopathologic data yielded the same findings regarding the tumor invasion depth. Our results indicate that 3-T HSR quantitative T2 mapping is useful for distinguishing colorectal wall layers and differentiating tumor and fibrotic tissues. Accordingly, this technique could be used to determine mural invasion by colorectal carcinomas with a high level of accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Lateral Asymmetry and Spatial Difference of Iron Deposition in the Substantia Nigra of Patients with Parkinson Disease Measured with Quantitative Susceptibility Mapping.

    PubMed

    Azuma, M; Hirai, T; Yamada, K; Yamashita, S; Ando, Y; Tateishi, M; Iryo, Y; Yoneda, T; Kitajima, M; Wang, Y; Yamashita, Y

    2016-05-01

    Quantitative susceptibility mapping is useful for assessing iron deposition in the substantia nigra of patients with Parkinson disease. We aimed to determine whether quantitative susceptibility mapping is useful for assessing the lateral asymmetry and spatial difference in iron deposits in the substantia nigra of patients with Parkinson disease. Our study population comprised 24 patients with Parkinson disease and 24 age- and sex-matched healthy controls. They underwent 3T MR imaging by using a 3D multiecho gradient-echo sequence. On reconstructed quantitative susceptibility mapping, we measured the susceptibility values in the anterior, middle, and posterior parts of the substantia nigra, the whole substantia nigra, and other deep gray matter structures in both hemibrains. To identify the more and less affected hemibrains in patients with Parkinson disease, we assessed the severity of movement symptoms for each hemibrain by using the Unified Parkinson's Disease Rating Scale. In the posterior substantia nigra of patients with Parkinson disease, the mean susceptibility value was significantly higher in the more than the less affected hemibrain substantia nigra (P < .05). This value was significantly higher in both the more and less affected hemibrains of patients with Parkinson disease than in controls (P < .05). Asymmetry of the mean susceptibility values was significantly greater for patients than controls (P < .05). Receiver operating characteristic analysis showed that quantitative susceptibility mapping of the posterior substantia nigra in the more affected hemibrain provided the highest power for discriminating patients with Parkinson disease from the controls. Quantitative susceptibility mapping is useful for assessing the lateral asymmetry and spatial difference of iron deposition in the substantia nigra of patients with Parkinson disease. © 2016 by American Journal of Neuroradiology.

  3. Quantitative Oxygenation Venography from MRI Phase

    PubMed Central

    Fan, Audrey P.; Bilgic, Berkin; Gagnon, Louis; Witzel, Thomas; Bhat, Himanshu; Rosen, Bruce R.; Adalsteinsson, Elfar

    2014-01-01

    Purpose To demonstrate acquisition and processing methods for quantitative oxygenation venograms that map in vivo oxygen saturation (SvO2) along cerebral venous vasculature. Methods Regularized quantitative susceptibility mapping (QSM) is used to reconstruct susceptibility values and estimate SvO2 in veins. QSM with ℓ1 and ℓ2 regularization are compared in numerical simulations of vessel structures with known magnetic susceptibility. Dual-echo, flow-compensated phase images are collected in three healthy volunteers to create QSM images. Bright veins in the susceptibility maps are vectorized and used to form a three-dimensional vascular mesh, or venogram, along which to display SvO2 values from QSM. Results Quantitative oxygenation venograms that map SvO2 along brain vessels of arbitrary orientation and geometry are shown in vivo. SvO2 values in major cerebral veins lie within the normal physiological range reported by 15O positron emission tomography. SvO2 from QSM is consistent with previous MR susceptometry methods for vessel segments oriented parallel to the main magnetic field. In vessel simulations, ℓ1 regularization results in less than 10% SvO2 absolute error across all vessel tilt orientations and provides more accurate SvO2 estimation than ℓ2 regularization. Conclusion The proposed analysis of susceptibility images enables reliable mapping of quantitative SvO2 along venograms and may facilitate clinical use of venous oxygenation imaging. PMID:24006229

  4. OdorMapComparer: an application for quantitative analyses and comparisons of fMRI brain odor maps.

    PubMed

    Liu, Nian; Xu, Fuqiang; Miller, Perry L; Shepherd, Gordon M

    2007-01-01

    Brain odor maps are reconstructed flat images that describe the spatial activity patterns in the glomerular layer of the olfactory bulbs in animals exposed to different odor stimuli. We have developed a software application, OdorMapComparer, to carry out quantitative analyses and comparisons of the fMRI odor maps. This application is an open-source window program that first loads two odor map images being compared. It allows image transformations including scaling, flipping, rotating, and warping so that the two images can be appropriately aligned to each other. It performs simple subtraction, addition, and average of signals in the two images. It also provides comparative statistics including the normalized correlation (NC) and spatial correlation coefficient. Experimental studies showed that the rodent fMRI odor maps for aliphatic aldehydes displayed spatial activity patterns that are similar in gross outlines but somewhat different in specific subregions. Analyses with OdorMapComparer indicate that the similarity between odor maps decreases with increasing difference in the length of carbon chains. For example, the map of butanal is more closely related to that of pentanal (with a NC = 0.617) than to that of octanal (NC = 0.082), which is consistent with animal behavioral studies. The study also indicates that fMRI odor maps are statistically odor-specific and repeatable across both the intra- and intersubject trials. OdorMapComparer thus provides a tool for quantitative, statistical analyses and comparisons of fMRI odor maps in a fashion that is integrated with the overall odor mapping techniques.

  5. Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures.

    PubMed

    Lim, Issel Anne L; Faria, Andreia V; Li, Xu; Hsu, Johnny T C; Airan, Raag D; Mori, Susumu; van Zijl, Peter C M

    2013-11-15

    The purpose of this paper is to extend the single-subject Eve atlas from Johns Hopkins University, which currently contains diffusion tensor and T1-weighted anatomical maps, by including contrast based on quantitative susceptibility mapping. The new atlas combines a "deep gray matter parcellation map" (DGMPM) derived from a single-subject quantitative susceptibility map with the previously established "white matter parcellation map" (WMPM) from the same subject's T1-weighted and diffusion tensor imaging data into an MNI coordinate map named the "Everything Parcellation Map in Eve Space," also known as the "EvePM." It allows automated segmentation of gray matter and white matter structures. Quantitative susceptibility maps from five healthy male volunteers (30 to 33 years of age) were coregistered to the Eve Atlas with AIR and Large Deformation Diffeomorphic Metric Mapping (LDDMM), and the transformation matrices were applied to the EvePM to produce automated parcellation in subject space. Parcellation accuracy was measured with a kappa analysis for the left and right structures of six deep gray matter regions. For multi-orientation QSM images, the Kappa statistic was 0.85 between automated and manual segmentation, with the inter-rater reproducibility Kappa being 0.89 for the human raters, suggesting "almost perfect" agreement between all segmentation methods. Segmentation seemed slightly more difficult for human raters on single-orientation QSM images, with the Kappa statistic being 0.88 between automated and manual segmentation, and 0.85 and 0.86 between human raters. Overall, this atlas provides a time-efficient tool for automated coregistration and segmentation of quantitative susceptibility data to analyze many regions of interest. These data were used to establish a baseline for normal magnetic susceptibility measurements for over 60 brain structures of 30- to 33-year-old males. Correlating the average susceptibility with age-based iron concentrations in gray matter structures measured by Hallgren and Sourander (1958) allowed interpolation of the average iron concentration of several deep gray matter regions delineated in the EvePM. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Correlation of quantitative dual-energy computed tomography iodine maps and abdominal computed tomography perfusion measurements: are single-acquisition dual-energy computed tomography iodine maps more than a reduced-dose surrogate of conventional computed tomography perfusion?

    PubMed

    Stiller, Wolfram; Skornitzke, Stephan; Fritz, Franziska; Klauss, Miriam; Hansen, Jens; Pahn, Gregor; Grenacher, Lars; Kauczor, Hans-Ulrich

    2015-10-01

    Study objectives were the quantitative evaluation of whether conventional abdominal computed tomography (CT) perfusion measurements mathematically correlate with quantitative single-acquisition dual-energy CT (DECT) iodine concentration maps, the determination of the optimum time of acquisition for achieving maximum correlation, and the estimation of the potential for radiation exposure reduction when replacing conventional CT perfusion by single-acquisition DECT iodine concentration maps. Dual-energy CT perfusion sequences were dynamically acquired over 51 seconds (34 acquisitions every 1.5 seconds) in 24 patients with histologically verified pancreatic carcinoma using dual-source DECT at tube potentials of 80 kVp and 140 kVp. Using software developed in-house, perfusion maps were calculated from 80-kVp image series using the maximum slope model after deformable motion correction. In addition, quantitative iodine maps were calculated for each of the 34 DECT acquisitions per patient. Within a manual segmentation of the pancreas, voxel-by-voxel correlation between the perfusion map and each of the iodine maps was calculated for each patient to determine the optimum time of acquisition topt defined as the acquisition time of the iodine map with the highest correlation coefficient. Subsequently, regions of interest were placed inside the tumor and inside healthy pancreatic tissue, and correlation between mean perfusion values and mean iodine concentrations within these regions of interest at topt was calculated for the patient sample. The mean (SD) topt was 31.7 (5.4) seconds after the start of contrast agent injection. The mean (SD) perfusion values for healthy pancreatic and tumor tissues were 67.8 (26.7) mL per 100 mL/min and 43.7 (32.2) mL per 100 mL/min, respectively. At topt, the mean (SD) iodine concentrations were 2.07 (0.71) mg/mL in healthy pancreatic and 1.69 (0.98) mg/mL in tumor tissue, respectively. Overall, the correlation between perfusion values and iodine concentrations was high (0.77), with correlation of 0.89 in tumor and of 0.56 in healthy pancreatic tissue at topt. Comparing radiation exposure associated with a single DECT acquisition at topt (0.18 mSv) to that of an 80 kVp CT perfusion sequence (2.96 mSv) indicates that an average reduction of Deff by 94% could be achieved by replacing conventional CT perfusion with a single-acquisition DECT iodine concentration map. Quantitative iodine concentration maps obtained with DECT correlate well with conventional abdominal CT perfusion measurements, suggesting that quantitative iodine maps calculated from a single DECT acquisition at an organ-specific and patient-specific optimum time of acquisition might be able to replace conventional abdominal CT perfusion measurements if the time of acquisition is carefully calibrated. This could lead to large reductions of radiation exposure to the patients while offering quantitative perfusion data for diagnosis.

  7. Evaluation and Quantitative trait loci mapping of resistance to powdery mildew in lettuce

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) is the major leafy vegetable that is susceptible to powdery mildew disease under greenhouse and field conditions. We mapped quantitative trait loci (QTLs) for resistance to powdery mildew under greenhouse conditions in an interspecific population derived from a cross betw...

  8. Quantifying Qualitative Data Using Cognitive Maps

    ERIC Educational Resources Information Center

    Scherp, Hans-Ake

    2013-01-01

    The aim of the article is to show how substantial qualitative material consisting of graphic cognitive maps can be analysed by using digital CmapTools, Excel and SPSS. Evidence is provided of how qualitative and quantitative methods can be combined in educational research by transforming qualitative data into quantitative data to facilitate…

  9. Quantitative maps of genetic interactions in yeast - comparative evaluation and integrative analysis.

    PubMed

    Lindén, Rolf O; Eronen, Ville-Pekka; Aittokallio, Tero

    2011-03-24

    High-throughput genetic screening approaches have enabled systematic means to study how interactions among gene mutations contribute to quantitative fitness phenotypes, with the aim of providing insights into the functional wiring diagrams of genetic interaction networks on a global scale. However, it is poorly known how well these quantitative interaction measurements agree across the screening approaches, which hinders their integrated use toward improving the coverage and quality of the genetic interaction maps in yeast and other organisms. Using large-scale data matrices from epistatic miniarray profiling (E-MAP), genetic interaction mapping (GIM), and synthetic genetic array (SGA) approaches, we carried out here a systematic comparative evaluation among these quantitative maps of genetic interactions in yeast. The relatively low association between the original interaction measurements or their customized scores could be improved using a matrix-based modelling framework, which enables the use of single- and double-mutant fitness estimates and measurements, respectively, when scoring genetic interactions. Toward an integrative analysis, we show how the detections from the different screening approaches can be combined to suggest novel positive and negative interactions which are complementary to those obtained using any single screening approach alone. The matrix approximation procedure has been made available to support the design and analysis of the future screening studies. We have shown here that even if the correlation between the currently available quantitative genetic interaction maps in yeast is relatively low, their comparability can be improved by means of our computational matrix approximation procedure, which will enable integrative analysis and detection of a wider spectrum of genetic interactions using data from the complementary screening approaches.

  10. Uncertainties in ecosystem service maps: a comparison on the European scale.

    PubMed

    Schulp, Catharina J E; Burkhard, Benjamin; Maes, Joachim; Van Vliet, Jasper; Verburg, Peter H

    2014-01-01

    Safeguarding the benefits that ecosystems provide to society is increasingly included as a target in international policies. To support such policies, ecosystem service maps are made. However, there is little attention for the accuracy of these maps. We made a systematic review and quantitative comparison of ecosystem service maps on the European scale to generate insights in the uncertainty of ecosystem service maps and discuss the possibilities for quantitative validation. Maps of climate regulation and recreation were reasonably similar while large uncertainties among maps of erosion protection and flood regulation were observed. Pollination maps had a moderate similarity. Differences among the maps were caused by differences in indicator definition, level of process understanding, mapping aim, data sources and methodology. Absence of suitable observed data on ecosystem services provisioning hampers independent validation of the maps. Consequently, there are, so far, no accurate measures for ecosystem service map quality. Policy makers and other users need to be cautious when applying ecosystem service maps for decision-making. The results illustrate the need for better process understanding and data acquisition to advance ecosystem service mapping, modelling and validation.

  11. The Quantitative Evaluation of the Clinical and Translational Science Awards (CTSA) Program Based on Science Mapping and Scientometric Analysis

    PubMed Central

    Zhang, Yin; Wang, Lei

    2013-01-01

    Abstract The Clinical and Translational Science Awards (CTSA) program is one of the most important initiatives in translational medical funding. The quantitative evaluation of the efficiency and performance of the CTSA program has a significant referential meaning for the decision making of global translational medical funding. Using science mapping and scientometric analytic tools, this study quantitatively analyzed the scientific articles funded by the CTSA program. The results of the study showed that the quantitative productivities of the CTSA program had a stable increase since 2008. In addition, the emerging trends of the research funded by the CTSA program covered clinical and basic medical research fields. The academic benefits from the CTSA program were assisting its members to build a robust academic home for the Clinical and Translational Science and to attract other financial support. This study provided a quantitative evaluation of the CTSA program based on science mapping and scientometric analysis. Further research is required to compare and optimize other quantitative methods and to integrate various research results. PMID:24330689

  12. The quantitative evaluation of the Clinical and Translational Science Awards (CTSA) program based on science mapping and scientometric analysis.

    PubMed

    Zhang, Yin; Wang, Lei; Diao, Tianxi

    2013-12-01

    The Clinical and Translational Science Awards (CTSA) program is one of the most important initiatives in translational medical funding. The quantitative evaluation of the efficiency and performance of the CTSA program has a significant referential meaning for the decision making of global translational medical funding. Using science mapping and scientometric analytic tools, this study quantitatively analyzed the scientific articles funded by the CTSA program. The results of the study showed that the quantitative productivities of the CTSA program had a stable increase since 2008. In addition, the emerging trends of the research funded by the CTSA program covered clinical and basic medical research fields. The academic benefits from the CTSA program were assisting its members to build a robust academic home for the Clinical and Translational Science and to attract other financial support. This study provided a quantitative evaluation of the CTSA program based on science mapping and scientometric analysis. Further research is required to compare and optimize other quantitative methods and to integrate various research results. © 2013 Wiley Periodicals, Inc.

  13. Global, quantitative and dynamic mapping of protein subcellular localization

    PubMed Central

    Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg HH

    2016-01-01

    Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology. DOI: http://dx.doi.org/10.7554/eLife.16950.001 PMID:27278775

  14. Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications

    PubMed Central

    Liu, Chunlei; Wei, Hongjiang; Gong, Nan-Jie; Cronin, Matthew; Dibb, Russel; Decker, Kyle

    2016-01-01

    Quantitative susceptibility mapping (QSM) is a recently developed MRI technique for quantifying the spatial distribution of magnetic susceptibility within biological tissues. It first uses the frequency shift in the MRI signal to map the magnetic field profile within the tissue. The resulting field map is then used to determine the spatial distribution of the underlying magnetic susceptibility by solving an inverse problem. The solution is achieved by deconvolving the field map with a dipole field, under the assumption that the magnetic field is a result of the superposition of the dipole fields generated by all voxels and that each voxel has its unique magnetic susceptibility. QSM provides improved contrast to noise ratio for certain tissues and structures compared to its magnitude counterpart. More importantly, magnetic susceptibility is a direct reflection of the molecular composition and cellular architecture of the tissue. Consequently, by quantifying magnetic susceptibility, QSM is becoming a quantitative imaging approach for characterizing normal and pathological tissue properties. This article reviews the mechanism generating susceptibility contrast within tissues and some associated applications. PMID:26844301

  15. Novel cardiac magnetic resonance biomarkers: native T1 and extracellular volume myocardial mapping.

    PubMed

    Cannaò, Paola Maria; Altabella, Luisa; Petrini, Marcello; Alì, Marco; Secchi, Francesco; Sardanelli, Francesco

    2016-04-28

    Cardiac magnetic resonance (CMR) is a non-invasive diagnostic tool playing a key role in the assessment of cardiac morphology and function as well as in tissue characterization. Late gadolinium enhancement is a fundamental CMR technique for detecting focal or regional abnormalities such as scar tissue, replacement fibrosis, or inflammation using qualitative, semi-quantitative, or quantitative methods, but not allowing for evaluating the whole myocardium in the presence of diffuse disease. The novel T1 mapping approach permits a quantitative assessment of the entire myocardium providing a voxel-by-voxel map of native T1 relaxation time, obtained before the intravenous administration of gadolinium-based contrast material. Combining T1 data obtained before and after contrast injection, it is also possible to calculate the voxel-by-voxel extracellular volume (ECV), resulting in another myocardial parametric map. This article describes technical challenges and clinical perspectives of these two novel CMR biomarkers: myocardial native T1 and ECV mapping.

  16. Mapping of quantitative trait loci associated with partial resistance to phytophthora sojae and flooding tolerance in soybean

    USDA-ARS?s Scientific Manuscript database

    Phytophthora root rot (PRR) caused by Phytophthora sojae Kaufm. & Gerd. and flooding can limit growth and productivity, of soybean [Glycine max (L.) Merr.], especially on poorly drained soils. The primary objective of this research project was to map quantitative trait loci (QTL) associated with f...

  17. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. III

    Treesearch

    Kathleen D. Jermstad; Daniel L. Bassoni; Keith S. Jech; Gary A. Ritchie; Nicholas C. Wheeler; David B. Neale

    2003-01-01

    Quantitative trait loci (QTL) were mapped in the woody perennial Douglas fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) for complex traits controlling the timing of growth initiation and growth cessation. QTL were estimated under controlled environmental conditions to identify QTL interactions with photoperiod, moisture stress, winter chilling, and spring...

  18. Mapping montane vegetation in Southern California from color infrared imagery

    NASA Technical Reports Server (NTRS)

    Minnich, R. A.; Bowden, L. W.; Pease, R. W.

    1969-01-01

    Mapping a large area in California like the San Bernardino Mountains, demonstrated that color infrared photography is suitable for detailed mapping and offers potential for quantitative mapping. The level of information presented is comparable or superior to the most detailed mapping by ground survey.

  19. Phenotypic assessments of peanut nested association mapping (NAM) populations

    USDA-ARS?s Scientific Manuscript database

    Nested association mapping (NAM) is a valuable innovation and multi-parental mapping population strategy in peanut genetics which increases the power to map quantitative trait loci and assists in extending the gene pool of elite peanut lines. In the peanut research community, two structured mapping ...

  20. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    PubMed Central

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-01-01

    Local surface charge density of lipid membranes influences membrane–protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values. PMID:27561322

  1. Quantitative Trait Loci Controlling Vegetative Growth Rate in the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Larraya, Luis M.; Idareta, Eneko; Arana, Dani; Ritter, Enrique; Pisabarro, Antonio G.; Ramírez, Lucia

    2002-01-01

    Mycelium growth rate is a quantitative characteristic that exhibits continuous variation. This trait has applied interest, as growth rate is correlated with production yield and increased advantage against competitors. In this work, we studied growth rate variation in the edible basidiomycete Pleurotus ostreatus growing as monokaryotic or dikaryotic mycelium on Eger medium or on wheat straw. Our analysis resulted in identification of several genomic regions (quantitative trait loci [QTLs]) involved in the control of growth rate that can be mapped on the genetic linkage map of this fungus. In some cases monokaryotic and dikaryotic QTLs clustered at the same map position, indicating that there are principal genomic areas responsible for growth rate control. The availability of this linkage map of growth rate QTLs can help in the design of rational strain breeding programs based on genomic information. PMID:11872457

  2. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    NASA Astrophysics Data System (ADS)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-08-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.

  3. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy.

    PubMed

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-08-26

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.

  4. Quantitative Susceptibility Mapping of the Midbrain in Parkinson’s Disease

    PubMed Central

    Du, Guangwei; Liu, Tian; Lewis, Mechelle M.; Kong, Lan; Wang, Yi; Connor, James; Mailman, Richard B.; Huang, Xuemei

    2017-01-01

    Background Parkinson’s disease (PD) is marked pathologically by dopamine neuron loss and iron overload in the substantia nigra pars compacta. Midbrain iron content is reported to be increased in PD based on magnetic resonance imaging (MRI) R2* changes. Because quantitative susceptibility mapping is a novel MRI approach to measure iron content, we compared it with R2* for assessing midbrain changes in PD. Methods Quantitative susceptibility mapping and R2* maps were obtained from 47 PD patients and 47 healthy controls. Midbrain susceptibility and R2* values were analyzed by using both voxel-based and region-of-interest approaches in normalized space, and analyzed along with clinical data, including disease duration, Unified Parkinson’s Disease Rating Scale (UPDRS) I, II, and III sub-scores, and levodopa-equivalent daily dosage. All studies were done while PD patients were “on drug.” Results Compared with controls, PD patients showed significantly increased susceptibility values in both right (cluster size = 106 mm3) and left (164 mm3) midbrain, located ventrolateral to the red nucleus that corresponded to the substantia nigra pars compacta. Susceptibility values in this region were correlated significantly with disease duration, UPDRS II, and levodopa-equivalent daily dosage. Conversely, R2* was increased significantly only in a much smaller region (62 mm3) of the left lateral substantia nigra pars compacta and was not significantly correlated with clinical parameters. Conclusion The use of quantitative susceptibility mapping demonstrated marked nigral changes that correlated with clinical PD status more sensitively than R2*. These data suggest that quantitative susceptibility mapping may be a superior imaging biomarker to R2* for estimating brain iron levels in PD. PMID:26362242

  5. QACD: A method for the quantitative assessment of compositional distribution in geologic materials

    NASA Astrophysics Data System (ADS)

    Loocke, M. P.; Lissenberg, J. C. J.; MacLeod, C. J.

    2017-12-01

    In order to fully understand the petrogenetic history of a rock, it is critical to obtain a thorough characterization of the chemical and textural relationships of its mineral constituents. Element mapping combines the microanalytical techniques that allow for the analysis of major- and minor elements at high spatial resolutions (e.g., electron microbeam analysis) with 2D mapping of samples in order to provide unprecedented detail regarding the growth histories and compositional distributions of minerals within a sample. We present a method for the acquisition and processing of large area X-ray element maps obtained by energy-dispersive X-ray spectrometer (EDS) to produce a quantitative assessment of compositional distribution (QACD) of mineral populations within geologic materials. By optimizing the conditions at which the EDS X-ray element maps are acquired, we are able to obtain full thin section quantitative element maps for most major elements in relatively short amounts of time. Such maps can be used to not only accurately identify all phases and calculate mineral modes for a sample (e.g., a petrographic thin section), but, critically, enable a complete quantitative assessment of their compositions. The QACD method has been incorporated into a python-based, easy-to-use graphical user interface (GUI) called Quack. The Quack software facilitates the generation of mineral modes, element and molar ratio maps and the quantification of full-sample compositional distributions. The open-source nature of the Quack software provides a versatile platform which can be easily adapted and modified to suit the needs of the user.

  6. Lunar and Planetary Science XXXVI, Part 1

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Observations with Near Infrared Spectrometer for Hayabusa Mission in the Cruising Phase. First Results of Quadrantid Meteor Spectrum. Compositional Investigation of Binary Near-Earth Asteroid 66063 (1998 RO1): A Potentially Undifferentiated Assemblage. Impact-induced Hydrothermal Activity on Early Mars. HRTEM and EFTEM Studies of Phyllosilicate-Organic Matter Associations in Matrix and Dark Inclusions in the EET92042 CR2 Carbonaceous Chondrite. Volumetric Analysis of Martian Rampart Craters. High Pressure Melting of H-Chondrite: A Match for the Martian Basalt Source Mantle. MERView: A New Computer Program for Easy Display of MER-acquired M ssbauer Data. Distribution, Exchange, and Topographic Control of Subsurface Ice on Mars. Shock-induced Damage Beneath Normal and Oblique Impact Craters. Amphitrites Patera Studied from the Mars Express HRSC Data. Oxygen Isotope Microanalysis of Enveloping Compound Chondrules in CV3 and LL3 Chondrites. Gamma-Ray Irradiation in the Early Solar System and the Conundrum of the Lu-176 Decay Constant. Magnesium Isotope Mapping of Silica-rich Grains Having. Extreme Oxygen Isotope Anomalies Extreme Oxygen Isotopic Anomalies from Irradiation in the Early Solar System, Re-Examining the Role of Chondrules in Producing the Elemental Fractionations in Chondrites. Meteorite Data on the Solar Modulation of Galactic Cosmic Rays and an Inference on the Solar Activity Influence on Climate of the Earth. Volatiles Enrichments and Composition of Jupiter. Thinking Like a Wildcatter Prospecting for Methane in Arabia Terra, Mars. Size Distribution of Genesis Solar Wind Array Collector Fragments. Initial Subdivision of Genesis Early Science Polished Aluminum Collector. Presolar Graphite and Its Noble Gases. Young Pb-Isotopic Ages of Chondrules in CB Carbonaceous Chondrites. Fe Isotopic Composition of Martian Meteorites. Petrology and Geochemistry of Nakhlite MIL 03346: A New Martian Meteorite from Antarctica.

  7. Proposal for a study of computer mapping of terrain using multispectral data from ERTS-A for the Yellowstone National Park test site

    NASA Technical Reports Server (NTRS)

    Smedes, H. W. (Principal Investigator); Root, R. R.; Roller, N. E. G.; Despain, D.

    1978-01-01

    The author has identified the following significant results. A terrain map of Yellowstone National Park showed plant community types and other classes of ground cover in what is basically a wild land. The map comprised 12 classes, six of which were mapped with accuracies of 70 to 95%. The remaining six classes had spectral reflectances that overlapped appreciably, and hence, those were mapped less accurately. Techniques were devised for quantitatively comparing the recognition map of the park with control data acquired from ground inspection and from analysis of sidelooking radar images, a thermal IR mosaic, and IR aerial photos of several scales. Quantitative analyses were made in ten 40 sq km test areas. Comparison mechanics were performed by computer with the final results displayed on line printer output. Forested areas were mapped by computer using ERTS data for less than 1/4 the cost of the conventional forest mapping technique for topographic base maps.

  8. Rapid quantitative chemical mapping of surfaces with sub-2 nm resolution

    NASA Astrophysics Data System (ADS)

    Lai, Chia-Yun; Perri, Saverio; Santos, Sergio; Garcia, Ricardo; Chiesa, Matteo

    2016-05-01

    We present a theory that exploits four observables in bimodal atomic force microscopy to produce maps of the Hamaker constant H. The quantitative H maps may be employed by the broader community to directly interpret the high resolution of standard bimodal AFM images as chemical maps while simultaneously quantifying chemistry in the non-contact regime. We further provide a simple methodology to optimize a range of operational parameters for which H is in the closest agreement with the Lifshitz theory in order to (1) simplify data acquisition and (2) generalize the methodology to any set of cantilever-sample systems.We present a theory that exploits four observables in bimodal atomic force microscopy to produce maps of the Hamaker constant H. The quantitative H maps may be employed by the broader community to directly interpret the high resolution of standard bimodal AFM images as chemical maps while simultaneously quantifying chemistry in the non-contact regime. We further provide a simple methodology to optimize a range of operational parameters for which H is in the closest agreement with the Lifshitz theory in order to (1) simplify data acquisition and (2) generalize the methodology to any set of cantilever-sample systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00496b

  9. Educational Software for Mapping Quantitative Trait Loci (QTL)

    ERIC Educational Resources Information Center

    Helms, T. C.; Doetkott, C.

    2007-01-01

    This educational software was developed to aid teachers and students in their understanding of how the process of identifying the most likely quantitative trait loci (QTL) position is determined between two flanking DNA markers. The objective of the software that we developed was to: (1) show how a QTL is mapped to a position on a chromosome using…

  10. Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain

    USDA-ARS?s Scientific Manuscript database

    In this study, quantitative trait loci (QTLs) affecting the concentrations of 16 elements in whole, unmilled rice (Oryza sativa L.) grain were identified. Two rice mapping populations, the ‘Lemont’ x ‘TeQing’ recombinant inbred lines (LT-RILs), and the TeQing-into-Lemont backcross introgression lin...

  11. Refining Landsat classification results using digital terrain data

    USGS Publications Warehouse

    Miller, Wayne A.; Shasby, Mark

    1982-01-01

     Scientists at the U.S. Geological Survey's Earth Resources Observation systems (EROS) Data Center have recently completed two land-cover mapping projects in which digital terrain data were used to refine Landsat classification results. Digital ter rain data were incorporated into the Landsat classification process using two different procedures that required developing decision criteria either subjectively or quantitatively. The subjective procedure was used in a vegetation mapping project in Arizona, and the quantitative procedure was used in a forest-fuels mapping project in Montana. By incorporating digital terrain data into the Landsat classification process, more spatially accurate landcover maps were produced for both projects.

  12. Quantitative genetic-interaction mapping in mammalian cells

    PubMed Central

    Roguev, Assen; Talbot, Dale; Negri, Gian Luca; Shales, Michael; Cagney, Gerard; Bandyopadhyay, Sourav; Panning, Barbara; Krogan, Nevan J

    2013-01-01

    Mapping genetic interactions (GIs) by simultaneously perturbing pairs of genes is a powerful tool for understanding complex biological phenomena. Here we describe an experimental platform for generating quantitative GI maps in mammalian cells using a combinatorial RNA interference strategy. We performed ~11,000 pairwise knockdowns in mouse fibroblasts, focusing on 130 factors involved in chromatin regulation to create a GI map. Comparison of the GI and protein-protein interaction (PPI) data revealed that pairs of genes exhibiting positive GIs and/or similar genetic profiles were predictive of the corresponding proteins being physically associated. The mammalian GI map identified pathways and complexes but also resolved functionally distinct submodules within larger protein complexes. By integrating GI and PPI data, we created a functional map of chromatin complexes in mouse fibroblasts, revealing that the PAF complex is a central player in the mammalian chromatin landscape. PMID:23407553

  13. Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures

    PubMed Central

    Lim, Issel Anne L.; Faria, Andreia V.; Li, Xu; Hsu, Johnny T.C.; Airan, Raag D.; Mori, Susumu; van Zijl, Peter C. M.

    2013-01-01

    The purpose of this paper is to extend the single-subject Eve atlas from Johns Hopkins University, which currently contains diffusion tensor and T1-weighted anatomical maps, by including contrast based on quantitative susceptibility mapping. The new atlas combines a “deep gray matter parcellation map” (DGMPM) derived from a single-subject quantitative susceptibility map with the previously established “white matter parcellation map” (WMPM) from the same subject’s T1-weighted and diffusion tensor imaging data into an MNI coordinate map named the “Everything Parcellation Map in Eve Space,” also known as the “EvePM.” It allows automated segmentation of gray matter and white matter structures. Quantitative susceptibility maps from five healthy male volunteers (30 to 33 years of age) were coregistered to the Eve Atlas with AIR and Large Deformation Diffeomorphic Metric Mapping (LDDMM), and the transformation matrices were applied to the EvePM to produce automated parcellation in subject space. Parcellation accuracy was measured with a kappa analysis for the left and right structures of six deep gray matter regions. For multi-orientation QSM images, the Kappa statistic was 0.85 between automated and manual segmentation, with the inter-rater reproducibility Kappa being 0.89 for the human raters, suggesting “almost perfect” agreement between all segmentation methods. Segmentation seemed slightly more difficult for human raters on single-orientation QSM images, with the Kappa statistic being 0.88 between automated and manual segmentation, and 0.85 and 0.86 between human raters. Overall, this atlas provides a time-efficient tool for automated coregistration and segmentation of quantitative susceptibility data to analyze many regions of interest. These data were used to establish a baseline for normal magnetic susceptibility measurements for over 60 brain structures of 30- to 33-year-old males. Correlating the average susceptibility with age-based iron concentrations in gray matter structures measured by Hallgren and Sourander (1958) allowed interpolation of the average iron concentration of several deep gray matter regions delineated in the EvePM. PMID:23769915

  14. Quantitative evaluation of dual-flip-angle T1 mapping on DCE-MRI kinetic parameter estimation in head and neck

    PubMed Central

    Chow, Steven Kwok Keung; Yeung, David Ka Wai; Ahuja, Anil T; King, Ann D

    2012-01-01

    Purpose To quantitatively evaluate the kinetic parameter estimation for head and neck (HN) dynamic contrast-enhanced (DCE) MRI with dual-flip-angle (DFA) T1 mapping. Materials and methods Clinical DCE-MRI datasets of 23 patients with HN tumors were included in this study. T1 maps were generated based on multiple-flip-angle (MFA) method and different DFA combinations. Tofts model parameter maps of kep, Ktrans and vp based on MFA and DFAs were calculated and compared. Fitted parameter by MFA and DFAs were quantitatively evaluated in primary tumor, salivary gland and muscle. Results T1 mapping deviations by DFAs produced remarkable kinetic parameter estimation deviations in head and neck tissues. In particular, the DFA of [2º, 7º] overestimated, while [7º, 12º] and [7º, 15º] underestimated Ktrans and vp, significantly (P<0.01). [2º, 15º] achieved the smallest but still statistically significant overestimation for Ktrans and vp in primary tumors, 32.1% and 16.2% respectively. kep fitting results by DFAs were relatively close to the MFA reference compared to Ktrans and vp. Conclusions T1 deviations induced by DFA could result in significant errors in kinetic parameter estimation, particularly Ktrans and vp, through Tofts model fitting. MFA method should be more reliable and robust for accurate quantitative pharmacokinetic analysis in head and neck. PMID:23289084

  15. A Quantitative Chemotherapy Genetic Interaction Map Reveals Factors Associated with PARP Inhibitor Resistance.

    PubMed

    Hu, Hsien-Ming; Zhao, Xin; Kaushik, Swati; Robillard, Lilliane; Barthelet, Antoine; Lin, Kevin K; Shah, Khyati N; Simmons, Andy D; Raponi, Mitch; Harding, Thomas C; Bandyopadhyay, Sourav

    2018-04-17

    Chemotherapy is used to treat most cancer patients, yet our understanding of factors that dictate response and resistance to such drugs remains limited. We report the generation of a quantitative chemical-genetic interaction map in human mammary epithelial cells charting the impact of the knockdown of 625 genes related to cancer and DNA repair on sensitivity to 29 drugs, covering all classes of chemotherapy. This quantitative map is predictive of interactions maintained in other cell lines, identifies DNA-repair factors, predicts cancer cell line responses to therapy, and prioritizes synergistic drug combinations. We identify that ARID1A loss confers resistance to PARP inhibitors in cells and ovarian cancer patients and that loss of GPBP1 causes resistance to cisplatin and PARP inhibitors through the regulation of genes involved in homologous recombination. This map helps navigate patient genomic data and optimize chemotherapeutic regimens by delineating factors involved in the response to specific types of DNA damage. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Quantitative x-ray phase-contrast imaging using a single grating of comparable pitch to sample feature size.

    PubMed

    Morgan, Kaye S; Paganin, David M; Siu, Karen K W

    2011-01-01

    The ability to quantitatively retrieve transverse phase maps during imaging by using coherent x rays often requires a precise grating or analyzer-crystal-based setup. Imaging of live animals presents further challenges when these methods require multiple exposures for image reconstruction. We present a simple method of single-exposure, single-grating quantitative phase contrast for a regime in which the grating period is much greater than the effective pixel size. A grating is used to create a high-visibility reference pattern incident on the sample, which is distorted according to the complex refractive index and thickness of the sample. The resolution, along a line parallel to the grating, is not restricted by the grating spacing, and the detector resolution becomes the primary determinant of the spatial resolution. We present a method of analysis that maps the displacement of interrogation windows in order to retrieve a quantitative phase map. Application of this analysis to the imaging of known phantoms shows excellent correspondence.

  17. Quantitative DNA fiber mapping

    DOEpatents

    Gray, Joe W.; Weier, Heinz-Ulrich G.

    1998-01-01

    The present invention relates generally to the DNA mapping and sequencing technologies. In particular, the present invention provides enhanced methods and compositions for the physical mapping and positional cloning of genomic DNA. The present invention also provides a useful analytical technique to directly map cloned DNA sequences onto individual stretched DNA molecules.

  18. Family members' narratives of lifespace: Mapping changes before and after a brain injury causing driving disruption.

    PubMed

    Liang, Phyllis; Liddle, Jacki; Fleming, Jennifer; Gustafsson, Louise

    2016-06-01

    Family members of a person with an acquired brain injury often provide transport assistance during driving disruption with potential impacts on their own travel and participation within the community. The geographic area in which people travel and conduct their activities is known as lifespace. This study aimed to describe the quantitative changes in family members' lifespace after brain injury and understand their subjective experiences through interacting with maps during narratives. Mapping was embedded within in-depth semi-structured interviews with 15 family members. Two sets of maps were generated per participant showing the number of travel locations before and after brain injury. In the interviews, participants reflected on the perceived meaning of lifespace change. Qualitative data were analysed using a narrative approach. Quantitative data from the mapping revealed an increase in travel locations for nine participants, a decrease for five, and no change for one participant. Data analysis revealed four typologies which complemented and enriched the quantitative data: (i) I will do everything for him or her; (ii) Trying to fit all in; (iii) We spend all our time together now; (iv) I need to also care for myself. The findings describe the change in family members' lifespace after taking on the driver role following acquired brain injury. This study highlights the importance of understanding both quantitative and qualitative aspects of lifespace. The subjective experiences and consequences of lifespace changes are different from the impact on individuals with health conditions. Mapping in an interview as a tool has potential clinical utility. © 2016 Occupational Therapy Australia.

  19. Noninvasive Assessment of Biochemical and Mechanical Properties of Lumbar Discs Through Quantitative Magnetic Resonance Imaging in Asymptomatic Volunteers.

    PubMed

    Foltz, Mary H; Kage, Craig C; Johnson, Casey P; Ellingson, Arin M

    2017-11-01

    Intervertebral disc degeneration is a prevalent phenomenon associated with back pain. It is of critical clinical interest to discriminate disc health and identify early stages of degeneration. Traditional clinical T2-weighted magnetic resonance imaging (MRI), assessed using the Pfirrmann classification system, is subjective and fails to adequately capture initial degenerative changes. Emerging quantitative MRI techniques offer a solution. Specifically, T2* mapping images water mobility in the macromolecular network, and our preliminary ex vivo work shows high predictability of the disc's glycosaminoglycan content (s-GAG) and residual mechanics. The present study expands upon this work to predict the biochemical and biomechanical properties in vivo and assess their relationship with both age and Pfirrmann grade. Eleven asymptomatic subjects (range: 18-62 yrs) were enrolled and imaged using a 3T MRI scanner. T2-weighted images (Pfirrmann grade) and quantitative T2* maps (predict s-GAG and residual stress) were acquired. Surface maps based on the distribution of these properties were generated and integrated to quantify the surface volume. Correlational analyses were conducted to establish the relationship between each metric of disc health derived from the quantitative T2* maps with both age and Pfirrmann grade, where an inverse trend was observed. Furthermore, the nucleus pulposus (NP) signal in conjunction with volumetric surface maps provided the ability to discern differences during initial stages of disc degeneration. This study highlights the ability of T2* mapping to noninvasively assess the s-GAG content, residual stress, and distributions throughout the entire disc, which may provide a powerful diagnostic tool for disc health assessment.

  20. Identification of Novel Associations of Candidate Genes with Resistance to Late Blight in Solanum tuberosum Group Phureja

    PubMed Central

    Álvarez, María F.; Angarita, Myrian; Delgado, María C.; García, Celsa; Jiménez-Gomez, José; Gebhardt, Christiane; Mosquera, Teresa

    2017-01-01

    The genetic basis of quantitative disease resistance has been studied in crops for several decades as an alternative to R gene mediated resistance. The most important disease in the potato crop is late blight, caused by the oomycete Phytophthora infestans. Quantitative disease resistance (QDR), as any other quantitative trait in plants, can be genetically mapped to understand the genetic architecture. Association mapping using DNA-based markers has been implemented in many crops to dissect quantitative traits. We used an association mapping approach with candidate genes to identify the first genes associated with quantitative resistance to late blight in Solanum tuberosum Group Phureja. Twenty-nine candidate genes were selected from a set of genes that were differentially expressed during the resistance response to late blight in tetraploid European potato cultivars. The 29 genes were amplified and sequenced in 104 accessions of S. tuberosum Group Phureja from Latin America. We identified 238 SNPs in the selected genes and tested them for association with resistance to late blight. The phenotypic data were obtained under field conditions by determining the area under disease progress curve (AUDPC) in two seasons and in two locations. Two genes were associated with QDR to late blight, a potato homolog of thylakoid lumen 15 kDa protein (StTL15A) and a stem 28 kDa glycoprotein (StGP28). Key message: A first association mapping experiment was conducted in Solanum tuberosum Group Phureja germplasm, which identified among 29 candidates two genes associated with quantitative resistance to late blight. PMID:28674545

  1. Identification of Novel Associations of Candidate Genes with Resistance to Late Blight in Solanum tuberosum Group Phureja.

    PubMed

    Álvarez, María F; Angarita, Myrian; Delgado, María C; García, Celsa; Jiménez-Gomez, José; Gebhardt, Christiane; Mosquera, Teresa

    2017-01-01

    The genetic basis of quantitative disease resistance has been studied in crops for several decades as an alternative to R gene mediated resistance. The most important disease in the potato crop is late blight, caused by the oomycete Phytophthora infestans. Quantitative disease resistance (QDR), as any other quantitative trait in plants, can be genetically mapped to understand the genetic architecture. Association mapping using DNA-based markers has been implemented in many crops to dissect quantitative traits. We used an association mapping approach with candidate genes to identify the first genes associated with quantitative resistance to late blight in Solanum tuberosum Group Phureja. Twenty-nine candidate genes were selected from a set of genes that were differentially expressed during the resistance response to late blight in tetraploid European potato cultivars. The 29 genes were amplified and sequenced in 104 accessions of S. tuberosum Group Phureja from Latin America. We identified 238 SNPs in the selected genes and tested them for association with resistance to late blight. The phenotypic data were obtained under field conditions by determining the area under disease progress curve (AUDPC) in two seasons and in two locations. Two genes were associated with QDR to late blight, a potato homolog of thylakoid lumen 15 kDa protein ( StTL15A ) and a stem 28 kDa glycoprotein ( StGP28 ). Key message : A first association mapping experiment was conducted in Solanum tuberosum Group Phureja germplasm, which identified among 29 candidates two genes associated with quantitative resistance to late blight.

  2. Mapping quantitative trait loci controlling early growth in a (longleaf pine × slash pine) × slash pine BC1 family

    Treesearch

    C. Weng; Thomas L. Kubisiak; C. Dana Nelson; M. Stine

    2002-01-01

    Random amplified polymorphic DNA (RAPD) markers were employed to map the genome and quantitative trait loci controlling the early growth of a pine hybrid F1 tree (Pinus palustris Mill. × P. elliottii Engl.) and a recurrent slash pine tree (P. ellottii Engl.) in a (longleaf pine × slash pine...

  3. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. I. Timing of vegetative bud flush.

    Treesearch

    K.D. Jermstad; D.L. Bassoni; K.S. Jech; N.C. Wheeler; D.B. Neale

    2001-01-01

    Abstract Thirty three unique quantitative trait loci (QTLs) affecting the timing of spring bud flush have been identified in an intraspecific mapping population of coastal Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii]. Both terminal and lateral bud flush were measured over a 4-year period on clonal replicates at two test sites, allowing for the...

  4. Geoscience data visualization and analysis using GeoMapApp

    NASA Astrophysics Data System (ADS)

    Ferrini, Vicki; Carbotte, Suzanne; Ryan, William; Chan, Samantha

    2013-04-01

    Increased availability of geoscience data resources has resulted in new opportunities for developing visualization and analysis tools that not only promote data integration and synthesis, but also facilitate quantitative cross-disciplinary access to data. Interdisciplinary investigations, in particular, frequently require visualizations and quantitative access to specialized data resources across disciplines, which has historically required specialist knowledge of data formats and software tools. GeoMapApp (www.geomapapp.org) is a free online data visualization and analysis tool that provides direct quantitative access to a wide variety of geoscience data for a broad international interdisciplinary user community. While GeoMapApp provides access to online data resources, it can also be packaged to work offline through the deployment of a small portable hard drive. This mode of operation can be particularly useful during field programs to provide functionality and direct access to data when a network connection is not possible. Hundreds of data sets from a variety of repositories are directly accessible in GeoMapApp, without the need for the user to understand the specifics of file formats or data reduction procedures. Available data include global and regional gridded data, images, as well as tabular and vector datasets. In addition to basic visualization and data discovery functionality, users are provided with simple tools for creating customized maps and visualizations and to quantitatively interrogate data. Specialized data portals with advanced functionality are also provided for power users to further analyze data resources and access underlying component datasets. Users may import and analyze their own geospatial datasets by loading local versions of geospatial data and can access content made available through Web Feature Services (WFS) and Web Map Services (WMS). Once data are loaded in GeoMapApp, a variety options are provided to export data and/or 2D/3D visualizations into common formats including grids, images, text files, spreadsheets, etc. Examples of interdisciplinary investigations that make use of GeoMapApp visualization and analysis functionality will be provided.

  5. Spatial access priority mapping (SAPM) with fishers: a quantitative GIS method for participatory planning.

    PubMed

    Yates, Katherine L; Schoeman, David S

    2013-01-01

    Spatial management tools, such as marine spatial planning and marine protected areas, are playing an increasingly important role in attempts to improve marine management and accommodate conflicting needs. Robust data are needed to inform decisions among different planning options, and early inclusion of stakeholder involvement is widely regarded as vital for success. One of the biggest stakeholder groups, and the most likely to be adversely impacted by spatial restrictions, is the fishing community. In order to take their priorities into account, planners need to understand spatial variation in their perceived value of the sea. Here a readily accessible, novel method for quantitatively mapping fishers' spatial access priorities is presented. Spatial access priority mapping, or SAPM, uses only basic functions of standard spreadsheet and GIS software. Unlike the use of remote-sensing data, SAPM actively engages fishers in participatory mapping, documenting rather than inferring their priorities. By so doing, SAPM also facilitates the gathering of other useful data, such as local ecological knowledge. The method was tested and validated in Northern Ireland, where over 100 fishers participated in a semi-structured questionnaire and mapping exercise. The response rate was excellent, 97%, demonstrating fishers' willingness to be involved. The resultant maps are easily accessible and instantly informative, providing a very clear visual indication of which areas are most important for the fishers. The maps also provide quantitative data, which can be used to analyse the relative impact of different management options on the fishing industry and can be incorporated into planning software, such as MARXAN, to ensure that conservation goals can be met at minimum negative impact to the industry. This research shows how spatial access priority mapping can facilitate the early engagement of fishers and the ready incorporation of their priorities into the decision-making process in a transparent, quantitative way.

  6. Evaluation of prognostic and predictive value of microtubule associated protein tau in two independent cohorts.

    PubMed

    Baquero, Maria T; Lostritto, Karen; Gustavson, Mark D; Bassi, Kimberly A; Appia, Franck; Camp, Robert L; Molinaro, Annette M; Harris, Lyndsay N; Rimm, David L

    2011-11-02

    Microtubule associated proteins (MAPs) endogenously regulate microtubule stabilization and have been reported as prognostic and predictive markers for taxane response. The microtubule stabilizer, MAP-tau, has shown conflicting results. We quantitatively assessed MAP-tau expression in two independent breast cancer cohorts to determine prognostic and predictive value of this biomarker. MAP-tau expression was evaluated in the retrospective Yale University breast cancer cohort (n = 651) using tissue microarrays and also in the TAX 307 cohort, a clinical trial randomized for TAC versus FAC chemotherapy (n = 140), using conventional whole tissue sections. Expression was measured using the AQUA method for quantitative immunofluorescence. Scores were correlated with clinicopathologic variables, survival, and response to therapy. Assessment of the Yale cohort using Cox univariate analysis indicated an improved overall survival (OS) in tumors with a positive correlation between high MAP-tau expression and overall survival (OS) (HR = 0.691, 95% CI = 0.489-0.974; P = 0.004). Kaplan Meier analysis showed 10-year survival for 65% of patients with high MAP-tau expression compared to 52% with low expression (P = .006). In TAX 307, high expression was associated with significantly longer median time to tumor progression (TTP) regardless of treatment arm (33.0 versus 23.4 months, P = 0.010) with mean TTP of 31.2 months. Response rates did not differ by MAP-tau expression (P = 0.518) or by treatment arm (P = 0.584). Quantitative measurement of MAP-tau expression has prognostic value in both cohorts, with high expression associated with longer TTP and OS. Differences by treatment arm or response rate in low versus high MAP-tau groups were not observed, indicating that MAP-tau is not associated with response to taxanes and is not a useful predictive marker for taxane-based chemotherapy.

  7. Imaging Cerebral Microhemorrhages in Military Service Members with Chronic Traumatic Brain Injury

    PubMed Central

    Liu, Wei; Soderlund, Karl; Senseney, Justin S.; Joy, David; Yeh, Ping-Hong; Ollinger, John; Sham, Elyssa B.; Liu, Tian; Wang, Yi; Oakes, Terrence R.; Riedy, Gerard

    2017-01-01

    Purpose To detect cerebral microhemorrhages in military service members with chronic traumatic brain injury by using susceptibility-weighted magnetic resonance (MR) imaging. The longitudinal evolution of microhemorrhages was monitored in a subset of patients by using quantitative susceptibility mapping. Materials and Methods The study was approved by the Walter Reed National Military Medical Center institutional review board and is compliant with HIPAA guidelines. All participants underwent two-dimensional conventional gradient-recalled-echo MR imaging and three-dimensional flow-compensated multi-echo gradient-recalled-echo MR imaging (processed to generate susceptibility-weighted images and quantitative susceptibility maps), and a subset of patients underwent follow-up imaging. Microhemorrhages were identified by two radiologists independently. Comparisons of microhemorrhage number, size, and magnetic susceptibility derived from quantitative susceptibility maps between baseline and follow-up imaging examinations were performed by using the paired t test. Results Among the 603 patients, cerebral microhemorrhages were identified in 43 patients, with six excluded for further analysis owing to artifacts. Seventy-seven percent (451 of 585) of the microhemorrhages on susceptibility-weighted images had a more conspicuous appearance than on gradient-recalled-echo images. Thirteen of the 37 patients underwent follow-up imaging examinations. In these patients, a smaller number of microhemorrhages were identified at follow-up imaging compared with baseline on quantitative susceptibility maps (mean ± standard deviation, 9.8 microhemorrhages ± 12.8 vs 13.7 microhemorrhages ± 16.6; P = .019). Quantitative susceptibility mapping–derived quantitative measures of microhemorrhages also decreased over time: −0.85 mm3 per day ± 1.59 for total volume (P = .039) and −0.10 parts per billion per day ± 0.14 for mean magnetic susceptibility (P = .016). Conclusion The number of microhemorrhages and quantitative susceptibility mapping–derived quantitative measures of microhemorrhages all decreased over time, suggesting that hemosiderin products undergo continued, subtle evolution in the chronic stage. PMID:26371749

  8. The effect of respiratory induced density variations on non-TOF PET quantitation in the lung.

    PubMed

    Holman, Beverley F; Cuplov, Vesna; Hutton, Brian F; Groves, Ashley M; Thielemans, Kris

    2016-04-21

    Accurate PET quantitation requires a matched attenuation map. Obtaining matched CT attenuation maps in the thorax is difficult due to the respiratory cycle which causes both motion and density changes. Unlike with motion, little attention has been given to the effects of density changes in the lung on PET quantitation. This work aims to explore the extent of the errors caused by pulmonary density attenuation map mismatch on dynamic and static parameter estimates. Dynamic XCAT phantoms were utilised using clinically relevant (18)F-FDG and (18)F-FMISO time activity curves for all organs within the thorax to estimate the expected parameter errors. The simulations were then validated with PET data from 5 patients suffering from idiopathic pulmonary fibrosis who underwent PET/Cine-CT. The PET data were reconstructed with three gates obtained from the Cine-CT and the average Cine-CT. The lung TACs clearly displayed differences between true and measured curves with error depending on global activity distribution at the time of measurement. The density errors from using a mismatched attenuation map were found to have a considerable impact on PET quantitative accuracy. Maximum errors due to density mismatch were found to be as high as 25% in the XCAT simulation. Differences in patient derived kinetic parameter estimates and static concentration between the extreme gates were found to be as high as 31% and 14%, respectively. Overall our results show that respiratory associated density errors in the attenuation map affect quantitation throughout the lung, not just regions near boundaries. The extent of this error is dependent on the activity distribution in the thorax and hence on the tracer and time of acquisition. Consequently there may be a significant impact on estimated kinetic parameters throughout the lung.

  9. Quantitative T2 mapping of recurrent glioblastoma under bevacizumab improves monitoring for non-enhancing tumor progression and predicts overall survival

    PubMed Central

    Hattingen, Elke; Jurcoane, Alina; Daneshvar, Keivan; Pilatus, Ulrich; Mittelbronn, Michel; Steinbach, Joachim P.; Bähr, Oliver

    2013-01-01

    Background Anti-angiogenic treatment in recurrent glioblastoma patients suppresses contrast enhancement and reduces vasogenic edema while non-enhancing tumor progression is common. Thus, the importance of T2-weighted imaging is increasing. We therefore quantified T2 relaxation times, which are the basis for the image contrast on T2-weighted images. Methods Conventional and quantitative MRI procedures were performed on 18 patients with recurrent glioblastoma before treatment with bevacizumab and every 8 weeks thereafter until further tumor progression. We segmented the tumor on conventional MRI into 3 subvolumes: enhancing tumor, non-enhancing tumor, and edema. Using coregistered quantitative maps, we followed changes in T2 relaxation time in each subvolume. Moreover, we generated differential T2 maps by a voxelwise subtraction using the first T2 map under bevacizumab as reference. Results Visually segmented areas of tumor and edema did not differ in T2 relaxation times. Non-enhancing tumor volume did not decrease after commencement of bevacizumab treatment but strikingly increased at progression. Differential T2 maps clearly showed non-enhancing tumor progression in previously normal brain. T2 relaxation times decreased under bevacizumab without re-increasing at tumor progression. A decrease of <26 ms in the enhancing tumor following exposure to bevacizumab was associated with longer overall survival. Conclusions Combining quantitative MRI and tumor segmentation improves monitoring of glioblastoma patients under bevacizumab. The degree of change in T2 relaxation time under bevacizumab may be an early response parameter predictive of overall survival. The sustained decrease in T2 relaxation times toward values of healthy tissue masks progressive tumor on conventional T2-weighted images. Therefore, quantitative T2 relaxation times may detect non-enhancing progression better than conventional T2-weighted imaging. PMID:23925453

  10. The effect of respiratory induced density variations on non-TOF PET quantitation in the lung

    NASA Astrophysics Data System (ADS)

    Holman, Beverley F.; Cuplov, Vesna; Hutton, Brian F.; Groves, Ashley M.; Thielemans, Kris

    2016-04-01

    Accurate PET quantitation requires a matched attenuation map. Obtaining matched CT attenuation maps in the thorax is difficult due to the respiratory cycle which causes both motion and density changes. Unlike with motion, little attention has been given to the effects of density changes in the lung on PET quantitation. This work aims to explore the extent of the errors caused by pulmonary density attenuation map mismatch on dynamic and static parameter estimates. Dynamic XCAT phantoms were utilised using clinically relevant 18F-FDG and 18F-FMISO time activity curves for all organs within the thorax to estimate the expected parameter errors. The simulations were then validated with PET data from 5 patients suffering from idiopathic pulmonary fibrosis who underwent PET/Cine-CT. The PET data were reconstructed with three gates obtained from the Cine-CT and the average Cine-CT. The lung TACs clearly displayed differences between true and measured curves with error depending on global activity distribution at the time of measurement. The density errors from using a mismatched attenuation map were found to have a considerable impact on PET quantitative accuracy. Maximum errors due to density mismatch were found to be as high as 25% in the XCAT simulation. Differences in patient derived kinetic parameter estimates and static concentration between the extreme gates were found to be as high as 31% and 14%, respectively. Overall our results show that respiratory associated density errors in the attenuation map affect quantitation throughout the lung, not just regions near boundaries. The extent of this error is dependent on the activity distribution in the thorax and hence on the tracer and time of acquisition. Consequently there may be a significant impact on estimated kinetic parameters throughout the lung.

  11. Cognitive Implications of Deep Gray Matter Iron in Multiple Sclerosis.

    PubMed

    Fujiwara, E; Kmech, J A; Cobzas, D; Sun, H; Seres, P; Blevins, G; Wilman, A H

    2017-05-01

    Deep gray matter iron accumulation is increasingly recognized in association with multiple sclerosis and can be measured in vivo with MR imaging. The cognitive implications of this pathology are not well-understood, especially vis-à-vis deep gray matter atrophy. Our aim was to investigate the relationships between cognition and deep gray matter iron in MS by using 2 MR imaging-based iron-susceptibility measures. Forty patients with multiple sclerosis (relapsing-remitting, n = 16; progressive, n = 24) and 27 healthy controls were imaged at 4.7T by using the transverse relaxation rate and quantitative susceptibility mapping. The transverse relaxation rate and quantitative susceptibility mapping values and volumes (atrophy) of the caudate, putamen, globus pallidus, and thalamus were determined by multiatlas segmentation. Cognition was assessed with the Brief Repeatable Battery of Neuropsychological Tests. Relationships between cognition and deep gray matter iron were examined by hierarchic regressions. Compared with controls, patients showed reduced memory ( P < .001) and processing speed ( P = .02) and smaller putamen ( P < .001), globus pallidus ( P = .002), and thalamic volumes ( P < .001). Quantitative susceptibility mapping values were increased in patients compared with controls in the putamen ( P = .003) and globus pallidus ( P = .003). In patients only, thalamus ( P < .001) and putamen ( P = .04) volumes were related to cognitive performance. After we controlled for volume effects, quantitative susceptibility mapping values in the globus pallidus ( P = .03; trend for transverse relaxation rate, P = .10) were still related to cognition. Quantitative susceptibility mapping was more sensitive compared with the transverse relaxation rate in detecting deep gray matter iron accumulation in the current multiple sclerosis cohort. Atrophy and iron accumulation in deep gray matter both have negative but separable relationships to cognition in multiple sclerosis. © 2017 by American Journal of Neuroradiology.

  12. TheCellMap.org: A Web-Accessible Database for Visualizing and Mining the Global Yeast Genetic Interaction Network

    PubMed Central

    Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L.; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2017-01-01

    Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae. In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. PMID:28325812

  13. TheCellMap.org: A Web-Accessible Database for Visualizing and Mining the Global Yeast Genetic Interaction Network.

    PubMed

    Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2017-05-05

    Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. Copyright © 2017 Usaj et al.

  14. Qualitative and quantitative mass spectrometry imaging of drugs and metabolites in tissue at therapeutic levels.

    PubMed

    Sun, Na; Walch, Axel

    2013-08-01

    Mass spectrometry imaging (MSI) is a rapidly evolving technology that yields qualitative and quantitative distribution maps of small pharmaceutical-active molecules and their metabolites in tissue sections in situ. The simplicity, high sensitivity and ability to provide comprehensive spatial distribution maps of different classes of biomolecules make MSI a valuable tool to complement histopathology for diagnostics and biomarker discovery. In this review, qualitative and quantitative MSI of drugs and metabolites in tissue at therapeutic levels are discussed and the impact of this technique in drug discovery and clinical research is highlighted.

  15. Preliminary Mapping of the Western Corn Rootworm (Diabrotica virgifera virgifera) Genome and Quantitative Trait Locus (QTL) Interval Mapping for Growth

    USDA-ARS?s Scientific Manuscript database

    Preliminary investigations into the organization of the western corn rootworm (Diabrotica virgifera virgifera; WCR) genome have resulted in low to moderate density gender-specific maps constructed from progeny of a backcrossed, short-diapause WCR family. Maps were based upon variation at microsatel...

  16. Imaging Performance of Quantitative Transmission Ultrasound

    PubMed Central

    Lenox, Mark W.; Wiskin, James; Lewis, Matthew A.; Darrouzet, Stephen; Borup, David; Hsieh, Scott

    2015-01-01

    Quantitative Transmission Ultrasound (QTUS) is a tomographic transmission ultrasound modality that is capable of generating 3D speed-of-sound maps of objects in the field of view. It performs this measurement by propagating a plane wave through the medium from a transmitter on one side of a water tank to a high resolution receiver on the opposite side. This information is then used via inverse scattering to compute a speed map. In addition, the presence of reflection transducers allows the creation of a high resolution, spatially compounded reflection map that is natively coregistered to the speed map. A prototype QTUS system was evaluated for measurement and geometric accuracy as well as for the ability to correctly determine speed of sound. PMID:26604918

  17. Lunar terrain mapping and relative-roughness analysis

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.; Mccauley, J. F.; Holm, E. A.

    1971-01-01

    Terrain maps of the equatorial zone were prepared at scales of 1:2,000,000 and 1:1,000,000 to classify lunar terrain with respect to roughness and to provide a basis for selecting sites for Surveyor and Apollo landings, as well as for Ranger and Lunar Orbiter photographs. Lunar terrain was described by qualitative and quantitative methods and divided into four fundamental classes: maria, terrae, craters, and linear features. Some 35 subdivisions were defined and mapped throughout the equatorial zone, and, in addition, most of the map units were illustrated by photographs. The terrain types were analyzed quantitatively to characterize and order their relative roughness characteristics. For some morphologically homogeneous mare areas, relative roughness can be extrapolated to the large scales from measurements at small scales.

  18. Quantitative inference of population response properties across eccentricity from motion-induced maps in macaque V1

    PubMed Central

    Chen, Ming; Wu, Si; Lu, Haidong D.; Roe, Anna W.

    2013-01-01

    Interpreting population responses in the primary visual cortex (V1) remains a challenge especially with the advent of techniques measuring activations of large cortical areas simultaneously with high precision. For successful interpretation, a quantitatively precise model prediction is of great importance. In this study, we investigate how accurate a spatiotemporal filter (STF) model predicts average response profiles to coherently drifting random dot motion obtained by optical imaging of intrinsic signals in V1 of anesthetized macaques. We establish that orientation difference maps, obtained by subtracting orthogonal axis-of-motion, invert with increasing drift speeds, consistent with the motion streak effect. Consistent with perception, the speed at which the map inverts (the critical speed) depends on cortical eccentricity and systematically increases from foveal to parafoveal. We report that critical speeds and response maps to drifting motion are excellently reproduced by the STF model. Our study thus suggests that the STF model is quantitatively accurate enough to be used as a first model of choice for interpreting responses obtained with intrinsic imaging methods in V1. We show further that this good quantitative correspondence opens the possibility to infer otherwise not easily accessible population receptive field properties from responses to complex stimuli, such as drifting random dot motions. PMID:23197457

  19. Toward uniform implementation of parametric map Digital Imaging and Communication in Medicine standard in multisite quantitative diffusion imaging studies.

    PubMed

    Malyarenko, Dariya; Fedorov, Andriy; Bell, Laura; Prah, Melissa; Hectors, Stefanie; Arlinghaus, Lori; Muzi, Mark; Solaiyappan, Meiyappan; Jacobs, Michael; Fung, Maggie; Shukla-Dave, Amita; McManus, Kevin; Boss, Michael; Taouli, Bachir; Yankeelov, Thomas E; Quarles, Christopher Chad; Schmainda, Kathleen; Chenevert, Thomas L; Newitt, David C

    2018-01-01

    This paper reports on results of a multisite collaborative project launched by the MRI subgroup of Quantitative Imaging Network to assess current capability and provide future guidelines for generating a standard parametric diffusion map Digital Imaging and Communication in Medicine (DICOM) in clinical trials that utilize quantitative diffusion-weighted imaging (DWI). Participating sites used a multivendor DWI DICOM dataset of a single phantom to generate parametric maps (PMs) of the apparent diffusion coefficient (ADC) based on two models. The results were evaluated for numerical consistency among models and true phantom ADC values, as well as for consistency of metadata with attributes required by the DICOM standards. This analysis identified missing metadata descriptive of the sources for detected numerical discrepancies among ADC models. Instead of the DICOM PM object, all sites stored ADC maps as DICOM MR objects, generally lacking designated attributes and coded terms for quantitative DWI modeling. Source-image reference, model parameters, ADC units and scale, deemed important for numerical consistency, were either missing or stored using nonstandard conventions. Guided by the identified limitations, the DICOM PM standard has been amended to include coded terms for the relevant diffusion models. Open-source software has been developed to support conversion of site-specific formats into the standard representation.

  20. Relation between thallium-201/iodine 123-BMIPP subtraction and fluorine 18 deoxyglucose polar maps in patients with hypertrophic cardiomyopathy.

    PubMed

    Ito, Y; Hasegawa, S; Yamaguchi, H; Yoshioka, J; Uehara, T; Nishimura, T

    2000-01-01

    Clinical studies have shown discrepancies in the distribution of thallium-201 and iodine 123-beta-methyl-iodophenylpentadecanoic acid (BMIPP) in patients with hypertrophic cardiomyopathy (HCM). Myocardial uptake of fluorine 18 deoxyglucose (FDG) is increased in the hypertrophic area in HCM. We examined whether the distribution of a Tl-201/BMIPP subtraction polar map correlates with that of an FDG polar map. We normalized to maximum count each Tl-201 and BMIPP bull's-eye polar map of 6 volunteers and obtained a standard Tl-201/BMIPP subtraction polar map by subtracting a normalized BMIPP bull's-eye polar map from a normalized Tl-201 bull's-eye polar map. The Tl-201/BMIPP subtraction polar map was then applied to 8 patients with HCM (mean age 65+/-12 years) to evaluate the discrepancy between Tl-201 and BMIPP distribution. We compared the Tl-201/BMIPP subtraction polar map with an FDG polar map. In patients with HCM, the Tl-201/BMIPP subtraction polar map showed a focal uptake pattern in the hypertrophic area similar to that of the FDG polar map. By quantitative analysis, the severity score of the Tl-201/BMIPP subtraction polar map was significantly correlated with the percent dose uptake of the FDG polar map. These results suggest that this new quantitative method may be an alternative to FDG positron emission tomography for the routine evaluation of HCM.

  1. Sample preparation and EFTEM of Meat Samples for Nanoparticle Analysis in Food

    NASA Astrophysics Data System (ADS)

    Lari, L.; Dudkiewicz, A.

    2014-06-01

    Nanoparticles are used in industry for personal care products and the preparation of food. In the latter application, their functions include the prevention of microbes' growth, increase of the foods nutritional value and sensory quality. EU regulations require a risk assessment of the nanoparticles used in foods and food contact materials before the products can reach the market. However, availability of validated analytical methodologies for detection and characterisation of the nanoparticles in food hampers appropriate risk assessment. As part of a research on the evaluation of the methods for screening and quantification of Ag nanoparticles in meat we have tested a new TEM sample preparation alternative to resin embedding and cryo-sectioning. Energy filtered TEM analysis was applied to evaluate thickness and the uniformity of thin meat layers acquired at increasing input of the sample demonstrating that the protocols used ensured good stability under the electron beam, reliable sample concentration and reproducibility.

  2. Accurate calibration for the quantification of the Al content in AlGaN epitaxial layers by energy-dispersive X-ray spectroscopy in a Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Amari, H.; Lari, L.; Zhang, H. Y.; Geelhaar, L.; Chèze, C.; Kappers, M. J.; McAleese, C.; Humphreys, C. J.; Walther, T.

    2011-11-01

    Since the band structure of group III- nitrides presents a direct electronic transition with a band-gap energy covering the range from 3.4 eV for (GaN) to 6.2 eV (for AlN) at room temperature as well as a high thermal conductivity, aluminium gallium nitride (AlGaN) is a strong candidate for high-power and high-temperature electronic devices and short-wavelength (visible and ultraviolet) optoelectronic devices. We report here a study by energy-filtered transmission electron microscopy (EFTEM) and energy-dispersive X-ray spectroscopy (EDXS) of the micro structure and elemental distribution in different aluminium gallium nitride epitaxial layers grown by different research groups. A calibration procedure is out-lined that yields the Al content from EDXS to within ~1 at % precision.

  3. Sustained release of doxorubicin from zeolite-magnetite nanocomposites prepared by mechanical activation.

    PubMed

    Arruebo, Manuel; Fernández-Pacheco, Rodrigo; Irusta, Silvia; Arbiol, Jordi; Ibarra, M Ricardo; Santamaría, Jesús

    2006-08-28

    Nanocomposites consisting of magnetite and FAU zeolite with a high surface area and adsorption capacity have been prepared by mechanical activation using high-energy milling at room temperature. FTIR results, as well as HRTEM, EFTEM, and XPS measurements, show that the resulting magnetic nanoparticles are covered by a thin aluminosilicate coating. A saturation magnetization as high as 16 emu g(-1) and 94.2 Oe of coercivity were observed for the obtained composites. The main advantages of this synthesis procedure are (i) simplicity of the preparation procedure, (ii) prevention of agglomeration of the magnetite nanoparticles to a large extent, and (iii) absence of free magnetite outside the zeolitic matrix. In addition, in vitro experiments revealed that the nanoparticles prepared were able to store and release substantial amounts of doxorubicin. In view of these advantages, these magnetic nanoparticles can be considered as potential candidates for drug-delivery applications.

  4. Sustained release of doxorubicin from zeolite magnetite nanocomposites prepared by mechanical activation

    NASA Astrophysics Data System (ADS)

    Arruebo, Manuel; Fernández-Pacheco, Rodrigo; Irusta, Silvia; Arbiol, Jordi; Ibarra, M. Ricardo; Santamaría, Jesús

    2006-08-01

    Nanocomposites consisting of magnetite and FAU zeolite with a high surface area and adsorption capacity have been prepared by mechanical activation using high-energy milling at room temperature. FTIR results, as well as HRTEM, EFTEM, and XPS measurements, show that the resulting magnetic nanoparticles are covered by a thin aluminosilicate coating. A saturation magnetization as high as 16 emu g-1 and 94.2 Oe of coercivity were observed for the obtained composites. The main advantages of this synthesis procedure are (i) simplicity of the preparation procedure, (ii) prevention of agglomeration of the magnetite nanoparticles to a large extent, and (iii) absence of free magnetite outside the zeolitic matrix. In addition, in vitro experiments revealed that the nanoparticles prepared were able to store and release substantial amounts of doxorubicin. In view of these advantages, these magnetic nanoparticles can be considered as potential candidates for drug-delivery applications.

  5. The application of multiple reaction monitoring and multi-analyte profiling to HDL proteins

    PubMed Central

    2014-01-01

    Background HDL carries a rich protein cargo and examining HDL protein composition promises to improve our understanding of its functions. Conventional mass spectrometry methods can be lengthy and difficult to extend to large populations. In addition, without prior enrichment of the sample, the ability of these methods to detect low abundance proteins is limited. Our objective was to develop a high-throughput approach to examine HDL protein composition applicable to diabetes and cardiovascular disease (CVD). Methods We optimized two multiplexed assays to examine HDL proteins using a quantitative immunoassay (Multi-Analyte Profiling- MAP) and mass spectrometric-based quantitative proteomics (Multiple Reaction Monitoring-MRM). We screened HDL proteins using human xMAP (90 protein panel) and MRM (56 protein panel). We extended the application of these two methods to HDL isolated from a group of participants with diabetes and prior cardiovascular events and a group of non-diabetic controls. Results We were able to quantitate 69 HDL proteins using MAP and 32 proteins using MRM. For several common proteins, the use of MRM and MAP was highly correlated (p < 0.01). Using MAP, several low abundance proteins implicated in atherosclerosis and inflammation were found on HDL. On the other hand, MRM allowed the examination of several HDL proteins not available by MAP. Conclusions MAP and MRM offer a sensitive and high-throughput approach to examine changes in HDL proteins in diabetes and CVD. This approach can be used to measure the presented HDL proteins in large clinical studies. PMID:24397693

  6. Rapid detection methods for viable Mycobacterium avium subspecies paratuberculosis in milk and cheese.

    PubMed

    Botsaris, George; Slana, Iva; Liapi, Maria; Dodd, Christine; Economides, Constantinos; Rees, Catherine; Pavlik, Ivo

    2010-07-31

    Mycobacterium avium subsp. paratuberculosis (MAP) may have a role in the development of Crohn's disease in humans via the consumption of contaminated milk and milk products. Detection of MAP from milk and dairy products has been reported from countries on the European continent, Argentina, the UK and Australia. In this study three different methods (quantitative real time PCR, combined phage IS900 PCR and conventional cultivation) were used to detect the presence of MAP in bulk tank milk (BTM) and cheese originating from sheep, goat and mixed milks from farms and products in Cyprus. During the first survey the presence of MAP was detected in 63 (28.6%) of cows' BTM samples by quantitative real time PCR. A second survey of BTM used a new combined phage IS900 PCR assay, and in this case MAP was detected in 50 (22.2%) samples showing a good level of agreement by both methods. None of the herds tested were known to be affected by Johne's disease and the presence of viable MAP was confirmed by conventional culture in only two cases of cows BTM. This suggests that either rapid method used is more sensitive than the conventional culture when testing raw milk samples for MAP. The two isolates recovered from BTM were identified by IS1311 PCR REA as cattle and sheep strains, respectively. In contrast when cheese samples were tested, MAP DNA was detected by quantitative real time PCR in seven (25.0%) samples (n=28). However no viable MAP was detected when either the combined phage IS900 PCR or conventional culture methods were used. Copyright 2010 Elsevier B.V. All rights reserved.

  7. A tutorial in displaying mass spectrometry-based proteomic data using heat maps.

    PubMed

    Key, Melissa

    2012-01-01

    Data visualization plays a critical role in interpreting experimental results of proteomic experiments. Heat maps are particularly useful for this task, as they allow us to find quantitative patterns across proteins and biological samples simultaneously. The quality of a heat map can be vastly improved by understanding the options available to display and organize the data in the heat map. This tutorial illustrates how to optimize heat maps for proteomics data by incorporating known characteristics of the data into the image. First, the concepts used to guide the creating of heat maps are demonstrated. Then, these concepts are applied to two types of analysis: visualizing spectral features across biological samples, and presenting the results of tests of statistical significance. For all examples we provide details of computer code in the open-source statistical programming language R, which can be used for biologists and clinicians with little statistical background. Heat maps are a useful tool for presenting quantitative proteomic data organized in a matrix format. Understanding and optimizing the parameters used to create the heat map can vastly improve both the appearance and the interoperation of heat map data.

  8. Quantitative Trait Loci Mapping in Brassica rapa Revealed the Structural and Functional Conservation of Genetic Loci Governing Morphological and Yield Component Traits in the A, B, and C Subgenomes of Brassica Species

    PubMed Central

    Li, Xiaonan; Ramchiary, Nirala; Dhandapani, Vignesh; Choi, Su Ryun; Hur, Yoonkang; Nou, Ill-Sup; Yoon, Moo Kyoung; Lim, Yong Pyo

    2013-01-01

    Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. juncea, and Arabidopsis thaliana to identify candidate genes and conserved QTL blocks between them. A total of 95 QTL were identified in different crucifer blocks of the B. rapa genome. Through synteny analysis with A. thaliana, B. rapa candidate genes and intronic and exonic single nucleotide polymorphisms in the parental lines were detected from whole genome resequenced data, a few of which were validated by mapping them to the QTL regions. Semi-quantitative reverse transcriptase PCR analysis showed differences in the expression levels of a few genes in parental lines. Comparative mapping identified five key major evolutionarily conserved crucifer blocks (R, J, F, E, and W) harbouring QTL for morphological and yield components traits between the A, B, and C subgenomes of B. rapa, B. juncea, and B. napus. The information of the identified candidate genes could be used for breeding B. rapa and other related Brassica species. PMID:23223793

  9. Mapping Mixed Methods Research: Methods, Measures, and Meaning

    ERIC Educational Resources Information Center

    Wheeldon, J.

    2010-01-01

    This article explores how concept maps and mind maps can be used as data collection tools in mixed methods research to combine the clarity of quantitative counts with the nuance of qualitative reflections. Based on more traditional mixed methods approaches, this article details how the use of pre/post concept maps can be used to design qualitative…

  10. Comparison and quantitative verification of mapping algorithms for whole genome bisulfite sequencing

    USDA-ARS?s Scientific Manuscript database

    Coupling bisulfite conversion with next-generation sequencing (Bisulfite-seq) enables genome-wide measurement of DNA methylation, but poses unique challenges for mapping. However, despite a proliferation of Bisulfite-seq mapping tools, no systematic comparison of their genomic coverage and quantitat...

  11. 33 CFR 332.3 - General compensatory mitigation requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wetland maps; soil surveys; U.S. Geological Survey topographic and hydrologic maps; aerial photographs... appropriate quantitative assessment tools, where available; (iii) Preservation is determined by the district...

  12. 33 CFR 332.3 - General compensatory mitigation requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wetland maps; soil surveys; U.S. Geological Survey topographic and hydrologic maps; aerial photographs... appropriate quantitative assessment tools, where available; (iii) Preservation is determined by the district...

  13. 33 CFR 332.3 - General compensatory mitigation requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wetland maps; soil surveys; U.S. Geological Survey topographic and hydrologic maps; aerial photographs... appropriate quantitative assessment tools, where available; (iii) Preservation is determined by the district...

  14. 33 CFR 332.3 - General compensatory mitigation requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wetland maps; soil surveys; U.S. Geological Survey topographic and hydrologic maps; aerial photographs... appropriate quantitative assessment tools, where available; (iii) Preservation is determined by the district...

  15. 33 CFR 332.3 - General compensatory mitigation requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wetland maps; soil surveys; U.S. Geological Survey topographic and hydrologic maps; aerial photographs... appropriate quantitative assessment tools, where available; (iii) Preservation is determined by the district...

  16. Analogous on-axis interference topographic phase microscopy (AOITPM).

    PubMed

    Xiu, P; Liu, Q; Zhou, X; Xu, Y; Kuang, C; Liu, X

    2018-05-01

    The refractive index (RI) of a sample as an endogenous contrast agent plays an important role in transparent live cell imaging. In tomographic phase microscopy (TPM), 3D quantitative RI maps can be reconstructed based on the measured projections of the RI in multiple directions. The resolution of the RI maps not only depends on the numerical aperture of the employed objective lens, but also is determined by the accuracy of the quantitative phase of the sample measured at multiple scanning illumination angles. This paper reports an analogous on-axis interference TPM, where the interference angle between the sample and reference beams is kept constant for projections in multiple directions to improve the accuracy of the phase maps and the resolution of RI tomograms. The system has been validated with both silica beads and red blood cells. Compared with conventional TPM, the proposed system acquires quantitative RI maps with higher resolution (420 nm @λ = 633 nm) and signal-to-noise ratio that can be beneficial for live cell imaging in biomedical applications. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  17. A Quantitative Chemotherapy Genetic Interaction Map Reveals Factors Associated with PARP Inhibitor Resistance. | Office of Cancer Genomics

    Cancer.gov

    Chemotherapy is used to treat most cancer patients, yet our understanding of factors that dictate response and resistance to such drugs remains limited. We report the generation of a quantitative chemical-genetic interaction map in human mammary epithelial cells charting the impact of the knockdown of 625 genes related to cancer and DNA repair on sensitivity to 29 drugs, covering all classes of chemotherapy.

  18. A quantitative chemotherapy genetic interaction map reveals new factors associated with PARP inhibitor resistance | Office of Cancer Genomics

    Cancer.gov

    Nearly every cancer patient is treated with chemotherapy yet our understanding of factors that dictate response and resistance to such agents remains limited. We report the generation of a quantitative chemical-genetic interaction map in human mammary epithelial cells that charts the impact of knockdown of 625 cancer and DNA repair related genes on sensitivity to 29 drugs, covering all classes of cancer chemotherapeutics.

  19. Genetic and Quantitative Trait Locus Analysis for Bio-Oil Compounds after Fast Pyrolysis in Maize Cobs.

    PubMed

    Jeffrey, Brandon; Kuzhiyil, Najeeb; de Leon, Natalia; Lübberstedt, Thomas

    2016-01-01

    Fast pyrolysis has been identified as one of the biorenewable conversion platforms that could be a part of an alternative energy future, but it has not yet received the same attention as cellulosic ethanol in the analysis of genetic inheritance within potential feedstocks such as maize. Ten bio-oil compounds were measured via pyrolysis/gas chromatography-mass spectrometry (Py/GC-MS) in maize cobs. 184 recombinant inbred lines (RILs) of the intermated B73 x Mo17 (IBM) Syn4 population were analyzed in two environments, using 1339 markers, for quantitative trait locus (QTL) mapping. QTL mapping was performed using composite interval mapping with significance thresholds established by 1000 permutations at α = 0.05. 50 QTL were found in total across those ten traits with R2 values ranging from 1.7 to 5.8%, indicating a complex quantitative inheritance of these traits.

  20. Application of remote sensing to monitoring and studying dispersion in ocean dumping

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Ohlhorst, C. W.

    1981-01-01

    Remotely sensed wide area synoptic data provides information on ocean dumping that is not readily available by other means. A qualitative approach has been used to map features, such as river plumes. Results of quantitative analyses have been used to develop maps showing quantitative distributions of one or more water quality parameters, such as suspended solids or chlorophyll a. Joint NASA/NOAA experiments have been conducted at designated dump areas in the U.S. coastal zones to determine the applicability of aircraft remote sensing systems to map plumes resulting from ocean dumping of sewage sludge and industrial wastes. A second objective is related to the evaluation of previously developed quantitative analysis techniques for studying dispersion of materials in these plumes. It was found that plumes resulting from dumping of four waste materials have distinctive spectral characteristics. The development of a technology for use in a routine monitoring system, based on remote sensing techniques, is discussed.

  1. Quantitative water content mapping at clinically relevant field strengths: a comparative study at 1.5 T and 3 T.

    PubMed

    Abbas, Zaheer; Gras, Vincent; Möllenhoff, Klaus; Oros-Peusquens, Ana-Maria; Shah, Nadim Joni

    2015-02-01

    Quantitative water content mapping in vivo using MRI is a very valuable technique to detect, monitor and understand diseases of the brain. At 1.5 T, this technology has already been successfully used, but it has only recently been applied at 3T because of significantly increased RF field inhomogeneity at the higher field strength. To validate the technology at 3T, we estimate and compare in vivo quantitative water content maps at 1.5 T and 3T obtained with a protocol proposed recently for 3T MRI. The proposed MRI protocol was applied on twenty healthy subjects at 1.5 T and 3T; the same post-processing algorithms were used to estimate the water content maps. The 1.5 T and 3T maps were subsequently aligned and compared on a voxel-by-voxel basis. Statistical analysis was performed to detect possible differences between the estimated 1.5 T and 3T water maps. Our analysis indicates that the water content values obtained at 1.5 T and 3T did not show significant systematic differences. On average the difference did not exceed the standard deviation of the water content at 1.5 T. Furthermore, the contrast-to-noise ratio (CNR) of the estimated water content map was increased at 3T by a factor of at least 1.5. Vulnerability to RF inhomogeneity increases dramatically with the increasing static magnetic field strength. However, using advanced corrections for the sensitivity profile of the MR coils, it is possible to preserve quantitative accuracy while benefiting from the increased CNR at the higher field strength. Indeed, there was no significant difference in the water content values obtained in the brain at 1.5 T and 3T. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Usability Evaluation of Public Web Mapping Sites

    NASA Astrophysics Data System (ADS)

    Wang, C.

    2014-04-01

    Web mapping sites are interactive maps that are accessed via Webpages. With the rapid development of Internet and Geographic Information System (GIS) field, public web mapping sites are not foreign to people. Nowadays, people use these web mapping sites for various reasons, in that increasing maps and related map services of web mapping sites are freely available for end users. Thus, increased users of web mapping sites led to more usability studies. Usability Engineering (UE), for instance, is an approach for analyzing and improving the usability of websites through examining and evaluating an interface. In this research, UE method was employed to explore usability problems of four public web mapping sites, analyze the problems quantitatively and provide guidelines for future design based on the test results. Firstly, the development progress for usability studies were described, and simultaneously several usability evaluation methods such as Usability Engineering (UE), User-Centered Design (UCD) and Human-Computer Interaction (HCI) were generally introduced. Then the method and procedure of experiments for the usability test were presented in detail. In this usability evaluation experiment, four public web mapping sites (Google Maps, Bing maps, Mapquest, Yahoo Maps) were chosen as the testing websites. And 42 people, who having different GIS skills (test users or experts), gender (male or female), age and nationality, participated in this test to complete the several test tasks in different teams. The test comprised three parts: a pretest background information questionnaire, several test tasks for quantitative statistics and progress analysis, and a posttest questionnaire. The pretest and posttest questionnaires focused on gaining the verbal explanation of their actions qualitatively. And the design for test tasks targeted at gathering quantitative data for the errors and problems of the websites. Then, the results mainly from the test part were analyzed. The success rate from different public web mapping sites was calculated and compared, and displayed by the means of diagram. And the answers from questionnaires were also classified and organized in this part. Moreover, based on the analysis, this paper expands the discussion about the layout, map visualization, map tools, search logic and etc. Finally, this paper closed with some valuable guidelines and suggestions for the design of public web mapping sites. Also, limitations for this research stated in the end.

  3. A Semiparametric Approach for Composite Functional Mapping of Dynamic Quantitative Traits

    PubMed Central

    Yang, Runqing; Gao, Huijiang; Wang, Xin; Zhang, Ji; Zeng, Zhao-Bang; Wu, Rongling

    2007-01-01

    Functional mapping has emerged as a powerful tool for mapping quantitative trait loci (QTL) that control developmental patterns of complex dynamic traits. Original functional mapping has been constructed within the context of simple interval mapping, without consideration of separate multiple linked QTL for a dynamic trait. In this article, we present a statistical framework for mapping QTL that affect dynamic traits by capitalizing on the strengths of functional mapping and composite interval mapping. Within this so-called composite functional-mapping framework, functional mapping models the time-dependent genetic effects of a QTL tested within a marker interval using a biologically meaningful parametric function, whereas composite interval mapping models the time-dependent genetic effects of the markers outside the test interval to control the genome background using a flexible nonparametric approach based on Legendre polynomials. Such a semiparametric framework was formulated by a maximum-likelihood model and implemented with the EM algorithm, allowing for the estimation and the test of the mathematical parameters that define the QTL effects and the regression coefficients of the Legendre polynomials that describe the marker effects. Simulation studies were performed to investigate the statistical behavior of composite functional mapping and compare its advantage in separating multiple linked QTL as compared to functional mapping. We used the new mapping approach to analyze a genetic mapping example in rice, leading to the identification of multiple QTL, some of which are linked on the same chromosome, that control the developmental trajectory of leaf age. PMID:17947431

  4. Energy Filtering Transmission Electron Tomography (EFTET) of Bacteria-Mineral Associations within the Deep sea Hydrothermal Vent Shrimp Rimicaris exoculata.

    NASA Astrophysics Data System (ADS)

    Anderson, L. M.; Halary, S.; Lechaire, J.; Frébourg, G.; Boudier, T.; Zbinden, M.; Laval, J.; Marco, S.; Gaill, F.

    2007-12-01

    The chemical and temperature conditions around deep sea hydrothermal vents are both dynamic and extreme, yet the shrimp Rimicaris exoculata flourishes around these environments on the Mid--Atlantic Ridge (MAR). Epibiotic bacteria and minerals found within the branchial chamber (BC) of the shrimp are of great interest in the search for a chemical model for the Rainbow MAR hydrothermal vent site. Here we examine the close, three-- dimensional (3D) relationship between bacteria (on the inner surface of the BC wall) and the minerals that surround them. The morphology and chemistry of the minerals were analysed by Energy filtering Transmission Electron Microscopy (EFTEM, on a LEO--912 microscope) and X-ray Nano-analysis (EDXN, on a JEOL--2010 FEG microscope) respectively, and the 3D organization was determined by Transmission Electron Tomography (TET) and EFTET. Consecutive thin and semi--thin sections of 50--80nm (for EFTEM and EDXN) and 200--250nm (for TEM and EFTET) were cut through the BC cuticle and mounted on standard microscope grids. Sections were observed initially for morphology, to find broad relationships between bacteria and minerals. EFTET series acquisition was performed under cryo-conditions (-175°C) using a LEO-912 microscope. At each position of interest four tilt series were taken at two degree increments between -55° and +55° at various energy--losses: 1) zero--loss (ref); 2) 720 eV, 3) 690 eV and 4) 670 eV, to reconstruct the 3D location of iron. Tilted series were obtained using the ESIvision program (Soft--Imaging Software, Münster, Germany) with additional in--house scripts for automated acquisition. The 3D EFTET reconstruction volume was produced from the four tilted series using recently developed EFTET--J software (http://www.snv.jussieu.fr/~wboudier/softs.html). In many cases the observed minerals exhibit a sharp boundary against the bacteria, often with a substantial void between bacterial membrane/cell wall and mineral boundary. Mineral layering and zoning are also present. Our findings highlight the potential importance of iron as an energy source for Rimicaris exoculata epibionts at Rainbow, from their close association. The results from this study are contributing to the formulation of a chemical model for the Rainbow hydrothermal vent site (MAR).

  5. Construction of a High-Density Genetic Map from RNA-Seq Data for an Arabidopsis Bay-0 × Shahdara RIL Population

    PubMed Central

    Serin, Elise A. R.; Snoek, L. B.; Nijveen, Harm; Willems, Leo A. J.; Jiménez-Gómez, Jose M.; Hilhorst, Henk W. M.; Ligterink, Wilco

    2017-01-01

    High-density genetic maps are essential for high resolution mapping of quantitative traits. Here, we present a new genetic map for an Arabidopsis Bayreuth × Shahdara recombinant inbred line (RIL) population, built on RNA-seq data. RNA-seq analysis on 160 RILs of this population identified 30,049 single-nucleotide polymorphisms (SNPs) covering the whole genome. Based on a 100-kbp window SNP binning method, 1059 bin-markers were identified, physically anchored on the genome. The total length of the RNA-seq genetic map spans 471.70 centimorgans (cM) with an average marker distance of 0.45 cM and a maximum marker distance of 4.81 cM. This high resolution genotyping revealed new recombination breakpoints in the population. To highlight the advantages of such high-density map, we compared it to two publicly available genetic maps for the same population, comprising 69 PCR-based markers and 497 gene expression markers derived from microarray data, respectively. In this study, we show that SNP markers can effectively be derived from RNA-seq data. The new RNA-seq map closes many existing gaps in marker coverage, saturating the previously available genetic maps. Quantitative trait locus (QTL) analysis for published phenotypes using the available genetic maps showed increased QTL mapping resolution and reduced QTL confidence interval using the RNA-seq map. The new high-density map is a valuable resource that facilitates the identification of candidate genes and map-based cloning approaches. PMID:29259624

  6. Quantitative Chemical-Genetic Interaction Map Connects Gene Alterations to Drug Responses | Office of Cancer Genomics

    Cancer.gov

    In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.

  7. Assessment of water resources potential of Ceará state (Brazil)

    NASA Astrophysics Data System (ADS)

    Araujo, Angelo; Pereira, Diamantino; Pereira, Paulo

    2016-04-01

    A methodological approach and results on water resources assessment in large areas are described with the case study of Ceará State (148,016 km2, northeast Brazil), where the scarceness of water resources is one of the main challenges in territorial planning and development. This work deals with the quantification and the mapping of water resources potential, being part of methodological approaches applied to the quantification of hydric diversity and geodiversity. Water resources potential is here considered as the sum of the hydric elements rainfall, groundwater specific discharge, water reservoirs, and river hierarchy. The assessment was based in a territorial organization by drainage sub-basins and in vector maps generated and treated with GIS software. Rainfall, groundwater specific discharge and hydrographical data were obtained in official institutions and allowed the construction of the annual mean rainfall map for a forty year period (1974-2014), the annual mean groundwater specific discharge map for a thirty-four year period, and the river and drainage basin hierarchy maps. These delivered rainfall, groundwater specific discharge, water reservoirs and river hierarchy partial indices expressed on quantitative maps with normalized values distributed by level 3 drainage basins. The sum of the partial indices originated the quantitative map of water resources potential index and by the Gaussian interpolation of this quantitative data a map of hydric diversity in Ceará state was created. Therefore, the water resources potential index is higher in 4 regions of the state (Noroeste Cearense, Zona Metropolitana de Fortaleza e da Zona Norte, Vale do Jaguaribe and Zonas Centro-sul e Sul Cearense). The index is low or very low in the whole region of Sertões Cearenses, confirming the important role of climatic features in hydrological diversity. Water resources management must consider technical tools for water resources assessment, in the line of other methods for quantitative assessment of natural features either biotic or abiotic. These results quantify water resources and their distribution in a large region with important climatic differences. They constitute a basis for the knowledge of regional issues concerning water needs, flood and droughts events and even engineering solutions for water resources management.

  8. Cerebral metabolic rate of oxygen (CMRO2 ) mapping with hyperventilation challenge using quantitative susceptibility mapping (QSM).

    PubMed

    Zhang, Jingwei; Zhou, Dong; Nguyen, Thanh D; Spincemaille, Pascal; Gupta, Ajay; Wang, Yi

    2017-05-01

    Our objective was to demonstrate the feasibility of using hyperventilation as an efficient vasoconstrictive challenge and prior knowledge as denoising constraints for cerebral metabolic rate of oxygen (CMRO 2 ) mapping based upon quantitative susceptibility mapping (QSM). Three-dimensional (3D) multi-echo gradient echo and arterial spin labeling imaging were performed to calculate QSM and perfusion maps before and after a hyperventilation challenge in 11 healthy subjects. For comparison, this was repeated using a caffeine challenge. Whole-brain CMRO 2 and oxygen extraction fraction (OEF) maps were computed using constrained optimization. Hyperventilation scans were repeated to measure reproducibility. Regional agreement of CMRO 2 and OEF maps was analyzed within the cortical gray matter (CGM) using t-test and Bland-Altman plots. Hyperventilation challenge eliminates the 30-min waiting time needed for caffeine to exert its vasoconstrictive effects. Mean CMRO 2 (in µmol/100g/min) obtained in CGM using the caffeine and repeated hyperventilation scans were 149 ± 16, 153 ± 19, and 150 ± 20, respectively. This corresponded to an OEF of 33.6 ± 3.4%, 32.3 ± 3.2%, and 34.1 ± 3.8% at baseline state and 39.8 ± 4.8%, 43.6 ± 6.2%, and 42.8 ± 6.8% at challenged state, respectively. Hyperventilation scans produced a good agreement of CMRO 2 and OEF values. Hyperventilation is a feasible, reproducible, and efficient vasoconstrictive challenge for QSM-based quantitative CMRO 2 mapping. Magn Reson Med 77:1762-1773, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Influence of neighbourhood information on 'Local Climate Zone' mapping in heterogeneous cities

    NASA Astrophysics Data System (ADS)

    Verdonck, Marie-Leen; Okujeni, Akpona; van der Linden, Sebastian; Demuzere, Matthias; De Wulf, Robert; Van Coillie, Frieke

    2017-10-01

    Local climate zone (LCZ) mapping is an emerging field in urban climate research. LCZs potentially provide an objective framework to assess urban form and function worldwide. The scheme is currently being used to globally map LCZs as a part of the World Urban Database and Access Portal Tools (WUDAPT) initiative. So far, most of the LCZ maps lack proper quantitative assessment, challenging the generic character of the WUDAPT workflow. Using the standard method introduced by the WUDAPT community difficulties arose concerning the built zones due to high levels of heterogeneity. To overcome this problem a contextual classifier is adopted in the mapping process. This paper quantitatively assesses the influence of neighbourhood information on the LCZ mapping result of three cities in Belgium: Antwerp, Brussels and Ghent. Overall accuracies for the maps were respectively 85.7 ± 0.5, 79.6 ± 0.9, 90.2 ± 0.4%. The approach presented here results in overall accuracies of 93.6 ± 0.2, 92.6 ± 0.3 and 95.6 ± 0.3% for Antwerp, Brussels and Ghent. The results thus indicate a positive influence of neighbourhood information for all study areas with an increase in overall accuracies of 7.9, 13.0 and 5.4%. This paper reaches two main conclusions. Firstly, evidence was introduced on the relevance of a quantitative accuracy assessment in LCZ mapping, showing that the accuracies reported in previous papers are not easily achieved. Secondly, the method presented in this paper proves to be highly effective in Belgian cities, and given its open character shows promise for application in other heterogeneous cities worldwide.

  10. Quantitative autoradiographic mapping of focal herpes simplex virus encephalitis using a radiolabeled antiviral drug

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, R.

    1984-12-18

    A method of mapping herpes simplex viral infection comprising administering a radiolabeled antiviral active 5-substituted 1-(2'-deoxy-2'-substituted-D-arabinofuranosyl) pyrimidine nucleoside to the infected subject, and scanning the area in which the infection is to be mapped for the radiolabel.

  11. Quantitative Architectural Analysis: A New Approach to Cortical Mapping

    ERIC Educational Resources Information Center

    Schleicher, Axel; Morosan, Patricia; Amunts, Katrin; Zilles, Karl

    2009-01-01

    Results from functional imaging studies are often still interpreted using the classical architectonic brain maps of Brodmann and his successors. One obvious weakness in traditional, architectural mapping is the subjective nature of localizing borders between cortical areas by means of a purely visual, microscopical examination of histological…

  12. Detection of Mycobacterium avium subsp. paratuberculosis in Drinking Water and Biofilms Using Quantitative PCR

    EPA Science Inventory

    Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne’s disease in domestic animals and has been implicated in Crohn’s disease in humans. Cows infected with Johne’s disease shed large quantities of MAP into soil. Further, MAP has been isolated from surface water, is resi...

  13. A novel approach for monitoring writing interferences during navigated transcranial magnetic stimulation mappings of writing related cortical areas.

    PubMed

    Rogić Vidaković, Maja; Gabelica, Dragan; Vujović, Igor; Šoda, Joško; Batarelo, Nikolina; Džimbeg, Andrija; Zmajević Schönwald, Marina; Rotim, Krešimir; Đogaš, Zoran

    2015-11-30

    It has recently been shown that navigated repetitive transcranial magnetic stimulation (nTMS) is useful in preoperative neurosurgical mapping of motor and language brain areas. In TMS mapping of motor cortices the evoked responses can be quantitatively monitored by electromyographic (EMG) recordings. No such setup exists for monitoring of writing during nTMS mappings of writing related cortical areas. We present a novel approach for monitoring writing during nTMS mappings of motor writing related cortical areas. To our best knowledge, this is the first demonstration of quantitative monitoring of motor evoked responses from hand by EMG, and of pen related activity during writing with our custom made pen, together with the application of chronometric TMS design and patterned protocol of rTMS. The method was applied in four healthy subjects participating in writing during nTMS mapping of the premotor cortical area corresponding to BA 6 and close to the superior frontal sulcus. The results showed that stimulation impaired writing in all subjects. The corresponding spectra of measured signal related to writing movements was observed in the frequency band 0-20 Hz. Magnetic stimulation affected writing by suppressing normal writing frequency band. The proposed setup for monitoring of writing provides additional quantitative data for monitoring and the analysis of rTMS induced writing response modifications. The setup can be useful for investigation of neurophysiologic mechanisms of writing, for therapeutic effects of nTMS, and in preoperative mapping of language cortical areas in patients undergoing brain surgery. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Construction of a high-density linkage map and mapping quantitative trait loci for somatic embryogenesis using leaf petioles as explants in upland cotton (Gossypium hirsutum L.).

    PubMed

    Xu, Zhenzhen; Zhang, Chaojun; Ge, Xiaoyang; Wang, Ni; Zhou, Kehai; Yang, Xiaojie; Wu, Zhixia; Zhang, Xueyan; Liu, Chuanliang; Yang, Zuoren; Li, Changfeng; Liu, Kun; Yang, Zhaoen; Qian, Yuyuan; Li, Fuguang

    2015-07-01

    The first high-density linkage map was constructed to identify quantitative trait loci (QTLs) for somatic embryogenesis (SE) in cotton ( Gossypium hirsutum L.) using leaf petioles as explants. Cotton transformation is highly limited by only a few regenerable genotypes and the lack of understanding of the genetic and molecular basis of somatic embryogenesis (SE) in cotton (Gossypium hirsutum L.). To construct a more saturated linkage map and further identify quantitative trait loci (QTLs) for SE using leaf petioles as explants, a high embryogenesis frequency line (W10) from the commercial Chinese cotton cultivar CRI24 was crossed with TM-1, a genetic standard upland cotton with no embryogenesis frequency. The genetic map spanned 2300.41 cM in genetic distance and contained 411 polymorphic simple sequence repeat (SSR) loci. Of the 411 mapped loci, 25 were developed from unigenes identified for SE in our previous study. Six QTLs for SE were detected by composite interval mapping method, each explaining 6.88-37.07% of the phenotypic variance. Single marker analysis was also performed to verify the reliability of QTLs detection, and the SSR markers NAU3325 and DPL0209 were detected by the two methods. Further studies on the relatively stable and anchoring QTLs/markers for SE in an advanced population of W10 × TM-1 and other cross combinations with different SE abilities may shed light on the genetic and molecular mechanism of SE in cotton.

  15. Evaluation of prognostic and predictive value of microtubule associated protein tau in two independent cohorts

    PubMed Central

    2011-01-01

    Introduction Microtubule associated proteins (MAPs) endogenously regulate microtubule stabilization and have been reported as prognostic and predictive markers for taxane response. The microtubule stabilizer, MAP-tau, has shown conflicting results. We quantitatively assessed MAP-tau expression in two independent breast cancer cohorts to determine prognostic and predictive value of this biomarker. Methods MAP-tau expression was evaluated in the retrospective Yale University breast cancer cohort (n = 651) using tissue microarrays and also in the TAX 307 cohort, a clinical trial randomized for TAC versus FAC chemotherapy (n = 140), using conventional whole tissue sections. Expression was measured using the AQUA method for quantitative immunofluorescence. Scores were correlated with clinicopathologic variables, survival, and response to therapy. Results Assessment of the Yale cohort using Cox univariate analysis indicated an improved overall survival (OS) in tumors with a positive correlation between high MAP-tau expression and overall survival (OS) (HR = 0.691, 95% CI = 0.489-0.974; P = 0.004). Kaplan Meier analysis showed 10-year survival for 65% of patients with high MAP-tau expression compared to 52% with low expression (P = .006). In TAX 307, high expression was associated with significantly longer median time to tumor progression (TTP) regardless of treatment arm (33.0 versus 23.4 months, P = 0.010) with mean TTP of 31.2 months. Response rates did not differ by MAP-tau expression (P = 0.518) or by treatment arm (P = 0.584). Conclusions Quantitative measurement of MAP-tau expression has prognostic value in both cohorts, with high expression associated with longer TTP and OS. Differences by treatment arm or response rate in low versus high MAP-tau groups were not observed, indicating that MAP-tau is not associated with response to taxanes and is not a useful predictive marker for taxane-based chemotherapy. PMID:21888627

  16. High-Density Genetic Linkage Map Construction and Quantitative Trait Locus Mapping for Hawthorn (Crataegus pinnatifida Bunge).

    PubMed

    Zhao, Yuhui; Su, Kai; Wang, Gang; Zhang, Liping; Zhang, Jijun; Li, Junpeng; Guo, Yinshan

    2017-07-14

    Genetic linkage maps are an important tool in genetic and genomic research. In this study, two hawthorn cultivars, Qiujinxing and Damianqiu, and 107 progenies from a cross between them were used for constructing a high-density genetic linkage map using the 2b-restriction site-associated DNA (2b-RAD) sequencing method, as well as for mapping quantitative trait loci (QTL) for flavonoid content. In total, 206,411,693 single-end reads were obtained, with an average sequencing depth of 57× in the parents and 23× in the progeny. After quality trimming, 117,896 high-quality 2b-RAD tags were retained, of which 42,279 were polymorphic; of these, 12,951 markers were used for constructing the genetic linkage map. The map contained 17 linkage groups and 3,894 markers, with a total map length of 1,551.97 cM and an average marker interval of 0.40 cM. QTL mapping identified 21 QTLs associated with flavonoid content in 10 linkage groups, which explained 16.30-59.00% of the variance. This is the first high-density linkage map for hawthorn, which will serve as a basis for fine-scale QTL mapping and marker-assisted selection of important traits in hawthorn germplasm and will facilitate chromosome assignment for hawthorn whole-genome assemblies in the future.

  17. Phased Array Ultrasonic Sound Field Mapping in Cast Austenitic Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.

    2014-05-31

    This study maps the phased array-generated acoustic sound fields through three types of CASS microstructure in four specimens to quantitatively assess the beam formation effectiveness in these materials.

  18. Fine Mapping and Evolution of a QTL Region on Cattle Chromosome 3

    ERIC Educational Resources Information Center

    Donthu, Ravikiran

    2009-01-01

    The goal of my dissertation was to fine map the milk yield and composition quantitative trait loci (QTL) mapped to cattle chromosome 3 (BTA3) by Heyen et al. (1999) and to identify candidate genes affecting these traits. To accomplish this, the region between "BL41" and "TGLA263" was mapped to the cattle genome sequence assembly Btau 3.1 and a…

  19. Quantitative angle-insensitive flow measurement using relative standard deviation OCT.

    PubMed

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-30

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo .

  20. Quantitative angle-insensitive flow measurement using relative standard deviation OCT

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-01

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo.

  1. Taking stock of four decades of quantitative research on stakeholder participation and evaluation use: a systematic map.

    PubMed

    Daigneault, Pierre-Marc

    2014-08-01

    Stakeholder participation and evaluation use have attracted a lot of attention from practitioners, theorists and researchers. A common hypothesis is that participation is positively associated with evaluation use. Whereas the number of empirical studies conducted on this topic is impressive, quantitative research has held a minority position within this scientific production. This study mobilizes systematic review methods to 'map' the empirical literature that has quantitatively studied participation and use. The goal is to take stock and assess the strength of evidence of this literature (but not to synthesize the findings) and, based on this assessment, to provide directions for future research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao

    2003-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  3. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen

    2001-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  4. Quantitative EPMA Compositional Mapping of NWA 2995: Characterization, and Petrologic Interpretation of Mafic Clasts

    NASA Technical Reports Server (NTRS)

    Carpenter, P. K.; Hahn, T. M.; Korotev, R. L.; Ziegler, R. A.; Jolliff, B. L.

    2017-01-01

    We present the first fully quantitative compositional maps of lunar meteorite NWA 2995 using electron microprobe stage mapping, and compare selected clast mineralogy and chemistry. NWA 2995 is a feldspathic fragmental breccia containing numerous highland fine grained lithologies, including anorthosite, norite, olivine basalt, subophitic basalt, gabbro, KREEP-like basalt, granulitic and glassy impact melts, coarse-grained mineral fragments, Fe-Ni metal, and glassy matrix [1]. Chips of NWA 2995, representing these diverse materials, were analyzed by INAA and fused-bead electron-probe microanalysis (EPMA); comparison of analytical data suggests grouping of lunar meteorites NWA 2995, 2996, 3190, 4503, 5151, and 5152. The mean composition of NWA 2995 corresponds to a 2:1 mixture of feldspathic and mare material, with approximately 5% KREEP component [2]. Clast mineral chemistry and petrologic interpretation of paired stone NWA 2996 has been reported by Mercer et al. [3], and Gross et al. [4]. This study combines advances in quantitative EPMA compositional mapping and data analysis, as applied to selected mafic clasts in a polished section of NWA 2995, to investigate the origin of mafic lithic components and to demonstrate a procedural framework for petrologic analysis.

  5. Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses

    PubMed Central

    Zhang, S; Meng, L; Wang, J; Zhang, L

    2017-01-01

    Pure lines derived from multiple parents are becoming more important because of the increased genetic diversity, the possibility to conduct replicated phenotyping trials in multiple environments and potentially high mapping resolution of quantitative trait loci (QTL). In this study, we proposed a new mapping method for QTL detection in pure-line populations derived from four-way crosses, which is able to control the background genetic variation through a two-stage mapping strategy. First, orthogonal variables were created for each marker and used in an inclusive linear model, so as to completely absorb the genetic variation in the mapping population. Second, inclusive composite interval mapping approach was implemented for one-dimensional scanning, during which the inclusive linear model was employed to control the background variation. Simulation studies using different genetic models demonstrated that the new method is efficient when considering high detection power, low false discovery rate and high accuracy in estimating quantitative trait loci locations and effects. For illustration, the proposed method was applied in a reported wheat four-way recombinant inbred line population. PMID:28722705

  6. Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses.

    PubMed

    Zhang, S; Meng, L; Wang, J; Zhang, L

    2017-10-01

    Pure lines derived from multiple parents are becoming more important because of the increased genetic diversity, the possibility to conduct replicated phenotyping trials in multiple environments and potentially high mapping resolution of quantitative trait loci (QTL). In this study, we proposed a new mapping method for QTL detection in pure-line populations derived from four-way crosses, which is able to control the background genetic variation through a two-stage mapping strategy. First, orthogonal variables were created for each marker and used in an inclusive linear model, so as to completely absorb the genetic variation in the mapping population. Second, inclusive composite interval mapping approach was implemented for one-dimensional scanning, during which the inclusive linear model was employed to control the background variation. Simulation studies using different genetic models demonstrated that the new method is efficient when considering high detection power, low false discovery rate and high accuracy in estimating quantitative trait loci locations and effects. For illustration, the proposed method was applied in a reported wheat four-way recombinant inbred line population.

  7. Mapping Quantitative Traits in Unselected Families: Algorithms and Examples

    PubMed Central

    Dupuis, Josée; Shi, Jianxin; Manning, Alisa K.; Benjamin, Emelia J.; Meigs, James B.; Cupples, L. Adrienne; Siegmund, David

    2009-01-01

    Linkage analysis has been widely used to identify from family data genetic variants influencing quantitative traits. Common approaches have both strengths and limitations. Likelihood ratio tests typically computed in variance component analysis can accommodate large families but are highly sensitive to departure from normality assumptions. Regression-based approaches are more robust but their use has primarily been restricted to nuclear families. In this paper, we develop methods for mapping quantitative traits in moderately large pedigrees. Our methods are based on the score statistic which in contrast to the likelihood ratio statistic, can use nonparametric estimators of variability to achieve robustness of the false positive rate against departures from the hypothesized phenotypic model. Because the score statistic is easier to calculate than the likelihood ratio statistic, our basic mapping methods utilize relatively simple computer code that performs statistical analysis on output from any program that computes estimates of identity-by-descent. This simplicity also permits development and evaluation of methods to deal with multivariate and ordinal phenotypes, and with gene-gene and gene-environment interaction. We demonstrate our methods on simulated data and on fasting insulin, a quantitative trait measured in the Framingham Heart Study. PMID:19278016

  8. Nonparametric modeling of longitudinal covariance structure in functional mapping of quantitative trait loci.

    PubMed

    Yap, John Stephen; Fan, Jianqing; Wu, Rongling

    2009-12-01

    Estimation of the covariance structure of longitudinal processes is a fundamental prerequisite for the practical deployment of functional mapping designed to study the genetic regulation and network of quantitative variation in dynamic complex traits. We present a nonparametric approach for estimating the covariance structure of a quantitative trait measured repeatedly at a series of time points. Specifically, we adopt Huang et al.'s (2006, Biometrika 93, 85-98) approach of invoking the modified Cholesky decomposition and converting the problem into modeling a sequence of regressions of responses. A regularized covariance estimator is obtained using a normal penalized likelihood with an L(2) penalty. This approach, embedded within a mixture likelihood framework, leads to enhanced accuracy, precision, and flexibility of functional mapping while preserving its biological relevance. Simulation studies are performed to reveal the statistical properties and advantages of the proposed method. A real example from a mouse genome project is analyzed to illustrate the utilization of the methodology. The new method will provide a useful tool for genome-wide scanning for the existence and distribution of quantitative trait loci underlying a dynamic trait important to agriculture, biology, and health sciences.

  9. A high-resolution genetic map of yellow monkeyflower identifies chemical defense QTLs and recombination rate variation.

    PubMed

    Holeski, Liza M; Monnahan, Patrick; Koseva, Boryana; McCool, Nick; Lindroth, Richard L; Kelly, John K

    2014-03-13

    Genotyping-by-sequencing methods have vastly improved the resolution and accuracy of genetic linkage maps by increasing both the number of marker loci as well as the number of individuals genotyped at these loci. Using restriction-associated DNA sequencing, we construct a dense linkage map for a panel of recombinant inbred lines derived from a cross between divergent ecotypes of Mimulus guttatus. We used this map to estimate recombination rate across the genome and to identify quantitative trait loci for the production of several secondary compounds (PPGs) of the phenylpropanoid pathway implicated in defense against herbivores. Levels of different PPGs are correlated across recombinant inbred lines suggesting joint regulation of the phenylpropanoid pathway. However, the three quantitative trait loci identified in this study each act on a distinct PPG. Finally, we map three putative genomic inversions differentiating the two parental populations, including a previously characterized inversion that contributes to life-history differences between the annual/perennial ecotypes. Copyright © 2014 Holeski et al.

  10. Quality and rigor of the concept mapping methodology: a pooled study analysis.

    PubMed

    Rosas, Scott R; Kane, Mary

    2012-05-01

    The use of concept mapping in research and evaluation has expanded dramatically over the past 20 years. Researchers in academic, organizational, and community-based settings have applied concept mapping successfully without the benefit of systematic analyses across studies to identify the features of a methodologically sound study. Quantitative characteristics and estimates of quality and rigor that may guide for future studies are lacking. To address this gap, we conducted a pooled analysis of 69 concept mapping studies to describe characteristics across study phases, generate specific indicators of validity and reliability, and examine the relationship between select study characteristics and quality indicators. Individual study characteristics and estimates were pooled and quantitatively summarized, describing the distribution, variation and parameters for each. In addition, variation in the concept mapping data collection in relation to characteristics and estimates was examined. Overall, results suggest concept mapping yields strong internal representational validity and very strong sorting and rating reliability estimates. Validity and reliability were consistently high despite variation in participation and task completion percentages across data collection modes. The implications of these findings as a practical reference to assess the quality and rigor for future concept mapping studies are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Genetic linkage map construction and QTL mapping of salt tolerance traits in Zoysiagrass (Zoysia japonica).

    PubMed

    Guo, Hailin; Ding, Wanwen; Chen, Jingbo; Chen, Xuan; Zheng, Yiqi; Wang, Zhiyong; Liu, Jianxiu

    2014-01-01

    Zoysiagrass (Zoysia Willd.) is an important warm season turfgrass that is grown in many parts of the world. Salt tolerance is an important trait in zoysiagrass breeding programs. In this study, a genetic linkage map was constructed using sequence-related amplified polymorphism markers and random amplified polymorphic DNA markers based on an F1 population comprising 120 progeny derived from a cross between Zoysia japonica Z105 (salt-tolerant accession) and Z061 (salt-sensitive accession). The linkage map covered 1211 cM with an average marker distance of 5.0 cM and contained 24 linkage groups with 242 marker loci (217 sequence-related amplified polymorphism markers and 25 random amplified polymorphic DNA markers). Quantitative trait loci affecting the salt tolerance of zoysiagrass were identified using the constructed genetic linkage map. Two significant quantitative trait loci (qLF-1 and qLF-2) for leaf firing percentage were detected; qLF-1 at 36.3 cM on linkage group LG4 with a logarithm of odds value of 3.27, which explained 13.1% of the total variation of leaf firing and qLF-2 at 42.3 cM on LG5 with a logarithm of odds value of 2.88, which explained 29.7% of the total variation of leaf firing. A significant quantitative trait locus (qSCW-1) for reduced percentage of dry shoot clipping weight was detected at 44.1 cM on LG5 with a logarithm of odds value of 4.0, which explained 65.6% of the total variation. This study provides important information for further functional analysis of salt-tolerance genes in zoysiagrass. Molecular markers linked with quantitative trait loci for salt tolerance will be useful in zoysiagrass breeding programs using marker-assisted selection.

  12. Quantitative analysis of rib movement based on dynamic chest bone images: preliminary results

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Sanada, S.; Oda, M.; Mitsutaka, M.; Suzuki, K.; Sakuta, K.; Kawashima, H.

    2014-03-01

    Rib movement during respiration is one of the diagnostic criteria in pulmonary impairments. In general, the rib movement is assessed in fluoroscopy. However, the shadows of lung vessels and bronchi overlapping ribs prevent accurate quantitative analysis of rib movement. Recently, an image-processing technique for separating bones from soft tissue in static chest radiographs, called "bone suppression technique", has been developed. Our purpose in this study was to evaluate the usefulness of dynamic bone images created by the bone suppression technique in quantitative analysis of rib movement. Dynamic chest radiographs of 10 patients were obtained using a dynamic flat-panel detector (FPD). Bone suppression technique based on a massive-training artificial neural network (MTANN) was applied to the dynamic chest images to create bone images. Velocity vectors were measured in local areas on the dynamic bone images, which formed a map. The velocity maps obtained with bone and original images for scoliosis and normal cases were compared to assess the advantages of bone images. With dynamic bone images, we were able to quantify and distinguish movements of ribs from those of other lung structures accurately. Limited rib movements of scoliosis patients appeared as reduced rib velocity vectors. Vector maps in all normal cases exhibited left-right symmetric distributions, whereas those in abnormal cases showed nonuniform distributions. In conclusion, dynamic bone images were useful for accurate quantitative analysis of rib movements: Limited rib movements were indicated as a reduction of rib movement and left-right asymmetric distribution on vector maps. Thus, dynamic bone images can be a new diagnostic tool for quantitative analysis of rib movements without additional radiation dose.

  13. Epitope mapping and targeted quantitation of the cardiac biomarker troponin by SID-MRM mass spectrometry.

    PubMed

    Zhao, Cheng; Trudeau, Beth; Xie, Helen; Prostko, John; Fishpaugh, Jeffrey; Ramsay, Carol

    2014-06-01

    The absolute quantitation of the targeted protein using MS provides a promising method to evaluate/verify biomarkers used in clinical diagnostics. In this study, a cardiac biomarker, troponin I (TnI), was used as a model protein for method development. The epitope peptide of TnI was characterized by epitope excision followed with LC/MS/MS method and acted as the surrogate peptide for the targeted protein quantitation. The MRM-based MS assay using a stable internal standard that improved the selectivity, specificity, and sensitivity of the protein quantitation. Also, plasma albumin depletion and affinity enrichment of TnI by anti-TnI mAb-coated microparticles reduced the sample complexity, enhanced the dynamic range, and further improved the detecting sensitivity of the targeted protein in the biological matrix. Therefore, quantitation of TnI, a low abundant protein in human plasma, has demonstrated the applicability of the targeted protein quantitation strategy through its epitope peptide determined by epitope mapping method. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Maximum entropy estimation of a Benzene contaminated plume using ecotoxicological assays.

    PubMed

    Wahyudi, Agung; Bartzke, Mariana; Küster, Eberhard; Bogaert, Patrick

    2013-01-01

    Ecotoxicological bioassays, e.g. based on Danio rerio teratogenicity (DarT) or the acute luminescence inhibition with Vibrio fischeri, could potentially lead to significant benefits for detecting on site contaminations on qualitative or semi-quantitative bases. The aim was to use the observed effects of two ecotoxicological assays for estimating the extent of a Benzene groundwater contamination plume. We used a Maximum Entropy (MaxEnt) method to rebuild a bivariate probability table that links the observed toxicity from the bioassays with Benzene concentrations. Compared with direct mapping of the contamination plume as obtained from groundwater samples, the MaxEnt concentration map exhibits on average slightly higher concentrations though the global pattern is close to it. This suggest MaxEnt is a valuable method to build a relationship between quantitative data, e.g. contaminant concentrations, and more qualitative or indirect measurements, in a spatial mapping framework, which is especially useful when clear quantitative relation is not at hand. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. New Tool Quantitatively Maps Minority-Carrier Lifetime of Multicrystalline Silicon Bricks (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-11-01

    NREL's new imaging tool could provide manufacturers with insight on their processes. Scientists at the National Renewable Energy Laboratory (NREL) have used capabilities within the Process Development and Integration Laboratory (PDIL) to generate quantitative minority-carrier lifetime maps of multicrystalline silicon (mc-Si) bricks. This feat has been accomplished by using the PDIL's photoluminescence (PL) imaging system in conjunction with transient lifetime measurements obtained using a custom NREL-designed resonance-coupled photoconductive decay (RCPCD) system. PL imaging can obtain rapid high-resolution images that provide a qualitative assessment of the material lifetime-with the lifetime proportional to the pixel intensity. In contrast, the RCPCD technique providesmore » a fast quantitative measure of the lifetime with a lower resolution and penetrates millimeters into the mc-Si brick, providing information on bulk lifetimes and material quality. This technique contrasts with commercially available minority-carrier lifetime mapping systems that use microwave conductivity measurements. Such measurements are dominated by surface recombination and lack information on the material quality within the bulk of the brick. By combining these two complementary techniques, we obtain high-resolution lifetime maps at very fast data acquisition times-attributes necessary for a production-based diagnostic tool. These bulk lifetime measurements provide manufacturers with invaluable feedback on their silicon ingot casting processes. NREL has been applying the PL images of lifetime in mc-Si bricks in collaboration with a U.S. photovoltaic industry partner through Recovery Act Funded Project ARRA T24. NREL developed a new tool to quantitatively map minority-carrier lifetime of multicrystalline silicon bricks by using photoluminescence imaging in conjunction with resonance-coupled photoconductive decay measurements. Researchers are not hindered by surface recombination and can look deeper into the material to map bulk lifetimes. The tool is being applied to silicon bricks in a project collaborating with a U.S. photovoltaic industry partner. Photovoltaic manufacturers can use the NREL tool to obtain valuable feedback on their silicon ingot casting processes.« less

  16. Optical Ptychographic Microscope for Quantitative Bio-Mechanical Imaging

    NASA Astrophysics Data System (ADS)

    Anthony, Nicholas; Cadenazzi, Guido; Nugent, Keith; Abbey, Brian

    The role that mechanical forces play in biological processes such as cell movement and death is becoming of significant interest to further develop our understanding of the inner workings of cells. The most common method used to obtain stress information is photoelasticity which maps a samples birefringence, or its direction dependent refractive indices, using polarized light. However this method only provides qualitative data and for stress information to be useful quantitative data is required. Ptychography is a method for quantitatively determining the phase of a samples complex transmission function. The technique relies upon the collection of multiple overlapping coherent diffraction patterns from laterally displaced points on the sample. The overlap of measurement points provides complementary information that significantly aids in the reconstruction of the complex wavefield exiting the sample and allows for quantitative imaging of weakly interacting specimens. Here we describe recent advances at La Trobe University Melbourne on achieving quantitative birefringence mapping using polarized light ptychography with applications in cell mechanics. Australian Synchrotron, ARC Centre of Excellence for Advanced Molecular Imaging.

  17. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches.

    PubMed

    Oster, Ryan J; Wijesinghe, Rasanthi U; Haack, Sheridan K; Fogarty, Lisa R; Tucker, Taaja R; Riley, Stephen C

    2014-12-16

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10 E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management.

  18. Metabolic Mapping: Quantitative Enzyme Cytochemistry and Histochemistry to Determine the Activity of Dehydrogenases in Cells and Tissues.

    PubMed

    Molenaar, Remco J; Khurshed, Mohammed; Hira, Vashendriya V V; Van Noorden, Cornelis J F

    2018-05-26

    Altered cellular metabolism is a hallmark of many diseases, including cancer, cardiovascular diseases and infection. The metabolic motor units of cells are enzymes and their activity is heavily regulated at many levels, including the transcriptional, mRNA stability, translational, post-translational and functional level. This complex regulation means that conventional quantitative or imaging assays, such as quantitative mRNA experiments, Western Blots and immunohistochemistry, yield incomplete information regarding the ultimate activity of enzymes, their function and/or their subcellular localization. Quantitative enzyme cytochemistry and histochemistry (i.e., metabolic mapping) show in-depth information on in situ enzymatic activity and its kinetics, function and subcellular localization in an almost true-to-nature situation. We describe a protocol to detect the activity of dehydrogenases, which are enzymes that perform redox reactions to reduce cofactors such as NAD(P) + and FAD. Cells and tissue sections are incubated in a medium that is specific for the enzymatic activity of one dehydrogenase. Subsequently, the dehydrogenase that is the subject of investigation performs its enzymatic activity in its subcellular site. In a chemical reaction with the reaction medium, this ultimately generates blue-colored formazan at the site of the dehydrogenase's activity. The formazan's absorbance is therefore a direct measure of the dehydrogenase's activity and can be quantified using monochromatic light microscopy and image analysis. The quantitative aspect of this protocol enables researchers to draw statistical conclusions from these assays. Besides observational studies, this technique can be used for inhibition studies of specific enzymes. In this context, studies benefit from the true-to-nature advantages of metabolic mapping, giving in situ results that may be physiologically more relevant than in vitro enzyme inhibition studies. In all, metabolic mapping is an indispensable technique to study metabolism at the cellular or tissue level. The technique is easy to adopt, provides in-depth, comprehensive and integrated metabolic information and enables rapid quantitative analysis.

  19. T2* Mapping Provides Information That Is Statistically Comparable to an Arthroscopic Evaluation of Acetabular Cartilage.

    PubMed

    Morgan, Patrick; Nissi, Mikko J; Hughes, John; Mortazavi, Shabnam; Ellerman, Jutta

    2017-07-01

    Objectives The purpose of this study was to validate T2* mapping as an objective, noninvasive method for the prediction of acetabular cartilage damage. Methods This is the second step in the validation of T2*. In a previous study, we established a quantitative predictive model for identifying and grading acetabular cartilage damage. In this study, the model was applied to a second cohort of 27 consecutive hips to validate the model. A clinical 3.0-T imaging protocol with T2* mapping was used. Acetabular regions of interest (ROI) were identified on magnetic resonance and graded using the previously established model. Each ROI was then graded in a blinded fashion by arthroscopy. Accurate surgical location of ROIs was facilitated with a 2-dimensional map projection of the acetabulum. A total of 459 ROIs were studied. Results When T2* mapping and arthroscopic assessment were compared, 82% of ROIs were within 1 Beck group (of a total 6 possible) and 32% of ROIs were classified identically. Disease prediction based on receiver operating characteristic curve analysis demonstrated a sensitivity of 0.713 and a specificity of 0.804. Model stability evaluation required no significant changes to the predictive model produced in the initial study. Conclusions These results validate that T2* mapping provides statistically comparable information regarding acetabular cartilage when compared to arthroscopy. In contrast to arthroscopy, T2* mapping is quantitative, noninvasive, and can be used in follow-up. Unlike research quantitative magnetic resonance protocols, T2* takes little time and does not require a contrast agent. This may facilitate its use in the clinical sphere.

  20. Quantitative workflow based on NN for weighting criteria in landfill suitability mapping

    NASA Astrophysics Data System (ADS)

    Abujayyab, Sohaib K. M.; Ahamad, Mohd Sanusi S.; Yahya, Ahmad Shukri; Ahmad, Siti Zubaidah; Alkhasawneh, Mutasem Sh.; Aziz, Hamidi Abdul

    2017-10-01

    Our study aims to introduce a new quantitative workflow that integrates neural networks (NNs) and multi criteria decision analysis (MCDA). Existing MCDA workflows reveal a number of drawbacks, because of the reliance on human knowledge in the weighting stage. Thus, new workflow presented to form suitability maps at the regional scale for solid waste planning based on NNs. A feed-forward neural network employed in the workflow. A total of 34 criteria were pre-processed to establish the input dataset for NN modelling. The final learned network used to acquire the weights of the criteria. Accuracies of 95.2% and 93.2% achieved for the training dataset and testing dataset, respectively. The workflow was found to be capable of reducing human interference to generate highly reliable maps. The proposed workflow reveals the applicability of NN in generating landfill suitability maps and the feasibility of integrating them with existing MCDA workflows.

  1. The Dokuchaev hypothesis as a basis for predictive digital soil mapping (on the 125th anniversary of its publication)

    NASA Astrophysics Data System (ADS)

    Florinsky, I. V.

    2012-04-01

    Predictive digital soil mapping is widely used in soil science. Its objective is the prediction of the spatial distribution of soil taxonomic units and quantitative soil properties via the analysis of spatially distributed quantitative characteristics of soil-forming factors. Western pedometrists stress the scientific priority and principal importance of Hans Jenny's book (1941) for the emergence and development of predictive soil mapping. In this paper, we demonstrate that Vasily Dokuchaev explicitly defined the central idea and statement of the problem of contemporary predictive soil mapping in the year 1886. Then, we reconstruct the history of the soil formation equation from 1899 to 1941. We argue that Jenny adopted the soil formation equation from Sergey Zakharov, who published it in a well-known fundamental textbook in 1927. It is encouraging that this issue was clarified in 2011, the anniversary year for publications of Dokuchaev and Jenny.

  2. Construction of a high-density genetic map using specific length amplified fragment markers and identification of a quantitative trait locus for anthracnose resistance in walnut (Juglans regia L.).

    PubMed

    Zhu, Yufeng; Yin, Yanfei; Yang, Keqiang; Li, Jihong; Sang, Yalin; Huang, Long; Fan, Shu

    2015-08-18

    Walnut (Juglans regia, 2n = 32, approximately 606 Mb per 1C genome) is an economically important tree crop. Resistance to anthracnose, caused by Colletotrichum gloeosporioides, is a major objective of walnut genetic improvement in China. The recently developed specific length amplified fragment sequencing (SLAF-seq) is an efficient strategy that can obtain large numbers of markers with sufficient sequence information to construct high-density genetic maps and permits detection of quantitative trait loci (QTLs) for molecular breeding. SLAF-seq generated 161.64 M paired-end reads. 153,820 SLAF markers were obtained, of which 49,174 were polymorphic. 13,635 polymorphic markers were sorted into five segregation types and 2,577 markers of them were used to construct genetic linkage maps: 2,395 of these fell into 16 linkage groups (LGs) for the female map, 448 markers for the male map, and 2,577 markers for the integrated map. Taking into account the size of all LGs, the marker coverage was 2,664.36 cM for the female map, 1,305.58 cM for the male map, and 2,457.82 cM for the integrated map. The average intervals between two adjacent mapped markers were 1.11 cM, 2.91 cM and 0.95 cM for three maps, respectively. 'SNP_only' markers accounted for 89.25% of the markers on the integrated map. Mapping markers contained 5,043 single nucleotide polymorphisms (SNPs) loci, which corresponded to two SNP loci per SLAF marker. According to the integrated map, we used interval mapping (Logarithm of odds, LOD > 3.0) to detect our quantitative trait. One QTL was detected for anthracnose resistance. The interval of this QTL ranged from 165.51 cM to 176.33 cM on LG14, and ten markers in this interval that were above the threshold value were considered to be linked markers to the anthracnose resistance trait. The phenotypic variance explained by each marker ranged from 16.2 to 19.9%, and their LOD scores varied from 3.22 to 4.04. High-density genetic maps for walnut containing 16 LGs were constructed using the SLAF-seq method with an F1 population. One QTL for walnut anthracnose resistance was identified based on the map. The results will aid molecular marker-assisted breeding and walnut resistance genes identification.

  3. Integrated Environmental Modeling: Quantitative Microbial Risk Assessment

    EPA Science Inventory

    The presentation discusses the need for microbial assessments and presents a road map associated with quantitative microbial risk assessments, through an integrated environmental modeling approach. A brief introduction and the strengths of the current knowledge are illustrated. W...

  4. A multiplexed system for quantitative comparisons of chromatin landscapes

    PubMed Central

    van Galen, Peter; Viny, Aaron D.; Ram, Oren; Ryan, Russell J.H.; Cotton, Matthew J.; Donohue, Laura; Sievers, Cem; Drier, Yotam; Liau, Brian B.; Gillespie, Shawn M.; Carroll, Kaitlin M.; Cross, Michael B.; Levine, Ross L.; Bernstein, Bradley E.

    2015-01-01

    Genome-wide profiling of histone modifications can provide systematic insight into the regulatory elements and programs engaged in a given cell type. However, conventional chromatin immunoprecipitation and sequencing (ChIP-seq) does not capture quantitative information on histone modification levels, requires large amounts of starting material, and involves tedious processing of each individual sample. Here we address these limitations with a technology that leverages DNA barcoding to profile chromatin quantitatively and in multiplexed format. We concurrently map relative levels of multiple histone modifications across multiple samples, each comprising as few as a thousand cells. We demonstrate the technology by monitoring dynamic changes following inhibition of P300, EZH2 or KDM5, by linking altered epigenetic landscapes to chromatin regulator mutations, and by mapping active and repressive marks in purified human hematopoietic stem cells. Hence, this technology enables quantitative studies of chromatin state dynamics across rare cell types, genotypes, environmental conditions and drug treatments. PMID:26687680

  5. Genetic interactions contribute less than additive effects to quantitative trait variation in yeast

    PubMed Central

    Bloom, Joshua S.; Kotenko, Iulia; Sadhu, Meru J.; Treusch, Sebastian; Albert, Frank W.; Kruglyak, Leonid

    2015-01-01

    Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute additively to trait variation. Genetic interactions are often proposed as a contributing factor to trait variation, but the relative contribution of interactions to trait variation is a subject of debate. Here we use a very large cross between two yeast strains to accurately estimate the fraction of phenotypic variance due to pairwise QTL–QTL interactions for 20 quantitative traits. We find that this fraction is 9% on average, substantially less than the contribution of additive QTL (43%). Statistically significant QTL–QTL pairs typically have small individual effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that pairwise interaction variance is largely explained by pairs of loci at least one of which has a significant additive effect. These results refine our understanding of the genetic architecture of quantitative traits and help guide future mapping studies. PMID:26537231

  6. Genome-wide association mapping of crown rust resistance in oat elite germplasm

    USDA-ARS?s Scientific Manuscript database

    Oat crown rust, caused by Puccinia coronata f. sp. avenae, is a major constraint to oat production in many parts of the world. In this first comprehensive multi-environment genome-wide association map of oat crown rust, we used 2,972 SNPs genotyped on 631 oat lines for association mapping of quantit...

  7. Experiential and Outdoor Education: The Participant Experience Shared through Mind Maps

    ERIC Educational Resources Information Center

    Jirásek, Ivo; Plevová, Irena; Jirásková, Miroslava; Dvorácková, Adéla

    2016-01-01

    This paper describes an analysis of mind maps capturing the experiences of the participants in an experiential and outdoor education course. The method of mind mapping is usually limited to a quantitative scoring analysis and comparative content analysis of concepts. As a consequence, the visual elements of the information are usually ignored, but…

  8. Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data.

    PubMed

    Li, Zitong; Sillanpää, Mikko J

    2015-12-01

    Advanced platforms have recently become available for automatic and systematic quantification of plant growth and development. These new techniques can efficiently produce multiple measurements of phenotypes over time, and introduce time as an extra dimension to quantitative trait locus (QTL) studies. Functional mapping utilizes a class of statistical models for identifying QTLs associated with the growth characteristics of interest. A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection. We review the current development of computationally efficient functional mapping methods which provide invaluable tools for analyzing large-scale timecourse data that are readily available in our post-genome era. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sparsity-constrained PET image reconstruction with learned dictionaries

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie

    2016-09-01

    PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.

  10. Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy.

    PubMed

    Doblas, Ana; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Saavedra, Genaro; Garcia-Sucerquia, Jorge

    2014-04-01

    The advantages of using a telecentric imaging system in digital holographic microscopy (DHM) to study biological specimens are highlighted. To this end, the performances of nontelecentric DHM and telecentric DHM are evaluated from the quantitative phase imaging (QPI) point of view. The evaluated stability of the microscope allows single-shot QPI in DHM by using telecentric imaging systems. Quantitative phase maps of a section of the head of the drosophila melanogaster fly and of red blood cells are obtained via single-shot DHM with no numerical postprocessing. With these maps we show that the use of telecentric DHM provides larger field of view for a given magnification and permits more accurate QPI measurements with less number of computational operations.

  11. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir

    Treesearch

    Nicholas C. Wheeler; Kathleen D. Jermstad; Konstantin V. Krutovsky; Sally N. Aitken; Glenn T. Howe; Jodie Krakowski; David B. Neale

    2005-01-01

    Quantitative trait locus (QTL) analyses are used by geneticists to characterize the genetic architecture of quantitative traits, provide a foundation for marker-aided-selection (MAS), and provide a framework for positional selection of candidate genes. The most useful QTL for breeding applications are those that have been verified in time, space, and/or genetic...

  12. A comparative study of qualitative and quantitative methods for the assessment of adhesive remnant after bracket debonding.

    PubMed

    Cehreli, S Burcak; Polat-Ozsoy, Omur; Sar, Cagla; Cubukcu, H Evren; Cehreli, Zafer C

    2012-04-01

    The amount of the residual adhesive after bracket debonding is frequently assessed in a qualitative manner, utilizing the adhesive remnant index (ARI). This study aimed to investigate whether quantitative assessment of the adhesive remnant yields more precise results compared to qualitative methods utilizing the 4- and 5-point ARI scales. Twenty debonded brackets were selected. Evaluation and scoring of the adhesive remnant on bracket bases were made consecutively using: 1. qualitative assessment (visual scoring) and 2. quantitative measurement (image analysis) on digital photographs. Image analysis was made on scanning electron micrographs (SEM) and high-precision elemental maps of the adhesive remnant as determined by energy dispersed X-ray spectrometry. Evaluations were made in accordance with the original 4-point and the modified 5-point ARI scales. Intra-class correlation coefficients (ICCs) were calculated, and the data were evaluated using Friedman test followed by Wilcoxon signed ranks test with Bonferroni correction. ICC statistics indicated high levels of agreement for qualitative visual scoring among examiners. The 4-point ARI scale was compliant with the SEM assessments but indicated significantly less adhesive remnant compared to the results of quantitative elemental mapping. When the 5-point scale was used, both quantitative techniques yielded similar results with those obtained qualitatively. These results indicate that qualitative visual scoring using the ARI is capable of generating similar results with those assessed by quantitative image analysis techniques. In particular, visual scoring with the 5-point ARI scale can yield similar results with both the SEM analysis and elemental mapping.

  13. Proteomic analysis of cellular soluble proteins from human bronchial smooth muscle cells by combining nondenaturing micro 2DE and quantitative LC-MS/MS. 2. Similarity search between protein maps for the analysis of protein complexes.

    PubMed

    Jin, Ya; Yuan, Qi; Zhang, Jun; Manabe, Takashi; Tan, Wen

    2015-09-01

    Human bronchial smooth muscle cell soluble proteins were analyzed by a combined method of nondenaturing micro 2DE, grid gel-cutting, and quantitative LC-MS/MS and a native protein map was prepared for each of the identified 4323 proteins [1]. A method to evaluate the degree of similarity between the protein maps was developed since we expected the proteins comprising a protein complex would be separated together under nondenaturing conditions. The following procedure was employed using Excel macros; (i) maps that have three or more squares with protein quantity data were selected (2328 maps), (ii) within each map, the quantity values of the squares were normalized setting the highest value to be 1.0, (iii) in comparing a map with another map, the smaller normalized quantity in two corresponding squares was taken and summed throughout the map to give an "overlap score," (iv) each map was compared against all the 2328 maps and the largest overlap score, obtained when a map was compared with itself, was set to be 1.0 thus providing 2328 "overlap factors," (v) step (iv) was repeated for all maps providing 2328 × 2328 matrix of overlap factors. From the matrix, protein pairs that showed overlap factors above 0.65 from both protein sides were selected (431 protein pairs). Each protein pair was searched in a database (UniProtKB) on complex formation and 301 protein pairs, which comprise 35 protein complexes, were found to be documented. These results demonstrated that native protein maps and their similarity search would enable simultaneous analysis of multiple protein complexes in cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The first genetic map of the American cranberry: exploration of synteny conservation and quantitative trait loci.

    PubMed

    Georgi, Laura; Johnson-Cicalese, Jennifer; Honig, Josh; Das, Sushma Parankush; Rajah, Veeran D; Bhattacharya, Debashish; Bassil, Nahla; Rowland, Lisa J; Polashock, James; Vorsa, Nicholi

    2013-03-01

    The first genetic map of cranberry (Vaccinium macrocarpon) has been constructed, comprising 14 linkage groups totaling 879.9 cM with an estimated coverage of 82.2 %. This map, based on four mapping populations segregating for field fruit-rot resistance, contains 136 distinct loci. Mapped markers include blueberry-derived simple sequence repeat (SSR) and cranberry-derived sequence-characterized amplified region markers previously used for fingerprinting cranberry cultivars. In addition, SSR markers were developed near cranberry sequences resembling genes involved in flavonoid biosynthesis or defense against necrotrophic pathogens, or conserved orthologous set (COS) sequences. The cranberry SSRs were developed from next-generation cranberry genomic sequence assemblies; thus, the positions of these SSRs on the genomic map provide information about the genomic location of the sequence scaffold from which they were derived. The use of SSR markers near COS and other functional sequences, plus 33 SSR markers from blueberry, facilitates comparisons of this map with maps of other plant species. Regions of the cranberry map were identified that showed conservation of synteny with Vitis vinifera and Arabidopsis thaliana. Positioned on this map are quantitative trait loci (QTL) for field fruit-rot resistance (FFRR), fruit weight, titratable acidity, and sound fruit yield (SFY). The SFY QTL is adjacent to one of the fruit weight QTL and may reflect pleiotropy. Two of the FFRR QTL are in regions of conserved synteny with grape and span defense gene markers, and the third FFRR QTL spans a flavonoid biosynthetic gene.

  15. Concept mapping to promote meaningful learning, help relate theory to practice and improve learning self-efficacy in Asian mental health nursing students: A mixed-methods pilot study.

    PubMed

    Bressington, Daniel T; Wong, Wai-Kit; Lam, Kar Kei Claire; Chien, Wai Tong

    2018-01-01

    Student nurses are provided with a great deal of knowledge within university, but they can find it difficult to relate theory to nursing practice. This study aimed to test the appropriateness and feasibility of assessing Novak's concept mapping as an educational strategy to strengthen the theory-practice link, encourage meaningful learning and enhance learning self-efficacy in nursing students. This pilot study utilised a mixed-methods quasi-experimental design. The study was conducted in a University school of Nursing in Hong Kong. A total of 40 third-year pre-registration Asian mental health nursing students completed the study; 12 in the concept mapping (CM) group and 28 in the usual teaching methods (UTM) group. The impact of concept mapping was evaluated thorough analysis of quantitative changes in students' learning self-efficacy, analysis of the structure and contents of the concept maps (CM group), a quantitative measure of students' opinions about their reflective learning activities and content analysis of qualitative data from reflective written accounts (CM group). There were no significant differences in self-reported learning self-efficacy between the two groups (p=0.38). The concept mapping helped students identify their current level of understanding, but the increased awareness may cause an initial drop in learning self-efficacy. The results highlight that most CM students were able to demonstrate meaningful learning and perceived that concept mapping was a useful reflective learning strategy to help them to link theory and practice. The results provide preliminary evidence that the concept mapping approach can be useful to help mental health nursing students visualise their learning progress and encourage the integration of theoretical knowledge with clinical knowledge. Combining concept mapping data with quantitative measures and qualitative reflective journal data appears to be a useful way of assessing and understanding the effectiveness of concept mapping. Future studies should utilise a larger sample size and consider using the approach as a targeted intervention immediately before and during clinical learning placements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Rapid Semi-Quantitative Mapping of Dispersed Caffeine Using an Autosampler/DART/TOFMS

    EPA Science Inventory

    Introduction: Rapid mapping of contaminant distributions is necessary to assess exposure risksand to plan remediation, when chemicals are dispersed accidentally, deliberately, or by weather-related events. Described previously (Grange, Environ. Forensics, 9, 125-141) were anaut...

  17. Ultrahigh resolution optical coherence tomography for quantitative topographic mapping of retinal and intraretinal architectural morphology

    NASA Astrophysics Data System (ADS)

    Ko, Tony H.; Hartl, Ingmar; Drexler, Wolfgang; Ghanta, Ravi K.; Fujimoto, James G.

    2002-06-01

    Quantitative, three-dimensional mapping of retinal architectural morphology was achieved using an ultrahigh resolution ophthalmic OCT system. This OCT system utilizes a broad bandwidth titanium-sapphire laser light source generating bandwidths of up to 300 nm near 800 nm center wavelength. The system enables real-time cross-sectional imaging of the retina with ~3 micrometers axial resolution. The macula and the papillomacular axis of a normal human subject were systematically mapped using a series of linear scans. Edge detection and segmentation algorithms were developed to quantify retinal and intraretinal thicknesses. Topographic mapping of the total retinal thickness and the total ganglion cell/inner plexiform layer thickness was achieved around the macula. A topographic mapping quantifying the progressive thickening of the nerve fiber layer (NFL) nasally approaching the optic disk was also demonstrated. The ability to create three-dimensional topographic mapping of retinal architectural morphology at ~3 micrometers axial resolution will be relevant for the diagnosis of many retinal diseases. The topographic quantification of these structures can serve as a powerful tool for developing algorithms and clinical scanning protocols for the screening and staging of ophthalmic diseases such as glaucoma.

  18. Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans.

    PubMed

    Bassi, Denis; Briñez, Boris; Rosa, Juliana Santa; Oblessuc, Paula Rodrigues; Almeida, Caléo Panhoca de; Nucci, Stella Maris; Silva, Larissa Chariel Domingos da; Chiorato, Alisson Fernando; Vianello, Rosana Pereira; Camargo, Luis Eduardo Aranha; Blair, Matthew Wohlgemuth; Benchimol-Reis, Luciana Lasry

    2017-01-01

    Angular leaf spot (ALS) and powdery mildew (PWM) are two important fungi diseases causing significant yield losses in common beans. In this study, a new genetic linkage map was constructed using single sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), in a segregating population derived from the AND 277 x SEA 5 cross, with 105 recombinant inbred lines. Phenotypic evaluations were performed in the greenhouse to identify quantitative trait loci (QTLs) associated with resistance by means of the composite interval mapping analysis. Four QTLs were identified for ALS resistance. The QTL ALS11AS, linked on the SNP BAR 5054, mapped on chromosome Pv11, showed the greatest effect (R2 = 26.5%) on ALS phenotypic variance. For PWM resistance, two QTLs were detected, PWM2AS and PWM11AS, on Pv2 and Pv11, explaining 7% and 66% of the phenotypic variation, respectively. Both QTLs on Pv11 were mapped on the same genomic region, suggesting that it is a pleiotropic region. The present study resulted in the identification of new markers closely linked to ALS and PWM QTLs, which can be used for marker-assisted selection, fine mapping and positional cloning.

  19. Comparison of gene-based rare variant association mapping methods for quantitative traits in a bovine population with complex familial relationships.

    PubMed

    Zhang, Qianqian; Guldbrandtsen, Bernt; Calus, Mario P L; Lund, Mogens Sandø; Sahana, Goutam

    2016-08-17

    There is growing interest in the role of rare variants in the variation of complex traits due to increasing evidence that rare variants are associated with quantitative traits. However, association methods that are commonly used for mapping common variants are not effective to map rare variants. Besides, livestock populations have large half-sib families and the occurrence of rare variants may be confounded with family structure, which makes it difficult to disentangle their effects from family mean effects. We compared the power of methods that are commonly applied in human genetics to map rare variants in cattle using whole-genome sequence data and simulated phenotypes. We also studied the power of mapping rare variants using linear mixed models (LMM), which are the method of choice to account for both family relationships and population structure in cattle. We observed that the power of the LMM approach was low for mapping a rare variant (defined as those that have frequencies lower than 0.01) with a moderate effect (5 to 8 % of phenotypic variance explained by multiple rare variants that vary from 5 to 21 in number) contributing to a QTL with a sample size of 1000. In contrast, across the scenarios studied, statistical methods that are specialized for mapping rare variants increased power regardless of whether multiple rare variants or a single rare variant underlie a QTL. Different methods for combining rare variants in the test single nucleotide polymorphism set resulted in similar power irrespective of the proportion of total genetic variance explained by the QTL. However, when the QTL variance is very small (only 0.1 % of the total genetic variance), these specialized methods for mapping rare variants and LMM generally had no power to map the variants within a gene with sample sizes of 1000 or 5000. We observed that the methods that combine multiple rare variants within a gene into a meta-variant generally had greater power to map rare variants compared to LMM. Therefore, it is recommended to use rare variant association mapping methods to map rare genetic variants that affect quantitative traits in livestock, such as bovine populations.

  20. Combined use of X-ray fluorescence microscopy, phase contrast imaging for high resolution quantitative iron mapping in inflamed cells

    NASA Astrophysics Data System (ADS)

    Gramaccioni, C.; Procopio, A.; Farruggia, G.; Malucelli, E.; Iotti, S.; Notargiacomo, A.; Fratini, M.; Yang, Y.; Pacureanu, A.; Cloetens, P.; Bohic, S.; Massimi, L.; Cutone, A.; Valenti, P.; Rosa, L.; Berlutti, F.; Lagomarsino, S.

    2017-06-01

    X-ray fluorescence microscopy (XRFM) is a powerful technique to detect and localize elements in cells. To derive information useful for biology and medicine, it is essential not only to localize, but also to map quantitatively the element concentration. Here we applied quantitative XRFM to iron in phagocytic cells. Iron, a primary component of living cells, can become toxic when present in excess. In human fluids, free iron is maintained at 10-18 M concentration thanks to iron binding proteins as lactoferrin (Lf). The iron homeostasis, involving the physiological ratio of iron between tissues/secretions and blood, is strictly regulated by ferroportin, the sole protein able to export iron from cells to blood. Inflammatory processes induced by lipopolysaccharide (LPS) or bacterial pathoge inhibit ferroportin synthesis in epithelial and phagocytic cells thus hindering iron export, increasing intracellular iron and bacterial multiplication. In this respect, Lf is emerging as an important regulator of both iron and inflammatory homeostasis. Here we studied phagocytic cells inflamed by bacterial LPS and untreated or treated with milk derived bovine Lf. Quantitative mapping of iron concentration and mass fraction at high spatial resolution is obtained combining X-ray fluorescence microscopy, atomic force microscopy and synchrotron phase contrast imaging.

  1. Prioritising coastal zone management issues through fuzzy cognitive mapping approach.

    PubMed

    Meliadou, Aleka; Santoro, Francesca; Nader, Manal R; Dagher, Manale Abou; Al Indary, Shadi; Salloum, Bachir Abi

    2012-04-30

    Effective public participation is an essential component of Integrated Coastal Zone Management implementation. To promote such participation, a shared understanding of stakeholders' objectives has to be built to ultimately result in common coastal management strategies. The application of quantitative and semi-quantitative methods involving tools such as Fuzzy Cognitive Mapping is presently proposed for reaching such understanding. In this paper we apply the Fuzzy Cognitive Mapping tool to elucidate the objectives and priorities of North Lebanon's coastal productive sectors, and to formalize their coastal zone perceptions and knowledge. Then, we investigate the potential of Fuzzy Cognitive Mapping as tool for support coastal zone management. Five round table discussions were organized; one for the municipalities of the area and one for each of the main coastal productive sectors (tourism, industry, fisheries, agriculture), where the participants drew cognitive maps depicting their views. The analysis of the cognitive maps showed a large number of factors perceived as affecting the current situation of the North Lebanon coastal zone that were classified into five major categories: governance, infrastructure, environment, intersectoral interactions and sectoral initiatives. Furthermore, common problems, expectations and management objectives for all sectors were exposed. Within this context, Fuzzy Cognitive Mapping proved to be an essential tool for revealing stakeholder knowledge and perception and understanding complex relationships. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Atomic characterization of Si nanoclusters embedded in SiO2 by atom probe tomography

    PubMed Central

    2011-01-01

    Silicon nanoclusters are of prime interest for new generation of optoelectronic and microelectronics components. Physical properties (light emission, carrier storage...) of systems using such nanoclusters are strongly dependent on nanostructural characteristics. These characteristics (size, composition, distribution, and interface nature) are until now obtained using conventional high-resolution analytic methods, such as high-resolution transmission electron microscopy, EFTEM, or EELS. In this article, a complementary technique, the atom probe tomography, was used for studying a multilayer (ML) system containing silicon clusters. Such a technique and its analysis give information on the structure at the atomic level and allow obtaining complementary information with respect to other techniques. A description of the different steps for such analysis: sample preparation, atom probe analysis, and data treatment are detailed. An atomic scale description of the Si nanoclusters/SiO2 ML will be fully described. This system is composed of 3.8-nm-thick SiO layers and 4-nm-thick SiO2 layers annealed 1 h at 900°C. PMID:21711666

  3. Energy-filtered TEM imaging and EELS study of ODS particles and argon-filled cavities in ferritic-martensitic steels.

    PubMed

    Klimiankou, M; Lindau, R; Möslang, A

    2005-01-01

    Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels with yttrium oxide (Y(2)O(3)) have been produced by mechanical alloying and hot isostatic pressing for use as advanced material in fusion power reactors. Argon gas, usually widely used as inert gas during mechanical alloying, was surprisingly detected in the nanodispersion-strengthened materials. Energy-filtered transmission electron microscopy (EFTEM) and electron energy loss spectroscopy (EELS) led to the following results: (i) chemical composition of ODS particles, (ii) voids with typical diameters of 1-6 nm are formed in the matrix, (iii) these voids are filled with Ar gas, and (iv) the high-density nanosized ODS particles serve as trapping centers for the Ar bubbles. The Ar L(3,2) energy loss edge at 245 eV as well as the absorption features of the ODS particle elements were identified in the EELS spectrum. The energy resolution in the EEL spectrum of about 1.0 eV allows to identify the electronic structure of the ODS particles.

  4. Nanoscale precipitation in a maraging steel studied by APFIM.

    PubMed

    Stiller, Krystyna; Hättestrand, Mats

    2004-06-01

    This article summarizes findings from our previous investigations and recent studies concerning precipitation in a maraging steel of type 13Cr-9Ni-2Mo-2Cu (at.%) with small additions of Ti (1 at.%) and Al (0.7 at.%). The material was investigated after aging at 475 degrees C up to 400 h using both conventional and three-dimensional atom-probe analyses. The process of phase decomposition in the steel proved to be complicated. It consisted of precipitation of several phases with different chemistry. A Cu-rich phase was first to precipitate and Mo was last in the precipitation sequence. The influence of the complex precipitation path on the material properties is discussed. The investigation clearly demonstrated the usefulness of the applied techniques for investigation of nanoscale precipitation. It is also shown that, complementary methods (such as TEM and EFTEM) giving structural and chemical information on a larger scale must be applied to explain the good properties of the steel after prolonged aging.

  5. Enhancing the Characterization of Epistemic Uncertainties in PM2.5 Risk Analyses.

    PubMed

    Smith, Anne E; Gans, Will

    2015-03-01

    The Environmental Benefits Mapping and Analysis Program (BenMAP) is a software tool developed by the U.S. Environmental Protection Agency (EPA) that is widely used inside and outside of EPA to produce quantitative estimates of public health risks from fine particulate matter (PM2.5 ). This article discusses the purpose and appropriate role of a risk analysis tool to support risk management deliberations, and evaluates the functions of BenMAP in this context. It highlights the importance in quantitative risk analyses of characterization of epistemic uncertainty, or outright lack of knowledge, about the true risk relationships being quantified. This article describes and quantitatively illustrates sensitivities of PM2.5 risk estimates to several key forms of epistemic uncertainty that pervade those calculations: the risk coefficient, shape of the risk function, and the relative toxicity of individual PM2.5 constituents. It also summarizes findings from a review of U.S.-based epidemiological evidence regarding the PM2.5 risk coefficient for mortality from long-term exposure. That review shows that the set of risk coefficients embedded in BenMAP substantially understates the range in the literature. We conclude that BenMAP would more usefully fulfill its role as a risk analysis support tool if its functions were extended to better enable and prompt its users to characterize the epistemic uncertainties in their risk calculations. This requires expanded automatic sensitivity analysis functions and more recognition of the full range of uncertainty in risk coefficients. © 2014 Society for Risk Analysis.

  6. 2011, 2010 petroleum resource assessment of the National Petroleum Reserve in Alaska: GIS play maps

    USGS Publications Warehouse

    Garrity, Christopher P.; Houseknecht, David W.; Bird, Kenneth J.

    2011-01-01

    This report provides digital geographic information systems (GIS) files of maps for each of the 24 plays considered in the U.S. Geological Survey (USGS) 2010 updated petroleum resource assessment of the National Petroleum Reserve in Alaska (NPRA) (Houseknecht and others, 2010). These are the sample plays evaluated in a previous USGS assessment of the NPRA (Bird and Houseknecht, 2002a), maps of which were released in pdf format (Bird and Houseknecht, 2002b). The 2010 updated assessment of the NPRA evaluated each of the previously used 24 plays based on new geologic data available from exploration activities and scientific research. Quantitative assessments were revised for 11 plays, and no revisions were made for 9 plays. Estimates of the volume of technically recoverable, undiscovered oil, and nonassociated gas resources in these 20 plays are reported elsewhere (Houseknecht and others, 2010). Four plays quantitatively assessed in 2002 were eliminated from quantitative assessment for reasons explained by Houseknecht and others (2010). The NPRA assessment study area includes Federal and native onshore land and adjacent State offshore areas. A map showing the areal extent of each play was prepared by USGS geologists as a preliminary step in the assessment process. Boundaries were drawn on the basis of a variety of information, including seismic reflection data, results of exploration drilling, and regional patterns of rock properties. Play boundary polygons were captured by digitizing the play maps prepared by USGS geologists.

  7. A Method for Comprehensive Glycosite-Mapping and Direct Quantitation of Serum Glycoproteins.

    PubMed

    Hong, Qiuting; Ruhaak, L Renee; Stroble, Carol; Parker, Evan; Huang, Jincui; Maverakis, Emanual; Lebrilla, Carlito B

    2015-12-04

    A comprehensive glycan map was constructed for the top eight abundant glycoproteins in plasma using both specific and nonspecific enzyme digestions followed by nano liquid chromatography (LC)-chip/quadrupole time-of-flight mass spectrometry (MS) analysis. Glycopeptides were identified using an in-house software tool, GPFinder. A sensitive and reproducible multiple reaction monitoring (MRM) technique on a triple quadrupole MS was developed and applied to quantify immunoglobulins G, A, M, and their site-specific glycans simultaneously and directly from human serum/plasma without protein enrichments. A total of 64 glycopeptides and 15 peptides were monitored for IgG, IgA, and IgM in a 20 min ultra high performance (UP)LC gradient. The absolute protein contents were quantified using peptide calibration curves. The glycopeptide ion abundances were normalized to the respective protein abundances to separate protein glycosylation from protein expression. This technique yields higher method reproducibility and less sample loss when compared with the quantitation method that involves protein enrichments. The absolute protein quantitation has a wide linear range (3-4 orders of magnitude) and low limit of quantitation (femtomole level). This rapid and robust quantitation technique, which provides quantitative information for both proteins and glycosylation, will further facilitate disease biomarker discoveries.

  8. Mapping quantitative trait loci for binary trait in the F2:3 design.

    PubMed

    Zhu, Chengsong; Zhang, Yuan-Ming; Guo, Zhigang

    2008-12-01

    In the analysis of inheritance of quantitative traits with low heritability, an F(2:3) design that genotypes plants in F(2) and phenotypes plants in F(2:3) progeny is often used in plant genetics. Although statistical approaches for mapping quantitative trait loci (QTL) in the F(2:3) design have been well developed, those for binary traits of biological interest and economic importance are seldom addressed. In this study, an attempt was made to map binary trait loci (BTL) in the F(2:3) design. The fundamental idea was: the F(2) plants were genotyped, all phenotypic values of each F(2:3) progeny were measured for binary trait, and these binary trait values and the marker genotype informations were used to detect BTL under the penetrance and liability models. The proposed method was verified by a series of Monte-Carlo simulation experiments. These results showed that maximum likelihood approaches under the penetrance and liability models provide accurate estimates for the effects and the locations of BTL with high statistical power, even under of low heritability. Moreover, the penetrance model is as efficient as the liability model, and the F(2:3) design is more efficient than classical F(2) design, even though only a single progeny is collected from each F(2:3) family. With the maximum likelihood approaches under the penetrance and the liability models developed in this study, we can map binary traits as we can do for quantitative trait in the F(2:3) design.

  9. Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli

    PubMed Central

    Morris, Melody K.; Saez-Rodriguez, Julio; Clarke, David C.; Sorger, Peter K.; Lauffenburger, Douglas A.

    2011-01-01

    Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone. PMID:21408212

  10. Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering

    NASA Technical Reports Server (NTRS)

    Ansari, R. R.; Suh, K. I.; Dunker, S.; Kitaya, N.; Sebag, J.

    2001-01-01

    The non-invasive technique of dynamic light scattering (DLS) was used to quantitatively characterize vitreous and lens structure on a molecular level by measuring the sizes of the predominant particles and mapping the three-dimensional topographic distribution of these structural macromolecules in three spatial dimensions. The results of DLS measurements in five fresh adult bovine eyes were compared to DLS measurements in model solutions of hyaluronan (HA) and collagen (Coll). In the bovine eyes DLS measurements were obtained from excised samples of gel and liquid vitreous and compared to the model solutions. Measurements in whole vitreous were obtained at multiple points posterior to the lens to generate a three-dimensional 'map' of molecular structure. The macromolecule distribution in bovine lens was similarly characterized.In each bovine vitreous (Bo Vit) specimen, DLS predominantly detected two distinct particles, which differed in diffusion properties and hence size. Comparisons with model vitreous solutions demonstrated that these most likely corresponded to the Coll and HA components of vitreous. Three-dimensional mapping of Bo Vit found heterogeneity throughout the vitreous body, with different particle size distributions for Coll and HA at different loci. In contrast, the three-dimensional distribution of lens macromolecules was more homogeneous. Thus, the non-invasive DLS technique can quantitate the average sizes of vitreous and lens macromolecules and map their three-dimensional distribution. This method to assess quantitatively the macromolecular structure of vitreous and lens should be useful for clinical as well as experimental applications in health and disease. Copyright 2001 Academic Press.

  11. Molecular Dissection of a Major Gene Effect on a Quantitative Trait: The Level of Alcohol Dehydrogenase Expression in Drosophila Melanogaster

    PubMed Central

    Stam, L. F.; Laurie, C. C.

    1996-01-01

    A molecular mapping experiment shows that a major gene effect on a quantitative trait, the level of alcohol dehydrogenase expression in Drosophila melanogaster, is due to multiple polymorphisms within the Adh gene. These polymorphisms are located in an intron, the coding sequence, and the 3' untranslated region. Because of nonrandom associations among polymorphisms at different sites, the individual effects combine (in some cases epistatically) to produce ``superalleles'' with large effect. These results have implications for the interpretation of major gene effects detected by quantitative trait locus mapping methods. They show that large effects due to a single locus may be due to multiple associated polymorphisms (or sequential fixations in isolated populations) rather than individual mutations of large effect. PMID:8978044

  12. Trabecular bone class mapping across resolutions: translating methods from HR-pQCT to clinical CT

    NASA Astrophysics Data System (ADS)

    Valentinitsch, Alexander; Fischer, Lukas; Patsch, Janina M.; Bauer, Jan; Kainberger, Franz; Langs, Georg; DiFranco, Matthew

    2015-03-01

    Quantitative assessment of 3D bone microarchitecture in high-resolution peripheral quantitative computed tomography (HR-pQCT) has shown promise in fracture risk assessment and biomechanics, but is limited to the distal radius and tibia. Trabecular microarchitecture classes (TMACs), based on voxel-wise clustering texture and structure tensor features in HRpQCT, is extended in this paper to quantify trabecular bone classes in clinical multi-detector CT (MDCT) images. Our comparison of TMACs in 12 cadaver radii imaged using both HRpQCT and MDCT yields a mean Dice score of up to 0.717+/-0.40 and visually concordant bone quality maps. Further work to develop clinically viable bone quantitative imaging using HR-pQCT validation could have a significant impact on overall bone health assessment.

  13. Spatial and Global Sensory Suppression Mapping Encompassing the Central 10° Field in Anisometropic Amblyopia.

    PubMed

    Li, Jingjing; Li, Jinrong; Chen, Zidong; Liu, Jing; Yuan, Junpeng; Cai, Xiaoxiao; Deng, Daming; Yu, Minbin

    2017-01-01

    We investigate the efficacy of a novel dichoptic mapping paradigm in evaluating visual function of anisometropic amblyopes. Using standard clinical measures of visual function (visual acuity, stereo acuity, Bagolini lenses, and neutral density filters) and a novel quantitative mapping technique, 26 patients with anisometropic amblyopia (mean age = 19.15 ± 4.42 years) were assessed. Two additional psychophysical interocular suppression measurements were tested with dichoptic global motion coherence and binocular phase combination tasks. Luminance reduction was achieved by placing neutral density filters in front of the normal eye. Our study revealed that suppression changes across the central 10° visual field by mean luminance modulation in amblyopes as well as normal controls. Using simulation and an elimination of interocular suppression, we identified a novel method to effectively reflect the distribution of suppression in anisometropic amblyopia. Additionally, the new quantitative mapping technique was in good agreement with conventional clinical measures, such as interocular acuity difference (P < 0.001) and stereo acuity (P = 0.005). There was a good consistency between the results of interocular suppression with dichoptic mapping paradigm and the results of the other two psychophysical methods (suppression mapping versus binocular phase combination, P < 0.001; suppression mapping versus global motion coherence, P = 0.005). The dichoptic suppression mapping technique is an effective method to represent impaired visual function in patients with anisometropic amblyopia. It offers a potential in "micro-"antisuppression mapping tests and therapies for amblyopia.

  14. Molecularly tagged genes and quantitative trait loci in cucumber

    USDA-ARS?s Scientific Manuscript database

    Since the release of the cucumber draft genome, significant progress has been made in molecular mapping, tagging or cloning of horticulturally important genes and quantitative trait loci (QTLs) in cucumber, which provides the foundation for practicing marker-assisted selection in cucumber breeding. ...

  15. Forest Connectivity Regions of Canada Using Circuit Theory and Image Analysis

    PubMed Central

    Pelletier, David; Lapointe, Marc-Élie; Wulder, Michael A.; White, Joanne C.; Cardille, Jeffrey A.

    2017-01-01

    Ecological processes are increasingly well understood over smaller areas, yet information regarding interconnections and the hierarchical nature of ecosystems remains less studied and understood. Information on connectivity over large areas with high resolution source information provides for both local detail and regional context. The emerging capacity to apply circuit theory to create maps of omnidirectional connectivity provides an opportunity for improved and quantitative depictions of forest connectivity, supporting the formation and testing of hypotheses about the density of animal movement, ecosystem structure, and related links to natural and anthropogenic forces. In this research, our goal was to delineate regions where connectivity regimes are similar across the boreal region of Canada using new quantitative analyses for characterizing connectivity over large areas (e.g., millions of hectares). Utilizing the Earth Observation for Sustainable Development of forests (EOSD) circa 2000 Landsat-derived land-cover map, we created and analyzed a national-scale map of omnidirectional forest connectivity at 25m resolution over 10000 tiles of 625 km2 each, spanning the forested regions of Canada. Using image recognition software to detect corridors, pinch points, and barriers to movements at multiple spatial scales in each tile, we developed a simple measure of the structural complexity of connectivity patterns in omnidirectional connectivity maps. We then mapped the Circuitscape resistance distance measure and used it in conjunction with the complexity data to study connectivity characteristics in each forested ecozone. Ecozone boundaries masked substantial systematic patterns in connectivity characteristics that are uncovered using a new classification of connectivity patterns that revealed six clear groups of forest connectivity patterns found in Canada. The resulting maps allow exploration of omnidirectional forest connectivity patterns at full resolution while permitting quantitative analyses of connectivity over broad areas, informing modeling, planning and monitoring efforts. PMID:28146573

  16. Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.).

    PubMed

    Jiang, Congcong; Shi, Jiaqin; Li, Ruiyuan; Long, Yan; Wang, Hao; Li, Dianrong; Zhao, Jianyi; Meng, Jinling

    2014-04-01

    This report describes an integrative analysis of seed-oil-content quantitative trait loci (QTL) in Brassica napus , using a high-density genetic map to align QTL among different populations. Rapeseed (Brassica napus) is an important source of edible oil and sustainable energy. Given the challenge involved in using only a few genes to substantially increase the oil content of rapeseed without affecting the fatty acid composition, exploitation of a greater number of genetic loci that regulate the oil content variation among rapeseed germplasm is of fundamental importance. In this study, we investigated variation in the seed-oil content among two related genetic populations of Brassica napus, the TN double-haploid population and its derivative reconstructed-F2 population. Each population was grown in multiple experiments under different environmental conditions. Mapping of quantitative trait loci (QTL) identified 41 QTL in the TN populations. Furthermore, of the 20 pairs of epistatic interaction loci detected, approximately one-third were located within the QTL intervals. The use of common markers on different genetic maps and the TN genetic map as a reference enabled us to project QTL from an additional three genetic populations onto the TN genetic map. In summary, we used the TN genetic map of the B. napus genome to identify 46 distinct QTL regions that control seed-oil content on 16 of the 19 linkage groups of B. napus. Of these, 18 were each detected in multiple populations. The present results are of value for ongoing efforts to breed rapeseed with high oil content, and alignment of the QTL makes an important contribution to the development of an integrative system for genetic studies of rapeseed.

  17. An ultra-high-density map as a community resource for discerning the genetic basis of quantitative traits in maize

    USDA-ARS?s Scientific Manuscript database

    In this study, we generated a linkage map containing 1,151,856 high quality SNPs between Mo17 and B73, which were verified in the maize intermated B73'×'Mo17 (IBM) Syn10 population. This resource is an excellent complement to existing maize genetic maps available in an online database (iPlant, http:...

  18. IBMISPS (International Brain Mapping & Intraoperative Surgical Planning Symposium)

    DTIC Science & Technology

    2005-12-01

    they received the 2005 Excellence in R, D & E award for their contribution in the feild of prosthetics and brain imaging. Excellence in Educational...specific bipolar magnetic gradient pulses which measure the velocity vector components of motion. Presented here are the development of dynamic MR...movies of quantitative velocity vector components, 30 frames per second. The 3 velocity vector maps with tensor analysis produced maps of the

  19. Rapid Semi-Quantitative Surface Mapping of Airborne-Dispersed Chemicals Using Mass Spectrometry

    EPA Science Inventory

    Chemicals can be dispersed accidentally, deliberately, or by weather-related events. Rapid mapping of contaminant distributions is necessary to assess exposure risks and to plan remediation, when needed. Ten pulverized aspirin or NoDozTM tablets containing caffeine wer...

  20. Identification of positional candidates for bovine placental genes responsible for early embryonic death during cloning-attempted pregnancy.

    PubMed

    Yamada, Takahisa; Muramatsu, Youji; Taniguchi, Yukio; Sasaki, Yoshiyuki

    Our previous study detected 291 and 77 genes showing early embryonic death-associated elevation and reduction of expression, respectively, in the fetal placenta of the cow carrying somatic nuclear transfer-derived cloned embryo. In this study, we mapped the 10 genes showing the elevation and the 10 genes doing the reduction most significantly, using somatic cell hybrid and bovine draft genome sequence. We then compared the mapped positions for these genes with the genomic locations of bovine quantitative trait loci for still-birth and/or abortion. Among the mapped genes, peptidylglycine alpha-amidating monooxygenase (PAM), spectrin, beta, nonerythrocytic 1 (SPTBNI), and an unknown novel gene containing AU277832 expressed sequence tag were intriguing, in that the mapped positions were consistent with the genomic locations of bovine still-birth and/or abortion quantitative trait loci, and thus identified as positional candidates for bovine placental genes responsible for the early embryonic death during the pregnancy attempted by somatic nuclear transfer-derived cloning.

  1. Quantitative Analysis of Venus Radar Backscatter Data in ArcGIS

    NASA Technical Reports Server (NTRS)

    Long, S. M.; Grosfils, E. B.

    2005-01-01

    Ongoing mapping of the Ganiki Planitia (V14) quadrangle of Venus and definition of material units has involved an integrated but qualitative analysis of Magellan radar backscatter images and topography using standard geomorphological mapping techniques. However, such analyses do not take full advantage of the quantitative information contained within the images. Analysis of the backscatter coefficient allows a much more rigorous statistical comparison between mapped units, permitting first order selfsimilarity tests of geographically separated materials assigned identical geomorphological labels. Such analyses cannot be performed directly on pixel (DN) values from Magellan backscatter images, because the pixels are scaled to the Muhleman law for radar echoes on Venus and are not corrected for latitudinal variations in incidence angle. Therefore, DN values must be converted based on pixel latitude back to their backscatter coefficient values before accurate statistical analysis can occur. Here we present a method for performing the conversions and analysis of Magellan backscatter data using commonly available ArcGIS software and illustrate the advantages of the process for geological mapping.

  2. Quantitatively Mapping Cellular Viscosity with Detailed Organelle Information via a Designed PET Fluorescent Probe

    PubMed Central

    Liu, Tianyu; Liu, Xiaogang; Spring, David R.; Qian, Xuhong; Cui, Jingnan; Xu, Zhaochao

    2014-01-01

    Viscosity is a fundamental physical parameter that influences diffusion in biological processes. The distribution of intracellular viscosity is highly heterogeneous, and it is challenging to obtain a full map of cellular viscosity with detailed organelle information. In this work, we report 1 as the first fluorescent viscosity probe which is able to quantitatively map cellular viscosity with detailed organelle information based on the PET mechanism. This probe exhibited a significant ratiometric fluorescence intensity enhancement as solvent viscosity increases. The emission intensity increase was attributed to combined effects of the inhibition of PET due to restricted conformational access (favorable for FRET, but not for PET), and the decreased PET efficiency caused by viscosity-dependent twisted intramolecular charge transfer (TICT). A full map of subcellular viscosity was successfully constructed via fluorescent ratiometric detection and fluorescence lifetime imaging; it was found that lysosomal regions in a cell possess the highest viscosity, followed by mitochondrial regions. PMID:24957323

  3. Immobilization of uranium in biofilm microorganisms exposed to groundwater seeps over granitic rock tunnel walls in Olkiluoto, Finland

    NASA Astrophysics Data System (ADS)

    Krawczyk-Bärsch, Evelyn; Lünsdorf, Heinrich; Pedersen, Karsten; Arnold, Thuro; Bok, Frank; Steudtner, Robin; Lehtinen, Anne; Brendler, Vinzenz

    2012-11-01

    In an underground rock characterization facility, the ONKALO tunnel in Finland, massive 5-10-mm thick biofilms were observed attached to tunnel walls where groundwater was seeping from bedrock fractures at a depth of 70 m. In laboratory experiments performed in a flow cell with detached biofilms to study the effect of uranium on the biofilm, uranium was added to the circulating groundwater (CGW) obtained from the fracture feeding the biofilm. The final uranium concentration in the CGW was adjusted to 4.25 × 10-5 M, in the range expected from a leaking spent nuclear fuel (SNF) canister in a future underground repository. The effects were investigated using microelectrodes to measure pH and Eh, time-resolved laser fluorescence spectroscopy (TRLFS), energy-filtered transmission electron microscopy (EF-TEM), and electron energy-loss spectroscopy (EELS) studies and thermodynamic calculations were utilized as well. The results indicated that the studied biofilms constituted their own microenvironments, which differed significantly from that of the CGW. A pH of 5.37 was recorded inside the biofilm, approximately 3.5 units lower than the pH observed in the CGW, due to sulfide oxidation to sulfuric acid in the biofilm. Similarly, the Eh of +73 mV inside the biofilm was approximately 420 mV lower than the Eh measured in the CGW. Adding uranium increased the pH in the biofilm to 7.27 and reduced the Eh to -164 mV. The changes of Eh and pH influenced the bioavailability of uranium, since microbial metabolic processes are sensitive to metals and their speciation. EF-TEM investigations indicated that uranium in the biofilm was immobilized intracellularly in microorganisms by the formation of metabolically mediated uranyl phosphate, similar to needle-shaped autunite (Ca[UO2]2[PO4]2·2-6H2O) or meta-autunite (Ca[UO2]2[PO4]2·10-12H2O). In contrast, TRLFS studies of the contaminated CGW identified aqueous uranium carbonate species, likely (Ca2UO2[CO3]3), formed due to the high concentration of carbonate in the CGW. The results agreed with thermodynamic calculations of the theoretically predominant field of uranium species, formed in the uranium-contaminated CGW at the measured geochemical parameters. This investigation clearly demonstrated that biological systems must be considered as a part of natural systems that can significantly influence radionuclide behavior. The results improve our understanding of the mechanisms of biofilm response to radionuclides in relation to safety assessments of SNF repositories.

  4. Averaged ratio between complementary profiles for evaluating shape distortions of map projections and spherical hierarchical tessellations

    NASA Astrophysics Data System (ADS)

    Yan, Jin; Song, Xiao; Gong, Guanghong

    2016-02-01

    We describe a metric named averaged ratio between complementary profiles to represent the distortion of map projections, and the shape regularity of spherical cells derived from map projections or non-map-projection methods. The properties and statistical characteristics of our metric are investigated. Our metric (1) is a variable of numerical equivalence to both scale component and angular deformation component of Tissot indicatrix, and avoids the invalidation when using Tissot indicatrix and derived differential calculus for evaluating non-map-projection based tessellations where mathematical formulae do not exist (e.g., direct spherical subdivisions), (2) exhibits simplicity (neither differential nor integral calculus) and uniformity in the form of calculations, (3) requires low computational cost, while maintaining high correlation with the results of differential calculus, (4) is a quasi-invariant under rotations, and (5) reflects the distortions of map projections, distortion of spherical cells, and the associated distortions of texels. As an indicator of quantitative evaluation, we investigated typical spherical tessellation methods, some variants of tessellation methods, and map projections. The tessellation methods we evaluated are based on map projections or direct spherical subdivisions. The evaluation involves commonly used Platonic polyhedrons, Catalan polyhedrons, etc. Quantitative analyses based on our metric of shape regularity and an essential metric of area uniformity implied that (1) Uniform Spherical Grids and its variant show good qualities in both area uniformity and shape regularity, and (2) Crusta, Unicube map, and a variant of Unicube map exhibit fairly acceptable degrees of area uniformity and shape regularity.

  5. Improvement of medical content in the curriculum of biomedical engineering based on assessment of students outcomes.

    PubMed

    Abdulhay, Enas; Khnouf, Ruba; Haddad, Shireen; Al-Bashir, Areen

    2017-08-04

    Improvement of medical content in Biomedical Engineering curricula based on a qualitative assessment process or on a comparison with another high-standard program has been approached by a number of studies. However, the quantitative assessment tools have not been emphasized. The quantitative assessment tools can be more accurate and robust in cases of challenging multidisciplinary fields like that of Biomedical Engineering which includes biomedicine elements mixed with technology aspects. The major limitations of the previous research are the high dependence on surveys or pure qualitative approaches as well as the absence of strong focus on medical outcomes without implicit confusion with the technical ones. The proposed work presents the development and evaluation of an accurate/robust quantitative approach to the improvement of the medical content in the challenging multidisciplinary BME curriculum. The work presents quantitative assessment tools and subsequent improvement of curriculum medical content applied, as example for explanation, to the ABET (Accreditation Board for Engineering and Technology, USA) accredited biomedical engineering BME department at Jordan University of Science and Technology. The quantitative results of assessment of curriculum/course, capstone, exit exam, course assessment by student (CAS) as well as of surveys filled by alumni, seniors, employers and training supervisors were, first, mapped to the expected students' outcomes related to the medical field (SOsM). The collected data were then analyzed and discussed to find curriculum weakness points by tracking shortcomings in every outcome degree of achievement. Finally, actions were taken to fill in the gaps of the curriculum. Actions were also mapped to the students' medical outcomes (SOsM). Weighted averages of obtained quantitative values, mapped to SOsM, indicated accurately the achievement levels of all outcomes as well as the necessary improvements to be performed in curriculum. Mapping the improvements to SOsM also helps in the assessment of the following cycle. The suggested assessment tools can be generalized and extended to any other BME department. Robust improvement of medical content in BME curriculum can subsequently be achieved.

  6. Quantitative T2 mapping evaluation for articular cartilage lesions in a rabbit model of anterior cruciate ligament transection osteoarthritis.

    PubMed

    Wei, Zheng-mao; Du, Xiang-ke; Huo, Tian-long; Li, Xu-bin; Quan, Guang-nan; Li, Tian-ran; Cheng, Jin; Zhang, Wei-tao

    2012-03-01

    Quantitative T2 mapping has been a widely used method for the evaluation of pathological cartilage properties, and the histological assessment system of osteoarthritis in the rabbit has been published recently. The aim of the study was to investigate the effectiveness of quantitative T2 mapping evaluation for articular cartilage lesions of a rabbit model of anterior cruciate ligament transection (ACLT) osteoarthritis. Twenty New Zealand White (NZW) rabbits were divided into ACLT surgical group and sham operated group equally. The anterior cruciate ligaments of the rabbits in ACLT group were transected, while the joints were closed intactly in sham operated group. Magnetic resonance (MR) examinations were performed on 3.0T MR unit at week 0, week 6, and week 12. T2 values were computed on GE ADW4.3 workstation. All rabbits were killed at week 13, and left knees were stained with Haematoxylin and Eosin. Semiquantitative histological grading was obtained according to the osteoarthritis cartilage histopathology assessment system. Computerized image analysis was performed to quantitate the immunostained collagen type II. The average MR T2 value of whole left knee cartilage in ACLT surgical group ((29.05±12.01) ms) was significantly higher than that in sham operated group ((24.52±7.97) ms) (P=0.024) at week 6. The average T2 value increased to (32.18±12.79) ms in ACLT group at week 12, but remained near the baseline level ((27.66±8.08) ms) in the sham operated group (P=0.03). The cartilage lesion level of left knee in ACLT group was significantly increased at week 6 (P=0.005) and week 12 (P<0.001). T2 values had positive correlation with histological grading scores, but inverse correlation with optical densities (OD) of type II collagen. This study demonstrated the reliability and practicability of quantitative T2 mapping for the cartilage injury of rabbit ACLT osteoarthritis model.

  7. Accurate and quantitative polarization-sensitive OCT by unbiased birefringence estimator with noise-stochastic correction

    NASA Astrophysics Data System (ADS)

    Kasaragod, Deepa; Sugiyama, Satoshi; Ikuno, Yasushi; Alonso-Caneiro, David; Yamanari, Masahiro; Fukuda, Shinichi; Oshika, Tetsuro; Hong, Young-Joo; Li, En; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT that contrasts the polarization properties of tissues. It has been applied to ophthalmology, cardiology, etc. Proper quantitative imaging is required for a widespread clinical utility. However, the conventional method of averaging to improve the signal to noise ratio (SNR) and the contrast of the phase retardation (or birefringence) images introduce a noise bias offset from the true value. This bias reduces the effectiveness of birefringence contrast for a quantitative study. Although coherent averaging of Jones matrix tomography has been widely utilized and has improved the image quality, the fundamental limitation of nonlinear dependency of phase retardation and birefringence to the SNR was not overcome. So the birefringence obtained by PS-OCT was still not accurate for a quantitative imaging. The nonlinear effect of SNR to phase retardation and birefringence measurement was previously formulated in detail for a Jones matrix OCT (JM-OCT) [1]. Based on this, we had developed a maximum a-posteriori (MAP) estimator and quantitative birefringence imaging was demonstrated [2]. However, this first version of estimator had a theoretical shortcoming. It did not take into account the stochastic nature of SNR of OCT signal. In this paper, we present an improved version of the MAP estimator which takes into account the stochastic property of SNR. This estimator uses a probability distribution function (PDF) of true local retardation, which is proportional to birefringence, under a specific set of measurements of the birefringence and SNR. The PDF was pre-computed by a Monte-Carlo (MC) simulation based on the mathematical model of JM-OCT before the measurement. A comparison between this new MAP estimator, our previous MAP estimator [2], and the standard mean estimator is presented. The comparisons are performed both by numerical simulation and in vivo measurements of anterior and posterior eye segment as well as in skin imaging. The new estimator shows superior performance and also shows clearer image contrast.

  8. Bound Pool Fractions Complement Diffusion Measures to Describe White Matter Micro and Macrostructure

    PubMed Central

    Stikov, Nikola; Perry, Lee M.; Mezer, Aviv; Rykhlevskaia, Elena; Wandell, Brian A.; Pauly, John M.; Dougherty, Robert F.

    2010-01-01

    Diffusion imaging and bound pool fraction (BPF) mapping are two quantitative magnetic resonance imaging techniques that measure microstructural features of the white matter of the brain. Diffusion imaging provides a quantitative measure of the diffusivity of water in tissue. BPF mapping is a quantitative magnetization transfer (qMT) technique that estimates the proportion of exchanging protons bound to macromolecules, such as those found in myelin, and is thus a more direct measure of myelin content than diffusion. In this work, we combine BPF estimates of macromolecular content with measurements of diffusivity within human white matter tracts. Within the white matter, the correlation between BPFs and diffusivity measures such as fractional anisotropy and radial diffusivity was modest, suggesting that diffusion tensor imaging and bound pool fractions are complementary techniques. We found that several major tracts have high BPF, suggesting a higher density of myelin in these tracts. We interpret these results in the context of a quantitative tissue model. PMID:20828622

  9. Assessment of Renal Hemodynamics and Oxygenation by Simultaneous Magnetic Resonance Imaging (MRI) and Quantitative Invasive Physiological Measurements.

    PubMed

    Cantow, Kathleen; Arakelyan, Karen; Seeliger, Erdmann; Niendorf, Thoralf; Pohlmann, Andreas

    2016-01-01

    In vivo assessment of renal perfusion and oxygenation under (patho)physiological conditions by means of noninvasive diagnostic imaging is conceptually appealing. Blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and quantitative parametric mapping of the magnetic resonance (MR) relaxation times T 2* and T 2 are thought to provide surrogates of renal tissue oxygenation. The validity and efficacy of this technique for quantitative characterization of local tissue oxygenation and its changes under different functional conditions have not been systematically examined yet and remain to be established. For this purpose, the development of an integrative multimodality approaches is essential. Here we describe an integrated hybrid approach (MR-PHYSIOL) that combines established quantitative physiological measurements with T 2* (T 2) mapping and MR-based kidney size measurements. Standardized reversible (patho)physiologically relevant interventions, such as brief periods of aortic occlusion, hypoxia, and hyperoxia, are used for detailing the relation between the MR-PHYSIOL parameters, in particular between renal T 2* and tissue oxygenation.

  10. Energy Dispersive Spectrometry and Quantitative Analysis Short Course. Introduction to X-ray Energy Dispersive Spectrometry and Quantitative Analysis

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.

  11. Composite Interval Mapping Based on Lattice Design for Error Control May Increase Power of Quantitative Trait Locus Detection.

    PubMed

    He, Jianbo; Li, Jijie; Huang, Zhongwen; Zhao, Tuanjie; Xing, Guangnan; Gai, Junyi; Guan, Rongzhan

    2015-01-01

    Experimental error control is very important in quantitative trait locus (QTL) mapping. Although numerous statistical methods have been developed for QTL mapping, a QTL detection model based on an appropriate experimental design that emphasizes error control has not been developed. Lattice design is very suitable for experiments with large sample sizes, which is usually required for accurate mapping of quantitative traits. However, the lack of a QTL mapping method based on lattice design dictates that the arithmetic mean or adjusted mean of each line of observations in the lattice design had to be used as a response variable, resulting in low QTL detection power. As an improvement, we developed a QTL mapping method termed composite interval mapping based on lattice design (CIMLD). In the lattice design, experimental errors are decomposed into random errors and block-within-replication errors. Four levels of block-within-replication errors were simulated to show the power of QTL detection under different error controls. The simulation results showed that the arithmetic mean method, which is equivalent to a method under random complete block design (RCBD), was very sensitive to the size of the block variance and with the increase of block variance, the power of QTL detection decreased from 51.3% to 9.4%. In contrast to the RCBD method, the power of CIMLD and the adjusted mean method did not change for different block variances. The CIMLD method showed 1.2- to 7.6-fold higher power of QTL detection than the arithmetic or adjusted mean methods. Our proposed method was applied to real soybean (Glycine max) data as an example and 10 QTLs for biomass were identified that explained 65.87% of the phenotypic variation, while only three and two QTLs were identified by arithmetic and adjusted mean methods, respectively.

  12. Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean

    USDA-ARS?s Scientific Manuscript database

    Bi-parental mapping populations have been commonly utilized to identify and characterize quantitative trait loci (QTL) controlling resistance to soybean cyst nematode (SCN, Heterodera glycines Ichinohe). Although this approach successfully mapped a large number of SCN resistance QTL, it captures onl...

  13. Double-Labeled Metabolic Maps of Memory.

    ERIC Educational Resources Information Center

    John, E. R.; And Others

    1986-01-01

    Reviews a study which sought to obtain a quantitative metabolic map of the neurons mediating a specific memory. Research results support notions of cooperative processes in which nonrandom behavior of high ensembles of neural elements mediates the integration and processing of information and the retrieval of memory. (ML)

  14. Epicuticular waxes and thrips resistance in onion

    USDA-ARS?s Scientific Manuscript database

    Next-generation sequencing of normalized cDNAs from two inbred lines of onion revealed over 3000 well supported single nucleotide polymorphisms (SNPs), of which over 800 have been mapped. This SNP-based map was used to identify quantitative trait loci (QTL) controlling the amounts and types of epicu...

  15. Artificial-epitope mapping for CK-MB assay.

    PubMed

    Tai, Dar-Fu; Ho, Yi-Fang; Wu, Cheng-Hsin; Lin, Tzu-Chieh; Lu, Kuo-Hao; Lin, Kun-Shian

    2011-06-07

    A quantitative method using artificial antibody to detect creatine kinases was developed. Linear epitope sequences were selected based on an artificial-epitope mapping strategy. Nine different MIPs corresponding to the selected peptides were then fabricated on QCM chips. The subtle conformational changes were also recognized by these chips.

  16. Coordinated Optimization of Visual Cortical Maps (I) Symmetry-based Analysis

    PubMed Central

    Reichl, Lars; Heide, Dominik; Löwel, Siegrid; Crowley, Justin C.; Kaschube, Matthias; Wolf, Fred

    2012-01-01

    In the primary visual cortex of primates and carnivores, functional architecture can be characterized by maps of various stimulus features such as orientation preference (OP), ocular dominance (OD), and spatial frequency. It is a long-standing question in theoretical neuroscience whether the observed maps should be interpreted as optima of a specific energy functional that summarizes the design principles of cortical functional architecture. A rigorous evaluation of this optimization hypothesis is particularly demanded by recent evidence that the functional architecture of orientation columns precisely follows species invariant quantitative laws. Because it would be desirable to infer the form of such an optimization principle from the biological data, the optimization approach to explain cortical functional architecture raises the following questions: i) What are the genuine ground states of candidate energy functionals and how can they be calculated with precision and rigor? ii) How do differences in candidate optimization principles impact on the predicted map structure and conversely what can be learned about a hypothetical underlying optimization principle from observations on map structure? iii) Is there a way to analyze the coordinated organization of cortical maps predicted by optimization principles in general? To answer these questions we developed a general dynamical systems approach to the combined optimization of visual cortical maps of OP and another scalar feature such as OD or spatial frequency preference. From basic symmetry assumptions we obtain a comprehensive phenomenological classification of possible inter-map coupling energies and examine representative examples. We show that each individual coupling energy leads to a different class of OP solutions with different correlations among the maps such that inferences about the optimization principle from map layout appear viable. We systematically assess whether quantitative laws resembling experimental observations can result from the coordinated optimization of orientation columns with other feature maps. PMID:23144599

  17. Bayesian B-spline mapping for dynamic quantitative traits.

    PubMed

    Xing, Jun; Li, Jiahan; Yang, Runqing; Zhou, Xiaojing; Xu, Shizhong

    2012-04-01

    Owing to their ability and flexibility to describe individual gene expression at different time points, random regression (RR) analyses have become a popular procedure for the genetic analysis of dynamic traits whose phenotypes are collected over time. Specifically, when modelling the dynamic patterns of gene expressions in the RR framework, B-splines have been proved successful as an alternative to orthogonal polynomials. In the so-called Bayesian B-spline quantitative trait locus (QTL) mapping, B-splines are used to characterize the patterns of QTL effects and individual-specific time-dependent environmental errors over time, and the Bayesian shrinkage estimation method is employed to estimate model parameters. Extensive simulations demonstrate that (1) in terms of statistical power, Bayesian B-spline mapping outperforms the interval mapping based on the maximum likelihood; (2) for the simulated dataset with complicated growth curve simulated by B-splines, Legendre polynomial-based Bayesian mapping is not capable of identifying the designed QTLs accurately, even when higher-order Legendre polynomials are considered and (3) for the simulated dataset using Legendre polynomials, the Bayesian B-spline mapping can find the same QTLs as those identified by Legendre polynomial analysis. All simulation results support the necessity and flexibility of B-spline in Bayesian mapping of dynamic traits. The proposed method is also applied to a real dataset, where QTLs controlling the growth trajectory of stem diameters in Populus are located.

  18. Thinking Maps: An innovative way to increase sixth-grade student achievement in social studies

    NASA Astrophysics Data System (ADS)

    Reed, Tamita

    The purpose of this quantitative study was to determine the effect of Thinking Maps on the achievement of 6th-grade social studies students in order to determine its effectiveness. The population of this study came from a suburban middle school in the state of Georgia. The quantitative data included a pretest and posttest. The study was designed to find (a) whether there is a significant difference between the mean posttest scores on the benchmark test of 6th-grade students who are taught with either Thinking Maps or traditional social studies methods, (b) whether there is a significant difference between the mean posttest scores on the benchmark test of 6th-grade male versus female social studies students, and (c) whether there is a significant interaction between 6th-grade students' type of social studies class and gender as to differentially affect their mean posttest scores on the benchmark test. To answer these questions, students' pretest and posttest were compared to determine if there was a statistically significant difference after Thinking Maps were implemented with the treatment group for 9 weeks. The results indicate that there was no significant difference in the test scores between the students who were taught with Thinking Maps and the students who were taught without Thinking Maps. However, the students taught with Thinking Maps had the higher adjusted posttest scores.

  19. Quantitative Susceptibility Mapping of Human Brain Reflects Spatial Variation in Tissue Composition

    PubMed Central

    Li, Wei; Wu, Bing; Liu, Chunlei

    2011-01-01

    Image phase from gradient echo MRI provides a unique contrast that reflects brain tissue composition variations, such as iron and myelin distribution. Phase imaging is emerging as a powerful tool for the investigation of functional brain anatomy and disease diagnosis. However, the quantitative value of phase is compromised by its nonlocal and orientation dependent properties. There is an increasing need for reliable quantification of magnetic susceptibility, the intrinsic property of tissue. In this study, we developed a novel and accurate susceptibility mapping method that is also phase-wrap insensitive. The proposed susceptibility mapping method utilized two complementary equations: (1) the Fourier relationship of phase and magnetic susceptibility; and (2) the first-order partial derivative of the first equation in the spatial frequency domain. In numerical simulation, this method reconstructed the susceptibility map almost free of streaking artifact. Further, the iterative implementation of this method allowed for high quality reconstruction of susceptibility maps of human brain in vivo. The reconstructed susceptibility map provided excellent contrast of iron-rich deep nuclei and white matter bundles from surrounding tissues. Further, it also revealed anisotropic magnetic susceptibility in brain white matter. Hence, the proposed susceptibility mapping method may provide a powerful tool for the study of brain physiology and pathophysiology. Further elucidation of anisotropic magnetic susceptibility in vivo may allow us to gain more insight into the white matter microarchitectures. PMID:21224002

  20. Quantitative susceptibility mapping: Report from the 2016 reconstruction challenge.

    PubMed

    Langkammer, Christian; Schweser, Ferdinand; Shmueli, Karin; Kames, Christian; Li, Xu; Guo, Li; Milovic, Carlos; Kim, Jinsuh; Wei, Hongjiang; Bredies, Kristian; Buch, Sagar; Guo, Yihao; Liu, Zhe; Meineke, Jakob; Rauscher, Alexander; Marques, José P; Bilgic, Berkin

    2018-03-01

    The aim of the 2016 quantitative susceptibility mapping (QSM) reconstruction challenge was to test the ability of various QSM algorithms to recover the underlying susceptibility from phase data faithfully. Gradient-echo images of a healthy volunteer acquired at 3T in a single orientation with 1.06 mm isotropic resolution. A reference susceptibility map was provided, which was computed using the susceptibility tensor imaging algorithm on data acquired at 12 head orientations. Susceptibility maps calculated from the single orientation data were compared against the reference susceptibility map. Deviations were quantified using the following metrics: root mean squared error (RMSE), structure similarity index (SSIM), high-frequency error norm (HFEN), and the error in selected white and gray matter regions. Twenty-seven submissions were evaluated. Most of the best scoring approaches estimated the spatial frequency content in the ill-conditioned domain of the dipole kernel using compressed sensing strategies. The top 10 maps in each category had similar error metrics but substantially different visual appearance. Because QSM algorithms were optimized to minimize error metrics, the resulting susceptibility maps suffered from over-smoothing and conspicuity loss in fine features such as vessels. As such, the challenge highlighted the need for better numerical image quality criteria. Magn Reson Med 79:1661-1673, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Quantitative T2-Mapping and T2⁎-Mapping Evaluation of Changes in Cartilage Matrix after Acute Anterior Cruciate Ligament Rupture and the Correlation between the Results of Both Methods.

    PubMed

    Tao, Hongyue; Qiao, Yang; Hu, Yiwen; Xie, Yuxue; Lu, Rong; Yan, Xu; Chen, Shuang

    2018-01-01

    To quantitatively assess changes in cartilage matrix after acute anterior cruciate ligament (ACL) rupture using T2- and T2 ⁎ -mapping and analyze the correlation between the results of both methods. Twenty-three patients and 23 healthy controls were enrolled and underwent quantitative MRI examination. The knee cartilage was segmented into six compartments, including lateral femur (LF), lateral tibia (LT), medial femur (MF), medial tibia (MT), trochlea (Tr), and patella (Pa). T2 and T2 ⁎ values were measured in full-thickness as well as superficial and deep layers of each cartilage compartment. Differences of T2 and T2 ⁎ values between patients and controls were compared using unpaired Student's t -test, and the correlation between their reciprocals was analyzed using Pearson's correlation coefficient. ACL-ruptured patients showed higher T2 and T2 ⁎ values in full-thickness and superficial layers of medial and lateral tibiofemoral joint. Meanwhile, patients exhibited higher T2 ⁎ values in deep layers of lateral tibiofemoral joint. The elevated percentages of T2 and T2 ⁎ value in superficial LT were most significant (20.738%, 17.525%). The reciprocal of T2 ⁎ value was correlated with that of T2 value ( r = 0.886, P < 0.001). The early degeneration could occur in various knee cartilage compartments after acute ACL rupture, especially in the superficial layer of LT. T2 ⁎ -mapping might be more sensitive in detecting deep layer of cartilage than T2-mapping.

  2. Constrained energy minimization applied to apparent reflectance and single-scattering albedo spectra: a comparison

    NASA Astrophysics Data System (ADS)

    Resmini, Ronald G.; Graver, William R.; Kappus, Mary E.; Anderson, Mark E.

    1996-11-01

    Constrained energy minimization (CEM) has been applied to the mapping of the quantitative areal distribution of the mineral alunite in an approximately 1.8 km2 area of the Cuprite mining district, Nevada. CEM is a powerful technique for rapid quantitative mineral mapping which requires only the spectrum of the mineral to be mapped. A priori knowledge of background spectral signatures is not required. Our investigation applies CEM to calibrated radiance data converted to apparent reflectance (AR) and to single scattering albedo (SSA) spectra. The radiance data were acquired by the 210 channel, 0.4 micrometers to 2.5 micrometers airborne Hyperspectral Digital Imagery Collection Experiment sensor. CEM applied to AR spectra assumes linear mixing of the spectra of the materials exposed at the surface. This assumption is likely invalid as surface materials, which are often mixtures of particulates of different substances, are more properly modeled as intimate mixtures and thus spectral mixing analyses must take account of nonlinear effects. One technique for approximating nonlinear mixing requires the conversion of AR spectra to SSA spectra. The results of CEM applied to SSA spectra are compared to those of CEM applied to AR spectra. The occurrence of alunite is similar though not identical to mineral maps produced with both the SSA and AR spectra. Alunite is slightly more widespread based on processing with the SSA spectra. Further, fractional abundances derived from the SSA spectra are, in general, higher than those derived from AR spectra. Implications for the interpretation of quantitative mineral mapping with hyperspectral remote sensing data are discussed.

  3. A Quantitative Comparison of the Similarity between Genes and Geography in Worldwide Human Populations

    PubMed Central

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A.

    2012-01-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure. PMID:22927824

  4. Propagation of error from parameter constraints in quantitative MRI: Example application of multiple spin echo T2 mapping.

    PubMed

    Lankford, Christopher L; Does, Mark D

    2018-02-01

    Quantitative MRI may require correcting for nuisance parameters which can or must be constrained to independently measured or assumed values. The noise and/or bias in these constraints propagate to fitted parameters. For example, the case of refocusing pulse flip angle constraint in multiple spin echo T 2 mapping is explored. An analytical expression for the mean-squared error of a parameter of interest was derived as a function of the accuracy and precision of an independent estimate of a nuisance parameter. The expression was validated by simulations and then used to evaluate the effects of flip angle (θ) constraint on the accuracy and precision of T⁁2 for a variety of multi-echo T 2 mapping protocols. Constraining θ improved T⁁2 precision when the θ-map signal-to-noise ratio was greater than approximately one-half that of the first spin echo image. For many practical scenarios, constrained fitting was calculated to reduce not just the variance but the full mean-squared error of T⁁2, for bias in θ⁁≲6%. The analytical expression derived in this work can be applied to inform experimental design in quantitative MRI. The example application to T 2 mapping provided specific cases, depending on θ⁁ accuracy and precision, in which θ⁁ measurement and constraint would be beneficial to T⁁2 variance or mean-squared error. Magn Reson Med 79:673-682, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches

    USGS Publications Warehouse

    Oster, Ryan J.; Wijesinghe, Rasanthi U.; Fogarty, Lisa Reynolds; Haack, Sheridan K.; Fogarty, Lisa R.; Tucker, Taaja R.; Riley, Stephen

    2014-01-01

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management.

  6. Genomic Rearrangements in Arabidopsis Considered as Quantitative Traits.

    PubMed

    Imprialou, Martha; Kahles, André; Steffen, Joshua G; Osborne, Edward J; Gan, Xiangchao; Lempe, Janne; Bhomra, Amarjit; Belfield, Eric; Visscher, Anne; Greenhalgh, Robert; Harberd, Nicholas P; Goram, Richard; Hein, Jotun; Robert-Seilaniantz, Alexandre; Jones, Jonathan; Stegle, Oliver; Kover, Paula; Tsiantis, Miltos; Nordborg, Magnus; Rätsch, Gunnar; Clark, Richard M; Mott, Richard

    2017-04-01

    To understand the population genetics of structural variants and their effects on phenotypes, we developed an approach to mapping structural variants that segregate in a population sequenced at low coverage. We avoid calling structural variants directly. Instead, the evidence for a potential structural variant at a locus is indicated by variation in the counts of short-reads that map anomalously to that locus. These structural variant traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between a structural variant trait at one locus, and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3×) population sequence data from 488 recombinant inbred Arabidopsis thaliana genomes, we identified 6502 segregating structural variants. Remarkably, 25% of these were transpositions. While many structural variants cannot be delineated precisely, we validated 83% of 44 predicted transposition breakpoints by polymerase chain reaction. We show that specific structural variants may be causative for quantitative trait loci for germination and resistance to infection by the fungus Albugo laibachii , isolate Nc14. Further we show that the phenotypic heritability attributable to read-mapping anomalies differs from, and, in the case of time to germination and bolting, exceeds that due to standard genetic variation. Genes within structural variants are also more likely to be silenced or dysregulated. This approach complements the prevalent strategy of structural variant discovery in fewer individuals sequenced at high coverage. It is generally applicable to large populations sequenced at low-coverage, and is particularly suited to mapping transpositions. Copyright © 2017 by the Genetics Society of America.

  7. A quantitative comparison of transesophageal and epicardial color Doppler echocardiography in the intraoperative assessment of mitral regurgitation.

    PubMed

    Kleinman, J P; Czer, L S; DeRobertis, M; Chaux, A; Maurer, G

    1989-11-15

    Epicardial and transesophageal color Doppler echocardiography are both widely used for the intraoperative assessment of mitral regurgitation (MR); however, it has not been established whether grading of regurgitation is comparable when evaluated by these 2 techniques. MR jet size was quantitatively compared in 29 hemodynamically and temporally matched open-chest epicardial and transesophageal color Doppler echocardiography studies from 22 patients (18 with native and 4 with porcine mitral valves) scheduled to undergo mitral valve repair or replacement. Jet area, jet length and left atrial area were analyzed. Comparison of jet area measurements as assessed by epicardial and transesophageal color flow mapping revealed an excellent correlation between the techniques (r = 0.95, p less than 0.001). Epicardial and transesophageal jet length measurements were also similar (r = 0.77, p less than 0.001). Left atrial area could not be measured in 18 transesophageal studies (62%) due to foreshortening, and in 5 epicardial studies (17%) due to poor image resolution. Acoustic interference with left atrial and color flow mapping signals was noted in all patients with mitral valve prostheses when imaged by epicardial echocardiography, but this did not occur with transesophageal imaging. Thus, in patients undergoing valve repair or replacement, transesophageal and epicardial color flow mapping provide similar quantitative assessment of MR jet size. Jet area to left atrial area ratios have limited applicability in transesophageal color flow mapping, due to foreshortening of the left atrial borders in transesophageal views. Transesophageal color flow mapping may be especially useful in assessing dysfunctional mitral prostheses due to the lack of left atrial acoustic interference.

  8. A quantitative comparison of the similarity between genes and geography in worldwide human populations.

    PubMed

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A

    2012-08-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure.

  9. Statistical parametric mapping of stimuli-evoked changes in quantitative blood flow using extended-focus optical coherence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Marchand, Paul J.; Bouwens, Arno; Shamaei, Vincent; Nguyen, David; Extermann, Jerome; Bolmont, Tristan; Lasser, Theo

    2016-03-01

    Magnetic Resonance Imaging has revolutionised our understanding of brain function through its ability to image human cerebral structures non-invasively over the entire brain. By exploiting the different magnetic properties of oxygenated and deoxygenated blood, functional MRI can indirectly map areas undergoing neural activation. Alongside the development of fMRI, powerful statistical tools have been developed in an effort to shed light on the neural pathways involved in processing of sensory and cognitive information. In spite of the major improvements made in fMRI technology, the obtained spatial resolution of hundreds of microns prevents MRI in resolving and monitoring processes occurring at the cellular level. In this regard, Optical Coherence Microscopy is an ideal instrumentation as it can image at high spatio-temporal resolution. Moreover, by measuring the mean and the width of the Doppler spectra of light scattered by moving particles, OCM allows extracting the axial and lateral velocity components of red blood cells. The ability to assess quantitatively total blood velocity, as opposed to classical axial velocity Doppler OCM, is of paramount importance in brain imaging as a large proportion of cortical vascular is oriented perpendicularly to the optical axis. We combine here quantitative blood flow imaging with extended-focus Optical Coherence Microscopy and Statistical Parametric Mapping tools to generate maps of stimuli-evoked cortical hemodynamics at the capillary level.

  10. Temporal maps and informativeness in associative learning.

    PubMed

    Balsam, Peter D; Gallistel, C Randy

    2009-02-01

    Neurobiological research on learning assumes that temporal contiguity is essential for association formation, but what constitutes temporal contiguity has never been specified. We review evidence that learning depends, instead, on learning a temporal map. Temporal relations between events are encoded even from single experiences. The speed with which an anticipatory response emerges is proportional to the informativeness of the encoded relation between a predictive stimulus or event and the event it predicts. This principle yields a quantitative account of the heretofore undefined, but theoretically crucial, concept of temporal pairing, an account in quantitative accord with surprising experimental findings. The same principle explains the basic results in the cue competition literature, which motivated the Rescorla-Wagner model and most other contemporary models of associative learning. The essential feature of a memory mechanism in this account is its ability to encode quantitative information.

  11. Temporal maps and informativeness in associative learning

    PubMed Central

    Balsam, Peter D; Gallistel, C. Randy

    2009-01-01

    Neurobiological research on learning assumes that temporal contiguity is essential for association formation, but what constitutes temporal contiguity has never been specified. We review evidence that learning depends, instead, on learning a temporal map. Temporal relations between events are encoded even from single experiences. The speed with which an anticipatory response emerges is proportional to the informativeness of the encoded relation between a predictive stimulus or event and the event it predicts. This principle yields a quantitative account of the heretofore undefined, but theoretically crucial, concept of temporal pairing, an account in quantitative accord with surprising experimental findings. The same principle explains the basic results in the cue competition literature, which motivated the Rescorla–Wagner model and most other contemporary models of associative learning. The essential feature of a memory mechanism in this account is its ability to encode quantitative information. PMID:19136158

  12. Quantitative trait loci associated with anthracnose resistance in sorghum

    USDA-ARS?s Scientific Manuscript database

    With an aim to develop a durable resistance to the fungal disease anthracnose, two unique genetic sources of resistance were selected to create genetic mapping populations to identify regions of the sorghum genome that encode anthracnose resistance. A series of quantitative trait loci were identifi...

  13. Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans

    PubMed Central

    Bassi, Denis; Briñez, Boris; Rosa, Juliana Santa; Oblessuc, Paula Rodrigues; de Almeida, Caléo Panhoca; Nucci, Stella Maris; da Silva, Larissa Chariel Domingos; Chiorato, Alisson Fernando; Vianello, Rosana Pereira; Camargo, Luis Eduardo Aranha; Blair, Matthew Wohlgemuth; Benchimol-Reis, Luciana Lasry

    2017-01-01

    Abstract Angular leaf spot (ALS) and powdery mildew (PWM) are two important fungi diseases causing significant yield losses in common beans. In this study, a new genetic linkage map was constructed using single sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), in a segregating population derived from the AND 277 x SEA 5 cross, with 105 recombinant inbred lines. Phenotypic evaluations were performed in the greenhouse to identify quantitative trait loci (QTLs) associated with resistance by means of the composite interval mapping analysis. Four QTLs were identified for ALS resistance. The QTL ALS11AS, linked on the SNP BAR 5054, mapped on chromosome Pv11, showed the greatest effect (R2 = 26.5%) on ALS phenotypic variance. For PWM resistance, two QTLs were detected, PWM2AS and PWM11AS, on Pv2 and Pv11, explaining 7% and 66% of the phenotypic variation, respectively. Both QTLs on Pv11 were mapped on the same genomic region, suggesting that it is a pleiotropic region. The present study resulted in the identification of new markers closely linked to ALS and PWM QTLs, which can be used for marker-assisted selection, fine mapping and positional cloning. PMID:28222201

  14. Mapping 180° polar domains using electron backscatter diffraction and dynamical scattering simulations

    DOE PAGES

    Burch, Matthew J.; Fancher, Chris M.; Patala, Srikanth; ...

    2016-11-18

    A novel technique, which directly and nondestructively maps polar domains using electron backscatter diffraction (EBSD) is described and demonstrated. Through dynamical diffraction simulations and quantitative comparison to experimental EBSD patterns, the absolute orientation of a non-centrosymmetric crystal can be determined. With this information, the polar domains of a material can be mapped. The technique is demonstrated by mapping the non-ferroelastic, or 180°, ferroelectric domains in periodically poled LiNbO 3 single crystals. Furthermore, the authors demonstrate the possibility of mapping polarity using this technique in other polar materials system.

  15. Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study.

    PubMed

    Fournier-Level, Alexandre; Le Cunff, Loïc; Gomez, Camila; Doligez, Agnès; Ageorges, Agnès; Roux, Catherine; Bertrand, Yves; Souquet, Jean-Marc; Cheynier, Véronique; This, Patrice

    2009-11-01

    The combination of QTL mapping studies of synthetic lines and association mapping studies of natural diversity represents an opportunity to throw light on the genetically based variation of quantitative traits. With the positional information provided through quantitative trait locus (QTL) mapping, which often leads to wide intervals encompassing numerous genes, it is now feasible to directly target candidate genes that are likely to be responsible for the observed variation in completely sequenced genomes and to test their effects through association genetics. This approach was performed in grape, a newly sequenced genome, to decipher the genetic architecture of anthocyanin content. Grapes may be either white or colored, ranging from the lightest pink to the darkest purple tones according to the amount of anthocyanin accumulated in the berry skin, which is a crucial trait for both wine quality and human nutrition. Although the determinism of the white phenotype has been fully identified, the genetic bases of the quantitative variation of anthocyanin content in berry skin remain unclear. A single QTL responsible for up to 62% of the variation in the anthocyanin content was mapped on a Syrah x Grenache F(1) pseudo-testcross. Among the 68 unigenes identified in the grape genome within the QTL interval, a cluster of four Myb-type genes was selected on the basis of physiological evidence (VvMybA1, VvMybA2, VvMybA3, and VvMybA4). From a core collection of natural resources (141 individuals), 32 polymorphisms revealed significant association, and extended linkage disequilibrium was observed. Using a multivariate regression method, we demonstrated that five polymorphisms in VvMybA genes except VvMybA4 (one retrotransposon, three single nucleotide polymorphisms and one 2-bp insertion/deletion) accounted for 84% of the observed variation. All these polymorphisms led to either structural changes in the MYB proteins or differences in the VvMybAs promoters. We concluded that the continuous variation in anthocyanin content in grape was explained mainly by a single gene cluster of three VvMybA genes. The use of natural diversity helped to reduce one QTL to a set of five quantitative trait nucleotides and gave a clear picture of how isogenes combined their effects to shape grape color. Such analysis also illustrates how isogenes combine their effect to shape a complex quantitative trait and enables the definition of markers directly targeted for upcoming breeding programs.

  16. Quantitative Susceptibility Mapping using Structural Feature based Collaborative Reconstruction (SFCR) in the Human Brain

    PubMed Central

    Cai, Congbo; Chen, Zhong; van Zijl, Peter C.M.

    2017-01-01

    The reconstruction of MR quantitative susceptibility mapping (QSM) from local phase measurements is an ill posed inverse problem and different regularization strategies incorporating a priori information extracted from magnitude and phase images have been proposed. However, the anatomy observed in magnitude and phase images does not always coincide spatially with that in susceptibility maps, which could give erroneous estimation in the reconstructed susceptibility map. In this paper, we develop a structural feature based collaborative reconstruction (SFCR) method for QSM including both magnitude and susceptibility based information. The SFCR algorithm is composed of two consecutive steps corresponding to complementary reconstruction models, each with a structural feature based l1 norm constraint and a voxel fidelity based l2 norm constraint, which allows both the structure edges and tiny features to be recovered, whereas the noise and artifacts could be reduced. In the M-step, the initial susceptibility map is reconstructed by employing a k-space based compressed sensing model incorporating magnitude prior. In the S-step, the susceptibility map is fitted in spatial domain using weighted constraints derived from the initial susceptibility map from the M-step. Simulations and in vivo human experiments at 7T MRI show that the SFCR method provides high quality susceptibility maps with improved RMSE and MSSIM. Finally, the susceptibility values of deep gray matter are analyzed in multiple head positions, with the supine position most approximate to the gold standard COSMOS result. PMID:27019480

  17. Quantitative Analysis of Localized Sources Identified by Focal Impulse and Rotor Modulation Mapping in Atrial Fibrillation

    PubMed Central

    Benharash, Peyman; Buch, Eric; Frank, Paul; Share, Michael; Tung, Roderick; Shivkumar, Kalyanam; Mandapati, Ravi

    2015-01-01

    Background New approaches to ablation of atrial fibrillation (AF) include focal impulse and rotor modulation (FIRM) mapping, and initial results reported with this technique have been favorable. We sought to independently evaluate the approach by analyzing quantitative characteristics of atrial electrograms used to identify rotors and describe acute procedural outcomes of FIRM-guided ablation. Methods and Results All FIRM-guided ablation procedures (n=24; 50% paroxysmal) at University of California, Los Angeles Medical Center were included for analysis. During AF, unipolar atrial electrograms collected from a 64-pole basket catheter were used to construct phase maps and identify putative AF sources. These sites were targeted for ablation, in conjunction with pulmonary vein isolation in most patients (n=19; 79%). All patients had rotors identified (mean, 2.3±0.9 per patient; 72% in left atrium). Prespecified acute procedural end point was achieved in 12 of 24 (50%) patients: AF termination (n=1), organization (n=3), or >10% slowing of AF cycle length (n=8). Basket electrodes were within 1 cm of 54% of left atrial surface area, and a mean of 31 electrodes per patient showed interpretable atrial electrograms. Offline analysis revealed no differences between rotor and distant sites in dominant frequency or Shannon entropy. Electroanatomic mapping showed no rotational activation at FIRM-identified rotor sites in 23 of 24 patients (96%). Conclusions FIRM-identified rotor sites did not exhibit quantitative atrial electrogram characteristics expected from rotors and did not differ quantitatively from surrounding tissue. Catheter ablation at these sites, in conjunction with pulmonary vein isolation, resulted in AF termination or organization in a minority of patients (4/24; 17%). Further validation of this approach is necessary. PMID:25873718

  18. Quantitative 3D analysis of bone in hip osteoarthritis using clinical computed tomography.

    PubMed

    Turmezei, Tom D; Treece, Graham M; Gee, Andrew H; Fotiadou, Anastasia F; Poole, Kenneth E S

    2016-07-01

    To assess the relationship between proximal femoral cortical bone thickness and radiological hip osteoarthritis using quantitative 3D analysis of clinical computed tomography (CT) data. Image analysis was performed on clinical CT imaging data from 203 female volunteers with a technique called cortical bone mapping (CBM). Colour thickness maps were created for each proximal femur. Statistical parametric mapping was performed to identify statistically significant differences in cortical bone thickness that corresponded with the severity of radiological hip osteoarthritis. Kellgren and Lawrence (K&L) grade, minimum joint space width (JSW) and a novel CT-based osteophyte score were also blindly assessed from the CT data. For each increase in K&L grade, cortical thickness increased by up to 25 % in distinct areas of the superolateral femoral head-neck junction and superior subchondral bone plate. For increasing severity of CT osteophytes, the increase in cortical thickness was more circumferential, involving a wider portion of the head-neck junction, with up to a 7 % increase in cortical thickness per increment in score. Results were not significant for minimum JSW. These findings indicate that quantitative 3D analysis of the proximal femur can identify changes in cortical bone thickness relevant to structural hip osteoarthritis. • CT is being increasingly used to assess bony involvement in osteoarthritis • CBM provides accurate and reliable quantitative analysis of cortical bone thickness • Cortical bone is thicker at the superior femoral head-neck with worse osteoarthritis • Regions of increased thickness co-locate with impingement and osteophyte formation • Quantitative 3D bone analysis could enable clinical disease prediction and therapy development.

  19. The FAQUIRE Approach: FAst, QUantitative, hIghly Resolved and sEnsitivity Enhanced 1H, 13C Data.

    PubMed

    Farjon, Jonathan; Milande, Clément; Martineau, Estelle; Akoka, Serge; Giraudeau, Patrick

    2018-02-06

    The targeted analysis of metabolites in complex mixtures is a challenging issue. NMR is one of the major tools in this field, but there is a strong need for more sensitive, better-resolved, and faster quantitative methods. In this framework, we introduce the concept of FAst, QUantitative, hIghly Resolved and sEnsitivity enhanced (FAQUIRE) NMR to push forward the limits of metabolite NMR analysis. 2D 1 H, 13 C 2D quantitative maps are promising alternatives for enhancing the spectral resolution but are highly time-consuming because of (i) the intrinsic nature of 2D, (ii) the longer recycling times required for quantitative conditions, and (iii) the higher number of scans needed to reduce the level of detection/quantification to access low concentrated metabolites. To reach this aim, speeding up the recently developed QUantItative Perfected and pUre shifted HSQC (QUIPU HSQC) is an interesting attempt to develop the FAQUIRE concept. Thanks to the combination of spectral aliasing, nonuniform sampling, and variable repetition time, the acquisition time of 2D quantitative maps is reduced by a factor 6 to 9, while conserving a high spectral resolution thanks to a pure shift approach. The analytical potential of the new Quick QUIPU HSQC (Q QUIPU HSQC) is evaluated on a model metabolite sample, and its potential is shown on breast-cell extracts embedding metabolites at millimolar to submillimolar concentrations.

  20. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    PubMed Central

    Jungmann, Pia M.; Baum, Thomas; Bauer, Jan S.; Karampinos, Dimitrios C.; Link, Thomas M.; Li, Xiaojuan; Trattnig, Siegfried; Rummeny, Ernst J.; Woertler, Klaus; Welsch, Goetz H.

    2014-01-01

    Background. New quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), and diffusion weighted imaging (DWI) are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair. PMID:24877139

  1. A High-Density Genetic Map with Array-Based Markers Facilitates Structural and Quantitative Trait Locus Analyses of the Common Wheat Genome

    PubMed Central

    Iehisa, Julio Cesar Masaru; Ohno, Ryoko; Kimura, Tatsuro; Enoki, Hiroyuki; Nishimura, Satoru; Okamoto, Yuki; Nasuda, Shuhei; Takumi, Shigeo

    2014-01-01

    The large genome and allohexaploidy of common wheat have complicated construction of a high-density genetic map. Although improvements in the throughput of next-generation sequencing (NGS) technologies have made it possible to obtain a large amount of genotyping data for an entire mapping population by direct sequencing, including hexaploid wheat, a significant number of missing data points are often apparent due to the low coverage of sequencing. In the present study, a microarray-based polymorphism detection system was developed using NGS data obtained from complexity-reduced genomic DNA of two common wheat cultivars, Chinese Spring (CS) and Mironovskaya 808. After design and selection of polymorphic probes, 13,056 new markers were added to the linkage map of a recombinant inbred mapping population between CS and Mironovskaya 808. On average, 2.49 missing data points per marker were observed in the 201 recombinant inbred lines, with a maximum of 42. Around 40% of the new markers were derived from genic regions and 11% from repetitive regions. The low number of retroelements indicated that the new polymorphic markers were mainly derived from the less repetitive region of the wheat genome. Around 25% of the mapped sequences were useful for alignment with the physical map of barley. Quantitative trait locus (QTL) analyses of 14 agronomically important traits related to flowering, spikes, and seeds demonstrated that the new high-density map showed improved QTL detection, resolution, and accuracy over the original simple sequence repeat map. PMID:24972598

  2. A high-density genetic map with array-based markers facilitates structural and quantitative trait locus analyses of the common wheat genome.

    PubMed

    Iehisa, Julio Cesar Masaru; Ohno, Ryoko; Kimura, Tatsuro; Enoki, Hiroyuki; Nishimura, Satoru; Okamoto, Yuki; Nasuda, Shuhei; Takumi, Shigeo

    2014-10-01

    The large genome and allohexaploidy of common wheat have complicated construction of a high-density genetic map. Although improvements in the throughput of next-generation sequencing (NGS) technologies have made it possible to obtain a large amount of genotyping data for an entire mapping population by direct sequencing, including hexaploid wheat, a significant number of missing data points are often apparent due to the low coverage of sequencing. In the present study, a microarray-based polymorphism detection system was developed using NGS data obtained from complexity-reduced genomic DNA of two common wheat cultivars, Chinese Spring (CS) and Mironovskaya 808. After design and selection of polymorphic probes, 13,056 new markers were added to the linkage map of a recombinant inbred mapping population between CS and Mironovskaya 808. On average, 2.49 missing data points per marker were observed in the 201 recombinant inbred lines, with a maximum of 42. Around 40% of the new markers were derived from genic regions and 11% from repetitive regions. The low number of retroelements indicated that the new polymorphic markers were mainly derived from the less repetitive region of the wheat genome. Around 25% of the mapped sequences were useful for alignment with the physical map of barley. Quantitative trait locus (QTL) analyses of 14 agronomically important traits related to flowering, spikes, and seeds demonstrated that the new high-density map showed improved QTL detection, resolution, and accuracy over the original simple sequence repeat map. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  3. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus.

    PubMed

    Li, Fagen; Zhou, Changpin; Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming

    2015-01-01

    Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10-56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa.

  4. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus

    PubMed Central

    Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming

    2015-01-01

    Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10–56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa. PMID:26695430

  5. Quantitative trait loci mapping for flowering time in a switchgrass pseudo-F2 population

    USDA-ARS?s Scientific Manuscript database

    Flowering is an important developmental event in switchgrass (Panicum virgatum) because the onset of flowering causes the cessation of vegetative growth and biomass accumulation. The objective of this study was to generate a linkage map using single nucleotide polymorphism (SNP) markers to identify ...

  6. Allelic analysis of sheath blight resistance with association mapping in rice

    USDA-ARS?s Scientific Manuscript database

    Sheath blight is one of the most devastating diseases world-wide in rice. For the first time, we adopted association mapping to identify quantitative trait loci for sheath blight resistance from the USDA rice mini-core collection. The phenotyping was conducted with a newly developed micro-chamber me...

  7. Metrics and Mappings: A Framework for Understanding Real-World Quantitative Estimation.

    ERIC Educational Resources Information Center

    Brown, Norman R.; Siegler, Robert S.

    1993-01-01

    A metrics and mapping framework is proposed to account for how heuristics, domain-specific reasoning, and intuitive statistical induction processes are integrated to generate estimates. Results of 4 experiments involving 188 undergraduates illustrate framework usefulness and suggest when people use heuristics and when they emphasize…

  8. RAMP: a computer system for mapping regional areas

    Treesearch

    Bradley B. Nickey

    1975-01-01

    Until 1972, the U.S. Forest Service's Individual Fire Reports recorded locations by the section-township-range system..These earlier fire reports, therefore, lacked congruent locations. RAMP (Regional Area Mapping Procedure) was designed to make the reports more useful for quantitative analysis. This computer-based technique converts locations expressed in...

  9. Correlation characteristics of phase and amplitude chimeras in an ensemble of nonlocally coupled maps

    NASA Astrophysics Data System (ADS)

    Vadivasova, T. E.; Strelkova, G. I.; Bogomolov, S. A.; Anishchenko, V. S.

    2017-01-01

    Correlation characteristics of chimera states have been calculated using the coefficient of mutual correlation of elements in a closed-ring ensemble of nonlocally coupled chaotic maps. Quantitative differences between the coefficients of mutual correlation for phase and amplitude chimeras are established for the first time.

  10. XRF map identification problems based on a PDE electrodeposition model

    NASA Astrophysics Data System (ADS)

    Sgura, Ivonne; Bozzini, Benedetto

    2017-04-01

    In this paper we focus on the following map identification problem (MIP): given a morphochemical reaction-diffusion (RD) PDE system modeling an electrodepostion process, we look for a time t *, belonging to the transient dynamics and a set of parameters \\mathbf{p} , such that the PDE solution, for the morphology h≤ft(x,y,{{t}\\ast};\\mathbf{p}\\right) and for the chemistry θ ≤ft(x,y,{{t}\\ast};\\mathbf{p}\\right) approximates a given experimental map M *. Towards this aim, we introduce a numerical algorithm using singular value decomposition (SVD) and Frobenius norm to give a measure of error distance between experimental maps for h and θ and simulated solutions of the RD-PDE system on a fixed time integration interval. The technique proposed allows quantitative use of microspectroscopy images, such as XRF maps. Specifically, in this work we have modelled the morphology and manganese distributions of nanostructured components of innovative batteries and we have followed their changes resulting from ageing under operating conditions. The availability of quantitative information on space-time evolution of active materials in terms of model parameters will allow dramatic improvements in knowledge-based optimization of battery fabrication and operation.

  11. The Mapping Model: A Cognitive Theory of Quantitative Estimation

    ERIC Educational Resources Information Center

    von Helversen, Bettina; Rieskamp, Jorg

    2008-01-01

    How do people make quantitative estimations, such as estimating a car's selling price? Traditionally, linear-regression-type models have been used to answer this question. These models assume that people weight and integrate all information available to estimate a criterion. The authors propose an alternative cognitive theory for quantitative…

  12. Solving Quantitative Problems: Guidelines for Teaching Derived from Research.

    ERIC Educational Resources Information Center

    Kramers-Pals, H.; Pilot, A.

    1988-01-01

    Presents four guidelines for teaching quantitative problem-solving based on research results: analyze difficulties of students, develop a system of heuristics, select and map key relations, and design instruction with proper orientation, exercise, and feedback. Discusses the four guidelines and uses flow charts and diagrams to show how the…

  13. Models of Quantitative Estimations: Rule-Based and Exemplar-Based Processes Compared

    ERIC Educational Resources Information Center

    von Helversen, Bettina; Rieskamp, Jorg

    2009-01-01

    The cognitive processes underlying quantitative estimations vary. Past research has identified task-contingent changes between rule-based and exemplar-based processes (P. Juslin, L. Karlsson, & H. Olsson, 2008). B. von Helversen and J. Rieskamp (2008), however, proposed a simple rule-based model--the mapping model--that outperformed the…

  14. University Students' Understanding of the Concepts Empirical, Theoretical, Qualitative and Quantitative Research

    ERIC Educational Resources Information Center

    Murtonen, Mari

    2015-01-01

    University research education in many disciplines is frequently confronted by problems with students' weak level of understanding of research concepts. A mind map technique was used to investigate how students understand central methodological concepts of empirical, theoretical, qualitative and quantitative. The main hypothesis was that some…

  15. An open-source computational and data resource to analyze digital maps of immunopeptidomes

    DOE PAGES

    Caron, Etienne; Espona, Lucia; Kowalewski, Daniel J.; ...

    2015-07-08

    We present a novel mass spectrometry-based high-throughput workflow and an open-source computational and data resource to reproducibly identify and quantify HLA-associated peptides. Collectively, the resources support the generation of HLA allele-specific peptide assay libraries consisting of consensus fragment ion spectra, and the analysis of quantitative digital maps of HLA peptidomes generated from a range of biological sources by SWATH mass spectrometry (MS). This study represents the first community-based effort to develop a robust platform for the reproducible and quantitative measurement of the entire repertoire of peptides presented by HLA molecules, an essential step towards the design of efficient immunotherapies.

  16. Analyzing the texture changes in the quantitative phase maps of adipocytes

    NASA Astrophysics Data System (ADS)

    Roitshtain, Darina; Sharabani-Yosef, Orna; Gefen, Amit; Shaked, Natan T.

    2016-03-01

    We present a new analysis tool for studying texture changes in the quantitative phase maps of live cells acquired by wide-field interferometry. The sensitivity of wide-field interferometry systems to small changes in refractive index enables visualizing cells and inner cell organelles without the using fluorescent dyes or other cell-invasive approaches, which may affect the measurement and require external labeling. Our label-free texture-analysis tool is based directly on the optical path delay profile of the sample and does not necessitate decoupling refractive index and thickness in the cell quantitative phase profile; thus, relevant parameters can be calculated using a single-frame acquisition. Our experimental system includes low-coherence wide-field interferometer, combined with simultaneous florescence microscopy system for validation. We used this system and analysis tool for studying lipid droplets formation in adipocytes. The latter demonstration is relevant for various cellular functions such as lipid metabolism, protein storage and degradation to viral replication. These processes are functionally linked to several physiological and pathological conditions, including obesity and metabolic diseases. Quantification of these biological phenomena based on the texture changes in the cell phase map has a potential as a new cellular diagnosis tool.

  17. Comparative mapping reveals quantitative trait loci that affect spawning time in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Araneda, Cristian; Díaz, Nelson F.; Gomez, Gilda; López, María Eugenia; Iturra, Patricia

    2012-01-01

    Spawning time in salmonids is a sex-limited quantitative trait that can be modified by selection. In rainbow trout (Oncorhynchus mykiss), various quantitative trait loci (QTL) that affect the expression of this trait have been discovered. In this study, we describe four microsatellite loci associated with two possible spawning time QTL regions in coho salmon (Oncorhynchus kisutch). The four loci were identified in females from two populations (early and late spawners) produced by divergent selection from the same base population. Three of the loci (OmyFGT34TUF, One2ASC and One19ASC) that were strongly associated with spawning time in coho salmon (p < 0.0002) were previously associated with QTL for the same trait in rainbow trout; a fourth loci (Oki10) with a suggestive association (p = 0.00035) mapped 10 cM from locus OmyFGT34TUF in rainbow trout. The changes in allelic frequency observed after three generations of selection were greater than expected because of genetic drift. This work shows that comparing information from closely-related species is a valid strategy for identifying QTLs for marker-assisted selection in species whose genomes are poorly characterized or lack a saturated genetic map. PMID:22888302

  18. Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy.

    PubMed

    Schmid, Volker J; Cremer, Marion; Cremer, Thomas

    2017-07-01

    Recent advancements of super-resolved fluorescence microscopy have revolutionized microscopic studies of cells, including the exceedingly complex structural organization of cell nuclei in space and time. In this paper we describe and discuss tools for (semi-) automated, quantitative 3D analyses of the spatial nuclear organization. These tools allow the quantitative assessment of highly resolved different chromatin compaction levels in individual cell nuclei, which reflect functionally different regions or sub-compartments of the 3D nuclear landscape, and measurements of absolute distances between sites of different chromatin compaction. In addition, these tools allow 3D mapping of specific DNA/RNA sequences and nuclear proteins relative to the 3D chromatin compaction maps and comparisons of multiple cell nuclei. The tools are available in the free and open source R packages nucim and bioimagetools. We discuss the use of masks for the segmentation of nuclei and the use of DNA stains, such as DAPI, as a proxy for local differences in chromatin compaction. We further discuss the limitations of 3D maps of the nuclear landscape as well as problems of the biological interpretation of such data. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Quantitative trait locus gene mapping: a new method for locating alcohol response genes.

    PubMed

    Crabbe, J C

    1996-01-01

    Alcoholism is a multigenic trait with important non-genetic determinants. Studies with genetic animal models of susceptibility to several of alcohol's effects suggest that several genes contributing modest effects on susceptibility (Quantitative Trait Loci, or QTLs) are important. A new technique of QTL gene mapping has allowed the identification of the location in mouse genome of several such QTLs. The method is described, and the locations of QTLs affecting the acute alcohol withdrawal reaction are described as an example of the method. Verification of these QTLs in ancillary studies is described and the strengths, limitations, and future directions to be pursued are discussed. QTL mapping is a promising method for identifying genes in rodents with the hope of directly extrapolating the results to the human genome. This review is based on a paper presented at the First International Congress of the Latin American Society for Biomedical Research on Alcoholism, Santiago, Chile, November 1994.

  20. Quantitation of Localized 31P Magnetic Resonance Spectra Based on the Reciprocity Principle

    NASA Astrophysics Data System (ADS)

    Kreis, R.; Slotboom, J.; Pietz, J.; Jung, B.; Boesch, C.

    2001-04-01

    There is a need for absolute quantitation methods in 31P magnetic resonance spectroscopy, because none of the phosphorous-containing metabolites is necessarily constant in pathology. Here, a method for absolute quantitation of in vivo31P MR spectra that provides reproducible metabolite contents in institutional or standard units is described. It relies on the reciprocity principle, i.e., the proportionality between the B1 field map and the map of reception strength for a coil with identical relative current distributions in receive and transmit mode. Cerebral tissue contents of 31P metabolites were determined in a predominantly white matter-containing location in healthy subjects. The results are in good agreement with the literature and the interexamination coefficient of variance is better than that in most previous studies. A gender difference found for some of the 31P metabolites may be explained by different voxel composition.

  1. Quantitative analysis of aircraft multispectral-scanner data and mapping of water-quality parameters in the James River in Virginia

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Bahn, G. S.

    1977-01-01

    Statistical analysis techniques were applied to develop quantitative relationships between in situ river measurements and the remotely sensed data that were obtained over the James River in Virginia on 28 May 1974. The remotely sensed data were collected with a multispectral scanner and with photographs taken from an aircraft platform. Concentration differences among water quality parameters such as suspended sediment, chlorophyll a, and nutrients indicated significant spectral variations. Calibrated equations from the multiple regression analysis were used to develop maps that indicated the quantitative distributions of water quality parameters and the dispersion characteristics of a pollutant plume entering the turbid river system. Results from further analyses that use only three preselected multispectral scanner bands of data indicated that regression coefficients and standard errors of estimate were not appreciably degraded compared with results from the 10-band analysis.

  2. Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging

    PubMed Central

    Zheng, Weili; Nichol, Helen; Liu, Saifeng; Cheng, Yu-Chung N.; Haacke, E. Mark

    2013-01-01

    Measuring iron content in the brain has important implications for a number of neurodegenerative diseases. Quantitative susceptibility mapping (QSM), derived from magnetic resonance images, has been used to measure total iron content in vivo and in post mortem brain. In this paper, we show how magnetic susceptibility from QSM correlates with total iron content measured by X-ray fluorescence (XRF) imaging and by inductively coupled plasma mass spectrometry (ICPMS). The relationship between susceptibility and ferritin iron was estimated at 1.10 ± 0.08 ppb susceptibility per μg iron/g wet tissue, similar to that of iron in fixed (frozen/thawed) cadaveric brain and previously published data from unfixed brains. We conclude that magnetic susceptibility can provide a direct and reliable quantitative measurement of iron content and that it can be used clinically at least in regions with high iron content. PMID:23591072

  3. Quantitative Schlieren analysis applied to holograms of crystals grown on Spacelab 3

    NASA Technical Reports Server (NTRS)

    Brooks, Howard L.

    1986-01-01

    In order to extract additional information about crystals grown in the microgravity environment of Spacelab, a quantitative schlieren analysis technique was developed for use in a Holography Ground System of the Fluid Experiment System. Utilizing the Unidex position controller, it was possible to measure deviation angles produced by refractive index gradients of 0.5 milliradians. Additionally, refractive index gradient maps for any recorded time during the crystal growth were drawn and used to create solute concentration maps for the environment around the crystal. The technique was applied to flight holograms of Cell 204 of the Fluid Experiment System that were recorded during the Spacelab 3 mission on STS 51B. A triglycine sulfate crystal was grown under isothermal conditions in the cell and the data gathered with the quantitative schlieren analysis technique is consistent with a diffusion limited growth process.

  4. Modeling and Mapping Personal Learning Environment of Thai International Higher Education Students

    ERIC Educational Resources Information Center

    Sharafuddin, Mohamed Ali; Sawad, Buncha Panacharoen; Wongwai, Sarun

    2018-01-01

    This research article is part of a periodic study conducted to understand, model, map and to develop an integrated approach for effective and interactive self-learning phases of Thai International Hospitality and Tourism higher education students. Questionnaire containing both qualitative and quantitative questions was distributed at the beginning…

  5. Mapping and QTL analysis of drought tolerance in a spring wheat population using AFLP and DArt markers

    USDA-ARS?s Scientific Manuscript database

    Water availability is commonly the most limiting factor to crop production. This study was conducted to map quantitative trait loci (QTL) involved in drought tolerance in wheat (Triticum aestivum L.) to enable their use for marker assisted selection (MAS) in breeding. Using amplified fragment leng...

  6. 49 CFR Appendix C to Part 195 - Guidance for Implementation of an Integrity Management Program

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... get this information from topographical maps such as U.S. Geological Survey quadrangle maps. (2... risk.)—Risk Value=3 Close interval survey: (yes/no)—no—Risk Value =5 Internal Inspection tool used..., including a summary of performance improvements, both qualitative and quantitative, to an operator's...

  7. 49 CFR Appendix C to Part 195 - Guidance for Implementation of an Integrity Management Program

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... get this information from topographical maps such as U.S. Geological Survey quadrangle maps. (2... risk.)—Risk Value=3 Close interval survey: (yes/no)—no—Risk Value =5 Internal Inspection tool used..., including a summary of performance improvements, both qualitative and quantitative, to an operator's...

  8. 49 CFR Appendix C to Part 195 - Guidance for Implementation of an Integrity Management Program

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... get this information from topographical maps such as U.S. Geological Survey quadrangle maps. (2... risk.)—Risk Value=3 Close interval survey: (yes/no)—no—Risk Value =5 Internal Inspection tool used..., including a summary of performance improvements, both qualitative and quantitative, to an operator's...

  9. 49 CFR Appendix C to Part 195 - Guidance for Implementation of an Integrity Management Program

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... get this information from topographical maps such as U.S. Geological Survey quadrangle maps. (2... risk.)—Risk Value=3 Close interval survey: (yes/no)—no—Risk Value =5 Internal Inspection tool used..., including a summary of performance improvements, both qualitative and quantitative, to an operator's...

  10. Using Single-nucleotide Polymorphisms and Genetic Mapping to find Candidate Genes that Influence Varroa-Specific Hygiene

    USDA-ARS?s Scientific Manuscript database

    Varroa-sensitive hygienic (VSH) behavior is one of two behaviors identified that are most important for controlling the growth of Varroa mite populations in bee hives. A study was conducted to map quantitative trait loci (QTL) that influence VSH so that resistance genes could be identified. Crosses ...

  11. Titan Polar Landscape Evolution

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  12. Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: interpreting positive susceptibility and the presence of iron

    PubMed Central

    Wisnieff, Cynthia; Ramanan, Sriram; Olesik, John; Gauthier, Susan; Wang, Yi; Pitt, David

    2014-01-01

    Purpose Within multiple sclerosis (MS) lesions iron is present in chronically activated microglia. Thus, iron detection with MRI might provide a biomarker for chronic inflammation within lesions. Here, we examine contributions of iron and myelin to magnetic susceptibility of lesions on quantitative susceptibility mapping (QSM). Methods Fixed MS brain tissue was assessed with MRI including gradient echo data, which was processed to generate field (phase), R2* and QSM. Five lesions were sectioned and evaluated by immunohistochemistry for presence of myelin, iron and microglia/macrophages. Two of the lesions had an elemental analysis for iron concentration mapping, and their phospholipid content was estimated from the difference in the iron and QSM data. Results Three of the five lesions had substantial iron deposition that was associated with microglia and positive susceptibility values. For the two lesions with elemental analysis, the QSM derived phospholipid content maps were consistent with myelin labeled histology. Conclusion Positive susceptibility values with respect to water indicate the presence of iron in MS lesions, though both demyelination and iron deposition contribute to QSM. PMID:25137340

  13. STrategically Acquired Gradient Echo (STAGE) imaging, part I: Creating enhanced T1 contrast and standardized susceptibility weighted imaging and quantitative susceptibility mapping.

    PubMed

    Chen, Yongsheng; Liu, Saifeng; Wang, Yu; Kang, Yan; Haacke, E Mark

    2018-02-01

    To provide whole brain grey matter (GM) to white matter (WM) contrast enhanced T1W (T1WE) images, multi-echo quantitative susceptibility mapping (QSM), proton density (PD) weighted images, T1 maps, PD maps, susceptibility weighted imaging (SWI), and R2* maps with minimal misregistration in scanning times <5min. Strategically acquired gradient echo (STAGE) imaging includes two fully flow compensated double echo gradient echo acquisitions with a resolution of 0.67×1.33×2.0mm 3 acquired in 5min for 64 slices. Ten subjects were recruited and scanned at 3 Tesla. The optimum pair of flip angles (6° and 24° with TR=25ms at 3T) were used for both T1 mapping with radio frequency (RF) transmit field correction and creating enhanced GM/WM contrast (the T1WE). The proposed T1WE image was created from a combination of the proton density weighted (6°, PDW) and T1W (24°) images and corrected for RF transmit field variations. Prior to the QSM calculation, a multi-echo phase unwrapping strategy was implemented using the unwrapped short echo to unwrap the longer echo to speed up computation. R2* maps were used to mask deep grey matter and veins during the iterative QSM calculation. A weighted-average sum of susceptibility maps was generated to increase the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). The proposed T1WE image has a significantly improved CNR both for WM to deep GM and WM to cortical GM compared to the acquired T1W image (the first echo of 24° scan) and the T1MPRAGE image. The weighted-average susceptibility maps have 80±26%, 55±22%, 108±33% SNR increases across the ten subjects compared to the single echo result of 17.5ms for the putamen, caudate nucleus, and globus pallidus, respectively. STAGE imaging offers the potential to create a standardized brain imaging protocol providing four pieces of quantitative tissue property information and multiple types of qualitative information in just 5min. Published by Elsevier Inc.

  14. Quantitative T2-Mapping and T2⁎-Mapping Evaluation of Changes in Cartilage Matrix after Acute Anterior Cruciate Ligament Rupture and the Correlation between the Results of Both Methods

    PubMed Central

    Tao, Hongyue; Qiao, Yang; Hu, Yiwen; Xie, Yuxue; Lu, Rong; Yan, Xu

    2018-01-01

    Objectives To quantitatively assess changes in cartilage matrix after acute anterior cruciate ligament (ACL) rupture using T2- and T2⁎-mapping and analyze the correlation between the results of both methods. Methods Twenty-three patients and 23 healthy controls were enrolled and underwent quantitative MRI examination. The knee cartilage was segmented into six compartments, including lateral femur (LF), lateral tibia (LT), medial femur (MF), medial tibia (MT), trochlea (Tr), and patella (Pa). T2 and T2⁎ values were measured in full-thickness as well as superficial and deep layers of each cartilage compartment. Differences of T2 and T2⁎ values between patients and controls were compared using unpaired Student's t-test, and the correlation between their reciprocals was analyzed using Pearson's correlation coefficient. Results ACL-ruptured patients showed higher T2 and T2⁎ values in full-thickness and superficial layers of medial and lateral tibiofemoral joint. Meanwhile, patients exhibited higher T2⁎ values in deep layers of lateral tibiofemoral joint. The elevated percentages of T2 and T2⁎ value in superficial LT were most significant (20.738%, 17.525%). The reciprocal of T2⁎ value was correlated with that of T2 value (r = 0.886, P < 0.001). Conclusion The early degeneration could occur in various knee cartilage compartments after acute ACL rupture, especially in the superficial layer of LT. T2⁎-mapping might be more sensitive in detecting deep layer of cartilage than T2-mapping. PMID:29888279

  15. Combination of Eight Alleles at Four Quantitative Trait Loci Determines Grain Length in Rice

    PubMed Central

    Zeng, Yuxiang; Ji, Zhijuan; Wen, Zhihua; Liang, Yan; Yang, Changdeng

    2016-01-01

    Grain length is an important quantitative trait in rice (Oryza sativa L.) that influences both grain yield and exterior quality. Although many quantitative trait loci (QTLs) for grain length have been identified, it is still unclear how different alleles from different QTLs regulate grain length coordinately. To explore the mechanisms of QTL combination in the determination of grain length, five mapping populations, including two F2 populations, an F3 population, an F7 recombinant inbred line (RIL) population, and an F8 RIL population, were developed from the cross between the U.S. tropical japonica variety ‘Lemont’ and the Chinese indica variety ‘Yangdao 4’ and grown under different environmental conditions. Four QTLs (qGL-3-1, qGL-3-2, qGL-4, and qGL-7) for grain length were detected using both composite interval mapping and multiple interval mapping methods in the mapping populations. In each locus, there was an allele from one parent that increased grain length and another allele from another parent that decreased it. The eight alleles in the four QTLs were analyzed to determine whether these alleles act additively across loci, and lead to a linear relationship between the predicted breeding value of QTLs and phenotype. Linear regression analysis suggested that the combination of eight alleles determined grain length. Plants carrying more grain length-increasing alleles had longer grain length than those carrying more grain length-decreasing alleles. This trend was consistent in all five mapping populations and demonstrated the regulation of grain length by the four QTLs. Thus, these QTLs are ideal resources for modifying grain length in rice. PMID:26942914

  16. Qualitative and quantitative trait loci conditioning resistance to Puccinia coronata pathotypes NQMG and LGCG in the oat (Avena sativa L.) cultivars Ogle and TAM O-301.

    PubMed

    Jackson, E W; Obert, D E; Menz, M; Hu, G; Bonman, J M

    2008-02-01

    Mapping disease resistance loci relies on the type and precision of phenotypic measurements. For crown rust of oat, disease severity is commonly assessed based on visual ratings of infection types (IT) and/or diseased leaf area (DLA) of infected plants in the greenhouse or field. These data can be affected by several variables including; (i) non-uniform disease development in the field; (ii) atypical symptom development in the greenhouse; (iii) the presence of multiple pathogenic races or pathotypes in the field, and (iv) rating bias. To overcome these limitations, we mapped crown rust resistance to single isolates in the Ogle/TAM O-301 (OT) recombinant inbred line (RIL) population using detailed measurements of IT, uredinia length (UL) and relative fungal DNA (FDNA) estimates determined by q-PCR. Measurements were taken on OT parents and recombinant inbred lines (RIL) inoculated with Puccinia coronata pathotypes NQMG and LGCG in separate greenhouse and field tests. Qualitative mapping identified an allele conferred by TAM O-301 on linkage group (LG) OT-11, which produced a bleached fleck phenotype to both NQMG and LGCG. Quantitative mapping identified two major quantitative trait loci (QTL) originating from TAM O-301 on LGs OT-11 and OT-32 which reduced UL and FDNA of both isolates in all experiments. Additionally, minor QTLs that reduced UL and FDNA were detected on LGs OT-15 and OT-8, originating from TAM O-301, and on LG OT-27, originating from Ogle. Detailed assessments of the OT population using two pathotypes in both the greenhouse and field provided comprehensive information to effectively map the genes responsible for crown rust resistance in Ogle and TAM O-301 to NQMG and LGCG.

  17. Interspecies synteny mapping identifies a quantitative trait locus for bone mineral density on human chromosome Xp22.

    PubMed

    Parsons, Claire A; Mroczkowski, H Joel; McGuigan, Fiona E A; Albagha, Omar M E; Manolagas, Stavros; Reid, David M; Ralston, Stuart H; Shmookler Reis, Robert J

    2005-11-01

    Bone mineral density (BMD) is a complex trait with a strong genetic component and an important predictor of osteoporotic fracture risk. Here we report the use of a cross-species strategy to identify genes that regulate BMD, proceeding from quantitative trait mapping in mice to association mapping of the syntenic region in the human genome. We identified a quantitative trait locus (QTL) on the mouse X-chromosome for post-maturity change in spine BMD in a cross of SAMP6 and AKR/J mice and conducted association mapping of the syntenic region on human chromosome Xp22. We studied 76 single nucleotide polymorphisms (SNP) from the human region in two sets of DNA pools prepared from individuals with lumbar spine-BMD (LS-BMD) values falling into the top and bottom 13th percentiles of a population-based study of 3100 post-menopausal women. This procedure identified a region of significant association for two adjacent SNP (rs234494 and rs234495) within the Xp22 locus (P<0.001). Individual genotyping for rs234494 in the BMD pools confirmed the presence of an association for alleles (P=0.018) and genotypes (P=0.008). Analysis of rs234494 and rs234495 in 1053 women derived from the same population who were not selected for BMD values showed an association with LS-BMD for rs234495 (P=0.01) and for haplotypes defined by both SNP (P=0.002). Our study illustrates that interspecies synteny can be used to identify and refine QTL for complex traits and represents the first example where a human QTL for BMD regulation has been mapped using this approach.

  18. Quantitative FE-EPMA measurement of formation and inhibition of carbon contamination on Fe for trace carbon analysis.

    PubMed

    Tanaka, Yuji; Yamashita, Takako; Nagoshi, Masayasu

    2017-04-01

    Hydrocarbon contamination introduced during point, line and map analyses in a field emission electron probe microanalysis (FE-EPMA) was investigated to enable reliable quantitative analysis of trace amounts of carbon in steels. The increment of contamination on pure iron in point analysis is proportional to the number of iterations of beam irradiation, but not to the accumulated irradiation time. A combination of a longer dwell time and single measurement with a liquid nitrogen (LN2) trap as an anti-contamination device (ACD) is sufficient for a quantitative point analysis. However, in line and map analyses, contamination increases with irradiation time in addition to the number of iterations, even though the LN2 trap and a plasma cleaner are used as ACDs. Thus, a shorter dwell time and single measurement are preferred for line and map analyses, although it is difficult to eliminate the influence of contamination. While ring-like contamination around the irradiation point grows during electron-beam irradiation, contamination at the irradiation point increases during blanking time after irradiation. This can explain the increment of contamination in iterative point analysis as well as in line and map analyses. Among the ACDs, which are tested in this study, specimen heating at 373 K has a significant contamination inhibition effect. This technique makes it possible to obtain line and map analysis data with minimum influence of contamination. The above-mentioned FE-EPMA data are presented and discussed in terms of the contamination-formation mechanisms and the preferable experimental conditions for the quantification of trace carbon in steels. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. High-resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interactions associated with a complex combinatorial locus.

    PubMed

    Chapman, Natalie H; Bonnet, Julien; Grivet, Laurent; Lynn, James; Graham, Neil; Smith, Rebecca; Sun, Guiping; Walley, Peter G; Poole, Mervin; Causse, Mathilde; King, Graham J; Baxter, Charles; Seymour, Graham B

    2012-08-01

    Fruit firmness in tomato (Solanum lycopersicum) is determined by a number of factors including cell wall structure, turgor, and cuticle properties. Firmness is a complex polygenic trait involving the coregulation of many genes and has proved especially challenging to unravel. In this study, a quantitative trait locus (QTL) for fruit firmness was mapped to tomato chromosome 2 using the Zamir Solanum pennellii interspecific introgression lines (ILs) and fine-mapped in a population consisting of 7,500 F2 and F3 lines from IL 2-3 and IL 2-4. This firmness QTL contained five distinct subpeaks, Fir(s.p.)QTL2.1 to Fir(s.p.)QTL2.5, and an effect on a distal region of IL 2-4 that was nonoverlapping with IL 2-3. All these effects were located within an 8.6-Mb region. Using genetic markers, each subpeak within this combinatorial locus was mapped to a physical location within the genome, and an ethylene response factor (ERF) underlying Fir(s.p.)QTL2.2 and a region containing three pectin methylesterase (PME) genes underlying Fir(s.p.)QTL2.5 were nominated as QTL candidate genes. Statistical models used to explain the observed variability between lines indicated that these candidates and the nonoverlapping portion of IL 2-4 were sufficient to account for the majority of the fruit firmness effects. Quantitative reverse transcription-polymerase chain reaction was used to quantify the expression of each candidate gene. ERF showed increased expression associated with soft fruit texture in the mapping population. In contrast, PME expression was tightly linked with firm fruit texture. Analysis of a range of recombinant lines revealed evidence for an epistatic interaction that was associated with this combinatorial locus.

  20. Analysis of Fundus Shape in Highly Myopic Eyes by Using Curvature Maps Constructed from Optical Coherence Tomography

    PubMed Central

    Miyake, Masahiro; Yamashiro, Kenji; Akagi-Kurashige, Yumiko; Oishi, Akio; Tsujikawa, Akitaka; Hangai, Masanori; Yoshimura, Nagahisa

    2014-01-01

    Purpose To evaluate fundus shape in highly myopic eyes using color maps created through optical coherence tomography (OCT) image analysis. Methods We retrospectively evaluated 182 highly myopic eyes from 113 patients. After obtaining 12 lines of 9-mm radial OCT scans with the fovea at the center, the Bruch’s membrane line was plotted and its curvature was measured at 1-µm intervals in each image, which was reflected as a color topography map. For the quantitative analysis of the eye shape, mean absolute curvature and variance of curvature were calculated. Results The color maps allowed staphyloma visualization as a ring of green color at the edge and as that of orange-red color at the bottom. Analyses of mean and variance of curvature revealed that eyes with myopic choroidal neovascularization tended to have relatively flat posterior poles with smooth surfaces, while eyes with chorioretinal atrophy exhibited a steep, curved shape with an undulated surface (P<0.001). Furthermore, eyes with staphylomas and those without clearly differed in terms of mean curvature and the variance of curvature: 98.4% of eyes with staphylomas had mean curvature ≥7.8×10−5 [1/µm] and variance of curvature ≥0.26×10−8 [1/µm]. Conclusions We established a novel method to analyze posterior pole shape by using OCT images to construct curvature maps. Our quantitative analysis revealed that fundus shape is associated with myopic complications. These values were also effective in distinguishing eyes with staphylomas from those without. This tool for the quantitative evaluation of eye shape should facilitate future research of myopic complications. PMID:25259853

  1. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus)

    PubMed Central

    2014-01-01

    Background Modern watermelon (Citrullus lanatus L.) cultivars share a narrow genetic base due to many years of selection for desirable horticultural qualities. Wild subspecies within C. lanatus are important potential sources of novel alleles for watermelon breeding, but successful trait introgression into elite cultivars has had limited success. The application of marker assisted selection (MAS) in watermelon is yet to be realized, mainly due to the past lack of high quality genetic maps. Recently, a number of useful maps have become available, however these maps have few common markers, and were constructed using different marker sets, thus, making integration and comparative analysis among maps difficult. The objective of this research was to use single-nucleotide polymorphism (SNP) anchor markers to construct an integrated genetic map for C. lanatus. Results Under the framework of the high density genetic map, an integrated genetic map was constructed by merging data from four independent mapping experiments using a genetically diverse array of parental lines, which included three subspecies of watermelon. The 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel), 36 structure variation (SV) and 386 SNP markers from the four maps were used to construct an integrated map. This integrated map contained 1339 markers, spanning 798 cM with an average marker interval of 0.6 cM. Fifty-eight previously reported quantitative trait loci (QTL) for 12 traits in these populations were also integrated into the map. In addition, new QTL identified for brix, fructose, glucose and sucrose were added. Some QTL associated with economically important traits detected in different genetic backgrounds mapped to similar genomic regions of the integrated map, suggesting that such QTL are responsible for the phenotypic variability observed in a broad array of watermelon germplasm. Conclusions The integrated map described herein enhances the utility of genomic tools over previous watermelon genetic maps. A large proportion of the markers in the integrated map are SSRs, InDels and SNPs, which are easily transferable across laboratories. Moreover, the populations used to construct the integrated map include all three watermelon subspecies, making this integrated map useful for the selection of breeding traits, identification of QTL, MAS, analysis of germplasm and commercial hybrid seed detection. PMID:24443961

  2. Accurate motor mapping in awake common marmosets using micro-electrocorticographical stimulation and stochastic threshold estimation

    NASA Astrophysics Data System (ADS)

    Kosugi, Akito; Takemi, Mitsuaki; Tia, Banty; Castagnola, Elisa; Ansaldo, Alberto; Sato, Kenta; Awiszus, Friedemann; Seki, Kazuhiko; Ricci, Davide; Fadiga, Luciano; Iriki, Atsushi; Ushiba, Junichi

    2018-06-01

    Objective. Motor map has been widely used as an indicator of motor skills and learning, cortical injury, plasticity, and functional recovery. Cortical stimulation mapping using epidural electrodes is recently adopted for animal studies. However, several technical limitations still remain. Test-retest reliability of epidural cortical stimulation (ECS) mapping has not been examined in detail. Many previous studies defined evoked movements and motor thresholds by visual inspection, and thus, lacked quantitative measurements. A reliable and quantitative motor map is important to elucidate the mechanisms of motor cortical reorganization. The objective of the current study was to perform reliable ECS mapping of motor representations based on the motor thresholds, which were stochastically estimated by motor evoked potentials and chronically implanted micro-electrocorticographical (µECoG) electrode arrays, in common marmosets. Approach. ECS was applied using the implanted µECoG electrode arrays in three adult common marmosets under awake conditions. Motor evoked potentials were recorded through electromyographical electrodes implanted in upper limb muscles. The motor threshold was calculated through a modified maximum likelihood threshold-hunting algorithm fitted with the recorded data from marmosets. Further, a computer simulation confirmed reliability of the algorithm. Main results. Computer simulation suggested that the modified maximum likelihood threshold-hunting algorithm enabled to estimate motor threshold with acceptable precision. In vivo ECS mapping showed high test-retest reliability with respect to the excitability and location of the cortical forelimb motor representations. Significance. Using implanted µECoG electrode arrays and a modified motor threshold-hunting algorithm, we were able to achieve reliable motor mapping in common marmosets with the ECS system.

  3. Accurate motor mapping in awake common marmosets using micro-electrocorticographical stimulation and stochastic threshold estimation.

    PubMed

    Kosugi, Akito; Takemi, Mitsuaki; Tia, Banty; Castagnola, Elisa; Ansaldo, Alberto; Sato, Kenta; Awiszus, Friedemann; Seki, Kazuhiko; Ricci, Davide; Fadiga, Luciano; Iriki, Atsushi; Ushiba, Junichi

    2018-06-01

    Motor map has been widely used as an indicator of motor skills and learning, cortical injury, plasticity, and functional recovery. Cortical stimulation mapping using epidural electrodes is recently adopted for animal studies. However, several technical limitations still remain. Test-retest reliability of epidural cortical stimulation (ECS) mapping has not been examined in detail. Many previous studies defined evoked movements and motor thresholds by visual inspection, and thus, lacked quantitative measurements. A reliable and quantitative motor map is important to elucidate the mechanisms of motor cortical reorganization. The objective of the current study was to perform reliable ECS mapping of motor representations based on the motor thresholds, which were stochastically estimated by motor evoked potentials and chronically implanted micro-electrocorticographical (µECoG) electrode arrays, in common marmosets. ECS was applied using the implanted µECoG electrode arrays in three adult common marmosets under awake conditions. Motor evoked potentials were recorded through electromyographical electrodes implanted in upper limb muscles. The motor threshold was calculated through a modified maximum likelihood threshold-hunting algorithm fitted with the recorded data from marmosets. Further, a computer simulation confirmed reliability of the algorithm. Computer simulation suggested that the modified maximum likelihood threshold-hunting algorithm enabled to estimate motor threshold with acceptable precision. In vivo ECS mapping showed high test-retest reliability with respect to the excitability and location of the cortical forelimb motor representations. Using implanted µECoG electrode arrays and a modified motor threshold-hunting algorithm, we were able to achieve reliable motor mapping in common marmosets with the ECS system.

  4. Genes and quantitative trait loci (QTL) controlling trace element concentrations in perennial grasses grown on phytotoxic soil contaminated with heavy metals

    USDA-ARS?s Scientific Manuscript database

    Perennial grasses cover diverse soils throughout the world, including sites contaminated with heavy metals, producing forages that must be safe for livestock and wildlife. Chromosome regions known as quantitative trait loci (QTLs) controlling forage mineral concentrations were mapped in a populatio...

  5. Mapping of quantitative trait loci for resistance to fall armyworm and southwestern corn borer leaf-feeding damage in maize.

    USDA-ARS?s Scientific Manuscript database

    Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), and southwestern corn borer (SWCB), Diatraea grandiosella Dyar are damaging insect pests of maize resulting in significant yield and economic losses. A previous study identified quantitative trait loci (QTL) that contribute to reduced leaf-fe...

  6. Quantitative classification of a historic northern Wisconsin (U.S.A.) landscape: mapping forests at regional scales

    Treesearch

    Lisa A. Schulte; David J. Mladenoff; Erik V. Nordheim

    2002-01-01

    We developed a quantitative and replicable classification system to improve understanding of historical composition and structure within northern Wisconsin's forests. The classification system was based on statistical cluster analysis and two forest metrics, relative dominance (% basal area) and relative importance (mean of relative dominance and relative density...

  7. Identification of downy mildew resistance gene candidates by positional cloning in maize (Zea mays subsp. mays; Poaceae)1

    PubMed Central

    Kim, Jae Yoon; Moon, Jun-Cheol; Kim, Hyo Chul; Shin, Seungho; Song, Kitae; Kim, Kyung-Hee; Lee, Byung-Moo

    2017-01-01

    Premise of the study: Positional cloning in combination with phenotyping is a general approach to identify disease-resistance gene candidates in plants; however, it requires several time-consuming steps including population or fine mapping. Therefore, in the present study, we suggest a new combined strategy to improve the identification of disease-resistance gene candidates. Methods and Results: Downy mildew (DM)–resistant maize was selected from five cultivars using a spreader row technique. Positional cloning and bioinformatics tools were used to identify the DM-resistance quantitative trait locus marker (bnlg1702) and 47 protein-coding gene annotations. Eventually, five DM-resistance gene candidates, including bZIP34, Bak1, and Ppr, were identified by quantitative reverse-transcription PCR (RT-PCR) without fine mapping of the bnlg1702 locus. Conclusions: The combined protocol with the spreader row technique, quantitative trait locus positional cloning, and quantitative RT-PCR was effective for identifying DM-resistance candidate genes. This cloning approach may be applied to other whole-genome-sequenced crops or resistance to other diseases. PMID:28224059

  8. Quantitative autoradiographic mapping of herpes simplex virus encephalitis with a radiolabeled antiviral drug

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Y.; Price, R.W.; Rottenberg, D.A.

    1982-09-17

    2'-Fluoro-5-methyl-1-..beta..-D-arabinosyluracil (FMAU) labeled with carbon-14 was used to image herpes simplex virus type 1-infected regions of rat brain by quantitative autoradiography. FMAU is a potent antiviral pyrimidine nucleoside which is selectively phosphorylated by virus-coded thymidine kinase. When the labeled FMAU was administered 6 hours before the rats were killed, the selective uptake and concentration of the drug and its metabolites by infected cells (defined by immunoperoxidase staining of viral antigens) allowed quantitative definition and mapping of HSV-1-infected structures in autoradiograms of brain sections. These results shown that quantitative autoradiography can be used to characterize the local metabolism of antiviral drugsmore » by infected cells in vivo. They also suggest that the selective uptake of drugs that exploit viral thymidine kinase for their antiviral effect can, by appropriate labeling, be used in conjunction with clinical neuroimaging techniques to define infected regions of human brain, thereby providing a new approach to the diagnosis of herpes encephalitis in man.« less

  9. KRN4 Controls Quantitative Variation in Maize Kernel Row Number

    PubMed Central

    Liu, Lei; Du, Yanfang; Shen, Xiaomeng; Li, Manfei; Sun, Wei; Huang, Juan; Liu, Zhijie; Tao, Yongsheng; Zheng, Yonglian; Yan, Jianbing; Zhang, Zuxin

    2015-01-01

    Kernel row number (KRN) is an important component of yield during the domestication and improvement of maize and controlled by quantitative trait loci (QTL). Here, we fine-mapped a major KRN QTL, KRN4, which can enhance grain productivity by increasing KRN per ear. We found that a ~3-Kb intergenic region about 60 Kb downstream from the SBP-box gene Unbranched3 (UB3) was responsible for quantitative variation in KRN by regulating the level of UB3 expression. Within the 3-Kb region, the 1.2-Kb Presence-Absence variant was found to be strongly associated with quantitative variation in KRN in diverse maize inbred lines, and our results suggest that this 1.2-Kb transposon-containing insertion is likely responsible for increased KRN. A previously identified A/G SNP (S35, also known as Ser220Asn) in UB3 was also found to be significantly associated with KRN in our association-mapping panel. Although no visible genetic effect of S35 alone could be detected in our linkage mapping population, it was found to genetically interact with the 1.2-Kb PAV to modulate KRN. The KRN4 was under strong selection during maize domestication and the favorable allele for the 1.2-Kb PAV and S35 has been significantly enriched in modern maize improvement process. The favorable haplotype (Hap1) of 1.2-Kb-PAV-S35 was selected during temperate maize improvement, but is still rare in tropical and subtropical maize germplasm. The dissection of the KRN4 locus improves our understanding of the genetic basis of quantitative variation in complex traits in maize. PMID:26575831

  10. Development of quantitative analysis method for stereotactic brain image: assessment of reduced accumulation in extent and severity using anatomical segmentation.

    PubMed

    Mizumura, Sunao; Kumita, Shin-ichiro; Cho, Keiichi; Ishihara, Makiko; Nakajo, Hidenobu; Toba, Masahiro; Kumazaki, Tatsuo

    2003-06-01

    Through visual assessment by three-dimensional (3D) brain image analysis methods using stereotactic brain coordinates system, such as three-dimensional stereotactic surface projections and statistical parametric mapping, it is difficult to quantitatively assess anatomical information and the range of extent of an abnormal region. In this study, we devised a method to quantitatively assess local abnormal findings by segmenting a brain map according to anatomical structure. Through quantitative local abnormality assessment using this method, we studied the characteristics of distribution of reduced blood flow in cases with dementia of the Alzheimer type (DAT). Using twenty-five cases with DAT (mean age, 68.9 years old), all of whom were diagnosed as probable Alzheimer's disease based on NINCDS-ADRDA, we collected I-123 iodoamphetamine SPECT data. A 3D brain map using the 3D-SSP program was compared with the data of 20 cases in the control group, who age-matched the subject cases. To study local abnormalities on the 3D images, we divided the whole brain into 24 segments based on anatomical classification. We assessed the extent of an abnormal region in each segment (rate of the coordinates with a Z-value that exceeds the threshold value, in all coordinates within a segment), and severity (average Z-value of the coordinates with a Z-value that exceeds the threshold value). This method clarified orientation and expansion of reduced accumulation, through classifying stereotactic brain coordinates according to the anatomical structure. This method was considered useful for quantitatively grasping distribution abnormalities in the brain and changes in abnormality distribution.

  11. RFLP-facilitated investigation of the quantitative resistance of rice to brown planthopper ( Nilaparvata lugens).

    PubMed

    Xu, X. F.; Mei, H. W.; Luo, L. J.; Cheng, X. N.; Li, Z. K.

    2002-02-01

    Quantitative trait loci (QTLs), conferring quantitative resistance to rice brown planthopper (BPH), were investigated using 160 F(11) recombinant inbred lines (RILs) from the Lemont/Teqing cross, a complete RFLP map, and replicated phenotyping of seedbox inoculation. The paternal indica parent, Teqing, was more-resistant to BPH than the maternal japonica parent, Lemont. The RILs showed transgressive segregation for resistance to BPH. Seven main-effect QTLs and many epistatic QTL pairs were identified and mapped on the 12 rice chromosomes. Collectively, the main-effect and epistatic QTLs accounted for over 70% of the total variation in damage scores. Teqing has the resistance allele at four main-effect QTLs, and the Lemont allele resulted in resistance at the other three. Of the main-effect QTLs identified, QBphr5b was mapped to the vicinity of gl1, a major gene controlling leaf and stem pubescence. The Teqing allele controlling leaf and stem pubescence was associated with resistance, while the Lemont allele for glabrous stem and leaves was associated with susceptibility, indicating that this gene may have contributed to resistance through antixenosis. Similar to the reported BPH resistance genes, the other six detected main-effect QTLs were all mapped to regions where major disease resistance genes locate, suggesting they might have contributed either to antibiosis or tolerance. Our results indicated that marker-aided pyramiding of major resistance genes and QTLs should provide effective and stable control over this devastating pest.

  12. Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognitive Functions

    DTIC Science & Technology

    2017-05-14

    AFRL-AFOSR-JP-TR-2017-0052 Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions...invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions 5a.  CONTRACT NUMBER 5b.  GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT Brain stress level measurement (non-invasively) in quantitative term is very helpful to correlate with various

  13. Non invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions

    DTIC Science & Technology

    2017-05-14

    AFRL-AFOSR-JP-TR-2017-0052 Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions...invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions 5a.  CONTRACT NUMBER 5b.  GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT Brain stress level measurement (non-invasively) in quantitative term is very helpful to correlate with various

  14. Customized Body Mapping to Facilitate the Ergonomic Design of Sportswear.

    PubMed

    Cao, Mingliang; Li, Yi; Guo, Yueping; Yao, Lei; Pan, Zhigeng

    2016-01-01

    A successful high-performance sportswear design that considers human factors should result in a significant increase in thermal comfort and reduce energy loss. The authors describe a body-mapping approach that facilitates the effective ergonomic design of sportswear. Their general framework can be customized based on the functional requirements of various sports and sportswear, the desired combination and selection of mapping areas for the human body, and customized quantitative data distribution of target physiological indicators.

  15. Rapid genotyping by low-coverage resequencing to construct genetic linkage maps of fungi: a case study in Lentinula edodes

    PubMed Central

    2013-01-01

    Background Genetic linkage maps are important tools in breeding programmes and quantitative trait analyses. Traditional molecular markers used for genotyping are limited in throughput and efficiency. The advent of next-generation sequencing technologies has facilitated progeny genotyping and genetic linkage map construction in the major grains. However, the applicability of the approach remains untested in the fungal system. Findings Shiitake mushroom, Lentinula edodes, is a basidiomycetous fungus that represents one of the most popular cultivated edible mushrooms. Here, we developed a rapid genotyping method based on low-coverage (~0.5 to 1.5-fold) whole-genome resequencing. We used the approach to genotype 20 single-spore isolates derived from L. edodes strain L54 and constructed the first high-density sequence-based genetic linkage map of L. edodes. The accuracy of the proposed genotyping method was verified experimentally with results from mating compatibility tests and PCR-single-strand conformation polymorphism on a few known genes. The linkage map spanned a total genetic distance of 637.1 cM and contained 13 linkage groups. Two hundred sequence-based markers were placed on the map, with an average marker spacing of 3.4 cM. The accuracy of the map was confirmed by comparing with previous maps the locations of known genes such as matA and matB. Conclusions We used the shiitake mushroom as an example to provide a proof-of-principle that low-coverage resequencing could allow rapid genotyping of basidiospore-derived progenies, which could in turn facilitate the construction of high-density genetic linkage maps of basidiomycetous fungi for quantitative trait analyses and improvement of genome assembly. PMID:23915543

  16. Quantitative validation of sensory mapping in persistent postherniorrhaphy inguinal pain patients undergoing triple neurectomy.

    PubMed

    Bjurström, M F; Álvarez, R; Nicol, A L; Olmstead, R; Amid, P K; Chen, D C

    2017-04-01

    Neurectomy of the inguinal nerves may be considered for selected refractory cases of chronic postherniorrhaphy inguinal pain (CPIP). There is to date a paucity of easily applicable clinical tools to identify neuropathic pain and examine the neurosensory effects of remedial surgery. The present quantitative sensory testing (QST) pilot study evaluates a sensory mapping technique. Longitudinal (preoperative, immediate postoperative, and late postoperative) dermatomal sensory mapping and a comprehensive QST protocol were conducted in CPIP patients with unilateral, predominantly neuropathic inguinodynia presenting for triple neurectomy (n = 13). QST was conducted in four areas on the affected, painful side and in one contralateral comparison site. QST variables were compared according to sensory mapping outcomes: (o)/normal sensation, (+)/pain, and (-)/numbness. Diagnostic ability of the sensory mapping outcomes to detect QST-assessed allodynia or hypoesthesia was estimated through calculation of specificity and sensitivity values. Preoperatively, patients exhibited mechanical hypoesthesia and allodynia and pressure allodynia and hyperalgesia in painful areas mapped (+) (p < .05); sensory mapping outcome (+) demonstrated high ability to detect mechanical allodynia [sensitivity 0.74 (95% CI 0.61-0.86), specificity 0.94 (0.84-1.00)] and pressure allodynia [sensitivity 0.96 (0.89-1.00), specificity 1.00 (1.00-1.00)], but not thermal allodynia. Postoperatively, mapped areas of numbness (-) were associated with mechanical and thermal hypoesthesia (p < .05); (-) showed high sensitivity and specificity to detect mechanical and cold hypoesthesia. Sensory mapping provides an accurate clinical neuropathic assessment with strong correlation to QST findings of preoperative mechanical and pressure allodynia, and postoperative mechanical and thermal hypoesthesia in CPIP patients undergoing neurectomy.

  17. Dual-energy CT iodine maps as an alternative quantitative imaging biomarker to abdominal CT perfusion: determination of appropriate trigger delays for acquisition using bolus tracking.

    PubMed

    Skornitzke, Stephan; Fritz, Franziska; Mayer, Philipp; Koell, Marco; Hansen, Jens; Pahn, Gregor; Hackert, Thilo; Kauczor, Hans-Ulrich; Stiller, Wolfram

    2018-05-01

    Quantitative evaluation of different bolus tracking trigger delays for acquisition of dual energy (DE) CT iodine maps as an alternative to CT perfusion. Prior to this retrospective analysis of prospectively acquired data, DECT perfusion sequences were dynamically acquired in 22 patients with pancreatic carcinoma using dual source CT at 80/140 kV p with tin filtration. After deformable motion-correction, perfusion maps of blood flow (BF) were calculated from 80 kV p image series of DECT, and iodine maps were calculated for each of the 34 DECT acquisitions per patient. BF and iodine concentrations were measured in healthy pancreatic tissue and carcinoma. To evaluate potential DECT acquisition triggered by bolus tracking, measured iodine concentrations from the 34 DECT acquisitions per patient corresponding to different trigger delays were assessed for correlation to BF and intergroup differences between tissue types depending on acquisition time. Average BF measured in healthy pancreatic tissue and carcinoma was 87.6 ± 28.4 and 38.6 ± 22.2 ml/100 ml min -1 , respectively. Correlation between iodine concentrations and BF was statistically significant for bolus tracking with trigger delay greater than 0 s (r max = 0.89; p < 0.05). Differences in iodine concentrations between healthy pancreatic tissue and carcinoma were statistically significant for DECT acquisitions corresponding to trigger delays of 15-21 s (p < 0.05). An acquisition window between 15 and 21 s after exceeding bolus tracking threshold shows promising results for acquisition of DECT iodine maps as an alternative to CT perfusion measurements of BF. Advances in knowledge: After clinical validation, DECT iodine maps of pancreas acquired using bolus tracking with appropriate trigger delay as determined in this study could offer an alternative quantitative imaging biomarker providing functional information for tumor assessment at reduced patient radiation exposure compared to CT perfusion measurements of BF.

  18. Global soil-climate-biome diagram: linking soil properties to climate and biota

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Yang, Y.; Fang, J.

    2017-12-01

    As a critical component of the Earth system, soils interact strongly with both climate and biota and provide fundamental ecosystem services that maintain food, climate, and human security. Despite significant progress in digital soil mapping techniques and the rapidly growing quantity of observed soil information, quantitative linkages between soil properties, climate and biota at the global scale remain unclear. By compiling a large global soil database, we mapped seven major soil properties (bulk density [BD]; sand, silt and clay fractions; soil pH; soil organic carbon [SOC] density [SOCD]; and soil total nitrogen [STN] density [STND]) based on machine learning algorithms (regional random forest [RF] model) and quantitatively assessed the linkage between soil properties, climate and biota at the global scale. Our results demonstrated a global soil-climate-biome diagram, which improves our understanding of the strong correspondence between soils, climate and biomes. Soil pH decreased with greater mean annual precipitation (MAP) and lower mean annual temperature (MAT), and the critical MAP for the transition from alkaline to acidic soil pH decreased with decreasing MAT. Specifically, the critical MAP ranged from 400-500 mm when the MAT exceeded 10 °C but could decrease to 50-100 mm when the MAT was approximately 0 °C. SOCD and STND were tightly linked; both increased in accordance with lower MAT and higher MAP across terrestrial biomes. Global stocks of SOC and STN were estimated to be 788 ± 39.4 Pg (1015 g, or billion tons) and 63 ± 3.3 Pg in the upper 30-cm soil layer, respectively, but these values increased to 1654 ± 94.5 Pg and 133 ± 7.8 Pg in the upper 100-cm soil layer, respectively. These results reveal quantitative linkages between soil properties, climate and biota at the global scale, suggesting co-evolution of the soil, climate and biota under conditions of global environmental change.

  19. Powerful Identification of Cis-regulatory SNPs in Human Primary Monocytes Using Allele-Specific Gene Expression

    PubMed Central

    Almlöf, Jonas Carlsson; Lundmark, Per; Lundmark, Anders; Ge, Bing; Maouche, Seraya; Göring, Harald H. H.; Liljedahl, Ulrika; Enström, Camilla; Brocheton, Jessy; Proust, Carole; Godefroy, Tiphaine; Sambrook, Jennifer G.; Jolley, Jennifer; Crisp-Hihn, Abigail; Foad, Nicola; Lloyd-Jones, Heather; Stephens, Jonathan; Gwilliam, Rhian; Rice, Catherine M.; Hengstenberg, Christian; Samani, Nilesh J.; Erdmann, Jeanette; Schunkert, Heribert; Pastinen, Tomi; Deloukas, Panos; Goodall, Alison H.; Ouwehand, Willem H.; Cambien, François; Syvänen, Ann-Christine

    2012-01-01

    A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers. PMID:23300628

  20. Radiofrequency Ablation, MR Thermometry, and High-Spatial-Resolution MR Parametric Imaging with a Single, Minimally Invasive Device.

    PubMed

    Ertürk, M Arcan; Sathyanarayana Hegde, Shashank; Bottomley, Paul A

    2016-12-01

    Purpose To develop and demonstrate in vitro and in vivo a single interventional magnetic resonance (MR)-active device that integrates the functions of precise identification of a tissue site with the delivery of radiofrequency (RF) energy for ablation, high-spatial-resolution thermal mapping to monitor thermal dose, and quantitative MR imaging relaxometry to document ablation-induced tissue changes for characterizing ablated tissue. Materials and Methods All animal studies were approved by the institutional animal care and use committee. A loopless MR imaging antenna composed of a tuned microcable either 0.8 or 2.2 mm in diameter with an extended central conductor was switched between a 3-T MR imaging unit and an RF power source to monitor and perform RF ablation in bovine muscle and human artery samples in vitro and in rabbits in vivo. High-spatial-resolution (250-300-μm) proton resonance frequency shift MR thermometry was interleaved with ablations. Quantitative spin-lattice (T1) and spin-spin (T2) relaxation time MR imaging mapping was performed before and after ablation. These maps were compared with findings from gross tissue examination of the region of ablated tissue after MR imaging. Results High-spatial-resolution MR imaging afforded temperature mapping in less than 8 seconds for monitoring ablation temperatures in excess of 85°C delivered by the same device. This produced irreversible thermal injury and necrosis. Quantitative MR imaging relaxation time maps demonstrated up to a twofold variation in mean regional T1 and T2 after ablation versus before ablation. Conclusion A simple, integrated, minimally invasive interventional probe that provides image-guided therapy delivery, thermal mapping of dose, and detection of ablation-associated MR imaging parametric changes was developed and demonstrated. With this single-device approach, coupling-related safety concerns associated with multiple conductor approaches were avoided. © RSNA, 2016 Online supplemental material is available for this article.

  1. Quantitative lung perfusion evaluation using Fourier decomposition perfusion MRI.

    PubMed

    Kjørstad, Åsmund; Corteville, Dominique M R; Fischer, Andre; Henzler, Thomas; Schmid-Bindert, Gerald; Zöllner, Frank G; Schad, Lothar R

    2014-08-01

    To quantitatively evaluate lung perfusion using Fourier decomposition perfusion MRI. The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation- and perfusion-related information in the lungs, where the perfusion maps in particular have shown promise for clinical use. However, the perfusion maps are nonquantitative and dimensionless, making follow-ups and direct comparisons between patients difficult. We present an approach to obtain physically meaningful and quantifiable perfusion maps using the FD method. The standard FD perfusion images are quantified by comparing the partially blood-filled pixels in the lung parenchyma with the fully blood-filled pixels in the aorta. The percentage of blood in a pixel is then combined with the temporal information, yielding quantitative blood flow values. The values of 10 healthy volunteers are compared with SEEPAGE measurements which have shown high consistency with dynamic contrast enhanced-MRI. All pulmonary blood flow (PBF) values are within the expected range. The two methods are in good agreement (mean difference = 0.2 mL/min/100 mL, mean absolute difference = 11 mL/min/100 mL, mean PBF-FD = 150 mL/min/100 mL, mean PBF-SEEPAGE = 151 mL/min/100 mL). The Bland-Altman plot shows a good spread of values, indicating no systematic bias between the methods. Quantitative lung perfusion can be obtained using the Fourier Decomposition method combined with a small amount of postprocessing. Copyright © 2013 Wiley Periodicals, Inc.

  2. Improving fieldwork by using GIS for quantitative exploration, data management and digital mapping

    NASA Astrophysics Data System (ADS)

    Marra, Wouter; Alberti, Koko; van de Grint, Liesbeth; Karssenberg, Derek

    2016-04-01

    Fieldwork is an essential part of teaching geosciences. The essence of a fieldwork is to study natural phenomena in its proper context. Fieldworks dominantly utilize a learning-by-experiencing learning style and are often light on abstract thinking skills. We introduce more of the latter skills to a first-year fieldwork of several weeks by using Geographical Information Systems (GIS). We use simple techniques as the involved students had no prior experience with GIS. In our project, we introduced new tutorials prior to the fieldwork where students explored their research area using aerial photos, satellite images, an elevation model and slope-map using Google Earth and QGIS. The goal of these tutorials was to get acquainted with the area, plan the first steps of the fieldwork, and formulate hypotheses in form of a preliminary map based on quantitative data. During the actual fieldwork, half of the students processed and managed their field data using GIS, used elevation data as additional data source, and made digital geomorphological maps. This was in contrast to the other half of the students that used classic techniques with paper maps. We evaluated the learning benefits by two questionnaires (one before and one after the fieldwork), and a group interview with students that used GIS in the field. Students liked the use of Google Earth and GIS, and many indicate the added value of using quantitative maps. The hypotheses and fieldwork plans of the students were quickly superseded by insights during the fieldwork itself, but making these plans and hypotheses in advance improved the student's ability to perform empirical research. Students were very positive towards the use of GIS for their fieldwork, mainly because they experienced it as a modern and relevant technique for research and the labour market. Tech-savvy students were extra motivated and explored additional methods. There were some minor technical difficulties with using GIS during the fieldwork, but these can be solved by focussing the preparatory tutorials on what to expect during the fieldwork. We did not observe a significant difference in the quality of the products created by students between both groups since both digital and classic maps show a large range of aesthetic and scientific quality. To conclude, we had a positive experience with our first attempt to add GIS components to a classic fieldwork. The main benefit is that students use quantitative data which provides a different view on the fieldwork area and triggers abstract thinking. Future plans include using the student's field data in a web-gis app to allow easy remote supervision and using digital maps in the field.

  3. An eQTL Analysis of Partial Resistance to Puccinia hordei in Barley

    PubMed Central

    Chen, Xinwei; Hackett, Christine A.; Niks, Rients E.; Hedley, Peter E.; Booth, Clare; Druka, Arnis; Marcel, Thierry C.; Vels, Anton; Bayer, Micha; Milne, Iain; Morris, Jenny; Ramsay, Luke; Marshall, David; Cardle, Linda; Waugh, Robbie

    2010-01-01

    Background Genetic resistance to barley leaf rust caused by Puccinia hordei involves both R genes and quantitative trait loci. The R genes provide higher but less durable resistance than the quantitative trait loci. Consequently, exploring quantitative or partial resistance has become a favorable alternative for controlling disease. Four quantitative trait loci for partial resistance to leaf rust have been identified in the doubled haploid Steptoe (St)/Morex (Mx) mapping population. Further investigations are required to study the molecular mechanisms underpinning partial resistance and ultimately identify the causal genes. Methodology/Principal Findings We explored partial resistance to barley leaf rust using a genetical genomics approach. We recorded RNA transcript abundance corresponding to each probe on a 15K Agilent custom barley microarray in seedlings from St and Mx and 144 doubled haploid lines of the St/Mx population. A total of 1154 and 1037 genes were, respectively, identified as being P. hordei-responsive among the St and Mx and differentially expressed between P. hordei-infected St and Mx. Normalized ratios from 72 distant-pair hybridisations were used to map the genetic determinants of variation in transcript abundance by expression quantitative trait locus (eQTL) mapping generating 15685 eQTL from 9557 genes. Correlation analysis identified 128 genes that were correlated with resistance, of which 89 had eQTL co-locating with the phenotypic quantitative trait loci (pQTL). Transcript abundance in the parents and conservation of synteny with rice allowed us to prioritise six genes as candidates for Rphq11, the pQTL of largest effect, and highlight one, a phospholipid hydroperoxide glutathione peroxidase (HvPHGPx) for detailed analysis. Conclusions/Significance The eQTL approach yielded information that led to the identification of strong candidate genes underlying pQTL for resistance to leaf rust in barley and on the general pathogen response pathway. The dataset will facilitate a systems appraisal of this host-pathogen interaction and, potentially, for other traits measured in this population. PMID:20066049

  4. User’s guide for MapMark4GUI—A graphical user interface for the MapMark4 R package

    USGS Publications Warehouse

    Shapiro, Jason

    2018-05-29

    MapMark4GUI is an R graphical user interface (GUI) developed by the U.S. Geological Survey to support user implementation of the MapMark4 R statistical software package. MapMark4 was developed by the U.S. Geological Survey to implement probability calculations for simulating undiscovered mineral resources in quantitative mineral resource assessments. The GUI provides an easy-to-use tool to input data, run simulations, and format output results for the MapMark4 package. The GUI is written and accessed in the R statistical programming language. This user’s guide includes instructions on installing and running MapMark4GUI and descriptions of the statistical output processes, output files, and test data files.

  5. Map of assessed tight-gas resources in the United States

    USGS Publications Warehouse

    Biewick, Laura R. H.; ,

    2014-01-01

    This report presents a digital map of tight-gas resource assessments in the United States as part of the U.S. Geological Survey’s (USGS) National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the USGS quantitatively estimated potential volumes of undiscovered, technically recoverable natural gas resources within tight-gas assessment units (AUs). This is the second digital map product in a series of USGS unconventional oil and gas resource maps. The map plate included in this report can be printed in hard-copy form or downloaded in a Geographic Information System (GIS) data package, including an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and published map file (.pmf). In addition, the publication access table contains hyperlinks to current USGS tight-gas assessment publications and web pages.

  6. Map of assessed coalbed-gas resources in the United States, 2014

    USGS Publications Warehouse

    ,; Biewick, Laura R. H.

    2014-01-01

    This report presents a digital map of coalbed-gas resource assessments in the United States as part of the U.S. Geological Survey’s (USGS) National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the USGS quantitatively estimated potential volumes of undiscovered, technically recoverable natural gas resources within coalbed-gas assessment units (AUs). This is the third digital map product in a series of USGS unconventional oil and gas resource maps. The map plate included in this report can be printed in hardcopy form or downloaded in a Geographic Information System (GIS) data package, including an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and published map file (.pmf). In addition, the publication access table contains hyperlinks to current USGS coalbed-gas assessment publications and web pages.

  7. Quantitative fractography by digital image processing: NIH Image macro tools for stereo pair analysis and 3-D reconstruction.

    PubMed

    Hein, L R

    2001-10-01

    A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.

  8. 3D reconstruction modeling of bulk heterojunction organic photovoltaic cells: Effect of the complexity of the boundary on the morphology

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Jin; Jeong, Daun; Kim, SeongMin; Choi, Yeong Suk; Ihn, Soo-Ghang; Yun, Sungyoung; Lim, Younhee; Lee, Eunha; Park, Gyeong-Su

    2016-02-01

    Although the morphology of the active layer in bulk heterojunction organic photovoltaic (BHJ-OPV) cells is critical for determining the quantum efficiency (QE), predicting the real QE for a 3-dimensional (3D) morphology has long been difficult because structural information on the composition complexity of donor (D): acceptor (A) blends with small domain size is limited to 2D observations via various image-processing techniques. To overcome this, we reconstruct the 3D morphology by using an isotropic statistical approach based on 2D energy-filtered transmission electron microscopy (EF-TEM) images. This new reconstruction method is validated to obtain the internal QE by using a dynamic Monte Carlo simulation in the BHJ-OPV system with different additives such as 4 vol% 1-chloronaphthalene (CN) and 4 vol% 1,8-diiodooctane (DIO) (compared to the case of no additive); the resulting trend is compared with the experimental QE. Therefore, our developed method can be used to predict the real charge transport performance in the OPV system accurately.

  9. HRTEM and EFTEM Studies of Phyllosilicate-Organic Matter Associations in Matrix and Dark Inclusions in the EET92042 CR2 Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Abreu, Neyda M.; Brearley, Adrian J.

    2005-01-01

    Based on petrologic and isotopic observations, the CR chondrites represent one of the most primitive carbonaceous chondrite groups. The organic matter in CR chondrite matrices is considered to be among the most ancient carbonaceous matter known, potentially providing a link between organic matter in the interstellar medium and our solar system [1]. However, the organic chemistry of CR chondrites may be complicated by the fact that these meteorites have undergone moderate secondary alteration, which potentially overprints primordial features [2]. Although the general effects of this alteration have been documented [2], the details of the fine-grained mineralogy and alteration styles of CR matrices are not fully understood. Here we present TEM observations of matrix in EET 92042, a CR chondrite that contains particularly primitive insoluble organic matter [1]. Preliminary studies [3] determined that EET 92042 matrix is heterogeneous in terms of mineralogy, texture, and petrographic fabric on the micron scale. EET 92042 contains magnetite-rich regions, foliated matrix and dark inclusions (DIs). Some chondrules show fine-grained rims, similar to those described by [4].

  10. Fast macromolecular proton fraction mapping of the human liver in vivo for quantitative assessment of hepatic fibrosis

    PubMed Central

    Yarnykh, Vasily L.; Tartaglione, Erica V.; Ioannou, George N.

    2015-01-01

    Macromolecular proton fraction (MPF) is a quantitative MRI parameter determining the magnetization transfer (MT) effect in tissues and defined as a relative amount of immobile macromolecular protons involved into magnetization exchange with mobile water protons. MPF has a potential for quantitative assessment of fibrous tissue due to intrinsically high MPF specific for collagen. The goal of this study was to investigate a relationship between histologically determined fibrosis stage and MPF in the liver parenchyma measured using a recently developed fast single-point clinically-targeted MPF mapping method. Optimal saturation parameters for single-point liver MPF measurements were determined from the analysis of liver Z-spectra in vivo based on the error propagation model. Sixteen patients with chronic hepatitis C viral infection underwent 3T MRI using an optimized liver MPF mapping protocol. Fourteen patients had prior liver biopsy with histologically staged fibrosis (METAVIR scores F0-F3), and two patients had clinically diagnosed cirrhosis (score F4 was assigned). The protocol included four breath-hold three-dimensional scans with 2×3×6 mm3 resolution and 10 transverse sections: 1) dynamic acquisition of MT-weighted and reference images; 2) dynamic acquisition of three images for variable flip angle T1 mapping; 3) dual-echo B0 map; and 4) actual flip-angle imaging B1 map. Average liver MPF was determined as the mode of MPF histograms. MPF was significantly increased in patients with clinically significant fibrosis (scores F2-F4, n=6) compared to patients with no or mild fibrosis (scores F0-F1, n=10): 6.49±0.36% vs. 5.94±0.26%, P<0.01 (Mann-Whitney test). MPF and fibrosis score were strongly positively correlated with the Spearman's rank correlation coefficient 0.80 (P<0.001). This study demonstrates the feasibility of fast MPF mapping of the human liver in vivo and confirms the hypothesis that MPF is increased in hepatic fibrosis and associated with fibrosis stage. MPF may be useful as a non-invasive imaging biomarker of hepatic fibrosis. PMID:26503401

  11. A Comparative Study of Hawaii Middle School Science Student Academic Achievement

    NASA Astrophysics Data System (ADS)

    Askew Cain, Peggy

    The problem was middle-grade students with specific learning disabilities (SWDs) in reading comprehension perform less well than their peers on standardized assessments. The purpose of this quantitative comparative study was to examine the effect of electronic concept maps on reading comprehension of eighth grade students with SWD reading comprehension in a Hawaii middle school Grade 8 science class on the island of Oahu. The target population consisted of Grade 8 science students for school year 2015-2016. The sampling method was a purposeful sampling with a final sample size of 338 grade 8 science students. De-identified archival records of grade 8 Hawaii standardized science test scores were analyzed using a one way analysis of variance (ANOVA) in SPSS. The finding for hypothesis 1 indicated a significant difference in student achievement between SWDs and SWODs as measured by Hawaii State Assessment (HSA) in science scores (p < 0.05), and for hypothesis 2, a significant difference in instructional modality for SWDs who used concept maps and does who did not as measured by the Hawaii State Assessment in science (p < 0.05). The implications of the findings (a) SWDs performed less well in science achievement than their peers and consequently, and (b) SWODs appeared to remember greater degrees of science knowledge, and answered more questions correctly than SWDs as a result of reading comprehension. Recommendations for practice were for educational leadership and noted: (a) teachers should practice using concept maps with SWDs as a specific reading strategy to support reading comprehension in science classes, (b) involve a strong focus on vocabulary building and concept building during concept map construction because the construction of concept maps sometimes requires frontloading of vocabulary, and (c) model for teachers how concept maps are created and to explain their educational purpose as a tool for learning. Recommendations for future research were to conduct (a) a quantitative comparative study between groups for academic achievement of subtests mean scores of SWDs and SWODs in physical science, earth science, and space science, and (b) a quantitative correlation study to examine relationships and predictive values for academic achievement of SWDs and concept map integration on standardized science assessments.

  12. Genetic Mapping of Quantitative Trait Loci Controlling Growth and Wood Quality Traits in Eucalyptus Grandis Using a Maternal Half-Sib Family and Rapd Markers

    PubMed Central

    Grattapaglia, D.; Bertolucci, FLG.; Penchel, R.; Sederoff, R. R.

    1996-01-01

    Quantitative trait loci (QTL) mapping of forest productivity traits was performed using an open pollinated half-sib family of Eucalyptus grandis. For volume growth, a sequential QTL mapping approach was applied using bulk segregant analysis (BSA), selective genotyping (SG) and cosegregation analysis (CSA). Despite the low heritability of this trait and the heterogeneous genetic background employed for mapping. BSA detected one putative QTL and SG two out of the three later found by CSA. The three putative QTL for volume growth were found to control 13.7% of the phenotypic variation, corresponding to an estimated 43.7% of the genetic variation. For wood specific gravity five QTL were identified controlling 24.7% of the phenotypic variation corresponding to 49% of the genetic variation. Overlapping QTL for CBH, WSG and percentage dry weight of bark were observed. A significant case of digenic epistasis was found, involving unlinked QTL for volume. Our results demonstrate the applicability of the within half-sib design for QTL mapping in forest trees and indicate the existence of major genes involved in the expression of economically important traits related to forest productivity in Eucalyptus grandis. These findings have important implications for marker-assisted tree breeding. PMID:8913761

  13. The genetic architecture of Drosophila sensory bristle number.

    PubMed Central

    Dilda, Christy L; Mackay, Trudy F C

    2002-01-01

    We have mapped quantitative trait loci (QTL) for Drosophila mechanosensory bristle number in six recombinant isogenic line (RIL) mapping populations, each of which was derived from an isogenic chromosome extracted from a line selected for high or low, sternopleural or abdominal bristle number and an isogenic wild-type chromosome. All RILs were evaluated as male and female F(1) progeny of crosses to both the selected and the wild-type parental chromosomes at three developmental temperatures (18 degrees, 25 degrees, and 28 degrees ). QTL for bristle number were mapped separately for each chromosome, trait, and environment by linkage to roo transposable element marker loci, using composite interval mapping. A total of 53 QTL were detected, of which 33 affected sternopleural bristle number, 31 affected abdominal bristle number, and 11 affected both traits. The effects of most QTL were conditional on sex (27%), temperature (14%), or both sex and temperature (30%). Epistatic interactions between QTL were also common. While many QTL mapped to the same location as candidate bristle development loci, several QTL regions did not encompass obvious candidate genes. These features are germane to evolutionary models for the maintenance of genetic variation for quantitative traits, but complicate efforts to understand the molecular genetic basis of variation for complex traits. PMID:12524340

  14. Mapping Quantitative Field Resistance Against Apple Scab in a 'Fiesta' x 'Discovery' Progeny.

    PubMed

    Liebhard, R; Koller, B; Patocchi, A; Kellerhals, M; Pfammatter, W; Jermini, M; Gessler, C

    2003-04-01

    ABSTRACT Breeding of resistant apple cultivars (Malus x domestica) as a disease management strategy relies on the knowledge and understanding of the underlying genetics. The availability of molecular markers and genetic linkage maps enables the detection and the analysis of major resistance genes as well as of quantitative trait loci (QTL) contributing to the resistance of a genotype. Such a genetic linkage map was constructed, based on a segregating population of the cross between apple cvs. Fiesta (syn. Red Pippin) and Discovery. The progeny was observed for 3 years at three different sites in Switzerland and field resistance against apple scab (Venturia inaequalis) was assessed. Only a weak correlation was detected between leaf scab and fruit scab. A QTL analysis was performed, based on the genetic linkage map consisting of 804 molecular markers and covering all 17 chromosomes of apple. With the maximum likelihood-based interval mapping method, eight genomic regions were identified, six conferring resistance against leaf scab and two conferring fruit scab resistance. Although cv. Discovery showed a much stronger resistance against scab in the field, most QTL identified were attributed to the more susceptible parent 'Fiesta'. This indicated a high degree of homozygosity at the scab resistance loci in 'Discovery', preventing their detection in the progeny due to the lack of segregation.

  15. Evaluation of MRI sequences for quantitative T1 brain mapping

    NASA Astrophysics Data System (ADS)

    Tsialios, P.; Thrippleton, M.; Glatz, A.; Pernet, C.

    2017-11-01

    T1 mapping constitutes a quantitative MRI technique finding significant application in brain imaging. It allows evaluation of contrast uptake, blood perfusion, volume, providing a more specific biomarker of disease progression compared to conventional T1-weighted images. While there are many techniques for T1-mapping there is a wide range of reported T1-values in tissues, raising the issue of protocols reproducibility and standardization. The gold standard for obtaining T1-maps is based on acquiring IR-SE sequence. Widely used alternative sequences are IR-SE-EPI, VFA (DESPOT), DESPOT-HIFI and MP2RAGE that speed up scanning and fitting procedures. A custom MRI phantom was used to assess the reproducibility and accuracy of the different methods. All scans were performed using a 3T Siemens Prisma scanner. The acquired data processed using two different codes. The main difference was observed for VFA (DESPOT) which grossly overestimated T1 relaxation time by 214 ms [126 270] compared to the IR-SE sequence. MP2RAGE and DESPOT-HIFI sequences gave slightly shorter time than IR-SE (~20 to 30ms) and can be considered as alternative and time-efficient methods for acquiring accurate T1 maps of the human brain, while IR-SE-EPI gave identical result, at a cost of a lower image quality.

  16. Linkage disequilibrium fine mapping of quantitative trait loci: A simulation study

    PubMed Central

    Abdallah, Jihad M; Goffinet, Bruno; Cierco-Ayrolles, Christine; Pérez-Enciso, Miguel

    2003-01-01

    Recently, the use of linkage disequilibrium (LD) to locate genes which affect quantitative traits (QTL) has received an increasing interest, but the plausibility of fine mapping using linkage disequilibrium techniques for QTL has not been well studied. The main objectives of this work were to (1) measure the extent and pattern of LD between a putative QTL and nearby markers in finite populations and (2) investigate the usefulness of LD in fine mapping QTL in simulated populations using a dense map of multiallelic or biallelic marker loci. The test of association between a marker and QTL and the power of the test were calculated based on single-marker regression analysis. The results show the presence of substantial linkage disequilibrium with closely linked marker loci after 100 to 200 generations of random mating. Although the power to test the association with a frequent QTL of large effect was satisfactory, the power was low for the QTL with a small effect and/or low frequency. More powerful, multi-locus methods may be required to map low frequent QTL with small genetic effects, as well as combining both linkage and linkage disequilibrium information. The results also showed that multiallelic markers are more useful than biallelic markers to detect linkage disequilibrium and association at an equal distance. PMID:12939203

  17. One registration multi-atlas-based pseudo-CT generation for attenuation correction in PET/MRI.

    PubMed

    Arabi, Hossein; Zaidi, Habib

    2016-10-01

    The outcome of a detailed assessment of various strategies for atlas-based whole-body bone segmentation from magnetic resonance imaging (MRI) was exploited to select the optimal parameters and setting, with the aim of proposing a novel one-registration multi-atlas (ORMA) pseudo-CT generation approach. The proposed approach consists of only one online registration between the target and reference images, regardless of the number of atlas images (N), while for the remaining atlas images, the pre-computed transformation matrices to the reference image are used to align them to the target image. The performance characteristics of the proposed method were evaluated and compared with conventional atlas-based attenuation map generation strategies (direct registration of the entire atlas images followed by voxel-wise weighting (VWW) and arithmetic averaging atlas fusion). To this end, four different positron emission tomography (PET) attenuation maps were generated via arithmetic averaging and VWW scheme using both direct registration and ORMA approaches as well as the 3-class attenuation map obtained from the Philips Ingenuity TF PET/MRI scanner commonly used in the clinical setting. The evaluation was performed based on the accuracy of extracted whole-body bones by the different attenuation maps and by quantitative analysis of resulting PET images compared to CT-based attenuation-corrected PET images serving as reference. The comparison of validation metrics regarding the accuracy of extracted bone using the different techniques demonstrated the superiority of the VWW atlas fusion algorithm achieving a Dice similarity measure of 0.82 ± 0.04 compared to arithmetic averaging atlas fusion (0.60 ± 0.02), which uses conventional direct registration. Application of the ORMA approach modestly compromised the accuracy, yielding a Dice similarity measure of 0.76 ± 0.05 for ORMA-VWW and 0.55 ± 0.03 for ORMA-averaging. The results of quantitative PET analysis followed the same trend with less significant differences in terms of SUV bias, whereas massive improvements were observed compared to PET images corrected for attenuation using the 3-class attenuation map. The maximum absolute bias achieved by VWW and VWW-ORMA methods was 06.4 ± 5.5 in the lung and 07.9 ± 4.8 in the bone, respectively. The proposed algorithm is capable of generating decent attenuation maps. The quantitative analysis revealed a good correlation between PET images corrected for attenuation using the proposed pseudo-CT generation approach and the corresponding CT images. The computational time is reduced by a factor of 1/N at the expense of a modest decrease in quantitative accuracy, thus allowing us to achieve a reasonable compromise between computing time and quantitative performance.

  18. Mappability of drug-like space: towards a polypharmacologically competent map of drug-relevant compounds.

    PubMed

    Sidorov, Pavel; Gaspar, Helena; Marcou, Gilles; Varnek, Alexandre; Horvath, Dragos

    2015-12-01

    Intuitive, visual rendering--mapping--of high-dimensional chemical spaces (CS), is an important topic in chemoinformatics. Such maps were so far dedicated to specific compound collections--either limited series of known activities, or large, even exhaustive enumerations of molecules, but without associated property data. Typically, they were challenged to answer some classification problem with respect to those same molecules, admired for their aesthetical virtues and then forgotten--because they were set-specific constructs. This work wishes to address the question whether a general, compound set-independent map can be generated, and the claim of "universality" quantitatively justified, with respect to all the structure-activity information available so far--or, more realistically, an exploitable but significant fraction thereof. The "universal" CS map is expected to project molecules from the initial CS into a lower-dimensional space that is neighborhood behavior-compliant with respect to a large panel of ligand properties. Such map should be able to discriminate actives from inactives, or even support quantitative neighborhood-based, parameter-free property prediction (regression) models, for a wide panel of targets and target families. It should be polypharmacologically competent, without requiring any target-specific parameter fitting. This work describes an evolutionary growth procedure of such maps, based on generative topographic mapping, followed by the validation of their polypharmacological competence. Validation was achieved with respect to a maximum of exploitable structure-activity information, covering all of Homo sapiens proteins of the ChEMBL database, antiparasitic and antiviral data, etc. Five evolved maps satisfactorily solved hundreds of activity-based ligand classification challenges for targets, and even in vivo properties independent from training data. They also stood chemogenomics-related challenges, as cumulated responsibility vectors obtained by mapping of target-specific ligand collections were shown to represent validated target descriptors, complying with currently accepted target classification in biology. Therefore, they represent, in our opinion, a robust and well documented answer to the key question "What is a good CS map?"

  19. Development of a 63K SNP array for Gossypium and high-density mapping of intra- and inter-specific populations of cotton (G. hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    High-throughput genotyping arrays provide a standardized resource for crop research communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), candidate marker and quantitative trait loci (QTL) ide...

  20. In-silico QTL mapping of postpubertal mammary ductal development in the mouse uncovers potential human breast cancer risk loci

    USDA-ARS?s Scientific Manuscript database

    Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structura...

  1. Quantitative Trait Loci for Resistance to Aspergillus Ear Rot: Analysis by Linkage Mapping, Characterization of Near-Isogenic Lines and Meta-Analysis

    USDA-ARS?s Scientific Manuscript database

    High levels of aflatoxin contamination of maize can be deadly for exposed human populations. Resistance to aflatoxin accumulation in maize has been reported in multiple studies and acts at multiple steps where there is fungal-plant interaction. In this study, we report the identification and mapping...

  2. Traumatizing Aspects of Providing Counselling in Community Agencies to Survivors of Sexual Violence: A Concept Map

    ERIC Educational Resources Information Center

    Kadambi, Michaela A.; Truscott, Derek

    2008-01-01

    Concept mapping (a combined qualitative/quantitative approach) was used to clarify and understand 72 Canadian professionals' experience of what they found to be traumatizing about their work with sexual violence survivors in community settings. A sample of 30 professionals providing community-based treatment to survivors of sexual violence sorted…

  3. Concept Mapping: Effects on Content Knowledge and Engagement with Content in Elementary Students' Persuasive Writing

    ERIC Educational Resources Information Center

    Gardner, Melissa England

    2015-01-01

    This comparative pre-test/post-test quantitative study investigated the effect of an instructional strategy using concept mapping as a graphic organizer on the quality of persuasive writing compositions produced by fourth grade elementary school students. Six fourth grade classes were assigned as intact groups to three conditions: concept mapping…

  4. The effects of forest fragmentation on forest stand attributes

    Treesearch

    Ronald E. McRoberts; Greg C. Liknes

    2002-01-01

    For two study areas in Minnesota, USA, one heavily forested and one sparsely forested, maps of predicted proportion forest area were created using Landsat Thematic Mapper imagery, forest inventory plot data, and a logistic regression model. The maps were used to estimate quantitative indices of forest fragmentation. Correlations between the values of the indices and...

  5. Construction of a Genetic Linkage Map and Identification of QTLs for Resistance to TSWV in Cultivated Peanut (Arachis hypagea L.)

    USDA-ARS?s Scientific Manuscript database

    A genetic linkage map is critical for identifying the QTL (quantitative trait loci) underling targeted traits. Over the last few years, progress has been made in marker development from multiple sources enabling the expansion of quality resources needed for genotyping applications in cultivated x cu...

  6. Modeling regional-scale wildland fire emissions with the wildland fire emissions information system

    Treesearch

    Nancy H.F. French; Donald McKenzie; Tyler Erickson; Benjamin Koziol; Michael Billmire; K. Endsley; Naomi K.Y. Scheinerman; Liza Jenkins; Mary E. Miller; Roger Ottmar; Susan Prichard

    2014-01-01

    As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire. The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent...

  7. Conceptual development and retention within the learning cycle

    NASA Astrophysics Data System (ADS)

    McWhirter, Lisa Jo

    1998-12-01

    This research was designed to achieve two goals: (1) examine concept development and retention within the learning cycle and (2) examine how students' concept development is mediated by classroom discussions and the students' small cooperative learning group. Forty-eight sixth-grade students and one teacher at an urban middle school participated in the study. The research utilized both quantitative and qualitative analyses. Quantitative assessments included a concept mapping technique as well as teacher generated multiple choice tests. Preliminary quantitative analysis found that students' reading levels had an effect on students' pretest scores in both the concept mapping and the multiple-choice assessment. Therefore, a covariant design was implemented for the quantitative analyses. Quantitative analysis techniques were used to examine concept development and retention, it was discovered that the students' concept knowledge increased significantly from the time of the conclusion of the term introduction phase to the conclusion of the expansion phase. These findings would indicate that all three phases of the learning cycle are necessary for conceptual development. However, quantitative analyses of concept maps indicated that this is not true for all students. Individual students showed evidence of concept development and integration at each phase. Therefore, concept development is individualized and all phases of the learning cycle are not necessary for all students. As a result, individual's assimilation, disequilibration, accommodation and organization may not correlate with the phases of the learning cycle. Quantitative analysis also indicated a significant decrease in the retention of concepts over time. Qualitative analyses were used to examine how students' concept development is mediated by classroom discussions and the students' small cooperative learning group. It was discovered that there was a correlation between teacher-student interaction and small-group interaction and concept mediation. Therefore, students who had a high level of teacher-student dialogue which utilized teacher led discussions with integrated scaffolding techniques where the same students who mediated the ideas within the small group discussions. Those students whose teacher-student interactions consisted of dialogue with little positive teacher feedback made no contributions within the small group regardless of their level of concept development.

  8. Quantitative Analysis of the Usage of the COSMOS Science Education Portal

    ERIC Educational Resources Information Center

    Sotiriou, Sofoklis; Bogner, Franz X.; Neofotistos, George

    2011-01-01

    A quantitative method of mapping the web usage of an innovative educational portal is applied to analyze the behaviour of users of the COSMOS Science Education Portal. The COSMOS Portal contains user-generated resources (that are uploaded by its users). It has been designed to support a science teacher's search, retrieval and access to both,…

  9. The IQ Quantitative Trait Loci Project: A Critique.

    ERIC Educational Resources Information Center

    King, David

    1998-01-01

    Describes the IQ Quantitative Trait Loci (QTL) project, an attempt to identify genes underlying IQ score variations using maps from the Human Genome Project. The essay argues against funding the IQ QTL project because it will end the debates about the genetic basis of intelligence and may lead directly to eugenic programs of genetic testing. (SLD)

  10. Decay of Correlations, Quantitative Recurrence and Logarithm Law for Contracting Lorenz Attractors

    NASA Astrophysics Data System (ADS)

    Galatolo, Stefano; Nisoli, Isaia; Pacifico, Maria Jose

    2018-03-01

    In this paper we prove that a class of skew products maps with non uniformly hyperbolic base has exponential decay of correlations. We apply this to obtain a logarithm law for the hitting time associated to a contracting Lorenz attractor at all the points having a well defined local dimension, and a quantitative recurrence estimation.

  11. Automatic metro map layout using multicriteria optimization.

    PubMed

    Stott, Jonathan; Rodgers, Peter; Martínez-Ovando, Juan Carlos; Walker, Stephen G

    2011-01-01

    This paper describes an automatic mechanism for drawing metro maps. We apply multicriteria optimization to find effective placement of stations with a good line layout and to label the map unambiguously. A number of metrics are defined, which are used in a weighted sum to find a fitness value for a layout of the map. A hill climbing optimizer is used to reduce the fitness value, and find improved map layouts. To avoid local minima, we apply clustering techniques to the map-the hill climber moves both stations and clusters when finding improved layouts. We show the method applied to a number of metro maps, and describe an empirical study that provides some quantitative evidence that automatically-drawn metro maps can help users to find routes more efficiently than either published maps or undistorted maps. Moreover, we have found that, in these cases, study subjects indicate a preference for automatically-drawn maps over the alternatives. © 2011 IEEE Published by the IEEE Computer Society

  12. Alaska and Yukon magnetic compilation, residual total magnetic field

    USGS Publications Warehouse

    Miles, W.; Saltus, Richard W.; Hayward, N.; Oneschuk, D.

    2017-01-01

    This map is a compilation of aeromagnetic surveys over Yukon and eastern Alaska. Aeromagnetic surveys measure the total intensity of the earth's magnetic field. The field was measured by a magnetometer aboard an aircraft flown in parallel lines spaced at 200 m to 10000 m across the map area. The magnetic field reflects magnetic properties of bedrock and provides qualitative and quantitative information used in geological mapping. Understanding the geology will help geologists map the area, assist mineral/hydrocarbon exploration activities, and provide useful information necessary for communities, aboriginal associations, and government to make land use decisions. This survey was flown to improve our knowledge of the area. It will support ongoing geological mapping and resource assessment.

  13. Exploiting induced variation to dissect quantitative traits in barley.

    PubMed

    Druka, Arnis; Franckowiak, Jerome; Lundqvist, Udda; Bonar, Nicola; Alexander, Jill; Guzy-Wrobelska, Justyna; Ramsay, Luke; Druka, Ilze; Grant, Iain; Macaulay, Malcolm; Vendramin, Vera; Shahinnia, Fahimeh; Radovic, Slobodanka; Houston, Kelly; Harrap, David; Cardle, Linda; Marshall, David; Morgante, Michele; Stein, Nils; Waugh, Robbie

    2010-04-01

    The identification of genes underlying complex quantitative traits such as grain yield by means of conventional genetic analysis (positional cloning) requires the development of several large mapping populations. However, it is possible that phenotypically related, but more extreme, allelic variants generated by mutational studies could provide a means for more efficient cloning of QTLs (quantitative trait loci). In barley (Hordeum vulgare), with the development of high-throughput genome analysis tools, efficient genome-wide identification of genetic loci harbouring mutant alleles has recently become possible. Genotypic data from NILs (near-isogenic lines) that carry induced or natural variants of genes that control aspects of plant development can be compared with the location of QTLs to potentially identify candidate genes for development--related traits such as grain yield. As yield itself can be divided into a number of allometric component traits such as tillers per plant, kernels per spike and kernel size, mutant alleles that both affect these traits and are located within the confidence intervals for major yield QTLs may represent extreme variants of the underlying genes. In addition, the development of detailed comparative genomic models based on the alignment of a high-density barley gene map with the rice and sorghum physical maps, has enabled an informed prioritization of 'known function' genes as candidates for both QTLs and induced mutant genes.

  14. Linkage disequilibrium interval mapping of quantitative trait loci.

    PubMed

    Boitard, Simon; Abdallah, Jihad; de Rochambeau, Hubert; Cierco-Ayrolles, Christine; Mangin, Brigitte

    2006-03-16

    For many years gene mapping studies have been performed through linkage analyses based on pedigree data. Recently, linkage disequilibrium methods based on unrelated individuals have been advocated as powerful tools to refine estimates of gene location. Many strategies have been proposed to deal with simply inherited disease traits. However, locating quantitative trait loci is statistically more challenging and considerable research is needed to provide robust and computationally efficient methods. Under a three-locus Wright-Fisher model, we derived approximate expressions for the expected haplotype frequencies in a population. We considered haplotypes comprising one trait locus and two flanking markers. Using these theoretical expressions, we built a likelihood-maximization method, called HAPim, for estimating the location of a quantitative trait locus. For each postulated position, the method only requires information from the two flanking markers. Over a wide range of simulation scenarios it was found to be more accurate than a two-marker composite likelihood method. It also performed as well as identity by descent methods, whilst being valuable in a wider range of populations. Our method makes efficient use of marker information, and can be valuable for fine mapping purposes. Its performance is increased if multiallelic markers are available. Several improvements can be developed to account for more complex evolution scenarios or provide robust confidence intervals for the location estimates.

  15. Quantitative Evaluation of 2 Scatter-Correction Techniques for 18F-FDG Brain PET/MRI in Regard to MR-Based Attenuation Correction.

    PubMed

    Teuho, Jarmo; Saunavaara, Virva; Tolvanen, Tuula; Tuokkola, Terhi; Karlsson, Antti; Tuisku, Jouni; Teräs, Mika

    2017-10-01

    In PET, corrections for photon scatter and attenuation are essential for visual and quantitative consistency. MR attenuation correction (MRAC) is generally conducted by image segmentation and assignment of discrete attenuation coefficients, which offer limited accuracy compared with CT attenuation correction. Potential inaccuracies in MRAC may affect scatter correction, because the attenuation image (μ-map) is used in single scatter simulation (SSS) to calculate the scatter estimate. We assessed the impact of MRAC to scatter correction using 2 scatter-correction techniques and 3 μ-maps for MRAC. Methods: The tail-fitted SSS (TF-SSS) and a Monte Carlo-based single scatter simulation (MC-SSS) algorithm implementations on the Philips Ingenuity TF PET/MR were used with 1 CT-based and 2 MR-based μ-maps. Data from 7 subjects were used in the clinical evaluation, and a phantom study using an anatomic brain phantom was conducted. Scatter-correction sinograms were evaluated for each scatter correction method and μ-map. Absolute image quantification was investigated with the phantom data. Quantitative assessment of PET images was performed by volume-of-interest and ratio image analysis. Results: MRAC did not result in large differences in scatter algorithm performance, especially with TF-SSS. Scatter sinograms and scatter fractions did not reveal large differences regardless of the μ-map used. TF-SSS showed slightly higher absolute quantification. The differences in volume-of-interest analysis between TF-SSS and MC-SSS were 3% at maximum in the phantom and 4% in the patient study. Both algorithms showed excellent correlation with each other with no visual differences between PET images. MC-SSS showed a slight dependency on the μ-map used, with a difference of 2% on average and 4% at maximum when a μ-map without bone was used. Conclusion: The effect of different MR-based μ-maps on the performance of scatter correction was minimal in non-time-of-flight 18 F-FDG PET/MR brain imaging. The SSS algorithm was not affected significantly by MRAC. The performance of the MC-SSS algorithm is comparable but not superior to TF-SSS, warranting further investigations of algorithm optimization and performance with different radiotracers and time-of-flight imaging. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  16. High-resolution genetic linkage mapping, high-temperature tolerance and growth-related quantitative trait locus (QTL) identification in Marsupenaeus japonicus.

    PubMed

    Lu, Xia; Luan, Sheng; Hu, Long Yang; Mao, Yong; Tao, Ye; Zhong, Sheng Ping; Kong, Jie

    2016-06-01

    The Kuruma prawn, Marsupenaeus japonicus, is one of the most promising marine invertebrates in the industry in Asia, Europe and Australia. However, the increasing global temperatures result in considerable economic losses in M. japonicus farming. In the present study, to select genetically improved animals for the sustainable development of the Kuruma prawn industry, a high-resolution genetic linkage map and quantitative trait locus (QTL) identification were performed using the RAD technology. The maternal map contained 5849 SNP markers and spanned 3127.23 cM, with an average marker interval of 0.535 cM. Instead, the paternal map contained 3927 SNP markers and spanned 3326.19 cM, with an average marker interval of 0.847 cM. The consensus map contained 9289 SNP markers and spanned 3610.90 cM, with an average marker interval of 0.388 cM and coverage of 99.06 % of the genome. The markers were grouped into 41 linkage groups in the maps. Significantly, negative correlation was detected between high-temperature tolerance (UTT) and body weight (BW). The QTL mapping revealed 129 significant QTL loci for UTT and four significant QTL loci for BW at the genome-wide significance threshold. Among these QTLs, 129 overlapped with linked SNPs, and the remaining four were located in regions between contiguous SNPs. They explained the total phenotypic variance ranging from 8.9 to 12.4 %. Because of a significantly negative correlation between growth and high-temperature tolerance, we demonstrate that this high-resolution linkage map and QTLs would be useful for further marker-assisted selection in the genetic improvement of M. japonicus.

  17. Spatially Regularized Machine Learning for Task and Resting-state fMRI

    PubMed Central

    Song, Xiaomu; Panych, Lawrence P.; Chen, Nan-kuei

    2015-01-01

    Background Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. New Method A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. Results The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. Comparison with Existing Methods A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. Conclusions The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. PMID:26470627

  18. In silico mapping of quantitative trait loci in maize.

    PubMed

    Parisseaux, B; Bernardo, R

    2004-08-01

    Quantitative trait loci (QTL) are most often detected through designed mapping experiments. An alternative approach is in silico mapping, whereby genes are detected using existing phenotypic and genomic databases. We explored the usefulness of in silico mapping via a mixed-model approach in maize (Zea mays L.). Specifically, our objective was to determine if the procedure gave results that were repeatable across populations. Multilocation data were obtained from the 1995-2002 hybrid testing program of Limagrain Genetics in Europe. Nine heterotic patterns comprised 22,774 single crosses. These single crosses were made from 1,266 inbreds that had data for 96 simple sequence repeat (SSR) markers. By a mixed-model approach, we estimated the general combining ability effects associated with marker alleles in each heterotic pattern. The numbers of marker loci with significant effects--37 for plant height, 24 for smut [Ustilago maydis (DC.) Cda.] resistance, and 44 for grain moisture--were consistent with previous results from designed mapping experiments. Each trait had many loci with small effects and few loci with large effects. For smut resistance, a marker in bin 8.05 on chromosome 8 had a significant effect in seven (out of a maximum of 18) instances. For this major QTL, the maximum effect of an allele substitution ranged from 5.4% to 41.9%, with an average of 22.0%. We conclude that in silico mapping via a mixed-model approach can detect associations that are repeatable across different populations. We speculate that in silico mapping will be more useful for gene discovery than for selection in plant breeding programs. Copyright 2004 Springer-Verlag

  19. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.)

    PubMed Central

    2011-01-01

    Background A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Results Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm. Conclusions Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection). PMID:21797998

  20. A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.).

    PubMed

    Diaz, Aurora; Fergany, Mohamed; Formisano, Gelsomina; Ziarsolo, Peio; Blanca, José; Fei, Zhanjun; Staub, Jack E; Zalapa, Juan E; Cuevas, Hugo E; Dace, Gayle; Oliver, Marc; Boissot, Nathalie; Dogimont, Catherine; Pitrat, Michel; Hofstede, René; van Koert, Paul; Harel-Beja, Rotem; Tzuri, Galil; Portnoy, Vitaly; Cohen, Shahar; Schaffer, Arthur; Katzir, Nurit; Xu, Yong; Zhang, Haiying; Fukino, Nobuko; Matsumoto, Satoru; Garcia-Mas, Jordi; Monforte, Antonio J

    2011-07-28

    A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm. Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection).

  1. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE-MAP algorithm resulted in comparable regional mean values to those from the maximum likelihood algorithm while reducing noise. Achieving robust performance in various noise-level simulation and patient studies, the WJE-MAP algorithm demonstrates its potential in clinical quantitative PET imaging.

  2. Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps

    NASA Astrophysics Data System (ADS)

    Steger, Stefan; Brenning, Alexander; Bell, Rainer; Petschko, Helene; Glade, Thomas

    2016-06-01

    Empirical models are frequently applied to produce landslide susceptibility maps for large areas. Subsequent quantitative validation results are routinely used as the primary criteria to infer the validity and applicability of the final maps or to select one of several models. This study hypothesizes that such direct deductions can be misleading. The main objective was to explore discrepancies between the predictive performance of a landslide susceptibility model and the geomorphic plausibility of subsequent landslide susceptibility maps while a particular emphasis was placed on the influence of incomplete landslide inventories on modelling and validation results. The study was conducted within the Flysch Zone of Lower Austria (1,354 km2) which is known to be highly susceptible to landslides of the slide-type movement. Sixteen susceptibility models were generated by applying two statistical classifiers (logistic regression and generalized additive model) and two machine learning techniques (random forest and support vector machine) separately for two landslide inventories of differing completeness and two predictor sets. The results were validated quantitatively by estimating the area under the receiver operating characteristic curve (AUROC) with single holdout and spatial cross-validation technique. The heuristic evaluation of the geomorphic plausibility of the final results was supported by findings of an exploratory data analysis, an estimation of odds ratios and an evaluation of the spatial structure of the final maps. The results showed that maps generated by different inventories, classifiers and predictors appeared differently while holdout validation revealed similar high predictive performances. Spatial cross-validation proved useful to expose spatially varying inconsistencies of the modelling results while additionally providing evidence for slightly overfitted machine learning-based models. However, the highest predictive performances were obtained for maps that explicitly expressed geomorphically implausible relationships indicating that the predictive performance of a model might be misleading in the case a predictor systematically relates to a spatially consistent bias of the inventory. Furthermore, we observed that random forest-based maps displayed spatial artifacts. The most plausible susceptibility map of the study area showed smooth prediction surfaces while the underlying model revealed a high predictive capability and was generated with an accurate landslide inventory and predictors that did not directly describe a bias. However, none of the presented models was found to be completely unbiased. This study showed that high predictive performances cannot be equated with a high plausibility and applicability of subsequent landslide susceptibility maps. We suggest that greater emphasis should be placed on identifying confounding factors and biases in landslide inventories. A joint discussion between modelers and decision makers of the spatial pattern of the final susceptibility maps in the field might increase their acceptance and applicability.

  3. Mappability of drug-like space: towards a polypharmacologically competent map of drug-relevant compounds

    NASA Astrophysics Data System (ADS)

    Sidorov, Pavel; Gaspar, Helena; Marcou, Gilles; Varnek, Alexandre; Horvath, Dragos

    2015-12-01

    Intuitive, visual rendering—mapping—of high-dimensional chemical spaces (CS), is an important topic in chemoinformatics. Such maps were so far dedicated to specific compound collections—either limited series of known activities, or large, even exhaustive enumerations of molecules, but without associated property data. Typically, they were challenged to answer some classification problem with respect to those same molecules, admired for their aesthetical virtues and then forgotten—because they were set-specific constructs. This work wishes to address the question whether a general, compound set-independent map can be generated, and the claim of "universality" quantitatively justified, with respect to all the structure-activity information available so far—or, more realistically, an exploitable but significant fraction thereof. The "universal" CS map is expected to project molecules from the initial CS into a lower-dimensional space that is neighborhood behavior-compliant with respect to a large panel of ligand properties. Such map should be able to discriminate actives from inactives, or even support quantitative neighborhood-based, parameter-free property prediction (regression) models, for a wide panel of targets and target families. It should be polypharmacologically competent, without requiring any target-specific parameter fitting. This work describes an evolutionary growth procedure of such maps, based on generative topographic mapping, followed by the validation of their polypharmacological competence. Validation was achieved with respect to a maximum of exploitable structure-activity information, covering all of Homo sapiens proteins of the ChEMBL database, antiparasitic and antiviral data, etc. Five evolved maps satisfactorily solved hundreds of activity-based ligand classification challenges for targets, and even in vivo properties independent from training data. They also stood chemogenomics-related challenges, as cumulated responsibility vectors obtained by mapping of target-specific ligand collections were shown to represent validated target descriptors, complying with currently accepted target classification in biology. Therefore, they represent, in our opinion, a robust and well documented answer to the key question "What is a good CS map?"

  4. Decoding 2D-PAGE complex maps: relevance to proteomics.

    PubMed

    Pietrogrande, Maria Chiara; Marchetti, Nicola; Dondi, Francesco; Righetti, Pier Giorgio

    2006-03-20

    This review describes two mathematical approaches useful for decoding the complex signal of 2D-PAGE maps of protein mixtures. These methods are helpful for interpreting the large amount of data of each 2D-PAGE map by extracting all the analytical information hidden therein by spot overlapping. Here the basic theory and application to 2D-PAGE maps are reviewed: the means for extracting information from the experimental data and their relevance to proteomics are discussed. One method is based on the quantitative theory of statistical model of peak overlapping (SMO) using the spot experimental data (intensity and spatial coordinates). The second method is based on the study of the 2D-autocovariance function (2D-ACVF) computed on the experimental digitised map. They are two independent methods that are able to extract equal and complementary information from the 2D-PAGE map. Both methods permit to obtain fundamental information on the sample complexity and the separation performance and to single out ordered patterns present in spot positions: the availability of two independent procedures to compute the same separation parameters is a powerful tool to estimate the reliability of the obtained results. The SMO procedure is an unique tool to quantitatively estimate the degree of spot overlapping present in the map, while the 2D-ACVF method is particularly powerful in simply singling out the presence of order in the spot position from the complexity of the whole 2D map, i.e., spot trains. The procedures were validated by extensive numerical computation on computer-generated maps describing experimental 2D-PAGE gels of protein mixtures. Their applicability to real samples was tested on reference maps obtained from literature sources. The review describes the most relevant information for proteomics: sample complexity, separation performance, overlapping extent, identification of spot trains related to post-translational modifications (PTMs).

  5. A reference genetic linkage map of apomictic Hieracium species based on expressed markers derived from developing ovule transcripts

    PubMed Central

    Shirasawa, Kenta; Hand, Melanie L.; Henderson, Steven T.; Okada, Takashi; Johnson, Susan D.; Taylor, Jennifer M.; Spriggs, Andrew; Siddons, Hayley; Hirakawa, Hideki; Isobe, Sachiko; Tabata, Satoshi; Koltunow, Anna M. G.

    2015-01-01

    Background and Aims Apomixis in plants generates clonal progeny with a maternal genotype through asexual seed formation. Hieracium subgenus Pilosella (Asteraceae) contains polyploid, highly heterozygous apomictic and sexual species. Within apomictic Hieracium, dominant genetic loci independently regulate the qualitative developmental components of apomixis. In H. praealtum, LOSS OF APOMEIOSIS (LOA) enables formation of embryo sacs without meiosis and LOSS OF PARTHENOGENESIS (LOP) enables fertilization-independent seed formation. A locus required for fertilization-independent endosperm formation (AutE) has been identified in H. piloselloides. Additional quantitative loci appear to influence the penetrance of the qualitative loci, although the controlling genes remain unknown. This study aimed to develop the first genetic linkage maps for sexual and apomictic Hieracium species using simple sequence repeat (SSR) markers derived from expressed transcripts within the developing ovaries. Methods RNA from microdissected Hieracium ovule cell types and ovaries was sequenced and SSRs were identified. Two different F1 mapping populations were created to overcome difficulties associated with genome complexity and asexual reproduction. SSR markers were analysed within each mapping population to generate draft linkage maps for apomictic and sexual Hieracium species. Key Results A collection of 14 684 Hieracium expressed SSR markers were developed and linkage maps were constructed for Hieracium species using a subset of the SSR markers. Both the LOA and LOP loci were successfully assigned to linkage groups; however, AutE could not be mapped using the current populations. Comparisons with lettuce (Lactuca sativa) revealed partial macrosynteny between the two Asteraceae species. Conclusions A collection of SSR markers and draft linkage maps were developed for two apomictic and one sexual Hieracium species. These maps will support cloning of controlling genes at LOA and LOP loci in Hieracium and should also assist with identification of quantitative loci that affect the expressivity of apomixis. Future work will focus on mapping AutE using alternative populations. PMID:25538115

  6. A study of the utilization of ERTS-1 data from the Wabash River Basin. [crop identification, water resources, urban land use, soil mapping, and atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The most significant results were obtained in the water resources research, urban land use mapping, and soil association mapping projects. ERTS-1 data was used to classify water bodies to determine acreages and high agreement was obtained with USGS figures. Quantitative evaluation was achieved of urban land use classifications from ERTS-1 data and an overall test accuracy of 90.3% was observed. ERTS-1 data classifications of soil test sites were compared with soil association maps scaled to match the computer produced map and good agreement was observed. In some cases the ERTS-1 results proved to be more accurate than the soil association map.

  7. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    PubMed Central

    Herrmann, Kelsey; Johansen, Mette L.; Craig, Sonya E.; Vincent, Jason; Howell, Michael; Gao, Ying; Lu, Lan; Erokwu, Bernadette; Agnes, Richard S.; Lu, Zheng-Rong; Pokorski, Jonathan K.; Basilion, James; Gulani, Vikas; Griswold, Mark; Flask, Chris; Brady-Kalnay, Susann M.

    2015-01-01

    Magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM) with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA)3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA)3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA)3 agent, a scrambled-Tris-(Gd-DOTA)3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA)3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA)3 agent over time compared to the non-specific contrast agent currently in clinical use. PMID:26435847

  8. Functional quantitative susceptibility mapping (fQSM).

    PubMed

    Balla, Dávid Z; Sanchez-Panchuelo, Rosa M; Wharton, Samuel J; Hagberg, Gisela E; Scheffler, Klaus; Francis, Susan T; Bowtell, Richard

    2014-10-15

    Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a powerful technique, typically based on the statistical analysis of the magnitude component of the complex time-series. Here, we additionally interrogated the phase data of the fMRI time-series and used quantitative susceptibility mapping (QSM) in order to investigate the potential of functional QSM (fQSM) relative to standard magnitude BOLD fMRI. High spatial resolution data (1mm isotropic) were acquired every 3 seconds using zoomed multi-slice gradient-echo EPI collected at 7 T in single orientation (SO) and multiple orientation (MO) experiments, the latter involving 4 repetitions with the subject's head rotated relative to B0. Statistical parametric maps (SPM) were reconstructed for magnitude, phase and QSM time-series and each was subjected to detailed analysis. Several fQSM pipelines were evaluated and compared based on the relative number of voxels that were coincidentally found to be significant in QSM and magnitude SPMs (common voxels). We found that sensitivity and spatial reliability of fQSM relative to the magnitude data depended strongly on the arbitrary significance threshold defining "activated" voxels in SPMs, and on the efficiency of spatio-temporal filtering of the phase time-series. Sensitivity and spatial reliability depended slightly on whether MO or SO fQSM was performed and on the QSM calculation approach used for SO data. Our results present the potential of fQSM as a quantitative method of mapping BOLD changes. We also critically discuss the technical challenges and issues linked to this intriguing new technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Quantitative Gd-DOTA uptake from cerebrospinal fluid into rat brain using 3D VFA-SPGR at 9.4T.

    PubMed

    Lee, Hedok; Mortensen, Kristian; Sanggaard, Simon; Koch, Palle; Brunner, Hans; Quistorff, Bjørn; Nedergaard, Maiken; Benveniste, Helene

    2018-03-01

    We propose a quantitative technique to assess solute uptake into the brain parenchyma based on dynamic contrast-enhanced MRI (DCE-MRI). With this approach, a small molecular weight paramagnetic contrast agent (Gd-DOTA) is infused in the cerebral spinal fluid (CSF) and whole brain gadolinium concentration maps are derived. We implemented a 3D variable flip angle spoiled gradient echo (VFA-SPGR) longitudinal relaxation time (T1) technique, the accuracy of which was cross-validated by way of inversion recovery rapid acquisition with relaxation enhancement (IR-RARE) using phantoms. Normal Wistar rats underwent Gd-DOTA infusion into CSF via the cisterna magna and continuous MRI for approximately 130 min using T1-weighted imaging. Dynamic Gd-DOTA concentration maps were calculated and parenchymal uptake was estimated. In the phantom study, T1 discrepancies between the VFA-SPGR and IR-RARE sequences were approximately 6% with a transmit coil inhomogeneity correction. In the in vivo study, contrast transport profiles indicated maximal parenchymal retention of approximately 19% relative to the total amount delivered into the cisterna magna. Imaging strategies for accurate 3D contrast concentration mapping at 9.4T were developed and whole brain dynamic concentration maps were derived to study solute transport via the glymphatic system. The newly developed approach will enable future quantitative studies of the glymphatic system in health and disease states. Magn Reson Med 79:1568-1578, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Structure analysis of aluminium silicon manganese nitride precipitates formed in grain-oriented electrical steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernier, Nicolas, E-mail: n.bernier@yahoo.fr; Xhoffer, Chris; Van De Putte, Tom, E-mail: tom.vandeputte@arcelormittal.com

    We report a detailed structural and chemical characterisation of aluminium silicon manganese nitrides that act as grain growth inhibitors in industrially processed grain-oriented (GO) electrical steels. The compounds are characterised using energy dispersive X-ray spectrometry (EDX) and energy filtered transmission electron microscopy (EFTEM), while their crystal structures are analysed using X-ray diffraction (XRD) and TEM in electron diffraction (ED), dark-field, high-resolution and automated crystallographic orientation mapping (ACOM) modes. The chemical bonding character is determined using electron energy loss spectroscopy (EELS). Despite the wide variation in composition, all the precipitates exhibit a hexagonal close-packed (h.c.p.) crystal structure and lattice parameters ofmore » aluminium nitride. The EDX measurement of ∼ 900 stoichiometrically different precipitates indicates intermediate structures between pure aluminium nitride and pure silicon manganese nitride, with a constant Si/Mn atomic ratio of ∼ 4. It is demonstrated that aluminium and silicon are interchangeably precipitated with the same local arrangement, while both Mn{sup 2+} and Mn{sup 3+} are incorporated in the h.c.p. silicon nitride interstitial sites. The oxidation of the silicon manganese nitrides most likely originates from the incorporation of oxygen during the decarburisation annealing process, thus creating extended planar defects such as stacking faults and inversion domain boundaries. The chemical composition of the inhibitors may be written as (AlN){sub x}(SiMn{sub 0.25}N{sub y}O{sub z}){sub 1−x} with x ranging from 0 to 1. - Highlights: • We study the structure of (Al,Si,Mn)N inhibitors in grain oriented electrical steels. • Inhibitors have the hexagonal close-packed symmetry with lattice parameters of AlN. • Inhibitors are intermediate structures between pure AlN and (Si,Mn)N with Si/Mn ∼ 4. • Al and Si share the same local arrangement; Mn is incorporated in both Mn{sup 2+} and Mn{sup 3+}. • Oxygen incorporation is invoked to account for the thermal stability of (Al,Si,Mn)N.« less

  11. Native protein mapping and visualization of protein interactions in the area of human plasma high-density lipoprotein by combining nondenaturing micro 2DE and quantitative LC-MS/MS.

    PubMed

    Jin, Ya; Bu, Shujie; Zhang, Jun; Yuan, Qi; Manabe, Takashi; Tan, Wen

    2014-07-01

    A human plasma sample was subjected to nondenaturing micro 2DE and a gel area (5 mm × 18 mm) that includes high-density lipoprotein (HDL) was cut into 1 mm × 1 mm squares, then the proteins in the 90 gel pieces were analyzed by quantitative LC-MS/MS. Grid-cutting of the gel was employed to; (i) ensure the total analysis of the proteins in the area, (ii) standardize the conditions of analysis by LC-MS/MS, (iii) reconstruct the protein distribution patterns from the quantity data. Totally 154 proteins were assigned in the 90 gel pieces and the quantity distribution of each was reconstructed as a color density pattern (a native protein map). The map of apolipoprotein (Apo) A-I showed a wide apparent mass distribution characteristic to HDL and was compared with the maps of the other 153 proteins. Eleven proteins showed maps of wide distribution that overlapped with the map of Apo A-I, and all have been reported to be the components of HDL. Further, seven minor proteins associated with HDL were detected at the gel positions of high Apo A-I quantity. These results for the first time visualized the localization of HDL apolipoproteins on a nondenaturing 2DE gel and strongly suggested their interactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A complete mass spectrometric map for the analysis of the yeast proteome and its application to quantitative trait analysis

    PubMed Central

    Picotti, Paola; Clement-Ziza, Mathieu; Lam, Henry; Campbell, David S.; Schmidt, Alexander; Deutsch, Eric W.; Röst, Hannes; Sun, Zhi; Rinner, Oliver; Reiter, Lukas; Shen, Qin; Michaelson, Jacob J.; Frei, Andreas; Alberti, Simon; Kusebauch, Ulrike; Wollscheid, Bernd; Moritz, Robert; Beyer, Andreas; Aebersold, Ruedi

    2013-01-01

    Complete reference maps or datasets, like the genomic map of an organism, are highly beneficial tools for biological and biomedical research. Attempts to generate such reference datasets for a proteome so far failed to reach complete proteome coverage, with saturation apparent at approximately two thirds of the proteomes tested, even for the most thoroughly characterized proteomes. Here, we used a strategy based on high-throughput peptide synthesis and mass spectrometry to generate a close to complete reference map (97% of the genome-predicted proteins) of the S. cerevisiae proteome. We generated two versions of this mass spectrometric map one supporting discovery- (shotgun) and the other hypothesis-driven (targeted) proteomic measurements. The two versions of the map, therefore, constitute a complete set of proteomic assays to support most studies performed with contemporary proteomic technologies. The reference libraries can be browsed via a web-based repository and associated navigation tools. To demonstrate the utility of the reference libraries we applied them to a protein quantitative trait locus (pQTL) analysis, which requires measurement of the same peptides over a large number of samples with high precision. Protein measurements over a set of 78 S. cerevisiae strains revealed a complex relationship between independent genetic loci, impacting on the levels of related proteins. Our results suggest that selective pressure favors the acquisition of sets of polymorphisms that maintain the stoichiometry of protein complexes and pathways. PMID:23334424

  13. Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes

    USDA-ARS?s Scientific Manuscript database

    Fiber strength, length, maturity and fineness determine the market value of cotton fibers and the quality of spun yarn. Cotton fiber strength has been recognized as a critical quality attribute in the modern textile industry. Fine mapping along with quantitative trait loci (QTL) validation and candi...

  14. Tyramide-FISH mapping of single genes for development of an integrated recombination and cytogenetic map of chromosome 5 of Allium cepa

    USDA-ARS?s Scientific Manuscript database

    Chromosome 5 of onion carries major quantitative trait loci (QTL) of interest to breeders that control dry-matter content, pungency and storability of bulbs, amounts and types of epicuticular waxes, and resistances to abiotic factors. SNPs, SSRs and RFLPs in expressed regions of the onion genome hav...

  15. Assessing the Effects of Forest Fragmentation Using Satellite Imagery and Forest Inventory Data

    Treesearch

    Ronald E. McRoberts; Greg C. Liknes

    2005-01-01

    For a study area in the North Central region of the USA, maps of predicted proportion forest area were created using Landsat Thematic Mapper imagery, forest inventory plot data, and a logistic regression model. The maps were used to estimate quantitative indices of forest fragmentation. Correlations between the values of the indices and forest attributes observed on...

  16. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Development of Advanced Classification Algorithm for Genome-Wide Single Nucleotide Polymorphism (SNP) Data Analysis

    DTIC Science & Technology

    2011-04-01

    critical. 5. REFERENCES Almasy, L, Blangero, J. (2009) “Human QTL linkage mapping.” Genetica 136:333-340. Amos, CI. (2007) “Successful...quantitative trait loci.” Genetica 136:237-243. Ward, JH, Hook, ME. “A Hierarchical Grouping Procedure Applied to a Problem of Grouping Profiles

  17. Quantitative MRI assessments of white matter in children treated for acute lymphoblastic leukemia

    NASA Astrophysics Data System (ADS)

    Reddick, Wilburn E.; Glass, John O.; Helton, Kathleen J.; Li, Chin-Shang; Pui, Ching-Hon

    2005-04-01

    The purpose of this study was to use objective quantitative MR imaging methods to prospectively assess changes in the physiological structure of white matter during the temporal evolution of leukoencephalopathy (LE) in children treated for acute lymphoblastic leukemia. The longitudinal incidence, extent (proportion of white matter affect), and intensity (elevation of T1 and T2 relaxation rates) of LE was evaluated for 44 children. A combined imaging set consisting of T1, T2, PD, and FLAIR MR images and white matter, gray matter and CSF a priori maps from a spatially normalized atlas were analyzed with a neural network segmentation based on a Kohonen Self-Organizing Map (SOM). Quantitative T1 and T2 relaxation maps were generated using a nonlinear parametric optimization procedure to fit the corresponding multi-exponential models. A Cox proportional regression was performed to estimate the effect of intravenous methotrexate (IV-MTX) exposure on the development of LE followed by a generalized linear model to predict the probability of LE in new patients. Additional T-tests of independent samples were performed to assess differences in quantitative measures of extent and intensity at four different points in therapy. Higher doses and more courses of IV-MTX placed patients at a higher risk of developing LE and were associated with more intense changes affecting more of the white matter volume; many of the changes resolved after completion of therapy. The impact of these changes on neurocognitive functioning and quality of life in survivors remains to be determined.

  18. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice

    PubMed Central

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Wei, Haibin; Feng, Fangjun; Wang, Pei; Xia, Hui; Li, Tiemei; Luo, Lijun

    2015-01-01

    Deep rooting is a very important trait for plants’ drought avoidance, and it is usually represented by the ratio of deep rooting (RDR). Three sets of rice populations were used to determine the genetic base for RDR. A linkage mapping population with 180 recombinant inbred lines and an association mapping population containing 237 rice varieties were used to identify genes linked to RDR. Six quantitative trait loci (QTLs) of RDR were identified as being located on chromosomes 1, 2, 4, 7, and 10. Using 1 019 883 single-nucleotide polymorphisms (SNPs), a genome-wide association study of the RDR was performed. Forty-eight significant SNPs of the RDR were identified and formed a clear peak on the short arm of chromosome 1 in a Manhattan plot. Compared with the shallow-rooting group and the whole collection, the deep-rooting group had selective sweep regions on chromosomes 1 and 2, especially in the major QTL region on chromosome 2. Seven of the nine candidate SNPs identified by association mapping were verified in two RDR extreme groups. The findings from this study will be beneficial to rice drought-resistance research and breeding. PMID:26022253

  19. Robust biological parametric mapping: an improved technique for multimodal brain image analysis

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Beason-Held, Lori; Resnick, Susan M.; Landman, Bennett A.

    2011-03-01

    Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, region of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrics. Recently, biological parametric mapping has extended the widely popular statistical parametric approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and robust inference in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provides a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities.

  20. Preliminary Comparison of Multi-scale and Multi-model Direct Inversion Algorithms for 3T MR Elastography.

    PubMed

    Yoshimitsu, Kengo; Shinagawa, Yoshinobu; Mitsufuji, Toshimichi; Mutoh, Emi; Urakawa, Hiroshi; Sakamoto, Keiko; Fujimitsu, Ritsuko; Takano, Koichi

    2017-01-10

    To elucidate whether any differences are present in the stiffness map obtained with a multiscale direct inversion algorithm (MSDI) vs that with a multimodel direct inversion algorithm (MMDI), both qualitatively and quantitatively. The MR elastography (MRE) data of 37 consecutive patients who underwent liver MR elastography between September and October 2014 were retrospectively analyzed by using both MSDI and MMDI. Two radiologists qualitatively assessed the stiffness maps for the image quality in consensus, and the measured liver stiffness and measurable areas were quantitatively compared between MSDI and MMDI. MMDI provided a stiffness map of better image quality, with comparable or slightly less artifacts. Measurable areas by MMDI (43.7 ± 17.8 cm 2 ) was larger than that by MSDI (37.5 ± 14.7 cm 2 ) (P < 0.05). Liver stiffness measured by MMDI (4.51 ± 2.32 kPa) was slightly (7%), but significantly less than that by MSDI (4.86 ± 2.44 kPa) (P < 0.05). MMDI can provide stiffness map of better image quality, and slightly lower stiffness values as compared to MSDI at 3T MRE, which radiologists should be aware of.

  1. Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH).

    PubMed

    Ohmido, Nobuko; Fukui, Kiichi; Kinoshita, Toshiro

    2010-01-01

    Fluorescence in situ hybridization (FISH) is an effective method for the physical mapping of genes and repetitive DNA sequences on chromosomes. Physical mapping of unique nucleotide sequences on specific rice chromosome regions was performed using a combination of chromosome identification and highly sensitive FISH. Increases in the detection sensitivity of smaller DNA sequences and improvements in spatial resolution have ushered in a new phase in FISH technology. Thus, it is now possible to perform in situ hybridization on somatic chromosomes, pachytene chromosomes, and even on extended DNA fibers (EDFs). Pachytene-FISH allows the integration of genetic linkage maps and quantitative chromosome maps. Visualization methods using FISH can reveal the spatial organization of the centromere, heterochromatin/euchromatin, and the terminal structures of rice chromosomes. Furthermore, EDF-FISH and the DNA combing technique can resolve a spatial distance of 1 kb between adjacent DNA sequences, and the detection of even a 300-bp target is now feasible. The copy numbers of various repetitive sequences and the sizes of various DNA molecules were quantitatively measured using the molecular combing technique. This review describes the significance of these advances in molecular cytology in rice and discusses future applications in plant studies using visualization techniques.

  2. Quantitative targeting maps based on experimental investigations for a branched tube model in magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Gitter, K.; Odenbach, S.

    2011-12-01

    Magnetic drug targeting (MDT), because of its high targeting efficiency, is a promising approach for tumour treatment. Unwanted side effects are considerably reduced, since the nanoparticles are concentrated within the target region due to the influence of a magnetic field. Nevertheless, understanding the transport phenomena of nanoparticles in an artery system is still challenging. This work presents experimental results for a branched tube model. Quantitative results describe, for example, the net amount of nanoparticles that are targeted towards the chosen region due to the influence of a magnetic field. As a result of measurements, novel drug targeting maps, combining, e.g. the magnetic volume force, the position of the magnet and the net amount of targeted nanoparticles, are presented. The targeting maps are valuable for evaluation and comparison of setups and are also helpful for the design and the optimisation of a magnet system with an appropriate strength and distribution of the field gradient. The maps indicate the danger of accretion within the tube and also show the promising result of magnetic drug targeting that up to 97% of the nanoparticles were successfully targeted.

  3. Histological validation of near-infrared reflectance multispectral imaging technique for caries detection and quantification

    NASA Astrophysics Data System (ADS)

    Salsone, Silvia; Taylor, Andrew; Gomez, Juliana; Pretty, Iain; Ellwood, Roger; Dickinson, Mark; Lombardo, Giuseppe; Zakian, Christian

    2012-07-01

    Near infrared (NIR) multispectral imaging is a novel noninvasive technique that maps and quantifies dental caries. The technique has the ability to reduce the confounding effect of stain present on teeth. The aim of this study was to develop and validate a quantitative NIR multispectral imaging system for caries detection and assessment against a histological reference standard. The proposed technique is based on spectral imaging at specific wavelengths in the range from 1000 to 1700 nm. A total of 112 extracted teeth (molars and premolars) were used and images of occlusal surfaces at different wavelengths were acquired. Three spectral reflectance images were combined to generate a quantitative lesion map of the tooth. The maximum value of the map at the corresponding histological section was used as the NIR caries score. The NIR caries score significantly correlated with the histological reference standard (Spearman's Coefficient=0.774, p<0.01). Caries detection sensitivities and specificities of 72% and 91% for sound areas, 36% and 79% for lesions on the enamel, and 82% and 69% for lesions in dentin were found. These results suggest that NIR spectral imaging is a novel and promising method for the detection, quantification, and mapping of dental caries.

  4. Histological validation of near-infrared reflectance multispectral imaging technique for caries detection and quantification.

    PubMed

    Salsone, Silvia; Taylor, Andrew; Gomez, Juliana; Pretty, Iain; Ellwood, Roger; Dickinson, Mark; Lombardo, Giuseppe; Zakian, Christian

    2012-07-01

    Near infrared (NIR) multispectral imaging is a novel noninvasive technique that maps and quantifies dental caries. The technique has the ability to reduce the confounding effect of stain present on teeth. The aim of this study was to develop and validate a quantitative NIR multispectral imaging system for caries detection and assessment against a histological reference standard. The proposed technique is based on spectral imaging at specific wavelengths in the range from 1000 to 1700 nm. A total of 112 extracted teeth (molars and premolars) were used and images of occlusal surfaces at different wavelengths were acquired. Three spectral reflectance images were combined to generate a quantitative lesion map of the tooth. The maximum value of the map at the corresponding histological section was used as the NIR caries score. The NIR caries score significantly correlated with the histological reference standard (Spearman's Coefficient=0.774, p<0.01). Caries detection sensitivities and specificities of 72% and 91% for sound areas, 36% and 79% for lesions on the enamel, and 82% and 69% for lesions in dentin were found. These results suggest that NIR spectral imaging is a novel and promising method for the detection, quantification, and mapping of dental caries.

  5. Material Properties of Human Ocular Tissue at 7-µm Resolution.

    PubMed

    Rohrbach, Daniel; Ito, Kazuyo; Lloyd, Harriet O; Silverman, Ronald H; Yoshida, Kenji; Yamaguchi, Tadashi; Mamou, Jonathan

    2017-09-01

    Quantitative assessment of the material properties of ocular tissues can provide valuable information for investigating several ophthalmic diseases. Quantitative acoustic microscopy (QAM) offers a means of obtaining such information, but few QAM investigations have been conducted on human ocular tissue. We imaged the optic nerve (ON) and iridocorneal angle in 12-µm deparaffinized sections of the human eye using a custom-built acoustic microscope with a 250-MHz transducer (7-µm lateral resolution). The two-dimensional QAM maps of ultrasound attenuation (α), speed of sound ( c), acoustic impedance ( Z), bulk modulus ( K), and mass density (ρ) were generated. Scanned samples were then stained and imaged by light microscopy for comparison with QAM maps. The spatial resolution and contrast of scanning acoustic microscopy (SAM) maps were sufficient to resolve anatomic layers of the retina (Re); anatomic features in SAM maps corresponded to those seen by light microscopy. Significant variations of the acoustic parameters were found. For example, the sclera was 220 MPa stiffer than Re, choroid, and ON tissue. To the authors' knowledge, this is the first systematic study to assess c, Z, K, ρ, and α of human ocular tissue at the high ultrasound frequencies used in this study.

  6. A note on the efficiencies of sampling strategies in two-stage Bayesian regional fine mapping of a quantitative trait.

    PubMed

    Chen, Zhijian; Craiu, Radu V; Bull, Shelley B

    2014-11-01

    In focused studies designed to follow up associations detected in a genome-wide association study (GWAS), investigators can proceed to fine-map a genomic region by targeted sequencing or dense genotyping of all variants in the region, aiming to identify a functional sequence variant. For the analysis of a quantitative trait, we consider a Bayesian approach to fine-mapping study design that incorporates stratification according to a promising GWAS tag SNP in the same region. Improved cost-efficiency can be achieved when the fine-mapping phase incorporates a two-stage design, with identification of a smaller set of more promising variants in a subsample taken in stage 1, followed by their evaluation in an independent stage 2 subsample. To avoid the potential negative impact of genetic model misspecification on inference we incorporate genetic model selection based on posterior probabilities for each competing model. Our simulation study shows that, compared to simple random sampling that ignores genetic information from GWAS, tag-SNP-based stratified sample allocation methods reduce the number of variants continuing to stage 2 and are more likely to promote the functional sequence variant into confirmation studies. © 2014 WILEY PERIODICALS, INC.

  7. Towards quantitative off-axis electron holographic mapping of the electric field around the tip of a sharp biased metallic needle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beleggia, M.; Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin; Kasama, T.

    We apply off-axis electron holography and Lorentz microscopy in the transmission electron microscope to map the electric field generated by a sharp biased metallic tip. A combination of experimental data and modelling provides quantitative information about the potential and the field around the tip. Close to the tip apex, we measure a maximum field intensity of 82 MV/m, corresponding to a field k factor of 2.5, in excellent agreement with theory. In order to verify the validity of the measurements, we use the inferred charge density distribution in the tip region to generate simulated phase maps and Fresnel (out-of-focus) imagesmore » for comparison with experimental measurements. While the overall agreement is excellent, the simulations also highlight the presence of an unexpected astigmatic contribution to the intensity in a highly defocused Fresnel image, which is thought to result from the geometry of the applied field.« less

  8. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth.

    PubMed

    Zhang, Xuehai; Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Xiong, Lizhong; Yang, Wanneng; Yan, Jianbing

    2017-03-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize ( Zea mays ) recombinant inbred line population ( n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction. © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth1[OPEN

    PubMed Central

    Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Yang, Wanneng

    2017-01-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize (Zea mays) recombinant inbred line population (n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction. PMID:28153923

  10. Automatic spatiotemporal matching of detected pleural thickenings

    NASA Astrophysics Data System (ADS)

    Chaisaowong, Kraisorn; Keller, Simon Kai; Kraus, Thomas

    2014-01-01

    Pleural thickenings can be found in asbestos exposed patient's lung. Non-invasive diagnosis including CT imaging can detect aggressive malignant pleural mesothelioma in its early stage. In order to create a quantitative documentation of automatic detected pleural thickenings over time, the differences in volume and thickness of the detected thickenings have to be calculated. Physicians usually estimate the change of each thickening via visual comparison which provides neither quantitative nor qualitative measures. In this work, automatic spatiotemporal matching techniques of the detected pleural thickenings at two points of time based on the semi-automatic registration have been developed, implemented, and tested so that the same thickening can be compared fully automatically. As result, the application of the mapping technique using the principal components analysis turns out to be advantageous than the feature-based mapping using centroid and mean Hounsfield Units of each thickening, since the resulting sensitivity was improved to 98.46% from 42.19%, while the accuracy of feature-based mapping is only slightly higher (84.38% to 76.19%).

  11. Dynamic inundation mapping of Hurricane Harvey flooding in the Houston metro area using hyper-resolution modeling and quantitative image reanalysis

    NASA Astrophysics Data System (ADS)

    Noh, S. J.; Lee, J. H.; Lee, S.; Zhang, Y.; Seo, D. J.

    2017-12-01

    Hurricane Harvey was one of the most extreme weather events in Texas history and left significant damages in the Houston and adjoining coastal areas. To understand better the relative impact to urban flooding of extreme amount and spatial extent of rainfall, unique geography, land use and storm surge, high-resolution water modeling is necessary such that natural and man-made components are fully resolved. In this presentation, we reconstruct spatiotemporal evolution of inundation during Hurricane Harvey using hyper-resolution modeling and quantitative image reanalysis. The two-dimensional urban flood model used is based on dynamic wave approximation and 10 m-resolution terrain data, and is forced by the radar-based multisensor quantitative precipitation estimates. The model domain includes Buffalo, Brays, Greens and White Oak Bayous in Houston. The model is simulated using hybrid parallel computing. To evaluate dynamic inundation mapping, we combine various qualitative crowdsourced images and video footages with LiDAR-based terrain data.

  12. Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics.

    PubMed

    Sardiu, Mihaela E; Gilmore, Joshua M; Carrozza, Michael J; Li, Bing; Workman, Jerry L; Florens, Laurence; Washburn, Michael P

    2009-10-06

    Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.

  13. Variation in seed dormancy quantitative trait loci in Arabidopsis thaliana originating from one site.

    PubMed

    Silady, Rebecca A; Effgen, Sigi; Koornneef, Maarten; Reymond, Matthieu

    2011-01-01

    A Quantitative Trait Locus (QTL) analysis was performed using two novel Recombinant Inbred Line (RIL) populations, derived from the progeny between two Arabidopsis thaliana genotypes collected at the same site in Kyoto (Japan) crossed with the reference laboratory strain Landsberg erecta (Ler). We used these two RIL populations to determine the genetic basis of seed dormancy and flowering time, which are assumed to be the main traits controlling life history variation in Arabidopsis. The analysis revealed quantitative variation for seed dormancy that is associated with allelic variation at the seed dormancy QTL DOG1 (for Delay Of Germination 1) in one population and at DOG6 in both. These DOG QTL have been previously identified using mapping populations derived from accessions collected at different sites around the world. Genetic variation within a population may enhance its ability to respond accurately to variation within and between seasons. In contrast, variation for flowering time, which also segregated within each mapping population, is mainly governed by the same QTL.

  14. Using GIS in an Earth Sciences Field Course for Quantitative Exploration, Data Management and Digital Mapping

    ERIC Educational Resources Information Center

    Marra, Wouter A.; van de Grint, Liesbeth; Alberti, Koko; Karssenberg, Derek

    2017-01-01

    Field courses are essential for subjects like Earth Sciences, Geography and Ecology. In these topics, GIS is used to manage and analyse spatial data, and offers quantitative methods that are beneficial for fieldwork. This paper presents changes made to a first-year Earth Sciences field course in the French Alps, where new GIS methods were…

  15. Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine

    Treesearch

    A. Groover; M. Devey; T. Fiddler; J. Lee; R. Megraw; T. Mitchel-Olds; B. Sherman; S. Vujcic; C. Williams; D. Neale

    1994-01-01

    We report the identification of quantitative trait loci (QTL) influencing wood specific gravity (WSG) in an outbred pedigree of loblolly pine (Pinus taeda L.) . QTL mapping in an outcrossing species is complicated by the presence of multiple alleles (>2) at QTL and marker loci. Multiple alleles at QTL allow the examination of interaction among...

  16. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir.II. Spring and fall cold-hardiness

    Treesearch

    K.D. Jermstad; D.L. Bassoni; N.C. Wheeler; T.S. Anekonda; S.N. Aitken; W.T. Adams; D.B. Neale

    2001-01-01

    Abstract Quantitative trait loci (QTLs) affecting fall and spring cold-hardiness were identified in a three-generation outbred pedigree of coastal Douglas-fir [Pseudotsuga meniziesii (Mirb.) Franco var. menziesii]. Eleven QTLs controlling fall cold-hardiness were detected on four linkage groups, and 15 QTLs controlling spring cold-hardiness were detected on four...

  17. Local delivery of molecules from a nanopipette for quantitative receptor mapping on live cells.

    PubMed

    Babakinejad, Babak; Jönsson, Peter; López Córdoba, Ainara; Actis, Paolo; Novak, Pavel; Takahashi, Yasufumi; Shevchuk, Andrew; Anand, Uma; Anand, Praveen; Drews, Anna; Ferrer-Montiel, Antonio; Klenerman, David; Korchev, Yuri E

    2013-10-01

    Using nanopipettes to locally deliver molecules to the surface of living cells could potentially open up studies of biological processes down to the level of single molecules. However, in order to achieve precise and quantitative local delivery it is essential to be able to determine the amount and distribution of the molecules being delivered. In this work, we investigate how the size of the nanopipette, the magnitude of the applied pressure or voltage, which drives the delivery, and the distance to the underlying surface influences the number and spatial distribution of the delivered molecules. Analytical expressions describing the delivery are derived and compared with the results from finite element simulations and experiments on delivery from a 100 nm nanopipette in bulk solution and to the surface of sensory neurons. We then developed a setup for rapid and quantitative delivery to multiple subcellular areas, delivering the molecule capsaicin to stimulate opening of Transient Receptor Potential Vanilloid subfamily member 1 (TRPV1) channels, membrane receptors involved in pain sensation. Overall, precise and quantitative delivery of molecules from nanopipettes has been demonstrated, opening up many applications in biology such as locally stimulating and mapping receptors on the surface of live cells.

  18. Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea) Using QTL-seq Reveals Markers for Marker-Assisted Selection.

    PubMed

    Clevenger, Josh; Chu, Ye; Chavarro, Carolina; Botton, Stephanie; Culbreath, Albert; Isleib, Thomas G; Holbrook, C C; Ozias-Akins, Peggy

    2018-01-01

    Late leaf spot (LLS; Cercosporidium personatum ) is a major fungal disease of cultivated peanut ( Arachis hypogaea ). A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL) using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools. Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping.

  19. Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea) Using QTL-seq Reveals Markers for Marker-Assisted Selection

    PubMed Central

    Clevenger, Josh; Chu, Ye; Chavarro, Carolina; Botton, Stephanie; Culbreath, Albert; Isleib, Thomas G.; Holbrook, C. C.; Ozias-Akins, Peggy

    2018-01-01

    Late leaf spot (LLS; Cercosporidium personatum) is a major fungal disease of cultivated peanut (Arachis hypogaea). A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL) using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools. Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping. PMID:29459876

  20. Visual and Quantitative Analysis Methods of Respiratory Patterns for Respiratory Gated PET/CT.

    PubMed

    Son, Hye Joo; Jeong, Young Jin; Yoon, Hyun Jin; Park, Jong-Hwan; Kang, Do-Young

    2016-01-01

    We integrated visual and quantitative methods for analyzing the stability of respiration using four methods: phase space diagrams, Fourier spectra, Poincaré maps, and Lyapunov exponents. Respiratory patterns of 139 patients were grouped based on the combination of the regularity of amplitude, period, and baseline positions. Visual grading was done by inspecting the shape of diagram and classified into two states: regular and irregular. Quantitation was done by measuring standard deviation of x and v coordinates of Poincaré map (SD x , SD v ) or the height of the fundamental peak ( A 1 ) in Fourier spectrum or calculating the difference between maximal upward and downward drift. Each group showed characteristic pattern on visual analysis. There was difference of quantitative parameters (SD x , SD v , A 1 , and MUD-MDD) among four groups (one way ANOVA, p = 0.0001 for MUD-MDD, SD x , and SD v , p = 0.0002 for A 1 ). In ROC analysis, the cutoff values were 0.11 for SD x (AUC: 0.982, p < 0.0001), 0.062 for SD v (AUC: 0.847, p < 0.0001), 0.117 for A 1 (AUC: 0.876, p < 0.0001), and 0.349 for MUD-MDD (AUC: 0.948, p < 0.0001). This is the first study to analyze multiple aspects of respiration using various mathematical constructs and provides quantitative indices of respiratory stability and determining quantitative cutoff value for differentiating regular and irregular respiration.

  1. Chapter 8: US geological survey Circum-Arctic Resource Appraisal (CARA): Introduction and summary of organization and methods

    USGS Publications Warehouse

    Charpentier, R.R.; Gautier, D.L.

    2011-01-01

    The USGS has assessed undiscovered petroleum resources in the Arctic through geological mapping, basin analysis and quantitative assessment. The new map compilation provided the base from which geologists subdivided the Arctic for burial history modelling and quantitative assessment. The CARA was a probabilistic, geologically based study that used existing USGS methodology, modified somewhat for the circumstances of the Arctic. The assessment relied heavily on analogue modelling, with numerical input as lognormal distributions of sizes and numbers of undiscovered accumulations. Probabilistic results for individual assessment units were statistically aggregated taking geological dependencies into account. Fourteen papers in this Geological Society volume present summaries of various aspects of the CARA. ?? 2011 The Geological Society of London.

  2. Correlated ion and neutral time of flight technique combined with velocity map imaging: Quantitative measurements for dissociation processes in excited molecular nano-systems

    NASA Astrophysics Data System (ADS)

    Berthias, F.; Feketeová, L.; Della Negra, R.; Dupasquier, T.; Fillol, R.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Märk, T. D.

    2018-01-01

    The combination of the Dispositif d'Irradiation d'Agrégats Moléculaire with the correlated ion and neutral time of flight-velocity map imaging technique provides a new way to explore processes occurring subsequent to the excitation of charged nano-systems. The present contribution describes in detail the methods developed for the quantitative measurement of branching ratios and cross sections for collision-induced dissociation processes of water cluster nano-systems. These methods are based on measurements of the detection efficiency of neutral fragments produced in these dissociation reactions. Moreover, measured detection efficiencies are used here to extract the number of neutral fragments produced for a given charged fragment.

  3. Surface flow measurements from drones

    NASA Astrophysics Data System (ADS)

    Tauro, Flavia; Porfiri, Maurizio; Grimaldi, Salvatore

    2016-09-01

    Drones are transforming the way we sense and interact with the environment. However, despite their increased capabilities, the use of drones in geophysical sciences usually focuses on image acquisition for generating high-resolution maps. Motivated by the increasing demand for innovative and high performance geophysical observational methodologies, we posit the integration of drone technology and optical sensing toward a quantitative characterization of surface flow phenomena. We demonstrate that a recreational drone can be used to yield accurate surface flow maps of sub-meter water bodies. Specifically, drone's vibrations do not hinder surface flow observations, and velocity measurements are in agreement with traditional techniques. This first instance of quantitative water flow sensing from a flying drone paves the way to novel observations of the environment.

  4. Mapping of thermal injury in biologic tissues using quantitative pathologic techniques

    NASA Astrophysics Data System (ADS)

    Thomsen, Sharon L.

    1999-05-01

    Qualitative and quantitative pathologic techniques can be used for (1) mapping of thermal injury, (2) comparisons lesion sizes and configurations for different instruments or heating sources and (3) comparisons of treatment effects. Concentric zones of thermal damage form around a single volume heat source. The boundaries between some of these zones are distinct and measurable. Depending on the energy deposition, heating times and tissue type, the zones can include the following beginning at the hotter center and progressing to the cooler periphery: (1) tissue ablation, (2) carbonization, (3) tissue water vaporization, (4) structural protein denaturation (thermal coagulation), (5) vital enzyme protein denaturation, (6) cell membrane disruption, (7) hemorrhage, hemostasis and hyperhemia, (8) tissue necrosis and (9) wound organization and healing.

  5. An open-source computational and data resource to analyze digital maps of immunopeptidomes

    PubMed Central

    Caron, Etienne; Espona, Lucia; Kowalewski, Daniel J; Schuster, Heiko; Ternette, Nicola; Alpízar, Adán; Schittenhelm, Ralf B; Ramarathinam, Sri H; Lindestam Arlehamn, Cecilia S; Chiek Koh, Ching; Gillet, Ludovic C; Rabsteyn, Armin; Navarro, Pedro; Kim, Sangtae; Lam, Henry; Sturm, Theo; Marcilla, Miguel; Sette, Alessandro; Campbell, David S; Deutsch, Eric W; Moritz, Robert L; Purcell, Anthony W; Rammensee, Hans-Georg; Stevanovic, Stefan; Aebersold, Ruedi

    2015-01-01

    We present a novel mass spectrometry-based high-throughput workflow and an open-source computational and data resource to reproducibly identify and quantify HLA-associated peptides. Collectively, the resources support the generation of HLA allele-specific peptide assay libraries consisting of consensus fragment ion spectra, and the analysis of quantitative digital maps of HLA peptidomes generated from a range of biological sources by SWATH mass spectrometry (MS). This study represents the first community-based effort to develop a robust platform for the reproducible and quantitative measurement of the entire repertoire of peptides presented by HLA molecules, an essential step towards the design of efficient immunotherapies. DOI: http://dx.doi.org/10.7554/eLife.07661.001 PMID:26154972

  6. Perceived usefulness, perceived ease of use, and perceived enjoyment as drivers for the user acceptance of interactive mobile maps

    NASA Astrophysics Data System (ADS)

    Hussain, Azham; Mkpojiogu, Emmanuel O. C.; Yusof, Muhammad Mat

    2016-08-01

    This study examines the user perception of usefulness, ease of use and enjoyment as drivers for the users' complex interaction with map on mobile devices. TAM model was used to evaluate users' intention to use and their acceptance of interactive mobile map using the above three beliefs as antecedents. Quantitative research (survey) methodology was employed and the analysis and findings showed that all the three explanatory variables used in this study, explain the variability in the user acceptance of interactive mobile map technology. Perceived usefulness, perceived ease of use, and perceived enjoyment each have significant positive influence on user acceptance of interactive mobile maps. This study further validates the TAM model.

  7. Fine Mapping of QUICK ROOTING 1 and 2, Quantitative Trait Loci Increasing Root Length in Rice.

    PubMed

    Kitomi, Yuka; Nakao, Emari; Kawai, Sawako; Kanno, Noriko; Ando, Tsuyu; Fukuoka, Shuichi; Irie, Kenji; Uga, Yusaku

    2018-02-02

    The volume that the root system can occupy is associated with the efficiency of water and nutrient uptake from soil. Genetic improvement of root length, which is a limiting factor for root distribution, is necessary for increasing crop production. In this report, we describe identification of two quantitative trait loci (QTLs) for maximal root length, QUICK ROOTING 1 ( QRO1 ) on chromosome 2 and QRO2 on chromosome 6, in cultivated rice ( Oryza sativa L.). We measured the maximal root length in 26 lines carrying chromosome segments from the long-rooted upland rice cultivar Kinandang Patong in the genetic background of the short-rooted lowland cultivar IR64. Five lines had longer roots than IR64. By rough mapping of the target regions in BC 4 F 2 populations, we detected putative QTLs for maximal root length on chromosomes 2, 6, and 8. To fine-map these QTLs, we used BC 4 F 3 recombinant homozygous lines. QRO1 was mapped between markers RM5651 and RM6107, which delimit a 1.7-Mb interval on chromosome 2, and QRO2 was mapped between markers RM20495 and RM3430-1, which delimit an 884-kb interval on chromosome 6. Both QTLs may be promising gene resources for improving root system architecture in rice. Copyright © 2018 Kitomi et al.

  8. GIS prospectivity mapping and 3D modeling validation for potential uranium deposit targets in Shangnan district, China

    NASA Astrophysics Data System (ADS)

    Xie, Jiayu; Wang, Gongwen; Sha, Yazhou; Liu, Jiajun; Wen, Botao; Nie, Ming; Zhang, Shuai

    2017-04-01

    Integrating multi-source geoscience information (such as geology, geophysics, geochemistry, and remote sensing) using GIS mapping is one of the key topics and frontiers in quantitative geosciences for mineral exploration. GIS prospective mapping and three-dimensional (3D) modeling can be used not only to extract exploration criteria and delineate metallogenetic targets but also to provide important information for the quantitative assessment of mineral resources. This paper uses the Shangnan district of Shaanxi province (China) as a case study area. GIS mapping and potential granite-hydrothermal uranium targeting were conducted in the study area combining weights of evidence (WofE) and concentration-area (C-A) fractal methods with multi-source geoscience information. 3D deposit-scale modeling using GOCAD software was performed to validate the shapes and features of the potential targets at the subsurface. The research results show that: (1) the known deposits have potential zones at depth, and the 3D geological models can delineate surface or subsurface ore-forming features, which can be used to analyze the uncertainty of the shape and feature of prospectivity mapping at the subsurface; (2) single geochemistry anomalies or remote sensing anomalies at the surface require combining the depth exploration criteria of geophysics to identify potential targets; and (3) the single or sparse exploration criteria zone with few mineralization spots at the surface has high uncertainty in terms of the exploration target.

  9. Evaluation of quantitative polymerase chain reaction assays targeting Mycobacterium avium, M. intracellulare, and M. avium subspecies paratuberculosis in drinking water biofilms.

    PubMed

    Chern, Eunice C; King, Dawn; Haugland, Richard; Pfaller, Stacy

    2015-03-01

    Mycobacterium avium (MA), Mycobacterium intracellulare (MI), and Mycobacterium avium subsp. paratuberculosis (MAP) are difficult to culture due to their slow growing nature. A quantitative polymerase chain reaction (qPCR) method for the rapid detection of MA, MI, and MAP can be used to provide data supporting drinking water biofilms as potential sources of human exposure. The aim of this study was to characterize two qPCR assays targeting partial 16S rRNA gene sequences of MA and MI and use these assays, along with two previously reported MAP qPCR assays (IS900 and Target 251), to investigate Mycobacterium occurrence in kitchen faucet biofilms. MA and MI qPCR assays demonstrated 100% specificity and sensitivity when evaluated against 18 non-MA complex, 76 MA, and 17 MI isolates. Both assays detected approximately 1,000 cells from a diluted cell stock inoculated on a sampling swab 100% of the time. DNA analysis by qPCR indicated that 35.3, 56.9 and 11.8% of the 51 kitchen faucet biofilm samples collected contained MA, MI, and MAP, respectively. This study introduces novel qPCR assays designed to specifically detect MA and MI in biofilm. Results support the use of qPCR as an alternative to culture for detection and enumeration of MA, MI, and MAP in microbiologically complex samples.

  10. Targeted Recombinant Progeny: a design for ultra-high resolution mapping of Quantitative Trait Loci in crosses between inbred or pure lines.

    PubMed

    Heifetz, Eliyahu M; Soller, Morris

    2015-07-07

    High-resolution mapping of the loci (QTN) responsible for genetic variation in quantitative traits is essential for positional cloning of candidate genes, and for effective marker assisted selection. The confidence interval (QTL) flanking the point estimate of QTN-location is proportional to the number of individuals in the mapping population carrying chromosomes recombinant in the given interval. Consequently, many designs for high resolution QTN mapping are based on increasing the proportion of recombinants in the mapping population. The "Targeted Recombinant Progeny" (TRP) design is a new design for high resolution mapping of a target QTN in crosses between pure, or inbred lines. It is a three-generation procedure generating a large number of recombinant individuals within a QTL previously shown to contain a QTN. This is achieved by having individuals that carry chromosomes recombinant across the target QTL interval as parents of a large mapping population; most of whom will therefore carry recombinant chromosomes targeted to the given QTL. The TRP design is particularly useful for high resolution mapping of QTN that differentiate inbred or pure lines, and hence are not amenable to high resolution mapping by genome-wide association tests. In the absence of residual polygenic variation, population sizes required for achieving given mapping resolution by the TRP-F2 design relative to a standard F2 design ranged from 0.289 for a QTN with standardized allele substitution effect = 0.2, mapped to an initial QTL of 0.2 Morgan to 0.041 for equivalent QTN mapped to an initial QTL of 0.02 M. In the presence of residual polygenic variation, the relative effectiveness of the TRP design ranges from 1.068 to 0.151 for the same initial QTL intervals and QTN effect. Thus even in the presence of polygenic variation, the TRP can still provide major savings. Simulation showed that mapping by TRP should be based on 30-50 markers spanning the initial interval; and on at least 50 or more G2 families representing this number of recombination points,. The TRP design can be an effective procedure for achieving high and ultra-high mapping resolution of a target QTN previously mapped to a known confidence interval (QTL).

  11. A method to correct coordinate distortion in EBSD maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.B., E-mail: yubz@dtu.dk; Elbrønd, A.; Lin, F.X.

    2014-10-15

    Drift during electron backscatter diffraction mapping leads to coordinate distortions in resulting orientation maps, which affects, in some cases significantly, the accuracy of analysis. A method, thin plate spline, is introduced and tested to correct such coordinate distortions in the maps after the electron backscatter diffraction measurements. The accuracy of the correction as well as theoretical and practical aspects of using the thin plate spline method is discussed in detail. By comparing with other correction methods, it is shown that the thin plate spline method is most efficient to correct different local distortions in the electron backscatter diffraction maps. -more » Highlights: • A new method is suggested to correct nonlinear spatial distortion in EBSD maps. • The method corrects EBSD maps more precisely than presently available methods. • Errors less than 1–2 pixels are typically obtained. • Direct quantitative analysis of dynamic data are available after this correction.« less

  12. Variability of Protein Structure Models from Electron Microscopy.

    PubMed

    Monroe, Lyman; Terashi, Genki; Kihara, Daisuke

    2017-04-04

    An increasing number of biomolecular structures are solved by electron microscopy (EM). However, the quality of structure models determined from EM maps vary substantially. To understand to what extent structure models are supported by information embedded in EM maps, we used two computational structure refinement methods to examine how much structures can be refined using a dataset of 49 maps with accompanying structure models. The extent of structure modification as well as the disagreement between refinement models produced by the two computational methods scaled inversely with the global and the local map resolutions. A general quantitative estimation of deviations of structures for particular map resolutions are provided. Our results indicate that the observed discrepancy between the deposited map and the refined models is due to the lack of structural information present in EM maps and thus these annotations must be used with caution for further applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mapping and energization in the magnetotail. II - Particle acceleration

    NASA Technical Reports Server (NTRS)

    Kaufmann, Richard L.; Larson, Douglas J.; Lu, Chen

    1993-01-01

    Mapping with the Tsyganenko (1989) or T89 magnetosphere model has been examined previously. In the present work, an attempt is made to evaluate quantitatively what the selection of T89 implies for steady-state particle energization. The Heppner and Maynard (1987) or HM87 electric field model is mapped from the ionosphere to the equatorial plane, and the electric currents associated with T89 are evaluated. Consideration is also given to the nature of the acceleration that occurs when cross-tail current is suddenly diverted to the ionosphere.

  14. Chromatic Image Analysis For Quantitative Thermal Mapping

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    1995-01-01

    Chromatic image analysis system (CIAS) developed for use in noncontact measurements of temperatures on aerothermodynamic models in hypersonic wind tunnels. Based on concept of temperature coupled to shift in color spectrum for optical measurement. Video camera images fluorescence emitted by phosphor-coated model at two wavelengths. Temperature map of model then computed from relative brightnesses in video images of model at those wavelengths. Eliminates need for intrusive, time-consuming, contact temperature measurements by gauges, making it possible to map temperatures on complex surfaces in timely manner and at reduced cost.

  15. Automated thermal mapping techniques using chromatic image analysis

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    1989-01-01

    Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.

  16. New features of global climatology revealed by satellite-derived oceanic rainfall maps

    NASA Technical Reports Server (NTRS)

    Rao, M. S. V.; Theon, J. S.

    1977-01-01

    Quantitative rainfall maps over the oceanic areas of the globe were derived from the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR) data. Analysis of satellite derived oceanic rainfall maps reveal certain distinctive characteristics of global patterns for the years 1973-74. The main ones are (1) the forking of the Intertropical Convergence Zone in the Pacific, (2) a previously unrecognized rain area in the South Atlantic, (3) the bimodal behavior of rainbelts in the Indian Ocean and (4) the large interannual variability in oceanic rainfall. These features are discussed.

  17. An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley

    USDA-ARS?s Scientific Manuscript database

    We explored the use of genotyping by sequencing (GBS) on a recombinant inbred line population (GPMx) derived from a cross between the two-rowed barley cultivar ‘Golden Promise’ (ari-e.GP/Vrs1) and the six-rowed cultivar ‘Morex’ (Ari-e/vrs1) to map plant height. We identified three Quantitative Trait...

  18. Mapping of Student Sustainable Development Education Knowledge in Malaysia Using Geographical Information System (GIS)

    ERIC Educational Resources Information Center

    Mahat, Hanifah; Hashim, Mohmadisa; Nayan, Nasir; Saleh, Yazid; Norkhaidi, Saiyidatina Balkhis

    2018-01-01

    This article aims to examine the levels of education for sustainable development (ESD) knowledge among students in secondary schools according to zones in Malaysia by using GIS mapping. The five main zones of the study were the north zone, the south zone, the east coast zone, the central zone, and the East Malaysia zone. This quantitative form of…

  19. Self-Organizing Maps and Parton Distribution Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Holcomb, Simonetta Liuti, D. Z. Perry

    2011-05-01

    We present a new method to extract parton distribution functions from high energy experimental data based on a specific type of neural networks, the Self-Organizing Maps. We illustrate the features of our new procedure that are particularly useful for an anaysis directed at extracting generalized parton distributions from data. We show quantitative results of our initial analysis of the parton distribution functions from inclusive deep inelastic scattering.

  20. A SNP genetic linkage map based on the ‘Hamilton’ by ‘Spencer’ recombinant inbred line (RIL) population identified QTL for seed Isoflavone contents in soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean is one of the most important crops worldwide for its protein, oil as well as the health beneficial phytoestrogens or isoflavone. This study reports a relatively dense SNP-Based genetic map based on ‘Hamilton’ by ‘Spencer’ recombinant inbred line (RIL) population and quantitative t...

  1. Mapping Fusarium solani and Aphanomyces euteiches root rot resistance and root architecture quantitative trait loci in common bean (Phaseolus vulgaris)

    USDA-ARS?s Scientific Manuscript database

    Root rot diseases of bean (Phaseolus vulgaris L.) are a constraint to dry and snap bean production. We developed the RR138 RIL mapping population from the cross of OSU5446, a susceptible line that meets current snap bean processing industry standards, and RR6950, a root rot resistant dry bean in th...

  2. Assessing Prospective Chemistry Teachers' Understanding of Gases through Qualitative and Quantitative Analyses of Their Concept Maps

    ERIC Educational Resources Information Center

    Kibar, Zeynep Bak; Yaman, Fatma; Ayas, Alipasa

    2013-01-01

    The use of concept mapping as a tool to measure the meaningful learning of students is the focus of this study. The study was carried out with 24 last year students (22 years old) from the Department of Chemistry Teaching at Fatih Faculty of Education, Karadeniz Technical University (KTU). Prospective Chemistry Teachers (PCT) were asked to create…

  3. Investigation of practical initial attenuation image estimates in TOF-MLAA reconstruction for PET/MR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Ju-Chieh, E-mail: chengjuchieh@gmail.com; Y

    Purpose: Time-of-flight joint attenuation and activity positron emission tomography reconstruction requires additional calibration (scale factors) or constraints during or post-reconstruction to produce a quantitative μ-map. In this work, the impact of various initializations of the joint reconstruction was investigated, and the initial average mu-value (IAM) method was introduced such that the forward-projection of the initial μ-map is already very close to that of the reference μ-map, thus reducing/minimizing the offset (scale factor) during the early iterations of the joint reconstruction. Consequently, the accuracy and efficiency of unconstrained joint reconstruction such as time-of-flight maximum likelihood estimation of attenuation and activity (TOF-MLAA)more » can be improved by the proposed IAM method. Methods: 2D simulations of brain and chest were used to evaluate TOF-MLAA with various initial estimates which include the object filled with water uniformly (conventional initial estimate), bone uniformly, the average μ-value uniformly (IAM magnitude initialization method), and the perfect spatial μ-distribution but with a wrong magnitude (initialization in terms of distribution). 3D GATE simulation was also performed for the chest phantom under a typical clinical scanning condition, and the simulated data were reconstructed with a fully corrected list-mode TOF-MLAA algorithm with various initial estimates. The accuracy of the average μ-values within the brain, chest, and abdomen regions obtained from the MR derived μ-maps was also evaluated using computed tomography μ-maps as the gold-standard. Results: The estimated μ-map with the initialization in terms of magnitude (i.e., average μ-value) was observed to reach the reference more quickly and naturally as compared to all other cases. Both 2D and 3D GATE simulations produced similar results, and it was observed that the proposed IAM approach can produce quantitative μ-map/emission when the corrections for physical effects such as scatter and randoms were included. The average μ-value obtained from MR derived μ-map was accurate within 5% with corrections for bone, fat, and uniform lungs. Conclusions: The proposed IAM-TOF-MLAA can produce quantitative μ-map without any calibration provided that there are sufficient counts in the measured data. For low count data, noise reduction and additional regularization/rescaling techniques need to be applied and investigated. The average μ-value within the object is prior information which can be extracted from MR and patient database, and it is feasible to obtain accurate average μ-value using MR derived μ-map with corrections as demonstrated in this work.« less

  4. Re-evaluation of a novel approach for quantitative myocardial oedema detection by analysing tissue inhomogeneity in acute myocarditis using T2-mapping.

    PubMed

    Baeßler, Bettina; Schaarschmidt, Frank; Treutlein, Melanie; Stehning, Christian; Schnackenburg, Bernhard; Michels, Guido; Maintz, David; Bunck, Alexander C

    2017-12-01

    To re-evaluate a recently suggested approach of quantifying myocardial oedema and increased tissue inhomogeneity in myocarditis by T2-mapping. Cardiac magnetic resonance data of 99 patients with myocarditis were retrospectively analysed. Thirthy healthy volunteers served as controls. T2-mapping data were acquired at 1.5 T using a gradient-spin-echo T2-mapping sequence. T2-maps were segmented according to the 16-segments AHA-model. Segmental T2-values, segmental pixel-standard deviation (SD) and the derived parameters maxT2, maxSD and madSD were analysed and compared to the established Lake Louise criteria (LLC). A re-estimation of logistic regression models revealed that all models containing an SD-parameter were superior to any model containing global myocardial T2. Using a combined cut-off of 1.8 ms for madSD + 68 ms for maxT2 resulted in a diagnostic sensitivity of 75% and specificity of 80% and showed a similar diagnostic performance compared to LLC in receiver-operating-curve analyses. Combining madSD, maxT2 and late gadolinium enhancement (LGE) in a model resulted in a superior diagnostic performance compared to LLC (sensitivity 93%, specificity 83%). The results show that the novel T2-mapping-derived parameters exhibit an additional diagnostic value over LGE with the inherent potential to overcome the current limitations of T2-mapping. • A novel quantitative approach to myocardial oedema imaging in myocarditis was re-evaluated. • The T2-mapping-derived parameters maxT2 and madSD were compared to traditional Lake-Louise criteria. • Using maxT2 and madSD with dedicated cut-offs performs similarly to Lake-Louise criteria. • Adding maxT2 and madSD to LGE results in further increased diagnostic performance. • This novel approach has the potential to overcome the limitations of T2-mapping.

  5. Quantitative evaluation of fatty degeneration of the supraspinatus and infraspinatus muscles using T2 mapping.

    PubMed

    Matsuki, Keisuke; Watanabe, Atsuya; Ochiai, Shunsuke; Kenmoku, Tomonori; Ochiai, Nobuyasu; Obata, Takayuki; Toyone, Tomoaki; Wada, Yuichi; Okubo, Toshiyuki

    2014-05-01

    Although fatty degeneration of the rotator cuff muscles has been reported to affect the outcomes of rotator cuff repairs, only a few studies have attempted to quantitatively evaluate this degeneration. T2 mapping is a quantitative magnetic resonance imaging technique that potentially evaluates the concentration of fat in muscles. The purpose of this study was to investigate fatty degeneration of the rotator cuff muscles by using T2 mapping, as well as to evaluate the reliability of T2 measurement. We obtained magnetic resonance images including T2 mapping from 184 shoulders (180 patients; 110 male patients [112 shoulders] and 70 female patients [72 shoulders]; mean age, 62 years [range, 16-84 years]). Eighty-three shoulders had no rotator cuff tear (group A), whereas 101 shoulders had tears, of which 62 were incomplete to medium (group B) and 39 were large to massive (group C). T2 values of the supraspinatus and infraspinatus muscles were measured and compared among groups. Intraobserver and interobserver variabilities also were examined. The mean T2 values of the supraspinatus in groups A, B, and C were 36.3 ± 4.7 milliseconds, 44.2 ± 11.3 milliseconds, and 57.0 ± 18.8 milliseconds, respectively. The mean T2 values of the infraspinatus in groups A, B, and C were 36.1 ± 5.1 milliseconds, 40.0 ± 11.1 milliseconds, and 51.9 ± 18.2 milliseconds, respectively. The T2 value significantly increased with the extent of the tear in both muscles. Both intraobserver and interobserver variabilities were more than 0.99. T2 mapping can be a reliable tool to quantify fatty degeneration of the rotator cuff muscles. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  6. Spatially quantitative seafloor habitat mapping: Example from the northern South Carolina inner continental shelf

    USGS Publications Warehouse

    Ojeda, G.Y.; Gayes, P.T.; Van Dolah, R. F.; Schwab, W.C.

    2004-01-01

    Naturally occurring hard bottom areas provide the geological substrate that can support diverse assemblages of sessile benthic organisms, which in turn, attract many reef-dwelling fish species. Alternatively, defining the location and extent of bottom sand bodies is relevant for potential nourishment projects as well as to ensure that transient sediment does not affect reef habitats, particularly in sediment-starved continental margins. Furthermore, defining sediment transport pathways documents the effects these mobile bedforms have on proximal reef habitats. Thematic mapping of these substrates is therefore crucial in safeguarding critical habitats and offshore resources of coastal nations. This study presents the results of a spatially quantitative mapping approach based on classification of sidescan-sonar imagery. By using bottom video for image-to-ground control, digital image textural features for pattern recognition, and an artificial neural network for rapid, quantitative, multivariable decision-making, this approach resulted in recognition rates of hard bottom as high as 87%. The recognition of sand bottom was less successful (31%). This approach was applied to a large (686 km2), high-quality, 2-m resolution sidescan-sonar mosaic of the northern South Carolina inner continental shelf. Results of this analysis indicate that both surficial sand and hard bottoms of variable extent are present over the study area. In total, 59% of the imaged area was covered by hard bottom, while 41% was covered by sand. Qualitative spatial correlation between bottom type and bathymetry appears possible from comparison of our interpretive map and available bathymetry. Hard bottom areas tend to be located on flat, low-lying areas, and sandy bottoms tend to reside on areas of positive relief. Published bio-erosion rates were used to calculate the potential sediment input from the mapped hard bottom areas rendering sediment volumes that may be as high as 0.8 million m3/yr for this portion of the South Carolina coast. ?? 2003 Elsevier Ltd. All rights reserved.

  7. Functional ankle instability as a risk factor for osteoarthritis: using T2-mapping to analyze early cartilage degeneration in the ankle joint of young athletes.

    PubMed

    Golditz, T; Steib, S; Pfeifer, K; Uder, M; Gelse, K; Janka, R; Hennig, F F; Welsch, G H

    2014-10-01

    The aim of this study was to investigate, using T2-mapping, the impact of functional instability in the ankle joint on the development of early cartilage damage. Ethical approval for this study was provided. Thirty-six volunteers from the university sports program were divided into three groups according to their ankle status: functional ankle instability (FAI, initial ankle sprain with residual instability); ankle sprain Copers (initial sprain, without residual instability); and controls (without a history of ankle injuries). Quantitative T2-mapping magnetic resonance imaging (MRI) was performed at the beginning ('early-unloading') and at the end ('late-unloading') of the MR-examination, with a mean time span of 27 min. Zonal region-of-interest T2-mapping was performed on the talar and tibial cartilage in the deep and superficial layers. The inter-group comparisons of T2-values were analyzed using paired and unpaired t-tests. Statistical analysis of variance was performed. T2-values showed significant to highly significant differences in 11 of 12 regions throughout the groups. In early-unloading, the FAI-group showed a significant increase in quantitative T2-values in the medial, talar regions (P = 0.008, P = 0.027), whereas the Coper-group showed this enhancement in the central-lateral regions (P = 0.05). Especially the comparison of early-loading to late-unloading values revealed significantly decreasing T2-values over time laterally and significantly increasing T2-values medially in the FAI-group, which were not present in the Coper- or control-group. Functional instability causes unbalanced loading in the ankle joint, resulting in cartilage alterations as assessed by quantitative T2-mapping. This approach can visualize and localize early cartilage abnormalities, possibly enabling specific treatment options to prevent osteoarthritis in young athletes. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. Efficient, Validated Method for Detection of Mycobacterial Growth in Liquid Culture Media by Use of Bead Beating, Magnetic-Particle-Based Nucleic Acid Isolation, and Quantitative PCR

    PubMed Central

    Waldron, Anna M.; Begg, Douglas J.; de Silva, Kumudika; Purdie, Auriol C.; Whittington, Richard J.

    2015-01-01

    Pathogenic mycobacteria are difficult to culture, requiring specialized media and a long incubation time, and have complex and exceedingly robust cell walls. Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease, a chronic wasting disease of ruminants, is a typical example. Culture of MAP from the feces and intestinal tissues is a commonly used test for confirmation of infection. Liquid medium offers greater sensitivity than solid medium for detection of MAP; however, support for the BD Bactec 460 system commonly used for this purpose has been discontinued. We previously developed a new liquid culture medium, M7H9C, to replace it, with confirmation of growth reliant on PCR. Here, we report an efficient DNA isolation and quantitative PCR methodology for the specific detection and confirmation of MAP growth in liquid culture media containing egg yolk. The analytical sensitivity was at least 104-fold higher than a commonly used method involving ethanol precipitation of DNA and conventional PCR; this may be partly due to the addition of a bead-beating step to manually disrupt the cell wall of the mycobacteria. The limit of detection, determined using pure cultures of two different MAP strains, was 100 to 1,000 MAP organisms/ml. The diagnostic accuracy was confirmed using a panel of cattle fecal (n = 54) and sheep fecal and tissue (n = 90) culture samples. This technique is directly relevant for diagnostic laboratories that perform MAP cultures but may also be applicable to the detection of other species, including M. avium and M. tuberculosis. PMID:25609725

  9. Efficient, validated method for detection of mycobacterial growth in liquid culture media by use of bead beating, magnetic-particle-based nucleic acid isolation, and quantitative PCR.

    PubMed

    Plain, Karren M; Waldron, Anna M; Begg, Douglas J; de Silva, Kumudika; Purdie, Auriol C; Whittington, Richard J

    2015-04-01

    Pathogenic mycobacteria are difficult to culture, requiring specialized media and a long incubation time, and have complex and exceedingly robust cell walls. Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease, a chronic wasting disease of ruminants, is a typical example. Culture of MAP from the feces and intestinal tissues is a commonly used test for confirmation of infection. Liquid medium offers greater sensitivity than solid medium for detection of MAP; however, support for the BD Bactec 460 system commonly used for this purpose has been discontinued. We previously developed a new liquid culture medium, M7H9C, to replace it, with confirmation of growth reliant on PCR. Here, we report an efficient DNA isolation and quantitative PCR methodology for the specific detection and confirmation of MAP growth in liquid culture media containing egg yolk. The analytical sensitivity was at least 10(4)-fold higher than a commonly used method involving ethanol precipitation of DNA and conventional PCR; this may be partly due to the addition of a bead-beating step to manually disrupt the cell wall of the mycobacteria. The limit of detection, determined using pure cultures of two different MAP strains, was 100 to 1,000 MAP organisms/ml. The diagnostic accuracy was confirmed using a panel of cattle fecal (n=54) and sheep fecal and tissue (n=90) culture samples. This technique is directly relevant for diagnostic laboratories that perform MAP cultures but may also be applicable to the detection of other species, including M. avium and M. tuberculosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Genetic dissection of fruiting body-related traits using quantitative trait loci mapping in Lentinula edodes.

    PubMed

    Gong, Wen-Bing; Li, Lei; Zhou, Yan; Bian, Yin-Bing; Kwan, Hoi-Shan; Cheung, Man-Kit; Xiao, Yang

    2016-06-01

    To provide a better understanding of the genetic architecture of fruiting body formation of Lentinula edodes, quantitative trait loci (QTLs) mapping was employed to uncover the loci underlying seven fruiting body-related traits (FBRTs). An improved L. edodes genetic linkage map, comprising 572 markers on 12 linkage groups with a total map length of 983.7 cM, was constructed by integrating 82 genomic sequence-based insertion-deletion (InDel) markers into a previously published map. We then detected a total of 62 QTLs for seven target traits across two segregating testcross populations, with individual QTLs contributing 5.5 %-30.2 % of the phenotypic variation. Fifty-three out of the 62 QTLs were clustered in six QTL hotspots, suggesting the existence of main genomic regions regulating the morphological characteristics of fruiting bodies in L. edodes. A stable QTL hotspot on MLG2, containing QTLs for all investigated traits, was identified in both testcross populations. QTLs for related traits were frequently co-located on the linkage groups, demonstrating the genetic basis for phenotypic correlation of traits. Meta-QTL (mQTL) analysis was performed and identified 16 mQTLs with refined positions and narrow confidence intervals (CIs). Nine genes, including those encoding MAP kinase, blue-light photoreceptor, riboflavin-aldehyde-forming enzyme and cyclopropane-fatty-acyl-phospholipid synthase, and cytochrome P450s, were likely to be candidate genes controlling the shape of fruiting bodies. The study has improved our understanding of the genetic architecture of fruiting body formation in L. edodes. To our knowledge, this is the first genome-wide QTL detection of FBRTs in L. edodes. The improved genetic map, InDel markers and QTL hotspot regions revealed here will assist considerably in the conduct of future genetic and breeding studies of L. edodes.

  11. Absorption Reconstruction Improves Biodistribution Assessment of Fluorescent Nanoprobes Using Hybrid Fluorescence-mediated Tomography

    PubMed Central

    Gremse, Felix; Theek, Benjamin; Kunjachan, Sijumon; Lederle, Wiltrud; Pardo, Alessa; Barth, Stefan; Lammers, Twan; Naumann, Uwe; Kiessling, Fabian

    2014-01-01

    Aim: Fluorescence-mediated tomography (FMT) holds potential for accelerating diagnostic and theranostic drug development. However, for proper quantitative fluorescence reconstruction, knowledge on optical scattering and absorption, which are highly heterogeneous in different (mouse) tissues, is required. We here describe methods to assess these parameters using co-registered micro Computed Tomography (µCT) data and nonlinear whole-animal absorption reconstruction, and evaluate their importance for assessment of the biodistribution and target site accumulation of fluorophore-labeled drug delivery systems. Methods: Besides phantoms with varying degrees of absorption, mice bearing A431 tumors were imaged 15 min and 48 h after i.v. injection of a fluorophore-labeled polymeric drug carrier (pHPMA-Dy750) using µCT-FMT. The outer shape of mice and a scattering map were derived using automated segmentation of the µCT data. Furthermore, a 3D absorption map was reconstructed from the trans-illumination data. We determined the absorption of five interactively segmented regions (heart, liver, kidney, muscle, tumor). Since blood is the main near-infrared absorber in vivo, the absorption was also estimated from the relative blood volume (rBV), determined by contrast-enhanced µCT. We compared the reconstructed absorption with the rBV-based values and analyzed the effect of using the absorption map on the fluorescence reconstruction. Results: Phantom experiments demonstrated that absorption reconstruction is possible and necessary for quantitative fluorescence reconstruction. In vivo, the reconstructed absorption showed high values in strongly blood-perfused organs such as the heart, liver and kidney. The absorption values correlated strongly with the rBV-based absorption values, confirming the accuracy of the absorption reconstruction. Usage of homogenous absorption instead of the reconstructed absorption map resulted in reduced values in the heart, liver and kidney, by factors of 3.5, 2.1 and 1.4, respectively. For muscle and subcutaneous tumors, which have a much lower rBV and absorption, absorption reconstruction was less important. Conclusion: Quantitative whole-animal absorption reconstruction is possible and can be validated in vivo using the rBV. Usage of an absorption map is important when quantitatively assessing the biodistribution of fluorescently labeled drugs and drug delivery systems, to avoid a systematic underestimation of fluorescence in strongly absorbing organs, such as the heart, liver and kidney. PMID:25157277

  12. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.D.; Siniscalco, M.

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  13. Evaluation of acute ischemic stroke using quantitative EEG: a comparison with conventional EEG and CT scan.

    PubMed

    Murri, L; Gori, S; Massetani, R; Bonanni, E; Marcella, F; Milani, S

    1998-06-01

    The sensitivity of quantitative electroencephalogram (EEG) was compared with that of conventional EEG in patients with acute ischaemic stroke. In addition, a correlation between quantitative EEG data and computerized tomography (CT) scan findings was carried out for all the areas of lesion in order to reassess the actual role of EEG in the evaluation of stroke. Sixty-five patients were tested with conventional and quantitative EEG within 24 h from the onset of neurological symptoms, whereas CT scan was performed within 4 days from the onset of stroke. EEG was recorded from 19 electrodes placed upon the scalp according to the International 10-20 System. Spectral analysis was carried out on 30 artefact-free 4-sec epochs. For each channel absolute and relative power were calculated for the delta, theta, alpha and beta frequency bands and such data were successively represented in colour-coded maps. Ten patients with extensive lesions documented by CT scan were excluded. The results indicated that conventional EEG revealed abnormalities in 40 of 55 cases, while EEG mapping showed abnormalities in 46 of 55 cases: it showed focal abnormalities in five cases and nonfocal abnormalities in one of six cases which had appeared to be normal according to visual inspection of EEG. In a further 11 cases, where the conventional EEG revealed abnormalities in one hemisphere, the quantitative EEG and maps allowed to further localize abnormal activity in a more localized way. The sensitivity of both methods was higher for frontocentral, temporal and parieto-occipital cortical-subcortical infarctions than for basal ganglia and internal capsule lesions; however, quantitative EEG was more efficient for all areas of lesion in detecting cases that had appeared normal by visual inspection and was clearly superior in revealing focal abnormalities. When we considered the electrode related to which the maximum power of the delta frequency band is recorded, a fairly close correlation was found between the localization of the maximum delta power and the position of lesions documented by CT scan for all areas of lesion excepting those located in the striatocapsular area.

  14. Chevron-type medial malleolar osteotomy: a functional, radiographic and quantitative T2-mapping MRI analysis.

    PubMed

    Lamb, Joshua; Murawski, Christopher D; Deyer, Timothy W; Kennedy, John G

    2013-06-01

    The purpose of this study was to retrospectively evaluate a large series of patients for functional, radiographic and MRI outcomes after a Chevron-type medial malleolar osteotomy. Sixty-two patients underwent a Chevron-type medial malleolar osteotomy with a median follow-up of 34.5 months. Standard digital radiographs were used to determine bony union and the angle of the osteotomy relative to the longitudinal axis of the tibia. Morphologic and quantitative T2-mapping MRI was also analysed in 32 patients. Fifty-eight patients (94 %) reported being asymptomatic at the site of the medial malleolar osteotomy. The median time to healing on standard radiograph was 6 weeks (range, 4-6 weeks) with an angle of 31.7° ± 6.9°. Quantitative T2-mapping MRI analysis demonstrated that the deep half of interface repair tissue had relaxation times that were not significantly different from normal tibial cartilage. In contrast, interface repair tissue in the superficial half demonstrated significant prolongation from normal relaxation time values, indicating a more fibrocartilaginous repair. Four patients (6 %) reported pain post-operatively. A Chevron-type medial malleolar osteotomy demonstrates satisfactory healing and fixation, with fibrocartilaginous tissue evident superficially at the osteotomy interface. Further investigation is warranted in the form of longitudinal study to assess the long-term outcomes of medial malleolar osteotomy.

  15. Smartphone-Based Mobile Detection Platform for Molecular Diagnostics and Spatiotemporal Disease Mapping.

    PubMed

    Song, Jinzhao; Pandian, Vikram; Mauk, Michael G; Bau, Haim H; Cherry, Sara; Tisi, Laurence C; Liu, Changchun

    2018-04-03

    Rapid and quantitative molecular diagnostics in the field, at home, and at remote clinics is essential for evidence-based disease management, control, and prevention. Conventional molecular diagnostics requires extensive sample preparation, relatively sophisticated instruments, and trained personnel, restricting its use to centralized laboratories. To overcome these limitations, we designed a simple, inexpensive, hand-held, smartphone-based mobile detection platform, dubbed "smart-connected cup" (SCC), for rapid, connected, and quantitative molecular diagnostics. Our platform combines bioluminescent assay in real-time and loop-mediated isothermal amplification (BART-LAMP) technology with smartphone-based detection, eliminating the need for an excitation source and optical filters that are essential in fluorescent-based detection. The incubation heating for the isothermal amplification is provided, electricity-free, with an exothermic chemical reaction, and incubation temperature is regulated with a phase change material. A custom Android App was developed for bioluminescent signal monitoring and analysis, target quantification, data sharing, and spatiotemporal mapping of disease. SCC's utility is demonstrated by quantitative detection of Zika virus (ZIKV) in urine and saliva and HIV in blood within 45 min. We demonstrate SCC's connectivity for disease spatiotemporal mapping with a custom-designed website. Such a smart- and connected-diagnostic system does not require any lab facilities and is suitable for use at home, in the field, in the clinic, and particularly in resource-limited settings in the context of Internet of Medical Things (IoMT).

  16. A comparison of phase imaging and quantitative susceptibility mapping in the imaging of multiple sclerosis lesions at ultrahigh field.

    PubMed

    Cronin, Matthew John; Wharton, Samuel; Al-Radaideh, Ali; Constantinescu, Cris; Evangelou, Nikos; Bowtell, Richard; Gowland, Penny Anne

    2016-06-01

    The aim of this study was to compare the use of high-resolution phase and QSM images acquired at ultra-high field in the investigation of multiple sclerosis (MS) lesions with peripheral rings, and to discuss their usefulness for drawing inferences about underlying tissue composition. Thirty-nine Subjects were scanned at 7 T, using 3D T 2*-weighted and T 1-weighted sequences. Phase images were then unwrapped and filtered, and quantitative susceptibility maps were generated using a thresholded k-space division method. Lesions were compared visually and using a 1D profiling algorithm. Lesions displaying peripheral rings in the phase images were identified in 10 of the 39 subjects. Dipolar projections were apparent in the phase images outside of the extent of several of these lesions; however, QSM images showed peripheral rings without such projections. These projections appeared ring-like in a small number of phase images where no ring was observed in QSM. 1D profiles of six well-isolated example lesions showed that QSM contrast corresponds more closely to the magnitude images than phase contrast. Phase images contain dipolar projections, which confounds their use in the investigation of tissue composition in MS lesions. Quantitative susceptibility maps correct these projections, providing insight into the composition of MS lesions showing peripheral rings.

  17. Quantitative characterization of material surface — Application to Ni + Mo electrolytic composite coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubisztal, J., E-mail: julian.kubisztal@us.edu.pl

    A new approach to numerical analysis of maps of material surface has been proposed and discussed in detail. It was concluded that the roughness factor RF and the root mean square roughness S{sub q} show a saturation effect with increasing size of the analysed maps what allows determining the optimal map dimension representative of the examined material. A quantitative method of determining predominant direction of the surface texture based on the power spectral density function is also proposed and discussed. The elaborated method was applied in surface analysis of Ni + Mo composite coatings. It was shown that co-deposition ofmore » molybdenum particles in nickel matrix leads to an increase in surface roughness. In addition, a decrease in size of the embedded Mo particles in Ni matrix causes an increase of both the surface roughness and the surface texture. It was also stated that the relation between the roughness factor and the double layer capacitance C{sub dl} of the studied coatings is linear and allows determining the double layer capacitance of the smooth nickel electrode. - Highlights: •Optimization of the procedure for the scanning of the material surface •Quantitative determination of the surface roughness and texture intensity •Proposition of the parameter describing privileged direction of the surface texture •Determination of the double layer capacitance of the smooth electrode.« less

  18. 30-Second bound and pore water concentration mapping of cortical bone using 2D UTE with optimized half-pulses.

    PubMed

    Manhard, Mary Kate; Harkins, Kevin D; Gochberg, Daniel F; Nyman, Jeffry S; Does, Mark D

    2017-03-01

    MRI of cortical bone has the potential to offer new information about fracture risk. Current methods are typically performed with 3D acquisitions, which suffer from long scan times and are generally limited to extremities. This work proposes using 2D UTE with half pulses for quantitatively mapping bound and pore water in cortical bone. Half-pulse 2D UTE methods were implemented on a 3T Philips Achieva scanner using an optimized slice-select gradient waveform, with preparation pulses to selectively image bound or pore water. The 2D methods were quantitatively compared with previously implemented 3D methods in the tibia in five volunteers. The mean difference between bound and pore water concentration acquired from 3D and 2D sequences was 0.6 and 0.9 mol 1 H/L bone (3 and 12%, respectively). While 2D pore water methods tended to slightly overestimate concentrations relative to 3D methods, differences were less than scan-rescan uncertainty and expected differences between healthy and fracture-prone bones. Quantitative bound and pore water concentration mapping in cortical bone can be accelerated by 2 orders of magnitude using 2D protocols with optimized half-pulse excitation. Magn Reson Med 77:945-950, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Multisite concordance of apparent diffusion coefficient measurements across the NCI Quantitative Imaging Network.

    PubMed

    Newitt, David C; Malyarenko, Dariya; Chenevert, Thomas L; Quarles, C Chad; Bell, Laura; Fedorov, Andriy; Fennessy, Fiona; Jacobs, Michael A; Solaiyappan, Meiyappan; Hectors, Stefanie; Taouli, Bachir; Muzi, Mark; Kinahan, Paul E; Schmainda, Kathleen M; Prah, Melissa A; Taber, Erin N; Kroenke, Christopher; Huang, Wei; Arlinghaus, Lori R; Yankeelov, Thomas E; Cao, Yue; Aryal, Madhava; Yen, Yi-Fen; Kalpathy-Cramer, Jayashree; Shukla-Dave, Amita; Fung, Maggie; Liang, Jiachao; Boss, Michael; Hylton, Nola

    2018-01-01

    Diffusion weighted MRI has become ubiquitous in many areas of medicine, including cancer diagnosis and treatment response monitoring. Reproducibility of diffusion metrics is essential for their acceptance as quantitative biomarkers in these areas. We examined the variability in the apparent diffusion coefficient (ADC) obtained from both postprocessing software implementations utilized by the NCI Quantitative Imaging Network and online scan time-generated ADC maps. Phantom and in vivo breast studies were evaluated for two ([Formula: see text]) and four ([Formula: see text]) [Formula: see text]-value diffusion metrics. Concordance of the majority of implementations was excellent for both phantom ADC measures and in vivo [Formula: see text], with relative biases [Formula: see text] ([Formula: see text]) and [Formula: see text] (phantom [Formula: see text]) but with higher deviations in ADC at the lowest phantom ADC values. In vivo [Formula: see text] concordance was good, with typical biases of [Formula: see text] to 3% but higher for online maps. Multiple b -value ADC implementations were separated into two groups determined by the fitting algorithm. Intergroup mean ADC differences ranged from negligible for phantom data to 2.8% for [Formula: see text] in vivo data. Some higher deviations were found for individual implementations and online parametric maps. Despite generally good concordance, implementation biases in ADC measures are sometimes significant and may be large enough to be of concern in multisite studies.

  20. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping

    PubMed Central

    2012-01-01

    Background Cucurbita pepo is a member of the Cucurbitaceae family, the second- most important horticultural family in terms of economic importance after Solanaceae. The "summer squash" types, including Zucchini and Scallop, rank among the highest-valued vegetables worldwide. There are few genomic tools available for this species. The first Cucurbita transcriptome, along with a large collection of Single Nucleotide Polymorphisms (SNP), was recently generated using massive sequencing. A set of 384 SNP was selected to generate an Illumina GoldenGate assay in order to construct the first SNP-based genetic map of Cucurbita and map quantitative trait loci (QTL). Results We herein present the construction of the first SNP-based genetic map of Cucurbita pepo using a population derived from the cross of two varieties with contrasting phenotypes, representing the main cultivar groups of the species' two subspecies: Zucchini (subsp. pepo) × Scallop (subsp. ovifera). The mapping population was genotyped with 384 SNP, a set of selected EST-SNP identified in silico after massive sequencing of the transcriptomes of both parents, using the Illumina GoldenGate platform. The global success rate of the assay was higher than 85%. In total, 304 SNP were mapped, along with 11 SSR from a previous map, giving a map density of 5.56 cM/marker. This map was used to infer syntenic relationships between C. pepo and cucumber and to successfully map QTL that control plant, flowering and fruit traits that are of benefit to squash breeding. The QTL effects were validated in backcross populations. Conclusion Our results show that massive sequencing in different genotypes is an excellent tool for SNP discovery, and that the Illumina GoldenGate platform can be successfully applied to constructing genetic maps and performing QTL analysis in Cucurbita. This is the first SNP-based genetic map in the Cucurbita genus and is an invaluable new tool for biological research, especially considering that most of these markers are located in the coding regions of genes involved in different physiological processes. The platform will also be useful for future mapping and diversity studies, and will be essential in order to accelerate the process of breeding new and better-adapted squash varieties. PMID:22356647

  1. Quantitative architectural analysis: a new approach to cortical mapping.

    PubMed

    Schleicher, A; Palomero-Gallagher, N; Morosan, P; Eickhoff, S B; Kowalski, T; de Vos, K; Amunts, K; Zilles, K

    2005-12-01

    Recent progress in anatomical and functional MRI has revived the demand for a reliable, topographic map of the human cerebral cortex. Till date, interpretations of specific activations found in functional imaging studies and their topographical analysis in a spatial reference system are, often, still based on classical architectonic maps. The most commonly used reference atlas is that of Brodmann and his successors, despite its severe inherent drawbacks. One obvious weakness in traditional, architectural mapping is the subjective nature of localising borders between cortical areas, by means of a purely visual, microscopical examination of histological specimens. To overcome this limitation, more objective, quantitative mapping procedures have been established in the past years. The quantification of the neocortical, laminar pattern by defining intensity line profiles across the cortical layers, has a long tradition. During the last years, this method has been extended to enable a reliable, reproducible mapping of the cortex based on image analysis and multivariate statistics. Methodological approaches to such algorithm-based, cortical mapping were published for various architectural modalities. In our contribution, principles of algorithm-based mapping are described for cyto- and receptorarchitecture. In a cytoarchitectural parcellation of the human auditory cortex, using a sliding window procedure, the classical areal pattern of the human superior temporal gyrus was modified by a replacing of Brodmann's areas 41, 42, 22 and parts of area 21, with a novel, more detailed map. An extension and optimisation of the sliding window procedure to the specific requirements of receptorarchitectonic mapping, is also described using the macaque central sulcus and adjacent superior parietal lobule as a second, biologically independent example. Algorithm-based mapping procedures, however, are not limited to these two architectural modalities, but can be applied to all images in which a laminar cortical pattern can be detected and quantified, e.g. myeloarchitectonic and in vivo high resolution MR imaging. Defining cortical borders, based on changes in cortical lamination in high resolution, in vivo structural MR images will result in a rapid increase of our knowledge on the structural parcellation of the human cerebral cortex.

  2. Quantitative SIMS Imaging of Agar-Based Microbial Communities.

    PubMed

    Dunham, Sage J B; Ellis, Joseph F; Baig, Nameera F; Morales-Soto, Nydia; Cao, Tianyuan; Shrout, Joshua D; Bohn, Paul W; Sweedler, Jonathan V

    2018-05-01

    After several decades of widespread use for mapping elemental ions and small molecular fragments in surface science, secondary ion mass spectrometry (SIMS) has emerged as a powerful analytical tool for molecular imaging in biology. Biomolecular SIMS imaging has primarily been used as a qualitative technique; although the distribution of a single analyte can be accurately determined, it is difficult to map the absolute quantity of a compound or even to compare the relative abundance of one molecular species to that of another. We describe a method for quantitative SIMS imaging of small molecules in agar-based microbial communities. The microbes are cultivated on a thin film of agar, dried under nitrogen, and imaged directly with SIMS. By use of optical microscopy, we show that the area of the agar is reduced by 26 ± 2% (standard deviation) during dehydration, but the overall biofilm morphology and analyte distribution are largely retained. We detail a quantitative imaging methodology, in which the ion intensity of each analyte is (1) normalized to an external quadratic regression curve, (2) corrected for isomeric interference, and (3) filtered for sample-specific noise and lower and upper limits of quantitation. The end result is a two-dimensional surface density image for each analyte. The sample preparation and quantitation methods are validated by quantitatively imaging four alkyl-quinolone and alkyl-quinoline N-oxide signaling molecules (including Pseudomonas quinolone signal) in Pseudomonas aeruginosa colony biofilms. We show that the relative surface densities of the target biomolecules are substantially different from values inferred through direct intensity comparison and that the developed methodologies can be used to quantitatively compare as many ions as there are available standards.

  3. Biochemical evaluation of articular cartilage in patients with osteochondrosis dissecans by means of quantitative T2- and T2-mapping at 3T MRI: a feasibility study.

    PubMed

    Marik, W; Apprich, S; Welsch, G H; Mamisch, T C; Trattnig, S

    2012-05-01

    To perform an in vivo evaluation comparing overlying articular cartilage in patients suffering from osteochondrosis dissecans (OCD) in the talocrural joint and healthy volunteers using quantitative T2 mapping at 3.0 T. Ten patients with OCD of Grade II or lower and 9 healthy age matched volunteers were examined at a 3.0 T whole body MR scanner using a flexible multi-element coil. In all investigated persons MRI included proton-density (PD)-FSE and 3D GRE (TrueFisp) sequences for morphological diagnosis and location of anatomical site and quantitative T2 and T2 maps. Region of interest (ROI) analysis was performed for the cartilage layer above the OCD and for a morphologically healthy graded cartilage layer. Mean T2 and T2 values were then statistically analysed. The cartilage layer of healthy volunteers showed mean T2 and T2 values of 29.4 ms (SD 4.9) and 11.8 ms (SD 2.7), respectively. In patients with OCD of grade I and II lesions mean T2 values were 40.9 ms (SD 6.6), 48.7 ms (SD 11.2) and mean T2 values were 16.1 ms (SD 3.2), 16.2 ms (SD 4.8). Therefore statistically significantly higher mean T2 and T2 values were found in patients suffering from OCD compared to healthy volunteers. T2 and T2 mapping can help assess the microstructural composition of cartilage overlying osteochondral lesions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Quantitative Susceptibility Mapping in Parkinson's Disease.

    PubMed

    Langkammer, Christian; Pirpamer, Lukas; Seiler, Stephan; Deistung, Andreas; Schweser, Ferdinand; Franthal, Sebastian; Homayoon, Nina; Katschnig-Winter, Petra; Koegl-Wallner, Mariella; Pendl, Tamara; Stoegerer, Eva Maria; Wenzel, Karoline; Fazekas, Franz; Ropele, Stefan; Reichenbach, Jürgen Rainer; Schmidt, Reinhold; Schwingenschuh, Petra

    2016-01-01

    Quantitative susceptibility mapping (QSM) and R2* relaxation rate mapping have demonstrated increased iron deposition in the substantia nigra of patients with idiopathic Parkinson's disease (PD). However, the findings in other subcortical deep gray matter nuclei are converse and the sensitivity of QSM and R2* for morphological changes and their relation to clinical measures of disease severity has so far been investigated only sparsely. The local ethics committee approved this study and all subjects gave written informed consent. 66 patients with idiopathic Parkinson's disease and 58 control subjects underwent quantitative MRI at 3T. Susceptibility and R2* maps were reconstructed from a spoiled multi-echo 3D gradient echo sequence. Mean susceptibilities and R2* rates were measured in subcortical deep gray matter nuclei and compared between patients with PD and controls as well as related to clinical variables. Compared to control subjects, patients with PD had increased R2* values in the substantia nigra. QSM also showed higher susceptibilities in patients with PD in substantia nigra, in the nucleus ruber, thalamus, and globus pallidus. Magnetic susceptibility of several of these structures was correlated with the levodopa-equivalent daily dose (LEDD) and clinical markers of motor and non-motor disease severity (total MDS-UPDRS, MDS-UPDRS-I and II). Disease severity as assessed by the Hoehn & Yahr scale was correlated with magnetic susceptibility in the substantia nigra. The established finding of higher R2* rates in the substantia nigra was extended by QSM showing superior sensitivity for PD-related tissue changes in nigrostriatal dopaminergic pathways. QSM additionally reflected the levodopa-dosage and disease severity. These results suggest a more widespread pathologic involvement and QSM as a novel means for its investigation, more sensitive than current MRI techniques.

  5. Integrated platform for genome-wide screening and construction of high-density genetic interaction maps in mammalian cells

    PubMed Central

    Kampmann, Martin; Bassik, Michael C.; Weissman, Jonathan S.

    2013-01-01

    A major challenge of the postgenomic era is to understand how human genes function together in normal and disease states. In microorganisms, high-density genetic interaction (GI) maps are a powerful tool to elucidate gene functions and pathways. We have developed an integrated methodology based on pooled shRNA screening in mammalian cells for genome-wide identification of genes with relevant phenotypes and systematic mapping of all GIs among them. We recently demonstrated the potential of this approach in an application to pathways controlling the susceptibility of human cells to the toxin ricin. Here we present the complete quantitative framework underlying our strategy, including experimental design, derivation of quantitative phenotypes from pooled screens, robust identification of hit genes using ultra-complex shRNA libraries, parallel measurement of tens of thousands of GIs from a single double-shRNA experiment, and construction of GI maps. We describe the general applicability of our strategy. Our pooled approach enables rapid screening of the same shRNA library in different cell lines and under different conditions to determine a range of different phenotypes. We illustrate this strategy here for single- and double-shRNA libraries. We compare the roles of genes for susceptibility to ricin and Shiga toxin in different human cell lines and reveal both toxin-specific and cell line-specific pathways. We also present GI maps based on growth and ricin-resistance phenotypes, and we demonstrate how such a comparative GI mapping strategy enables functional dissection of physical complexes and context-dependent pathways. PMID:23739767

  6. Accelerometer-based automatic voice onset detection in speech mapping with navigated repetitive transcranial magnetic stimulation.

    PubMed

    Vitikainen, Anne-Mari; Mäkelä, Elina; Lioumis, Pantelis; Jousmäki, Veikko; Mäkelä, Jyrki P

    2015-09-30

    The use of navigated repetitive transcranial magnetic stimulation (rTMS) in mapping of speech-related brain areas has recently shown to be useful in preoperative workflow of epilepsy and tumor patients. However, substantial inter- and intraobserver variability and non-optimal replicability of the rTMS results have been reported, and a need for additional development of the methodology is recognized. In TMS motor cortex mappings the evoked responses can be quantitatively monitored by electromyographic recordings; however, no such easily available setup exists for speech mappings. We present an accelerometer-based setup for detection of vocalization-related larynx vibrations combined with an automatic routine for voice onset detection for rTMS speech mapping applying naming. The results produced by the automatic routine were compared with the manually reviewed video-recordings. The new method was applied in the routine navigated rTMS speech mapping for 12 consecutive patients during preoperative workup for epilepsy or tumor surgery. The automatic routine correctly detected 96% of the voice onsets, resulting in 96% sensitivity and 71% specificity. Majority (63%) of the misdetections were related to visible throat movements, extra voices before the response, or delayed naming of the previous stimuli. The no-response errors were correctly detected in 88% of events. The proposed setup for automatic detection of voice onsets provides quantitative additional data for analysis of the rTMS-induced speech response modifications. The objectively defined speech response latencies increase the repeatability, reliability and stratification of the rTMS results. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Quantitative landslide risk assessment and mapping on the basis of recent occurrences

    NASA Astrophysics Data System (ADS)

    Remondo, Juan; Bonachea, Jaime; Cendrero, Antonio

    A quantitative procedure for mapping landslide risk is developed from considerations of hazard, vulnerability and valuation of exposed elements. The approach based on former work by the authors, is applied in the Bajo Deba area (northern Spain) where a detailed study of landslide occurrence and damage in the recent past (last 50 years) was carried out. Analyses and mapping are implemented in a Geographic Information System (GIS). The method is based on a susceptibility model developed previously from statistical relationships between past landslides and terrain parameters related to instability. Extrapolations based on past landslide behaviour were used to calculate failure frequency for the next 50 years. A detailed inventory of direct damage due to landslides during the study period was carried out and the main elements at risk in the area identified and mapped. Past direct (monetary) losses per type of element were estimated and expressed as an average 'specific loss' for events of a given magnitude (corresponding to a specified scenario). Vulnerability was assessed by comparing losses with the actual value of the elements affected and expressed as a fraction of that value (0-1). From hazard, vulnerability and monetary value, risk was computed for each element considered. Direct risk maps (€/pixel/year) were obtained and indirect losses from the disruption of economic activities due to landslides assessed. The final result is a risk map and table combining all losses per pixel for a 50-year period. Total monetary value at risk for the Bajo Deba area in the next 50 years is about 2.4 × 10 6 Euros.

  8. Use of multiple cluster analysis methods to explore the validity of a community outcomes concept map.

    PubMed

    Orsi, Rebecca

    2017-02-01

    Concept mapping is now a commonly-used technique for articulating and evaluating programmatic outcomes. However, research regarding validity of knowledge and outcomes produced with concept mapping is sparse. The current study describes quantitative validity analyses using a concept mapping dataset. We sought to increase the validity of concept mapping evaluation results by running multiple cluster analysis methods and then using several metrics to choose from among solutions. We present four different clustering methods based on analyses using the R statistical software package: partitioning around medoids (PAM), fuzzy analysis (FANNY), agglomerative nesting (AGNES) and divisive analysis (DIANA). We then used the Dunn and Davies-Bouldin indices to assist in choosing a valid cluster solution for a concept mapping outcomes evaluation. We conclude that the validity of the outcomes map is high, based on the analyses described. Finally, we discuss areas for further concept mapping methods research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Quantitative Susceptibility Mapping Indicates a Disturbed Brain Iron Homeostasis in Neuromyelitis Optica - A Pilot Study.

    PubMed

    Doring, Thomas Martin; Granado, Vanessa; Rueda, Fernanda; Deistung, Andreas; Reichenbach, Juergen R; Tukamoto, Gustavo; Gasparetto, Emerson Leandro; Schweser, Ferdinand

    2016-01-01

    Dysregulation of brain iron homeostasis is a hallmark of many neurodegenerative diseases and can be associated with oxidative stress. The objective of this study was to investigate brain iron in patients with Neuromyelitis Optica (NMO) using quantitative susceptibility mapping (QSM), a quantitative iron-sensitive MRI technique. 12 clinically confirmed NMO patients (6 female and 6 male; age 35.4y±14.2y) and 12 age- and sex-matched healthy controls (7 female and 5 male; age 33.9±11.3y) underwent MRI of the brain at 3 Tesla. Quantitative maps of the effective transverse relaxation rate (R2*) and magnetic susceptibility were calculated and a blinded ROI-based group comparison analysis was performed. Normality of the data and differences between patients and controls were tested by Kolmogorov-Smirnov and t-test, respectively. Correlation with age was studied using Spearman's rank correlation and an ANCOVA-like analysis. Magnetic susceptibility values were decreased in the red nucleus (p<0.01; d>0.95; between -15 and -22 ppb depending on reference region) with a trend toward increasing differences with age. R2* revealed significantly decreased relaxation in the optic radiations of five of the 12 patients (p<0.0001; -3.136±0.567 s-1). Decreased relaxation in the optic radiation is indicative for demyelination, which is in line with previous findings. Decreased magnetic susceptibility in the red nucleus is indicative for a lower brain iron concentration, a chemical redistribution of iron into less magnetic forms, or both. Further investigations are necessary to elucidate the pathological cause or consequence of this finding.

  10. 40 CFR 230.93 - General compensatory mitigation requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... available from sources such as wetland maps; soil surveys; U.S. Geological Survey topographic and hydrologic... the watershed, the district engineer must use appropriate quantitative assessment tools, where...

  11. 40 CFR 230.93 - General compensatory mitigation requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... available from sources such as wetland maps; soil surveys; U.S. Geological Survey topographic and hydrologic... the watershed, the district engineer must use appropriate quantitative assessment tools, where...

  12. 40 CFR 230.93 - General compensatory mitigation requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... available from sources such as wetland maps; soil surveys; U.S. Geological Survey topographic and hydrologic... the watershed, the district engineer must use appropriate quantitative assessment tools, where...

  13. 40 CFR 230.93 - General compensatory mitigation requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... available from sources such as wetland maps; soil surveys; U.S. Geological Survey topographic and hydrologic... the watershed, the district engineer must use appropriate quantitative assessment tools, where...

  14. 40 CFR 230.93 - General compensatory mitigation requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... available from sources such as wetland maps; soil surveys; U.S. Geological Survey topographic and hydrologic... the watershed, the district engineer must use appropriate quantitative assessment tools, where...

  15. Unveiling the Third Secret of Fátima: μ-XRF quantitative characterization and 2D elemental mapping

    NASA Astrophysics Data System (ADS)

    Manso, M.; Pessanha, S.; Guerra, M.; Figueirinhas, J. L.; Santos, J. P.; Carvalho, M. L.

    2017-04-01

    A set of five manuscripts written by Sister Lúcia between 1941 and 1944 were under study. Among them is the one that contains the description of the third part of the Secret of Fátima also known as the Third Secret of Fátima. In this work, a characterization of the paper and the ink used in these documents was achieved using micro-X-ray fluorescence spectrometry. Quantitative results were obtained for P, K, Ca, Fe, Cu and Zn, revealing different paper composition and Zn in the inks. 2D elemental maps confirmed that Zn was present in the five documents ink and that the manuscript revealing the Third Secret of Fátima contained no erasures or alteration attempts to the original manuscript.

  16. Advanced imaging techniques in brain tumors

    PubMed Central

    2009-01-01

    Abstract Perfusion, permeability and magnetic resonance spectroscopy (MRS) are now widely used in the research and clinical settings. In the clinical setting, qualitative, semi-quantitative and quantitative approaches such as review of color-coded maps to region of interest analysis and analysis of signal intensity curves are being applied in practice. There are several pitfalls with all of these approaches. Some of these shortcomings are reviewed, such as the relative low sensitivity of metabolite ratios from MRS and the effect of leakage on the appearance of color-coded maps from dynamic susceptibility contrast (DSC) magnetic resonance (MR) perfusion imaging and what correction and normalization methods can be applied. Combining and applying these different imaging techniques in a multi-parametric algorithmic fashion in the clinical setting can be shown to increase diagnostic specificity and confidence. PMID:19965287

  17. Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping

    PubMed Central

    Stüber, Carsten; Pitt, David; Wang, Yi

    2016-01-01

    Iron is considered to play a key role in the development and progression of Multiple Sclerosis (MS). In particular, iron that accumulates in myeloid cells after the blood-brain barrier (BBB) seals may contribute to chronic inflammation, oxidative stress and eventually neurodegeneration. Magnetic resonance imaging (MRI) is a well-established tool for the non-invasive study of MS. In recent years, an advanced MRI method, quantitative susceptibility mapping (QSM), has made it possible to study brain iron through in vivo imaging. Moreover, immunohistochemical investigations have helped defining the lesional and cellular distribution of iron in MS brain tissue. Imaging studies in MS patients and of brain tissue combined with histological studies have provided important insights into the role of iron in inflammation and neurodegeneration in MS. PMID:26784172

  18. Evaluation of shear wave elastography for differential diagnosis of breast lesions: A new qualitative analysis versus conventional quantitative analysis.

    PubMed

    Ren, Wei-Wei; Li, Xiao-Long; Wang, Dan; Liu, Bo-Ji; Zhao, Chong-Ke; Xu, Hui-Xiong

    2018-04-13

    To evaluate a special kind of ultrasound (US) shear wave elastography for differential diagnosis of breast lesions, using a new qualitative analysis (i.e. the elasticity score in the travel time map) compared with conventional quantitative analysis. From June 2014 to July 2015, 266 pathologically proven breast lesions were enrolled in this study. The maximum, mean, median, minimum, and standard deviation of shear wave speed (SWS) values (m/s) were assessed. The elasticity score, a new qualitative feature, was evaluated in the travel time map. The area under the receiver operating characteristic (AUROC) curves were plotted to evaluate the diagnostic performance of both qualitative and quantitative analyses for differentiation of breast lesions. Among all quantitative parameters, SWS-max showed the highest AUROC (0.805; 95% CI: 0.752, 0.851) compared with SWS-mean (0.786; 95% CI:0.732, 0.834; P = 0.094), SWS-median (0.775; 95% CI:0.720, 0.824; P = 0.046), SWS-min (0.675; 95% CI:0.615, 0.731; P = 0.000), and SWS-SD (0.768; 95% CI:0.712, 0.817; P = 0.074). The AUROC of qualitative analysis in this study obtained the best diagnostic performance (0.871; 95% CI: 0.825, 0.909, compared with the best parameter of SWS-max in quantitative analysis, P = 0.011). The new qualitative analysis of shear wave travel time showed the superior diagnostic performance in the differentiation of breast lesions in comparison with conventional quantitative analysis.

  19. Construction of a genetic linkage map and analysis of quantitative trait loci associated with the agronomically important traits of Pleurotus eryngii

    Treesearch

    Chak Han Im; Young-Hoon Park; Kenneth E. Hammel; Bokyung Park; Soon Wook Kwon; Hojin Ryu; Jae-San Ryu

    2016-01-01

    Breeding new strains with improved traits is a long-standing goal of mushroom breeders that can be expedited by marker-assisted selection (MAS). We constructed a genetic linkage map of Pleurotus eryngii based on segregation analysis of markers in postmeiotic monokaryons from KNR2312. In total, 256 loci comprising 226 simple sequence-repeat (SSR) markers, 2 mating-type...

  20. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Canine Cohort, Canine Intelligence Assessment Regimen, Genome-Wide Single Nucleotide Polymorphism (SNP) Typing, and Unsupervised Classification Algorithm for Genome-Wide Association Data Analysis

    DTIC Science & Technology

    2011-09-01

    Almasy, L, Blangero, J. (2009) Human QTL linkage mapping. Genetica 136:333-340. Amos, CI. (2007) Successful design and conduct of genome-wide...quantitative trait loci. Genetica 136:237-243. Skol AD, Scott LJ, Abecasis GR, Boehnke M. (2006) Joint analysis is more efficient than replication

  1. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice.

    PubMed

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Wei, Haibin; Feng, Fangjun; Wang, Pei; Xia, Hui; Li, Tiemei; Luo, Lijun

    2015-08-01

    Deep rooting is a very important trait for plants' drought avoidance, and it is usually represented by the ratio of deep rooting (RDR). Three sets of rice populations were used to determine the genetic base for RDR. A linkage mapping population with 180 recombinant inbred lines and an association mapping population containing 237 rice varieties were used to identify genes linked to RDR. Six quantitative trait loci (QTLs) of RDR were identified as being located on chromosomes 1, 2, 4, 7, and 10. Using 1 019 883 single-nucleotide polymorphisms (SNPs), a genome-wide association study of the RDR was performed. Forty-eight significant SNPs of the RDR were identified and formed a clear peak on the short arm of chromosome 1 in a Manhattan plot. Compared with the shallow-rooting group and the whole collection, the deep-rooting group had selective sweep regions on chromosomes 1 and 2, especially in the major QTL region on chromosome 2. Seven of the nine candidate SNPs identified by association mapping were verified in two RDR extreme groups. The findings from this study will be beneficial to rice drought-resistance research and breeding. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Landslide hazard assessment: recent trends and techniques.

    PubMed

    Pardeshi, Sudhakar D; Autade, Sumant E; Pardeshi, Suchitra S

    2013-01-01

    Landslide hazard assessment is an important step towards landslide hazard and risk management. There are several methods of Landslide Hazard Zonation (LHZ) viz. heuristic, semi quantitative, quantitative, probabilistic and multi-criteria decision making process. However, no one method is accepted universally for effective assessment of landslide hazards. In recent years, several attempts have been made to apply different methods of LHZ and to compare results in order to find the best suited model. This paper presents the review of researches on landslide hazard mapping published in recent years. The advanced multivariate techniques are proved to be effective in spatial prediction of landslides with high degree of accuracy. Physical process based models also perform well in LHZ mapping even in the areas with poor database. Multi-criteria decision making approach also play significant role in determining relative importance of landslide causative factors in slope instability process. Remote Sensing and Geographical Information System (GIS) are powerful tools to assess landslide hazards and are being used extensively in landslide researches since last decade. Aerial photographs and high resolution satellite data are useful in detection, mapping and monitoring landslide processes. GIS based LHZ models helps not only to map and monitor landslides but also to predict future slope failures. The advancements in Geo-spatial technologies have opened the doors for detailed and accurate assessment of landslide hazards.

  3. Mapping QTLs for drought tolerance in a SEA 5 x AND 277 common bean cross with SSRs and SNP markers.

    PubMed

    Briñez, Boris; Perseguini, Juliana Morini Küpper Cardoso; Rosa, Juliana Santa; Bassi, Denis; Gonçalves, João Guilherme Ribeiro; Almeida, Caléo; Paulino, Jean Fausto de Carvalho; Blair, Matthew Ward; Chioratto, Alisson Fernando; Carbonell, Sérgio Augusto Morais; Valdisser, Paula Arielle Mendes Ribeiro; Vianello, Rosana Pereira; Benchimol-Reis, Luciana Lasry

    2017-01-01

    The common bean is characterized by high sensitivity to drought and low productivity. Breeding for drought resistance in this species involves genes of different genetic groups. In this work, we used a SEA 5 x AND 277 cross to map quantitative trait loci associated with drought tolerance in order to assess the factors that determine the magnitude of drought response in common beans. A total of 438 polymorphic markers were used to genotype the F8 mapping population. Phenotyping was done in two greenhouses, one used to simulate drought and the other to simulate irrigated conditions. Fourteen traits associated with drought tolerance were measured to identify the quantitative trait loci (QTLs). The map was constructed with 331 markers that covered all 11 chromosomes and had a total length of 1515 cM. Twenty-two QTLs were discovered for chlorophyll, leaf and stem fresh biomass, leaf biomass dry weight, leaf temperature, number of pods per plant, number of seeds per plant, seed weight, days to flowering, dry pod weight and total yield under well-watered and drought (stress) conditions. All the QTLs detected under drought conditions showed positive effects of the SEA 5 allele. This study provides a better understanding of the genetic inheritance of drought tolerance in common bean.

  4. Correction of Gradient Nonlinearity Bias in Quantitative Diffusion Parameters of Renal Tissue with Intra Voxel Incoherent Motion.

    PubMed

    Malyarenko, Dariya I; Pang, Yuxi; Senegas, Julien; Ivancevic, Marko K; Ross, Brian D; Chenevert, Thomas L

    2015-12-01

    Spatially non-uniform diffusion weighting bias due to gradient nonlinearity (GNL) causes substantial errors in apparent diffusion coefficient (ADC) maps for anatomical regions imaged distant from magnet isocenter. Our previously-described approach allowed effective removal of spatial ADC bias from three orthogonal DWI measurements for mono-exponential media of arbitrary anisotropy. The present work evaluates correction feasibility and performance for quantitative diffusion parameters of the two-component IVIM model for well-perfused and nearly isotropic renal tissue. Sagittal kidney DWI scans of a volunteer were performed on a clinical 3T MRI scanner near isocenter and offset superiorly. Spatially non-uniform diffusion weighting due to GNL resulted both in shift and broadening of perfusion-suppressed ADC histograms for off-center DWI relative to unbiased measurements close to isocenter. Direction-average DW-bias correctors were computed based on the known gradient design provided by vendor. The computed bias maps were empirically confirmed by coronal DWI measurements for an isotropic gel-flood phantom. Both phantom and renal tissue ADC bias for off-center measurements was effectively removed by applying pre-computed 3D correction maps. Comparable ADC accuracy was achieved for corrections of both b -maps and DWI intensities in presence of IVIM perfusion. No significant bias impact was observed for IVIM perfusion fraction.

  5. Correction of Gradient Nonlinearity Bias in Quantitative Diffusion Parameters of Renal Tissue with Intra Voxel Incoherent Motion

    PubMed Central

    Malyarenko, Dariya I.; Pang, Yuxi; Senegas, Julien; Ivancevic, Marko K.; Ross, Brian D.; Chenevert, Thomas L.

    2015-01-01

    Spatially non-uniform diffusion weighting bias due to gradient nonlinearity (GNL) causes substantial errors in apparent diffusion coefficient (ADC) maps for anatomical regions imaged distant from magnet isocenter. Our previously-described approach allowed effective removal of spatial ADC bias from three orthogonal DWI measurements for mono-exponential media of arbitrary anisotropy. The present work evaluates correction feasibility and performance for quantitative diffusion parameters of the two-component IVIM model for well-perfused and nearly isotropic renal tissue. Sagittal kidney DWI scans of a volunteer were performed on a clinical 3T MRI scanner near isocenter and offset superiorly. Spatially non-uniform diffusion weighting due to GNL resulted both in shift and broadening of perfusion-suppressed ADC histograms for off-center DWI relative to unbiased measurements close to isocenter. Direction-average DW-bias correctors were computed based on the known gradient design provided by vendor. The computed bias maps were empirically confirmed by coronal DWI measurements for an isotropic gel-flood phantom. Both phantom and renal tissue ADC bias for off-center measurements was effectively removed by applying pre-computed 3D correction maps. Comparable ADC accuracy was achieved for corrections of both b-maps and DWI intensities in presence of IVIM perfusion. No significant bias impact was observed for IVIM perfusion fraction. PMID:26811845

  6. Germplasm-regression-combined (GRC) marker-trait association identification in plant breeding: a challenge for plant biotechnological breeding under soil water deficit conditions.

    PubMed

    Ruan, Cheng-Jiang; Xu, Xue-Xuan; Shao, Hong-Bo; Jaleel, Cheruth Abdul

    2010-09-01

    In the past 20 years, the major effort in plant breeding has changed from quantitative to molecular genetics with emphasis on quantitative trait loci (QTL) identification and marker assisted selection (MAS). However, results have been modest. This has been due to several factors including absence of tight linkage QTL, non-availability of mapping populations, and substantial time needed to develop such populations. To overcome these limitations, and as an alternative to planned populations, molecular marker-trait associations have been identified by the combination between germplasm and the regression technique. In the present preview, the authors (1) survey the successful applications of germplasm-regression-combined (GRC) molecular marker-trait association identification in plants; (2) describe how to do the GRC analysis and its differences from mapping QTL based on a linkage map reconstructed from the planned populations; (3) consider the factors that affect the GRC association identification, including selections of optimal germplasm and molecular markers and testing of identification efficiency of markers associated with traits; and (4) finally discuss the future prospects of GRC marker-trait association analysis used in plant MAS/QTL breeding programs, especially in long-juvenile woody plants when no other genetic information such as linkage maps and QTL are available.

  7. Whole head quantitative susceptibility mapping using a least-norm direct dipole inversion method.

    PubMed

    Sun, Hongfu; Ma, Yuhan; MacDonald, M Ethan; Pike, G Bruce

    2018-06-15

    A new dipole field inversion method for whole head quantitative susceptibility mapping (QSM) is proposed. Instead of performing background field removal and local field inversion sequentially, the proposed method performs dipole field inversion directly on the total field map in a single step. To aid this under-determined and ill-posed inversion process and obtain robust QSM images, Tikhonov regularization is implemented to seek the local susceptibility solution with the least-norm (LN) using the L-curve criterion. The proposed LN-QSM does not require brain edge erosion, thereby preserving the cerebral cortex in the final images. This should improve its applicability for QSM-based cortical grey matter measurement, functional imaging and venography of full brain. Furthermore, LN-QSM also enables susceptibility mapping of the entire head without the need for brain extraction, which makes QSM reconstruction more automated and less dependent on intermediate pre-processing methods and their associated parameters. It is shown that the proposed LN-QSM method reduced errors in a numerical phantom simulation, improved accuracy in a gadolinium phantom experiment, and suppressed artefacts in nine subjects, as compared to two-step and other single-step QSM methods. Measurements of deep grey matter and skull susceptibilities from LN-QSM are consistent with established reconstruction methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Quantitative trait loci underlying resistance to sudden death syndrome (SDS) in MD96-5722 by 'Spencer' recombinant inbred line population of soybean.

    PubMed

    Anderson, J; Akond, M; Kassem, M A; Meksem, K; Kantartzi, S K

    2015-04-01

    The best way to protect yield loss of soybean [Glycine max (L.) Merr.] due to sudden death syndrome (SDS), caused by Fusarium virguliforme (Aoki, O'Donnel, Homma & Lattanzi), is the development and use of resistant lines. Mapping quantitative trait loci (QTL) linked to SDS help developing resistant soybean germplasm through molecular marker-assisted selection strategy. QTL for SDS presented herein are from a high-density SNP-based genetic linkage map of MD 96-5722 (a.k.a 'Monocacy') by 'Spencer' recombinant inbred line using SoySNP6K Illumina Infinium BeadChip genotyping array. Ninety-four F 5:7 lines were evaluated for 2 years (2010 and 2011) at two locations (Carbondale and Valmeyer) in southern Illinois, USA to identify QTL controlling SDS resistance using disease index (DX). Composite interval mapping identified 19 SDS controlling QTL which were mapped on 11 separate linkage group (LG) or chromosomes (Chr) out of 20 LG or Chr of soybean genome. Many of these significant QTL identified in one environment/year were confirmed in another year or environment, which suggests a common genetic effects and modes of the pathogen. These new QTL are useful sources for SDS resistance studies in soybean breeding, complementing previously reported loci.

  9. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Seshadri, S.; Cole, D. M.; Hancock, B. R.; Smith, R. M.

    2008-01-01

    Electronic coupling effects such as Inter-Pixel Capacitance (IPC) affect the quantitative interpretation of image data from CMOS, hybrid visible and infrared imagers alike. Existing methods of characterizing IPC do not provide a map of the spatial variation of IPC over all pixels. We demonstrate a deterministic method that provides a direct quantitative map of the crosstalk across an imager. The approach requires only the ability to reset single pixels to an arbitrary voltage, different from the rest of the imager. No illumination source is required. Mapping IPC independently for each pixel is also made practical by the greater S/N ratio achievable for an electrical stimulus than for an optical stimulus, which is subject to both Poisson statistics and diffusion effects of photo-generated charge. The data we present illustrates a more complex picture of IPC in Teledyne HgCdTe and HyViSi focal plane arrays than is presently understood, including the presence of a newly discovered, long range IPC in the HyViSi FPA that extends tens of pixels in distance, likely stemming from extended field effects in the fully depleted substrate. The sensitivity of the measurement approach has been shown to be good enough to distinguish spatial structure in IPC of the order of 0.1%.

  10. Quantitative assessment of desertification in south of Iran using MEDALUS method.

    PubMed

    Sepehr, A; Hassanli, A M; Ekhtesasi, M R; Jamali, J B

    2007-11-01

    The main aim of this study was the quantitative assessment of desertification process in the case study area of the Fidoye-Garmosht plain (Southern Iran). Based on the MEDALUS approach and the characteristics of study area a regional model developed using GIS. Six main factors or indicators of desertification including: soil, climate, erosion, plant cover, groundwater and management were considered for evaluation. Then several sub-indicators affecting the quality of each main indicator were identified. Based on the MEDALUS approach, each sub-indicator was quantified according to its quality and given a weighting of between 1.0 and 2.0. ArcGIS 9 was used to analyze and prepare the layers of quality maps using the geometric mean to integrate the individual sub-indicator maps. In turn the geometric mean of all six quality maps was used to generate a single desertification status map. Results showed that 12% of the area is classified as very severe, 81% as severe and 7% as moderately affected by desertification. In addition the plant cover and groundwater indicators were the most important factors affecting desertification process in the study area. The model developed may be used to assess desertification process and distinguish the areas sensitive to desertification in the study region and in regions with the similar characteristics.

  11. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq.

    PubMed

    Wang, Jun; Wang, Zhilan; Du, Xiaofen; Yang, Huiqing; Han, Fang; Han, Yuanhuai; Yuan, Feng; Zhang, Linyi; Peng, Shuzhong; Guo, Erhu

    2017-01-01

    Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model plant for cereal crops and biofuel grasses. Although its reference genome sequence was released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains limited. The development of massively parallel genotyping methods and next-generation sequencing technologies provides an excellent opportunity for developing single-nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantitative traits. In this study, a high-throughput and cost-effective RAD-seq approach was employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP markers were used to genotype 124 F2 progenies derived from the cross between Hongmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for eight agronomic traits were identified; five co-dominant DNA markers were developed. These findings will be of value for the identification of candidate genes and marker-assisted selection in foxtail millet.

  12. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq

    PubMed Central

    Wang, Zhilan; Du, Xiaofen; Yang, Huiqing; Han, Fang; Han, Yuanhuai; Yuan, Feng; Zhang, Linyi; Peng, Shuzhong; Guo, Erhu

    2017-01-01

    Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model plant for cereal crops and biofuel grasses. Although its reference genome sequence was released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains limited. The development of massively parallel genotyping methods and next-generation sequencing technologies provides an excellent opportunity for developing single-nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantitative traits. In this study, a high-throughput and cost-effective RAD-seq approach was employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP markers were used to genotype 124 F2 progenies derived from the cross between Hongmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for eight agronomic traits were identified; five co-dominant DNA markers were developed. These findings will be of value for the identification of candidate genes and marker-assisted selection in foxtail millet. PMID:28644843

  13. Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps.

    PubMed

    Sadeghi-Naini, Ali; Suraweera, Harini; Tran, William Tyler; Hadizad, Farnoosh; Bruni, Giancarlo; Rastegar, Rashin Fallah; Curpen, Belinda; Czarnota, Gregory J

    2017-10-20

    This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p < 0.05) between the two lesion types. A hybrid biomarker developed using a stepwise feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic.

  14. Large-Scale SNP Discovery and Genotyping for Constructing a High-Density Genetic Map of Tea Plant Using Specific-Locus Amplified Fragment Sequencing (SLAF-seq)

    PubMed Central

    Ma, Chun-Lei; Jin, Ji-Qiang; Li, Chun-Fang; Wang, Rong-Kai; Zheng, Hong-Kun; Yao, Ming-Zhe; Chen, Liang

    2015-01-01

    Genetic maps are important tools in plant genomics and breeding. The present study reports the large-scale discovery of single nucleotide polymorphisms (SNPs) for genetic map construction in tea plant. We developed a total of 6,042 valid SNP markers using specific-locus amplified fragment sequencing (SLAF-seq), and subsequently mapped them into the previous framework map. The final map contained 6,448 molecular markers, distributing on fifteen linkage groups corresponding to the number of tea plant chromosomes. The total map length was 3,965 cM, with an average inter-locus distance of 1.0 cM. This map is the first SNP-based reference map of tea plant, as well as the most saturated one developed to date. The SNP markers and map resources generated in this study provide a wealth of genetic information that can serve as a foundation for downstream genetic analyses, such as the fine mapping of quantitative trait loci (QTL), map-based cloning, marker-assisted selection, and anchoring of scaffolds to facilitate the process of whole genome sequencing projects for tea plant. PMID:26035838

  15. Mapping X-Disease Phytoplasma Resistance in Prunus virginiana.

    PubMed

    Lenz, Ryan R; Dai, Wenhao

    2017-01-01

    Phytoplasmas such as " Candidatus Phytoplasma pruni," the causal agent of X-disease of stone fruits, lack detailed biological analysis. This has limited the understanding of plant resistance mechanisms. Chokecherry ( Prunus virginiana L.) is a promising model to be used for the plant-phytoplasma interaction due to its documented ability to resist X-disease infection. A consensus chokecherry genetic map "Cho" was developed with JoinMap 4.0 by joining two parental maps. The new map contains a complete set of 16 linkage groups, spanning a genetic distance of 2,172 cM with an average marker density of 3.97 cM. Three significant quantitative trait loci (QTL) associated with X-disease resistance were identified contributing to a total of 45.9% of the phenotypic variation. This updated genetic linkage map and the identified QTL will provide the framework needed to facilitate molecular genetics, genomics, breeding, and biotechnology research concerning X-disease in chokecherry and other Prunus species.

  16. X-ray microbeam three-dimensional topography for dislocation strain-field analysis of 4H-SiC

    NASA Astrophysics Data System (ADS)

    Tanuma, R.; Mori, D.; Kamata, I.; Tsuchida, H.

    2013-07-01

    This paper describes the strain-field analysis of threading edge dislocations (TEDs) and basal-plane dislocations (BPDs) in 4H-SiC using x-ray microbeam three-dimensional (3D) topography. This 3D topography enables quantitative strain-field analysis, which measures images of effective misorientations (Δω maps) around the dislocations. A deformation-matrix-based simulation algorithm is developed to theoretically evaluate the Δω mapping. Systematic linear calculations can provide simulated Δω maps (Δωsim maps) of dislocations with different Burgers vectors, directions, and reflection vectors for the desired cross-sections. For TEDs and BPDs, Δω maps are compared with Δωsim maps, and their excellent correlation is demonstrated. Two types of asymmetric reflections, high- and low-angle incidence types, are compared. Strain analyses are also conducted to investigate BPD-TED conversion near an epilayer/substrate interface in 4H-SiC.

  17. RatMap--rat genome tools and data.

    PubMed

    Petersen, Greta; Johnson, Per; Andersson, Lars; Klinga-Levan, Karin; Gómez-Fabre, Pedro M; Ståhl, Fredrik

    2005-01-01

    The rat genome database RatMap (http://ratmap.org or http://ratmap.gen.gu.se) has been one of the main resources for rat genome information since 1994. The database is maintained by CMB-Genetics at Goteborg University in Sweden and provides information on rat genes, polymorphic rat DNA-markers and rat quantitative trait loci (QTLs), all curated at RatMap. The database is under the supervision of the Rat Gene and Nomenclature Committee (RGNC); thus much attention is paid to rat gene nomenclature. RatMap presents information on rat idiograms, karyotypes and provides a unified presentation of the rat genome sequence and integrated rat linkage maps. A set of tools is also available to facilitate the identification and characterization of rat QTLs, as well as the estimation of exon/intron number and sizes in individual rat genes. Furthermore, comparative gene maps of rat in regard to mouse and human are provided.

  18. Quantitative ultra-fast MRI of HPMC swelling and dissolution.

    PubMed

    Chen, Ya Ying; Hughes, L P; Gladden, L F; Mantle, M D

    2010-08-01

    For the first time quantitative Rapid Acquisition with Relaxation Enhancement (RARE) based ultra-fast two-dimensional magnetic resonance imaging has been used to follow the dissolution of hydroxypropylmethyl cellulose (HPMC) in water. Quantitative maps of absolute water concentration, spin-spin relaxation times and water self-diffusion coefficient are obtained at a spatial resolution of 469 microm in less than 3 min each. These maps allow the dynamic development of the medium release rate HPMC/water system to be followed. It is demonstrated that the evolution of the gel layer and, in particular, the gradient in water concentration across it, is significantly different when comparing the quantitative RARE sequence with a standard (nonquantitative) implementation of RARE. The total gel thickness in the axial direction grows faster than that in the radial direction and that the dry core initially expands anisotropically. Additionally, while HPMC absorbs a large amount of water during the dissolution process, the concentration gradient of water within the gel layer is relatively small. For the first time MRI evidence is presented for a transition swollen glassy layer which resides between the outer edge of the dry tablet core and the inner edge of the gel layer. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  19. Direct mapping of electrical noise sources in molecular wire-based devices

    PubMed Central

    Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun

    2017-01-01

    We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices. PMID:28233821

  20. Tractography optimization using quantitative T1 mapping in the human optic radiation.

    PubMed

    Schurr, Roey; Duan, Yiran; Norcia, Anthony M; Ogawa, Shumpei; Yeatman, Jason D; Mezer, Aviv A

    2018-06-21

    Diffusion MRI tractography is essential for reconstructing white-matter projections in the living human brain. Yet tractography results miss some projections and falsely identify others. A challenging example is the optic radiation (OR) that connects the thalamus and the primary visual cortex. Here, we tested whether OR tractography can be optimized using quantitative T1 mapping. Based on histology, we proposed that myelin-sensitive T1 values along the OR should remain consistently low compared with adjacent white matter. We found that complementary information from the T1 map allows for increasing the specificity of the reconstructed OR tract by eliminating falsely identified projections. This T1-filtering outperforms other, diffusion-based tractography filters. These results provide evidence that the smooth microstructural signature along the tract can be used as constructive input for tractography. Finally, we demonstrate that this approach can be generalized to the HCP-available MRI measurements. We conclude that multimodal MRI microstructural information can be used to eliminate spurious tractography results in the case of the OR. Copyright © 2018. Published by Elsevier Inc.

  1. Direct mapping of electrical noise sources in molecular wire-based devices

    NASA Astrophysics Data System (ADS)

    Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun

    2017-02-01

    We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices.

  2. Quantitative mapping of solute accumulation in a soil-root system by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Haber-Pohlmeier, S.; Vanderborght, J.; Pohlmeier, A.

    2017-08-01

    Differential uptake of water and solutes by plant roots generates heterogeneous concentration distributions in soils. Noninvasive observations of root system architecture and concentration patterns therefore provide information about root water and solute uptake. We present the application of magnetic resonance imaging (MRI) to image and monitor root architecture and the distribution of a tracer, GdDTPA2- (Gadolinium-diethylenetriaminepentacetate) noninvasively during an infiltration experiment in a soil column planted with white lupin. We show that inversion recovery preparation within the MRI imaging sequence can quantitatively map concentrations of a tracer in a complex root-soil system. Instead of a simple T1 weighting, the procedure is extended by a wide range of inversion times to precisely map T1 and subsequently to cover a much broader concentration range of the solute. The derived concentrations patterns were consistent with mass balances and showed that the GdDTPA2- tracer represents a solute that is excluded by roots. Monitoring and imaging the accumulation of the tracer in the root zone therefore offers the potential to determine where and by which roots water is taken up.

  3. Quantitative trait loci controlling leaf venation in Arabidopsis.

    PubMed

    Rishmawi, Louai; Bühler, Jonas; Jaegle, Benjamin; Hülskamp, Martin; Koornneef, Maarten

    2017-08-01

    Leaf veins provide the mechanical support and are responsible for the transport of nutrients and water to the plant. High vein density is a prerequisite for plants to have C4 photosynthesis. We investigated the genetic variation and genetic architecture of leaf venation traits within the species Arabidopsis thaliana using natural variation. Leaf venation traits, including leaf vein density (LVD) were analysed in 66 worldwide accessions and 399 lines of the multi-parent advanced generation intercross population. It was shown that there is no correlation between LVD and photosynthesis parameters within A. thaliana. Association mapping was performed for LVD and identified 16 and 17 putative quantitative trait loci (QTLs) in the multi-parent advanced generation intercross and worldwide sets, respectively. There was no overlap between the identified QTLs suggesting that many genes can affect the traits. In addition, linkage mapping was performed using two biparental recombinant inbred line populations. Combining linkage and association mapping revealed seven candidate genes. For one of the candidate genes, RCI2c, we demonstrated its function in leaf venation patterning. © 2017 John Wiley & Sons Ltd.

  4. Dark solitons, D-branes and noncommutative tachyon field theory

    NASA Astrophysics Data System (ADS)

    Giaccari, Stefano; Nian, Jun

    2017-11-01

    In this paper we discuss the boson/vortex duality by mapping the (3+1)D Gross-Pitaevskii theory into an effective string theory in the presence of boundaries. Via the effective string theory, we find the Seiberg-Witten map between the commutative and the noncommutative tachyon field theories, and consequently identify their soliton solutions with D-branes in the effective string theory. We perform various checks of the duality map and the identification of soliton solutions. This new insight between the Gross-Pitaevskii theory and the effective string theory explains the similarity of these two systems at quantitative level.

  5. Automated mapping of the ocean floor using the theory of intrinsic random functions of order k

    USGS Publications Warehouse

    David, M.; Crozel, D.; Robb, James M.

    1986-01-01

    High-quality contour maps can be computer drawn from single track echo-sounding data by combining Universal Kriging and the theory of intrinsic random function of order K (IRFK). These methods interpolate values among the closely spaced points that lie along relatively widely spaced lines. The technique provides a variance which can be contoured as a quantitative measure of map precision. The technique can be used to evaluate alternative survey trackline configurations and data collection intervals, and can be applied to other types of oceanographic data. ?? 1986 D. Reidel Publishing Company.

  6. Comprehensive framework for visualizing and analyzing spatio-temporal dynamics of racial diversity in the entire United States

    PubMed Central

    Netzel, Pawel

    2017-01-01

    The United States is increasingly becoming a multi-racial society. To understand multiple consequences of this overall trend to our neighborhoods we need a methodology capable of spatio-temporal analysis of racial diversity at the local level but also across the entire U.S. Furthermore, such methodology should be accessible to stakeholders ranging from analysts to decision makers. In this paper we present a comprehensive framework for visualizing and analyzing diversity data that fulfills such requirements. The first component of our framework is a U.S.-wide, multi-year database of race sub-population grids which is freely available for download. These 30 m resolution grids have being developed using dasymetric modeling and are available for 1990-2000-2010. We summarize numerous advantages of gridded population data over commonly used Census tract-aggregated data. Using these grids frees analysts from constructing their own and allows them to focus on diversity analysis. The second component of our framework is a set of U.S.-wide, multi-year diversity maps at 30 m resolution. A diversity map is our product that classifies the gridded population into 39 communities based on their degrees of diversity, dominant race, and population density. It provides spatial information on diversity in a single, easy-to-understand map that can be utilized by analysts and end users alike. Maps based on subsequent Censuses provide information about spatio-temporal dynamics of diversity. Diversity maps are accessible through the GeoWeb application SocScape (http://sil.uc.edu/webapps/socscape_usa/) for an immediate online exploration. The third component of our framework is a proposal to quantitatively analyze diversity maps using a set of landscape metrics. Because of its form, a grid-based diversity map could be thought of as a diversity “landscape” and analyzed quantitatively using landscape metrics. We give a brief summary of most pertinent metrics and demonstrate how they can be applied to diversity maps. PMID:28358862

  7. A large QTL for fear and anxiety mapped using an F2 cross can be dissected into multiple smaller QTLs.

    PubMed

    Parker, C C; Sokoloff, G; Leung, E; Kirkpatrick, S L; Palmer, A A

    2013-10-01

    Using chromosome substitution strains (CSS), we previously identified a large quantitative trait locus (QTL) for conditioned fear (CF) on mouse chromosome 10. Here, we used an F2 cross between CSS-10 and C57BL/6J (B6) to localize that QTL to distal chromosome 10. That QTL accounted for all the difference between CSS-10 and B6. We then produced congenic strains to fine-map that interval. We identified two congenic strains that captured some or all the QTL. The larger congenic strain (Line 1: 122.387121-129.068 Mb; build 37) appeared to account for all the difference between CSS-10 and B6. The smaller congenic strain (Line 2: 127.277-129.068 Mb) was intermediate between CSS-10 and B6. We used haplotype mapping followed by quantitative polymerase chain reaction to identify one gene that was differentially expressed in both lines relative to B6 (Rnf41) and one that was differentially expressed between only Line 1 and B6 (Shmt2). These cis-eQTLs may cause the behavioral QTLs; however, further studies are required to validate these candidate genes. More generally, our observation that a large QTL mapped using CSS and F2 crosses can be dissected into multiple smaller QTLs shows a weaknesses of two-stage approaches that seek to use coarse mapping to identify large regions followed by fine-mapping. Indeed, additional dissection of these congenic strains might result in further subdivision of these QTL regions. Despite these limitations, we have successfully fine-mapped two QTLs to small regions and identified putative candidate genes, showing that the congenic approach can be effective for fine-mapping QTLs. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  8. Simultaneous Quantitative MRI Mapping of T1, T2* and Magnetic Susceptibility with Multi-Echo MP2RAGE

    PubMed Central

    Kober, Tobias; Möller, Harald E.; Schäfer, Andreas

    2017-01-01

    The knowledge of relaxation times is essential for understanding the biophysical mechanisms underlying contrast in magnetic resonance imaging. Quantitative experiments, while offering major advantages in terms of reproducibility, may benefit from simultaneous acquisitions. In this work, we demonstrate the possibility of simultaneously recording relaxation-time and susceptibility maps with a prototype Multi-Echo (ME) Magnetization-Prepared 2 RApid Gradient Echoes (MP2RAGE) sequence. T1 maps can be obtained using the MP2RAGE sequence, which is relatively insensitive to inhomogeneities of the radio-frequency transmit field, B1+. As an extension, multiple gradient echoes can be acquired in each of the MP2RAGE readout blocks, which permits the calculation of T2* and susceptibility maps. We used computer simulations to explore the effects of the parameters on the precision and accuracy of the mapping. In vivo parameter maps up to 0.6 mm nominal resolution were acquired at 7 T in 19 healthy volunteers. Voxel-by-voxel correlations and the test-retest reproducibility were used to assess the reliability of the results. When using optimized paramenters, T1 maps obtained with ME-MP2RAGE and standard MP2RAGE showed excellent agreement for the whole range of values found in brain tissues. Simultaneously obtained T2* and susceptibility maps were of comparable quality as Fast Low-Angle SHot (FLASH) results. The acquisition times were more favorable for the ME-MP2RAGE (≈ 19 min) sequence as opposed to the sum of MP2RAGE (≈ 12 min) and FLASH (≈ 10 min) acquisitions. Without relevant sacrifice in accuracy, precision or flexibility, the multi-echo version may yield advantages in terms of reduced acquisition time and intrinsic co-registration, provided that an appropriate optimization of the acquisition parameters is performed. PMID:28081157

  9. Dispersal kernel estimation: A comparison of empirical and modelled particle dispersion in a coastal marine system

    NASA Astrophysics Data System (ADS)

    Hrycik, Janelle M.; Chassé, Joël; Ruddick, Barry R.; Taggart, Christopher T.

    2013-11-01

    Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conservation to the design of marine reserves and the mitigation of species invasions. Here we compare estimates of real particle dispersion in a coastal marine environment with similar estimates provided by hydrodynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location dispersed through the collector array over a 5-7 d period. A virtual release and observed (real-time) environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector array and the number of VPs that passed through each corresponding model location were enumerated and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the range of 5.19-11.44 km, while those from the model simulations were comparable at 1.89-6.52 km, and also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in modelling and are postulated to be related to MAP losses from the water column and (or) shear dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic systems, and 2) quantitatively assessing and (or) improving regional hydrodynamic models.

  10. A reference genetic linkage map of apomictic Hieracium species based on expressed markers derived from developing ovule transcripts.

    PubMed

    Shirasawa, Kenta; Hand, Melanie L; Henderson, Steven T; Okada, Takashi; Johnson, Susan D; Taylor, Jennifer M; Spriggs, Andrew; Siddons, Hayley; Hirakawa, Hideki; Isobe, Sachiko; Tabata, Satoshi; Koltunow, Anna M G

    2015-03-01

    Apomixis in plants generates clonal progeny with a maternal genotype through asexual seed formation. Hieracium subgenus Pilosella (Asteraceae) contains polyploid, highly heterozygous apomictic and sexual species. Within apomictic Hieracium, dominant genetic loci independently regulate the qualitative developmental components of apomixis. In H. praealtum, LOSS OF APOMEIOSIS (LOA) enables formation of embryo sacs without meiosis and LOSS OF PARTHENOGENESIS (LOP) enables fertilization-independent seed formation. A locus required for fertilization-independent endosperm formation (AutE) has been identified in H. piloselloides. Additional quantitative loci appear to influence the penetrance of the qualitative loci, although the controlling genes remain unknown. This study aimed to develop the first genetic linkage maps for sexual and apomictic Hieracium species using simple sequence repeat (SSR) markers derived from expressed transcripts within the developing ovaries. RNA from microdissected Hieracium ovule cell types and ovaries was sequenced and SSRs were identified. Two different F1 mapping populations were created to overcome difficulties associated with genome complexity and asexual reproduction. SSR markers were analysed within each mapping population to generate draft linkage maps for apomictic and sexual Hieracium species. A collection of 14 684 Hieracium expressed SSR markers were developed and linkage maps were constructed for Hieracium species using a subset of the SSR markers. Both the LOA and LOP loci were successfully assigned to linkage groups; however, AutE could not be mapped using the current populations. Comparisons with lettuce (Lactuca sativa) revealed partial macrosynteny between the two Asteraceae species. A collection of SSR markers and draft linkage maps were developed for two apomictic and one sexual Hieracium species. These maps will support cloning of controlling genes at LOA and LOP loci in Hieracium and should also assist with identification of quantitative loci that affect the expressivity of apomixis. Future work will focus on mapping AutE using alternative populations. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Fast Quantitative Susceptibility Mapping with L1-Regularization and Automatic Parameter Selection

    PubMed Central

    Bilgic, Berkin; Fan, Audrey P.; Polimeni, Jonathan R.; Cauley, Stephen F.; Bianciardi, Marta; Adalsteinsson, Elfar; Wald, Lawrence L.; Setsompop, Kawin

    2014-01-01

    Purpose To enable fast reconstruction of quantitative susceptibility maps with Total Variation penalty and automatic regularization parameter selection. Methods ℓ1-regularized susceptibility mapping is accelerated by variable-splitting, which allows closed-form evaluation of each iteration of the algorithm by soft thresholding and FFTs. This fast algorithm also renders automatic regularization parameter estimation practical. A weighting mask derived from the magnitude signal can be incorporated to allow edge-aware regularization. Results Compared to the nonlinear Conjugate Gradient (CG) solver, the proposed method offers 20× speed-up in reconstruction time. A complete pipeline including Laplacian phase unwrapping, background phase removal with SHARP filtering and ℓ1-regularized dipole inversion at 0.6 mm isotropic resolution is completed in 1.2 minutes using Matlab on a standard workstation compared to 22 minutes using the Conjugate Gradient solver. This fast reconstruction allows estimation of regularization parameters with the L-curve method in 13 minutes, which would have taken 4 hours with the CG algorithm. Proposed method also permits magnitude-weighted regularization, which prevents smoothing across edges identified on the magnitude signal. This more complicated optimization problem is solved 5× faster than the nonlinear CG approach. Utility of the proposed method is also demonstrated in functional BOLD susceptibility mapping, where processing of the massive time-series dataset would otherwise be prohibitive with the CG solver. Conclusion Online reconstruction of regularized susceptibility maps may become feasible with the proposed dipole inversion. PMID:24259479

  12. Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.).

    PubMed

    Huang, Li; Ren, Xiaoping; Wu, Bei; Li, Xinping; Chen, Weigang; Zhou, Xiaojing; Chen, Yuning; Pandey, Manish K; Jiao, Yongqing; Luo, Huaiyong; Lei, Yong; Varshney, Rajeev K; Liao, Boshou; Jiang, Huifang

    2016-12-20

    Plant height is one of the most important architecture traits in crop plants. In peanut, the genetic basis of plant height remains ambiguous. In this context, we genotyped a recombinant inbred line (RIL) population with 140 individuals developed from a cross between two peanut varieties varying in plant height, Zhonghua 10 and ICG 12625. Genotyping data was generated for 1,175 SSR and 42 transposon polymorphic markers and a high-density genetic linkage map was constructed with 1,219 mapped loci covering total map length of 2,038.75 cM i.e., accounted for nearly 80% of the peanut genome. Quantitative trait locus (QTL) analysis using genotyping and phenotyping data for three environments identified 8 negative-effect QTLs and 10 positive-effect QTLs for plant height. Among these QTLs, 8 QTLs had a large contribution to plant height that explained ≥10% phenotypic variation. Two major-effect consensus QTLs namely cqPHA4a and cqPHA4b were identified with stable performance across three environments. Further, the allelic recombination of detected QTLs proved the existence of the phenomenon of transgressive segregation for plant height in the RIL population. Therefore, this study not only successfully reported a high-density genetic linkage map of peanut and identified genomic region controlling plant height but also opens opportunities for further gene discovery and molecular breeding for plant height in peanut.

  13. Background field removal technique based on non-regularized variable kernels sophisticated harmonic artifact reduction for phase data for quantitative susceptibility mapping.

    PubMed

    Kan, Hirohito; Arai, Nobuyuki; Takizawa, Masahiro; Omori, Kazuyoshi; Kasai, Harumasa; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta

    2018-06-11

    We developed a non-regularized, variable kernel, sophisticated harmonic artifact reduction for phase data (NR-VSHARP) method to accurately estimate local tissue fields without regularization for quantitative susceptibility mapping (QSM). We then used a digital brain phantom to evaluate the accuracy of the NR-VSHARP method, and compared it with the VSHARP and iterative spherical mean value (iSMV) methods through in vivo human brain experiments. Our proposed NR-VSHARP method, which uses variable spherical mean value (SMV) kernels, minimizes L2 norms only within the volume of interest to reduce phase errors and save cortical information without regularization. In a numerical phantom study, relative local field and susceptibility map errors were determined using NR-VSHARP, VSHARP, and iSMV. Additionally, various background field elimination methods were used to image the human brain. In a numerical phantom study, the use of NR-VSHARP considerably reduced the relative local field and susceptibility map errors throughout a digital whole brain phantom, compared with VSHARP and iSMV. In the in vivo experiment, the NR-VSHARP-estimated local field could sufficiently achieve minimal boundary losses and phase error suppression throughout the brain. Moreover, the susceptibility map generated using NR-VSHARP minimized the occurrence of streaking artifacts caused by insufficient background field removal. Our proposed NR-VSHARP method yields minimal boundary losses and highly precise phase data. Our results suggest that this technique may facilitate high-quality QSM. Copyright © 2017. Published by Elsevier Inc.

  14. Comparative mapping of Raphanus sativus genome using Brassica markers and quantitative trait loci analysis for the Fusarium wilt resistance trait.

    PubMed

    Yu, Xiaona; Choi, Su Ryun; Ramchiary, Nirala; Miao, Xinyang; Lee, Su Hee; Sun, Hae Jeong; Kim, Sunggil; Ahn, Chun Hee; Lim, Yong Pyo

    2013-10-01

    Fusarium wilt (FW), caused by the soil-borne fungal pathogen Fusarium oxysporum is a serious disease in cruciferous plants, including the radish (Raphanus sativus). To identify quantitative trait loci (QTL) or gene(s) conferring resistance to FW, we constructed a genetic map of R. sativus using an F2 mapping population derived by crossing the inbred lines '835' (susceptible) and 'B2' (resistant). A total of 220 markers distributed in 9 linkage groups (LGs) were mapped in the Raphanus genome, covering a distance of 1,041.5 cM with an average distance between adjacent markers of 4.7 cM. Comparative analysis of the R. sativus genome with that of Arabidopsis thaliana and Brassica rapa revealed 21 and 22 conserved syntenic regions, respectively. QTL mapping detected a total of 8 loci conferring FW resistance that were distributed on 4 LGs, namely, 2, 3, 6, and 7 of the Raphanus genome. Of the detected QTL, 3 QTLs (2 on LG 3 and 1 on LG 7) were constitutively detected throughout the 2-year experiment. QTL analysis of LG 3, flanked by ACMP0609 and cnu_mBRPGM0085, showed a comparatively higher logarithm of the odds (LOD) value and percentage of phenotypic variation. Synteny analysis using the linked markers to this QTL showed homology to A. thaliana chromosome 3, which contains disease-resistance gene clusters, suggesting conservation of resistance genes between them.

  15. Colony mapping: A new technique for monitoring crevice-nesting seabirds

    USGS Publications Warehouse

    Renner, H.M.; Renner, M.; Reynolds, J.H.; Harping, A.M.A.; Jones, I.L.; Irons, D.B.; Byrd, G.V.

    2006-01-01

    Monitoring populations of auklets and other crevice-nesting seabirds remains problematic, although numerous methods have been attempted since the mid-1960s. Anecdotal evidence suggests several large auklet colonies have recently decreased in both abundance and extent, concurrently with vegetation encroachment and succession. Quantifying changes in the geographical extent of auklet colonies may be a useful alternative to monitoring population size directly. We propose a standardized method for colony mapping using a randomized systematic grid survey with two components: a simple presence/absence survey and an auklet evidence density survey. A quantitative auklet evidence density index was derived from the frequency of droppings and feathers. This new method was used to map the colony on St. George Island in the southeastern Bering Sea and results were compared to previous colony mapping efforts. Auklet presence was detected in 62 of 201 grid cells (each grid cell = 2500 m2) by sampling a randomly placed 16 m2 plot in each cell; estimated colony area = 155 000 m2. The auklet evidence density index varied by two orders of magnitude across the colony and was strongly correlated with means of replicated counts of birds socializing on the colony surface. Quantitatively mapping all large auklet colonies is logistically feasible using this method and would provide an important baseline for monitoring colony status. Regularly monitoring select colonies using this method may be the best means of detecting changes in distribution and population size of crevice-nesting seabirds. ?? The Cooper Ornithological Society 2006.

  16. Magnetoencephalographic Mapping of Epileptic Spike Population Using Distributed Source Analysis: Comparison With Intracranial Electroencephalographic Spikes.

    PubMed

    Tanaka, Naoaki; Papadelis, Christos; Tamilia, Eleonora; Madsen, Joseph R; Pearl, Phillip L; Stufflebeam, Steven M

    2018-04-27

    This study evaluates magnetoencephalographic (MEG) spike population as compared with intracranial electroencephalographic (IEEG) spikes using a quantitative method based on distributed source analysis. We retrospectively studied eight patients with medically intractable epilepsy who had an MEG and subsequent IEEG monitoring. Fifty MEG spikes were analyzed in each patient using minimum norm estimate. For individual spikes, each vertex in the source space was considered activated when its source amplitude at the peak latency was higher than a threshold, which was set at 50% of the maximum amplitude over all vertices. We mapped the total count of activation at each vertex. We also analyzed 50 IEEG spikes in the same manner over the intracranial electrodes and created the activation count map. The location of the electrodes was obtained in the MEG source space by coregistering postimplantation computed tomography to MRI. We estimated the MEG- and IEEG-active regions associated with the spike populations using the vertices/electrodes with a count over 25. The activation count maps of MEG spikes demonstrated the localization associated with the spike population by variable count values at each vertex. The MEG-active region overlapped with 65 to 85% of the IEEG-active region in our patient group. Mapping the MEG spike population is valid for demonstrating the trend of spikes clustering in patients with epilepsy. In addition, comparison of MEG and IEEG spikes quantitatively may be informative for understanding their relationship.

  17. Accelerated Brain DCE-MRI Using Iterative Reconstruction With Total Generalized Variation Penalty for Quantitative Pharmacokinetic Analysis: A Feasibility Study.

    PubMed

    Wang, Chunhao; Yin, Fang-Fang; Kirkpatrick, John P; Chang, Zheng

    2017-08-01

    To investigate the feasibility of using undersampled k-space data and an iterative image reconstruction method with total generalized variation penalty in the quantitative pharmacokinetic analysis for clinical brain dynamic contrast-enhanced magnetic resonance imaging. Eight brain dynamic contrast-enhanced magnetic resonance imaging scans were retrospectively studied. Two k-space sparse sampling strategies were designed to achieve a simulated image acquisition acceleration factor of 4. They are (1) a golden ratio-optimized 32-ray radial sampling profile and (2) a Cartesian-based random sampling profile with spatiotemporal-regularized sampling density constraints. The undersampled data were reconstructed to yield images using the investigated reconstruction technique. In quantitative pharmacokinetic analysis on a voxel-by-voxel basis, the rate constant K trans in the extended Tofts model and blood flow F B and blood volume V B from the 2-compartment exchange model were analyzed. Finally, the quantitative pharmacokinetic parameters calculated from the undersampled data were compared with the corresponding calculated values from the fully sampled data. To quantify each parameter's accuracy calculated using the undersampled data, error in volume mean, total relative error, and cross-correlation were calculated. The pharmacokinetic parameter maps generated from the undersampled data appeared comparable to the ones generated from the original full sampling data. Within the region of interest, most derived error in volume mean values in the region of interest was about 5% or lower, and the average error in volume mean of all parameter maps generated through either sampling strategy was about 3.54%. The average total relative error value of all parameter maps in region of interest was about 0.115, and the average cross-correlation of all parameter maps in region of interest was about 0.962. All investigated pharmacokinetic parameters had no significant differences between the result from original data and the reduced sampling data. With sparsely sampled k-space data in simulation of accelerated acquisition by a factor of 4, the investigated dynamic contrast-enhanced magnetic resonance imaging pharmacokinetic parameters can accurately estimate the total generalized variation-based iterative image reconstruction method for reliable clinical application.

  18. 3-D Quantitative Dynamic Contrast Ultrasound for Prostate Cancer Localization.

    PubMed

    Schalk, Stefan G; Huang, Jing; Li, Jia; Demi, Libertario; Wijkstra, Hessel; Huang, Pintong; Mischi, Massimo

    2018-04-01

    To investigate quantitative 3-D dynamic contrast-enhanced ultrasound (DCE-US) and, in particular 3-D contrast-ultrasound dispersion imaging (CUDI), for prostate cancer detection and localization, 43 patients referred for 10-12-core systematic biopsy underwent 3-D DCE-US. For each 3-D DCE-US recording, parametric maps of CUDI-based and perfusion-based parameters were computed. The parametric maps were divided in regions, each corresponding to a biopsy core. The obtained parameters were validated per biopsy location and after combining two or more adjacent regions. For CUDI by correlation (r) and for the wash-in time (WIT), a significant difference in parameter values between benign and malignant biopsy cores was found (p < 0.001). In a per-prostate analysis, sensitivity and specificity were 94% and 50% for r, and 53% and 81% for WIT. Based on these results, it can be concluded that quantitative 3-D DCE-US could aid in localizing prostate cancer. Therefore, we recommend follow-up studies to investigate its value for targeting biopsies. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  19. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2

    PubMed Central

    Takahashi, Yuji; Shomura, Ayahiko; Sasaki, Takuji; Yano, Masahiro

    2001-01-01

    Hd6 is a quantitative trait locus involved in rice photoperiod sensitivity. It was detected in backcross progeny derived from a cross between the japonica variety Nipponbare and the indica variety Kasalath. To isolate a gene at Hd6, we used a large segregating population for the high-resolution and fine-scale mapping of Hd6 and constructed genomic clone contigs around the Hd6 region. Linkage analysis with P1-derived artificial chromosome clone-derived DNA markers delimited Hd6 to a 26.4-kb genomic region. We identified a gene encoding the α subunit of protein kinase CK2 (CK2α) in this region. The Nipponbare allele of CK2α contains a premature stop codon, and the resulting truncated product is undoubtedly nonfunctional. Genetic complementation analysis revealed that the Kasalath allele of CK2α increases days-to-heading. Map-based cloning with advanced backcross progeny enabled us to identify a gene underlying a quantitative trait locus even though it exhibited a relatively small effect on the phenotype. PMID:11416158

  20. StructMap: Elastic Distance Analysis of Electron Microscopy Maps for Studying Conformational Changes.

    PubMed

    Sanchez Sorzano, Carlos Oscar; Alvarez-Cabrera, Ana Lucia; Kazemi, Mohsen; Carazo, Jose María; Jonić, Slavica

    2016-04-26

    Single-particle electron microscopy (EM) has been shown to be very powerful for studying structures and associated conformational changes of macromolecular complexes. In the context of analyzing conformational changes of complexes, distinct EM density maps obtained by image analysis and three-dimensional (3D) reconstruction are usually analyzed in 3D for interpretation of structural differences. However, graphic visualization of these differences based on a quantitative analysis of elastic transformations (deformations) among density maps has not been done yet due to a lack of appropriate methods. Here, we present an approach that allows such visualization. This approach is based on statistical analysis of distances among elastically aligned pairs of EM maps (one map is deformed to fit the other map), and results in visualizing EM maps as points in a lower-dimensional distance space. The distances among points in the new space can be analyzed in terms of clusters or trajectories of points related to potential conformational changes. The results of the method are shown with synthetic and experimental EM maps at different resolutions. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

Top